text
stringlengths 0
3.34M
|
---|
informal statement For all odd $n$ show that $8 \mid n^{2}-1$.formal statement theorem exercise_1_27 {n : β} (hn : odd n) : 8 β£ (n^2 - 1) := |
informal statement Show that if $X$ is a Hausdorff space that is locally compact at the point $x$, then for each neighborhood $U$ of $x$, there is a neighborhood $V$ of $x$ such that $\bar{V}$ is compact and $\bar{V} \subset U$.formal statement theorem exercise_29_10 {X : Type*}
[topological_space X] [t2_space X] (x : X)
(hx : β U : set X, x β U β§ is_open U β§ (β K : set X, U β K β§ is_compact K))
(U : set X) (hU : is_open U) (hxU : x β U) :
β (V : set X), is_open V β§ x β V β§ is_compact (closure V) β§ closure V β U := |
informal statement Let $n$ be a positive integer, and let $f_{n}(z)=n+(n-1) z+$ $(n-2) z^{2}+\cdots+z^{n-1}$. Prove that $f_{n}$ has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.formal statement theorem exercise_2018_b2 (n : β) (hn : n > 0) (f : β β β β β)
(hf : β n : β, f n = Ξ» z, (β (i : fin n), (n-i)* z^(i : β))) :
Β¬ (β z : β, βzβ β€ 1 β§ f n z = 0) := |
informal statement Show that a group of order 5 must be abelian.formal statement theorem exercise_2_1_21 (G : Type*) [group G] [fintype G]
(hG : card G = 5) :
comm_group G := |
informal statement Let $X$ be locally path connected. Show that every connected open set in $X$ is path connected.formal statement theorem exercise_25_4 {X : Type*} [topological_space X]
[loc_path_connected_space X] (U : set X) (hU : is_open U)
(hcU : is_connected U) : is_path_connected U := |
informal statement If $z$ is a complex number, prove that there exists an $r\geq 0$ and a complex number $w$ with $| w | = 1$ such that $z = rw$.formal statement theorem exercise_1_11a (z : β) :
β (r : β) (w : β), abs w = 1 β§ z = r * w := |
informal statement Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.formal statement theorem exercise_7_10 {V : Type*} [inner_product_space β V]
[finite_dimensional β V] (T : End β V)
(hT : T * T.adjoint = T.adjoint * T) (hT1 : T^9 = T^8) :
is_self_adjoint T β§ T^2 = T := |
informal statement Let $p$ and $q$ be distinct odd primes such that $p-1$ divides $q-1$. If $(n, p q)=1$, show that $n^{q-1} \equiv 1(p q)$.formal statement theorem exercise_3_14 {p q n : β} (hp0 : p.prime β§ p > 2)
(hq0 : q.prime β§ q > 2) (hpq0 : p β q) (hpq1 : p - 1 β£ q - 1)
(hn : n.gcd (p*q) = 1) :
n^(q-1) β‘ 1 [MOD p*q] := |
informal statement Prove that $(x, y)$ is not a principal ideal in $\mathbb{Q}[x, y]$.formal statement theorem exercise_9_3_2 {f g : polynomial β} (i j : β)
(hfg : β n : β, β a : β€, (f*g).coeff = a) :
β a : β€, f.coeff i * g.coeff j = a := |
informal statement Let $\left\{A_{n}\right\}$ be a sequence of connected subspaces of $X$, such that $A_{n} \cap A_{n+1} \neq \varnothing$ for all $n$. Show that $\bigcup A_{n}$ is connected.formal statement theorem exercise_23_2 {X : Type*}
[topological_space X] {A : β β set X} (hA : β n, is_connected (A n))
(hAn : β n, A n β© A (n + 1) β β
) :
is_connected (β n, A n) := |
informal statement If $G$ is a nonabelian group of order 6, prove that $G \simeq S_3$.formal statement theorem exercise_2_5_37 (G : Type*) [group G] [fintype G]
(hG : card G = 6) (hG' : is_empty (comm_group G)) :
G β* equiv.perm (fin 3) := |
informal statement Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.formal statement theorem exercise_2_27a (k : β) (E P : set (euclidean_space β (fin k)))
(hE : E.nonempty β§ Β¬ set.countable E)
(hP : P = {x | β U β π x, Β¬ set.countable (P β© E)}) :
is_closed P β§ P = {x | cluster_pt x (π P)} := |
informal statement Suppose $E\subset\mathbb{R}^k$ is uncountable, and let $P$ be the set of condensation points of $E$. Prove that $P$ is perfect.formal statement theorem exercise_2_27a (k : β) (E P : set (euclidean_space β (fin k)))
(hE : E.nonempty β§ Β¬ set.countable E)
(hP : P = {x | β U β π x, Β¬ set.countable (P β© E)}) :
is_closed P β§ P = {x | cluster_pt x (π P)} := |
informal statement Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite.formal statement theorem exercise_3_5_6 {K V : Type*} [field K] [add_comm_group V]
[module K V] {S : set V} (hS : set.countable S)
(hS1 : span K S = β€) {ΞΉ : Type*} (R : ΞΉ β V)
(hR : linear_independent K R) : countable ΞΉ := |
informal statement Show that the rationals $\mathbb{Q}$ are not locally compact.formal statement theorem exercise_29_10 {X : Type*}
[topological_space X] [t2_space X] (x : X)
(hx : β U : set X, x β U β§ is_open U β§ (β K : set X, U β K β§ is_compact K))
(U : set X) (hU : is_open U) (hxU : x β U) :
β (V : set X), is_open V β§ x β V β§ is_compact (closure V) β§ closure V β U := |
informal statement Prove that if $G$ is an abelian simple group then $G \cong Z_{p}$ for some prime $p$ (do not assume $G$ is a finite group).formal statement theorem exercise_3_4_1 (G : Type*) [comm_group G] [is_simple_group G] :
is_cyclic G β§ β G_fin : fintype G, nat.prime (@card G G_fin) := |
informal statement Prove that the power series $\sum zn/n^2$ converges at every point of the unit circle.formal statement theorem exercise_1_19b (z : β) (hz : abs z = 1) (s : β β β)
(h : s = (Ξ» n, β i in (finset.range n), i * z / i ^ 2)) :
β y, tendsto s at_top (π y) := |
/-- `try_solve t` either solves the goal using `t` or does not change the proof state. -/
macro "try_solve " t:tacticSeq : tactic =>
`(tactic| first | (solve | $t) | skip)
-- example : True β¨ False := by (try_solve apply Or.inr); trivial
/-- `lax_exact h` completes the goal using `h`, adding a subgoal to
rewrite the goal to the type of `h`.
It tries to automatically prove this subgoal using `trivial`.
The disadvantage is that no inference is possible at all in `h`. -/
macro "lax_exact " t:term : tactic =>
/- `Eq.subst (Eq.symm ?_) $t` seems to get the motive wrong, so use
`cast` and `congr` afterwards instead. -/
`(tactic| focus refine cast (Eq.symm ?_) $t; congr; try_solve trivial)
/-- `lax_apply h` is essentially the same as `lax_exact (h ..)`.
As a result, it is currently useless (see end of docstring of `lax_exact`). -/
-- In fact, currently, it _is_ the same.
macro "lax_apply" t:term : tactic =>
`(tactic| lax_exact $t ..)
/- example (a b : Nat) : a + b - b β€ a + b := by
lax_exact Nat.le_add_right a b
apply Nat.add_sub_cancel -/
|
informal statement Show that 1729 is the smallest positive integer expressible as the sum of two different integral cubes in two ways.formal statement theorem exercise_18_4 {n : β} (hn : β x y z w : β€,
x^3 + y^3 = n β§ z^3 + w^3 = n β§ x β z β§ x β w β§ y β z β§ y β w) :
n β₯ 1729 := |
informal statement Prove that if $|G|=1365$ then $G$ is not simple.formal statement theorem exercise_4_5_20 {G : Type*} [fintype G] [group G]
(hG : card G = 1365) : Β¬ is_simple_group G := |
informal statement Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by the equation $f_{n}(x)=x^{n}$. Show that the sequence $\left(f_{n}(x)\right)$ converges for each $x \in[0,1]$.formal statement theorem exercise_21_6a
(f : β β I β β )
(h : β x n, f n x = x ^ n) :
β x, β y, tendsto (Ξ» n, f n x) at_top (π y) := |
informal statement Let $|G|=p q r$, where $p, q$ and $r$ are primes with $p<q<r$. Prove that $G$ has a normal Sylow subgroup for either $p, q$ or $r$.formal statement theorem exercise_4_5_18 {G : Type*} [fintype G] [group G]
(hG : card G = 200) :
β N : sylow 5 G, N.normal := |
informal statement Prove that if $|G|=132$ then $G$ is not simple.formal statement theorem exercise_4_5_22 {G : Type*} [fintype G] [group G]
(hG : card G = 132) : Β¬ is_simple_group G := |
informal statement Let $R$ be the ring of $2 \times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$.formal statement theorem exercise_4_3_25 (I : ideal (matrix (fin 2) (fin 2) β)) :
I = β₯ β¨ I = β€ := |
informal statement Show that if $X$ has a countable dense subset, every collection of disjoint open sets in $X$ is countable.formal statement theorem exercise_30_13 {X : Type*} [topological_space X]
(h : β (s : set X), countable s β§ dense s) (U : set (set X))
(hU : β (x y : set X), x β U β y β U β x β y β x β© y = β
) :
countable U := |
informal statement Let $X$ be completely regular. Show that $X$ is connected if and only if the Stone-Δech compactification of $X$ is connected.formal statement theorem exercise_38_6 {X : Type*}
(X : Type*) [topological_space X] [regular_space X]
(h : β x A, is_closed A β§ Β¬ x β A β
β (f : X β I), continuous f β§ f x = (1 : I) β§ f '' A = {0}) :
is_connected (univ : set X) β is_connected (univ : set (stone_cech X)) := |
informal statement Consider a prime $p$ of the form $4 t+3$. Show that $a$ is a primitive root modulo $p$ iff $-a$ has order $(p-1) / 2$.formal statement theorem exercise_4_5 {p t : β} (hp0 : p.prime) (hp1 : p = 4*t + 3)
(a : zmod p) :
is_primitive_root a p β ((-a) ^ ((p-1)/2) = 1 β§ β (k : β), k < (p-1)/2 β (-a)^k β 1) := |
informal statement Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.formal statement theorem exercise_2_5_30 {G : Type*} [group G] [fintype G]
{p m : β} (hp : nat.prime p) (hp1 : Β¬ p β£ m) (hG : card G = p*m)
{H : subgroup G} [fintype H] [H.normal] (hH : card H = p):
characteristic H := |
informal statement Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic.formal statement theorem exercise_2_5_37 (G : Type*) [group G] [fintype G]
(hG : card G = 6) (hG' : is_empty (comm_group G)) :
G β* equiv.perm (fin 3) := |
informal statement Prove that $\frac{(x+2)^p-2^p}{x}$, where $p$ is an odd prime, is irreducible in $\mathbb{Z}[x]$.formal statement theorem exercise_9_4_2d {p : β} (hp : p.prime β§ p > 2)
{f : polynomial β€} (hf : f = (X + 2)^p):
irreducible (β n in (f.support \ {0}), (f.coeff n) * X ^ (n-1) :
polynomial β€) := |
informal statement Suppose $a, b \in R^k$. Find $c \in R^k$ and $r > 0$ such that $|x-a|=2|x-b|$ if and only if $| x - c | = r$. Prove that $3c = 4b - a$ and $3r = 2 |b - a|$.formal statement theorem exercise_1_19
(n : β)
(a b c x : euclidean_space β (fin n))
(r : β)
(hβ : r > 0)
(hβ : 3 β’ c = 4 β’ b - a)
(hβ : 3 * r = 2 * βx - bβ)
: βx - aβ = 2 * βx - bβ β βx - cβ = r := |
informal statement Prove that $G$ cannot have a subgroup $H$ with $|H|=n-1$, where $n=|G|>2$.formal statement theorem exercise_2_1_5 {G : Type*} [group G] [fintype G]
(hG : card G > 2) (H : subgroup G) [fintype H] :
card H β card G - 1 := |
informal statement Prove that $-(-v) = v$ for every $v \in V$.formal statement theorem exercise_1_3 {F V : Type*} [add_comm_group V] [field F]
[module F V] {v : V} : -(-v) = v := |
informal statement Show that a closed subspace of a normal space is normal.formal statement theorem exercise_32_2b
{ΞΉ : Type*} {X : ΞΉ β Type*} [β i, topological_space (X i)]
(h : β i, nonempty (X i)) (h2 : regular_space (Ξ i, X i)) :
β i, regular_space (X i) := |
informal statement If $r$ is rational $(r \neq 0)$ and $x$ is irrational, prove that $r+x$ is irrational.formal statement theorem exercise_1_1a
(x : β) (y : β) :
( irrational x ) -> irrational ( x + y ) := |
informal statement Show that a closed subspace of a normal space is normal.formal statement theorem exercise_32_1 {X : Type*} [topological_space X]
(hX : normal_space X) (A : set X) (hA : is_closed A) :
normal_space {x // x β A} := |
informal statement Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$.formal statement theorem exercise_10_7_10 {R : Type*} [ring R]
(M : ideal R) (hM : β (x : R), x β M β is_unit x) :
is_maximal M β§ β (N : ideal R), is_maximal N β N = M := |
informal statement Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of the points of the product space $\prod X_\alpha$. Show that this sequence converges to the point $\mathbf{x}$ if and only if the sequence $\pi_\alpha(\mathbf{x}_i)$ converges to $\pi_\alpha(\mathbf{x})$ for each $\alpha$.formal statement theorem exercise_21_6a
(f : β β I β β )
(h : β x n, f n x = x ^ n) :
β x, β y, tendsto (Ξ» n, f n x) at_top (π y) := |
informal statement Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.formal statement theorem exercise_1_13c {f : β β β} (Ξ© : set β) (a b : Ξ©) (h : is_open Ξ©)
(hf : differentiable_on β f Ξ©) (hc : β (c : β), β z β Ξ©, abs (f z) = c) :
f a = f b := |
informal statement If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$.formal statement theorem exercise_2_6_15 {G : Type*} [comm_group G] {m n : β}
(hm : β (g : G), order_of g = m)
(hn : β (g : G), order_of g = n)
(hmn : m.coprime n) :
β (g : G), order_of g = m * n := |
informal statement Prove that if $|G|=1365$ then $G$ is not simple.formal statement theorem exercise_4_5_22 {G : Type*} [fintype G] [group G]
(hG : card G = 132) : Β¬ is_simple_group G := |
informal statement If $C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0,$ where $C_{0}, \ldots, C_{n}$ are real constants, prove that the equation $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$ has at least one real root between 0 and 1.formal statement theorem exercise_5_4 {n : β}
(C : β β β)
(hC : β i in (finset.range (n + 1)), (C i) / (i + 1) = 0) :
β x, x β (set.Icc (0 : β) 1) β§ β i in finset.range (n + 1), (C i) * (x^i) = 0 := |
informal statement Show that a connected metric space having more than one point is uncountable.formal statement theorem exercise_27_4
{X : Type*} [metric_space X] [connected_space X] (hX : β x y : X, x β y) :
Β¬ countable (univ : set X) := |
informal statement Let $G$ be a finite group of composite order $n$ with the property that $G$ has a subgroup of order $k$ for each positive integer $k$ dividing $n$. Prove that $G$ is not simple.formal statement theorem exercise_4_2_14 {G : Type*} [fintype G] [group G]
(hG : Β¬ (card G).prime) (hG1 : β k β£ card G,
β (H : subgroup G) (fH : fintype H), @card H fH = k) :
Β¬ is_simple_group G := |
informal statement Show that if $X$ is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.formal statement theorem exercise_31_2 {X : Type*}
[topological_space X] [normal_space X] {A B : set X}
(hA : is_closed A) (hB : is_closed B) (hAB : disjoint A B) :
β (U V : set X), is_open U β§ is_open V β§ A β U β§ B β V β§ closure U β© closure V = β
:= |
informal statement Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.formal statement theorem exercise_1_13a {f : β β β} (Ξ© : set β) (a b : Ξ©) (h : is_open Ξ©)
(hf : differentiable_on β f Ξ©) (hc : β (c : β), β z β Ξ©, (f z).re = c) :
f a = f b := |
informal statement Show that the lower limit topology $\mathbb{R}_l$ and $K$-topology $\mathbb{R}_K$ are not comparable.formal statement theorem exercise_13_6 :
Β¬ (β U, Rl.is_open U β K_topology.is_open U) β§ Β¬ (β U, K_topology.is_open U β Rl.is_open U) := |
informal statement Let $A$ be a proper subset of $X$, and let $B$ be a proper subset of $Y$. If $X$ and $Y$ are connected, show that $(X \times Y)-(A \times B)$ is connected.formal statement theorem exercise_24_2 {f : (metric.sphere 0 1 : set β) β β}
(hf : continuous f) : β x, f x = f (-x) := |
informal statement Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group.formal statement theorem exercise_2_2_9 {G : Type*} [group G] {a b : G}
(h : a * b = b * a) :
β x y : closure {x | x = a β¨ x = b}, x*y = y*x := |
informal statement Show that every locally compact Hausdorff space is regular.formal statement theorem exercise_32_3 {X : Type*} [topological_space X]
(hX : locally_compact_space X) (hX' : t2_space X) :
regular_space X := |
informal statement Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\operatorname{dim} V=1$ and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that $T v=a v$ for all $v \in V$.formal statement theorem exercise_3_1 {F V : Type*}
[add_comm_group V] [field F] [module F V] [finite_dimensional F V]
(T : V ββ[F] V) (hT : finrank F V = 1) :
β c : F, β v : V, T v = c β’ v:= |
informal statement Let $G$ be any group. Prove that the map from $G$ to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if $G$ is abelian.formal statement theorem exercise_1_6_17 {G : Type*} [group G] (f : G β G)
(hf : f = Ξ» g, gβ»ΒΉ) :
β x y : G, f x * f y = f (x*y) β β x y : G, x*y = y*x := |
informal statement Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$.formal statement theorem exercise_1_8 {F V : Type*} [add_comm_group V] [field F]
[module F V] {ΞΉ : Type*} (u : ΞΉ β submodule F V) :
β U : submodule F V, (β (i : ΞΉ), (u i).carrier) = βU := |
informal statement Show that 1729 is the smallest positive integer expressible as the sum of two different integral cubes in two ways.formal statement theorem exercise_1_13a {f : β β β} (Ξ© : set β) (a b : Ξ©) (h : is_open Ξ©)
(hf : differentiable_on β f Ξ©) (hc : β (c : β), β z β Ξ©, (f z).re = c) :
f a = f b := |
informal statement Show that if $U$ is open in $X$ and $A$ is closed in $X$, then $U-A$ is open in $X$, and $A-U$ is closed in $X$.formal statement theorem exercise_17_4 {X : Type*} [topological_space X]
(U A : set X) (hU : is_open U) (hA : is_closed A) :
is_open (U \ A) β§ is_closed (A \ U) := |
informal statement Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.formal statement theorem exercise_2_28 (X : Type*) [metric_space X] [separable_space X]
(A : set X) (hA : is_closed A) :
β Pβ Pβ : set X, A = Pβ βͺ Pβ β§
is_closed Pβ β§ Pβ = {x | cluster_pt x (π Pβ)} β§
set.countable Pβ := |
informal statement A uniformly continuous function of a uniformly continuous function is uniformly continuous.formal statement theorem exercise_4_19
{f : β β β} (hf : β a b c, a < b β f a < c β c < f b β β x, a < x β§ x < b β§ f x = c)
(hg : β r : β, is_closed {x | f x = r}) : continuous f := |
informal statement Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$.formal statement theorem exercise_4_2_9 {p : β} (hp : nat.prime p) (hp1 : odd p) :
β (a b : β€), (a / b : β) = β i in finset.range p, 1 / (i + 1) β βp β£ a := |
informal statement For $j \in\{1,2,3,4\}$, let $z_{j}$ be a complex number with $\left|z_{j}\right|=1$ and $z_{j} \neq 1$. Prove that $3-z_{1}-z_{2}-z_{3}-z_{4}+z_{1} z_{2} z_{3} z_{4} \neq 0 .$formal statement theorem exercise_2020_b5 (z : fin 4 β β) (hz0 : β n, βz nβ < 1)
(hz1 : β n : fin 4, z n β 1) :
3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) β 0 := |
informal statement Prove that a group of even order contains an element of order $2 .$formal statement theorem exercise_3_5_6 {K V : Type*} [field K] [add_comm_group V]
[module K V] {S : set V} (hS : set.countable S)
(hS1 : span K S = β€) {ΞΉ : Type*} (R : ΞΉ β V)
(hR : linear_independent K R) : countable ΞΉ := |
informal statement Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that $G$ is abelian.formal statement theorem exercise_2_2_5 {G : Type*} [group G]
(h : β (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 β§ (a * b) ^ 5 = a ^ 5 * b ^ 5) :
comm_group G := |
informal statement Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\mathbb{Q}[x]$.formal statement theorem exercise_13_4_10
{p : β} {hp : nat.prime p} (h : β r : β, p = 2 ^ r + 1) :
β (k : β), p = 2 ^ (2 ^ k) + 1 := |
informal statement Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$.formal statement theorem exercise_13_4_10
{p : β} {hp : nat.prime p} (h : β r : β, p = 2 ^ r + 1) :
β (k : β), p = 2 ^ (2 ^ k) + 1 := |
informal statement Give an example of a nonempty subset $U$ of $\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but $U$ is not a subspace of $\mathbf{R}^2$.formal statement theorem exercise_1_6 : β U : set (β Γ β),
(U β β
) β§
(β (u v : β Γ β), u β U β§ v β U β u + v β U) β§
(β (u : β Γ β), u β U β -u β U) β§
(β U' : submodule β (β Γ β), U β βU') := |
informal statement Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$.formal statement theorem exercise_5_2_20 {F V ΞΉ: Type*} [infinite F] [field F]
[add_comm_group V] [module F V] {u : ΞΉ β submodule F V}
(hu : β i : ΞΉ, u i β β€) :
(β i : ΞΉ, (u i : set V)) β β€ := |
informal statement Let $X$ be a metric space in which every infinite subset has a limit point. Prove that $X$ is separable.formal statement theorem exercise_2_24 {X : Type*} [metric_space X]
(hX : β (A : set X), infinite A β β (x : X), x β closure A) :
separable_space X := |
informal statement Prove that $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.formal statement theorem exercise_3_4 (n : β) :
tendsto (Ξ» n, (sqrt (n + 1) - sqrt n)) at_top (π 0) := |
informal statement Let $\|\cdot\|$ be any norm on $\mathbb{R}^{m}$ and let $B=\left\{x \in \mathbb{R}^{m}:\|x\| \leq 1\right\}$. Prove that $B$ is compact.formal statement theorem exercise_2_41 (m : β) {X : Type*} [normed_space β ((fin m) β β)] :
is_compact (metric.closed_ball 0 1) := |
informal statement Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple.formal statement theorem exercise_6_4_3 {G : Type*} [group G] [fintype G] {p q : β}
(hp : prime p) (hq : prime q) (hG : card G = p^2 *q) :
is_simple_group G β false := |
informal statement Assume that $f$ is a continuous real function defined in $(a, b)$ such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in(a, b)$. Prove that $f$ is convex.formal statement theorem exercise_4_24 {f : β β β}
(hf : continuous f) (a b : β) (hab : a < b)
(h : β x y : β, a < x β x < b β a < y β y < b β f ((x + y) / 2) β€ (f x + f y) / 2) :
convex_on β (set.Ioo a b) f := |
informal statement Show that if $X$ has a countable dense subset, every collection of disjoint open sets in $X$ is countable.formal statement theorem exercise_31_2 {X : Type*}
[topological_space X] [normal_space X] {A B : set X}
(hA : is_closed A) (hB : is_closed B) (hAB : disjoint A B) :
β (U V : set X), is_open U β§ is_open V β§ A β U β§ B β V β§ closure U β© closure V = β
:= |
informal statement Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$.formal statement theorem exercise_10_2_4 :
span ({2} : set $ polynomial β€) β (span {X}) =
span ({2 * X} : set $ polynomial β€) := |
informal statement Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $\text{Re}(f)$ is constant, then $f$ is constant.formal statement theorem exercise_1_13c {f : β β β} (Ξ© : set β) (a b : Ξ©) (h : is_open Ξ©)
(hf : differentiable_on β f Ξ©) (hc : β (c : β), β z β Ξ©, abs (f z) = c) :
f a = f b := |
informal statement Let $G$ be a transitive permutation group on the finite set $A$ with $|A|>1$. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$.formal statement theorem exercise_4_3_26 {Ξ± : Type*} [fintype Ξ±] (ha : fintype.card Ξ± > 1)
(h_tran : β a b: Ξ±, β Ο : equiv.perm Ξ±, Ο a = b) :
β Ο : equiv.perm Ξ±, β a : Ξ±, Ο a β a := |
informal statement Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$.formal statement theorem exercise_1_1_16 {G : Type*} [group G]
(x : G) (hx : x ^ 2 = 1) :
order_of x = 1 β¨ order_of x = 2 := |
informal statement Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup (do not assume the collection is countable).formal statement theorem exercise_3_1_22b {G : Type*} [group G] (I : Type*)
(H : I β subgroup G) (hH : β i : I, subgroup.normal (H i)) :
subgroup.normal (β¨
(i : I), H i):= |
informal statement Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \cap J$ in $R / I J$ is nilpotent.formal statement theorem exercise_10_4_6 {R : Type*} [comm_ring R]
[no_zero_divisors R] {I J : ideal R} (x : I β J) :
is_nilpotent ((ideal.quotient.mk (I*J)) x) := |
informal statement An ideal $N$ is called nilpotent if $N^{n}$ is the zero ideal for some $n \geq 1$. Prove that the ideal $p \mathbb{Z} / p^{m} \mathbb{Z}$ is a nilpotent ideal in the ring $\mathbb{Z} / p^{m} \mathbb{Z}$.formal statement theorem exercise_8_1_12 {N : β} (hN : N > 0) {M M': β€} {d : β}
(hMN : M.gcd N = 1) (hMd : d.gcd N.totient = 1)
(hM' : M' β‘ M^d [ZMOD N]) :
β d' : β, d' * d β‘ 1 [ZMOD N.totient] β§
M β‘ M'^d' [ZMOD N] := |
informal statement If $a > 1$ is an integer, show that $n \mid \varphi(a^n - 1)$, where $\phi$ is the Euler $\varphi$-function.formal statement theorem exercise_2_4_36 {a n : β} (h : a > 1) :
n β£ (a ^ n - 1).totient := |
informal statement Prove that any two nonabelian groups of order 21 are isomorphic.formal statement theorem exercise_2_8_12 {G H : Type*} [fintype G] [fintype H]
[group G] [group H] (hG : card G = 21) (hH : card H = 21)
(hG1 : is_empty(comm_group G)) (hH1 : is_empty (comm_group H)) :
G β* H := |
informal statement Prove that $\sum 1/k(\log(k))^p$ diverges when $p \leq 1$.formal statement theorem exercise_3_63b (p : β) (f : β β β) (hp : p β€ 1)
(h : f = Ξ» k, (1 : β) / (k * (log k) ^ p)) :
Β¬ β l, tendsto f at_top (π l) := |
informal statement A ring $R$ is called a Boolean ring if $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative.formal statement theorem exercise_7_1_15 {R : Type*} [ring R] (hR : β a : R, a^2 = a) :
comm_ring R := |
informal statement Suppose $U$ is a subspace of $V$. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$formal statement theorem exercise_6_16 {K V : Type*} [is_R_or_C K] [inner_product_space K V]
{U : submodule K V} :
U.orthogonal = β₯ β U = β€ := |
informal statement Let $(p_n)$ be a sequence and $f:\mathbb{N}\to\mathbb{N}$. The sequence $(q_k)_{k\in\mathbb{N}}$ with $q_k=p_{f(k)}$ is called a rearrangement of $(p_n)$. Show that if $f$ is an injection, the limit of a sequence is unaffected by rearrangement.formal statement theorem exercise_2_12a (f : β β β) (p : β β β) (a : β)
(hf : injective f) (hp : tendsto p at_top (π a)) :
tendsto (Ξ» n, p (f n)) at_top (π a) := |
informal statement Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$.formal statement theorem exercise_4_3_25 (I : ideal (matrix (fin 2) (fin 2) β)) :
I = β₯ β¨ I = β€ := |
informal statement Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$.formal statement theorem exercise_5_2_20 {F V ΞΉ: Type*} [infinite F] [field F]
[add_comm_group V] [module F V] {u : ΞΉ β submodule F V}
(hu : β i : ΞΉ, u i β β€) :
(β i : ΞΉ, (u i : set V)) β β€ := |
informal statement Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable.formal statement theorem exercise_3_1a
(f : β β β)
(h : β (a : β), tendsto (Ξ» (n : β), f n) at_top (π a))
: β (a : β), tendsto (Ξ» (n : β), |f n|) at_top (π a) := |
informal statement If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime.formal statement theorem exercise_2_9_2 {G H : Type*} [fintype G] [fintype H] [group G]
[group H] (hG : is_cyclic G) (hH : is_cyclic H) :
is_cyclic (G Γ H) β (card G).coprime (card H) := |
informal statement Show that if $a$ is negative then $p \equiv q(4 a) together with p\not | a$ imply $(a / p)=(a / q)$.formal statement theorem exercise_5_37 {p q : β} [fact(p.prime)] [fact(q.prime)] {a : β€}
(ha : a < 0) (h0 : p β‘ q [ZMOD 4*a]) (h1 : Β¬ ((p : β€) β£ a)) :
legendre_sym p a = legendre_sym q a := |
informal statement Consider a prime $p$ of the form $4 t+3$. Show that $a$ is a primitive root modulo $p$ iff $-a$ has order $(p-1) / 2$.formal statement theorem exercise_4_8 {p a : β} (hp : odd p) :
is_primitive_root a p β (β q β£ (p-1), q.prime β Β¬ a^(p-1) β‘ 1 [MOD p]) := |
informal statement Let $X$ be completely regular, let $A$ and $B$ be disjoint closed subsets of $X$. Show that if $A$ is compact, there is a continuous function $f \colon X \rightarrow [0, 1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.formal statement theorem exercise_38_6 {X : Type*}
(X : Type*) [topological_space X] [regular_space X]
(h : β x A, is_closed A β§ Β¬ x β A β
β (f : X β I), continuous f β§ f x = (1 : I) β§ f '' A = {0}) :
is_connected (univ : set X) β is_connected (univ : set (stone_cech X)) := |
informal statement Let $f$ be a real function on the real line with continuous third derivative. Prove that there exists a point $a$ such thatformal statement theorem exercise_2_12a (f : β β β) (p : β β β) (a : β)
(hf : injective f) (hp : tendsto p at_top (π a)) :
tendsto (Ξ» n, p (f n)) at_top (π a) := |
informal statement Show that $ \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx = \pi \frac{e^{-a}}{a}$ for $a > 0$.formal statement theorem exercise_3_3 (a : β) (ha : 0 < a) :
tendsto (Ξ» y, β« x in -y..y, real.cos x / (x ^ 2 + a ^ 2))
at_top (π (real.pi * (real.exp (-a) / a))) := |
informal statement Prove that any two nonabelian groups of order 21 are isomorphic.formal statement theorem exercise_2_9_2 {G H : Type*} [fintype G] [fintype H] [group G]
[group H] (hG : is_cyclic G) (hH : is_cyclic H) :
is_cyclic (G Γ H) β (card G).coprime (card H) := |
informal statement Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$.formal statement theorem exercise_2_5_44 {G : Type*} [group G] [fintype G] {p : β}
(hp : nat.prime p) (hG : card G = p^2) :
β (N : subgroup G) (fin : fintype N), @card N fin = p β§ N.normal := |
informal statement Show that if $X$ is an infinite set, it is connected in the finite complement topology.formal statement theorem exercise_23_9 {X Y : Type*}
[topological_space X] [topological_space Y]
(Aβ Aβ : set X)
(Bβ Bβ : set Y)
(hA : Aβ β Aβ)
(hB : Bβ β Bβ)
(hA : is_connected Aβ)
(hB : is_connected Bβ) :
is_connected ({x | β a b, x = (a, b) β§ a β Aβ β§ b β Bβ} \
{x | β a b, x = (a, b) β§ a β Aβ β§ b β Bβ}) := |
informal statement Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.formal statement theorem exercise_2_4_16b {n : β} {hn : n β 0}
{R : subgroup (dihedral_group n)}
(hR : R = subgroup.closure {dihedral_group.r 1}) :
R β β€ β§
β K : subgroup (dihedral_group n), R β€ K β K = R β¨ K = β€ := |
informal statement Prove that a group of order 200 has a normal Sylow 5-subgroup.formal statement theorem exercise_4_5_20 {G : Type*} [fintype G] [group G]
(hG : card G = 1365) : Β¬ is_simple_group G := |
informal statement Suppose that $f$ is holomorphic in an open set $\Omega$. Prove that if $|f|$ is constant, then $f$ is constant.formal statement theorem exercise_1_19b (z : β) (hz : abs z = 1) (s : β β β)
(h : s = (Ξ» n, β i in (finset.range n), i * z / i ^ 2)) :
β y, tendsto s at_top (π y) := |
informal statement Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$.formal statement theorem exercise_7_14 {π V : Type*} [is_R_or_C π]
[inner_product_space π V] [finite_dimensional π V]
{T : End π V} (hT : is_self_adjoint T)
{l : π} {Ξ΅ : β} (he : Ξ΅ > 0) : β v : V, βvβ= 1 β§ (βT v - l β’ vβ < Ξ΅ β
(β l' : T.eigenvalues, βl - l'β < Ξ΅)) := |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
- Downloads last month
- 4