text
stringlengths 0
3.34M
|
---|
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn
-/
import model_theory.basic
/-!
#Elementary Maps Between First-Order Structures
## Main Definitions
* A `first_order.language.elementary_embedding` is an embedding that commutes with the
realizations of formulas.
*
-/
open_locale first_order
namespace first_order
namespace language
open Structure
variables (L : language) (M : Type*) (N : Type*) {P : Type*} {Q : Type*}
variables [L.Structure M] [L.Structure N] [L.Structure P] [L.Structure Q]
/-- An elementary embedding of first-order structures is an embedding that commutes with the
realizations of formulas. -/
structure elementary_embedding :=
(to_fun : M → N)
(map_formula' : ∀{n} (φ : L.formula (fin n)) (x : fin n → M),
realize_formula N φ (to_fun ∘ x) ↔ realize_formula M φ x . obviously)
localized "notation A ` ↪ₑ[`:25 L `] ` B := L.elementary_embedding A B" in first_order
variables {L} {M} {N}
namespace elementary_embedding
instance has_coe_to_fun : has_coe_to_fun (M ↪ₑ[L] N) (λ _, M → N) :=
⟨λ f, f.to_fun⟩
@[simp] lemma map_formula (f : M ↪ₑ[L] N) {α : Type} [fintype α] (φ : L.formula α)
(x : α → M) :
realize_formula N φ (f ∘ x) ↔ realize_formula M φ x :=
begin
have g := fintype.equiv_fin α,
have h := f.map_formula' (φ.relabel g) (x ∘ g.symm),
rw [realize_formula_relabel, realize_formula_relabel,
function.comp.assoc x g.symm g, g.symm_comp_self, function.comp.right_id] at h,
rw [← h, iff_eq_eq],
congr,
ext y,
simp,
end
@[simp] lemma map_fun (φ : M ↪ₑ[L] N) {n : ℕ} (f : L.functions n) (x : fin n → M) :
φ (fun_map f x) = fun_map f (φ ∘ x) :=
begin
have h := φ.map_formula (formula.graph f) (fin.snoc x (fun_map f x)),
rw [realize_graph, fin.comp_snoc, realize_graph] at h,
rw [eq_comm, h]
end
@[simp] lemma map_const (φ : M ↪ₑ[L] N) (c : L.const) : φ c = c :=
(φ.map_fun c fin.elim0).trans (congr rfl (funext fin.elim0))
@[simp] lemma map_rel (φ : M ↪ₑ[L] N) {n : ℕ} (r : L.relations n) (x : fin n → M) :
rel_map r (φ ∘ x) ↔ rel_map r x :=
begin
have h := φ.map_formula (bd_rel r (var ∘ sum.inl)) x,
exact h
end
@[simp] lemma injective (φ : M ↪ₑ[L] N) :
function.injective φ :=
begin
intros x y,
have h := φ.map_formula (formula.equal (var 0) (var 1) : L.formula (fin 2))
(λ i, if i = 0 then x else y),
rw [realize_equal, realize_equal] at h,
simp only [nat.one_ne_zero, realize_term, fin.one_eq_zero_iff, if_true, eq_self_iff_true,
function.comp_app, if_false] at h,
exact h.1,
end
/-- An elementary embedding is also a first-order embedding. -/
def to_embedding (f : M ↪ₑ[L] N) : M ↪[L] N :=
{ to_fun := f,
inj' := f.injective, }
/-- An elementary embedding is also a first-order homomorphism. -/
def to_hom (f : M ↪ₑ[L] N) : M →[L] N :=
{ to_fun := f }
@[simp] lemma to_embedding_to_hom (f : M ↪ₑ[L] N) : f.to_embedding.to_hom = f.to_hom := rfl
@[simp]
lemma coe_to_hom {f : M ↪ₑ[L] N} : (f.to_hom : M → N) = (f : M → N) := rfl
@[simp] lemma coe_to_embedding (f : M ↪ₑ[L] N) : (f.to_embedding : M → N) = (f : M → N) := rfl
lemma coe_injective : @function.injective (M ↪ₑ[L] N) (M → N) coe_fn
| f g h :=
begin
cases f,
cases g,
simp only,
ext x,
exact function.funext_iff.1 h x,
end
@[ext]
lemma ext ⦃f g : M ↪ₑ[L] N⦄ (h : ∀ x, f x = g x) : f = g :=
coe_injective (funext h)
lemma ext_iff {f g : M ↪ₑ[L] N} : f = g ↔ ∀ x, f x = g x :=
⟨λ h x, h ▸ rfl, λ h, ext h⟩
variables (L) (M)
/-- The identity elementary embedding from a structure to itself -/
@[refl] def refl : M ↪ₑ[L] M :=
{ to_fun := id }
variables {L} {M}
instance : inhabited (M ↪ₑ[L] M) := ⟨refl L M⟩
@[simp] lemma refl_apply (x : M) :
refl L M x = x := rfl
/-- Composition of elementary embeddings -/
@[trans] def comp (hnp : N ↪ₑ[L] P) (hmn : M ↪ₑ[L] N) : M ↪ₑ[L] P :=
{ to_fun := hnp ∘ hmn }
@[simp] lemma comp_apply (g : N ↪ₑ[L] P) (f : M ↪ₑ[L] N) (x : M) :
g.comp f x = g (f x) := rfl
/-- Composition of elementary embeddings is associative. -/
lemma comp_assoc (f : M ↪ₑ[L] N) (g : N ↪ₑ[L] P) (h : P ↪ₑ[L] Q) :
(h.comp g).comp f = h.comp (g.comp f) := rfl
end elementary_embedding
namespace equiv
/-- A first-order equivalence is also an elementary embedding. -/
def to_elementary_embedding (f : M ≃[L] N) : M ↪ₑ[L] N :=
{ to_fun := f }
@[simp] lemma to_elementary_embedding_to_embedding (f : M ≃[L] N) :
f.to_elementary_embedding.to_embedding = f.to_embedding := rfl
@[simp] lemma coe_to_elementary_embedding (f : M ≃[L] N) :
(f.to_elementary_embedding : M → N) = (f : M → N) := rfl
end equiv
namespace substructure
/-- A substructure is elementary when every formula applied to a tuple in the subtructure
agrees with its value in the overall structure. -/
def is_elementary (S : L.substructure M) : Prop :=
∀{n} (φ : L.formula (fin n)) (x : fin n → S), realize_formula M φ (coe ∘ x) ↔ realize_formula S φ x
end substructure
variables (L) (M)
/-- An elementary substructure is one in which every formula applied to a tuple in the subtructure
agrees with its value in the overall structure. -/
structure elementary_substructure :=
(to_substructure : L.substructure M)
(is_elementary' : to_substructure.is_elementary)
variables {L} {M}
namespace elementary_substructure
instance : has_coe (L.elementary_substructure M) (L.substructure M) :=
⟨elementary_substructure.to_substructure⟩
instance : set_like (L.elementary_substructure M) M :=
⟨λ x, x.to_substructure.carrier, λ ⟨⟨s, hs1⟩, hs2⟩ ⟨⟨t, ht1⟩, ht2⟩ h, begin
congr,
exact h,
end⟩
@[simp] lemma is_elementary (S : L.elementary_substructure M) :
(S : L.substructure M).is_elementary := S.is_elementary'
/-- The natural embedding of an `L.substructure` of `M` into `M`. -/
def subtype (S : L.elementary_substructure M) : S ↪ₑ[L] M :=
{ to_fun := coe,
map_formula' := λ n, S.is_elementary }
@[simp] theorem coe_subtype {S : L.elementary_substructure M} : ⇑S.subtype = coe := rfl
/-- The substructure `M` of the structure `M` is elementary. -/
instance : has_top (L.elementary_substructure M) :=
⟨⟨⊤, λ n φ x, begin
rw formula at φ,
rw [realize_formula, realize_formula, realize_bounded_formula_top, iff_eq_eq],
exact congr rfl (funext fin_zero_elim),
end⟩⟩
instance : inhabited (L.elementary_substructure M) := ⟨⊤⟩
@[simp] lemma mem_top (x : M) : x ∈ (⊤ : L.elementary_substructure M) := set.mem_univ x
@[simp] lemma coe_top : ((⊤ : L.elementary_substructure M) : set M) = set.univ := rfl
end elementary_substructure
end language
end first_order
|
module Database
import Schema
import Decidable.Equality
public export data DB : String -> Type where
MkDB : (dbFile : String) ->
(dbTables : List (String, Schema)) -> DB dbFile
%name DB db
public export data HasTable : List (String, Schema) -> String -> Schema -> Type where
Here : HasTable ((name, s)::ts) name s
There : HasTable ts name s ->
HasTable ((name',s')::ts) name s
|
Set Implicit Arguments.
Require Import List.
Section NEList.
Variable A:Type.
Definition nelist := (A * list A)%type.
Definition single x : nelist := (x, nil).
Definition append (l1 l2: nelist) : nelist :=
let (x, xs) := l1 in
let (y, ys) := l2 in
(x, xs ++ cons y ys).
Definition hd (l:nelist) : A :=
let (x, _) := l in x.
Definition tl (l:nelist) : list A :=
let (_, xs) := l in xs.
End NEList.
|
lemma uniformly_continuous_on_closure: fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" assumes ucont: "uniformly_continuous_on S f" and cont: "continuous_on (closure S) f" shows "uniformly_continuous_on (closure S) f" |
Formal statement is: lemma Lim_null: fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" shows "(f \<longlongrightarrow> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) \<longlongrightarrow> 0) net" Informal statement is: A net $f$ converges to $l$ if and only if the net $f - l$ converges to $0$. |
Formal statement is: lemma complete_closed_subset: fixes S :: "'a::metric_space set" assumes "closed S" and "S \<subseteq> t" and "complete t" shows "complete S" Informal statement is: If $S$ is a closed subset of a complete metric space $t$, then $S$ is complete. |
[STATEMENT]
lemma mem_cnb_minus: "x \<in> set l ==> cnb l = crypt_nb x + (cnb l - crypt_nb x)"
[PROOF STATE]
proof (prove)
goal (1 subgoal):
1. x \<in> set l \<Longrightarrow> cnb l = crypt_nb x + (cnb l - crypt_nb x)
[PROOF STEP]
by (induct l, auto) |
import basic_defs_world.level1 -- hide
/- Axiom : A set A is the neighborhood of a point x if there is an open U such that x ∈ U ⊆ A.
is_neighborhood : ∃ U, is_open U ∧ x ∈ U ∧ U ⊆ A
-/
/- Axiom : A point x is an interior point of A if A is a neighborhood of x.
is_interior_point : is_neighborhood x A
-/
/- Axiom : The interior of a set A is the set of all its interior points.
interior := { x : X | is_interior_point x A }
-/
/-
In this world we will end up having three alternative definitions of the interior of a set.
This will be very useful, because at any point we will be able to choose the one that better fits our needs.
First of all we need to figure out what properties does the interior of an arbitrary set have... So we start with an easy one:
# Level 1: The interior is contained in the original set
-/
variables {X : Type} -- hide
variables [topological_space X] (x : X) (A : set X) -- hide
namespace topological_space -- hide
@[simp] -- hide
/- Lemma
The interior of any set A is contained in the set A.
-/
lemma interior_is_subset: interior A ⊆ A :=
begin
rintros x ⟨_, _⟩,
tauto,
end
end topological_space -- hide
|
/- various properties about pfun and roption -/
import basic data.pfun
open set
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w} {n : ℕ}
namespace roption
def compatible (o₁ o₂ : roption α) : Prop := ∀{{x y}}, x ∈ o₁ → y ∈ o₂ → x = y
namespace compatible
variables {o₁ o₂ o₃ : roption α}
infix ` =. `:50 := roption.compatible
protected lemma compatible_of_eq {x y : α} (h : x = y) :
compatible (roption.some x) (roption.some y) :=
omitted
protected lemma symm (h : o₁ =. o₂) : o₂ =. o₁ := λx y hx hy, (h hy hx).symm
-- note: it is not transitive, probably good to use different notation
end compatible
end roption
namespace pfun
protected def empty (α β : Type*) : α →. β := λx, roption.none
protected def id : α →. α := pfun.lift id
protected def comp (g : β →. γ) (f : α →. β) : α →. γ := λx, roption.bind (f x) g
infix ` ∘. `:90 := pfun.comp
def to_subtype (p : α → Prop) : α →. subtype p := λx, ⟨p x, λ h, ⟨x, h⟩⟩
def compatible (f g : α →. β) : Prop := ∀x, f x =. g x
namespace compatible
variables {f g h : α →. β}
infix ` ~. `:50 := pfun.compatible
protected lemma symm (h : f ~. g) : g ~. f := λx, (h x).symm
-- note: it is not transitive, probably good to use different notation
end compatible
def restrict' (f : α →. β) (p : set α) : α →. β :=
pfun.restrict f (inter_subset_right p (dom f))
end pfun
/- a partial equivalence -/
open pfun
structure pequiv (α : Type*) (β : Type*) :=
(to_fun : α →. β)
(inv_fun : β →. α)
(dom_inv_fun : ∀{{x}} (hx : x ∈ dom to_fun), to_fun.fn x hx ∈ dom inv_fun)
(dom_to_fun : ∀{{y}} (hy : y ∈ dom inv_fun), inv_fun.fn y hy ∈ dom to_fun)
(left_inv : inv_fun ∘. to_fun ~. pfun.id)
(right_inv : to_fun ∘. inv_fun ~. pfun.id)
infixr ` ≃. `:25 := pequiv
namespace equiv
def to_pequiv (e : α ≃ β) : α ≃. β :=
⟨e.to_fun, e.inv_fun, λx hx, trivial, λy hy, trivial, omitted, omitted⟩
def rfl : α ≃ α := equiv.refl α
end equiv
namespace pequiv
instance : has_coe (α ≃. β) (α →. β) := ⟨pequiv.to_fun⟩
protected def rfl : α ≃. α := equiv.rfl.to_pequiv
protected def refl (α) : α ≃. α := pequiv.rfl
protected def symm (e : α ≃. β) : β ≃. α :=
⟨e.inv_fun, e.to_fun, e.dom_to_fun, e.dom_inv_fun, e.right_inv, e.left_inv⟩
protected def trans (e₁ : α ≃. β) (e₂ : β ≃. γ) : α ≃. γ :=
⟨e₂.to_fun ∘. e₁.to_fun, e₁.inv_fun ∘. e₂.inv_fun, omitted, omitted, omitted, omitted⟩
def restrict' (e : α ≃. β) (p : set α) : α ≃. β :=
⟨e.to_fun.restrict' p, e.inv_fun.restrict' (e.to_fun.image p), omitted, omitted, omitted, omitted⟩
def subtype_pequiv (p : α → Prop) : subtype p ≃. α :=
⟨pfun.lift subtype.val, to_subtype p, omitted, omitted, omitted, omitted⟩
end pequiv
|