Datasets:
AI4M
/

text
stringlengths
0
3.34M
theory tp89 imports Main "~~/src/HOL/Library/Code_Target_Nat" begin (* transid c identifie un client m identifie un marchand i numéro de transaction entre c et m am transaction montant retenu pour la transaction Client \<longrightarrow> Marchand Pay (c,m,i) am \<longrightarrow> c accepte de payer le montant am à m pour la transaction id Marchand \<longrightarrow> Client Ack (c,m,i) am \<longrightarrow> m demande un montant am au client c pour la transaction id Cancel (c,m,i) \<longrightarrow> m annule toutes les transactions pour transaction id le marchand doit diminuer am le client doit augmenter am *) type_synonym transid= "nat*nat*nat" datatype message= Pay transid nat | Ack transid nat | Cancel transid datatype etatTrans= Encours | Ok | Abort datatype SomeTrans = None | Integer nat datatype SomeEtat = Nothing | Etat etatTrans type_synonym transaction= "transid * nat" (* transid * am marchand * am client * etat *) type_synonym ligneBdd = "(transid * SomeTrans *SomeTrans * etatTrans )" type_synonym transBdd ="ligneBdd list" (* select dans la bdd, l'etat de la transi*) fun selectEtat ::"transid \<Rightarrow> transBdd \<Rightarrow> SomeEtat " where "selectEtat _ [] = Nothing" |"selectEtat id1 ((id2::transid,sm2,sc2,etat2)#xs) =( if(id1=id2) then (Etat etat2) else selectEtat id1 xs )" (* select dans la bdd de la proposition du marchand*) fun selectMarch ::"transid \<Rightarrow> transBdd \<Rightarrow> SomeTrans " where "selectMarch _ [] = None" |"selectMarch id1 ((id2::transid,sm2,sc2,etat2)#xs) =( if(id1=id2) then sm2 else selectMarch id1 xs )" (* select dans la bdd de la proposition du client*) fun selectClient ::"transid \<Rightarrow> transBdd \<Rightarrow> SomeTrans" where "selectClient _ [] = None" |"selectClient id1 ((id2::transid,sm2,sc2,etat2)#xs) =( if(id1=id2) then sc2 else selectClient id1 xs )" fun updateLignePay :: " nat \<Rightarrow> ligneBdd \<Rightarrow> ligneBdd" where "updateLignePay _ ((x2::transid),m2,c2,Abort) = ((x2::transid),m2,c2,Abort)" |"updateLignePay v1 ((x2::transid),Integer m2,None,Encours) = (if (v1\<ge>m2) then ((x2::transid),Integer m2, Integer v1,Ok) else ((x2::transid),Integer m2,Integer v1,Encours) )" |"updateLignePay v1 ((x2::transid),Integer m2,Integer v2,Encours) = (if (v1>v2) then (if(v1\<ge>m2) then ((x2::transid),Integer m2,Integer v1,Ok) else ((x2::transid),Integer m2,Integer v1,Encours)) else ( ((x2::transid),Integer m2,Integer v2,Encours)))" |"updateLignePay _ ((x2::transid),m2,c2,Ok) = ((x2::transid),m2,c2,Ok)" |"updateLignePay v1 (v,None, None, Encours) = (v,None, Integer v1, Encours)" |"updateLignePay v1 (v,None, Integer v2, Encours) = (if (v1>v2) then (v,None, Integer v1, Encours) else (v,None, Integer v2, Encours)) " fun updatePay:: "(transid * nat) \<Rightarrow> transBdd \<Rightarrow> transBdd" where "updatePay ((x1::transid),c1) [] = [((x1::transid),None,Integer c1,Encours)] " |"updatePay ((x1::transid),c1) (((x2::transid),m2,c2,e2)#xs)= (if (x2=x1) then (updateLignePay (c1) ((x2::transid),m2,c2,e2) )#xs else (((x2::transid),m2,c2,e2)#(updatePay ((x1::transid),c1) xs )) )" fun updateLigneAck :: "nat \<Rightarrow> ligneBdd \<Rightarrow> ligneBdd" where "updateLigneAck _ ((x2::transid),m2,c2,Abort) = ((x2::transid),m2,c2,Abort)" |"updateLigneAck m1 ((x2::transid),Integer m2,None,Encours) = (if (m1\<le>m2) then ((x2::transid),Integer m1, None,Encours) else ((x2::transid),Integer m2,None,Encours) )" |"updateLigneAck m1 ((x2::transid),Integer m2,Integer v2,Encours) = (if (m1\<le>m2) then (if(m1\<le>v2) then ((x2::transid),Integer m1,Integer v2,Ok) else ((x2::transid),Integer m1,Integer v2,Encours)) else ( ((x2::transid),Integer m2,Integer v2,Encours)))" |"updateLigneAck _ ((x2::transid),m2,c2,Ok) = ((x2::transid),m2,c2,Ok)" |"updateLigneAck m1 (v,None, None, Encours) = (v,Integer m1,None, Encours)" |"updateLigneAck m1 (v,None, Integer v2, Encours) = (if (m1\<le>v2) then (v,Integer m1, Integer v2, Ok) else (v, Integer m1,Integer v2, Encours)) " fun updateAck:: "(transid * nat) \<Rightarrow> transBdd \<Rightarrow> transBdd" where "updateAck ((x1::transid),c1) [] = [((x1::transid),Integer c1,None,Encours)] " |"updateAck ((x1::transid),c1) (((x2::transid),m2,c2,e2)#xs)= (if (x2=x1) then (updateLigneAck (c1) ((x2::transid),m2,c2,e2) )#xs else (((x2::transid),m2,c2,e2)#(updateAck ((x1::transid),c1) xs )) )" fun updateLigneCancel :: " ligneBdd \<Rightarrow> ligneBdd" where "updateLigneCancel ((x2::transid),m2,c2,e2) = ((x2::transid),m2,c2,Abort)" fun updateCancel:: "transid \<Rightarrow> transBdd \<Rightarrow> transBdd" where "updateCancel (x1::transid) [] = [((x1::transid),None,None,Abort)] " |"updateCancel (x1::transid) (((x2::transid),m2,c2,e2)#xs)= (if (x2=x1) then (updateLigneCancel ((x2::transid),m2,c2,e2) )#xs else (((x2::transid),m2,c2,e2)#(updateCancel ((x1::transid)) xs )) )" fun traiterMessage ::"message \<Rightarrow> transBdd \<Rightarrow> transBdd " where "traiterMessage ( Pay transid am) tb = (if(am>0) then updatePay (transid, am) tb else tb)" |"traiterMessage ( Ack transid am) tb = (if(am\<ge>0) then updateAck (transid, am) tb else tb)" |"traiterMessage ( Cancel transid) tb = updateCancel transid tb " fun export:: "transBdd \<Rightarrow> transaction list" where "export [] = []" |"export (((x2::transid),m2,Integer c2,e2)#xs) = (if (e2=Ok) then (x2,c2)#(export xs ) else(export xs ) )" |"export (((x2::transid),m2,c2,e2)#xs) = (export xs )" fun traiMessList:: "message list \<Rightarrow> transBdd \<Rightarrow> transBdd" where "traiMessList [] tb = tb" |"traiMessList (v # va) tb =traiMessList va (traiterMessage v tb) " fun traiterMessageList:: "message list \<Rightarrow> transBdd" where "traiterMessageList ml = traiMessList ml []" lemma lem1:"( (List.member (export (traiterMessageList lm)) (a,b)) \<longrightarrow> (b>0))" apply (induct lm) apply auto apply (simp add: member_rec(2)) oops oops lemma lem3:"(selectEtat a (traiterMessage (Cancel a) (traiterMessageList lm))) = Etat Abort" apply (induct lm) apply auto oops lemma lem4:"(List.member (export (traiterMessage (Cancel a) (traiterMessageList lm))) (a,b)) = False" apply (induct lm) apply auto apply (simp add: member_rec(2)) oops lemma lem5:"pc\<ge>pm \<and> pc>0 \<and> \<not>(List.member lm (Cancel a )) \<longrightarrow> (\<exists> pc. List.member (export (traiterMessage (Pay a pc) (traiterMessage (Ack a pm) (traiterMessageList lm)))) (a,pc))" apply (induct lm) apply auto apply (metis gr_implies_not0 member_rec(1)) apply (simp add: member_rec(1)) oops lemma lem6:"(selectEtat a (traiterMessageList lm) = Etat Ok) \<longrightarrow>(\<exists> pc pm.(List.member lm (Ack a pm)) \<and> (List.member lm (Pay a pc)) \<and> pc \<ge> pm) " apply (induct lm) apply auto oops lemma lem71:"( selectClient a (traiterMessageList lm)) = Integer pm \<and> pm> mo \<longrightarrow> ( selectClient a (traiterMessage (Pay a mo) (traiterMessageList lm))) = Integer pm " oops lemma lem72:"( selectMarch a (traiterMessageList lm)) = Integer pm \<and> pm < mo \<longrightarrow> ( selectMarch a (traiterMessage (Ack a mo) (traiterMessageList lm))) = Integer pm " oops lemma lem81:"(selectEtat a (traiterMessageList lm) = Etat Ok) \<and> (selectClient a (traiterMessage (Pay a pm) (traiterMessageList lm)) = Integer pm) \<longrightarrow> (selectClient a (traiterMessage (Pay a autre) (traiterMessageList lm)) = Integer pm)" oops lemma lem82:"(selectEtat a (traiterMessageList lm) = Etat Ok) \<and> (selectMarch a (traiterMessageList lm) = Integer pm) \<longrightarrow> (selectMarch a (traiterMessage (Ack a autre) (traiterMessageList lm)) = Integer pm)" oops lemma lem9:"(selectEtat a (traiterMessageList lm) = Etat Ok) \<and> (selectMarch a (traiterMessageList lm) = Integer pm) \<and> (selectClient a (traiterMessageList lm) = Integer pc) \<longrightarrow> (List.member (export (traiterMessageList lm)) (a,pc)) " oops (* ----- Exportation en Scala (Isabelle 2014) -------*) (* Directive d'exportation *) export_code export traiterMessage in Scala end
theory Datatypes imports inc.Prelude begin default_sort type datatype channel = cab | cin | cout section \<open>Message Definition\<close> text\<open>The same is true for the "Message" Datatype. Every kind of message has to be described here:\<close> datatype M_pure = \<N> nat | \<B> bool text \<open>Instantiate @{type M_pure} as countable. This is necessary for using @{type M_pure} streams. }\<close> instance M_pure::countable apply(countable_datatype) done lemma inj_B[simp]:"inj \<B>" by (simp add: inj_def) lemma inj_Bopt[simp]:"inj (map_option \<B>)" by (simp add: option.inj_map) text \<open>Then one describes the types of each channel. Only Messages included are allowed to be transmitted\<close> fun cMsg :: "channel \<Rightarrow> M_pure set" where "cMsg cin = range \<N>" | "cMsg cout = range \<N>" | "cMsg _ = {}" text\<open>Timing properties of each channel\<close> fun cTime :: "channel \<Rightarrow> timeType" where "cTime cin = TUntimed" | "cTime cout = TUntimed" | "cTime _ = undefined" lemma cmsgempty_ex:"\<exists>c. cMsg c = {}" using cMsg.simps by blast end
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Relation where open import Light.Level using (Level ; Setω) open import Light.Variable.Sets record Kind : Setω where field iℓ : Level Index : Set iℓ ℓf : Index → Level Proposition : ∀ i → Set (ℓf i) record Style (kind : Kind) : Setω where open Kind kind field true‐i false‐i : Index true : Proposition true‐i false : Proposition false‐i ¬‐index‐f : Index → Index ¬_ : ∀ {i} → Proposition i → Proposition (¬‐index‐f i) ∧‐index‐f ∨‐index‐f ⇢‐index‐f : Index → Index → Index _∧_ : ∀ {ia ib} → Proposition ia → Proposition ib → Proposition (∧‐index‐f ia ib) _∨_ : ∀ {ia ib} → Proposition ia → Proposition ib → Proposition (∨‐index‐f ia ib) _⇢_ : ∀ {ia ib} → Proposition ia → Proposition ib → Proposition (⇢‐index‐f ia ib) true‐set‐ℓf false‐set‐ℓf : Index → Level True : ∀ {i} → Proposition i → Set (true‐set‐ℓf i) False : ∀ {i} → Proposition i → Set (false‐set‐ℓf i) true‐is‐true : True true false‐is‐false : False false record Base : Setω where field ⦃ kind ⦄ : Kind field ⦃ style ⦄ : Style kind open Kind ⦃ ... ⦄ public open Style ⦃ ... ⦄ public
State Before: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type ?u.162489 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E n : ℕ f : 𝕜 → F s : Set 𝕜 x : 𝕜 ⊢ iteratedDeriv (n + 1) f = iteratedDeriv n (deriv f) State After: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type ?u.162489 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E n : ℕ f : 𝕜 → F s : Set 𝕜 x : 𝕜 ⊢ (deriv^[n + 1]) f = (deriv^[n]) (deriv f) Tactic: rw [iteratedDeriv_eq_iterate, iteratedDeriv_eq_iterate] State Before: 𝕜 : Type u_1 inst✝⁴ : NontriviallyNormedField 𝕜 F : Type u_2 inst✝³ : NormedAddCommGroup F inst✝² : NormedSpace 𝕜 F E : Type ?u.162489 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E n : ℕ f : 𝕜 → F s : Set 𝕜 x : 𝕜 ⊢ (deriv^[n + 1]) f = (deriv^[n]) (deriv f) State After: no goals Tactic: rfl
-- {-# OPTIONS -v tc.lhs.shadow:30 #-} module PatternShadowsConstructor3 where data Bool : Set where true false : Bool module A where data B : Set where x : B data C : Set where c : B → C open A using (C; c) T : Bool → Set T true = C → C T false = Bool f : (b : Bool) → T b f true (c x) = x f false = true
[STATEMENT] lemma decompose_com_ictxt: assumes "(c', ictxt, fctxt) \<in> decompose_com c" shows "ictxt c' = c" [PROOF STATE] proof (prove) goal (1 subgoal): 1. ictxt c' = c [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: (c', ictxt, fctxt) \<in> decompose_com c goal (1 subgoal): 1. ictxt c' = c [PROOF STEP] by (induct c arbitrary: c' ictxt fctxt) auto
-- -------------------------------------------------------------- [ Values.idr ] -- Module : Values.idr -- Copyright : (c) Jan de Muijnck-Hughes -- License : see LICENSE -- --------------------------------------------------------------------- [ EOH ] module Test.Random.Values import Effects import Effect.Random %access export -- --------------------------------------------------------- [ List Generators ] genRndListE : (seed : Integer) -> (len : Nat) -> (generator : Eff a [RND]) -> Eff (List a) [RND] genRndListE s l f = do srand s; pure !(doGen l f) where doGen : (len : Nat) -> (generator : Eff a [RND]) -> Eff (List a) [RND] doGen Z f = pure List.Nil doGen (S n) f = pure $ (!f :: !(doGen n f)) genRndListUE : Eq a => (seed : Integer) -> (len : Nat) -> (generator : Eff a [RND]) -> Eff (List a) [RND] genRndListUE s l f = do srand s; pure !(doGen l f) where genElem : Eq a => Eff a [RND] -> List a -> Eff a [RND] genElem f xs = do x <- f if elem x xs then genElem f xs else pure x doGen : Eq a => Nat -> Eff a [RND] -> Eff (List a) [RND] doGen Z f = pure Nil doGen (S n) f = do xs <- doGen n f x <- genElem f xs pure (x::xs) genKVPair : (genA : Eff a [RND]) -> (genB : Eff b [RND]) -> Eff (Pair a b) [RND] genKVPair f g = pure (!f, !g) genRndListKVE : (seed : Integer) -> (len : Nat) -> (genA : Eff a [RND]) -> (genB : Eff b [RND]) -> Eff (List (Pair a b)) [RND] genRndListKVE s l f g = genRndListE s l (genKVPair f g) genRndListKVUE : (Eq a, Eq b) => (seed : Integer) -> (len : Nat) -> (genA : Eff a [RND]) -> (genB : Eff b [RND]) -> Eff (List (Pair a b)) [RND] genRndListKVUE s l f g = do srand s; pure !(doGen l (genKVPair f g)) where genElem : (Eq a, Eq b) => Eff (Pair a b) [RND] -> List (Pair a b) -> Eff (Pair a b) [RND] genElem f xs = do x <- f if elem x xs then genElem f xs else if isJust $ lookup (fst x) xs then genElem f xs else pure x doGen : (Eq a, Eq b) => Nat -> Eff (Pair a b) [RND] -> Eff (List (Pair a b)) [RND] doGen Z f = pure Nil doGen (S n) f = do xs <- doGen n f x <- genElem f xs pure (x::xs) -- -------------------------------------------------------- [ Random Int Lists ] rndListIntE : (seed : Integer) -> (bounds : Pair Integer Integer) -> (length : Nat) -> Eff (List Integer) [RND] rndListIntE s (l,u) n = genRndListE s n (rndInt l u) rndListInt : (seed : Integer) -> (bounds : Pair Integer Integer) -> (length : Nat) -> List (Integer) rndListInt s bs n = runPure $ rndListIntE s bs n -- ------------------------------------------------- [ Random Unique Int Lists ] rndListIntUE : (seed : Integer) -> (bounds : Pair Integer Integer) -> (len : Nat) -> Eff (List Integer) [RND] rndListIntUE s (l,u) n = genRndListUE s n (rndInt l u) rndListIntU : (seed : Integer) -> (bounds : Pair Integer Integer) -> (len : Nat) -> List Integer rndListIntU s bs n = runPure $ rndListIntUE s bs n -- ------------------------------------------------- [ Random Int KV Pair List ] genY : Integer -> Integer -> Eff Integer [RND] genY l u = do x <- rndInt l u pure (x + 2*u) rndListIntKVE : (seed : Integer) -> (bounds : Pair Integer Integer) -> (len : Nat) -> Eff (List (Pair Integer Integer)) [RND] rndListIntKVE s (l,u) n = genRndListKVE s n (rndInt l u) (genY l u) rndListIntKV : (seed : Integer) -> (bounds : Pair Integer Integer) -> (len : Nat) -> List (Pair Integer Integer) rndListIntKV s bs n = runPure $ rndListIntKVE s bs n rndListIntKVUE : (seed : Integer) -> (bounds : Pair Integer Integer) -> (len : Nat) -> Eff (List (Pair Integer Integer)) [RND] rndListIntKVUE s (l,u) n = genRndListKVUE s n (rndInt l u) (genY l u) rndListIntKVU : (seed : Integer) -> (bounds : Pair Integer Integer) -> (len : Nat) -> List (Pair Integer Integer) rndListIntKVU s bs n = runPure $ rndListIntKVUE s bs n -- --------------------------------------------------------------------- [ EOF ]
theory ex3_2 imports Main begin type_synonym vname = string type_synonym val = int type_synonym state = "vname \<Rightarrow> val" datatype aexp = N int | V vname | Plus aexp aexp fun aval :: "aexp \<Rightarrow> state \<Rightarrow> val" where "aval (N n) s = n" | "aval (V x) s = s x" | "aval (Plus a\<^sub>1 a\<^sub>2) s = aval a\<^sub>1 s + aval a\<^sub>2 s" fun plus :: "aexp \<Rightarrow> aexp \<Rightarrow> aexp" where "plus (N i\<^sub>1) (N i\<^sub>2) = N (i\<^sub>1+i\<^sub>2)"| "plus (N i) a = (if i=0 then a else Plus (N i) a)"| "plus a (N i) = (if i=0 then a else Plus a (N i))"| "plus a\<^sub>1 a\<^sub>2 = Plus a\<^sub>1 a\<^sub>2" fun asimp :: "aexp \<Rightarrow> aexp" where "asimp (N n) = N n" | "asimp (V x) = V x" | "asimp (Plus a\<^sub>1 a\<^sub>2) = plus (asimp a\<^sub>1) (asimp a\<^sub>2)" fun sum_n :: "aexp \<Rightarrow> int" where "sum_n (N a) = a" | "sum_n (Plus a b) = (sum_n a) + (sum_n b)" | "sum_n (V x) = 0" fun sum_v :: "aexp \<Rightarrow> aexp" where "sum_v (N a) = N 0" | "sum_v (Plus a b) = Plus (sum_v a) (sum_v b)" | "sum_v (V x) = V x" fun full_asimp :: "aexp \<Rightarrow> aexp" where "full_asimp a = asimp (Plus (sum_v a) (N (sum_n a)))" lemma aval_plus [simp]:"aval (plus a1 a2) s = aval a1 s + aval a2 s" apply(induction a1 a2 rule: plus.induct) apply(auto) done lemma "aval (full_asimp a) s = aval a s" apply(induction a) apply(auto) done value "full_asimp (Plus (Plus (N 0) (N 7)) (Plus (V x) (N 8)))" end
-- @@stderr -- dtrace: failed to compile script test/unittest/actions/printf/err.D_PRINTF_ARG_FMT.d: [D_PRINTF_ARG_FMT] line 18: printf( ) argument #1 is incompatible with prototype: prototype: string constant argument: string
{-# OPTIONS --cubical --safe #-} open import Prelude open import Relation.Binary open import Function.Injective module Relation.Binary.Construct.On {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} (f : A → B) (f-inj : Injective f) (ord : TotalOrder B ℓ₁ ℓ₂) where open TotalOrder ord renaming (refl to ≤-refl) _<′_ : A → A → Type _ x <′ y = f x < f y _≤′_ : A → A → Type _ x ≤′ y = f x ≤ f y on-ord : TotalOrder A ℓ₁ ℓ₂ StrictPreorder._<_ (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder on-ord)) = _<′_ StrictPreorder.trans (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder on-ord)) = <-trans StrictPreorder.irrefl (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder on-ord)) = irrefl StrictPartialOrder.conn (TotalOrder.strictPartialOrder on-ord) p q = f-inj _ _ (conn p q) Preorder._≤_ (PartialOrder.preorder (TotalOrder.partialOrder on-ord)) = _≤′_ Preorder.refl (PartialOrder.preorder (TotalOrder.partialOrder on-ord)) = ≤-refl Preorder.trans (PartialOrder.preorder (TotalOrder.partialOrder on-ord)) = ≤-trans PartialOrder.antisym (TotalOrder.partialOrder on-ord) p q = f-inj _ _ (antisym p q) TotalOrder._<?_ on-ord x y = f x <? f y TotalOrder.≰⇒> on-ord = ≰⇒> TotalOrder.≮⇒≥ on-ord = ≮⇒≥
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017. Some proofs were added by Yutaka Nagashima.*) theory TIP_prop_67 imports "../../Test_Base" begin datatype 'a list = nil2 | cons2 "'a" "'a list" datatype Nat = Z | S "Nat" fun len :: "'a list => Nat" where "len (nil2) = Z" | "len (cons2 y xs) = S (len xs)" fun butlast :: "'a list => 'a list" where "butlast (nil2) = nil2" | "butlast (cons2 y (nil2)) = nil2" | "butlast (cons2 y (cons2 x2 x3)) = cons2 y (butlast (cons2 x2 x3))" fun t2 :: "Nat => Nat => Nat" where "t2 (Z) y = Z" | "t2 (S z) (Z) = S z" | "t2 (S z) (S x2) = t2 z x2" theorem property0 : "((len (butlast xs)) = (t2 (len xs) (S Z)))" oops end
/- Copyright (c) 2022 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser, Heather Macbeth -/ import topology.uniform_space.pi import data.matrix.basic /-! # Uniform space structure on matrices -/ open_locale uniformity topology variables (m n 𝕜 : Type*) [uniform_space 𝕜] namespace matrix instance : uniform_space (matrix m n 𝕜) := (by apply_instance : uniform_space (m → n → 𝕜)) lemma uniformity : 𝓤 (matrix m n 𝕜) = ⨅ (i : m) (j : n), (𝓤 𝕜).comap (λ a, (a.1 i j, a.2 i j)) := begin erw [Pi.uniformity, Pi.uniformity], simp_rw [filter.comap_infi, filter.comap_comap], refl, end lemma uniform_continuous {β : Type*} [uniform_space β] {f : β → matrix m n 𝕜} : uniform_continuous f ↔ ∀ i j, uniform_continuous (λ x, f x i j) := by simp only [uniform_continuous, matrix.uniformity, filter.tendsto_infi, filter.tendsto_comap_iff] instance [complete_space 𝕜] : complete_space (matrix m n 𝕜) := (by apply_instance : complete_space (m → n → 𝕜)) instance [separated_space 𝕜] : separated_space (matrix m n 𝕜) := (by apply_instance : separated_space (m → n → 𝕜)) end matrix
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import topology.continuous_function.basic /-! # Continuous open maps This file defines bundled continuous open maps. We use the `fun_like` design, so each type of morphisms has a companion typeclass which is meant to be satisfied by itself and all stricter types. ## Types of morphisms * `continuous_open_map`: Continuous open maps. ## Typeclasses * `continuous_open_map_class` -/ open function variables {F α β γ δ : Type*} /-- The type of continuous open maps from `α` to `β`, aka Priestley homomorphisms. -/ structure continuous_open_map (α β : Type*) [topological_space α] [topological_space β] extends continuous_map α β := (map_open' : is_open_map to_fun) infixr ` →CO `:25 := continuous_open_map /-- `continuous_open_map_class F α β` states that `F` is a type of continuous open maps. You should extend this class when you extend `continuous_open_map`. -/ class continuous_open_map_class (F : Type*) (α β : out_param $ Type*) [topological_space α] [topological_space β] extends continuous_map_class F α β := (map_open (f : F) : is_open_map f) export continuous_open_map_class (map_open) instance [topological_space α] [topological_space β] [continuous_open_map_class F α β] : has_coe_t F (α →CO β) := ⟨λ f, ⟨f, map_open f⟩⟩ /-! ### Continuous open maps -/ namespace continuous_open_map variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] instance : continuous_open_map_class (α →CO β) α β := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' }, map_continuous := λ f, f.continuous_to_fun, map_open := λ f, f.map_open' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. -/ instance : has_coe_to_fun (α →CO β) (λ _, α → β) := fun_like.has_coe_to_fun @[simp] lemma to_fun_eq_coe {f : α →CO β} : f.to_fun = (f : α → β) := rfl @[ext] lemma ext {f g : α →CO β} (h : ∀ a, f a = g a) : f = g := fun_like.ext f g h /-- Copy of a `continuous_open_map` with a new `continuous_map` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →CO β) (f' : α → β) (h : f' = f) : α →CO β := ⟨f.to_continuous_map.copy f' $ by exact h, h.symm.subst f.map_open'⟩ variables (α) /-- `id` as a `continuous_open_map`. -/ protected def id : α →CO α := ⟨continuous_map.id _, is_open_map.id⟩ instance : inhabited (α →CO α) := ⟨continuous_open_map.id _⟩ @[simp] variables {α} @[simp] lemma id_apply (a : α) : continuous_open_map.id α a = a := rfl /-- Composition of `continuous_open_map`s as a `continuous_open_map`. -/ def comp (f : β →CO γ) (g : α →CO β) : continuous_open_map α γ := ⟨f.to_continuous_map.comp g.to_continuous_map, f.map_open'.comp g.map_open'⟩ @[simp] lemma coe_comp (f : β →CO γ) (g : α →CO β) : (f.comp g : α → γ) = f ∘ g := rfl @[simp] lemma comp_apply (f : β →CO γ) (g : α →CO β) (a : α) : (f.comp g) a = f (g a) := rfl @[simp] lemma comp_assoc (f : γ →CO δ) (g : β →CO γ) (h : α →CO β) : (f.comp g).comp h = f.comp (g.comp h) := rfl @[simp] lemma comp_id (f : α →CO β) : f.comp (continuous_open_map.id α) = f := ext $ λ a, rfl @[simp] lemma id_comp (f : α →CO β) : (continuous_open_map.id β).comp f = f := ext $ λ a, rfl lemma cancel_right {g₁ g₂ : β →CO γ} {f : α →CO β} (hf : surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, ext $ hf.forall.2 $ fun_like.ext_iff.1 h, congr_arg _⟩ lemma cancel_left {g : β →CO γ} {f₁ f₂ : α →CO β} (hg : injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, ext $ λ a, hg $ by rw [←comp_apply, h, comp_apply], congr_arg _⟩ end continuous_open_map
proposition homeomorphic_ball_UNIV: fixes a ::"'a::real_normed_vector" assumes "0 < r" shows "ball a r homeomorphic (UNIV:: 'a set)"
(* Copyright (C) 2017 M.A.L. Marques This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/. *) (* type: work_gga_c *) (* prefix: gga_c_lyp_params *params; assert(p->params != NULL); params = (gga_c_lyp_params * )(p->params); *) Cf := 3/10 * (3*Pi^2)^(2/3): omega := rs -> params_a_B*exp(-params_a_c*rs)/(1 + params_a_d*rs): delta := rs -> (params_a_c + params_a_d/(1 + params_a_d*rs))*rs: aux6 := 1/2^(8/3): aux4 := aux6/4: aux5 := aux4/(9*2): t1 := (rs, z) -> -(1 - z^2)/(1 + params_a_d*rs): t2 := (rs, z, xt) -> -xt^2*((1 - z^2)*(47 - 7*delta(rs))/(4*18) - 2/3): t3 := (z) -> -Cf/2*(1 - z^2)*((1 + z)^(8/3) + (1 - z)^(8/3)): t4 := (rs, z, xs0, xs1) -> aux4*(1 - z^2)*(5/2 - delta(rs)/18)*(xs0^2*(1 + z)^(8/3) + xs1^2*(1 - z)^(8/3)): t5 := (rs, z, xs0, xs1) -> aux5*(1 - z^2)*(delta(rs) - 11)*(xs0^2*(1 + z)^(11/3) + xs1^2*(1 - z)^(11/3)): t6 := (z, xs0, xs1) -> -aux6*(2/3*(xs0^2*(1 + z)^(8/3) + xs1^2*(1 - z)^(8/3)) -(1 + z)^2*xs1^2*(1 - z)^(8/3)/4 - (1 - z)^2*xs0^2*(1 + z)^(8/3)/4): f_lyp := (rs, z, xt, xs0, xs1) -> params_a_A*(t1(rs/RS_FACTOR, z) + omega(rs/RS_FACTOR)*( + t2(rs/RS_FACTOR, z, xt) + t3(z) + t4(rs/RS_FACTOR, z, xs0, xs1) + t5(rs/RS_FACTOR, z, xs0, xs1) + t6(z, xs0, xs1) )): f := (rs, z, xt, xs0, xs1) -> f_lyp(rs, z, xt, xs0, xs1):
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import category_theory.category.Pointed /-! # The category of bipointed types This defines `Bipointed`, the category of bipointed types. ## TODO Monoidal structure -/ open category_theory universes u variables {α β : Type*} /-- The category of bipointed types. -/ structure Bipointed : Type.{u + 1} := (X : Type.{u}) (to_prod : X × X) namespace Bipointed instance : has_coe_to_sort Bipointed Type* := ⟨X⟩ attribute [protected] Bipointed.X /-- Turns a bipointing into a bipointed type. -/ def of {X : Type*} (to_prod : X × X) : Bipointed := ⟨X, to_prod⟩ @[simp] lemma coe_of {X : Type*} (to_prod : X × X) : ↥(of to_prod) = X := rfl alias of ← _root_.prod.Bipointed instance : inhabited Bipointed := ⟨of ((), ())⟩ /-- Morphisms in `Bipointed`. -/ @[ext] protected structure hom (X Y : Bipointed.{u}) : Type u := (to_fun : X → Y) (map_fst : to_fun X.to_prod.1 = Y.to_prod.1) (map_snd : to_fun X.to_prod.2 = Y.to_prod.2) namespace hom /-- The identity morphism of `X : Bipointed`. -/ @[simps] def id (X : Bipointed) : hom X X := ⟨id, rfl, rfl⟩ instance (X : Bipointed) : inhabited (hom X X) := ⟨id X⟩ /-- Composition of morphisms of `Bipointed`. -/ @[simps] def comp {X Y Z : Bipointed.{u}} (f : hom X Y) (g : hom Y Z) : hom X Z := ⟨g.to_fun ∘ f.to_fun, by rw [function.comp_apply, f.map_fst, g.map_fst], by rw [function.comp_apply, f.map_snd, g.map_snd]⟩ end hom instance large_category : large_category Bipointed := { hom := hom, id := hom.id, comp := @hom.comp, id_comp' := λ _ _ _, hom.ext _ _ rfl, comp_id' := λ _ _ _, hom.ext _ _ rfl, assoc' := λ _ _ _ _ _ _ _, hom.ext _ _ rfl } instance concrete_category : concrete_category Bipointed := { forget := { obj := Bipointed.X, map := @hom.to_fun }, forget_faithful := ⟨@hom.ext⟩ } /-- Swaps the pointed elements of a bipointed type. `prod.swap` as a functor. -/ @[simps] def swap : Bipointed ⥤ Bipointed := { obj := λ X, ⟨X, X.to_prod.swap⟩, map := λ X Y f, ⟨f.to_fun, f.map_snd, f.map_fst⟩ } /-- The equivalence between `Bipointed` and itself induced by `prod.swap` both ways. -/ @[simps] def swap_equiv : Bipointed ≌ Bipointed := equivalence.mk swap swap (nat_iso.of_components (λ X, { hom := ⟨id, rfl, rfl⟩, inv := ⟨id, rfl, rfl⟩ }) $ λ X Y f, rfl) (nat_iso.of_components (λ X, { hom := ⟨id, rfl, rfl⟩, inv := ⟨id, rfl, rfl⟩ }) $ λ X Y f, rfl) @[simp] lemma swap_equiv_symm : swap_equiv.symm = swap_equiv := rfl end Bipointed /-- The forgetful functor from `Bipointed` to `Pointed` which forgets about the second point. -/ def Bipointed_to_Pointed_fst : Bipointed ⥤ Pointed := { obj := λ X, ⟨X, X.to_prod.1⟩, map := λ X Y f, ⟨f.to_fun, f.map_fst⟩ } /-- The forgetful functor from `Bipointed` to `Pointed` which forgets about the first point. -/ def Bipointed_to_Pointed_snd : Bipointed ⥤ Pointed := { obj := λ X, ⟨X, X.to_prod.2⟩, map := λ X Y f, ⟨f.to_fun, f.map_snd⟩ } @[simp] lemma Bipointed_to_Pointed_fst_comp_forget : Bipointed_to_Pointed_fst ⋙ forget Pointed = forget Bipointed := rfl @[simp] lemma Bipointed_to_Pointed_snd_comp_forget : Bipointed_to_Pointed_snd ⋙ forget Pointed = forget Bipointed := rfl @[simp] lemma swap_comp_Bipointed_to_Pointed_fst : Bipointed.swap ⋙ Bipointed_to_Pointed_fst = Bipointed_to_Pointed_snd := rfl @[simp] lemma swap_comp_Bipointed_to_Pointed_snd : Bipointed.swap ⋙ Bipointed_to_Pointed_snd = Bipointed_to_Pointed_fst := rfl /-- The functor from `Pointed` to `Bipointed` which bipoints the point. -/ def Pointed_to_Bipointed : Pointed.{u} ⥤ Bipointed := { obj := λ X, ⟨X, X.point, X.point⟩, map := λ X Y f, ⟨f.to_fun, f.map_point, f.map_point⟩ } /-- The functor from `Pointed` to `Bipointed` which adds a second point. -/ def Pointed_to_Bipointed_fst : Pointed.{u} ⥤ Bipointed := { obj := λ X, ⟨option X, X.point, none⟩, map := λ X Y f, ⟨option.map f.to_fun, congr_arg _ f.map_point, rfl⟩, map_id' := λ X, Bipointed.hom.ext _ _ option.map_id, map_comp' := λ X Y Z f g, Bipointed.hom.ext _ _ (option.map_comp_map _ _).symm } /-- The functor from `Pointed` to `Bipointed` which adds a first point. -/ def Pointed_to_Bipointed_snd : Pointed.{u} ⥤ Bipointed := { obj := λ X, ⟨option X, none, X.point⟩, map := λ X Y f, ⟨option.map f.to_fun, rfl, congr_arg _ f.map_point⟩, map_id' := λ X, Bipointed.hom.ext _ _ option.map_id, map_comp' := λ X Y Z f g, Bipointed.hom.ext _ _ (option.map_comp_map _ _).symm } @[simp] lemma Pointed_to_Bipointed_fst_comp_swap : Pointed_to_Bipointed_fst ⋙ Bipointed.swap = Pointed_to_Bipointed_snd := rfl @[simp] lemma Pointed_to_Bipointed_snd_comp_swap : Pointed_to_Bipointed_snd ⋙ Bipointed.swap = Pointed_to_Bipointed_fst := rfl /-- `Bipointed_to_Pointed_fst` is inverse to `Pointed_to_Bipointed`. -/ @[simps] def Pointed_to_Bipointed_comp_Bipointed_to_Pointed_fst : Pointed_to_Bipointed ⋙ Bipointed_to_Pointed_fst ≅ 𝟭 _ := nat_iso.of_components (λ X, { hom := ⟨id, rfl⟩, inv := ⟨id, rfl⟩ }) $ λ X Y f, rfl /-- `Bipointed_to_Pointed_snd` is inverse to `Pointed_to_Bipointed`. -/ @[simps] def Pointed_to_Bipointed_comp_Bipointed_to_Pointed_snd : Pointed_to_Bipointed ⋙ Bipointed_to_Pointed_snd ≅ 𝟭 _ := nat_iso.of_components (λ X, { hom := ⟨id, rfl⟩, inv := ⟨id, rfl⟩ }) $ λ X Y f, rfl /-- The free/forgetful adjunction between `Pointed_to_Bipointed_fst` and `Bipointed_to_Pointed_fst`. -/ def Pointed_to_Bipointed_fst_Bipointed_to_Pointed_fst_adjunction : Pointed_to_Bipointed_fst ⊣ Bipointed_to_Pointed_fst := adjunction.mk_of_hom_equiv { hom_equiv := λ X Y, { to_fun := λ f, ⟨f.to_fun ∘ option.some, f.map_fst⟩, inv_fun := λ f, ⟨λ o, o.elim Y.to_prod.2 f.to_fun, f.map_point, rfl⟩, left_inv := λ f, by { ext, cases x, exact f.map_snd.symm, refl }, right_inv := λ f, Pointed.hom.ext _ _ rfl }, hom_equiv_naturality_left_symm' := λ X' X Y f g, by { ext, cases x; refl } } /-- The free/forgetful adjunction between `Pointed_to_Bipointed_snd` and `Bipointed_to_Pointed_snd`. -/ def Pointed_to_Bipointed_snd_Bipointed_to_Pointed_snd_adjunction : Pointed_to_Bipointed_snd ⊣ Bipointed_to_Pointed_snd := adjunction.mk_of_hom_equiv { hom_equiv := λ X Y, { to_fun := λ f, ⟨f.to_fun ∘ option.some, f.map_snd⟩, inv_fun := λ f, ⟨λ o, o.elim Y.to_prod.1 f.to_fun, rfl, f.map_point⟩, left_inv := λ f, by { ext, cases x, exact f.map_fst.symm, refl }, right_inv := λ f, Pointed.hom.ext _ _ rfl }, hom_equiv_naturality_left_symm' := λ X' X Y f g, by { ext, cases x; refl } }
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017. Some proofs were added by Yutaka Nagashima.*) theory TIP_prop_75 imports "../../Test_Base" begin datatype 'a list = nil2 | cons2 "'a" "'a list" datatype Nat = Z | S "Nat" fun x :: "Nat => Nat => bool" where "x (Z) (Z) = True" | "x (Z) (S z2) = False" | "x (S x2) (Z) = False" | "x (S x2) (S y2) = x x2 y2" fun count :: "Nat => Nat list => Nat" where "count y (nil2) = Z" | "count y (cons2 z2 ys) = (if x y z2 then S (count y ys) else count y ys)" fun t2 :: "Nat => Nat => Nat" where "t2 (Z) z = z" | "t2 (S z2) z = S (t2 z2 z)" theorem property0 : "((t2 (count n xs) (count n (cons2 m (nil2)))) = (count n (cons2 m xs)))" oops end
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017. Some proofs were added by Yutaka Nagashima.*) theory TIP_prop_71 imports "../../Test_Base" begin datatype 'a list = nil2 | cons2 "'a" "'a list" datatype Nat = Z | S "Nat" fun x :: "Nat => Nat => bool" where "x (Z) (Z) = True" | "x (Z) (S z2) = False" | "x (S x2) (Z) = False" | "x (S x2) (S y2) = x x2 y2" fun elem :: "Nat => Nat list => bool" where "elem y (nil2) = False" | "elem y (cons2 z2 xs) = (if x y z2 then True else elem y xs)" fun t2 :: "Nat => Nat => bool" where "t2 y (Z) = False" | "t2 (Z) (S z2) = True" | "t2 (S x2) (S z2) = t2 x2 z2" fun ins :: "Nat => Nat list => Nat list" where "ins y (nil2) = cons2 y (nil2)" | "ins y (cons2 z2 xs) = (if t2 y z2 then cons2 y (cons2 z2 xs) else cons2 z2 (ins y xs))" theorem property0 : "((~ (x y z)) ==> ((elem y (ins z xs)) = (elem y xs)))" oops end
Formal statement is: lemma content_dvd_coeffs: "c \<in> set (coeffs p) \<Longrightarrow> content p dvd c" Informal statement is: The content of a polynomial divides every coefficient of the polynomial.
[STATEMENT] lemma in_set_takeD: "x \<in> set(take n xs) \<Longrightarrow> x \<in> set xs" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<in> set (take n xs) \<Longrightarrow> x \<in> set xs [PROOF STEP] using set_take_subset [PROOF STATE] proof (prove) using this: set (take ?n ?xs) \<subseteq> set ?xs goal (1 subgoal): 1. x \<in> set (take n xs) \<Longrightarrow> x \<in> set xs [PROOF STEP] by fast
import sheaves_of_modules.defs /- # Pushforward and pullback of sheaves of modules -/ variables {X Y : RINGED_SPACE} namespace SHEAF_OF_MODULES section experiment --#check @Top.sheaf.pushforward variable (f : X ⟶ Y) example : (X : TOP) ⟶ Y := f.base end experiment --#check Top.presheaf.pushforward_obj --set_option pp.notation false /- instance (𝓜 : SHEAF_OF_MODULES X) (U : (opens (X : TOP))ᵒᵖ) : module ((𝓞_ X) U) (𝓜.obj U) := 𝓜.module_structure U -/ --instance (U) : module --#print notation _* --#check Top.presheaf.pushforward_obj /- /-- Pushforward a presheaf on `X` along a continuous map `f : X ⟶ Y`, obtaining a presheaf on `Y`. -/ def pushforward_obj {X Y : Top.{w}} (f : X ⟶ Y) (ℱ : X.presheaf C) : Y.presheaf C := (opens.map f).op ⋙ ℱ infix ` _* `: 80 := pushforward_obj -/ --#where def map (f : X ⟶ Y) (𝓜 : SHEAF_OF_MODULES X) : SHEAF_OF_MODULES Y := { ab_sheaf := (Top.sheaf.pushforward.{0} f.base).obj 𝓜.ab_sheaf, module_structure := λ U, by letI : module ↥((f.base _* X.to_PresheafedSpace.presheaf).obj U) ↥(((Top.sheaf.pushforward f.base).obj 𝓜.ab_sheaf).val.obj U) := obj.module 𝓜 ((topological_space.opens.map f.base).op.obj U); exact module.comp_hom (𝓜.obj ((topological_space.opens.map f.base).op.obj U)) (f.c.app U), -- module_structure := λ U, begin -- -- delta Top.sheaf.pushforward, -- -- dsimp only, -- -- delta Top.presheaf.pushforward_obj, -- -- change module _ (𝓜.obj _), -- let V : (topological_space.opens (X : TOP))ᵒᵖ := (topological_space.opens.map f.base).op.obj U, -- change module ((𝓞_ Y) U) (𝓜.obj V), -- -- letI baz : module ((𝓞_ X) V) (𝓜.obj V) := infer_instance, -- show_term {apply_instance} -- letI : module ↥((f.base _* X.to_PresheafedSpace.presheaf).obj U) ↥(𝓜.obj V) := obj.module 𝓜 V, -- -- let foo : (𝓞_ Y) U →+* (𝓞_ X) V := f.c.app U, -- exact module.comp_hom (𝓜.obj V) (f.c.app U), -- end, compatibility_bit := λ U V i, begin rintro s (n : 𝓜.ab_sheaf.val.obj _), change ↥((𝓞_ Y) U) at s, have foo := f.c.naturality i, let j : ((topological_space.opens.map f.base).op.obj U) ⟶ ((topological_space.opens.map f.base).op.obj V) := ((topological_space.opens.map f.base).op.map i), let r : (𝓞_ X) ((topological_space.opens.map f.base).op.obj U) := f.c.app U s, --have bar := 𝓜.compatibility_bit _ _ j r n, convert 𝓜.compatibility_bit _ _ j r n using 1, rw fun_like.ext_iff at foo, specialize foo s, have moo : (f.base _* X.to_PresheafedSpace.presheaf).map i = X.to_PresheafedSpace.presheaf.map j, refl, rw fun_like.ext_iff at moo, specialize moo r, rw ← moo, change _ = ((f.c.app U ≫ (f.base _* X.to_PresheafedSpace.presheaf).map i) s) • _, rw ← foo, refl, -- need to pull back i; need to fix implicits -- might need pen and paper here --convert bar _ _, /- Have foo: O_Y(U)->O_Y(V)->f_*O_X(V) = O_Y(U)->f_*O_X(U)->f_*O_X(V) have bar : ∀ r ∈ O_X(f⁻¹(U)), m ∈ 𝓜(f⁻¹(U)), res(r•m) ∈ 𝓜(f⁻¹(V)) = (res(r) : O_X(f⁻¹(V)))•res(m) Want: ∀ s ∈ O_Y(U), ∀ n ∈ f_*𝓜(U) := 𝓜(f⁻¹(U)), res(s•n)=res(s)•res(n) Proof: define r=image of s in O_X(f⁻¹(U))=f_*O_X(U). -/ --letI : module (Y.to_PresheafedSpace.presheaf.obj U) -- (((Top.sheaf.pushforward f.base).obj 𝓜.ab_sheaf).val.obj U) := module_structure 𝓜 ((topological_space.opens.map f.base).op.obj U), --calc --(((Top.sheaf.pushforward f.base).obj 𝓜.ab_sheaf).val.map i) (s • n) = --((Y.to_PresheafedSpace.presheaf.map i) s : (𝓞_ Y) V) • (((Top.sheaf.pushforward f.base).obj 𝓜.ab_sheaf).val.map i) n : sorry end } infix (name := hi) ` _* `: 80 := map --#check Top.sheaf.pushforward variables (f : X ⟶ Y) (𝓜 : SHEAF_OF_MODULES X) def map_id (𝓜 : SHEAF_OF_MODULES X) : (𝟙 X) _* 𝓜 ≅ 𝓜 := { hom := { ab_sheaf := { val := { app := λ U, 𝓜.ab_sheaf.val.map $ category_theory.op_hom_of_le $ λ x hx, hx, naturality' := begin intros U V f, ext, simp only [category_theory.comp_apply], sorry, end } }, map_smul := begin intros, simp only [category_theory.op_hom_of_le], sorry, end }, inv := { ab_sheaf := { val := { app := λ U, 𝓜.ab_sheaf.val.map $ category_theory.op_hom_of_le $ λ x hx, hx, naturality' := begin intros U V g, ext, simp only [category_theory.comp_apply], sorry, end } }, map_smul := sorry }, hom_inv_id' := begin ext U m, --dsimp only [category_theory.comp_apply], unfold_coes, dsimp only, sorry, end, inv_hom_id' := sorry } end SHEAF_OF_MODULES example (Z : Type) [topological_space Z] (U V : (topological_space.opens Z)ᵒᵖ) (h : V.unop ⊆ U.unop): U ⟶ V := begin refine category_theory.op_hom_of_le h, end
lemma finite_ball_include: fixes a :: "'a::metric_space" assumes "finite S" shows "\<exists>e>0. S \<subseteq> ball a e"
module Automata.Nondeterministic where -- Standard libraries imports ---------------------------------------- open import Level using () renaming (zero to ℓ₀) open import Data.Nat using (ℕ) open import Data.Product using (_×_) open import Data.Vec using (Vec ; [] ; _∷_) open import Relation.Unary using (Pred) open import Relation.Binary.PropositionalEquality using (_≡_) ---------------------------------------------------------------------- -- Thesis imports ---------------------------------------------------- open import Utilities.ExistsSyntax using (∃-syntax) ---------------------------------------------------------------------- record NDA (Σ : Set) : Set₁ where constructor ⟨_,_,_,_⟩ field Q : Set S : Pred Q ℓ₀ F : Pred Q ℓ₀ Δ : Q → Σ → Pred Q ℓ₀ Δ* : Q → {n : ℕ} → Vec Σ n → Pred Q ℓ₀ Δ* q [] = q ≡_ Δ* q (x ∷ xs) q′ = ∃ q₀ ∶ Q • ((Δ q x q₀) × (Δ* q₀ xs q′)) Accepts : {n : ℕ} → Pred (Vec Σ n) ℓ₀ Accepts xs = ∃ q ∶ Q • (S q × ∃ q′ ∶ Q • ((F q′) × (Δ* q xs q′))) -- :TODO: are these useful? _-Reachable : ℕ → Q → Pred Q ℓ₀ _-Reachable n q q′ = ∃ xs ∶ Vec Σ n • (Δ* q xs q′) Reachable : Q → Pred Q ℓ₀ Reachable q q′ = ∃ n ∶ ℕ • (n -Reachable) q q′
[STATEMENT] lemma lt_take: "n1 < n2 \<Longrightarrow> n2 \<le> length al \<Longrightarrow> take n1 al < take n2 al" [PROOF STATE] proof (prove) goal (1 subgoal): 1. \<lbrakk>n1 < n2; n2 \<le> length al\<rbrakk> \<Longrightarrow> take n1 al < take n2 al [PROOF STEP] by (metis inj_take le_less_trans le_take not_less_iff_gr_or_eq order.not_eq_order_implies_strict order.strict_implies_order)
Formal statement is: lemma Bseq_eq_bounded: fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" shows "Bseq f \<longleftrightarrow> bounded (range f)" Informal statement is: A sequence $f$ is bounded if and only if the range of $f$ is bounded.
{-# OPTIONS --two-level --cubical-compatible #-} open import Agda.Primitive data D₁ : SSet → SSet (lsuc lzero) where c : (@0 A : SSet) → A → D₁ A data D₂ : Set → SSet (lsuc lzero) where c : (@0 A : Set) → A → D₂ A
[STATEMENT] lemma minus_cis: "-cis x = cis (x + pi)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. - cis x = cis (x + pi) [PROOF STEP] by (simp add: complex_eq_iff)
Formal statement is: lemma isCont_has_Ub: fixes f :: "real \<Rightarrow> 'a::linorder_topology" shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))" Informal statement is: If $f$ is continuous on the closed interval $[a,b]$, then $f$ has a supremum on $[a,b]$.
-- Andreas, 2013-03-15 -- Paolo Capriotti's formalization of Russell's paradox {-# OPTIONS --cubical-compatible --type-in-type #-} module Russell where open import Common.Product open import Common.Equality data ⊥ : Set where ¬ : Set → Set ¬ A = A → ⊥ -- a model of set theory, uses Set : Set data U : Set where set : (I : Set) → (I → U) → U -- a set is regular if it doesn't contain itself regular : U → Set regular (set I f) = (i : I) → ¬ (f i ≡ set I f) -- Russell's set: the set of all regular sets R : U R = set (Σ U regular) proj₁ -- R is not regular R-nonreg : ¬ (regular R) R-nonreg reg = reg (R , reg) refl -- R is regular R-reg : regular R R-reg (x , reg) p = subst regular p reg (x , reg) p -- contradiction absurd : ⊥ absurd = R-nonreg R-reg
-- Copyright 2017, the blau.io contributors -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. module API.Web.DOM.Node import API.Web.DOM.Document import API.Web.DOM.DocumentType import API.Web.DOM.Element %access public export %default total ||| The original interface specification can be found at ||| https://dom.spec.whatwg.org/#interface-node data Node : Type where FromDocument : Document _ -> Node FromDocumentType : DocumentType -> Node FromElement : Element -> Node
-- @@stderr -- dtrace: failed to compile script test/unittest/begin/err.D_PDESC_ZERO.tick.d: [D_PDESC_ZERO] line 20: probe description ::BEGIN:tick-1 does not match any probes
-- @@stderr -- dtrace: failed to compile script test/unittest/printf/err.D_PRINTF_ARG_FMT.badfmt.d: [D_PRINTF_ARG_FMT] line 18: printf( ) argument #1 is incompatible with prototype: prototype: string constant argument: int
/- Copyright (c) 2020 Yury Kudryashov All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import algebra.ring.prod import algebra.module.basic import group_theory.submonoid.membership import group_theory.submonoid.center import data.set.finite import data.equiv.ring /-! # Bundled subsemirings We define bundled subsemirings and some standard constructions: `complete_lattice` structure, `subtype` and `inclusion` ring homomorphisms, subsemiring `map`, `comap` and range (`srange`) of a `ring_hom` etc. -/ open_locale big_operators universes u v w variables {R : Type u} {S : Type v} {T : Type w} [non_assoc_semiring R] [non_assoc_semiring S] [non_assoc_semiring T] (M : submonoid R) set_option old_structure_cmd true /-- A subsemiring of a semiring `R` is a subset `s` that is both a multiplicative and an additive submonoid. -/ structure subsemiring (R : Type u) [non_assoc_semiring R] extends submonoid R, add_submonoid R /-- Reinterpret a `subsemiring` as a `submonoid`. -/ add_decl_doc subsemiring.to_submonoid /-- Reinterpret a `subsemiring` as an `add_submonoid`. -/ add_decl_doc subsemiring.to_add_submonoid namespace subsemiring instance : set_like (subsemiring R) R := ⟨subsemiring.carrier, λ p q h, by cases p; cases q; congr'⟩ @[simp] lemma mem_carrier {s : subsemiring R} {x : R} : x ∈ s.carrier ↔ x ∈ s := iff.rfl /-- Two subsemirings are equal if they have the same elements. -/ @[ext] theorem ext {S T : subsemiring R} (h : ∀ x, x ∈ S ↔ x ∈ T) : S = T := set_like.ext h /-- Copy of a subsemiring with a new `carrier` equal to the old one. Useful to fix definitional equalities.-/ protected def copy (S : subsemiring R) (s : set R) (hs : s = ↑S) : subsemiring R := { carrier := s, ..S.to_add_submonoid.copy s hs, ..S.to_submonoid.copy s hs } @[simp] lemma coe_copy (S : subsemiring R) (s : set R) (hs : s = ↑S) : (S.copy s hs : set R) = s := rfl lemma copy_eq (S : subsemiring R) (s : set R) (hs : s = ↑S) : S.copy s hs = S := set_like.coe_injective hs lemma to_submonoid_injective : function.injective (to_submonoid : subsemiring R → submonoid R) | r s h := ext (set_like.ext_iff.mp h : _) @[mono] lemma to_submonoid_strict_mono : strict_mono (to_submonoid : subsemiring R → submonoid R) := λ _ _, id @[mono] lemma to_submonoid_mono : monotone (to_submonoid : subsemiring R → submonoid R) := to_submonoid_strict_mono.monotone lemma to_add_submonoid_injective : function.injective (to_add_submonoid : subsemiring R → add_submonoid R) | r s h := ext (set_like.ext_iff.mp h : _) @[mono] lemma to_add_submonoid_strict_mono : strict_mono (to_add_submonoid : subsemiring R → add_submonoid R) := λ _ _, id @[mono] lemma to_add_submonoid_mono : monotone (to_add_submonoid : subsemiring R → add_submonoid R) := to_add_submonoid_strict_mono.monotone /-- Construct a `subsemiring R` from a set `s`, a submonoid `sm`, and an additive submonoid `sa` such that `x ∈ s ↔ x ∈ sm ↔ x ∈ sa`. -/ protected def mk' (s : set R) (sm : submonoid R) (hm : ↑sm = s) (sa : add_submonoid R) (ha : ↑sa = s) : subsemiring R := { carrier := s, zero_mem' := ha ▸ sa.zero_mem, one_mem' := hm ▸ sm.one_mem, add_mem' := λ x y, by simpa only [← ha] using sa.add_mem, mul_mem' := λ x y, by simpa only [← hm] using sm.mul_mem } @[simp] lemma coe_mk' {s : set R} {sm : submonoid R} (hm : ↑sm = s) {sa : add_submonoid R} (ha : ↑sa = s) : (subsemiring.mk' s sm hm sa ha : set R) = s := rfl @[simp] lemma mem_mk' {s : set R} {sm : submonoid R} (hm : ↑sm = s) {sa : add_submonoid R} (ha : ↑sa = s) {x : R} : x ∈ subsemiring.mk' s sm hm sa ha ↔ x ∈ s := iff.rfl @[simp] lemma mk'_to_submonoid {s : set R} {sm : submonoid R} (hm : ↑sm = s) {sa : add_submonoid R} (ha : ↑sa = s) : (subsemiring.mk' s sm hm sa ha).to_submonoid = sm := set_like.coe_injective hm.symm @[simp] lemma mk'_to_add_submonoid {s : set R} {sm : submonoid R} (hm : ↑sm = s) {sa : add_submonoid R} (ha : ↑sa =s) : (subsemiring.mk' s sm hm sa ha).to_add_submonoid = sa := set_like.coe_injective ha.symm end subsemiring namespace subsemiring variables (s : subsemiring R) /-- A subsemiring contains the semiring's 1. -/ theorem one_mem : (1 : R) ∈ s := s.one_mem' /-- A subsemiring contains the semiring's 0. -/ theorem zero_mem : (0 : R) ∈ s := s.zero_mem' /-- A subsemiring is closed under multiplication. -/ theorem mul_mem : ∀ {x y : R}, x ∈ s → y ∈ s → x * y ∈ s := s.mul_mem' /-- A subsemiring is closed under addition. -/ theorem add_mem : ∀ {x y : R}, x ∈ s → y ∈ s → x + y ∈ s := s.add_mem' /-- Product of a list of elements in a `subsemiring` is in the `subsemiring`. -/ lemma list_prod_mem {R : Type*} [semiring R] (s : subsemiring R) {l : list R} : (∀x ∈ l, x ∈ s) → l.prod ∈ s := s.to_submonoid.list_prod_mem /-- Sum of a list of elements in a `subsemiring` is in the `subsemiring`. -/ lemma list_sum_mem {l : list R} : (∀x ∈ l, x ∈ s) → l.sum ∈ s := s.to_add_submonoid.list_sum_mem /-- Product of a multiset of elements in a `subsemiring` of a `comm_semiring` is in the `subsemiring`. -/ lemma multiset_prod_mem {R} [comm_semiring R] (s : subsemiring R) (m : multiset R) : (∀a ∈ m, a ∈ s) → m.prod ∈ s := s.to_submonoid.multiset_prod_mem m /-- Sum of a multiset of elements in a `subsemiring` of a `semiring` is in the `add_subsemiring`. -/ lemma multiset_sum_mem (m : multiset R) : (∀a ∈ m, a ∈ s) → m.sum ∈ s := s.to_add_submonoid.multiset_sum_mem m /-- Product of elements of a subsemiring of a `comm_semiring` indexed by a `finset` is in the subsemiring. -/ lemma prod_mem {R : Type*} [comm_semiring R] (s : subsemiring R) {ι : Type*} {t : finset ι} {f : ι → R} (h : ∀c ∈ t, f c ∈ s) : ∏ i in t, f i ∈ s := s.to_submonoid.prod_mem h /-- Sum of elements in an `subsemiring` of an `semiring` indexed by a `finset` is in the `add_subsemiring`. -/ lemma sum_mem (s : subsemiring R) {ι : Type*} {t : finset ι} {f : ι → R} (h : ∀c ∈ t, f c ∈ s) : ∑ i in t, f i ∈ s := s.to_add_submonoid.sum_mem h lemma pow_mem {R : Type*} [semiring R] (s : subsemiring R) {x : R} (hx : x ∈ s) (n : ℕ) : x^n ∈ s := s.to_submonoid.pow_mem hx n lemma nsmul_mem {x : R} (hx : x ∈ s) (n : ℕ) : n • x ∈ s := s.to_add_submonoid.nsmul_mem hx n lemma coe_nat_mem (n : ℕ) : (n : R) ∈ s := by simp only [← nsmul_one, nsmul_mem, one_mem] /-- A subsemiring of a `non_assoc_semiring` inherits a `non_assoc_semiring` structure -/ instance to_non_assoc_semiring : non_assoc_semiring s := { mul_zero := λ x, subtype.eq $ mul_zero x, zero_mul := λ x, subtype.eq $ zero_mul x, right_distrib := λ x y z, subtype.eq $ right_distrib x y z, left_distrib := λ x y z, subtype.eq $ left_distrib x y z, .. s.to_submonoid.to_mul_one_class, .. s.to_add_submonoid.to_add_comm_monoid } @[simp, norm_cast] lemma coe_one : ((1 : s) : R) = (1 : R) := rfl @[simp, norm_cast] lemma coe_zero : ((0 : s) : R) = (0 : R) := rfl @[simp, norm_cast] lemma coe_add (x y : s) : ((x + y : s) : R) = (x + y : R) := rfl @[simp, norm_cast] lemma coe_mul (x y : s) : ((x * y : s) : R) = (x * y : R) := rfl instance nontrivial [nontrivial R] : nontrivial s := nontrivial_of_ne 0 1 $ λ H, zero_ne_one (congr_arg subtype.val H) instance no_zero_divisors [no_zero_divisors R] : no_zero_divisors s := { eq_zero_or_eq_zero_of_mul_eq_zero := λ x y h, or.cases_on (eq_zero_or_eq_zero_of_mul_eq_zero $ subtype.ext_iff.mp h) (λ h, or.inl $ subtype.eq h) (λ h, or.inr $ subtype.eq h) } /-- A subsemiring of a `semiring` is a `semiring`. -/ instance to_semiring {R} [semiring R] (s : subsemiring R) : semiring s := { ..s.to_non_assoc_semiring, ..s.to_submonoid.to_monoid } @[simp, norm_cast] lemma coe_pow {R} [semiring R] (s : subsemiring R) (x : s) (n : ℕ) : ((x^n : s) : R) = (x^n : R) := begin induction n with n ih, { simp, }, { simp [pow_succ, ih], }, end /-- A subsemiring of a `comm_semiring` is a `comm_semiring`. -/ instance to_comm_semiring {R} [comm_semiring R] (s : subsemiring R) : comm_semiring s := { mul_comm := λ _ _, subtype.eq $ mul_comm _ _, ..s.to_semiring} /-- The natural ring hom from a subsemiring of semiring `R` to `R`. -/ def subtype : s →+* R := { to_fun := coe, .. s.to_submonoid.subtype, .. s.to_add_submonoid.subtype } @[simp] theorem coe_subtype : ⇑s.subtype = coe := rfl /-- A subsemiring of an `ordered_semiring` is an `ordered_semiring`. -/ instance to_ordered_semiring {R} [ordered_semiring R] (s : subsemiring R) : ordered_semiring s := subtype.coe_injective.ordered_semiring coe rfl rfl (λ _ _, rfl) (λ _ _, rfl) /-- A subsemiring of an `ordered_comm_semiring` is an `ordered_comm_semiring`. -/ instance to_ordered_comm_semiring {R} [ordered_comm_semiring R] (s : subsemiring R) : ordered_comm_semiring s := subtype.coe_injective.ordered_comm_semiring coe rfl rfl (λ _ _, rfl) (λ _ _, rfl) /-- A subsemiring of a `linear_ordered_semiring` is a `linear_ordered_semiring`. -/ instance to_linear_ordered_semiring {R} [linear_ordered_semiring R] (s : subsemiring R) : linear_ordered_semiring s := subtype.coe_injective.linear_ordered_semiring coe rfl rfl (λ _ _, rfl) (λ _ _, rfl) /-! Note: currently, there is no `linear_ordered_comm_semiring`. -/ @[simp] lemma mem_to_submonoid {s : subsemiring R} {x : R} : x ∈ s.to_submonoid ↔ x ∈ s := iff.rfl @[simp] lemma coe_to_submonoid (s : subsemiring R) : (s.to_submonoid : set R) = s := rfl @[simp] lemma mem_to_add_submonoid {s : subsemiring R} {x : R} : x ∈ s.to_add_submonoid ↔ x ∈ s := iff.rfl @[simp] lemma coe_to_add_submonoid (s : subsemiring R) : (s.to_add_submonoid : set R) = s := rfl /-- The subsemiring `R` of the semiring `R`. -/ instance : has_top (subsemiring R) := ⟨{ .. (⊤ : submonoid R), .. (⊤ : add_submonoid R) }⟩ @[simp] lemma mem_top (x : R) : x ∈ (⊤ : subsemiring R) := set.mem_univ x @[simp] lemma coe_top : ((⊤ : subsemiring R) : set R) = set.univ := rfl /-- The preimage of a subsemiring along a ring homomorphism is a subsemiring. -/ def comap (f : R →+* S) (s : subsemiring S) : subsemiring R := { carrier := f ⁻¹' s, .. s.to_submonoid.comap (f : R →* S), .. s.to_add_submonoid.comap (f : R →+ S) } @[simp] @[simp] lemma mem_comap {s : subsemiring S} {f : R →+* S} {x : R} : x ∈ s.comap f ↔ f x ∈ s := iff.rfl lemma comap_comap (s : subsemiring T) (g : S →+* T) (f : R →+* S) : (s.comap g).comap f = s.comap (g.comp f) := rfl /-- The image of a subsemiring along a ring homomorphism is a subsemiring. -/ def map (f : R →+* S) (s : subsemiring R) : subsemiring S := { carrier := f '' s, .. s.to_submonoid.map (f : R →* S), .. s.to_add_submonoid.map (f : R →+ S) } @[simp] lemma coe_map (f : R →+* S) (s : subsemiring R) : (s.map f : set S) = f '' s := rfl @[simp] lemma mem_map {f : R →+* S} {s : subsemiring R} {y : S} : y ∈ s.map f ↔ ∃ x ∈ s, f x = y := set.mem_image_iff_bex @[simp] lemma map_id : s.map (ring_hom.id R) = s := set_like.coe_injective $ set.image_id _ lemma map_map (g : S →+* T) (f : R →+* S) : (s.map f).map g = s.map (g.comp f) := set_like.coe_injective $ set.image_image _ _ _ lemma map_le_iff_le_comap {f : R →+* S} {s : subsemiring R} {t : subsemiring S} : s.map f ≤ t ↔ s ≤ t.comap f := set.image_subset_iff lemma gc_map_comap (f : R →+* S) : galois_connection (map f) (comap f) := λ S T, map_le_iff_le_comap /-- A subsemiring is isomorphic to its image under an injective function -/ noncomputable def equiv_map_of_injective (f : R →+* S) (hf : function.injective f) : s ≃+* s.map f := { map_mul' := λ _ _, subtype.ext (f.map_mul _ _), map_add' := λ _ _, subtype.ext (f.map_add _ _), ..equiv.set.image f s hf } @[simp] lemma coe_equiv_map_of_injective_apply (f : R →+* S) (hf : function.injective f) (x : s) : (equiv_map_of_injective s f hf x : S) = f x := rfl end subsemiring namespace ring_hom variables (g : S →+* T) (f : R →+* S) /-- The range of a ring homomorphism is a subsemiring. See Note [range copy pattern]. -/ def srange : subsemiring S := ((⊤ : subsemiring R).map f).copy (set.range f) set.image_univ.symm @[simp] lemma coe_srange : (f.srange : set S) = set.range f := rfl @[simp] lemma mem_srange {f : R →+* S} {y : S} : y ∈ f.srange ↔ ∃ x, f x = y := iff.rfl lemma srange_eq_map (f : R →+* S) : f.srange = (⊤ : subsemiring R).map f := by { ext, simp } lemma mem_srange_self (f : R →+* S) (x : R) : f x ∈ f.srange := mem_srange.mpr ⟨x, rfl⟩ lemma map_srange : f.srange.map g = (g.comp f).srange := by simpa only [srange_eq_map] using (⊤ : subsemiring R).map_map g f /-- The range of a morphism of semirings is a fintype, if the domain is a fintype. Note: this instance can form a diamond with `subtype.fintype` in the presence of `fintype S`.-/ instance fintype_srange [fintype R] [decidable_eq S] (f : R →+* S) : fintype (srange f) := set.fintype_range f end ring_hom namespace subsemiring instance : has_bot (subsemiring R) := ⟨(nat.cast_ring_hom R).srange⟩ instance : inhabited (subsemiring R) := ⟨⊥⟩ lemma coe_bot : ((⊥ : subsemiring R) : set R) = set.range (coe : ℕ → R) := (nat.cast_ring_hom R).coe_srange lemma mem_bot {x : R} : x ∈ (⊥ : subsemiring R) ↔ ∃ n : ℕ, ↑n=x := ring_hom.mem_srange /-- The inf of two subsemirings is their intersection. -/ instance : has_inf (subsemiring R) := ⟨λ s t, { carrier := s ∩ t, .. s.to_submonoid ⊓ t.to_submonoid, .. s.to_add_submonoid ⊓ t.to_add_submonoid }⟩ @[simp] lemma coe_inf (p p' : subsemiring R) : ((p ⊓ p' : subsemiring R) : set R) = p ∩ p' := rfl @[simp] lemma mem_inf {p p' : subsemiring R} {x : R} : x ∈ p ⊓ p' ↔ x ∈ p ∧ x ∈ p' := iff.rfl instance : has_Inf (subsemiring R) := ⟨λ s, subsemiring.mk' (⋂ t ∈ s, ↑t) (⨅ t ∈ s, subsemiring.to_submonoid t) (by simp) (⨅ t ∈ s, subsemiring.to_add_submonoid t) (by simp)⟩ @[simp, norm_cast] lemma coe_Inf (S : set (subsemiring R)) : ((Inf S : subsemiring R) : set R) = ⋂ s ∈ S, ↑s := rfl lemma mem_Inf {S : set (subsemiring R)} {x : R} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p := set.mem_bInter_iff @[simp] lemma Inf_to_submonoid (s : set (subsemiring R)) : (Inf s).to_submonoid = ⨅ t ∈ s, subsemiring.to_submonoid t := mk'_to_submonoid _ _ @[simp] lemma Inf_to_add_submonoid (s : set (subsemiring R)) : (Inf s).to_add_submonoid = ⨅ t ∈ s, subsemiring.to_add_submonoid t := mk'_to_add_submonoid _ _ /-- Subsemirings of a semiring form a complete lattice. -/ instance : complete_lattice (subsemiring R) := { bot := (⊥), bot_le := λ s x hx, let ⟨n, hn⟩ := mem_bot.1 hx in hn ▸ s.coe_nat_mem n, top := (⊤), le_top := λ s x hx, trivial, inf := (⊓), inf_le_left := λ s t x, and.left, inf_le_right := λ s t x, and.right, le_inf := λ s t₁ t₂ h₁ h₂ x hx, ⟨h₁ hx, h₂ hx⟩, .. complete_lattice_of_Inf (subsemiring R) (λ s, is_glb.of_image (λ s t, show (s : set R) ≤ t ↔ s ≤ t, from set_like.coe_subset_coe) is_glb_binfi)} lemma eq_top_iff' (A : subsemiring R) : A = ⊤ ↔ ∀ x : R, x ∈ A := eq_top_iff.trans ⟨λ h m, h $ mem_top m, λ h m _, h m⟩ section /-- The center of a semiring `R` is the set of elements that commute with everything in `R` -/ def center (R) [semiring R] : subsemiring R := { carrier := set.center R, zero_mem' := set.zero_mem_center R, add_mem' := λ a b, set.add_mem_center, .. submonoid.center R } lemma coe_center (R) [semiring R] : ↑(center R) = set.center R := rfl @[simp] lemma center_to_submonoid (R) [semiring R] : (center R).to_submonoid = submonoid.center R := rfl lemma mem_center_iff {R} [semiring R] {z : R} : z ∈ center R ↔ ∀ g, g * z = z * g := iff.rfl instance decidable_mem_center {R} [semiring R] [decidable_eq R] [fintype R] : decidable_pred (∈ center R) := λ _, decidable_of_iff' _ mem_center_iff @[simp] lemma center_eq_top (R) [comm_semiring R] : center R = ⊤ := set_like.coe_injective (set.center_eq_univ R) /-- The center is commutative. -/ instance {R} [semiring R] : comm_semiring (center R) := { ..submonoid.center.comm_monoid, ..(center R).to_semiring} end /-- The `subsemiring` generated by a set. -/ def closure (s : set R) : subsemiring R := Inf {S | s ⊆ S} lemma mem_closure {x : R} {s : set R} : x ∈ closure s ↔ ∀ S : subsemiring R, s ⊆ S → x ∈ S := mem_Inf /-- The subsemiring generated by a set includes the set. -/ @[simp] lemma subset_closure {s : set R} : s ⊆ closure s := λ x hx, mem_closure.2 $ λ S hS, hS hx lemma not_mem_of_not_mem_closure {s : set R} {P : R} (hP : P ∉ closure s) : P ∉ s := λ h, hP (subset_closure h) /-- A subsemiring `S` includes `closure s` if and only if it includes `s`. -/ @[simp] lemma closure_le {s : set R} {t : subsemiring R} : closure s ≤ t ↔ s ⊆ t := ⟨set.subset.trans subset_closure, λ h, Inf_le h⟩ /-- Subsemiring closure of a set is monotone in its argument: if `s ⊆ t`, then `closure s ≤ closure t`. -/ lemma closure_mono ⦃s t : set R⦄ (h : s ⊆ t) : closure s ≤ closure t := closure_le.2 $ set.subset.trans h subset_closure lemma closure_eq_of_le {s : set R} {t : subsemiring R} (h₁ : s ⊆ t) (h₂ : t ≤ closure s) : closure s = t := le_antisymm (closure_le.2 h₁) h₂ lemma mem_map_equiv {f : R ≃+* S} {K : subsemiring R} {x : S} : x ∈ K.map (f : R →+* S) ↔ f.symm x ∈ K := @set.mem_image_equiv _ _ ↑K f.to_equiv x lemma map_equiv_eq_comap_symm (f : R ≃+* S) (K : subsemiring R) : K.map (f : R →+* S) = K.comap f.symm := set_like.coe_injective (f.to_equiv.image_eq_preimage K) lemma comap_equiv_eq_map_symm (f : R ≃+* S) (K : subsemiring S) : K.comap (f : R →+* S) = K.map f.symm := (map_equiv_eq_comap_symm f.symm K).symm end subsemiring namespace submonoid /-- The additive closure of a submonoid is a subsemiring. -/ def subsemiring_closure (M : submonoid R) : subsemiring R := { one_mem' := add_submonoid.mem_closure.mpr (λ y hy, hy M.one_mem), mul_mem' := λ x y, M.mul_mem_add_closure, ..add_submonoid.closure (M : set R)} lemma subsemiring_closure_coe : (M.subsemiring_closure : set R) = add_submonoid.closure (M : set R) := rfl lemma subsemiring_closure_to_add_submonoid : M.subsemiring_closure.to_add_submonoid = add_submonoid.closure (M : set R) := rfl /-- The `subsemiring` generated by a multiplicative submonoid coincides with the `subsemiring.closure` of the submonoid itself . -/ lemma subsemiring_closure_eq_closure : M.subsemiring_closure = subsemiring.closure (M : set R) := begin ext, refine ⟨λ hx, _, λ hx, (subsemiring.mem_closure.mp hx) M.subsemiring_closure (λ s sM, _)⟩; rintros - ⟨H1, rfl⟩; rintros - ⟨H2, rfl⟩, { exact add_submonoid.mem_closure.mp hx H1.to_add_submonoid H2 }, { exact H2 sM } end end submonoid namespace subsemiring @[simp] lemma closure_submonoid_closure (s : set R) : closure ↑(submonoid.closure s) = closure s := le_antisymm (closure_le.mpr (λ y hy, (submonoid.mem_closure.mp hy) (closure s).to_submonoid subset_closure)) (closure_mono (submonoid.subset_closure)) /-- The elements of the subsemiring closure of `M` are exactly the elements of the additive closure of a multiplicative submonoid `M`. -/ lemma coe_closure_eq (s : set R) : (closure s : set R) = add_submonoid.closure (submonoid.closure s : set R) := by simp [← submonoid.subsemiring_closure_to_add_submonoid, submonoid.subsemiring_closure_eq_closure] lemma mem_closure_iff {s : set R} {x} : x ∈ closure s ↔ x ∈ add_submonoid.closure (submonoid.closure s : set R) := set.ext_iff.mp (coe_closure_eq s) x @[simp] lemma closure_add_submonoid_closure {s : set R} : closure ↑(add_submonoid.closure s) = closure s := begin ext x, refine ⟨λ hx, _, λ hx, closure_mono add_submonoid.subset_closure hx⟩, rintros - ⟨H, rfl⟩, rintros - ⟨J, rfl⟩, refine (add_submonoid.mem_closure.mp (mem_closure_iff.mp hx)) H.to_add_submonoid (λ y hy, _), refine (submonoid.mem_closure.mp hy) H.to_submonoid (λ z hz, _), exact (add_submonoid.mem_closure.mp hz) H.to_add_submonoid (λ w hw, J hw), end /-- An induction principle for closure membership. If `p` holds for `0`, `1`, and all elements of `s`, and is preserved under addition and multiplication, then `p` holds for all elements of the closure of `s`. -/ @[elab_as_eliminator] lemma closure_induction {s : set R} {p : R → Prop} {x} (h : x ∈ closure s) (Hs : ∀ x ∈ s, p x) (H0 : p 0) (H1 : p 1) (Hadd : ∀ x y, p x → p y → p (x + y)) (Hmul : ∀ x y, p x → p y → p (x * y)) : p x := (@closure_le _ _ _ ⟨p, H1, Hmul, H0, Hadd⟩).2 Hs h lemma mem_closure_iff_exists_list {R} [semiring R] {s : set R} {x} : x ∈ closure s ↔ ∃ L : list (list R), (∀ t ∈ L, ∀ y ∈ t, y ∈ s) ∧ (L.map list.prod).sum = x := ⟨λ hx, add_submonoid.closure_induction (mem_closure_iff.1 hx) (λ x hx, suffices ∃ t : list R, (∀ y ∈ t, y ∈ s) ∧ t.prod = x, from let ⟨t, ht1, ht2⟩ := this in ⟨[t], list.forall_mem_singleton.2 ht1, by rw [list.map_singleton, list.sum_singleton, ht2]⟩, submonoid.closure_induction hx (λ x hx, ⟨[x], list.forall_mem_singleton.2 hx, one_mul x⟩) ⟨[], list.forall_mem_nil _, rfl⟩ (λ x y ⟨t, ht1, ht2⟩ ⟨u, hu1, hu2⟩, ⟨t ++ u, list.forall_mem_append.2 ⟨ht1, hu1⟩, by rw [list.prod_append, ht2, hu2]⟩)) ⟨[], list.forall_mem_nil _, rfl⟩ (λ x y ⟨L, HL1, HL2⟩ ⟨M, HM1, HM2⟩, ⟨L ++ M, list.forall_mem_append.2 ⟨HL1, HM1⟩, by rw [list.map_append, list.sum_append, HL2, HM2]⟩), λ ⟨L, HL1, HL2⟩, HL2 ▸ list_sum_mem _ (λ r hr, let ⟨t, ht1, ht2⟩ := list.mem_map.1 hr in ht2 ▸ list_prod_mem _ (λ y hy, subset_closure $ HL1 t ht1 y hy))⟩ variable (R) /-- `closure` forms a Galois insertion with the coercion to set. -/ protected def gi : galois_insertion (@closure R _) coe := { choice := λ s _, closure s, gc := λ s t, closure_le, le_l_u := λ s, subset_closure, choice_eq := λ s h, rfl } variable {R} /-- Closure of a subsemiring `S` equals `S`. -/ lemma closure_eq (s : subsemiring R) : closure (s : set R) = s := (subsemiring.gi R).l_u_eq s @[simp] lemma closure_empty : closure (∅ : set R) = ⊥ := (subsemiring.gi R).gc.l_bot @[simp] lemma closure_univ : closure (set.univ : set R) = ⊤ := @coe_top R _ ▸ closure_eq ⊤ lemma closure_union (s t : set R) : closure (s ∪ t) = closure s ⊔ closure t := (subsemiring.gi R).gc.l_sup lemma closure_Union {ι} (s : ι → set R) : closure (⋃ i, s i) = ⨆ i, closure (s i) := (subsemiring.gi R).gc.l_supr lemma closure_sUnion (s : set (set R)) : closure (⋃₀ s) = ⨆ t ∈ s, closure t := (subsemiring.gi R).gc.l_Sup lemma map_sup (s t : subsemiring R) (f : R →+* S) : (s ⊔ t).map f = s.map f ⊔ t.map f := (gc_map_comap f).l_sup lemma map_supr {ι : Sort*} (f : R →+* S) (s : ι → subsemiring R) : (supr s).map f = ⨆ i, (s i).map f := (gc_map_comap f).l_supr lemma comap_inf (s t : subsemiring S) (f : R →+* S) : (s ⊓ t).comap f = s.comap f ⊓ t.comap f := (gc_map_comap f).u_inf lemma comap_infi {ι : Sort*} (f : R →+* S) (s : ι → subsemiring S) : (infi s).comap f = ⨅ i, (s i).comap f := (gc_map_comap f).u_infi @[simp] lemma map_bot (f : R →+* S) : (⊥ : subsemiring R).map f = ⊥ := (gc_map_comap f).l_bot @[simp] lemma comap_top (f : R →+* S) : (⊤ : subsemiring S).comap f = ⊤ := (gc_map_comap f).u_top /-- Given `subsemiring`s `s`, `t` of semirings `R`, `S` respectively, `s.prod t` is `s × t` as a subsemiring of `R × S`. -/ def prod (s : subsemiring R) (t : subsemiring S) : subsemiring (R × S) := { carrier := (s : set R).prod t, .. s.to_submonoid.prod t.to_submonoid, .. s.to_add_submonoid.prod t.to_add_submonoid} @[norm_cast] lemma coe_prod (s : subsemiring R) (t : subsemiring S) : (s.prod t : set (R × S)) = (s : set R).prod (t : set S) := rfl lemma mem_prod {s : subsemiring R} {t : subsemiring S} {p : R × S} : p ∈ s.prod t ↔ p.1 ∈ s ∧ p.2 ∈ t := iff.rfl @[mono] lemma prod_mono ⦃s₁ s₂ : subsemiring R⦄ (hs : s₁ ≤ s₂) ⦃t₁ t₂ : subsemiring S⦄ (ht : t₁ ≤ t₂) : s₁.prod t₁ ≤ s₂.prod t₂ := set.prod_mono hs ht lemma prod_mono_right (s : subsemiring R) : monotone (λ t : subsemiring S, s.prod t) := prod_mono (le_refl s) lemma prod_mono_left (t : subsemiring S) : monotone (λ s : subsemiring R, s.prod t) := λ s₁ s₂ hs, prod_mono hs (le_refl t) lemma prod_top (s : subsemiring R) : s.prod (⊤ : subsemiring S) = s.comap (ring_hom.fst R S) := ext $ λ x, by simp [mem_prod, monoid_hom.coe_fst] lemma top_prod (s : subsemiring S) : (⊤ : subsemiring R).prod s = s.comap (ring_hom.snd R S) := ext $ λ x, by simp [mem_prod, monoid_hom.coe_snd] @[simp] lemma top_prod_top : (⊤ : subsemiring R).prod (⊤ : subsemiring S) = ⊤ := (top_prod _).trans $ comap_top _ /-- Product of subsemirings is isomorphic to their product as monoids. -/ def prod_equiv (s : subsemiring R) (t : subsemiring S) : s.prod t ≃+* s × t := { map_mul' := λ x y, rfl, map_add' := λ x y, rfl, .. equiv.set.prod ↑s ↑t } lemma mem_supr_of_directed {ι} [hι : nonempty ι] {S : ι → subsemiring R} (hS : directed (≤) S) {x : R} : x ∈ (⨆ i, S i) ↔ ∃ i, x ∈ S i := begin refine ⟨_, λ ⟨i, hi⟩, (set_like.le_def.1 $ le_supr S i) hi⟩, let U : subsemiring R := subsemiring.mk' (⋃ i, (S i : set R)) (⨆ i, (S i).to_submonoid) (submonoid.coe_supr_of_directed $ hS.mono_comp _ (λ _ _, id)) (⨆ i, (S i).to_add_submonoid) (add_submonoid.coe_supr_of_directed $ hS.mono_comp _ (λ _ _, id)), suffices : (⨆ i, S i) ≤ U, by simpa using @this x, exact supr_le (λ i x hx, set.mem_Union.2 ⟨i, hx⟩), end lemma coe_supr_of_directed {ι} [hι : nonempty ι] {S : ι → subsemiring R} (hS : directed (≤) S) : ((⨆ i, S i : subsemiring R) : set R) = ⋃ i, ↑(S i) := set.ext $ λ x, by simp [mem_supr_of_directed hS] lemma mem_Sup_of_directed_on {S : set (subsemiring R)} (Sne : S.nonempty) (hS : directed_on (≤) S) {x : R} : x ∈ Sup S ↔ ∃ s ∈ S, x ∈ s := begin haveI : nonempty S := Sne.to_subtype, simp only [Sup_eq_supr', mem_supr_of_directed hS.directed_coe, set_coe.exists, subtype.coe_mk] end lemma coe_Sup_of_directed_on {S : set (subsemiring R)} (Sne : S.nonempty) (hS : directed_on (≤) S) : (↑(Sup S) : set R) = ⋃ s ∈ S, ↑s := set.ext $ λ x, by simp [mem_Sup_of_directed_on Sne hS] end subsemiring namespace ring_hom variables [non_assoc_semiring T] {s : subsemiring R} open subsemiring /-- Restriction of a ring homomorphism to a subsemiring of the domain. -/ def srestrict (f : R →+* S) (s : subsemiring R) : s →+* S := f.comp s.subtype @[simp] lemma srestrict_apply (f : R →+* S) (x : s) : f.srestrict s x = f x := rfl /-- Restriction of a ring homomorphism to a subsemiring of the codomain. -/ def cod_srestrict (f : R →+* S) (s : subsemiring S) (h : ∀ x, f x ∈ s) : R →+* s := { to_fun := λ n, ⟨f n, h n⟩, .. (f : R →* S).cod_mrestrict s.to_submonoid h, .. (f : R →+ S).cod_mrestrict s.to_add_submonoid h } /-- Restriction of a ring homomorphism to its range interpreted as a subsemiring. This is the bundled version of `set.range_factorization`. -/ def srange_restrict (f : R →+* S) : R →+* f.srange := f.cod_srestrict f.srange f.mem_srange_self @[simp] lemma coe_srange_restrict (f : R →+* S) (x : R) : (f.srange_restrict x : S) = f x := rfl lemma srange_restrict_surjective (f : R →+* S) : function.surjective f.srange_restrict := λ ⟨y, hy⟩, let ⟨x, hx⟩ := mem_srange.mp hy in ⟨x, subtype.ext hx⟩ lemma srange_top_iff_surjective {f : R →+* S} : f.srange = (⊤ : subsemiring S) ↔ function.surjective f := set_like.ext'_iff.trans $ iff.trans (by rw [coe_srange, coe_top]) set.range_iff_surjective /-- The range of a surjective ring homomorphism is the whole of the codomain. -/ lemma srange_top_of_surjective (f : R →+* S) (hf : function.surjective f) : f.srange = (⊤ : subsemiring S) := srange_top_iff_surjective.2 hf /-- The subsemiring of elements `x : R` such that `f x = g x` -/ def eq_slocus (f g : R →+* S) : subsemiring R := { carrier := {x | f x = g x}, .. (f : R →* S).eq_mlocus g, .. (f : R →+ S).eq_mlocus g } /-- If two ring homomorphisms are equal on a set, then they are equal on its subsemiring closure. -/ lemma eq_on_sclosure {f g : R →+* S} {s : set R} (h : set.eq_on f g s) : set.eq_on f g (closure s) := show closure s ≤ f.eq_slocus g, from closure_le.2 h lemma eq_of_eq_on_stop {f g : R →+* S} (h : set.eq_on f g (⊤ : subsemiring R)) : f = g := ext $ λ x, h trivial lemma eq_of_eq_on_sdense {s : set R} (hs : closure s = ⊤) {f g : R →+* S} (h : s.eq_on f g) : f = g := eq_of_eq_on_stop $ hs ▸ eq_on_sclosure h lemma sclosure_preimage_le (f : R →+* S) (s : set S) : closure (f ⁻¹' s) ≤ (closure s).comap f := closure_le.2 $ λ x hx, set_like.mem_coe.2 $ mem_comap.2 $ subset_closure hx /-- The image under a ring homomorphism of the subsemiring generated by a set equals the subsemiring generated by the image of the set. -/ lemma map_sclosure (f : R →+* S) (s : set R) : (closure s).map f = closure (f '' s) := le_antisymm (map_le_iff_le_comap.2 $ le_trans (closure_mono $ set.subset_preimage_image _ _) (sclosure_preimage_le _ _)) (closure_le.2 $ set.image_subset _ subset_closure) end ring_hom namespace subsemiring open ring_hom /-- The ring homomorphism associated to an inclusion of subsemirings. -/ def inclusion {S T : subsemiring R} (h : S ≤ T) : S →* T := S.subtype.cod_srestrict _ (λ x, h x.2) @[simp] lemma srange_subtype (s : subsemiring R) : s.subtype.srange = s := set_like.coe_injective $ (coe_srange _).trans subtype.range_coe @[simp] lemma range_fst : (fst R S).srange = ⊤ := (fst R S).srange_top_of_surjective $ prod.fst_surjective @[simp] lemma range_snd : (snd R S).srange = ⊤ := (snd R S).srange_top_of_surjective $ prod.snd_surjective @[simp] lemma prod_bot_sup_bot_prod (s : subsemiring R) (t : subsemiring S) : (s.prod ⊥) ⊔ (prod ⊥ t) = s.prod t := le_antisymm (sup_le (prod_mono_right s bot_le) (prod_mono_left t bot_le)) $ assume p hp, prod.fst_mul_snd p ▸ mul_mem _ ((le_sup_left : s.prod ⊥ ≤ s.prod ⊥ ⊔ prod ⊥ t) ⟨hp.1, set_like.mem_coe.2 $ one_mem ⊥⟩) ((le_sup_right : prod ⊥ t ≤ s.prod ⊥ ⊔ prod ⊥ t) ⟨set_like.mem_coe.2 $ one_mem ⊥, hp.2⟩) end subsemiring namespace ring_equiv variables {s t : subsemiring R} /-- Makes the identity isomorphism from a proof two subsemirings of a multiplicative monoid are equal. -/ def subsemiring_congr (h : s = t) : s ≃+* t := { map_mul' := λ _ _, rfl, map_add' := λ _ _, rfl, ..equiv.set_congr $ congr_arg _ h } /-- Restrict a ring homomorphism with a left inverse to a ring isomorphism to its `ring_hom.srange`. -/ def sof_left_inverse {g : S → R} {f : R →+* S} (h : function.left_inverse g f) : R ≃+* f.srange := { to_fun := λ x, f.srange_restrict x, inv_fun := λ x, (g ∘ f.srange.subtype) x, left_inv := h, right_inv := λ x, subtype.ext $ let ⟨x', hx'⟩ := ring_hom.mem_srange.mp x.prop in show f (g x) = x, by rw [←hx', h x'], ..f.srange_restrict } @[simp] lemma sof_left_inverse_apply {g : S → R} {f : R →+* S} (h : function.left_inverse g f) (x : R) : ↑(sof_left_inverse h x) = f x := rfl @[simp] lemma sof_left_inverse_symm_apply {g : S → R} {f : R →+* S} (h : function.left_inverse g f) (x : f.srange) : (sof_left_inverse h).symm x = g x := rfl end ring_equiv /-! ### Actions by `subsemiring`s These are just copies of the definitions about `submonoid` starting from `submonoid.mul_action`. The only new result is `subsemiring.module`. When `R` is commutative, `algebra.of_subsemiring` provides a stronger result than those found in this file, which uses the same scalar action. -/ section actions namespace subsemiring variables {R' α β : Type*} [semiring R'] /-- The action by a subsemiring is the action by the underlying semiring. -/ instance [mul_action R' α] (S : subsemiring R') : mul_action S α := S.to_submonoid.mul_action lemma smul_def [mul_action R' α] {S : subsemiring R'} (g : S) (m : α) : g • m = (g : R') • m := rfl instance smul_comm_class_left [mul_action R' β] [has_scalar α β] [smul_comm_class R' α β] (S : subsemiring R') : smul_comm_class S α β := S.to_submonoid.smul_comm_class_left instance smul_comm_class_right [has_scalar α β] [mul_action R' β] [smul_comm_class α R' β] (S : subsemiring R') : smul_comm_class α S β := S.to_submonoid.smul_comm_class_right /-- Note that this provides `is_scalar_tower S R R` which is needed by `smul_mul_assoc`. -/ instance [has_scalar α β] [mul_action R' α] [mul_action R' β] [is_scalar_tower R' α β] (S : subsemiring R') : is_scalar_tower S α β := S.to_submonoid.is_scalar_tower instance [mul_action R' α] [has_faithful_scalar R' α] (S : subsemiring R') : has_faithful_scalar S α := S.to_submonoid.has_faithful_scalar /-- The action by a subsemiring is the action by the underlying semiring. -/ instance [add_monoid α] [distrib_mul_action R' α] (S : subsemiring R') : distrib_mul_action S α := S.to_submonoid.distrib_mul_action /-- The action by a subsemiring is the action by the underlying semiring. -/ instance [monoid α] [mul_distrib_mul_action R' α] (S : subsemiring R') : mul_distrib_mul_action S α := S.to_submonoid.mul_distrib_mul_action /-- The action by a subsemiring is the action by the underlying semiring. -/ instance [add_comm_monoid α] [module R' α] (S : subsemiring R') : module S α := { smul := (•), .. module.comp_hom _ S.subtype } end subsemiring end actions -- While this definition is not about `subsemiring`s, this is the earliest we have -- both `ordered_semiring` and `submonoid` available. /-- Submonoid of positive elements of an ordered semiring. -/ def pos_submonoid (R : Type*) [ordered_semiring R] [nontrivial R] : submonoid R := { carrier := {x | 0 < x}, one_mem' := show (0 : R) < 1, from zero_lt_one, mul_mem' := λ x y (hx : 0 < x) (hy : 0 < y), mul_pos hx hy } @[simp] lemma mem_pos_monoid {R : Type*} [ordered_semiring R] [nontrivial R] (u : units R) : ↑u ∈ pos_submonoid R ↔ (0 : R) < u := iff.rfl
Formal statement is: corollary no_retraction_cball: fixes a :: "'a::euclidean_space" assumes "e > 0" shows "\<not> (frontier (cball a e) retract_of (cball a e))" Informal statement is: The boundary of a closed ball in a Euclidean space is not a retract of the ball.
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import data.dfinsupp.basic /-! # Pointwise order on finitely supported dependent functions This file lifts order structures on the `α i` to `Π₀ i, α i`. ## Main declarations * `dfinsupp.order_embedding_to_fun`: The order embedding from finitely supported dependent functions to functions. ## TODO Add `is_well_order (Π₀ i, α i) (<)`. -/ open_locale big_operators open finset variables {ι : Type*} {α : ι → Type*} namespace dfinsupp /-! ### Order structures -/ section has_zero variables (α) [Π i, has_zero (α i)] section has_le variables [Π i, has_le (α i)] instance : has_le (Π₀ i, α i) := ⟨λ f g, ∀ i, f i ≤ g i⟩ variables {α} lemma le_def {f g : Π₀ i, α i} : f ≤ g ↔ ∀ i, f i ≤ g i := iff.rfl /-- The order on `dfinsupp`s over a partial order embeds into the order on functions -/ def order_embedding_to_fun : (Π₀ i, α i) ↪o Π i, α i := { to_fun := λ f, f, inj' := λ f g h, dfinsupp.ext $ λ i, by { dsimp at h, rw h }, map_rel_iff' := λ a b, (@le_def _ _ _ _ a b).symm } @[simp] lemma order_embedding_to_fun_apply {f : Π₀ i, α i} {i : ι} : order_embedding_to_fun f i = f i := rfl end has_le section preorder variables [Π i, preorder (α i)] instance : preorder (Π₀ i, α i) := { le_refl := λ f i, le_rfl, le_trans := λ f g h hfg hgh i, (hfg i).trans (hgh i), .. dfinsupp.has_le α } end preorder instance [Π i, partial_order (α i)] : partial_order (Π₀ i, α i) := { le_antisymm := λ f g hfg hgf, ext $ λ i, (hfg i).antisymm (hgf i), .. dfinsupp.preorder α} instance [Π i, semilattice_inf (α i)] : semilattice_inf (Π₀ i, α i) := { inf := zip_with (λ _, (⊓)) (λ _, inf_idem), inf_le_left := λ f g i, by { rw zip_with_apply, exact inf_le_left }, inf_le_right := λ f g i, by { rw zip_with_apply, exact inf_le_right }, le_inf := λ f g h hf hg i, by { rw zip_with_apply, exact le_inf (hf i) (hg i) }, ..dfinsupp.partial_order α } @[simp] lemma inf_apply [Π i, semilattice_inf (α i)] (f g : Π₀ i, α i) (i : ι) : (f ⊓ g) i = f i ⊓ g i := zip_with_apply _ _ _ _ _ instance [Π i, semilattice_sup (α i)] : semilattice_sup (Π₀ i, α i) := { sup := zip_with (λ _, (⊔)) (λ _, sup_idem), le_sup_left := λ f g i, by { rw zip_with_apply, exact le_sup_left }, le_sup_right := λ f g i, by { rw zip_with_apply, exact le_sup_right }, sup_le := λ f g h hf hg i, by { rw zip_with_apply, exact sup_le (hf i) (hg i) }, ..dfinsupp.partial_order α } @[simp] lemma sup_apply [Π i, semilattice_sup (α i)] (f g : Π₀ i, α i) (i : ι) : (f ⊔ g) i = f i ⊔ g i := zip_with_apply _ _ _ _ _ instance lattice [Π i, lattice (α i)] : lattice (Π₀ i, α i) := { .. dfinsupp.semilattice_inf α, .. dfinsupp.semilattice_sup α } end has_zero /-! ### Algebraic order structures -/ instance (α : ι → Type*) [Π i, ordered_add_comm_monoid (α i)] : ordered_add_comm_monoid (Π₀ i, α i) := { add_le_add_left := λ a b h c i, by { rw [add_apply, add_apply], exact add_le_add_left (h i) (c i) }, .. dfinsupp.add_comm_monoid, .. dfinsupp.partial_order α } instance (α : ι → Type*) [Π i, ordered_cancel_add_comm_monoid (α i)] : ordered_cancel_add_comm_monoid (Π₀ i, α i) := { le_of_add_le_add_left := λ f g h H i, begin specialize H i, rw [add_apply, add_apply] at H, exact le_of_add_le_add_left H, end, add_left_cancel := λ f g h H, ext $ λ i, begin refine add_left_cancel _, exact f i, rw [←add_apply, ←add_apply, H], end, .. dfinsupp.ordered_add_comm_monoid α } instance [Π i, ordered_add_comm_monoid (α i)] [Π i, contravariant_class (α i) (α i) (+) (≤)] : contravariant_class (Π₀ i, α i) (Π₀ i, α i) (+) (≤) := ⟨λ f g h H i, by { specialize H i, rw [add_apply, add_apply] at H, exact le_of_add_le_add_left H }⟩ section canonically_ordered_add_monoid variables (α) [Π i, canonically_ordered_add_monoid (α i)] instance : order_bot (Π₀ i, α i) := { bot := 0, bot_le := by simp only [le_def, coe_zero, pi.zero_apply, implies_true_iff, zero_le] } variables {α} protected lemma bot_eq_zero : (⊥ : Π₀ i, α i) = 0 := rfl @[simp] lemma add_eq_zero_iff (f g : Π₀ i, α i) : f + g = 0 ↔ f = 0 ∧ g = 0 := by simp [ext_iff, forall_and_distrib] section le variables [decidable_eq ι] [Π i (x : α i), decidable (x ≠ 0)] {f g : Π₀ i, α i} {s : finset ι} lemma le_iff' (hf : f.support ⊆ s) : f ≤ g ↔ ∀ i ∈ s, f i ≤ g i := ⟨λ h s hs, h s, λ h s, if H : s ∈ f.support then h s (hf H) else (not_mem_support_iff.1 H).symm ▸ zero_le (g s)⟩ lemma le_iff : f ≤ g ↔ ∀ i ∈ f.support, f i ≤ g i := le_iff' $ subset.refl _ variables (α) instance decidable_le [Π i, decidable_rel (@has_le.le (α i) _)] : decidable_rel (@has_le.le (Π₀ i, α i) _) := λ f g, decidable_of_iff _ le_iff.symm variables {α} @[simp] lemma single_le_iff {i : ι} {a : α i} : single i a ≤ f ↔ a ≤ f i := (le_iff' support_single_subset).trans $ by simp end le variables (α) [Π i, has_sub (α i)] [Π i, has_ordered_sub (α i)] {f g : Π₀ i, α i} {i : ι} {a b : α i} /-- This is called `tsub` for truncated subtraction, to distinguish it with subtraction in an additive group. -/ instance tsub : has_sub (Π₀ i, α i) := ⟨zip_with (λ i m n, m - n) (λ i, tsub_self 0)⟩ variables {α} lemma tsub_apply (f g : Π₀ i, α i) (i : ι) : (f - g) i = f i - g i := zip_with_apply _ _ _ _ _ @[simp] lemma coe_tsub (f g : Π₀ i, α i) : ⇑(f - g) = f - g := by { ext i, exact tsub_apply f g i } variables (α) instance : has_ordered_sub (Π₀ i, α i) := ⟨λ n m k, forall_congr $ λ i, by { rw [add_apply, tsub_apply], exact tsub_le_iff_right }⟩ instance : canonically_ordered_add_monoid (Π₀ i, α i) := { le_iff_exists_add := λ f g, begin refine ⟨λ h, ⟨g - f, _⟩, _⟩, { ext i, rw [add_apply, tsub_apply], exact (add_tsub_cancel_of_le $ h i).symm }, { rintro ⟨g, rfl⟩ i, rw add_apply, exact self_le_add_right (f i) (g i) } end, .. dfinsupp.order_bot α, .. dfinsupp.ordered_add_comm_monoid α } variables {α} [decidable_eq ι] @[simp] lemma single_tsub : single i (a - b) = single i a - single i b := begin ext j, obtain rfl | h := eq_or_ne i j, { rw [tsub_apply, single_eq_same, single_eq_same, single_eq_same] }, { rw [tsub_apply, single_eq_of_ne h, single_eq_of_ne h, single_eq_of_ne h, tsub_self] } end variables [Π i (x : α i), decidable (x ≠ 0)] lemma support_tsub : (f - g).support ⊆ f.support := by simp only [subset_iff, tsub_eq_zero_iff_le, mem_support_iff, ne.def, coe_tsub, pi.sub_apply, not_imp_not, zero_le, implies_true_iff] {contextual := tt} lemma subset_support_tsub : f.support \ g.support ⊆ (f - g).support := by simp [subset_iff] {contextual := tt} end canonically_ordered_add_monoid section canonically_linear_ordered_add_monoid variables [Π i, canonically_linear_ordered_add_monoid (α i)] [decidable_eq ι] {f g : Π₀ i, α i} @[simp] lemma support_inf : (f ⊓ g).support = f.support ∩ g.support := begin ext, simp only [inf_apply, mem_support_iff, ne.def, finset.mem_union, finset.mem_filter, finset.mem_inter], simp only [inf_eq_min, ←nonpos_iff_eq_zero, min_le_iff, not_or_distrib], end @[simp] lemma support_sup : (f ⊔ g).support = f.support ∪ g.support := begin ext, simp only [finset.mem_union, mem_support_iff, sup_apply, ne.def, ←bot_eq_zero], rw [_root_.sup_eq_bot_iff, not_and_distrib], end lemma disjoint_iff : disjoint f g ↔ disjoint f.support g.support := begin rw [disjoint_iff, disjoint_iff, dfinsupp.bot_eq_zero, ← dfinsupp.support_eq_empty, dfinsupp.support_inf], refl, end end canonically_linear_ordered_add_monoid end dfinsupp
/- Copyright (c) 2022 Rémi Bottinelli. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémi Bottinelli ! This file was ported from Lean 3 source module combinatorics.quiver.push ! leanprover-community/mathlib commit 2258b40dacd2942571c8ce136215350c702dc78f ! Please do not edit these lines, except to modify the commit id ! if you have ported upstream changes. -/ import Mathlib.Combinatorics.Quiver.Basic /-! # Pushing a quiver structure along a map Given a map `σ : V → W` and a `Quiver` instance on `V`, this files defines a `quiver` instance on `W` by associating to each arrow `v ⟶ v'` in `V` an arrow `σ v ⟶ σ v'` in `W`. -/ namespace Quiver universe v v₁ v₂ u u₁ u₂ variable {V : Type _} [Quiver V] {W : Type _} (σ : V → W) /-- The `Quiver` instance obtained by pushing arrows of `V` along the map `σ : V → W` -/ @[nolint unusedArguments] def Push (_ : V → W) := W #align quiver.push Quiver.Push instance [h : Nonempty W] : Nonempty (Push σ) := h /-- The quiver structure obtained by pushing arrows of `V` along the map `σ : V → W` -/ inductive PushQuiver {V : Type u} [Quiver.{v} V] {W : Type u₂} (σ : V → W) : W → W → Type max u u₂ v | arrow {X Y : V} (f : X ⟶ Y) : PushQuiver σ (σ X) (σ Y) #align quiver.push_quiver Quiver.PushQuiver instance : Quiver (Push σ) := ⟨PushQuiver σ⟩ namespace Push /-- The prefunctor induced by pushing arrows via `σ` -/ def of : V ⥤q Push σ where obj := σ map f := PushQuiver.arrow f #align quiver.push.of Quiver.Push.of @[simp] theorem of_obj : (of σ).obj = σ := rfl #align quiver.push.of_obj Quiver.Push.of_obj variable {W' : Type _} [Quiver W'] (φ : V ⥤q W') (τ : W → W') (h : ∀ x, φ.obj x = τ (σ x)) /-- Given a function `τ : W → W'` and a prefunctor `φ : V ⥤q W'`, one can extend `τ` to be a prefunctor `W ⥤q W'` if `τ` and `σ` factorize `φ` at the level of objects, where `W` is given the pushforward quiver structure `Push σ`. -/ noncomputable def lift : Push σ ⥤q W' where obj := τ map := @PushQuiver.rec V _ W σ (fun X Y _ => τ X ⟶ τ Y) @fun X Y f => by dsimp only rw [← h X, ← h Y] exact φ.map f #align quiver.push.lift Quiver.Push.lift theorem lift_obj : (lift σ φ τ h).obj = τ := rfl #align quiver.push.lift_obj Quiver.Push.lift_obj theorem lift_comp : (of σ ⋙q lift σ φ τ h) = φ := by fapply Prefunctor.ext · rintro X simp only [Prefunctor.comp_obj] apply Eq.symm exact h X · rintro X Y f simp only [Prefunctor.comp_map] apply eq_of_heq iterate 2 apply (cast_heq _ _).trans apply HEq.symm apply (eqRec_heq _ _).trans have : ∀ {α γ} {β : α → γ → Sort _} {a a'} (p : a = a') g (b : β a g), HEq (p ▸ b) b := by intros subst_vars rfl apply this #align quiver.push.lift_comp Quiver.Push.lift_comp theorem lift_unique (Φ : Push σ ⥤q W') (Φ₀ : Φ.obj = τ) (Φcomp : (of σ ⋙q Φ) = φ) : Φ = lift σ φ τ h := by dsimp only [of, lift] fapply Prefunctor.ext · intro X simp only rw [Φ₀] · rintro _ _ ⟨⟩ subst_vars simp only [Prefunctor.comp_map, cast_eq] rfl #align quiver.push.lift_unique Quiver.Push.lift_unique end Push end Quiver
module BinaryFormats.Data.Bit %default total ||| A binary digit (either 0 or 1) public export data Bit : Type where ||| The 0 digit O : Bit ||| The 1 digit I : Bit
/- Copyright (c) 2020 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import algebra.module.equiv import group_theory.group_action.opposite /-! # Module operations on `Mᵐᵒᵖ` > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file contains definitions that build on top of the group action definitions in `group_theory.group_action.opposite`. -/ namespace mul_opposite universes u v variables (R : Type u) {M : Type v} [semiring R] [add_comm_monoid M] [module R M] /-- `mul_opposite.distrib_mul_action` extends to a `module` -/ instance : module R (mul_opposite M) := { add_smul := λ r₁ r₂ x, unop_injective $ add_smul r₁ r₂ (unop x), zero_smul := λ x, unop_injective $ zero_smul _ (unop x), ..mul_opposite.distrib_mul_action M R } /-- The function `op` is a linear equivalence. -/ def op_linear_equiv : M ≃ₗ[R] Mᵐᵒᵖ := { map_smul' := mul_opposite.op_smul, .. op_add_equiv } @[simp] lemma coe_op_linear_equiv : (op_linear_equiv R : M → Mᵐᵒᵖ) = op := rfl @[simp] lemma coe_op_linear_equiv_symm : ((op_linear_equiv R).symm : Mᵐᵒᵖ → M) = unop := rfl @[simp] @[simp] lemma op_linear_equiv_to_add_equiv : (op_linear_equiv R : M ≃ₗ[R] Mᵐᵒᵖ).to_add_equiv = op_add_equiv := rfl @[simp] lemma op_linear_equiv_symm_to_add_equiv : (op_linear_equiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.to_add_equiv = op_add_equiv.symm := rfl end mul_opposite
[STATEMENT] lemma (in group) derived_set_in_carrier: assumes "H \<subseteq> carrier G" shows "derived_set G H \<subseteq> carrier G" [PROOF STATE] proof (prove) goal (1 subgoal): 1. derived_set G H \<subseteq> carrier G [PROOF STEP] using derived_set_incl[OF assms subgroup_self] [PROOF STATE] proof (prove) using this: derived_set G H \<subseteq> carrier G goal (1 subgoal): 1. derived_set G H \<subseteq> carrier G [PROOF STEP] .
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Algebra.Module.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Ring renaming (⟨_⟩ to ⟨_⟩r) open import Cubical.Algebra.AbGroup hiding (⟨_⟩) open import Cubical.Algebra.Group hiding (⟨_⟩) open Iso private variable ℓ : Level record IsLeftModule (R : Ring {ℓ}) {M : Type ℓ} (0m : M) (_+_ : M → M → M) (-_ : M → M) (_⋆_ : ⟨ R ⟩r → M → M) : Type ℓ where constructor ismodule open Ring R using (_·_; 1r) renaming (_+_ to _+r_) field +-isAbGroup : IsAbGroup 0m _+_ -_ ⋆-assoc : (r s : ⟨ R ⟩r) (x : M) → (r · s) ⋆ x ≡ r ⋆ (s ⋆ x) ⋆-ldist : (r s : ⟨ R ⟩r) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x) ⋆-rdist : (r : ⟨ R ⟩r) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y) ⋆-lid : (x : M) → 1r ⋆ x ≡ x open IsAbGroup +-isAbGroup public renaming ( assoc to +-assoc ; identity to +-identity ; lid to +-lid ; rid to +-rid ; inverse to +-inv ; invl to +-linv ; invr to +-rinv ; comm to +-comm ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isGroup to +-isGroup ) record LeftModule (R : Ring {ℓ}) : Type (ℓ-suc ℓ) where constructor leftmodule field Carrier : Type ℓ 0m : Carrier _+_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⋆_ : ⟨ R ⟩r → Carrier → Carrier isLeftModule : IsLeftModule R 0m _+_ -_ _⋆_ open IsLeftModule isLeftModule public module _ {R : Ring {ℓ}} where ⟨_⟩ : LeftModule R → Type ℓ ⟨_⟩ = LeftModule.Carrier LeftModule→AbGroup : (M : LeftModule R) → AbGroup {ℓ} LeftModule→AbGroup (leftmodule _ _ _ _ _ isLeftModule) = abgroup _ _ _ _ (IsLeftModule.+-isAbGroup isLeftModule) isSetLeftModule : (M : LeftModule R) → isSet ⟨ M ⟩ isSetLeftModule M = isSetAbGroup (LeftModule→AbGroup M) open Ring R using (1r) renaming (_+_ to _+r_; _·_ to _·s_) makeIsLeftModule : {M : Type ℓ} {0m : M} {_+_ : M → M → M} { -_ : M → M} {_⋆_ : ⟨ R ⟩r → M → M} (isSet-M : isSet M) (+-assoc : (x y z : M) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : M) → x + 0m ≡ x) (+-rinv : (x : M) → x + (- x) ≡ 0m) (+-comm : (x y : M) → x + y ≡ y + x) (⋆-assoc : (r s : ⟨ R ⟩r) (x : M) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆-ldist : (r s : ⟨ R ⟩r) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆-rdist : (r : ⟨ R ⟩r) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆-lid : (x : M) → 1r ⋆ x ≡ x) → IsLeftModule R 0m _+_ -_ _⋆_ makeIsLeftModule isSet-M +-assoc +-rid +-rinv +-comm ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid = ismodule (makeIsAbGroup isSet-M +-assoc +-rid +-rinv +-comm) ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid record LeftModuleEquiv {R : Ring {ℓ}} (M N : LeftModule R) : Type ℓ where constructor moduleiso private instance _ : LeftModule R _ = M _ : LeftModule R _ = N open LeftModule {{...}} field e : ⟨ M ⟩ ≃ ⟨ N ⟩ isHom+ : (x y : ⟨ M ⟩) → equivFun e (x + y) ≡ equivFun e x + equivFun e y comm⋆ : (r : ⟨ R ⟩r) (x : ⟨ M ⟩) → equivFun e (r ⋆ x) ≡ r ⋆ equivFun e x module LeftModuleΣTheory (R : Ring {ℓ}) where RawLeftModuleStructure = λ (M : Type ℓ) → (M → M → M) × (⟨ R ⟩r → M → M) RawLeftModuleEquivStr = AutoEquivStr RawLeftModuleStructure rawLeftModuleUnivalentStr : UnivalentStr _ RawLeftModuleEquivStr rawLeftModuleUnivalentStr = autoUnivalentStr RawLeftModuleStructure open Ring R using (_·_; 1r) renaming (_+_ to _+r_) LeftModuleAxioms : (M : Type ℓ) (s : RawLeftModuleStructure M) → Type ℓ LeftModuleAxioms M (_+_ , _⋆_) = AbGroupΣTheory.AbGroupAxioms M _+_ × ((r s : ⟨ R ⟩r) (x : M) → (r · s) ⋆ x ≡ r ⋆ (s ⋆ x)) × ((r s : ⟨ R ⟩r) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) × ((r : ⟨ R ⟩r) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) × ((x : M) → 1r ⋆ x ≡ x) LeftModuleStructure : Type ℓ → Type ℓ LeftModuleStructure = AxiomsStructure RawLeftModuleStructure LeftModuleAxioms LeftModuleΣ : Type (ℓ-suc ℓ) LeftModuleΣ = TypeWithStr ℓ LeftModuleStructure LeftModuleEquivStr : StrEquiv LeftModuleStructure ℓ LeftModuleEquivStr = AxiomsEquivStr RawLeftModuleEquivStr LeftModuleAxioms open AbGroupΣTheory using (isSetAbGroupΣ) isSetLeftModuleΣ : (M : LeftModuleΣ) → isSet _ isSetLeftModuleΣ (M , (_+_ , _) , (isAbGroup-M , _)) = isSetAbGroupΣ (M , _+_ , isAbGroup-M) isPropLeftModuleAxioms : (M : Type ℓ) (s : RawLeftModuleStructure M) → isProp (LeftModuleAxioms M s) isPropLeftModuleAxioms M (_+_ , _⋆_) = isPropΣ (AbGroupΣTheory.isPropAbGroupAxioms M _+_) λ isAbGroup-M → isProp× (isPropΠ3 λ _ _ _ → (isSetAbGroupΣ (M , _+_ , isAbGroup-M)) _ _) (isProp× (isPropΠ3 λ _ _ _ → (isSetAbGroupΣ (M , _+_ , isAbGroup-M)) _ _) (isProp× (isPropΠ3 λ _ _ _ → (isSetAbGroupΣ (M , _+_ , isAbGroup-M)) _ _) (isPropΠ λ _ → (isSetAbGroupΣ (M , _+_ , isAbGroup-M)) _ _))) LeftModule→LeftModuleΣ : LeftModule R → LeftModuleΣ LeftModule→LeftModuleΣ (leftmodule M 0m _+_ -_ _⋆_ (ismodule +-isAbGroup ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid)) = M , (_+_ , _⋆_) , AbGroupΣTheory.AbGroup→AbGroupΣ (abgroup _ _ _ _ +-isAbGroup) .snd .snd , ⋆-assoc , ⋆-ldist , ⋆-rdist , ⋆-lid LeftModuleΣ→LeftModule : LeftModuleΣ → LeftModule R LeftModuleΣ→LeftModule (M , (_+_ , _⋆_) , isAbGroup-M , ⋆-assoc , ⋆-ldist , ⋆-rdist , ⋆-lid) = let isAbGroup = AbGroupΣTheory.AbGroupΣ→AbGroup (_ , _ , isAbGroup-M ) .AbGroup.isAbGroup in leftmodule M _ _+_ _ _⋆_ (ismodule isAbGroup ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid) LeftModuleIsoLeftModuleΣ : Iso (LeftModule R) LeftModuleΣ LeftModuleIsoLeftModuleΣ = iso LeftModule→LeftModuleΣ LeftModuleΣ→LeftModule (λ _ → refl) helper where open AbGroupΣTheory abgroup-helper : retract (AbGroup→AbGroupΣ {ℓ}) AbGroupΣ→AbGroup abgroup-helper = Iso.leftInv AbGroupIsoAbGroupΣ open LeftModule open IsLeftModule helper : _ Carrier (helper M i) = Carrier M 0m (helper M i) = 0m M _+_ (helper M i) = _+_ M -_ (helper M i) = -_ M _⋆_ (helper M i) = _⋆_ M +-isAbGroup (isLeftModule (helper M i)) = AbGroup.isAbGroup (abgroup-helper (abgroup _ _ _ _ (+-isAbGroup M)) i) ⋆-assoc (isLeftModule (helper M i)) = ⋆-assoc M ⋆-ldist (isLeftModule (helper M i)) = ⋆-ldist M ⋆-rdist (isLeftModule (helper M i)) = ⋆-rdist M ⋆-lid (isLeftModule (helper M i)) = ⋆-lid M leftModuleUnivalentStr : UnivalentStr LeftModuleStructure LeftModuleEquivStr leftModuleUnivalentStr = axiomsUnivalentStr _ isPropLeftModuleAxioms rawLeftModuleUnivalentStr LeftModuleΣPath : (M N : LeftModuleΣ) → (M ≃[ LeftModuleEquivStr ] N) ≃ (M ≡ N) LeftModuleΣPath = SIP leftModuleUnivalentStr LeftModuleEquivStrΣ : (M N : LeftModule R) → Type ℓ LeftModuleEquivStrΣ M N = LeftModule→LeftModuleΣ M ≃[ LeftModuleEquivStr ] LeftModule→LeftModuleΣ N LeftModuleEquivStrΣPath : {M N : LeftModule R} → Iso (LeftModuleEquiv M N) (LeftModuleEquivStrΣ M N) fun LeftModuleEquivStrΣPath (moduleiso e isHom+ comm⋆) = e , isHom+ , comm⋆ inv LeftModuleEquivStrΣPath (e , isHom+ , comm⋆) = moduleiso e isHom+ comm⋆ rightInv LeftModuleEquivStrΣPath _ = refl leftInv LeftModuleEquivStrΣPath _ = refl LeftModulePath : (M N : LeftModule R) → (LeftModuleEquiv M N) ≃ (M ≡ N) LeftModulePath M N = LeftModuleEquiv M N ≃⟨ isoToEquiv LeftModuleEquivStrΣPath ⟩ LeftModuleEquivStrΣ M N ≃⟨ LeftModuleΣPath _ _ ⟩ LeftModule→LeftModuleΣ M ≡ LeftModule→LeftModuleΣ N ≃⟨ isoToEquiv (invIso (congIso LeftModuleIsoLeftModuleΣ)) ⟩ M ≡ N ■ LeftModulePath : {R : Ring {ℓ}} (M N : LeftModule R) → (LeftModuleEquiv M N) ≃ (M ≡ N) LeftModulePath {ℓ} {R} = LeftModuleΣTheory.LeftModulePath R
Set Warnings "-notation-overridden". Require Import Category.Lib. Require Export Category.Theory.Functor. Require Export Category.Construction.Comma. Generalizable All Variables. Set Primitive Projections. Set Universe Polymorphism. Unset Transparent Obligations. Definition Arrow {C : Category} : Category := (Id[C] ↓ Id[C]). Notation "C ⃗" := (@Arrow C) (at level 90) : category_scope.
Formal statement is: lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" Informal statement is: A sequence $x_n$ is bounded if and only if the function $n \mapsto x_n$ is bounded.
Formal statement is: lemma eventually_subseq: "strict_mono r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially" Informal statement is: If $r$ is a strictly increasing sequence of natural numbers, and $P$ is an eventually true property of the natural numbers, then $P$ is also an eventually true property of $r$.
module Replica.Command.Set import Data.List import Data.String import Replica.Help import Replica.Option.Parse import Replica.Option.Types import public Replica.Option.Filter import public Replica.Option.Global import Replica.Other.Decorated import Language.JSON %default total public export data TargetConfig = Local | Global export Show TargetConfig where show Local = "Local" show Global = "Global" export Eq TargetConfig where Local == Local = True Global == Global = True _ == _ = False public export record Setter where constructor MkSetter key: String value: JSON export Show Setter where show (MkSetter key value) = "MkSetter \{show key} \{show value}" public export record SetCommand' (f : Type -> Type) where constructor MkSetCommand target : f TargetConfig setter : f Setter public export SetCommand : Type SetCommand = Done SetCommand' TyMap SetCommand' where tyMap func x = MkSetCommand (func x.target) (func x.setter) TyTraversable SetCommand' where tyTraverse func x = [| MkSetCommand (func x.target) (func x.setter) |] export Show SetCommand where show x = "MkSetCommand \{show x.target} (\{show x.setter})" targetPart : Part (Builder SetCommand') TargetConfig targetPart = inj $ MkOption (toList1 [ MkMod (singleton "local") ['l'] (Left Local) "Set a local config value (in `./.replica.json`) (default)" , MkMod (singleton "global") ['g'] (Left Global) "Set a global config value (in `$HOME/.replica.json`)" ]) Local go where go : TargetConfig -> Builder SetCommand' -> Either String (Builder SetCommand') go = ifSame target (\x => record {target = Right $ x}) (const $ const "Contradictory target") setterPart : Part (Builder SetCommand') Setter setterPart = inj $ MkParam1 "KEY=VALUE" parseKV go where go : Setter -> Builder SetCommand' -> Either String (Builder SetCommand') go s x = Right $ record {setter = Right $ s} x buildSetter : ConfigValue -> (String, String) -> Maybe Setter buildSetter x = map (uncurry MkSetter) . jsonFor x validateKV : String -> String -> Maybe Setter validateKV x y with (strM x, strM y) validateKV "" y | (StrNil, w) = Nothing validateKV x (prim__strCons '=' t) | (w, StrCons '=' t) = concatMap (flip buildSetter (x, t)) configValues validateKV x y | (w, z) = Nothing parseKV : String -> Maybe Setter parseKV x = uncurry validateKV $ break (== '=') x optParseSet : OptParse (Builder SetCommand') SetCommand optParseSet = [| MkSetCommand (liftAp targetPart) (liftAp setterPart) |] defaultSet : Default SetCommand' defaultSet = MkSetCommand (defaultPart targetPart) (defaultPart setterPart) export parseSet : List1 String -> ParseResult SetCommand parseSet ("set":::xs) = do case parse (initBuilder $ defaultSet) optParseSet xs of InvalidMix reason => InvalidMix reason InvalidOption ys => InvalidMix $ "Unknown option: " ++ ys.head Done builder => maybe (InvalidMix "No test file given") Done $ build builder parseSet xs = InvalidOption xs export helpSet : Help helpSet = record {lastWords = Just footer} baseCommand where baseCommand : Help baseCommand = commandHelp {b = Builder SetCommand'} "set" "Set a global configuration for replica commands" (optParseSet) (Just "KEY=VALUE") footer : String footer = #""" Available keys, and description: replicaDir (or replica-dir, rDir) where replica stores internal information (default `./.replica`) goldenDir (or golden-dir, gDir) where replica stores golden values (default `./.replica/tests`) colour (or color) do we used colored output or not? (true or false, default `true`) ascii do we keep away emojis or not? (true or false, default `false`) diff command used to display diff (known value: diff, git, native, other strings are considered as custom command) (default: `native`) log log level (default: `none`) (known value: debug, info, warning, critical) testFile (or jsonFile, test) the path of the test file to use (prefer a relative path) (no default) """#
open import Algebra.Apartness using (HeytingField) module Data.Real.Abstract.Bundles c ℓ₁ ℓ₂ r where open import Relation.Binary using (Rel) open import Data.Real.Abstract.Structures open import Level using (_⊔_; suc) record OrderedHeytingField : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂ ⊔ r)) where field f : HeytingField c ℓ₁ ℓ₂ open HeytingField f public field _<_ : Rel Carrier r isOrderedHeytingField : IsOrderedHeytingField f _<_ record ArchimedanHeytingField : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂ ⊔ r)) where field f : HeytingField c ℓ₁ ℓ₂ open HeytingField f public field _<_ : Rel Carrier r isArchimedanHeytingField : IsArchimedanHeytingField f _<_
Require Import Ashley.Axioms. Require Import Ashley.PartialOrder. Require Import Ashley.Set. Require Import Ashley.Category. (* set_type takes a set and turns it into a type *) Inductive set_type {A:Type} (s:A -> Type) : Type := stc : forall (x:A), s x -> set_type s. Definition val {A: Type} {s: A -> Type} (sv: set_type s): A. destruct sv. exact x. Defined. Definition stc' : forall {A:Type} {s:A -> Type} (x:A), s x -> set_type s. intros. apply (stc s x X). Defined. Lemma val_stc: forall {A:Type} (s:A -> Type) (v:A) (st:s v), val (stc s v st) = v. unfold val. trivial. Qed. Definition struct {A} {s:A -> Type} (st:set_type s): s (val st). unfold val. destruct st. exact s0. Defined. (* Inductive same (A B: Type) (a:A) (b:B): Type:= is_same: forall (T:Type) (a' b':A), a' = b' -> same T T a' b'. *) Definition converter: forall {T:Type} {A B: T} {f: T -> Type}, (A = B) -> f A -> f B. intros. rewrite <- H. exact X. Defined. Lemma converter_eq: forall {T} {A} {f: T -> Type} {proof} (x: f A), converter proof x = x. intros. unfold converter. unfold eq_rect. cut (proof = eq_refl). intro. rewrite H. trivial. apply proof_irrelevance. Qed. Lemma exist_ext: forall {A} (s: A -> Type) (p q: set_type s) (proof: val p = val q), ((converter proof (struct p)) = struct q) -> p = q. intros. destruct p. destruct q. unfold val in proof. subst x. unfold converter in H. unfold struct in H. unfold val in H. unfold eq_rect in H. rewrite H. trivial. Defined. Lemma set_type_ext: forall {A} (s: A -> Prop) (p q: set_type s), (val p = val q) -> p = q. intros. apply (exist_ext s p q H). apply proof_irrelevance. Defined. Lemma set_type_ext_eq: forall {A} (s: A -> Prop) (p q: set_type s), (val p = val q) = (p = q). intros. apply prop_ext. split. apply set_type_ext. intros. rewrite H. trivial. Qed. Variable Te : Type. Variable Ve : Te. Definition Se : set Te := fun x => x = Ve. Definition eConstruct: set_type Se. apply (stc Se Ve). unfold Se. trivial. Defined. Lemma eCheck: val eConstruct = Ve. unfold eConstruct. unfold val. trivial. Qed. Instance subset_category A : Category (set A) := { hom sA sB := set_type sA -> set_type sB; id A := (fun p => p); compose A B C mbc mab a := mbc (mab a) }. intros. apply fun_ext. trivial. intros. apply fun_ext. trivial. intros. apply fun_ext. trivial. Defined. Lemma not_in_empty : forall A, forall a : set_type (empty : set A), False. firstorder. Qed. Lemma subset_transitive : forall {A} {a b c: set A}, b <= c -> a <= b -> a <= c. unfold subset. intro. intro. intro. intro. apply within_trans. Qed. Instance inclusion_Preorder {A} (open : set (set A)) : Preorder (set_type open) := { within sv1 sv2 := (val sv1) <= (val sv2) }. intros. apply within_reflex. intros. apply (within_trans (val p) (val q) (val r)). exact H. exact H0. Defined. Instance inclusion_PartialOrder {A} (open : set (set A)) : PartialOrder (set_type open) := { }. intros. apply set_type_ext. apply within_antisym. exact H. exact H0. Defined. Definition inclusion_category {A} (open : set (set A)) : Category (set_type open) := Preorder_Category (inclusion_Preorder open). Definition subset_type {A} (s : set A) : Type := set_type (superset s).
State Before: α : Type u_2 R : Type u_1 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop ⊢ Tendsto (fun x => f x • r) l atTop State After: α : Type u_2 R : Type u_1 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop s : R ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r Tactic: refine' tendsto_atTop.mpr fun s => _ State Before: α : Type u_2 R : Type u_1 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop s : R ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r State After: case intro α : Type u_2 R : Type u_1 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop s : R n : ℕ hn : s ≤ n • r ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r Tactic: obtain ⟨n : ℕ, hn : s ≤ n • r⟩ := Archimedean.arch s hr State Before: case intro α : Type u_2 R : Type u_1 l : Filter α f✝ : α → R r : R inst✝¹ : LinearOrderedCancelAddCommMonoid R inst✝ : Archimedean R f : α → ℕ hr : 0 < r hf : Tendsto f l atTop s : R n : ℕ hn : s ≤ n • r ⊢ ∀ᶠ (a : α) in l, s ≤ f a • r State After: no goals Tactic: exact (tendsto_atTop.mp hf n).mono fun a ha => hn.trans (nsmul_le_nsmul hr.le ha)
Formal statement is: lemma Lim_at_zero: fixes a :: "'a::real_normed_vector" and l :: "'b::topological_space" shows "(f \<longlongrightarrow> l) (at a) \<longleftrightarrow> ((\<lambda>x. f(a + x)) \<longlongrightarrow> l) (at 0)" Informal statement is: If $f$ converges to $l$ at $a$, then $f(a + x)$ converges to $l$ at $0$.
lemma complete_closed_subset: fixes S :: "'a::metric_space set" assumes "closed S" and "S \<subseteq> t" and "complete t" shows "complete S"
[STATEMENT] lemma "dist a d \<le> dist a b + dist b c + dist c d" [PROOF STATE] proof (prove) goal (1 subgoal): 1. dist a d \<le> dist a b + dist b c + dist c d [PROOF STEP] by metric
lemma islimpt_insert: fixes x :: "'a::t1_space" shows "x islimpt (insert a s) \<longleftrightarrow> x islimpt s"
section "Projection functions for automata" theory AutoProj imports Main begin definition start :: "'a * 'b * 'c \<Rightarrow> 'a" where "start A = fst A" definition "next" :: "'a * 'b * 'c \<Rightarrow> 'b" where "next A = fst(snd(A))" definition fin :: "'a * 'b * 'c \<Rightarrow> 'c" where "fin A = snd(snd(A))" lemma [simp]: "next(q,d,f) = d" by(simp add:next_def) lemma [simp]: "fin(q,d,f) = f" by(simp add:fin_def) end
[STATEMENT] lemma GTT_trancl_complete: "(gtt_lang G)\<^sup>+ \<subseteq> gtt_lang (GTT_trancl G)" [PROOF STATE] proof (prove) goal (1 subgoal): 1. (gtt_lang G)\<^sup>+ \<subseteq> gtt_lang (GTT_trancl G) [PROOF STEP] using GTT_trancl_base subset_trans[OF gtt_comp_lang_complete GTT_trancl_trans] [PROOF STATE] proof (prove) using this: gtt_lang ?G \<subseteq> gtt_lang (GTT_trancl ?G) gtt_lang (GTT_trancl ?G1) O gtt_lang (GTT_trancl ?G1) \<subseteq> gtt_lang (GTT_trancl ?G1) goal (1 subgoal): 1. (gtt_lang G)\<^sup>+ \<subseteq> gtt_lang (GTT_trancl G) [PROOF STEP] by (metis trancl_id trancl_mono_set trans_O_iff)
library(lattice) d = data.frame(iris) d xyplot(Rural.Male~Rural.Female,data=d) splom(iris[1:3],data=d) cloud(d$Sepal.Length~d$Sepal.Width*d$Petal.Length|Species, data=iris) dotplot(d$Sepal.Length~d$Sepal.Width,data=iris) histogram(d$Sepal.Length~d$Sepal.Width,data=iris,col=rainbow(55:10))
module Ex8 import Decidable.Equality import Data.Nat import Data.Vect %default total same_cons : { xs : List a } -> { ys : List a } -> xs = ys -> x :: xs = x :: ys same_cons Refl = Refl same_lists : { xs : List a } -> { ys : List a } -> x = y -> xs = ys -> x :: xs = y :: ys same_lists Refl Refl = Refl data ThreeEq : a -> b -> c -> Type where AllSame : ThreeEq x x x allSameS : (x, y, z : Nat) -> ThreeEq x y z -> ThreeEq (S x) (S y) (S z) allSameS _ _ _ AllSame = AllSame myPlusCommutes : (n : Nat) -> (m : Nat) -> n + m = m + n myPlusCommutes Z m = rewrite plusZeroRightNeutral m in Refl myPlusCommutes (S k) m = rewrite myPlusCommutes k m in rewrite plusSuccRightSucc m k in Refl reverseProof_nil : Vect n a -> Vect (plus n 0) a reverseProof_nil {n} xs = rewrite plusZeroRightNeutral n in xs reverseProof_xs : Vect (S n + k) a -> Vect (plus n (S k)) a reverseProof_xs {n} {k} xs = rewrite sym (plusSuccRightSucc n k) in xs myReverse : Vect n a -> Vect n a myReverse xs = reverse' [] xs where reverse' : forall n, m. Vect n a -> Vect m a -> Vect (n + m) a reverse' acc [] = reverseProof_nil acc reverse' acc (x :: xs) = reverseProof_xs (reverse' (x :: acc) xs) headUnequal : DecEq a => { xs : Vect n a } -> { ys : Vect n a } -> (contra : (x = y) -> Void) -> ((x :: xs) = (y :: ys)) -> Void headUnequal contra Refl = contra Refl tailUnequal : DecEq a => { xs : Vect n a } -> { ys : Vect n a } -> (contra : (xs = ys) -> Void) -> ((x :: xs) = (y :: ys)) -> Void tailUnequal contra Refl = contra Refl
import Data.Vect %unbound_implicits off append : forall n, m, a . Vect n a -> Vect m a -> Vect (n + m) a append [] ys = ys append (x :: xs) ys = x :: append xs ys data Env : forall n . Vect n Type -> Type where ENil : Env [] ECons : forall t, ts . t -> Env ts -> Env (t :: ts) -- fine because the only name used in bound, and it'll infer types for -- xs and its indices len : forall xs . Env xs -> Nat -- neither of these are fine len': Env xs -> Nat append' : Vect n a -> Vect m a -> Vect (n + m) a
-- @@stderr -- dtrace: failed to compile script test/unittest/probes/err.D_PDESC_ZERO.probestar.d: [D_PDESC_ZERO] line 21: probe description :::no_such_dtrace_probe* does not match any probes
/- TACTICS -/ namespace TBA -- definitions from last week -- NOTE: We renamed it from `Nat'` for consistency. The new namespace makes sure we don't use the -- standard library `Nat`. inductive Nat : Type | zero : Nat | succ (n : Nat) : Nat open Nat def add (m n : Nat) : Nat := match n with | zero => m | succ n => succ (add m n) -- With this command we add a notation for `add`. From now on we will be able to write `m + n` for -- `add m n`. The 65 denotes how strongly the operator should bind to what's adjacent to it. -- The `priority` means that Lean will prefer it over the built-in `+`. infix:65 (priority := high) " + " => add def mul (m n : Nat) : Nat := match n with | zero => zero | succ n => (mul m n) + m -- We also want a notation for `mul`, with a higher binding strength than addition so that -- `a + b * c` means `a + (b * c`)`. infix:70 (priority := high) " * " => mul inductive LE : Nat → Nat → Prop where | refl (n : Nat) : LE n n | succ : LE m n → LE m (succ n) -- lower binding strength than either addition or multiplication infix:50 (priority := high) " ≤ " => LE -- Let's start by reproving some theorems from last week, but this time with tactics! -- useful tactics: -- * `induction ... with ...` -- * `simp only [f]` to unfold applications of a function `f` -- * `rw [h]` to rewrite every `a` to `b` if `h : a = b` -- * `apply/exact` -- * `simp/simp_all`... are powerful and basically always useful, though make sure that you could also -- do the proof without them theorem zero_add : zero + n = n := by induction n with | zero => | succ n ih => theorem le_add : m ≤ m + n := by -- Alright, let's start automating more! attribute [simp] add mul -- These definitions will now automatically be unfolded when you use `simp/simp_all` -- This one is a bit more tricky, you might need to prove a helper lemma! theorem add_comm : n + m = m + n := by -- Associativity can be proven in a similar way. theorem add_assoc : (m + n) + k = m + (n + k) := by def one := succ zero theorem mul_one : m * one = m := by -- To prove associativity of multiplication, you might have to come up with -- some more lemmas about multiplication first. Some are similar to the above laws of -- addition, some use both addition and multiplication ("distributivity" is the keyword). theorem mul_assoc : (m * n) * k = m * (n * k) := by -- Remember the structures for semigroups and monoids which we defined last week? structure Semigroup (α : Type) where mul : α → α → α assoc : mul (mul a b) c = mul a (mul b c) structure Monoid (α : Type) extends Semigroup α where e : α e_mul : mul e a = a mul_e : mul a e = a -- You should now be able to instantiate two of them, including proofs! def Nat_add_Monoid : Monoid Nat := _ def Nat_mul_Monoid : Monoid Nat := _
module EqNat %default total data EqNat : (num1 : Nat) -> (num2 : Nat) -> Type where Same : (num : Nat) -> EqNat num num sameS : (eq : EqNat k j) -> EqNat (S k) (S j) sameS (Same k) = Same (S k) checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2) checkEqNat Z Z = Just (Same Z) checkEqNat Z _ = Nothing checkEqNat _ Z = Nothing checkEqNat (S k) (S l) = case checkEqNat k l of Nothing => Nothing Just eq => Just (sameS eq)
Formal statement is: lemma open_closed: "open S \<longleftrightarrow> closed (- S)" Informal statement is: A set is open if and only if its complement is closed.
[STATEMENT] lemma eqButUIDl_trans: assumes "eqButUIDl uid uidl uidl1" and "eqButUIDl uid uidl1 uidl2" shows "eqButUIDl uid uidl uidl2" [PROOF STATE] proof (prove) goal (1 subgoal): 1. eqButUIDl uid uidl uidl2 [PROOF STEP] using assms [PROOF STATE] proof (prove) using this: eqButUIDl uid uidl uidl1 eqButUIDl uid uidl1 uidl2 goal (1 subgoal): 1. eqButUIDl uid uidl uidl2 [PROOF STEP] by auto
/- TACTICS -/ namespace TBA -- definitions from last week -- NOTE: We renamed it from `Nat'` for consistency. The new namespace makes sure we don't use the -- standard library `Nat`. inductive Nat : Type where | zero : Nat | succ (n : Nat) : Nat open Nat def add (m n : Nat) : Nat := match n with | zero => m | succ n => succ (add m n) -- With this command we add a notation for `add`. From now on we will be able to write `m + n` for -- `add m n`. The 65 denotes how strongly the operator should bind to what's adjacent to it. -- The `priority` means that Lean will prefer it over the built-in `+`. infix:65 (priority := high) " + " => add def mul (m n : Nat) : Nat := match n with | zero => zero | succ n => (mul m n) + m -- We also want a notation for `mul`, with a higher binding strength than addition so that -- `a + b * c` means `a + (b * c`)`. infix:70 (priority := high) " * " => mul inductive LE : Nat → Nat → Prop where | refl (n : Nat) : LE n n | succ : LE m n → LE m (succ n) -- lower binding strength than either addition or multiplication infix:50 (priority := high) " ≤ " => LE -- Let's start by reproving some theorems from last week, but this time with tactics! -- useful tactics: -- * `induction ... with ...` -- * `rw [f]` to unfold applications of a function `f` -- * `rw [h]` to rewrite every `a` to `b` if `h : a = b` -- * `apply/exact` -- * `simp/simp_all`... are powerful and basically always useful, though make sure that you could also -- do the proof without them theorem zero_add : zero + n = n := by induction n with | zero => | succ n ih => theorem le_add : m ≤ m + n := by -- Alright, let's start automating more! attribute [simp] add mul -- These definitions will now automatically be unfolded when you use `simp/simp_all` -- This one is a bit more tricky, you might need to prove a helper lemma! theorem add_comm : n + m = m + n := by -- Associativity can be proven in a similar way. theorem add_assoc : (m + n) + k = m + (n + k) := by def one := succ zero theorem mul_one : m * one = m := by -- To prove associativity of multiplication, you might have to come up with -- some more lemmas about multiplication first. Some are similar to the above laws of -- addition, some use both addition and multiplication ("distributivity" is the keyword). theorem mul_assoc : (m * n) * k = m * (n * k) := by -- Remember the structures for semigroups and monoids which we defined last week? structure Semigroup (α : Type) where mul : α → α → α assoc : mul (mul a b) c = mul a (mul b c) structure Monoid (α : Type) extends Semigroup α where e : α e_mul : mul e a = a mul_e : mul a e = a -- You should now be able to instantiate two of them, including proofs! def Nat_add_Monoid : Monoid Nat := _ def Nat_mul_Monoid : Monoid Nat := _ end TBA
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Bhavik Mehta -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.category_theory.monad.adjunction import Mathlib.category_theory.adjunction.limits import Mathlib.category_theory.limits.preserves.shapes.terminal import Mathlib.PostPort universes u₁ v₁ u₂ namespace Mathlib namespace category_theory namespace monad namespace forget_creates_limits /-- (Impl) The natural transformation used to define the new cone -/ @[simp] theorem γ_app {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) (j : J) : nat_trans.app (γ D) j = algebra.a (functor.obj D j) := Eq.refl (nat_trans.app (γ D) j) /-- (Impl) This new cone is used to construct the algebra structure -/ @[simp] theorem new_cone_X {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) (c : limits.cone (D ⋙ forget T)) : limits.cone.X (new_cone D c) = functor.obj T (limits.cone.X c) := Eq.refl (limits.cone.X (new_cone D c)) /-- The algebra structure which will be the apex of the new limit cone for `D`. -/ @[simp] theorem cone_point_A {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) (c : limits.cone (D ⋙ forget T)) (t : limits.is_limit c) : algebra.A (cone_point D c t) = limits.cone.X c := Eq.refl (algebra.A (cone_point D c t)) /-- (Impl) Construct the lifted cone in `algebra T` which will be limiting. -/ @[simp] theorem lifted_cone_X {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) (c : limits.cone (D ⋙ forget T)) (t : limits.is_limit c) : limits.cone.X (lifted_cone D c t) = cone_point D c t := Eq.refl (limits.cone.X (lifted_cone D c t)) /-- (Impl) Prove that the lifted cone is limiting. -/ def lifted_cone_is_limit {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) (c : limits.cone (D ⋙ forget T)) (t : limits.is_limit c) : limits.is_limit (lifted_cone D c t) := limits.is_limit.mk fun (s : limits.cone D) => algebra.hom.mk (limits.is_limit.lift t (functor.map_cone (forget T) s)) end forget_creates_limits -- Theorem 5.6.5 from [Riehl][riehl2017] /-- The forgetful functor from the Eilenberg-Moore category creates limits. -/ protected instance forget_creates_limits {C : Type u₁} [category C] {T : C ⥤ C} [monad T] : creates_limits (forget T) := creates_limits.mk fun (J : Type v₁) (𝒥 : small_category J) => creates_limits_of_shape.mk fun (D : J ⥤ algebra T) => creates_limit_of_reflects_iso fun (c : limits.cone (D ⋙ forget T)) (t : limits.is_limit c) => lifts_to_limit.mk (liftable_cone.mk sorry (limits.cones.ext (iso.refl (limits.cone.X (functor.map_cone (forget T) sorry))) sorry)) sorry /-- `D ⋙ forget T` has a limit, then `D` has a limit. -/ theorem has_limit_of_comp_forget_has_limit {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) [limits.has_limit (D ⋙ forget T)] : limits.has_limit D := has_limit_of_created D (forget T) namespace forget_creates_colimits -- Let's hide the implementation details in a namespace -- We have a diagram D of shape J in the category of algebras, and we assume that we are given a -- colimit for its image D ⋙ forget T under the forgetful functor, say its apex is L. -- We'll construct a colimiting coalgebra for D, whose carrier will also be L. -- To do this, we must find a map TL ⟶ L. Since T preserves colimits, TL is also a colimit. -- In particular, it is a colimit for the diagram `(D ⋙ forget T) ⋙ T` -- so to construct a map TL ⟶ L it suffices to show that L is the apex of a cocone for this diagram. -- In other words, we need a natural transformation from const L to `(D ⋙ forget T) ⋙ T`. -- But we already know that L is the apex of a cocone for the diagram `D ⋙ forget T`, so it -- suffices to give a natural transformation `((D ⋙ forget T) ⋙ T) ⟶ (D ⋙ forget T)`: /-- (Impl) The natural transformation given by the algebra structure maps, used to construct a cocone `c` with apex `colimit (D ⋙ forget T)`. -/ @[simp] theorem γ_app {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (j : J) : nat_trans.app γ j = algebra.a (functor.obj D j) := Eq.refl (nat_trans.app γ j) /-- (Impl) A cocone for the diagram `(D ⋙ forget T) ⋙ T` found by composing the natural transformation `γ` with the colimiting cocone for `D ⋙ forget T`. -/ @[simp] theorem new_cocone_X {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (c : limits.cocone (D ⋙ forget T)) : limits.cocone.X (new_cocone c) = limits.cocone.X c := Eq.refl (limits.cocone.X (new_cocone c)) /-- (Impl) Define the map `λ : TL ⟶ L`, which will serve as the structure of the coalgebra on `L`, and we will show is the colimiting object. We use the cocone constructed by `c` and the fact that `T` preserves colimits to produce this morphism. -/ def lambda {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (c : limits.cocone (D ⋙ forget T)) (t : limits.is_colimit c) [limits.preserves_colimit (D ⋙ forget T) T] : limits.cocone.X (functor.map_cocone T c) ⟶ limits.cocone.X c := limits.is_colimit.desc (limits.preserves_colimit.preserves t) (new_cocone c) /-- (Impl) The key property defining the map `λ : TL ⟶ L`. -/ theorem commuting {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (c : limits.cocone (D ⋙ forget T)) (t : limits.is_colimit c) [limits.preserves_colimit (D ⋙ forget T) T] (j : J) : functor.map T (nat_trans.app (limits.cocone.ι c) j) ≫ lambda c t = algebra.a (functor.obj D j) ≫ nat_trans.app (limits.cocone.ι c) j := limits.is_colimit.fac (limits.preserves_colimit.preserves t) (new_cocone c) j /-- (Impl) Construct the colimiting algebra from the map `λ : TL ⟶ L` given by `lambda`. We are required to show it satisfies the two algebra laws, which follow from the algebra laws for the image of `D` and our `commuting` lemma. -/ @[simp] theorem cocone_point_A {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (c : limits.cocone (D ⋙ forget T)) (t : limits.is_colimit c) [limits.preserves_colimit (D ⋙ forget T) T] [limits.preserves_colimit ((D ⋙ forget T) ⋙ T) T] : algebra.A (cocone_point c t) = limits.cocone.X c := Eq.refl (algebra.A (cocone_point c t)) /-- (Impl) Construct the lifted cocone in `algebra T` which will be colimiting. -/ @[simp] theorem lifted_cocone_X {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (c : limits.cocone (D ⋙ forget T)) (t : limits.is_colimit c) [limits.preserves_colimit (D ⋙ forget T) T] [limits.preserves_colimit ((D ⋙ forget T) ⋙ T) T] : limits.cocone.X (lifted_cocone c t) = cocone_point c t := Eq.refl (limits.cocone.X (lifted_cocone c t)) /-- (Impl) Prove that the lifted cocone is colimiting. -/ @[simp] theorem lifted_cocone_is_colimit_desc_f {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] {D : J ⥤ algebra T} (c : limits.cocone (D ⋙ forget T)) (t : limits.is_colimit c) [limits.preserves_colimit (D ⋙ forget T) T] [limits.preserves_colimit ((D ⋙ forget T) ⋙ T) T] (s : limits.cocone D) : algebra.hom.f (limits.is_colimit.desc (lifted_cocone_is_colimit c t) s) = limits.is_colimit.desc t (functor.map_cocone (forget T) s) := Eq.refl (algebra.hom.f (limits.is_colimit.desc (lifted_cocone_is_colimit c t) s)) end forget_creates_colimits -- TODO: the converse of this is true as well /-- The forgetful functor from the Eilenberg-Moore category for a monad creates any colimit which the monad itself preserves. -/ protected instance forget_creates_colimit {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] (D : J ⥤ algebra T) [limits.preserves_colimit (D ⋙ forget T) T] [limits.preserves_colimit ((D ⋙ forget T) ⋙ T) T] : creates_colimit D (forget T) := creates_colimit_of_reflects_iso fun (c : limits.cocone (D ⋙ forget T)) (t : limits.is_colimit c) => lifts_to_colimit.mk (liftable_cocone.mk (limits.cocone.mk (forget_creates_colimits.cocone_point c t) (nat_trans.mk fun (j : J) => algebra.hom.mk (nat_trans.app (limits.cocone.ι c) j))) (limits.cocones.ext (iso.refl (limits.cocone.X (functor.map_cocone (forget T) (limits.cocone.mk (forget_creates_colimits.cocone_point c t) (nat_trans.mk fun (j : J) => algebra.hom.mk (nat_trans.app (limits.cocone.ι c) j)))))) sorry)) (forget_creates_colimits.lifted_cocone_is_colimit c t) protected instance forget_creates_colimits_of_shape {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] [limits.preserves_colimits_of_shape J T] : creates_colimits_of_shape J (forget T) := creates_colimits_of_shape.mk fun (K : J ⥤ algebra T) => monad.forget_creates_colimit K protected instance forget_creates_colimits {C : Type u₁} [category C] {T : C ⥤ C} [monad T] [limits.preserves_colimits T] : creates_colimits (forget T) := creates_colimits.mk fun (J : Type v₁) (𝒥₁ : small_category J) => monad.forget_creates_colimits_of_shape /-- For `D : J ⥤ algebra T`, `D ⋙ forget T` has a colimit, then `D` has a colimit provided colimits of shape `J` are preserved by `T`. -/ theorem forget_creates_colimits_of_monad_preserves {C : Type u₁} [category C] {T : C ⥤ C} [monad T] {J : Type v₁} [small_category J] [limits.preserves_colimits_of_shape J T] (D : J ⥤ algebra T) [limits.has_colimit (D ⋙ forget T)] : limits.has_colimit D := has_colimit_of_created D (forget T) end monad protected instance comp_comparison_forget_has_limit {C : Type u₁} [category C] {D : Type u₂} [category D] {J : Type v₁} [small_category J] (F : J ⥤ D) (R : D ⥤ C) [monadic_right_adjoint R] [limits.has_limit (F ⋙ R)] : limits.has_limit ((F ⋙ monad.comparison R) ⋙ monad.forget (left_adjoint R ⋙ R)) := limits.has_limit_of_iso (iso_whisker_left F (iso.symm (monad.comparison_forget R))) protected instance comp_comparison_has_limit {C : Type u₁} [category C] {D : Type u₂} [category D] {J : Type v₁} [small_category J] (F : J ⥤ D) (R : D ⥤ C) [monadic_right_adjoint R] [limits.has_limit (F ⋙ R)] : limits.has_limit (F ⋙ monad.comparison R) := monad.has_limit_of_comp_forget_has_limit (F ⋙ monad.comparison R) /-- Any monadic functor creates limits. -/ def monadic_creates_limits {C : Type u₁} [category C] {D : Type u₂} [category D] (R : D ⥤ C) [monadic_right_adjoint R] : creates_limits R := creates_limits_of_nat_iso (monad.comparison_forget R) /-- The forgetful functor from the Eilenberg-Moore category for a monad creates any colimit which the monad itself preserves. -/ def monadic_creates_colimit_of_preserves_colimit {C : Type u₁} [category C] {D : Type u₂} [category D] {J : Type v₁} [small_category J] (R : D ⥤ C) (K : J ⥤ D) [monadic_right_adjoint R] [limits.preserves_colimit (K ⋙ R) (left_adjoint R ⋙ R)] [limits.preserves_colimit ((K ⋙ R) ⋙ left_adjoint R ⋙ R) (left_adjoint R ⋙ R)] : creates_colimit K R := creates_colimit_of_nat_iso (monad.comparison_forget R) /-- A monadic functor creates any colimits of shapes it preserves. -/ def monadic_creates_colimits_of_shape_of_preserves_colimits_of_shape {C : Type u₁} [category C] {D : Type u₂} [category D] {J : Type v₁} [small_category J] (R : D ⥤ C) [monadic_right_adjoint R] [limits.preserves_colimits_of_shape J R] : creates_colimits_of_shape J R := creates_colimits_of_shape_of_nat_iso (monad.comparison_forget R) /-- A monadic functor creates colimits if it preserves colimits. -/ def monadic_creates_colimits_of_preserves_colimits {C : Type u₁} [category C] {D : Type u₂} [category D] (R : D ⥤ C) [monadic_right_adjoint R] [limits.preserves_colimits R] : creates_colimits R := creates_colimits.mk fun (J : Type v₁) (𝒥₁ : small_category J) => monadic_creates_colimits_of_shape_of_preserves_colimits_of_shape R theorem has_limit_of_reflective {C : Type u₁} [category C] {D : Type u₂} [category D] {J : Type v₁} [small_category J] (F : J ⥤ D) (R : D ⥤ C) [limits.has_limit (F ⋙ R)] [reflective R] : limits.has_limit F := has_limit_of_created F R /-- If `C` has limits of shape `J` then any reflective subcategory has limits of shape `J`. -/ theorem has_limits_of_shape_of_reflective {C : Type u₁} [category C] {D : Type u₂} [category D] {J : Type v₁} [small_category J] [limits.has_limits_of_shape J C] (R : D ⥤ C) [reflective R] : limits.has_limits_of_shape J D := limits.has_limits_of_shape.mk fun (F : J ⥤ D) => has_limit_of_reflective F R /-- If `C` has limits then any reflective subcategory has limits. -/ theorem has_limits_of_reflective {C : Type u₁} [category C] {D : Type u₂} [category D] (R : D ⥤ C) [limits.has_limits C] [reflective R] : limits.has_limits D := limits.has_limits.mk fun (J : Type v₁) (𝒥₁ : small_category J) => has_limits_of_shape_of_reflective R /-- The reflector always preserves terminal objects. Note this in general doesn't apply to any other limit. -/ def left_adjoint_preserves_terminal_of_reflective {C : Type u₁} [category C] {D : Type u₂} [category D] (R : D ⥤ C) [reflective R] [limits.has_terminal C] : limits.preserves_limits_of_shape (discrete pempty) (left_adjoint R) := limits.preserves_limits_of_shape.mk fun (K : discrete pempty ⥤ C) => let _inst : limits.has_terminal D := sorry; let _inst_3 : creates_limits R := monadic_creates_limits R; let _inst_6 : limits.preserves_limit (functor.empty D) R := category_theory.preserves_limit_of_creates_limit_and_has_limit (functor.empty D) R; let _inst_7 : limits.preserves_limit (functor.empty C) (left_adjoint R) := limits.preserves_terminal_of_iso (left_adjoint R) (functor.map_iso (left_adjoint R) (iso.symm (limits.preserves_terminal.iso R)) ≪≫ as_iso (nat_trans.app (adjunction.counit (adjunction.of_right_adjoint R)) (⊤_D))); limits.preserves_limit_of_iso_diagram (left_adjoint R) (iso.symm (functor.unique_from_empty K))
[STATEMENT] lemma (in wf_digraph) sccs_verts_subsets: "S \<in> sccs_verts \<Longrightarrow> S \<subseteq> verts G" [PROOF STATE] proof (prove) goal (1 subgoal): 1. S \<in> sccs_verts \<Longrightarrow> S \<subseteq> verts G [PROOF STEP] by (auto simp: sccs_verts_conv)
import .def_coords universe u namespace o_minimal open_locale finvec variables {R : Type u} (S : struc R) -- We set up a minimal theory of (literal) definable subsets of Rⁿ -- and definable functions between them. /-- A bundled definable subset of some Rⁿ. -/ structure Def : Type u := (ambdim : ℕ) (to_set : set (finvec ambdim R)) (is_definable : S.definable to_set) variables {S} instance : has_coe_to_sort (Def S) := ⟨Type u, λ X, X.to_set⟩ lemma Def.is_def_coords (X : Def S) : S.def_coords (set.univ : set X) := begin unfold struc.def_coords, convert X.is_definable, simp end variables (S) def struc.definable_fun {X Y : Def S} (f : X → Y) : Prop := S.def_coords {z : X × Y | f z.1 = z.2} variables {S} @[ext] structure Hom (X Y : Def S) : Type u := (to_fun : X → Y) (is_definable : S.definable_fun to_fun) instance {X Y : Def S} : has_coe_to_fun (Hom X Y) := ⟨_, λ f, f.to_fun⟩ --instance : category_theory.has_hom (Def S) := { hom := Hom } local infixr ` ⟶ `:10 := Hom @[simp] lemma Hom.to_fun_eq_coe {X Y : Def S} (f : X ⟶ Y) : f.to_fun = f := rfl -- TODO float out proofs of definability of identity, composition -- (useful later in presheaf stuff, notably representable instance) def Def.id (X : Def S) : X ⟶ X := { to_fun := id, is_definable := struc.def_coords.diag X.is_def_coords } def Hom.comp {X Y Z : Def S} (g : Y ⟶ Z) (f : X ⟶ Y) : X ⟶ Z := { to_fun := g.to_fun ∘ f.to_fun, is_definable := begin suffices : S.def_coords {p : X × Z | ∃ y, f p.1 = y ∧ g y = p.2}, { convert this, ext ⟨x, z⟩, simp [struc.definable_fun] }, have dXZY : S.def_coords (set.univ : set ((X × Z) × Y)) := (X.is_def_coords.prod_univ Z.is_def_coords).prod_univ Y.is_def_coords, apply struc.def_coords.exists, apply struc.def_coords.inter, { let φ : (X × Z) × Y → X × Y := λ p, (p.1.1, p.2), have : is_reindexing R φ := is_reindexing.prod R ((is_reindexing.fst R).comp R (is_reindexing.fst R)) (is_reindexing.snd R), refine struc.def_coords.reindex dXZY this f.is_definable }, { let φ : (X × Z) × Y → Y × Z := λ p, (p.2, p.1.2), have : is_reindexing R φ := is_reindexing.prod R (is_reindexing.snd R) ((is_reindexing.snd R).comp R (is_reindexing.fst R)), refine struc.def_coords.reindex dXZY this g.is_definable }, end } lemma Hom.comp_id {X Y : Def S} (f : X ⟶ Y) : f.comp (Def.id X) = f := by { ext, refl } lemma Hom.id_comp {X Y : Def S} (f : X ⟶ Y) : (Def.id Y).comp f = f := by { ext, refl } lemma Hom.comp_assoc {W X Y Z : Def S} (h : Y ⟶ Z) (g : X ⟶ Y) (f : W ⟶ X) : (h.comp g).comp f = h.comp (g.comp f) := rfl def pt : Def S := { ambdim := 0, to_set := set.univ, is_definable := S.definable_univ 0 } instance pt.unique : unique (pt : Def S) := ⟨⟨⟨fin_zero_elim, trivial⟩⟩, λ x, by { ext i, fin_cases i }⟩ /-! ### Presheaf stuff -/ variables (S) -- TODO: generalize to Sort? class definable_psh (X : Type*) := (definable : Π {K : Def S}, (K → X) → Prop) (definable_precomp : ∀ {L K : Def S} (φ : L ⟶ K) {f : K → X}, definable f → definable (f ∘ φ)) -- TODO: apply bug?? def definable {X : Type*} [definable_psh S X] (x : X) : Prop := definable_psh.definable (λ (_ : (pt : Def S)), x) variables {S} def definable_psh.definable' {X : Type*} (h : definable_psh S X) {K : Def S} (f : K → X) : Prop := definable_psh.definable f instance Def.definable_psh (X : Def S) : definable_psh S X := { definable := λ K f, S.definable_fun f, definable_precomp := begin rintros L K φ f h, exact ((⟨f, h⟩ : K ⟶ X).comp φ).is_definable end } lemma pt.definable {K : Def S} {f : K → (pt : Def S)} : definable_psh.definable f := begin change S.definable _, convert K.is_def_coords using 1, ext x, split, { rintros ⟨⟨k, p⟩, -, rfl⟩, refine ⟨k, trivial, _⟩, simp }, { rintros ⟨k, -, rfl⟩, refine ⟨⟨k, default _⟩, show _ = _, by cc, _⟩, simp } end instance {X Y : Type*} [definable_psh S X] [definable_psh S Y] : definable_psh S (X × Y) := { definable := λ K f, definable_psh.definable (prod.fst ∘ f) ∧ definable_psh.definable (prod.snd ∘ f), definable_precomp := begin rintros L K φ _ ⟨h₁, h₂⟩, exact ⟨definable_psh.definable_precomp φ h₁, definable_psh.definable_precomp φ h₂⟩, end } instance function.definable_psh {X Y : Type*} [hX : definable_psh S X] [hY : definable_psh S Y] : definable_psh S (X → Y) := { definable := λ K f, ∀ (M : Def S) {g : M → K × X} (h : definable_psh.definable g), definable_psh.definable (function.uncurry f ∘ g), definable_precomp := λ L K φ f hf M g hg, begin suffices : definable_psh.definable (λ m, (φ (g m).1, (g m).2)), { apply hf M this }, split, { exact definable_psh.definable_precomp ⟨λ m, (g m).1, hg.1⟩ (show definable_psh.definable φ, from φ.is_definable) }, { exact hg.2 } end } lemma definable_fun {X Y : Type*} [definable_psh S X] [definable_psh S Y] {f : X → Y} : definable S f ↔ ∀ {K : Def S} (φ : K → X), definable_psh.definable φ → definable_psh.definable (f ∘ φ) := begin split; intro H, { intros K φ hφ, -- TODO: This proof is awkward specialize H K, swap, { exact (λ k, (default _, φ k)) }, exact H ⟨pt.definable, hφ⟩ }, { intros K φ hφ, exact H _ hφ.2 } end lemma definable_app {X Y : Type*} [definable_psh S X] [definable_psh S Y] {f : X → Y} (hf : definable S f) {x : X} (hx : definable S x) : definable S (f x) := begin rw definable_fun at hf, exact hf _ hx end lemma definable.app_ctx {Γ X Y : Type*} [definable_psh S Γ] [definable_psh S X] [definable_psh S Y] {f : Γ → X → Y} (hf : definable S f) {x : Γ → X} (hx : definable S x) : definable S (λ γ, f γ (x γ)) := begin rw definable_fun at ⊢ hf hx, intros K φ hφ, change definable_psh.definable (λ k, f (φ k) (x (φ k))), specialize hf φ hφ, specialize hf K, swap, { exact λ k, (k, x (φ k)) }, exact hf ⟨(Def.id K).is_definable, hx φ hφ⟩ end lemma definable_yoneda {K : Def S} {X : Type*} [definable_psh S X] {f : K → X} : definable_psh.definable f ↔ definable S f := begin rw definable_fun, split, { intros h L φ hφ, exact definable_psh.definable_precomp ⟨φ, hφ⟩ h }, { intros H, refine H id _, exact (Def.id K).is_definable } end lemma definable_prod_mk {X Y : Type*} [definable_psh S X] [definable_psh S Y] : definable S (prod.mk : X → Y → X × Y) := -- I have no idea how to come up with these proofs. -- Maybe we should tweak the type of definable_precomp (or write a lemma) -- that takes the underlying map φ and its proof of definability separately -- so that Lean has a better chance of guessing what's happening? λ L g h L' g' h', ⟨definable_psh.definable_precomp ⟨λ x, (g' x).fst, h'.1⟩ h.2, h'.2⟩ lemma definable_fst {X Y : Type*} [definable_psh S X] [definable_psh S Y] : definable S (prod.fst : X × Y → X) := begin rw definable_fun, intros K φ hφ, exact hφ.1 end lemma definable_snd {X Y : Type*} [definable_psh S X] [definable_psh S Y] : definable S (prod.snd : X × Y → Y) := begin rw definable_fun, intros K φ hφ, exact hφ.2 end lemma definable.prod_mk {W X Y : Type*} [definable_psh S W] [definable_psh S X] [definable_psh S Y] {f : W → X} (hf : definable S f) {g : W → Y} (hg : definable S g) : definable S (λ w, (f w, g w)) := begin rw definable_fun at ⊢ hf hg, intros K φ hφ, exact ⟨hf φ hφ, hg φ hφ⟩ end lemma definable_fun₂ {X Y Z : Type*} [definable_psh S X] [definable_psh S Y] [definable_psh S Z] {f : X → Y → Z} : (∀ {L : Def S} (φ : L → X), definable S φ → definable S (f ∘ φ)) ↔ (∀ {L : Def S} (φ : L → X × Y), definable S φ → definable S (function.uncurry f ∘ φ)) := begin split; intro H, { intros L φ hφ, rw definable_fun at ⊢, intros K ψ hψ, have : definable S (prod.fst ∘ φ), { rw ←definable_yoneda at ⊢ hφ, exact hφ.1 }, specialize H (λ l, (φ l).1) this, rw definable_fun at H, specialize H ψ hψ, specialize H K, swap, { exact λ k, (k, (φ (ψ k)).2) }, refine H ⟨(Def.id K).is_definable, _⟩, clear H, rw ←definable_yoneda at hφ, exact definable_psh.definable_precomp ⟨ψ, hψ⟩ hφ.2 }, { intros L φ hφ, rw definable_fun, intros K ψ hψ, intros K' ψ' hψ', dsimp [function.uncurry, function.comp], specialize H (λ k', (φ (ψ (ψ' k').1), (ψ' k').2)), have : definable S (λ k', (φ (ψ (ψ' k').1), (ψ' k').2)), { rw ←definable_yoneda at ⊢ hφ, split, { refine definable_psh.definable_precomp ⟨λ k', ψ (ψ' k').fst, _⟩ hφ, exact (Hom.comp ⟨ψ, hψ⟩ ⟨_, hψ'.1⟩).is_definable }, { exact hψ'.2 } }, specialize H this, rw definable_fun at H, exact H _ (Def.id _).is_definable } end lemma definable_comp {X Y Z : Type*} [definable_psh S X] [definable_psh S Y] [definable_psh S Z] : definable S (function.comp : (Y → Z) → (X → Y) → (X → Z)) := begin -- TODO: Make these 4 lines a lemma. rw definable_fun, intros L₁ φ₁ hφ₁, rw definable_yoneda at ⊢ hφ₁, revert L₁, -- end lemma rw definable_fun₂, rw definable_fun₂, rintros L φ hφ, rw ←definable_yoneda at hφ, obtain ⟨⟨hφ₁, hφ₂⟩, hφ₃⟩ := hφ, rw definable_yoneda at hφ₁ hφ₂ hφ₃, dsimp [function.uncurry, function.comp], exact hφ₁.app_ctx (hφ₂.app_ctx hφ₃) end lemma definable.comp {X Y Z : Type*} [definable_psh S X] [definable_psh S Y] [definable_psh S Z] {g : Y → Z} (hg : definable S g) {f : X → Y} (hf : definable S f) : definable S (g ∘ f) := definable_app (definable_app definable_comp hg) hf lemma definable.comp_ctx {Γ X Y Z : Type*} [definable_psh S Γ] [definable_psh S X] [definable_psh S Y] [definable_psh S Z] {g : Γ → Y → Z} (hg : definable S g) {f : Γ → X → Y} (hf : definable S f) : definable S (λ γ, g γ ∘ f γ) := definable.app_ctx (definable.comp definable_comp hg) hf lemma definable_curry {X Y Z : Type*} [definable_psh S X] [definable_psh S Y] [definable_psh S Z] : definable S (function.curry : (X × Y → Z) → X → Y → Z) := begin -- TODO: Make these 4 lines a lemma. rw definable_fun, intros L₁ φ₁ hφ₁, rw definable_yoneda at ⊢ hφ₁, revert L₁, -- end lemma rw definable_fun₂, rw definable_fun₂, rintros L φ hφ, rw ←definable_yoneda at hφ, obtain ⟨⟨hφ₁, hφ₂⟩, hφ₃⟩ := hφ, rw definable_yoneda at hφ₁ hφ₂ hφ₃, exact definable.app_ctx hφ₁ (hφ₂.prod_mk hφ₃) end instance Prop.definable_psh : definable_psh S Prop := { definable := λ K s, S.def_coords s, definable_precomp := λ L K φ f hf, sorry } -- preimage instance set.definable_psh {X : Type*} [definable_psh S X] : definable_psh S (set X) := show definable_psh S (X → Prop), by apply_instance lemma definable_and : definable S (∧) := begin suffices : definable S (λ r : Prop × Prop, r.1 ∧ r.2), { exact definable_app definable_curry this }, rw definable_fun, rintros K φ ⟨hφ₁, hφ₂⟩, exact hφ₁.inter hφ₂ end lemma definable.and {W : Type*} [definable_psh S W] {f : W → Prop} (hf : definable S f) {g : W → Prop} (hg : definable S g) : definable S (λ w, f w ∧ g w) := definable.app_ctx (definable.comp definable_and hf) hg lemma definable_inter {X : Type*} [definable_psh S X] : definable S ((∩) : set X → set X → set X) := begin suffices : definable S (λ (r : set X × set X) (x : X), r.1 x ∧ r.2 x), { exact (definable_app definable_curry this : _) }, -- TODO: Make these 4 lines a lemma. rw definable_fun, intros L₁ φ₁ hφ₁, rw definable_yoneda at ⊢ hφ₁, revert L₁, -- end lemma rw definable_fun₂, intros L φ hφ, rw ←definable_yoneda at hφ, obtain ⟨⟨hφ₁, hφ₂⟩, hφ₃⟩ := hφ, rw definable_yoneda at hφ₁ hφ₂ hφ₃, apply definable.and, { exact hφ₁.app_ctx hφ₃ }, { exact hφ₂.app_ctx hφ₃ } end /- instance foo {X Y : Type*} [definable_psh S X] [definable_psh S Y] {p : X → Prop} : definable_psh S (Π (x : X) (h : p x), Y) := sorry -/ lemma definable_definable {X : Type*} [definable_psh S X] : definable S (definable S : X → Prop) := begin rw definable_fun, intros K φ hφ, change S.def_coords _, convert K.is_def_coords, apply set.eq_univ_of_forall, intro x, change definable S (φ x), apply definable_app, { rw ←definable_yoneda, exact hφ }, -- now we need to know that every point of a representable guy -- is definable. this needs definable constants! sorry -- In general, the definable elements of a structure -- might or might not form a definable set. -- Counterexample: take (ℝ, +, *) without constants; -- definable elements are the algebraic real numbers, -- but only tame sets can be definable. -- However, once the structure has definable constants, -- then everything is definable and of course the set `univ` is definable. end -- Important note: it is definitely *not* true that -- `definable S` = `set.univ` on *every* X with a definable_psh structure; -- just represented guys. /- similarly, in an o-minimal structure: lemma definable_finite [DUNLO R] [o_minimal S] : definable S (set.finite : set R → Prop) := sorry because "finite" is equivalent to "does not contain an interval" on the tame = definable sets, which are the only ones that matter. -/ instance self : definable_psh S R := sorry variables (S) #exit class definable_fam {X : Type*} [definable_psh S X] (Y : X → Sort*) := (definable : Π {K : Def S} (x : K → X) (hx : definable_psh.definable x), (Π k, Y (x k)) → Prop) -- s.t. blah blah blah... instance moo {X : Type*} {Y : X → Type*} [definable_psh S X] [definable_fam S Y] : definable_psh S (Π (x : X), Y x) := sorry constant choice : Π (X : set R), X.nonempty → X example : definable S (set.nonempty : set R → Prop) := sorry instance : definable_fam S (set.nonempty : set R → Prop) := sorry instance pi {X : Type*} [definable_psh S X] {Y Z : X → Sort*} [definable_fam S Y] [definable_fam S Z] : definable_fam S (λ x, Y x → Z x) := sorry instance subtype {X : Type*} [definable_psh S X] : definable_fam S (λ (s : set X), s) := sorry example : definable S ((λ x hx₁ hx₂, choice x hx₁) : Π (X : set R), X.nonempty → X.nonempty → X) := sorry -- can we do without this `definable_fam` stuff? even as a hack? -- or maybe stick with this for now? /- TODO: * class represented [has_coordinates R X] expressing compatibility * prove this notion of definability of functions, sets reduces to the original one in the represented case Then: * prove stuff like `is_least : set R → R → Prop` is definable -/ end o_minimal
#' exm #' #' @name exm #' @docType package NULL
Formal statement is: lemma LIM_zero_cancel: fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F" Informal statement is: If $f$ converges to $l$ in the sense that $f(x) - l$ converges to $0$, then $f$ converges to $l$.
(* Property from Case-Analysis for Rippling and Inductive Proof, Moa Johansson, Lucas Dixon and Alan Bundy, ITP 2010. This Isabelle theory is produced using the TIP tool offered at the following website: https://github.com/tip-org/tools This file was originally provided as part of TIP benchmark at the following website: https://github.com/tip-org/benchmarks Yutaka Nagashima at CIIRC, CTU changed the TIP output theory file slightly to make it compatible with Isabelle2017. Some proofs were added by Yutaka Nagashima.*) theory TIP_prop_86 imports "../../Test_Base" begin datatype 'a list = nil2 | cons2 "'a" "'a list" datatype Nat = Z | S "Nat" fun x :: "Nat => Nat => bool" where "x (Z) (Z) = True" | "x (Z) (S z2) = False" | "x (S x2) (Z) = False" | "x (S x2) (S y2) = x x2 y2" fun elem :: "Nat => Nat list => bool" where "elem y (nil2) = False" | "elem y (cons2 z2 xs) = (if x y z2 then True else elem y xs)" fun t2 :: "Nat => Nat => bool" where "t2 y (Z) = False" | "t2 (Z) (S z2) = True" | "t2 (S x2) (S z2) = t2 x2 z2" fun ins :: "Nat => Nat list => Nat list" where "ins y (nil2) = cons2 y (nil2)" | "ins y (cons2 z2 xs) = (if t2 y z2 then cons2 y (cons2 z2 xs) else cons2 z2 (ins y xs))" theorem property0 : "((t2 y z) ==> ((elem y (ins z xs)) = (elem y xs)))" oops end
open import SOAS.Metatheory.Syntax -- Metatheory of a second-order syntax module SOAS.Metatheory {T : Set} (Syn : Syntax {T}) where open import SOAS.Families.Core {T} open import SOAS.Abstract.ExpStrength open Syntax Syn open CompatStrengths ⅀:CS public renaming (CoalgStr to ⅀:Str ; ExpStr to ⅀:ExpStr) open import SOAS.Metatheory.Algebra ⅀F public open import SOAS.Metatheory.Monoid ⅀F ⅀:Str public module Theory (𝔛 : Familyₛ) where open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 public open import SOAS.Metatheory.Semantics ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Traversal ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Renaming ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Coalgebraic ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public open import SOAS.Metatheory.Substitution ⅀F ⅀:Str 𝔛 (𝕋:Init 𝔛) public
Formal statement is: lemma homeomorphic_translation: fixes S :: "'a::real_normed_vector set" shows "S homeomorphic ((\<lambda>x. a + x) ` S)" Informal statement is: Any set $S$ is homeomorphic to its translation by any vector $a$.
[STATEMENT] lemma Sbis_Sym: "c \<approx>s d \<Longrightarrow> d \<approx>s c" [PROOF STATE] proof (prove) goal (1 subgoal): 1. c \<approx>s d \<Longrightarrow> d \<approx>s c [PROOF STEP] using Sbis_sym [PROOF STATE] proof (prove) using this: sym Sbis goal (1 subgoal): 1. c \<approx>s d \<Longrightarrow> d \<approx>s c [PROOF STEP] unfolding sym_def [PROOF STATE] proof (prove) using this: \<forall>x y. x \<approx>s y \<longrightarrow> y \<approx>s x goal (1 subgoal): 1. c \<approx>s d \<Longrightarrow> d \<approx>s c [PROOF STEP] by blast
Formal statement is: lemma convex_epigraphI: "convex_on S f \<Longrightarrow> convex S \<Longrightarrow> convex (epigraph S f)" Informal statement is: If $f$ is convex on $S$ and $S$ is convex, then the epigraph of $f$ is convex.
Formal statement is: lemma dist_minus: fixes x y :: "'a::real_normed_vector" shows "dist (- x) (- y) = dist x y" Informal statement is: The distance between two points is the same as the distance between their negatives.
lemma enn2real_plus:"a < top \<Longrightarrow> b < top \<Longrightarrow> enn2real (a + b) = enn2real a + enn2real b"
-- ---------------------------------------------------------------- [ Util.idr ] module Data.ML.Util %access public export ||| Convert a Bool to an Integer, as in C99's <stdbool.h>. ||| @ bool a Bool to convert boolToInteger : (bool : Bool) -> Integer boolToInteger False = 0 boolToInteger True = 1 ||| Cast Bools to Integers via `boolToInteger`. implementation Cast Bool Integer where cast = boolToInteger ||| Simplified clone of `numpy.unique`. ||| ||| Return the sorted unique elements of a list. ||| ||| ``` ||| unique = sort . nub ||| ``` unique : Ord a => List a -> List a unique = sort . nub -- --------------------------------------------------------------------- [ EOF ]
Formal statement is: lemma (in order_topology) at_within_Icc_at: "a < x \<Longrightarrow> x < b \<Longrightarrow> at x within {a..b} = at x" Informal statement is: If $a < x < b$, then the filter of neighbourhoods of $x$ within the interval $[a,b]$ is the same as the filter of neighbourhoods of $x$ in the real line.
-- @@stderr -- dtrace: failed to compile script test/unittest/speculation/err.D_ACT_SPEC.SpeculateWithCopyOut.d: [D_ACT_SPEC] line 36: destructive actions may not follow speculate( )
Formal statement is: lemma infnorm_triangle: fixes x :: "'a::euclidean_space" shows "infnorm (x + y) \<le> infnorm x + infnorm y" Informal statement is: The infnorm of a sum of two vectors is less than or equal to the sum of the infnorms of the vectors.
Formal statement is: lemma uniformly_continuous_on_closure: fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" assumes ucont: "uniformly_continuous_on S f" and cont: "continuous_on (closure S) f" shows "uniformly_continuous_on (closure S) f" Informal statement is: If $f$ is uniformly continuous on a set $S$ and continuous on the closure of $S$, then $f$ is uniformly continuous on the closure of $S$.
lemma LIMSEQ_le_const: "X \<longlonglongrightarrow> x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. a \<le> X n \<Longrightarrow> a \<le> x" for a x :: "'a::linorder_topology"
-- PalindromeMain.idr -- App for checking palindromes module Main import Exercises main : IO () main = repl "Enter a string: " (\s => format $ palindrome s) where format : Bool -> String format x = (show x) ++ "\n"
lemma complete_eq_closed: fixes S :: "('a::complete_space) set" shows "complete S \<longleftrightarrow> closed S"
Formal statement is: lemma in_components_connected: "c \<in> components s \<Longrightarrow> connected c" Informal statement is: If $c$ is a component of $s$, then $c$ is connected.
Formal statement is: lemma limitin_topspace: "limitin X f l F \<Longrightarrow> l \<in> topspace X" Informal statement is: If $f$ converges to $l$ in $X$, then $l$ is in the topological space $X$.
/- Copyright (c) 2021 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri -/ import topology.homeomorph /-! # Topological space structure on the opposite monoid and on the units group In this file we define `topological_space` structure on `Mᵐᵒᵖ`, `Mᵃᵒᵖ`, `Mˣ`, and `add_units M`. This file does not import definitions of a topological monoid and/or a continuous multiplicative action, so we postpone the proofs of `has_continuous_mul Mᵐᵒᵖ` etc till we have these definitions. ## Tags topological space, opposite monoid, units -/ variables {M X : Type*} open filter open_locale topological_space namespace mul_opposite /-- Put the same topological space structure on the opposite monoid as on the original space. -/ @[to_additive] instance [topological_space M] : topological_space Mᵐᵒᵖ := topological_space.induced (unop : Mᵐᵒᵖ → M) ‹_› variables [topological_space M] @[continuity, to_additive] lemma continuous_unop : continuous (unop : Mᵐᵒᵖ → M) := continuous_induced_dom @[continuity, to_additive] lemma continuous_op : continuous (op : M → Mᵐᵒᵖ) := continuous_induced_rng continuous_id @[to_additive] instance [t2_space M] : t2_space Mᵐᵒᵖ := ⟨λ x y h, separated_by_continuous mul_opposite.continuous_unop $ unop_injective.ne h⟩ /-- `mul_opposite.op` as a homeomorphism. -/ @[to_additive "`add_opposite.op` as a homeomorphism."] def op_homeomorph : M ≃ₜ Mᵐᵒᵖ := { to_equiv := op_equiv, continuous_to_fun := continuous_op, continuous_inv_fun := continuous_unop } @[simp, to_additive] lemma map_op_nhds (x : M) : map (op : M → Mᵐᵒᵖ) (𝓝 x) = 𝓝 (op x) := op_homeomorph.map_nhds_eq x @[simp, to_additive] lemma map_unop_nhds (x : Mᵐᵒᵖ) : map (unop : Mᵐᵒᵖ → M) (𝓝 x) = 𝓝 (unop x) := op_homeomorph.symm.map_nhds_eq x @[simp, to_additive] lemma comap_op_nhds (x : Mᵐᵒᵖ) : comap (op : M → Mᵐᵒᵖ) (𝓝 x) = 𝓝 (unop x) := op_homeomorph.comap_nhds_eq x @[simp, to_additive] end mul_opposite namespace units open mul_opposite variables [topological_space M] [monoid M] /-- The units of a monoid are equipped with a topology, via the embedding into `M × M`. -/ @[to_additive] instance : topological_space Mˣ := topological_space.induced (embed_product M) prod.topological_space @[to_additive] lemma continuous_embed_product : continuous (embed_product M) := continuous_induced_dom @[to_additive] lemma continuous_coe : continuous (coe : Mˣ → M) := (@continuous_embed_product M _ _).fst end units
Formal statement is: lemma upd_inj: "i < n \<Longrightarrow> j < n \<Longrightarrow> upd i = upd j \<longleftrightarrow> i = j" Informal statement is: If $i$ and $j$ are less than $n$, then the functions $upd_i$ and $upd_j$ are equal if and only if $i = j$.
[STATEMENT] lemma carrier_class: "x \<in> carrier cring_class_ops" [PROOF STATE] proof (prove) goal (1 subgoal): 1. x \<in> carrier cring_class_ops [PROOF STEP] by (simp add: cring_class_ops_def)
-- Reverse.idr -- Reversing string interactively, using 'repl' module Main main : IO () main = repl "> " reverse
Formal statement is: lemma measurable_const: "c \<in> space M' \<Longrightarrow> (\<lambda>x. c) \<in> measurable M M'" Informal statement is: If $c$ is in the space of the measure $M'$, then the constant function $x \mapsto c$ is measurable with respect to $M$.
-- https://www.codewars.com/kata/50654ddff44f800200000004 module Multiply %access export %default total multiply : Int -> Int -> Int multiply a b = a * b
import data.sigma.basic import tactic.ext namespace sigma universes u v section variables {α : Type u} {β β' : α → Type v} theorem eq_fst {s₁ s₂ : sigma β} : s₁ = s₂ → s₁.1 = s₂.1 := by cases s₁; cases s₂; cc theorem eq_snd {s₁ s₂ : sigma β} : s₁ = s₂ → s₁.2 == s₂.2 := by cases s₁; cases s₂; cc end section variables {α₁ α₂ : Type u} {β₁ : α₁ → Type v} {β₂ : α₂ → Type v} /-- A function on `sigma`s that is functional on `fst`s (preserves equality from argument to result). -/ def fst_functional (f : sigma β₁ → sigma β₂) : Prop := ∀ ⦃s t : sigma β₁⦄, s.1 = t.1 → (f s).1 = (f t).1 /-- A function on `sigma`s that is injective on `fst`s (preserves equality from result to argument). -/ def fst_injective (f : sigma β₁ → sigma β₂) : Prop := ∀ ⦃s t : sigma β₁⦄, (f s).1 = (f t).1 → s.1 = t.1 end /-- A function on `sigma`s bundled with its `fst`-injectivity property. -/ structure embedding {α₁ α₂ : Type u} (β₁ : α₁ → Type v) (β₂ : α₂ → Type v) := (to_fun : sigma β₁ → sigma β₂) (fst_inj : fst_injective to_fun) infixr ` s↪ `:25 := embedding namespace embedding variables {α₁ α₂ : Type u} {β₁ : α₁ → Type v} {β₂ : α₂ → Type v} instance : has_coe_to_fun (β₁ s↪ β₂) := ⟨_, embedding.to_fun⟩ @[simp] theorem to_fun_eq_coe (f : β₁ s↪ β₂) : f.to_fun = f := rfl @[simp] theorem coe_fn_mk (f : sigma β₁ → sigma β₂) (i : fst_injective f) : (mk f i : sigma β₁ → sigma β₂) = f := rfl theorem fst_inj' : ∀ (f : β₁ s↪ β₂), fst_injective f | ⟨_, h⟩ := h end embedding section map_id variables {α : Type u} {β₁ β₂ : α → Type v} @[simp] theorem map_id_eq_fst {s : sigma β₁} (f : ∀ a, β₁ a → β₂ a) : (s.map id f).1 = s.1 := by cases s; refl theorem map_id_fst_functional (f : ∀ a, β₁ a → β₂ a) : fst_functional (map id f) := λ _ _, by simp only [map_id_eq_fst]; exact id theorem map_id_fst_injective (f : ∀ a, β₁ a → β₂ a) : fst_injective (map id f) := λ _ _, by simp only [map_id_eq_fst]; exact id /-- Construct an `embedding` with `id` on `fst`. -/ def embedding.mk₂ (f : ∀ a, β₁ a → β₂ a) : embedding β₁ β₂ := ⟨_, map_id_fst_injective f⟩ end map_id section variables {α : Type u} {β : α → Type v} {R : α → α → Prop} /-- A relation `R` on `fst` values lifted to the `sigma`. This is useful where you might otherwise use the term `λ s₁ s₂, R s₁.1 s₂.1`. -/ def fst_rel (R : α → α → Prop) (s₁ s₂ : sigma β) : Prop := R s₁.1 s₂.1 @[simp] theorem fst_rel_def {s₁ s₂ : sigma β} : fst_rel R s₁ s₂ = R s₁.1 s₂.1 := rfl instance fst_rel_decidable [d : decidable_rel R] : decidable_rel (@fst_rel _ β R) | s₁ s₂ := @d s₁.1 s₂.1 theorem fst_rel.refl (h : reflexive R) : reflexive (@fst_rel _ β R) := λ s, h s.1 theorem fst_rel.symm (h : symmetric R) : symmetric (@fst_rel _ β R) := λ s₁ s₂ (p : R s₁.1 s₂.1), h p theorem fst_rel.trans (h : transitive R) : transitive (@fst_rel _ β R) := λ s₁ s₂ s₃ (p : R s₁.1 s₂.1) (q : R s₂.1 s₃.1), h p q end section variables {α : Type u} {β : α → Type v} theorem fst_functional_id : fst_functional (@id (sigma β)) := λ s t h, h theorem fst_injective_id : fst_injective (@id (sigma β)) := λ s t h, h @[refl] protected def embedding.refl (β : α → Type v) : β s↪ β := ⟨_, fst_injective_id⟩ @[simp] theorem embedding.refl_apply (s : sigma β) : embedding.refl β s = s := rfl end section variables {α₁ α₂ α₃ : Type u} variables {β₁ : α₁ → Type v} {β₂ : α₂ → Type v} {β₃ : α₃ → Type v} variables {g : sigma β₂ → sigma β₃} {f : sigma β₁ → sigma β₂} theorem fst_functional_comp (gf : fst_functional g) (ff : fst_functional f) : fst_functional (g ∘ f) := λ s t h, gf (ff h) theorem fst_injective_comp (gi : fst_injective g) (fi : fst_injective f) : fst_injective (g ∘ f) := λ s t h, fi (gi h) @[trans] protected def embedding.trans (f : β₁ s↪ β₂) (g : β₂ s↪ β₃) : β₁ s↪ β₃ := ⟨_, fst_injective_comp g.fst_inj f.fst_inj⟩ @[simp] theorem embedding.trans_apply (f : β₁ s↪ β₂) (g : β₂ s↪ β₃) (s : sigma β₁) : (f.trans g) s = g (f s) := rfl @[extensionality] lemma ext {x₀ x₁ : sigma β₁} (h₀ : x₀.1 = x₁.1) (h₁ : x₀.1 = x₁.1 → x₀.2 == x₁.2) : x₀ = x₁ := by casesm* sigma _; cases h₀; cases h₁ h₀; refl lemma eta (x : sigma β₁) : sigma.mk x.1 x.2 = x := by cases x; refl end end sigma
[STATEMENT] lemma trim_gtt_lang: "gtt_lang (trim_gtt G) = gtt_lang G" [PROOF STATE] proof (prove) goal (1 subgoal): 1. gtt_lang (trim_gtt G) = gtt_lang G [PROOF STEP] unfolding trim_gtt_def comp_def gtt_only_prod_lang gtt_only_reach_lang [PROOF STATE] proof (prove) goal (1 subgoal): 1. gtt_lang G = gtt_lang G [PROOF STEP] ..
Formal statement is: lemma islimpt_insert: fixes x :: "'a::t1_space" shows "x islimpt (insert a s) \<longleftrightarrow> x islimpt s" Informal statement is: A point $x$ is a limit point of a set $S$ if and only if $x$ is a limit point of $S \cup \{a\}$.
Formal statement is: lemma small_trans: "f \<in> l F (g) \<Longrightarrow> g \<in> l F (h) \<Longrightarrow> f \<in> l F (h)" Informal statement is: If $f$ is small with respect to $g$ and $g$ is small with respect to $h$, then $f$ is small with respect to $h$.
(* Author: Tobias Nipkow *) theory Abs_Int1_const imports Abs_Int1 begin subsection "Constant Propagation" datatype const = Const val | Any fun \<gamma>_const where "\<gamma>_const (Const i) = {i}" | "\<gamma>_const (Any) = UNIV" fun plus_const where "plus_const (Const i) (Const j) = Const(i+j)" | "plus_const _ _ = Any" lemma plus_const_cases: "plus_const a1 a2 = (case (a1,a2) of (Const i, Const j) \<Rightarrow> Const(i+j) | _ \<Rightarrow> Any)" by(auto split: prod.split const.split) instantiation const :: semilattice_sup_top begin fun less_eq_const where "x \<le> y = (y = Any | x=y)" definition "x < (y::const) = (x \<le> y & \<not> y \<le> x)" fun sup_const where "x \<squnion> y = (if x=y then x else Any)" definition "\<top> = Any" instance proof (standard, goal_cases) case 1 thus ?case by (rule less_const_def) next case (2 x) show ?case by (cases x) simp_all next case (3 x y z) thus ?case by(cases z, cases y, cases x, simp_all) next case (4 x y) thus ?case by(cases x, cases y, simp_all, cases y, simp_all) next case (6 x y) thus ?case by(cases x, cases y, simp_all) next case (5 x y) thus ?case by(cases y, cases x, simp_all) next case (7 x y z) thus ?case by(cases z, cases y, cases x, simp_all) next case 8 thus ?case by(simp add: top_const_def) qed end global_interpretation Val_semilattice where \<gamma> = \<gamma>_const and num' = Const and plus' = plus_const proof (standard, goal_cases) case (1 a b) thus ?case by(cases a, cases b, simp, simp, cases b, simp, simp) next case 2 show ?case by(simp add: top_const_def) next case 3 show ?case by simp next case 4 thus ?case by(auto simp: plus_const_cases split: const.split) qed global_interpretation Abs_Int where \<gamma> = \<gamma>_const and num' = Const and plus' = plus_const defines AI_const = AI and step_const = step' and aval'_const = aval' .. subsubsection "Tests" definition "steps c i = (step_const \<top> ^^ i) (bot c)" value "show_acom (steps test1_const 0)" value "show_acom (steps test1_const 1)" value "show_acom (steps test1_const 2)" value "show_acom (steps test1_const 3)" value "show_acom (the(AI_const test1_const))" value "show_acom (the(AI_const test2_const))" value "show_acom (the(AI_const test3_const))" value "show_acom (steps test4_const 0)" value "show_acom (steps test4_const 1)" value "show_acom (steps test4_const 2)" value "show_acom (steps test4_const 3)" value "show_acom (steps test4_const 4)" value "show_acom (the(AI_const test4_const))" value "show_acom (steps test5_const 0)" value "show_acom (steps test5_const 1)" value "show_acom (steps test5_const 2)" value "show_acom (steps test5_const 3)" value "show_acom (steps test5_const 4)" value "show_acom (steps test5_const 5)" value "show_acom (steps test5_const 6)" value "show_acom (the(AI_const test5_const))" value "show_acom (steps test6_const 0)" value "show_acom (steps test6_const 1)" value "show_acom (steps test6_const 2)" value "show_acom (steps test6_const 3)" value "show_acom (steps test6_const 4)" value "show_acom (steps test6_const 5)" value "show_acom (steps test6_const 6)" value "show_acom (steps test6_const 7)" value "show_acom (steps test6_const 8)" value "show_acom (steps test6_const 9)" value "show_acom (steps test6_const 10)" value "show_acom (steps test6_const 11)" value "show_acom (steps test6_const 12)" value "show_acom (steps test6_const 13)" value "show_acom (the(AI_const test6_const))" text{* Monotonicity: *} global_interpretation Abs_Int_mono where \<gamma> = \<gamma>_const and num' = Const and plus' = plus_const proof (standard, goal_cases) case 1 thus ?case by(auto simp: plus_const_cases split: const.split) qed text{* Termination: *} definition m_const :: "const \<Rightarrow> nat" where "m_const x = (if x = Any then 0 else 1)" global_interpretation Abs_Int_measure where \<gamma> = \<gamma>_const and num' = Const and plus' = plus_const and m = m_const and h = "1" proof (standard, goal_cases) case 1 thus ?case by(auto simp: m_const_def split: const.splits) next case 2 thus ?case by(auto simp: m_const_def less_const_def split: const.splits) qed thm AI_Some_measure end
#' sistmr. #' #' @name sistmr #' @docType package #' #' @description #' This package contains functions common to members of the SISTM team. NULL
theory MyList imports Main begin fun itrev :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where "itrev [] ys = ys" | "itrev (x#xs) ys = itrev xs (x#ys)" lemma "itrev xs [] = rev xs" apply(induction xs) apply(auto) done fun add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "add 0 n = n" | "add (Suc m) n = Suc (add m n)" fun iadd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "iadd 0 n = n" | "iadd (Suc m) n = iadd m (Suc n)" value "iadd 3 2" value "iadd 2 0" value "iadd 0 0" lemma [simp] : "add m (Suc n) = Suc (add m n)" apply(induction m) apply(auto) done lemma "iadd m n = add m n" apply(induction m arbitrary: n) apply(auto) done end
[STATEMENT] lemma funpow_fixpoint: "f x = x \<Longrightarrow> (f ^^ n) x = x" [PROOF STATE] proof (prove) goal (1 subgoal): 1. f x = x \<Longrightarrow> (f ^^ n) x = x [PROOF STEP] by (induct n) auto
corollary open_bijective_linear_image_eq: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "linear f" "bij f" shows "open(f ` A) \<longleftrightarrow> open A"
/- Copyright (c) 2019 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Scott Morrison, Simon Hudon -/ import algebra.hom.equiv.basic import category_theory.groupoid import category_theory.opposites import group_theory.group_action.defs /-! # Endomorphisms > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. Definition and basic properties of endomorphisms and automorphisms of an object in a category. For each `X : C`, we provide `End X := X ⟶ X` with a monoid structure, and `Aut X := X ≅ X ` with a group structure. -/ universes v v' u u' namespace category_theory /-- Endomorphisms of an object in a category. Arguments order in multiplication agrees with `function.comp`, not with `category.comp`. -/ def End {C : Type u} [category_struct.{v} C] (X : C) := X ⟶ X namespace End section struct variables {C : Type u} [category_struct.{v} C] (X : C) instance has_one : has_one (End X) := ⟨𝟙 X⟩ instance inhabited : inhabited (End X) := ⟨𝟙 X⟩ /-- Multiplication of endomorphisms agrees with `function.comp`, not `category_struct.comp`. -/ instance has_mul : has_mul (End X) := ⟨λ x y, y ≫ x⟩ variable {X} /-- Assist the typechecker by expressing a morphism `X ⟶ X` as a term of `End X`. -/ def of (f : X ⟶ X) : End X := f /-- Assist the typechecker by expressing an endomorphism `f : End X` as a term of `X ⟶ X`. -/ def as_hom (f : End X) : X ⟶ X := f @[simp] lemma one_def : (1 : End X) = 𝟙 X := rfl @[simp] lemma mul_def (xs ys : End X) : xs * ys = ys ≫ xs := rfl end struct /-- Endomorphisms of an object form a monoid -/ instance monoid {C : Type u} [category.{v} C] {X : C} : monoid (End X) := { mul_one := category.id_comp, one_mul := category.comp_id, mul_assoc := λ x y z, (category.assoc z y x).symm, ..End.has_mul X, ..End.has_one X } section mul_action variables {C : Type u} [category.{v} C] open opposite instance mul_action_right {X Y : C} : mul_action (End Y) (X ⟶ Y) := { smul := λ r f, f ≫ r, one_smul := category.comp_id, mul_smul := λ r s f, eq.symm $ category.assoc _ _ _ } instance mul_action_left {X : Cᵒᵖ} {Y : C} : mul_action (End X) (unop X ⟶ Y) := { smul := λ r f, r.unop ≫ f, one_smul := category.id_comp, mul_smul := λ r s f, category.assoc _ _ _ } lemma smul_right {X Y : C} {r : End Y} {f : X ⟶ Y} : r • f = f ≫ r := rfl lemma smul_left {X : Cᵒᵖ} {Y : C} {r : (End X)} {f : unop X ⟶ Y} : r • f = r.unop ≫ f := rfl end mul_action /-- In a groupoid, endomorphisms form a group -/ instance group {C : Type u} [groupoid.{v} C] (X : C) : group (End X) := { mul_left_inv := groupoid.comp_inv, inv := groupoid.inv, ..End.monoid } end End lemma is_unit_iff_is_iso {C : Type u} [category.{v} C] {X : C} (f : End X) : is_unit (f : End X) ↔ is_iso f := ⟨λ h, { out := ⟨h.unit.inv, ⟨h.unit.inv_val, h.unit.val_inv⟩⟩ }, λ h, by exactI ⟨⟨f, inv f, by simp, by simp⟩, rfl⟩⟩ variables {C : Type u} [category.{v} C] (X : C) /-- Automorphisms of an object in a category. The order of arguments in multiplication agrees with `function.comp`, not with `category.comp`. -/ def Aut (X : C) := X ≅ X namespace Aut instance inhabited : inhabited (Aut X) := ⟨iso.refl X⟩ instance : group (Aut X) := by refine_struct { one := iso.refl X, inv := iso.symm, mul := flip iso.trans, div := _, npow := @npow_rec (Aut X) ⟨iso.refl X⟩ ⟨flip iso.trans⟩, zpow := @zpow_rec (Aut X) ⟨iso.refl X⟩ ⟨flip iso.trans⟩ ⟨iso.symm⟩ }; intros; try { refl }; ext; simp [flip, (*), monoid.mul, mul_one_class.mul, mul_one_class.one, has_one.one, monoid.one, has_inv.inv] lemma Aut_mul_def (f g : Aut X) : f * g = g.trans f := rfl lemma Aut_inv_def (f : Aut X) : f ⁻¹ = f.symm := rfl /-- Units in the monoid of endomorphisms of an object are (multiplicatively) equivalent to automorphisms of that object. -/ def units_End_equiv_Aut : (End X)ˣ ≃* Aut X := { to_fun := λ f, ⟨f.1, f.2, f.4, f.3⟩, inv_fun := λ f, ⟨f.1, f.2, f.4, f.3⟩, left_inv := λ ⟨f₁, f₂, f₃, f₄⟩, rfl, right_inv := λ ⟨f₁, f₂, f₃, f₄⟩, rfl, map_mul' := λ f g, by rcases f; rcases g; refl } /-- Isomorphisms induce isomorphisms of the automorphism group -/ def Aut_mul_equiv_of_iso {X Y : C} (h : X ≅ Y) : Aut X ≃* Aut Y := { to_fun := λ x, ⟨h.inv ≫ x.hom ≫ h.hom, h.inv ≫ x.inv ≫ h.hom⟩, inv_fun := λ y, ⟨h.hom ≫ y.hom ≫ h.inv, h.hom ≫ y.inv ≫ h.inv⟩, left_inv := by tidy, right_inv := by tidy, map_mul' := by simp [Aut_mul_def] } end Aut namespace functor variables {D : Type u'} [category.{v'} D] (f : C ⥤ D) (X) /-- `f.map` as a monoid hom between endomorphism monoids. -/ @[simps] def map_End : End X →* End (f.obj X) := { to_fun := functor.map f, map_mul' := λ x y, f.map_comp y x, map_one' := f.map_id X } /-- `f.map_iso` as a group hom between automorphism groups. -/ def map_Aut : Aut X →* Aut (f.obj X) := { to_fun := f.map_iso, map_mul' := λ x y, f.map_iso_trans y x, map_one' := f.map_iso_refl X } end functor end category_theory