Datasets:
File size: 12,325 Bytes
4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 ed15ebb 4afe2b4 8a503fc 4afe2b4 8a503fc be6575d 4afe2b4 be6575d 4afe2b4 1f97ac4 be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 8a503fc be6575d 4afe2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
---
task_categories:
- visual-question-answering
language:
- en
tags:
- Vision
- food
- recipe
configs:
- config_name: Recipe1M
data_files:
- split: test
path: food_eval_multitask_v2/data-*.arrow
- config_name: Nutrition5K
data_files:
- split: test
path: nutrition50k/data-*.arrow
- config_name: Food101
data_files:
- split: test
path: food101/data-*.arrow
- config_name: FoodSeg103
data_files:
- split: test
path: foodseg103/data-*.arrow
---
# Adapting Multimodal Large Language Models to Domains via Post-Training
This repos contains the **food visual instruction tasks for evaluating MLLMs** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
</p>
## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
| Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark |
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - |
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) |
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) |
**Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer)
## 1. Download Data
You can load datasets using the `datasets` library:
```python
from datasets import load_dataset
# Choose the task name from the list of available tasks
task_name = 'FoodSeg103' # Options: 'Food101', 'FoodSeg103', 'Nutrition5K', 'Recipe1M'
# Load the dataset for the chosen task
data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
print(list(data)[0])
```
The mapping between category names and indices for `Food101`, `FoodSeg103`, and `Nutrition5K` datasets is provided in the following files:
<details>
<summary> Click to expand </summary>
- Food101: `food101_name_to_label_map.json`
- FoodSeg103: `foodSeg103_id2label.json`
- Nutrition5K: `nutrition5k_ingredients.py`
#### Example Usages:
**Food101**
```python
import json
# Load the mapping file
map_path = 'food101_name_to_label_map.json'
name_to_label_map = json.load(open(map_path))
name_to_label_map = {key.replace('_', ' '): value for key, value in name_to_label_map.items()}
# Reverse mapping: label to name
label_to_name_map = {value: key for key, value in name_to_label_map.items()}
```
**FoodSeg103**
```python
import json
# Load the mapping file
map_path = 'foodSeg103_id2label.json'
id2name_map = json.load(open(map_path))
# Remove background and irrelevant labels
id2name_map.pop("0") # Background
id2name_map.pop("103") # Other ingredients
# Convert keys to integers
id2name_map = {int(key): value for key, value in id2name_map.items()}
# Create reverse mapping: name to ID
name2id_map = {value: key for key, value in id2name_map.items()}
```
**Nutrition5K**
```python
from nutrition5k_ingredients import all_ingredients
# Create mappings
id2name_map = dict(zip(range(0, len(all_ingredients)), all_ingredients))
name2id_map = {value: key for key, value in id2name_map.items()}
```
</details>
## 2. Evaluate Any MLLM Compatible with vLLM on the Food Benchmarks
We provide a guide to directly evaluate MLLMs such as LLaVA-v1.6 ([open-source version](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)), Qwen2-VL-Instruct, and Llama-3.2-Vision-Instruct.
**The dataset loading script is embedded in the inference code, so you can directly run the following commands to evaluate MLLMs.**
To evaluate other MLLMs, refer to [this guide](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py) for modifying the `BaseTask` class in the [vllm_inference/utils/task.py](https://github.com/bigai-ai/QA-Synthesizer/blob/main/vllm_inference/utils/task.py) file.
Feel free reach out to us for assistance!
### 1) Setup
Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source).
As recommended in the official vLLM documentation, install vLLM in a **fresh new** conda environment:
```bash
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm # Ensure vllm>=0.6.2 for compatibility with Llama-3.2. If Llama-3.2 is not used, vllm==0.6.1 is sufficient.
```
Clone the repository and navigate to the inference directory:
```bash
git clone https://github.com/bigai-ai/QA-Synthesizer.git
cd QA-Synthesizer/vllm_inference
RESULTS_DIR=./eval_results # Directory for saving evaluation scores
```
### 2) Evaluate
Run the following commands:
```bash
# Specify the domain: choose from ['food', 'Recipe1M', 'Nutrition5K', 'Food101', 'FoodSeg103']
# 'food' runs inference on all food tasks; others run on individual tasks.
DOMAIN='food'
# Specify the model type: choose from ['llava', 'qwen2_vl', 'mllama']
# For LLaVA-v1.6, Qwen2-VL, and Llama-3.2-Vision-Instruct, respectively.
MODEL_TYPE='qwen2_vl'
# Set the model repository ID on Hugging Face. Examples:
# "Qwen/Qwen2-VL-2B-Instruct", "AdaptLLM/food-Qwen2-VL-2B-Instruct" for MLLMs based on Qwen2-VL-Instruct.
# "meta-llama/Llama-3.2-11B-Vision-Instruct", "AdaptLLM/food-Llama-3.2-11B-Vision-Instruct" for MLLMs based on Llama-3.2-Vision-Instruct.
# "AdaptLLM/food-LLaVA-NeXT-Llama3-8B" for MLLMs based on LLaVA-v1.6.
MODEL=AdaptLLM/food-Qwen2-VL-2B-Instruct
# Set the directory for saving model prediction outputs:
OUTPUT_DIR=./output/AdaMLLM-food-LLaVA-8B_${DOMAIN}
# Run inference with data parallelism; adjust CUDA devices as needed:
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
```
Detailed scripts to reproduce our results:
<details>
<summary> Click to expand </summary>
```bash
# Choose from ['food', 'Recipe1M', 'Nutrition5K', 'Food101', 'FoodSeg103']
# 'food' runs inference on all food tasks; others run on a single task
DOMAIN='food'
# 1. LLaVA-v1.6-8B
MODEL_TYPE='llava'
MODEL=AdaptLLM/food-LLaVA-NeXT-Llama3-8B # HuggingFace repo ID for AdaMLLM-food-8B
OUTPUT_DIR=./output/AdaMLLM-food-LLaVA-8B_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
# 2. Qwen2-VL-2B
MODEL_TYPE='qwen2_vl'
MODEL=Qwen/Qwen2-VL-2B-Instruct # HuggingFace repo ID for Qwen2-VL
OUTPUT_DIR=./output/Qwen2-VL-2B-Instruct_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
MODEL=AdaptLLM/food-Qwen2-VL-2B-Instruct # HuggingFace repo ID for AdaMLLM-food-2B
OUTPUT_DIR=./output/AdaMLLM-food-Qwen-2B_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
# 3. Llama-3.2-11B
MODEL_TYPE='mllama'
MODEL=meta-llama/Llama-3.2-11B-Vision-Instruct # HuggingFace repo ID for Llama3.2
OUTPUT_DIR=./output/Llama-3.2-11B-Vision-Instruct_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
MODEL=AdaptLLM/food-Llama-3.2-11B-Vision-Instruct # HuggingFace repo ID for AdaMLLM-food-11B
OUTPUT_DIR=./output/AdaMLLM-food-Llama3.2-2B_${DOMAIN}
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
```
</details>
### 3) Results
The evaluation results are stored in `./eval_results`, and the model prediction outputs are in `./output`.
## Citation
If you find our work helpful, please cite us.
AdaMLLM
```bibtex
@article{adamllm,
title={On Domain-Specific Post-Training for Multimodal Large Language Models},
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
journal={arXiv preprint arXiv:2411.19930},
year={2024}
}
```
[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
adaptllm,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```
|