code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def attention_lm_moe_memory_efficient(): """Memory-efficient version.""" hparams = attention_lm_moe_large() hparams.diet_experts = True hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.layer_prepostprocess_dropout = 0.0 hparams.memory_efficient_ffn = True hparams.attention_type = AttentionType.MEMORY_EFFICIENT hparams.num_heads = 8 hparams.factored_logits = True return hparams
Memory-efficient version.
Below is the the instruction that describes the task: ### Input: Memory-efficient version. ### Response: def attention_lm_moe_memory_efficient(): """Memory-efficient version.""" hparams = attention_lm_moe_large() hparams.diet_experts = True hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" hparams.layer_prepostprocess_dropout = 0.0 hparams.memory_efficient_ffn = True hparams.attention_type = AttentionType.MEMORY_EFFICIENT hparams.num_heads = 8 hparams.factored_logits = True return hparams
def figure_rst(figure_list, sources_dir): """Generate RST for a list of PNG filenames. Depending on whether we have one or more figures, we use a single rst call to 'image' or a horizontal list. Parameters ---------- figure_list : list List of strings of the figures' absolute paths. sources_dir : str absolute path of Sphinx documentation sources Returns ------- images_rst : str rst code to embed the images in the document """ figure_paths = [os.path.relpath(figure_path, sources_dir) .replace(os.sep, '/').lstrip('/') for figure_path in figure_list] images_rst = "" if len(figure_paths) == 1: figure_name = figure_paths[0] images_rst = SINGLE_IMAGE % figure_name elif len(figure_paths) > 1: images_rst = HLIST_HEADER for figure_name in figure_paths: images_rst += HLIST_IMAGE_TEMPLATE % figure_name return images_rst
Generate RST for a list of PNG filenames. Depending on whether we have one or more figures, we use a single rst call to 'image' or a horizontal list. Parameters ---------- figure_list : list List of strings of the figures' absolute paths. sources_dir : str absolute path of Sphinx documentation sources Returns ------- images_rst : str rst code to embed the images in the document
Below is the the instruction that describes the task: ### Input: Generate RST for a list of PNG filenames. Depending on whether we have one or more figures, we use a single rst call to 'image' or a horizontal list. Parameters ---------- figure_list : list List of strings of the figures' absolute paths. sources_dir : str absolute path of Sphinx documentation sources Returns ------- images_rst : str rst code to embed the images in the document ### Response: def figure_rst(figure_list, sources_dir): """Generate RST for a list of PNG filenames. Depending on whether we have one or more figures, we use a single rst call to 'image' or a horizontal list. Parameters ---------- figure_list : list List of strings of the figures' absolute paths. sources_dir : str absolute path of Sphinx documentation sources Returns ------- images_rst : str rst code to embed the images in the document """ figure_paths = [os.path.relpath(figure_path, sources_dir) .replace(os.sep, '/').lstrip('/') for figure_path in figure_list] images_rst = "" if len(figure_paths) == 1: figure_name = figure_paths[0] images_rst = SINGLE_IMAGE % figure_name elif len(figure_paths) > 1: images_rst = HLIST_HEADER for figure_name in figure_paths: images_rst += HLIST_IMAGE_TEMPLATE % figure_name return images_rst
def _stack_bands(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two rasters with non overlapping bands by stacking the bands. """ assert set(one.band_names).intersection(set(other.band_names)) == set() # We raise an error in the bands are the same. See above. if one.band_names == other.band_names: raise ValueError("rasters have the same bands, use another merge strategy") # Apply "or" to the mask in the same way rasterio does, see # https://mapbox.github.io/rasterio/topics/masks.html#dataset-masks # In other words, mask the values that are already masked in either # of the two rasters, since one mask per band is not supported new_mask = np.ma.getmaskarray(one.image)[0] | np.ma.getmaskarray(other.image)[0] # Concatenate the data along the band axis and apply the mask new_image = np.ma.masked_array( np.concatenate([ one.image.data, other.image.data ]), mask=[new_mask] * (one.image.shape[0] + other.image.shape[0]) ) new_bands = one.band_names + other.band_names # We don't copy image and mask here, due to performance issues, # this output should not use without eventually being copied # In this context we are copying the object in the end of merge_all merge_first and merge return _Raster(image=new_image, band_names=new_bands)
Merges two rasters with non overlapping bands by stacking the bands.
Below is the the instruction that describes the task: ### Input: Merges two rasters with non overlapping bands by stacking the bands. ### Response: def _stack_bands(one, other): # type: (_Raster, _Raster) -> _Raster """Merges two rasters with non overlapping bands by stacking the bands. """ assert set(one.band_names).intersection(set(other.band_names)) == set() # We raise an error in the bands are the same. See above. if one.band_names == other.band_names: raise ValueError("rasters have the same bands, use another merge strategy") # Apply "or" to the mask in the same way rasterio does, see # https://mapbox.github.io/rasterio/topics/masks.html#dataset-masks # In other words, mask the values that are already masked in either # of the two rasters, since one mask per band is not supported new_mask = np.ma.getmaskarray(one.image)[0] | np.ma.getmaskarray(other.image)[0] # Concatenate the data along the band axis and apply the mask new_image = np.ma.masked_array( np.concatenate([ one.image.data, other.image.data ]), mask=[new_mask] * (one.image.shape[0] + other.image.shape[0]) ) new_bands = one.band_names + other.band_names # We don't copy image and mask here, due to performance issues, # this output should not use without eventually being copied # In this context we are copying the object in the end of merge_all merge_first and merge return _Raster(image=new_image, band_names=new_bands)
def handle_abs(self): """Gets the state as the raw abolute numbers.""" # pylint: disable=no-member x_raw = self.microbit.accelerometer.get_x() y_raw = self.microbit.accelerometer.get_y() x_abs = ('Absolute', 0x00, x_raw) y_abs = ('Absolute', 0x01, y_raw) return x_abs, y_abs
Gets the state as the raw abolute numbers.
Below is the the instruction that describes the task: ### Input: Gets the state as the raw abolute numbers. ### Response: def handle_abs(self): """Gets the state as the raw abolute numbers.""" # pylint: disable=no-member x_raw = self.microbit.accelerometer.get_x() y_raw = self.microbit.accelerometer.get_y() x_abs = ('Absolute', 0x00, x_raw) y_abs = ('Absolute', 0x01, y_raw) return x_abs, y_abs
def walk_processes(top, topname='top', topdown=True, ignoreFlag=False): """Generator for recursive tree of climlab processes Starts walking from climlab process ``top`` and generates a complete list of all processes and sub-processes that are managed from ``top`` process. ``level`` indicades the rank of specific process in the process hierarchy: .. note:: * level 0: ``top`` process * level 1: sub-processes of ``top`` process * level 2: sub-sub-processes of ``top`` process (=subprocesses of level 1 processes) The method is based on os.walk(). :param top: top process from where walking should start :type top: :class:`~climlab.process.process.Process` :param str topname: name of top process [default: 'top'] :param bool topdown: whether geneterate *process_types* in regular or in reverse order [default: True] :param bool ignoreFlag: whether ``topdown`` flag should be ignored or not [default: False] :returns: name (str), proc (process), level (int) :Example: :: >>> import climlab >>> from climlab.utils import walk >>> model = climlab.EBM() >>> for name, proc, top_proc in walk.walk_processes(model): ... print name ... top diffusion LW iceline cold_albedo warm_albedo albedo insolation """ if not ignoreFlag: flag = topdown else: flag = True proc = top level = 0 if flag: yield topname, proc, level if len(proc.subprocess) > 0: # there are sub-processes level += 1 for name, subproc in proc.subprocess.items(): for name2, subproc2, level2 in walk_processes(subproc, topname=name, topdown=subproc.topdown, ignoreFlag=ignoreFlag): yield name2, subproc2, level+level2 if not flag: yield topname, proc, level
Generator for recursive tree of climlab processes Starts walking from climlab process ``top`` and generates a complete list of all processes and sub-processes that are managed from ``top`` process. ``level`` indicades the rank of specific process in the process hierarchy: .. note:: * level 0: ``top`` process * level 1: sub-processes of ``top`` process * level 2: sub-sub-processes of ``top`` process (=subprocesses of level 1 processes) The method is based on os.walk(). :param top: top process from where walking should start :type top: :class:`~climlab.process.process.Process` :param str topname: name of top process [default: 'top'] :param bool topdown: whether geneterate *process_types* in regular or in reverse order [default: True] :param bool ignoreFlag: whether ``topdown`` flag should be ignored or not [default: False] :returns: name (str), proc (process), level (int) :Example: :: >>> import climlab >>> from climlab.utils import walk >>> model = climlab.EBM() >>> for name, proc, top_proc in walk.walk_processes(model): ... print name ... top diffusion LW iceline cold_albedo warm_albedo albedo insolation
Below is the the instruction that describes the task: ### Input: Generator for recursive tree of climlab processes Starts walking from climlab process ``top`` and generates a complete list of all processes and sub-processes that are managed from ``top`` process. ``level`` indicades the rank of specific process in the process hierarchy: .. note:: * level 0: ``top`` process * level 1: sub-processes of ``top`` process * level 2: sub-sub-processes of ``top`` process (=subprocesses of level 1 processes) The method is based on os.walk(). :param top: top process from where walking should start :type top: :class:`~climlab.process.process.Process` :param str topname: name of top process [default: 'top'] :param bool topdown: whether geneterate *process_types* in regular or in reverse order [default: True] :param bool ignoreFlag: whether ``topdown`` flag should be ignored or not [default: False] :returns: name (str), proc (process), level (int) :Example: :: >>> import climlab >>> from climlab.utils import walk >>> model = climlab.EBM() >>> for name, proc, top_proc in walk.walk_processes(model): ... print name ... top diffusion LW iceline cold_albedo warm_albedo albedo insolation ### Response: def walk_processes(top, topname='top', topdown=True, ignoreFlag=False): """Generator for recursive tree of climlab processes Starts walking from climlab process ``top`` and generates a complete list of all processes and sub-processes that are managed from ``top`` process. ``level`` indicades the rank of specific process in the process hierarchy: .. note:: * level 0: ``top`` process * level 1: sub-processes of ``top`` process * level 2: sub-sub-processes of ``top`` process (=subprocesses of level 1 processes) The method is based on os.walk(). :param top: top process from where walking should start :type top: :class:`~climlab.process.process.Process` :param str topname: name of top process [default: 'top'] :param bool topdown: whether geneterate *process_types* in regular or in reverse order [default: True] :param bool ignoreFlag: whether ``topdown`` flag should be ignored or not [default: False] :returns: name (str), proc (process), level (int) :Example: :: >>> import climlab >>> from climlab.utils import walk >>> model = climlab.EBM() >>> for name, proc, top_proc in walk.walk_processes(model): ... print name ... top diffusion LW iceline cold_albedo warm_albedo albedo insolation """ if not ignoreFlag: flag = topdown else: flag = True proc = top level = 0 if flag: yield topname, proc, level if len(proc.subprocess) > 0: # there are sub-processes level += 1 for name, subproc in proc.subprocess.items(): for name2, subproc2, level2 in walk_processes(subproc, topname=name, topdown=subproc.topdown, ignoreFlag=ignoreFlag): yield name2, subproc2, level+level2 if not flag: yield topname, proc, level
def get_audit_log(self, begin_time=None, end_time=None): """ Return the console audit log entries, optionally filtered by their creation time. Authorization requirements: * Task permission to the "Audit and Log Management" task. Parameters: begin_time (:class:`~py:datetime.datetime`): Begin time for filtering. Log entries with a creation time older than the begin time will be omitted from the results. If `None`, no such filtering is performed (and the oldest available log entries will be included). end_time (:class:`~py:datetime.datetime`): End time for filtering. Log entries with a creation time newer than the end time will be omitted from the results. If `None`, no such filtering is performed (and the newest available log entries will be included). Returns: :term:`json object`: A JSON object with the log entries, as described in section 'Response body contents' of operation 'Get Console Audit Log' in the :term:`HMC API` book. Raises: :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError` """ query_parms = self._time_query_parms(begin_time, end_time) uri = self.uri + '/operations/get-audit-log' + query_parms result = self.manager.session.post(uri) return result
Return the console audit log entries, optionally filtered by their creation time. Authorization requirements: * Task permission to the "Audit and Log Management" task. Parameters: begin_time (:class:`~py:datetime.datetime`): Begin time for filtering. Log entries with a creation time older than the begin time will be omitted from the results. If `None`, no such filtering is performed (and the oldest available log entries will be included). end_time (:class:`~py:datetime.datetime`): End time for filtering. Log entries with a creation time newer than the end time will be omitted from the results. If `None`, no such filtering is performed (and the newest available log entries will be included). Returns: :term:`json object`: A JSON object with the log entries, as described in section 'Response body contents' of operation 'Get Console Audit Log' in the :term:`HMC API` book. Raises: :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError`
Below is the the instruction that describes the task: ### Input: Return the console audit log entries, optionally filtered by their creation time. Authorization requirements: * Task permission to the "Audit and Log Management" task. Parameters: begin_time (:class:`~py:datetime.datetime`): Begin time for filtering. Log entries with a creation time older than the begin time will be omitted from the results. If `None`, no such filtering is performed (and the oldest available log entries will be included). end_time (:class:`~py:datetime.datetime`): End time for filtering. Log entries with a creation time newer than the end time will be omitted from the results. If `None`, no such filtering is performed (and the newest available log entries will be included). Returns: :term:`json object`: A JSON object with the log entries, as described in section 'Response body contents' of operation 'Get Console Audit Log' in the :term:`HMC API` book. Raises: :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError` ### Response: def get_audit_log(self, begin_time=None, end_time=None): """ Return the console audit log entries, optionally filtered by their creation time. Authorization requirements: * Task permission to the "Audit and Log Management" task. Parameters: begin_time (:class:`~py:datetime.datetime`): Begin time for filtering. Log entries with a creation time older than the begin time will be omitted from the results. If `None`, no such filtering is performed (and the oldest available log entries will be included). end_time (:class:`~py:datetime.datetime`): End time for filtering. Log entries with a creation time newer than the end time will be omitted from the results. If `None`, no such filtering is performed (and the newest available log entries will be included). Returns: :term:`json object`: A JSON object with the log entries, as described in section 'Response body contents' of operation 'Get Console Audit Log' in the :term:`HMC API` book. Raises: :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError` """ query_parms = self._time_query_parms(begin_time, end_time) uri = self.uri + '/operations/get-audit-log' + query_parms result = self.manager.session.post(uri) return result
def locks(self): """ Display queries with active locks. Record( procpid=31776, relname=None, transactionid=None, granted=True, query_snippet='select * from hello;', age=datetime.timedelta(0, 0, 288174), ) :returns: list of Records """ return self.execute( sql.LOCKS.format( pid_column=self.pid_column, query_column=self.query_column ) )
Display queries with active locks. Record( procpid=31776, relname=None, transactionid=None, granted=True, query_snippet='select * from hello;', age=datetime.timedelta(0, 0, 288174), ) :returns: list of Records
Below is the the instruction that describes the task: ### Input: Display queries with active locks. Record( procpid=31776, relname=None, transactionid=None, granted=True, query_snippet='select * from hello;', age=datetime.timedelta(0, 0, 288174), ) :returns: list of Records ### Response: def locks(self): """ Display queries with active locks. Record( procpid=31776, relname=None, transactionid=None, granted=True, query_snippet='select * from hello;', age=datetime.timedelta(0, 0, 288174), ) :returns: list of Records """ return self.execute( sql.LOCKS.format( pid_column=self.pid_column, query_column=self.query_column ) )
def read_csr(csr): ''' Returns a dict containing details of a certificate request. :depends: - OpenSSL command line tool csr: A path or PEM encoded string containing the CSR to read. CLI Example: .. code-block:: bash salt '*' x509.read_csr /etc/pki/mycert.csr ''' csr = _get_request_obj(csr) ret = { # X509 Version 3 has a value of 2 in the field. # Version 2 has a value of 1. # https://tools.ietf.org/html/rfc5280#section-4.1.2.1 'Version': csr.get_version() + 1, # Get size returns in bytes. The world thinks of key sizes in bits. 'Subject': _parse_subject(csr.get_subject()), 'Subject Hash': _dec2hex(csr.get_subject().as_hash()), 'Public Key Hash': hashlib.sha1(csr.get_pubkey().get_modulus()).hexdigest(), 'X509v3 Extensions': _get_csr_extensions(csr), } return ret
Returns a dict containing details of a certificate request. :depends: - OpenSSL command line tool csr: A path or PEM encoded string containing the CSR to read. CLI Example: .. code-block:: bash salt '*' x509.read_csr /etc/pki/mycert.csr
Below is the the instruction that describes the task: ### Input: Returns a dict containing details of a certificate request. :depends: - OpenSSL command line tool csr: A path or PEM encoded string containing the CSR to read. CLI Example: .. code-block:: bash salt '*' x509.read_csr /etc/pki/mycert.csr ### Response: def read_csr(csr): ''' Returns a dict containing details of a certificate request. :depends: - OpenSSL command line tool csr: A path or PEM encoded string containing the CSR to read. CLI Example: .. code-block:: bash salt '*' x509.read_csr /etc/pki/mycert.csr ''' csr = _get_request_obj(csr) ret = { # X509 Version 3 has a value of 2 in the field. # Version 2 has a value of 1. # https://tools.ietf.org/html/rfc5280#section-4.1.2.1 'Version': csr.get_version() + 1, # Get size returns in bytes. The world thinks of key sizes in bits. 'Subject': _parse_subject(csr.get_subject()), 'Subject Hash': _dec2hex(csr.get_subject().as_hash()), 'Public Key Hash': hashlib.sha1(csr.get_pubkey().get_modulus()).hexdigest(), 'X509v3 Extensions': _get_csr_extensions(csr), } return ret
def authenticate_credentials(self, request, access_token): """ Authenticate the request, given the access token. """ try: token = oauth2_provider.oauth2.models.AccessToken.objects.select_related('user') # provider_now switches to timezone aware datetime when # the oauth2_provider version supports to it. token = token.get(token=access_token, expires__gt=provider_now()) except oauth2_provider.oauth2.models.AccessToken.DoesNotExist: raise exceptions.AuthenticationFailed('Invalid token') user = token.user if not user.is_active: msg = 'User inactive or deleted: %s' % user.username raise exceptions.AuthenticationFailed(msg) return (user, token)
Authenticate the request, given the access token.
Below is the the instruction that describes the task: ### Input: Authenticate the request, given the access token. ### Response: def authenticate_credentials(self, request, access_token): """ Authenticate the request, given the access token. """ try: token = oauth2_provider.oauth2.models.AccessToken.objects.select_related('user') # provider_now switches to timezone aware datetime when # the oauth2_provider version supports to it. token = token.get(token=access_token, expires__gt=provider_now()) except oauth2_provider.oauth2.models.AccessToken.DoesNotExist: raise exceptions.AuthenticationFailed('Invalid token') user = token.user if not user.is_active: msg = 'User inactive or deleted: %s' % user.username raise exceptions.AuthenticationFailed(msg) return (user, token)
def encoded_datastream(self): '''Generator for datastream content. Takes a list of sections of data within the current chunk (split on binaryContent start and end tags), runs a base64 decode, and yields the data. Computes datastream size and MD5 as data is decoded for sanity-checking purposes. If binary content is not completed within the current chunk, it will retrieve successive chunks of export data until it finds the end. Sets a flag when partial content is left within the current chunk for continued processing by :meth:`object_data`. :param sections: list of export data split on binary content start and end tags, starting with the first section of binary content ''' # return a generator of data to be uploaded to fedora size = 0 if self.verify: md5 = hashlib.md5() leftover = None while self.within_file: content = self.get_next_section() if content == BINARY_CONTENT_END: if self.verify: logger.info('Decoded content size %s (%s) MD5 %s', size, humanize_file_size(size), md5.hexdigest()) self.within_file = False elif self.within_file: # if there was leftover binary content from the last chunk, # add it to the content now if leftover is not None: content = b''.join([leftover, content]) leftover = None try: # decode method used by base64.decode decoded_content = binascii.a2b_base64(content) except binascii.Error: # decoding can fail with a padding error when # a line of encoded content runs across a read chunk lines = content.split(b'\n') # decode and yield all but the last line of encoded content decoded_content = binascii.a2b_base64(b''.join(lines[:-1])) # store the leftover to be decoded with the next chunk leftover = lines[-1] if decoded_content is not None: if self.verify: md5.update(decoded_content) size += len(decoded_content) yield decoded_content
Generator for datastream content. Takes a list of sections of data within the current chunk (split on binaryContent start and end tags), runs a base64 decode, and yields the data. Computes datastream size and MD5 as data is decoded for sanity-checking purposes. If binary content is not completed within the current chunk, it will retrieve successive chunks of export data until it finds the end. Sets a flag when partial content is left within the current chunk for continued processing by :meth:`object_data`. :param sections: list of export data split on binary content start and end tags, starting with the first section of binary content
Below is the the instruction that describes the task: ### Input: Generator for datastream content. Takes a list of sections of data within the current chunk (split on binaryContent start and end tags), runs a base64 decode, and yields the data. Computes datastream size and MD5 as data is decoded for sanity-checking purposes. If binary content is not completed within the current chunk, it will retrieve successive chunks of export data until it finds the end. Sets a flag when partial content is left within the current chunk for continued processing by :meth:`object_data`. :param sections: list of export data split on binary content start and end tags, starting with the first section of binary content ### Response: def encoded_datastream(self): '''Generator for datastream content. Takes a list of sections of data within the current chunk (split on binaryContent start and end tags), runs a base64 decode, and yields the data. Computes datastream size and MD5 as data is decoded for sanity-checking purposes. If binary content is not completed within the current chunk, it will retrieve successive chunks of export data until it finds the end. Sets a flag when partial content is left within the current chunk for continued processing by :meth:`object_data`. :param sections: list of export data split on binary content start and end tags, starting with the first section of binary content ''' # return a generator of data to be uploaded to fedora size = 0 if self.verify: md5 = hashlib.md5() leftover = None while self.within_file: content = self.get_next_section() if content == BINARY_CONTENT_END: if self.verify: logger.info('Decoded content size %s (%s) MD5 %s', size, humanize_file_size(size), md5.hexdigest()) self.within_file = False elif self.within_file: # if there was leftover binary content from the last chunk, # add it to the content now if leftover is not None: content = b''.join([leftover, content]) leftover = None try: # decode method used by base64.decode decoded_content = binascii.a2b_base64(content) except binascii.Error: # decoding can fail with a padding error when # a line of encoded content runs across a read chunk lines = content.split(b'\n') # decode and yield all but the last line of encoded content decoded_content = binascii.a2b_base64(b''.join(lines[:-1])) # store the leftover to be decoded with the next chunk leftover = lines[-1] if decoded_content is not None: if self.verify: md5.update(decoded_content) size += len(decoded_content) yield decoded_content
def set_transfer_spec(self): ''' run the function to set the transfer spec on error set associated exception ''' _ret = False try: self._args.transfer_spec_func(self._args) _ret = True except Exception as ex: self.notify_exception(AsperaTransferSpecError(ex), False) return _ret
run the function to set the transfer spec on error set associated exception
Below is the the instruction that describes the task: ### Input: run the function to set the transfer spec on error set associated exception ### Response: def set_transfer_spec(self): ''' run the function to set the transfer spec on error set associated exception ''' _ret = False try: self._args.transfer_spec_func(self._args) _ret = True except Exception as ex: self.notify_exception(AsperaTransferSpecError(ex), False) return _ret
def _determine_timeout(default_timeout, specified_timeout, retry): """Determines how timeout should be applied to a wrapped method. Args: default_timeout (Optional[Timeout]): The default timeout specified at method creation time. specified_timeout (Optional[Timeout]): The timeout specified at invocation time. If :attr:`DEFAULT`, this will be set to the ``default_timeout``. retry (Optional[Retry]): The retry specified at invocation time. Returns: Optional[Timeout]: The timeout to apply to the method or ``None``. """ if specified_timeout is DEFAULT: specified_timeout = default_timeout if specified_timeout is default_timeout: # If timeout is the default and the default timeout is exponential and # a non-default retry is specified, make sure the timeout's deadline # matches the retry's. This handles the case where the user leaves # the timeout default but specifies a lower deadline via the retry. if ( retry and retry is not DEFAULT and isinstance(default_timeout, timeout.ExponentialTimeout) ): return default_timeout.with_deadline(retry._deadline) else: return default_timeout # If timeout is specified as a number instead of a Timeout instance, # convert it to a ConstantTimeout. if isinstance(specified_timeout, (int, float)): return timeout.ConstantTimeout(specified_timeout) else: return specified_timeout
Determines how timeout should be applied to a wrapped method. Args: default_timeout (Optional[Timeout]): The default timeout specified at method creation time. specified_timeout (Optional[Timeout]): The timeout specified at invocation time. If :attr:`DEFAULT`, this will be set to the ``default_timeout``. retry (Optional[Retry]): The retry specified at invocation time. Returns: Optional[Timeout]: The timeout to apply to the method or ``None``.
Below is the the instruction that describes the task: ### Input: Determines how timeout should be applied to a wrapped method. Args: default_timeout (Optional[Timeout]): The default timeout specified at method creation time. specified_timeout (Optional[Timeout]): The timeout specified at invocation time. If :attr:`DEFAULT`, this will be set to the ``default_timeout``. retry (Optional[Retry]): The retry specified at invocation time. Returns: Optional[Timeout]: The timeout to apply to the method or ``None``. ### Response: def _determine_timeout(default_timeout, specified_timeout, retry): """Determines how timeout should be applied to a wrapped method. Args: default_timeout (Optional[Timeout]): The default timeout specified at method creation time. specified_timeout (Optional[Timeout]): The timeout specified at invocation time. If :attr:`DEFAULT`, this will be set to the ``default_timeout``. retry (Optional[Retry]): The retry specified at invocation time. Returns: Optional[Timeout]: The timeout to apply to the method or ``None``. """ if specified_timeout is DEFAULT: specified_timeout = default_timeout if specified_timeout is default_timeout: # If timeout is the default and the default timeout is exponential and # a non-default retry is specified, make sure the timeout's deadline # matches the retry's. This handles the case where the user leaves # the timeout default but specifies a lower deadline via the retry. if ( retry and retry is not DEFAULT and isinstance(default_timeout, timeout.ExponentialTimeout) ): return default_timeout.with_deadline(retry._deadline) else: return default_timeout # If timeout is specified as a number instead of a Timeout instance, # convert it to a ConstantTimeout. if isinstance(specified_timeout, (int, float)): return timeout.ConstantTimeout(specified_timeout) else: return specified_timeout
def cli(ctx, board, fpga, pack, type, size, project_dir, verbose, verbose_yosys, verbose_arachne): """Bitstream timing analysis.""" # Run scons exit_code = SCons(project_dir).time({ 'board': board, 'fpga': fpga, 'size': size, 'type': type, 'pack': pack, 'verbose': { 'all': verbose, 'yosys': verbose_yosys, 'arachne': verbose_arachne } }) ctx.exit(exit_code)
Bitstream timing analysis.
Below is the the instruction that describes the task: ### Input: Bitstream timing analysis. ### Response: def cli(ctx, board, fpga, pack, type, size, project_dir, verbose, verbose_yosys, verbose_arachne): """Bitstream timing analysis.""" # Run scons exit_code = SCons(project_dir).time({ 'board': board, 'fpga': fpga, 'size': size, 'type': type, 'pack': pack, 'verbose': { 'all': verbose, 'yosys': verbose_yosys, 'arachne': verbose_arachne } }) ctx.exit(exit_code)
def set_level(self, level): """ Set the logging level of this logger. :param level: must be an int or a str. """ for handler in self.__coloredlogs_handlers: handler.setLevel(level=level) self.logger.setLevel(level=level)
Set the logging level of this logger. :param level: must be an int or a str.
Below is the the instruction that describes the task: ### Input: Set the logging level of this logger. :param level: must be an int or a str. ### Response: def set_level(self, level): """ Set the logging level of this logger. :param level: must be an int or a str. """ for handler in self.__coloredlogs_handlers: handler.setLevel(level=level) self.logger.setLevel(level=level)
def _is_path(instance, attribute, s, exists=True): "Validator for path-yness" if not s: # allow False as a default return if exists: if os.path.exists(s): return else: raise OSError("path does not exist") else: # how do we tell if it's a path if it doesn't exist? raise TypeError("Not a path?")
Validator for path-yness
Below is the the instruction that describes the task: ### Input: Validator for path-yness ### Response: def _is_path(instance, attribute, s, exists=True): "Validator for path-yness" if not s: # allow False as a default return if exists: if os.path.exists(s): return else: raise OSError("path does not exist") else: # how do we tell if it's a path if it doesn't exist? raise TypeError("Not a path?")
def nucmer_hits_to_ref_and_qry_coords(cls, nucmer_hits, contig=None): '''Same as nucmer_hits_to_ref_coords, except removes containing hits first, and returns ref and qry coords lists''' if contig is None: ctg_coords = {key: [] for key in nucmer_hits.keys()} else: ctg_coords = {contig: []} ref_coords = {} for key in ctg_coords: hits = copy.copy(nucmer_hits[key]) hits.sort(key=lambda x: len(x.ref_coords())) if len(hits) > 1: i = 0 while i < len(hits) - 1: c1 = hits[i].ref_coords() c2 = hits[i+1].ref_coords() if c2.contains(c1): hits.pop(i) else: i += 1 ref_coords[key] = [hit.ref_coords() for hit in hits] ctg_coords[key] = [hit.qry_coords() for hit in hits] pyfastaq.intervals.merge_overlapping_in_list(ref_coords[key]) pyfastaq.intervals.merge_overlapping_in_list(ctg_coords[key]) return ctg_coords, ref_coords
Same as nucmer_hits_to_ref_coords, except removes containing hits first, and returns ref and qry coords lists
Below is the the instruction that describes the task: ### Input: Same as nucmer_hits_to_ref_coords, except removes containing hits first, and returns ref and qry coords lists ### Response: def nucmer_hits_to_ref_and_qry_coords(cls, nucmer_hits, contig=None): '''Same as nucmer_hits_to_ref_coords, except removes containing hits first, and returns ref and qry coords lists''' if contig is None: ctg_coords = {key: [] for key in nucmer_hits.keys()} else: ctg_coords = {contig: []} ref_coords = {} for key in ctg_coords: hits = copy.copy(nucmer_hits[key]) hits.sort(key=lambda x: len(x.ref_coords())) if len(hits) > 1: i = 0 while i < len(hits) - 1: c1 = hits[i].ref_coords() c2 = hits[i+1].ref_coords() if c2.contains(c1): hits.pop(i) else: i += 1 ref_coords[key] = [hit.ref_coords() for hit in hits] ctg_coords[key] = [hit.qry_coords() for hit in hits] pyfastaq.intervals.merge_overlapping_in_list(ref_coords[key]) pyfastaq.intervals.merge_overlapping_in_list(ctg_coords[key]) return ctg_coords, ref_coords
def _get_capabilities(self): """Get the servers NETCONF capabilities. :return: List of server capabilities. """ conn = self._get_connection() capabilities = [] for c in conn.server_capabilities: capabilities.append(c) LOG.debug("Server capabilities: %s", capabilities) return capabilities
Get the servers NETCONF capabilities. :return: List of server capabilities.
Below is the the instruction that describes the task: ### Input: Get the servers NETCONF capabilities. :return: List of server capabilities. ### Response: def _get_capabilities(self): """Get the servers NETCONF capabilities. :return: List of server capabilities. """ conn = self._get_connection() capabilities = [] for c in conn.server_capabilities: capabilities.append(c) LOG.debug("Server capabilities: %s", capabilities) return capabilities
def set_loop_points(self, start_sample=-1, end_sample=0): '''Set the loop points within the sound. The sound must have been created with ``loop=True``. The default parameters cause the loop points to be set to the entire sound duration. :note: There is currently no API for converting sample numbers to times. :param start_sample: sample number to loop back to :param end_sample: sample number to loop at ''' lib.SetVoiceLoopPoints(self._handle, start_sample, end_sample)
Set the loop points within the sound. The sound must have been created with ``loop=True``. The default parameters cause the loop points to be set to the entire sound duration. :note: There is currently no API for converting sample numbers to times. :param start_sample: sample number to loop back to :param end_sample: sample number to loop at
Below is the the instruction that describes the task: ### Input: Set the loop points within the sound. The sound must have been created with ``loop=True``. The default parameters cause the loop points to be set to the entire sound duration. :note: There is currently no API for converting sample numbers to times. :param start_sample: sample number to loop back to :param end_sample: sample number to loop at ### Response: def set_loop_points(self, start_sample=-1, end_sample=0): '''Set the loop points within the sound. The sound must have been created with ``loop=True``. The default parameters cause the loop points to be set to the entire sound duration. :note: There is currently no API for converting sample numbers to times. :param start_sample: sample number to loop back to :param end_sample: sample number to loop at ''' lib.SetVoiceLoopPoints(self._handle, start_sample, end_sample)
def _compute_all_features(self): """Computes all the features (beatsync, framesync) from the audio.""" # Read actual audio waveform self._audio, _ = librosa.load(self.file_struct.audio_file, sr=self.sr) # Get duration of audio file self.dur = len(self._audio) / float(self.sr) # Compute actual features self._framesync_features = self.compute_features() # Compute framesync times self._compute_framesync_times() # Compute/Read beats self._est_beats_times, self._est_beats_frames = self.estimate_beats() self._ann_beats_times, self._ann_beats_frames = self.read_ann_beats() # Beat-Synchronize pad = True # Always append to the end of the features self._est_beatsync_features, self._est_beatsync_times = \ self.compute_beat_sync_features(self._est_beats_frames, self._est_beats_times, pad) self._ann_beatsync_features, self._ann_beatsync_times = \ self.compute_beat_sync_features(self._ann_beats_frames, self._ann_beats_times, pad)
Computes all the features (beatsync, framesync) from the audio.
Below is the the instruction that describes the task: ### Input: Computes all the features (beatsync, framesync) from the audio. ### Response: def _compute_all_features(self): """Computes all the features (beatsync, framesync) from the audio.""" # Read actual audio waveform self._audio, _ = librosa.load(self.file_struct.audio_file, sr=self.sr) # Get duration of audio file self.dur = len(self._audio) / float(self.sr) # Compute actual features self._framesync_features = self.compute_features() # Compute framesync times self._compute_framesync_times() # Compute/Read beats self._est_beats_times, self._est_beats_frames = self.estimate_beats() self._ann_beats_times, self._ann_beats_frames = self.read_ann_beats() # Beat-Synchronize pad = True # Always append to the end of the features self._est_beatsync_features, self._est_beatsync_times = \ self.compute_beat_sync_features(self._est_beats_frames, self._est_beats_times, pad) self._ann_beatsync_features, self._ann_beatsync_times = \ self.compute_beat_sync_features(self._ann_beats_frames, self._ann_beats_times, pad)
def aggregate_by_index(self, function, level=0): """ Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int. """ result = self._map_by_index(function, level=level) return result.map(lambda v: array(v), index=result.index)
Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int.
Below is the the instruction that describes the task: ### Input: Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int. ### Response: def aggregate_by_index(self, function, level=0): """ Aggregrate data in each record, grouping by index values. For each unique value of the index, applies a function to the group indexed by that value. Returns a Series indexed by those unique values. For the result to be a valid Series object, the aggregating function should return a simple numeric type. Also allows selection of levels within a multi-index. See select_by_index for more info on indices and multi-indices. Parameters ---------- function : function Aggregating function to map to Series values. Should take a list or ndarray as input and return a simple numeric value. level : list of ints, optional, default=0 Specifies the levels of the multi-index to use when determining unique index values. If only a single level is desired, can be an int. """ result = self._map_by_index(function, level=level) return result.map(lambda v: array(v), index=result.index)
def association(self, group_xid): """Add association using xid value. Args: group_xid (str): The external id of the Group to associate. """ association = {'groupXid': group_xid} self._indicator_data.setdefault('associatedGroups', []).append(association)
Add association using xid value. Args: group_xid (str): The external id of the Group to associate.
Below is the the instruction that describes the task: ### Input: Add association using xid value. Args: group_xid (str): The external id of the Group to associate. ### Response: def association(self, group_xid): """Add association using xid value. Args: group_xid (str): The external id of the Group to associate. """ association = {'groupXid': group_xid} self._indicator_data.setdefault('associatedGroups', []).append(association)
def _get_timezone(self, root): """Find timezone informatation on bottom of the page.""" tz_str = root.xpath('//div[@class="smallfont" and @align="center"]')[0].text hours = int(self._tz_re.search(tz_str).group(1)) return tzoffset(tz_str, hours * 60)
Find timezone informatation on bottom of the page.
Below is the the instruction that describes the task: ### Input: Find timezone informatation on bottom of the page. ### Response: def _get_timezone(self, root): """Find timezone informatation on bottom of the page.""" tz_str = root.xpath('//div[@class="smallfont" and @align="center"]')[0].text hours = int(self._tz_re.search(tz_str).group(1)) return tzoffset(tz_str, hours * 60)
def _erase_card(self, number): """Destroy cards with this or higher number.""" with self._lock: if number < (len(self.cards) - 1): self._erase_card(number + 1) if number > (len(self.cards) - 1): return max_cards_horiz = int(curses.COLS / 35) obliterate = curses.newwin( 6, 35, 7 + 6 * (number // max_cards_horiz), 35 * (number % max_cards_horiz), ) obliterate.erase() obliterate.noutrefresh() del self.cards[number]
Destroy cards with this or higher number.
Below is the the instruction that describes the task: ### Input: Destroy cards with this or higher number. ### Response: def _erase_card(self, number): """Destroy cards with this or higher number.""" with self._lock: if number < (len(self.cards) - 1): self._erase_card(number + 1) if number > (len(self.cards) - 1): return max_cards_horiz = int(curses.COLS / 35) obliterate = curses.newwin( 6, 35, 7 + 6 * (number // max_cards_horiz), 35 * (number % max_cards_horiz), ) obliterate.erase() obliterate.noutrefresh() del self.cards[number]
def inspect_task(self, task): """ Retrieve information about a task. Args: task (str): Task ID Returns: (dict): Information about the task. Raises: :py:class:`docker.errors.APIError` If the server returns an error. """ url = self._url('/tasks/{0}', task) return self._result(self._get(url), True)
Retrieve information about a task. Args: task (str): Task ID Returns: (dict): Information about the task. Raises: :py:class:`docker.errors.APIError` If the server returns an error.
Below is the the instruction that describes the task: ### Input: Retrieve information about a task. Args: task (str): Task ID Returns: (dict): Information about the task. Raises: :py:class:`docker.errors.APIError` If the server returns an error. ### Response: def inspect_task(self, task): """ Retrieve information about a task. Args: task (str): Task ID Returns: (dict): Information about the task. Raises: :py:class:`docker.errors.APIError` If the server returns an error. """ url = self._url('/tasks/{0}', task) return self._result(self._get(url), True)
def config_name_from_full_name(full_name): """Extract the config name from a full resource name. >>> config_name_from_full_name('projects/my-proj/configs/my-config') "my-config" :type full_name: str :param full_name: The full resource name of a config. The full resource name looks like ``projects/project-name/configs/config-name`` and is returned as the ``name`` field of a config resource. See https://cloud.google.com/deployment-manager/runtime-configurator/reference/rest/v1beta1/projects.configs :rtype: str :returns: The config's short name, given its full resource name. :raises: :class:`ValueError` if ``full_name`` is not the expected format """ projects, _, configs, result = full_name.split("/") if projects != "projects" or configs != "configs": raise ValueError( "Unexpected format of resource", full_name, 'Expected "projects/{proj}/configs/{cfg}"', ) return result
Extract the config name from a full resource name. >>> config_name_from_full_name('projects/my-proj/configs/my-config') "my-config" :type full_name: str :param full_name: The full resource name of a config. The full resource name looks like ``projects/project-name/configs/config-name`` and is returned as the ``name`` field of a config resource. See https://cloud.google.com/deployment-manager/runtime-configurator/reference/rest/v1beta1/projects.configs :rtype: str :returns: The config's short name, given its full resource name. :raises: :class:`ValueError` if ``full_name`` is not the expected format
Below is the the instruction that describes the task: ### Input: Extract the config name from a full resource name. >>> config_name_from_full_name('projects/my-proj/configs/my-config') "my-config" :type full_name: str :param full_name: The full resource name of a config. The full resource name looks like ``projects/project-name/configs/config-name`` and is returned as the ``name`` field of a config resource. See https://cloud.google.com/deployment-manager/runtime-configurator/reference/rest/v1beta1/projects.configs :rtype: str :returns: The config's short name, given its full resource name. :raises: :class:`ValueError` if ``full_name`` is not the expected format ### Response: def config_name_from_full_name(full_name): """Extract the config name from a full resource name. >>> config_name_from_full_name('projects/my-proj/configs/my-config') "my-config" :type full_name: str :param full_name: The full resource name of a config. The full resource name looks like ``projects/project-name/configs/config-name`` and is returned as the ``name`` field of a config resource. See https://cloud.google.com/deployment-manager/runtime-configurator/reference/rest/v1beta1/projects.configs :rtype: str :returns: The config's short name, given its full resource name. :raises: :class:`ValueError` if ``full_name`` is not the expected format """ projects, _, configs, result = full_name.split("/") if projects != "projects" or configs != "configs": raise ValueError( "Unexpected format of resource", full_name, 'Expected "projects/{proj}/configs/{cfg}"', ) return result
def golfclap(rest): "Clap for something" clapv = random.choice(phrases.clapvl) adv = random.choice(phrases.advl) adj = random.choice(phrases.adjl) if rest: clapee = rest.strip() karma.Karma.store.change(clapee, 1) return "/me claps %s for %s, %s %s." % (clapv, rest, adv, adj) return "/me claps %s, %s %s." % (clapv, adv, adj)
Clap for something
Below is the the instruction that describes the task: ### Input: Clap for something ### Response: def golfclap(rest): "Clap for something" clapv = random.choice(phrases.clapvl) adv = random.choice(phrases.advl) adj = random.choice(phrases.adjl) if rest: clapee = rest.strip() karma.Karma.store.change(clapee, 1) return "/me claps %s for %s, %s %s." % (clapv, rest, adv, adj) return "/me claps %s, %s %s." % (clapv, adv, adj)
def exc_thrown_by_descriptor(): """Return True if the last exception was thrown by a Descriptor instance. """ traceback = sys.exc_info()[2] tb_locals = traceback.tb_frame.f_locals # relying on naming convention to get the object that threw # the exception if "self" in tb_locals: if not isinstance(tb_locals["self"], Descriptor): return False return True return False
Return True if the last exception was thrown by a Descriptor instance.
Below is the the instruction that describes the task: ### Input: Return True if the last exception was thrown by a Descriptor instance. ### Response: def exc_thrown_by_descriptor(): """Return True if the last exception was thrown by a Descriptor instance. """ traceback = sys.exc_info()[2] tb_locals = traceback.tb_frame.f_locals # relying on naming convention to get the object that threw # the exception if "self" in tb_locals: if not isinstance(tb_locals["self"], Descriptor): return False return True return False
def AnnotateBED(bed, GTF, genome_file, bedcols=None, promoter=[1000,200]): """ Annotates a bed file. :param bed: either a /path/to/file.bed or a Pandas dataframe in bed format. /path/to/file.bed implies bedcols. :param GTF: /path/to/file.gtf :param genome_file: /path/to/file.genome - a tab separated values of chr name and size information :param bedcols: a comma separated string of column headers to use when reading in a bed file. eg: "chr,start,end,name" :param promoter: a list containing the upstream start of the promoter region from the TSS and the downstream end of the promoter region from the TSS. :returns: a Pandas dataframe with the annotated bed file. exons and promoters will be reported as well in the annotated_gene_features column. """ if type(bed) == type("string"): bed=pd.read_table(bed,header=None) bed.columns=bedcols.split(",") print("Reading GTF file.") sys.stdout.flush() GTF=readGTF(GTF) GTF["gene_name"]=retrieve_GTF_field("gene_name", GTF) GTF["gene_id"]=retrieve_GTF_field("gene_id", GTF) GTF["gene_name"]=GTF["gene_name"]+"/"+GTF["gene_id"] GTF=GTF.drop(["gene_id"],axis=1) print("Generating promoters annotation.") sys.stdout.flush() promoters=GTF[GTF["feature"]=="transcript"] promoters_plus=promoters[promoters["strand"]=="+"] promoters_minus=promoters[promoters["strand"]=="-"] upstream=promoter[0] downstream=promoter[1] promoters_plus.loc[:,"promoter_start"]=promoters_plus.loc[:,"start"].astype(int)-upstream promoters_plus.loc[:,"promoter_end"]=promoters_plus.loc[:,"start"].astype(int)+downstream promoters_minus.loc[:,"promoter_start"]=promoters_minus["end"].astype(int)-downstream promoters_minus.loc[:,"promoter_end"]=promoters_minus["end"].astype(int)+upstream promoters=pd.concat([promoters_plus,promoters_minus]) promoters=promoters[["seqname","feature","promoter_start","promoter_end","gene_name"]] promoters.columns=["seqname","feature","start","end","gene_name"] promoters.loc[:,"feature"]="promoter" promoters.drop_duplicates(inplace=True) promoters.reset_index(inplace=True, drop=True) chr_sizes=pd.read_table(genome_file,header=None) chr_sizes.columns=["seqname","size"] chr_sizes.loc[:,"seqname"]=chr_sizes["seqname"].astype(str) promoters.loc[:,"seqname"]=promoters["seqname"].astype(str) promoters=pd.merge(promoters,chr_sizes,how="left",on=["seqname"]) def CorrectStart(df): s=df["start"] if s < 0: s=0 return s def CorrectEnd(df): s=df["end"] e=df["size"] if s > e: s=e return s promoters.loc[:,"start"]=promoters.apply(CorrectStart,axis=1) promoters.loc[:,"end"]=promoters.apply(CorrectEnd,axis=1) promoters.drop(["size"],axis=1, inplace=True) GTFs=GTF[["seqname","feature","start","end","gene_name"]] GTFs=GTFs[ GTFs["feature"]!= "gene"] GTFs.drop_duplicates(inplace=True) GTFs.reset_index(inplace=True, drop=True) GTFs=pd.concat([GTFs,promoters]) def NewName(df): name=df["gene_name"] feature=df["feature"] if feature == "transcript": res=name else: res=name+":"+feature return res GTFs.loc[:,"gene_name"]=GTFs.apply(NewName, axis=1) GTFs=GTFs[["seqname","start","end","gene_name"]] print( "Intersecting annotation tables and bed." ) sys.stdout.flush() refGTF=dfTObedtool(GTFs) pos=dfTObedtool(bed) colsGTF=GTFs.columns.tolist() newCols=bed.columns.tolist() for f in colsGTF: newCols.append(f+"_") newCols_=[ s for s in newCols if s not in ["seqname_","start_", "end_"]] pos=pos.intersect(refGTF, loj=True) pos=pd.read_table(pos.fn , names=newCols) pos=pos[newCols_] print("Merging features.") sys.stdout.flush() def GetFeature(x): if ":" in x: res=x.split(":")[1] else: res=np.nan return res def GetName(x): if ":" in x: res=x.split(":")[0] elif type(x) == type("string"): if x != ".": res=x else: res=np.nan else: res=np.nan return res pos["gene_feature_"]=pos["gene_name_"].apply( lambda x: GetFeature(x) ) pos["gene_name_"]=pos["gene_name_"].apply( lambda x: GetName(x) ) refcol=pos.columns.tolist() refcol=[ s for s in refcol if s != "gene_feature_" ] def CombineAnn(df): def JOIN(x): return ', '.join([ str(s) for s in list(set(df[x])) if str(s) != "nan" ] ) return pd.Series(dict( gene_feature_ = JOIN("gene_feature_") ) ) pos_=pos.groupby(refcol).apply(CombineAnn) pos_.reset_index(inplace=True, drop=False) def MergeNameFeatures(df): name=df["gene_name_"] feature=df["gene_feature_"] if (type(name) == type("string")) & (name != ".") : if type(feature) == type("string"): if len(feature) > 0: res=name+": "+feature else: res=name else: res=name else: res=np.nan return res pos_["annotated_gene_features"]=pos_.apply(MergeNameFeatures,axis=1) pos_=pos_.drop(["gene_name_","gene_feature_"],axis=1) def CombineAnn(df): def JOIN(x): return '; '.join([ str(s) for s in list(set(df[x])) if str(s) != "nan" ] ) return pd.Series(dict( annotated_gene_features = JOIN("annotated_gene_features") ) ) refcol=[ s for s in refcol if s != "gene_name_" ] pos_=pos_.groupby(refcol).apply(CombineAnn) pos_.reset_index(inplace=True, drop=False) return pos_
Annotates a bed file. :param bed: either a /path/to/file.bed or a Pandas dataframe in bed format. /path/to/file.bed implies bedcols. :param GTF: /path/to/file.gtf :param genome_file: /path/to/file.genome - a tab separated values of chr name and size information :param bedcols: a comma separated string of column headers to use when reading in a bed file. eg: "chr,start,end,name" :param promoter: a list containing the upstream start of the promoter region from the TSS and the downstream end of the promoter region from the TSS. :returns: a Pandas dataframe with the annotated bed file. exons and promoters will be reported as well in the annotated_gene_features column.
Below is the the instruction that describes the task: ### Input: Annotates a bed file. :param bed: either a /path/to/file.bed or a Pandas dataframe in bed format. /path/to/file.bed implies bedcols. :param GTF: /path/to/file.gtf :param genome_file: /path/to/file.genome - a tab separated values of chr name and size information :param bedcols: a comma separated string of column headers to use when reading in a bed file. eg: "chr,start,end,name" :param promoter: a list containing the upstream start of the promoter region from the TSS and the downstream end of the promoter region from the TSS. :returns: a Pandas dataframe with the annotated bed file. exons and promoters will be reported as well in the annotated_gene_features column. ### Response: def AnnotateBED(bed, GTF, genome_file, bedcols=None, promoter=[1000,200]): """ Annotates a bed file. :param bed: either a /path/to/file.bed or a Pandas dataframe in bed format. /path/to/file.bed implies bedcols. :param GTF: /path/to/file.gtf :param genome_file: /path/to/file.genome - a tab separated values of chr name and size information :param bedcols: a comma separated string of column headers to use when reading in a bed file. eg: "chr,start,end,name" :param promoter: a list containing the upstream start of the promoter region from the TSS and the downstream end of the promoter region from the TSS. :returns: a Pandas dataframe with the annotated bed file. exons and promoters will be reported as well in the annotated_gene_features column. """ if type(bed) == type("string"): bed=pd.read_table(bed,header=None) bed.columns=bedcols.split(",") print("Reading GTF file.") sys.stdout.flush() GTF=readGTF(GTF) GTF["gene_name"]=retrieve_GTF_field("gene_name", GTF) GTF["gene_id"]=retrieve_GTF_field("gene_id", GTF) GTF["gene_name"]=GTF["gene_name"]+"/"+GTF["gene_id"] GTF=GTF.drop(["gene_id"],axis=1) print("Generating promoters annotation.") sys.stdout.flush() promoters=GTF[GTF["feature"]=="transcript"] promoters_plus=promoters[promoters["strand"]=="+"] promoters_minus=promoters[promoters["strand"]=="-"] upstream=promoter[0] downstream=promoter[1] promoters_plus.loc[:,"promoter_start"]=promoters_plus.loc[:,"start"].astype(int)-upstream promoters_plus.loc[:,"promoter_end"]=promoters_plus.loc[:,"start"].astype(int)+downstream promoters_minus.loc[:,"promoter_start"]=promoters_minus["end"].astype(int)-downstream promoters_minus.loc[:,"promoter_end"]=promoters_minus["end"].astype(int)+upstream promoters=pd.concat([promoters_plus,promoters_minus]) promoters=promoters[["seqname","feature","promoter_start","promoter_end","gene_name"]] promoters.columns=["seqname","feature","start","end","gene_name"] promoters.loc[:,"feature"]="promoter" promoters.drop_duplicates(inplace=True) promoters.reset_index(inplace=True, drop=True) chr_sizes=pd.read_table(genome_file,header=None) chr_sizes.columns=["seqname","size"] chr_sizes.loc[:,"seqname"]=chr_sizes["seqname"].astype(str) promoters.loc[:,"seqname"]=promoters["seqname"].astype(str) promoters=pd.merge(promoters,chr_sizes,how="left",on=["seqname"]) def CorrectStart(df): s=df["start"] if s < 0: s=0 return s def CorrectEnd(df): s=df["end"] e=df["size"] if s > e: s=e return s promoters.loc[:,"start"]=promoters.apply(CorrectStart,axis=1) promoters.loc[:,"end"]=promoters.apply(CorrectEnd,axis=1) promoters.drop(["size"],axis=1, inplace=True) GTFs=GTF[["seqname","feature","start","end","gene_name"]] GTFs=GTFs[ GTFs["feature"]!= "gene"] GTFs.drop_duplicates(inplace=True) GTFs.reset_index(inplace=True, drop=True) GTFs=pd.concat([GTFs,promoters]) def NewName(df): name=df["gene_name"] feature=df["feature"] if feature == "transcript": res=name else: res=name+":"+feature return res GTFs.loc[:,"gene_name"]=GTFs.apply(NewName, axis=1) GTFs=GTFs[["seqname","start","end","gene_name"]] print( "Intersecting annotation tables and bed." ) sys.stdout.flush() refGTF=dfTObedtool(GTFs) pos=dfTObedtool(bed) colsGTF=GTFs.columns.tolist() newCols=bed.columns.tolist() for f in colsGTF: newCols.append(f+"_") newCols_=[ s for s in newCols if s not in ["seqname_","start_", "end_"]] pos=pos.intersect(refGTF, loj=True) pos=pd.read_table(pos.fn , names=newCols) pos=pos[newCols_] print("Merging features.") sys.stdout.flush() def GetFeature(x): if ":" in x: res=x.split(":")[1] else: res=np.nan return res def GetName(x): if ":" in x: res=x.split(":")[0] elif type(x) == type("string"): if x != ".": res=x else: res=np.nan else: res=np.nan return res pos["gene_feature_"]=pos["gene_name_"].apply( lambda x: GetFeature(x) ) pos["gene_name_"]=pos["gene_name_"].apply( lambda x: GetName(x) ) refcol=pos.columns.tolist() refcol=[ s for s in refcol if s != "gene_feature_" ] def CombineAnn(df): def JOIN(x): return ', '.join([ str(s) for s in list(set(df[x])) if str(s) != "nan" ] ) return pd.Series(dict( gene_feature_ = JOIN("gene_feature_") ) ) pos_=pos.groupby(refcol).apply(CombineAnn) pos_.reset_index(inplace=True, drop=False) def MergeNameFeatures(df): name=df["gene_name_"] feature=df["gene_feature_"] if (type(name) == type("string")) & (name != ".") : if type(feature) == type("string"): if len(feature) > 0: res=name+": "+feature else: res=name else: res=name else: res=np.nan return res pos_["annotated_gene_features"]=pos_.apply(MergeNameFeatures,axis=1) pos_=pos_.drop(["gene_name_","gene_feature_"],axis=1) def CombineAnn(df): def JOIN(x): return '; '.join([ str(s) for s in list(set(df[x])) if str(s) != "nan" ] ) return pd.Series(dict( annotated_gene_features = JOIN("annotated_gene_features") ) ) refcol=[ s for s in refcol if s != "gene_name_" ] pos_=pos_.groupby(refcol).apply(CombineAnn) pos_.reset_index(inplace=True, drop=False) return pos_
def process_file(self, path, dryrun): """ Print files path. """ # if dryrun just return files if dryrun: return path # scan file and match lines ret = [] with open(path, "r") as infile: for line in infile: if re.search(self.__exp, line): ret.append(line) # if found matches return list of lines, else return None return ret if len(ret) > 0 else None
Print files path.
Below is the the instruction that describes the task: ### Input: Print files path. ### Response: def process_file(self, path, dryrun): """ Print files path. """ # if dryrun just return files if dryrun: return path # scan file and match lines ret = [] with open(path, "r") as infile: for line in infile: if re.search(self.__exp, line): ret.append(line) # if found matches return list of lines, else return None return ret if len(ret) > 0 else None
def tunnel_to_kernel(connection_info, sshserver, sshkey=None): """tunnel connections to a kernel via ssh This will open four SSH tunnels from localhost on this machine to the ports associated with the kernel. They can be either direct localhost-localhost tunnels, or if an intermediate server is necessary, the kernel must be listening on a public IP. Parameters ---------- connection_info : dict or str (path) Either a connection dict, or the path to a JSON connection file sshserver : str The ssh sever to use to tunnel to the kernel. Can be a full `user@server:port` string. ssh config aliases are respected. sshkey : str [optional] Path to file containing ssh key to use for authentication. Only necessary if your ssh config does not already associate a keyfile with the host. Returns ------- (shell, iopub, stdin, hb) : ints The four ports on localhost that have been forwarded to the kernel. """ if isinstance(connection_info, basestring): # it's a path, unpack it with open(connection_info) as f: connection_info = json.loads(f.read()) cf = connection_info lports = tunnel.select_random_ports(4) rports = cf['shell_port'], cf['iopub_port'], cf['stdin_port'], cf['hb_port'] remote_ip = cf['ip'] if tunnel.try_passwordless_ssh(sshserver, sshkey): password=False else: password = getpass("SSH Password for %s: "%sshserver) for lp,rp in zip(lports, rports): tunnel.ssh_tunnel(lp, rp, sshserver, remote_ip, sshkey, password) return tuple(lports)
tunnel connections to a kernel via ssh This will open four SSH tunnels from localhost on this machine to the ports associated with the kernel. They can be either direct localhost-localhost tunnels, or if an intermediate server is necessary, the kernel must be listening on a public IP. Parameters ---------- connection_info : dict or str (path) Either a connection dict, or the path to a JSON connection file sshserver : str The ssh sever to use to tunnel to the kernel. Can be a full `user@server:port` string. ssh config aliases are respected. sshkey : str [optional] Path to file containing ssh key to use for authentication. Only necessary if your ssh config does not already associate a keyfile with the host. Returns ------- (shell, iopub, stdin, hb) : ints The four ports on localhost that have been forwarded to the kernel.
Below is the the instruction that describes the task: ### Input: tunnel connections to a kernel via ssh This will open four SSH tunnels from localhost on this machine to the ports associated with the kernel. They can be either direct localhost-localhost tunnels, or if an intermediate server is necessary, the kernel must be listening on a public IP. Parameters ---------- connection_info : dict or str (path) Either a connection dict, or the path to a JSON connection file sshserver : str The ssh sever to use to tunnel to the kernel. Can be a full `user@server:port` string. ssh config aliases are respected. sshkey : str [optional] Path to file containing ssh key to use for authentication. Only necessary if your ssh config does not already associate a keyfile with the host. Returns ------- (shell, iopub, stdin, hb) : ints The four ports on localhost that have been forwarded to the kernel. ### Response: def tunnel_to_kernel(connection_info, sshserver, sshkey=None): """tunnel connections to a kernel via ssh This will open four SSH tunnels from localhost on this machine to the ports associated with the kernel. They can be either direct localhost-localhost tunnels, or if an intermediate server is necessary, the kernel must be listening on a public IP. Parameters ---------- connection_info : dict or str (path) Either a connection dict, or the path to a JSON connection file sshserver : str The ssh sever to use to tunnel to the kernel. Can be a full `user@server:port` string. ssh config aliases are respected. sshkey : str [optional] Path to file containing ssh key to use for authentication. Only necessary if your ssh config does not already associate a keyfile with the host. Returns ------- (shell, iopub, stdin, hb) : ints The four ports on localhost that have been forwarded to the kernel. """ if isinstance(connection_info, basestring): # it's a path, unpack it with open(connection_info) as f: connection_info = json.loads(f.read()) cf = connection_info lports = tunnel.select_random_ports(4) rports = cf['shell_port'], cf['iopub_port'], cf['stdin_port'], cf['hb_port'] remote_ip = cf['ip'] if tunnel.try_passwordless_ssh(sshserver, sshkey): password=False else: password = getpass("SSH Password for %s: "%sshserver) for lp,rp in zip(lports, rports): tunnel.ssh_tunnel(lp, rp, sshserver, remote_ip, sshkey, password) return tuple(lports)
def get_domain_config(self, domain): """Makes a discovery of domain name and resolves configuration of DNS provider :param domain: str domain name :return: DomainConnectConfig domain connect config :raises: NoDomainConnectRecordException when no _domainconnect record found :raises: NoDomainConnectSettingsException when settings are not found """ domain_root = self.identify_domain_root(domain) host = '' if len(domain_root) != len(domain): host = domain.replace('.' + domain_root, '') domain_connect_api = self._identify_domain_connect_api(domain_root) ret = self._get_domain_config_for_root(domain_root, domain_connect_api) return DomainConnectConfig(domain, domain_root, host, ret)
Makes a discovery of domain name and resolves configuration of DNS provider :param domain: str domain name :return: DomainConnectConfig domain connect config :raises: NoDomainConnectRecordException when no _domainconnect record found :raises: NoDomainConnectSettingsException when settings are not found
Below is the the instruction that describes the task: ### Input: Makes a discovery of domain name and resolves configuration of DNS provider :param domain: str domain name :return: DomainConnectConfig domain connect config :raises: NoDomainConnectRecordException when no _domainconnect record found :raises: NoDomainConnectSettingsException when settings are not found ### Response: def get_domain_config(self, domain): """Makes a discovery of domain name and resolves configuration of DNS provider :param domain: str domain name :return: DomainConnectConfig domain connect config :raises: NoDomainConnectRecordException when no _domainconnect record found :raises: NoDomainConnectSettingsException when settings are not found """ domain_root = self.identify_domain_root(domain) host = '' if len(domain_root) != len(domain): host = domain.replace('.' + domain_root, '') domain_connect_api = self._identify_domain_connect_api(domain_root) ret = self._get_domain_config_for_root(domain_root, domain_connect_api) return DomainConnectConfig(domain, domain_root, host, ret)
def my_protocol_parser(out, buf): """Parser is used with StreamParser for incremental protocol parsing. Parser is a generator function, but it is not a coroutine. Usually parsers are implemented as a state machine. more details in asyncio/parsers.py existing parsers: * HTTP protocol parsers asyncio/http/protocol.py * websocket parser asyncio/http/websocket.py """ while True: tp = yield from buf.read(5) if tp in (MSG_PING, MSG_PONG): # skip line yield from buf.skipuntil(b'\r\n') out.feed_data(Message(tp, None)) elif tp == MSG_STOP: out.feed_data(Message(tp, None)) elif tp == MSG_TEXT: # read text text = yield from buf.readuntil(b'\r\n') out.feed_data(Message(tp, text.strip().decode('utf-8'))) else: raise ValueError('Unknown protocol prefix.')
Parser is used with StreamParser for incremental protocol parsing. Parser is a generator function, but it is not a coroutine. Usually parsers are implemented as a state machine. more details in asyncio/parsers.py existing parsers: * HTTP protocol parsers asyncio/http/protocol.py * websocket parser asyncio/http/websocket.py
Below is the the instruction that describes the task: ### Input: Parser is used with StreamParser for incremental protocol parsing. Parser is a generator function, but it is not a coroutine. Usually parsers are implemented as a state machine. more details in asyncio/parsers.py existing parsers: * HTTP protocol parsers asyncio/http/protocol.py * websocket parser asyncio/http/websocket.py ### Response: def my_protocol_parser(out, buf): """Parser is used with StreamParser for incremental protocol parsing. Parser is a generator function, but it is not a coroutine. Usually parsers are implemented as a state machine. more details in asyncio/parsers.py existing parsers: * HTTP protocol parsers asyncio/http/protocol.py * websocket parser asyncio/http/websocket.py """ while True: tp = yield from buf.read(5) if tp in (MSG_PING, MSG_PONG): # skip line yield from buf.skipuntil(b'\r\n') out.feed_data(Message(tp, None)) elif tp == MSG_STOP: out.feed_data(Message(tp, None)) elif tp == MSG_TEXT: # read text text = yield from buf.readuntil(b'\r\n') out.feed_data(Message(tp, text.strip().decode('utf-8'))) else: raise ValueError('Unknown protocol prefix.')
def hash_data(data, hasher=NoParam, base=NoParam, types=False, hashlen=NoParam, convert=False): """ Get a unique hash depending on the state of the data. Args: data (object): Any sort of loosely organized data hasher (str or HASHER): Hash algorithm from hashlib, defaults to `sha512`. base (str or List[str]): Shorthand key or a list of symbols. Valid keys are: 'abc', 'hex', and 'dec'. Defaults to 'hex'. types (bool): If True data types are included in the hash, otherwise only the raw data is hashed. Defaults to False. hashlen (int): Maximum number of symbols in the returned hash. If not specified, all are returned. DEPRECATED. Use slice syntax instead. convert (bool, optional, default=True): if True, try and convert the data to json an the json is hashed instead. This can improve runtime in some instances, however the hash may differ from the case where convert=False. Notes: alphabet26 is a pretty nice base, I recommend it. However we default to hex because it is standard. This means the output of hashdata with base=sha1 will be the same as the output of `sha1sum`. Returns: str: text - hash string Example: >>> import ubelt as ub >>> print(ub.hash_data([1, 2, (3, '4')], convert=False)) 60b758587f599663931057e6ebdf185a... >>> print(ub.hash_data([1, 2, (3, '4')], base='abc', hasher='sha512')[:32]) hsrgqvfiuxvvhcdnypivhhthmrolkzej """ if convert and isinstance(data, six.string_types): # nocover try: data = json.dumps(data) except TypeError as ex: # import warnings # warnings.warn('Unable to encode input as json due to: {!r}'.format(ex)) pass base = _rectify_base(base) hashlen = _rectify_hashlen(hashlen) hasher = _rectify_hasher(hasher)() # Feed the data into the hasher _update_hasher(hasher, data, types=types) # Get the hashed representation text = _digest_hasher(hasher, hashlen, base) return text
Get a unique hash depending on the state of the data. Args: data (object): Any sort of loosely organized data hasher (str or HASHER): Hash algorithm from hashlib, defaults to `sha512`. base (str or List[str]): Shorthand key or a list of symbols. Valid keys are: 'abc', 'hex', and 'dec'. Defaults to 'hex'. types (bool): If True data types are included in the hash, otherwise only the raw data is hashed. Defaults to False. hashlen (int): Maximum number of symbols in the returned hash. If not specified, all are returned. DEPRECATED. Use slice syntax instead. convert (bool, optional, default=True): if True, try and convert the data to json an the json is hashed instead. This can improve runtime in some instances, however the hash may differ from the case where convert=False. Notes: alphabet26 is a pretty nice base, I recommend it. However we default to hex because it is standard. This means the output of hashdata with base=sha1 will be the same as the output of `sha1sum`. Returns: str: text - hash string Example: >>> import ubelt as ub >>> print(ub.hash_data([1, 2, (3, '4')], convert=False)) 60b758587f599663931057e6ebdf185a... >>> print(ub.hash_data([1, 2, (3, '4')], base='abc', hasher='sha512')[:32]) hsrgqvfiuxvvhcdnypivhhthmrolkzej
Below is the the instruction that describes the task: ### Input: Get a unique hash depending on the state of the data. Args: data (object): Any sort of loosely organized data hasher (str or HASHER): Hash algorithm from hashlib, defaults to `sha512`. base (str or List[str]): Shorthand key or a list of symbols. Valid keys are: 'abc', 'hex', and 'dec'. Defaults to 'hex'. types (bool): If True data types are included in the hash, otherwise only the raw data is hashed. Defaults to False. hashlen (int): Maximum number of symbols in the returned hash. If not specified, all are returned. DEPRECATED. Use slice syntax instead. convert (bool, optional, default=True): if True, try and convert the data to json an the json is hashed instead. This can improve runtime in some instances, however the hash may differ from the case where convert=False. Notes: alphabet26 is a pretty nice base, I recommend it. However we default to hex because it is standard. This means the output of hashdata with base=sha1 will be the same as the output of `sha1sum`. Returns: str: text - hash string Example: >>> import ubelt as ub >>> print(ub.hash_data([1, 2, (3, '4')], convert=False)) 60b758587f599663931057e6ebdf185a... >>> print(ub.hash_data([1, 2, (3, '4')], base='abc', hasher='sha512')[:32]) hsrgqvfiuxvvhcdnypivhhthmrolkzej ### Response: def hash_data(data, hasher=NoParam, base=NoParam, types=False, hashlen=NoParam, convert=False): """ Get a unique hash depending on the state of the data. Args: data (object): Any sort of loosely organized data hasher (str or HASHER): Hash algorithm from hashlib, defaults to `sha512`. base (str or List[str]): Shorthand key or a list of symbols. Valid keys are: 'abc', 'hex', and 'dec'. Defaults to 'hex'. types (bool): If True data types are included in the hash, otherwise only the raw data is hashed. Defaults to False. hashlen (int): Maximum number of symbols in the returned hash. If not specified, all are returned. DEPRECATED. Use slice syntax instead. convert (bool, optional, default=True): if True, try and convert the data to json an the json is hashed instead. This can improve runtime in some instances, however the hash may differ from the case where convert=False. Notes: alphabet26 is a pretty nice base, I recommend it. However we default to hex because it is standard. This means the output of hashdata with base=sha1 will be the same as the output of `sha1sum`. Returns: str: text - hash string Example: >>> import ubelt as ub >>> print(ub.hash_data([1, 2, (3, '4')], convert=False)) 60b758587f599663931057e6ebdf185a... >>> print(ub.hash_data([1, 2, (3, '4')], base='abc', hasher='sha512')[:32]) hsrgqvfiuxvvhcdnypivhhthmrolkzej """ if convert and isinstance(data, six.string_types): # nocover try: data = json.dumps(data) except TypeError as ex: # import warnings # warnings.warn('Unable to encode input as json due to: {!r}'.format(ex)) pass base = _rectify_base(base) hashlen = _rectify_hashlen(hashlen) hasher = _rectify_hasher(hasher)() # Feed the data into the hasher _update_hasher(hasher, data, types=types) # Get the hashed representation text = _digest_hasher(hasher, hashlen, base) return text
def haiz(obj, chart): """ Returns if an object is in Haiz. """ objGender = obj.gender() objFaction = obj.faction() if obj.id == const.MERCURY: # Gender and faction of mercury depends on orientality sun = chart.getObject(const.SUN) orientalityM = orientality(obj, sun) if orientalityM == ORIENTAL: objGender = const.MASCULINE objFaction = const.DIURNAL else: objGender = const.FEMININE objFaction = const.NOCTURNAL # Object gender match sign gender? signGender = props.sign.gender[obj.sign] genderConformity = (objGender == signGender) # Match faction factionConformity = False diurnalChart = chart.isDiurnal() if obj.id == const.SUN and not diurnalChart: # Sun is in conformity only when above horizon factionConformity = False else: # Get list of houses in the chart's diurnal faction if diurnalChart: diurnalFaction = props.house.aboveHorizon nocturnalFaction = props.house.belowHorizon else: diurnalFaction = props.house.belowHorizon nocturnalFaction = props.house.aboveHorizon # Get the object's house and match factions objHouse = chart.houses.getObjectHouse(obj) if (objFaction == const.DIURNAL and objHouse.id in diurnalFaction or objFaction == const.NOCTURNAL and objHouse.id in nocturnalFaction): factionConformity = True # Match things if (genderConformity and factionConformity): return HAIZ elif (not genderConformity and not factionConformity): return CHAIZ else: return None
Returns if an object is in Haiz.
Below is the the instruction that describes the task: ### Input: Returns if an object is in Haiz. ### Response: def haiz(obj, chart): """ Returns if an object is in Haiz. """ objGender = obj.gender() objFaction = obj.faction() if obj.id == const.MERCURY: # Gender and faction of mercury depends on orientality sun = chart.getObject(const.SUN) orientalityM = orientality(obj, sun) if orientalityM == ORIENTAL: objGender = const.MASCULINE objFaction = const.DIURNAL else: objGender = const.FEMININE objFaction = const.NOCTURNAL # Object gender match sign gender? signGender = props.sign.gender[obj.sign] genderConformity = (objGender == signGender) # Match faction factionConformity = False diurnalChart = chart.isDiurnal() if obj.id == const.SUN and not diurnalChart: # Sun is in conformity only when above horizon factionConformity = False else: # Get list of houses in the chart's diurnal faction if diurnalChart: diurnalFaction = props.house.aboveHorizon nocturnalFaction = props.house.belowHorizon else: diurnalFaction = props.house.belowHorizon nocturnalFaction = props.house.aboveHorizon # Get the object's house and match factions objHouse = chart.houses.getObjectHouse(obj) if (objFaction == const.DIURNAL and objHouse.id in diurnalFaction or objFaction == const.NOCTURNAL and objHouse.id in nocturnalFaction): factionConformity = True # Match things if (genderConformity and factionConformity): return HAIZ elif (not genderConformity and not factionConformity): return CHAIZ else: return None
def scrape_wikinews(conn, project, articleset, query): """ Scrape wikinews articles from the given query @param conn: The AmcatAPI object @param articleset: The target articleset ID @param category: The wikinews category name """ url = "http://en.wikinews.org/w/index.php?search={}&limit=50".format(query) logging.info(url) for page in get_pages(url): urls = get_article_urls(page) arts = list(get_articles(urls)) logging.info("Adding {} articles to set {}:{}" .format(len(arts), project, articleset)) conn.create_articles(project=project, articleset=articleset, json_data=arts)
Scrape wikinews articles from the given query @param conn: The AmcatAPI object @param articleset: The target articleset ID @param category: The wikinews category name
Below is the the instruction that describes the task: ### Input: Scrape wikinews articles from the given query @param conn: The AmcatAPI object @param articleset: The target articleset ID @param category: The wikinews category name ### Response: def scrape_wikinews(conn, project, articleset, query): """ Scrape wikinews articles from the given query @param conn: The AmcatAPI object @param articleset: The target articleset ID @param category: The wikinews category name """ url = "http://en.wikinews.org/w/index.php?search={}&limit=50".format(query) logging.info(url) for page in get_pages(url): urls = get_article_urls(page) arts = list(get_articles(urls)) logging.info("Adding {} articles to set {}:{}" .format(len(arts), project, articleset)) conn.create_articles(project=project, articleset=articleset, json_data=arts)
def _send_textmetrics(metrics): ''' Format metrics for the carbon plaintext protocol ''' data = [' '.join(map(six.text_type, metric)) for metric in metrics] + [''] return '\n'.join(data)
Format metrics for the carbon plaintext protocol
Below is the the instruction that describes the task: ### Input: Format metrics for the carbon plaintext protocol ### Response: def _send_textmetrics(metrics): ''' Format metrics for the carbon plaintext protocol ''' data = [' '.join(map(six.text_type, metric)) for metric in metrics] + [''] return '\n'.join(data)
def get_citation_by_reference(self, type: str, reference: str) -> Optional[Citation]: """Get a citation object by its type and reference.""" citation_hash = hash_citation(type=type, reference=reference) return self.get_citation_by_hash(citation_hash)
Get a citation object by its type and reference.
Below is the the instruction that describes the task: ### Input: Get a citation object by its type and reference. ### Response: def get_citation_by_reference(self, type: str, reference: str) -> Optional[Citation]: """Get a citation object by its type and reference.""" citation_hash = hash_citation(type=type, reference=reference) return self.get_citation_by_hash(citation_hash)
def entropy(args): """ %prog entropy kmc_dump.out kmc_dump.out contains two columns: AAAAAAAAAAAGAAGAAAGAAA 34 """ p = OptionParser(entropy.__doc__) p.add_option("--threshold", default=0, type="int", help="Complexity needs to be above") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) kmc_out, = args fp = open(kmc_out) for row in fp: kmer, count = row.split() score = entropy_score(kmer) if score >= opts.threshold: print(" ".join((kmer, count, "{:.2f}".format(score))))
%prog entropy kmc_dump.out kmc_dump.out contains two columns: AAAAAAAAAAAGAAGAAAGAAA 34
Below is the the instruction that describes the task: ### Input: %prog entropy kmc_dump.out kmc_dump.out contains two columns: AAAAAAAAAAAGAAGAAAGAAA 34 ### Response: def entropy(args): """ %prog entropy kmc_dump.out kmc_dump.out contains two columns: AAAAAAAAAAAGAAGAAAGAAA 34 """ p = OptionParser(entropy.__doc__) p.add_option("--threshold", default=0, type="int", help="Complexity needs to be above") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) kmc_out, = args fp = open(kmc_out) for row in fp: kmer, count = row.split() score = entropy_score(kmer) if score >= opts.threshold: print(" ".join((kmer, count, "{:.2f}".format(score))))
def load_tabs(self): """Loads the tab group. It compiles the table instances for each table attached to any :class:`horizon.tabs.TableTab` instances on the tab group. This step is necessary before processing any tab or table actions. """ tab_group = self.get_tabs(self.request, **self.kwargs) tabs = tab_group.get_tabs() for tab in [t for t in tabs if issubclass(t.__class__, TableTab)]: self.table_classes.extend(tab.table_classes) for table in tab._tables.values(): self._table_dict[table._meta.name] = {'table': table, 'tab': tab}
Loads the tab group. It compiles the table instances for each table attached to any :class:`horizon.tabs.TableTab` instances on the tab group. This step is necessary before processing any tab or table actions.
Below is the the instruction that describes the task: ### Input: Loads the tab group. It compiles the table instances for each table attached to any :class:`horizon.tabs.TableTab` instances on the tab group. This step is necessary before processing any tab or table actions. ### Response: def load_tabs(self): """Loads the tab group. It compiles the table instances for each table attached to any :class:`horizon.tabs.TableTab` instances on the tab group. This step is necessary before processing any tab or table actions. """ tab_group = self.get_tabs(self.request, **self.kwargs) tabs = tab_group.get_tabs() for tab in [t for t in tabs if issubclass(t.__class__, TableTab)]: self.table_classes.extend(tab.table_classes) for table in tab._tables.values(): self._table_dict[table._meta.name] = {'table': table, 'tab': tab}
def abort(*args, **kwargs): """ Usage: return abort("...") => will sys.exit() by default return abort("...", fatal=True) => Will sys.exit() # Not fatal, but will log/print message: return abort("...", fatal=False) => Will return False return abort("...", fatal=(False, None)) => Will return None return abort("...", fatal=(False, -1)) => Will return -1 # Not fatal, will not log/print any message: return abort("...", fatal=None) => Will return None return abort("...", fatal=(None, None)) => Will return None return abort("...", fatal=(None, -1)) => Will return -1 :param args: Args passed through for error reporting :param kwargs: Args passed through for error reporting :return: kwargs["return_value"] (default: -1) to signify failure to non-fatal callers """ code = kwargs.pop("code", 1) logger = kwargs.pop("logger", LOG.error if code else LOG.info) fatal = kwargs.pop("fatal", True) return_value = fatal if isinstance(fatal, tuple) and len(fatal) == 2: fatal, return_value = fatal if logger and fatal is not None and args: if logging.root.handlers: logger(*args, **kwargs) else: sys.stderr.write("%s\n" % formatted_string(*args)) if fatal: if isinstance(fatal, type) and issubclass(fatal, BaseException): raise fatal(code) if AbortException is not None: if isinstance(AbortException, type) and issubclass(AbortException, BaseException): raise AbortException(code) return AbortException(code) return return_value
Usage: return abort("...") => will sys.exit() by default return abort("...", fatal=True) => Will sys.exit() # Not fatal, but will log/print message: return abort("...", fatal=False) => Will return False return abort("...", fatal=(False, None)) => Will return None return abort("...", fatal=(False, -1)) => Will return -1 # Not fatal, will not log/print any message: return abort("...", fatal=None) => Will return None return abort("...", fatal=(None, None)) => Will return None return abort("...", fatal=(None, -1)) => Will return -1 :param args: Args passed through for error reporting :param kwargs: Args passed through for error reporting :return: kwargs["return_value"] (default: -1) to signify failure to non-fatal callers
Below is the the instruction that describes the task: ### Input: Usage: return abort("...") => will sys.exit() by default return abort("...", fatal=True) => Will sys.exit() # Not fatal, but will log/print message: return abort("...", fatal=False) => Will return False return abort("...", fatal=(False, None)) => Will return None return abort("...", fatal=(False, -1)) => Will return -1 # Not fatal, will not log/print any message: return abort("...", fatal=None) => Will return None return abort("...", fatal=(None, None)) => Will return None return abort("...", fatal=(None, -1)) => Will return -1 :param args: Args passed through for error reporting :param kwargs: Args passed through for error reporting :return: kwargs["return_value"] (default: -1) to signify failure to non-fatal callers ### Response: def abort(*args, **kwargs): """ Usage: return abort("...") => will sys.exit() by default return abort("...", fatal=True) => Will sys.exit() # Not fatal, but will log/print message: return abort("...", fatal=False) => Will return False return abort("...", fatal=(False, None)) => Will return None return abort("...", fatal=(False, -1)) => Will return -1 # Not fatal, will not log/print any message: return abort("...", fatal=None) => Will return None return abort("...", fatal=(None, None)) => Will return None return abort("...", fatal=(None, -1)) => Will return -1 :param args: Args passed through for error reporting :param kwargs: Args passed through for error reporting :return: kwargs["return_value"] (default: -1) to signify failure to non-fatal callers """ code = kwargs.pop("code", 1) logger = kwargs.pop("logger", LOG.error if code else LOG.info) fatal = kwargs.pop("fatal", True) return_value = fatal if isinstance(fatal, tuple) and len(fatal) == 2: fatal, return_value = fatal if logger and fatal is not None and args: if logging.root.handlers: logger(*args, **kwargs) else: sys.stderr.write("%s\n" % formatted_string(*args)) if fatal: if isinstance(fatal, type) and issubclass(fatal, BaseException): raise fatal(code) if AbortException is not None: if isinstance(AbortException, type) and issubclass(AbortException, BaseException): raise AbortException(code) return AbortException(code) return return_value
def sigma_cached(self, psd): """ Cache sigma calculate for use in tandem with the FilterBank class """ if not hasattr(self, '_sigmasq'): from pycbc.opt import LimitedSizeDict self._sigmasq = LimitedSizeDict(size_limit=2**5) key = id(psd) if not hasattr(psd, '_sigma_cached_key'): psd._sigma_cached_key = {} if key not in self._sigmasq or id(self) not in psd._sigma_cached_key: psd._sigma_cached_key[id(self)] = True # If possible, we precalculate the sigmasq vector for all possible waveforms if pycbc.waveform.waveform_norm_exists(self.approximant): if not hasattr(psd, 'sigmasq_vec'): psd.sigmasq_vec = {} if self.approximant not in psd.sigmasq_vec: psd.sigmasq_vec[self.approximant] = pycbc.waveform.get_waveform_filter_norm( self.approximant, psd, len(psd), psd.delta_f, self.f_lower) if not hasattr(self, 'sigma_scale'): # Get an amplitude normalization (mass dependant constant norm) amp_norm = pycbc.waveform.get_template_amplitude_norm( self.params, approximant=self.approximant) amp_norm = 1 if amp_norm is None else amp_norm self.sigma_scale = (DYN_RANGE_FAC * amp_norm) ** 2.0 self._sigmasq[key] = self.sigma_scale * \ psd.sigmasq_vec[self.approximant][self.end_idx-1] else: if not hasattr(self, 'sigma_view'): from pycbc.filter.matchedfilter import get_cutoff_indices N = (len(self) -1) * 2 kmin, kmax = get_cutoff_indices( self.min_f_lower or self.f_lower, self.end_frequency, self.delta_f, N) self.sslice = slice(kmin, kmax) self.sigma_view = self[self.sslice].squared_norm() * 4.0 * self.delta_f if not hasattr(psd, 'invsqrt'): psd.invsqrt = 1.0 / psd[self.sslice] self._sigmasq[key] = self.sigma_view.inner(psd.invsqrt) return self._sigmasq[key]
Cache sigma calculate for use in tandem with the FilterBank class
Below is the the instruction that describes the task: ### Input: Cache sigma calculate for use in tandem with the FilterBank class ### Response: def sigma_cached(self, psd): """ Cache sigma calculate for use in tandem with the FilterBank class """ if not hasattr(self, '_sigmasq'): from pycbc.opt import LimitedSizeDict self._sigmasq = LimitedSizeDict(size_limit=2**5) key = id(psd) if not hasattr(psd, '_sigma_cached_key'): psd._sigma_cached_key = {} if key not in self._sigmasq or id(self) not in psd._sigma_cached_key: psd._sigma_cached_key[id(self)] = True # If possible, we precalculate the sigmasq vector for all possible waveforms if pycbc.waveform.waveform_norm_exists(self.approximant): if not hasattr(psd, 'sigmasq_vec'): psd.sigmasq_vec = {} if self.approximant not in psd.sigmasq_vec: psd.sigmasq_vec[self.approximant] = pycbc.waveform.get_waveform_filter_norm( self.approximant, psd, len(psd), psd.delta_f, self.f_lower) if not hasattr(self, 'sigma_scale'): # Get an amplitude normalization (mass dependant constant norm) amp_norm = pycbc.waveform.get_template_amplitude_norm( self.params, approximant=self.approximant) amp_norm = 1 if amp_norm is None else amp_norm self.sigma_scale = (DYN_RANGE_FAC * amp_norm) ** 2.0 self._sigmasq[key] = self.sigma_scale * \ psd.sigmasq_vec[self.approximant][self.end_idx-1] else: if not hasattr(self, 'sigma_view'): from pycbc.filter.matchedfilter import get_cutoff_indices N = (len(self) -1) * 2 kmin, kmax = get_cutoff_indices( self.min_f_lower or self.f_lower, self.end_frequency, self.delta_f, N) self.sslice = slice(kmin, kmax) self.sigma_view = self[self.sslice].squared_norm() * 4.0 * self.delta_f if not hasattr(psd, 'invsqrt'): psd.invsqrt = 1.0 / psd[self.sslice] self._sigmasq[key] = self.sigma_view.inner(psd.invsqrt) return self._sigmasq[key]
def depends (self, d): """ Adds additional instances of 'VirtualTarget' that this one depends on. """ self.dependencies_ = unique (self.dependencies_ + d).sort ()
Adds additional instances of 'VirtualTarget' that this one depends on.
Below is the the instruction that describes the task: ### Input: Adds additional instances of 'VirtualTarget' that this one depends on. ### Response: def depends (self, d): """ Adds additional instances of 'VirtualTarget' that this one depends on. """ self.dependencies_ = unique (self.dependencies_ + d).sort ()
def add_module(self, module, cython=False): """Add the given module, its members, and their submembers. The first examples are based on the site-package |numpy|: which is passed to method |Substituter.add_module|: >>> from hydpy.core.autodoctools import Substituter >>> substituter = Substituter() >>> import numpy >>> substituter.add_module(numpy) Firstly, the module itself is added: >>> substituter.find('|numpy|') |numpy| :mod:`~numpy` Secondly, constants like |numpy.nan| are added: >>> substituter.find('|numpy.nan|') |numpy.nan| :const:`~numpy.nan` Thirdly, functions like |numpy.clip| are added: >>> substituter.find('|numpy.clip|') |numpy.clip| :func:`~numpy.clip` Fourthly, clases line |numpy.ndarray| are added: >>> substituter.find('|numpy.ndarray|') |numpy.ndarray| :class:`~numpy.ndarray` When adding Cython modules, the `cython` flag should be set |True|: >>> from hydpy.cythons import pointerutils >>> substituter.add_module(pointerutils, cython=True) >>> substituter.find('set_pointer') |PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` |pointerutils.PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` """ name_module = module.__name__.split('.')[-1] short = ('|%s|' % name_module) long = (':mod:`~%s`' % module.__name__) self._short2long[short] = long for (name_member, member) in vars(module).items(): if self.consider_member( name_member, member, module): role = self.get_role(member, cython) short = ('|%s|' % name_member) medium = ('|%s.%s|' % (name_module, name_member)) long = (':%s:`~%s.%s`' % (role, module.__name__, name_member)) self.add_substitution(short, medium, long, module) if inspect.isclass(member): for name_submember, submember in vars(member).items(): if self.consider_member( name_submember, submember, module, member): role = self.get_role(submember, cython) short = ('|%s.%s|' % (name_member, name_submember)) medium = ('|%s.%s.%s|' % (name_module, name_member, name_submember)) long = (':%s:`~%s.%s.%s`' % (role, module.__name__, name_member, name_submember)) self.add_substitution(short, medium, long, module)
Add the given module, its members, and their submembers. The first examples are based on the site-package |numpy|: which is passed to method |Substituter.add_module|: >>> from hydpy.core.autodoctools import Substituter >>> substituter = Substituter() >>> import numpy >>> substituter.add_module(numpy) Firstly, the module itself is added: >>> substituter.find('|numpy|') |numpy| :mod:`~numpy` Secondly, constants like |numpy.nan| are added: >>> substituter.find('|numpy.nan|') |numpy.nan| :const:`~numpy.nan` Thirdly, functions like |numpy.clip| are added: >>> substituter.find('|numpy.clip|') |numpy.clip| :func:`~numpy.clip` Fourthly, clases line |numpy.ndarray| are added: >>> substituter.find('|numpy.ndarray|') |numpy.ndarray| :class:`~numpy.ndarray` When adding Cython modules, the `cython` flag should be set |True|: >>> from hydpy.cythons import pointerutils >>> substituter.add_module(pointerutils, cython=True) >>> substituter.find('set_pointer') |PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` |pointerutils.PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer`
Below is the the instruction that describes the task: ### Input: Add the given module, its members, and their submembers. The first examples are based on the site-package |numpy|: which is passed to method |Substituter.add_module|: >>> from hydpy.core.autodoctools import Substituter >>> substituter = Substituter() >>> import numpy >>> substituter.add_module(numpy) Firstly, the module itself is added: >>> substituter.find('|numpy|') |numpy| :mod:`~numpy` Secondly, constants like |numpy.nan| are added: >>> substituter.find('|numpy.nan|') |numpy.nan| :const:`~numpy.nan` Thirdly, functions like |numpy.clip| are added: >>> substituter.find('|numpy.clip|') |numpy.clip| :func:`~numpy.clip` Fourthly, clases line |numpy.ndarray| are added: >>> substituter.find('|numpy.ndarray|') |numpy.ndarray| :class:`~numpy.ndarray` When adding Cython modules, the `cython` flag should be set |True|: >>> from hydpy.cythons import pointerutils >>> substituter.add_module(pointerutils, cython=True) >>> substituter.find('set_pointer') |PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` |pointerutils.PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` ### Response: def add_module(self, module, cython=False): """Add the given module, its members, and their submembers. The first examples are based on the site-package |numpy|: which is passed to method |Substituter.add_module|: >>> from hydpy.core.autodoctools import Substituter >>> substituter = Substituter() >>> import numpy >>> substituter.add_module(numpy) Firstly, the module itself is added: >>> substituter.find('|numpy|') |numpy| :mod:`~numpy` Secondly, constants like |numpy.nan| are added: >>> substituter.find('|numpy.nan|') |numpy.nan| :const:`~numpy.nan` Thirdly, functions like |numpy.clip| are added: >>> substituter.find('|numpy.clip|') |numpy.clip| :func:`~numpy.clip` Fourthly, clases line |numpy.ndarray| are added: >>> substituter.find('|numpy.ndarray|') |numpy.ndarray| :class:`~numpy.ndarray` When adding Cython modules, the `cython` flag should be set |True|: >>> from hydpy.cythons import pointerutils >>> substituter.add_module(pointerutils, cython=True) >>> substituter.find('set_pointer') |PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` |pointerutils.PPDouble.set_pointer| \ :func:`~hydpy.cythons.autogen.pointerutils.PPDouble.set_pointer` """ name_module = module.__name__.split('.')[-1] short = ('|%s|' % name_module) long = (':mod:`~%s`' % module.__name__) self._short2long[short] = long for (name_member, member) in vars(module).items(): if self.consider_member( name_member, member, module): role = self.get_role(member, cython) short = ('|%s|' % name_member) medium = ('|%s.%s|' % (name_module, name_member)) long = (':%s:`~%s.%s`' % (role, module.__name__, name_member)) self.add_substitution(short, medium, long, module) if inspect.isclass(member): for name_submember, submember in vars(member).items(): if self.consider_member( name_submember, submember, module, member): role = self.get_role(submember, cython) short = ('|%s.%s|' % (name_member, name_submember)) medium = ('|%s.%s.%s|' % (name_module, name_member, name_submember)) long = (':%s:`~%s.%s.%s`' % (role, module.__name__, name_member, name_submember)) self.add_substitution(short, medium, long, module)
def _hashable_bytes(data): """ Coerce strings to hashable bytes. """ if isinstance(data, bytes): return data elif isinstance(data, str): return data.encode('ascii') # Fail on anything non-ASCII. else: raise TypeError(data)
Coerce strings to hashable bytes.
Below is the the instruction that describes the task: ### Input: Coerce strings to hashable bytes. ### Response: def _hashable_bytes(data): """ Coerce strings to hashable bytes. """ if isinstance(data, bytes): return data elif isinstance(data, str): return data.encode('ascii') # Fail on anything non-ASCII. else: raise TypeError(data)
def _set_least_batch_id(self, txn_signature): """Set the first batch id that doesn't have all results. Args: txn_signature (str): The txn identifier of the transaction with results being set. """ batch = self._batches_by_txn_id[txn_signature] least_index = self._index_of_batch( self._batches_by_id[self._least_batch_id_wo_results].batch) current_index = self._index_of_batch(batch) all_prior = False if current_index <= least_index: return # Test to see if all batches from the least_batch to # the prior batch to the current batch have results. if all( all(t.header_signature in self._txn_results for t in b.transactions) for b in self._batches[least_index:current_index]): all_prior = True if not all_prior: return possible_least = self._batches[current_index].header_signature # Find the first batch from the current batch on, that doesn't have # all results. for b in self._batches[current_index:]: if not all(t.header_signature in self._txn_results for t in b.transactions): possible_least = b.header_signature break self._least_batch_id_wo_results = possible_least
Set the first batch id that doesn't have all results. Args: txn_signature (str): The txn identifier of the transaction with results being set.
Below is the the instruction that describes the task: ### Input: Set the first batch id that doesn't have all results. Args: txn_signature (str): The txn identifier of the transaction with results being set. ### Response: def _set_least_batch_id(self, txn_signature): """Set the first batch id that doesn't have all results. Args: txn_signature (str): The txn identifier of the transaction with results being set. """ batch = self._batches_by_txn_id[txn_signature] least_index = self._index_of_batch( self._batches_by_id[self._least_batch_id_wo_results].batch) current_index = self._index_of_batch(batch) all_prior = False if current_index <= least_index: return # Test to see if all batches from the least_batch to # the prior batch to the current batch have results. if all( all(t.header_signature in self._txn_results for t in b.transactions) for b in self._batches[least_index:current_index]): all_prior = True if not all_prior: return possible_least = self._batches[current_index].header_signature # Find the first batch from the current batch on, that doesn't have # all results. for b in self._batches[current_index:]: if not all(t.header_signature in self._txn_results for t in b.transactions): possible_least = b.header_signature break self._least_batch_id_wo_results = possible_least
def with_reconnect(func): """ Handle when AutoReconnect is raised from pymongo. This is the standard error raised for everything from "host disconnected" to "couldn't connect to host" and more. The sleep handles the edge case when the state of a replica set changes, and the cursor raises AutoReconnect because the master may have changed. It can take some time for the replica set to stop raising this exception, and the small sleep and iteration count gives us a couple of seconds before we fail completely. """ from pymongo.errors import AutoReconnect @functools.wraps(func) def _reconnector(*args, **kwargs): for _ in range(20): try: return func(*args, **kwargs) except AutoReconnect: time.sleep(0.250) raise return _reconnector
Handle when AutoReconnect is raised from pymongo. This is the standard error raised for everything from "host disconnected" to "couldn't connect to host" and more. The sleep handles the edge case when the state of a replica set changes, and the cursor raises AutoReconnect because the master may have changed. It can take some time for the replica set to stop raising this exception, and the small sleep and iteration count gives us a couple of seconds before we fail completely.
Below is the the instruction that describes the task: ### Input: Handle when AutoReconnect is raised from pymongo. This is the standard error raised for everything from "host disconnected" to "couldn't connect to host" and more. The sleep handles the edge case when the state of a replica set changes, and the cursor raises AutoReconnect because the master may have changed. It can take some time for the replica set to stop raising this exception, and the small sleep and iteration count gives us a couple of seconds before we fail completely. ### Response: def with_reconnect(func): """ Handle when AutoReconnect is raised from pymongo. This is the standard error raised for everything from "host disconnected" to "couldn't connect to host" and more. The sleep handles the edge case when the state of a replica set changes, and the cursor raises AutoReconnect because the master may have changed. It can take some time for the replica set to stop raising this exception, and the small sleep and iteration count gives us a couple of seconds before we fail completely. """ from pymongo.errors import AutoReconnect @functools.wraps(func) def _reconnector(*args, **kwargs): for _ in range(20): try: return func(*args, **kwargs) except AutoReconnect: time.sleep(0.250) raise return _reconnector
def stats(self): """ Gets performance statistics and server information """ status, _, body = self._request('GET', self.stats_path(), {'Accept': 'application/json'}) if status == 200: return json.loads(bytes_to_str(body)) else: return None
Gets performance statistics and server information
Below is the the instruction that describes the task: ### Input: Gets performance statistics and server information ### Response: def stats(self): """ Gets performance statistics and server information """ status, _, body = self._request('GET', self.stats_path(), {'Accept': 'application/json'}) if status == 200: return json.loads(bytes_to_str(body)) else: return None
def cysparse_real_type_from_real_cysparse_complex_type(cysparse_type): """ Returns the **real** type for the real or imaginary part of a **real** complex type. For instance: COMPLEX128_t -> FLOAT64_t Args: cysparse: """ r_type = None if cysparse_type in ['COMPLEX64_t']: r_type = 'FLOAT32_t' elif cysparse_type in ['COMPLEX128_t']: r_type = 'FLOAT64_t' elif cysparse_type in ['COMPLEX256_t']: r_type = 'FLOAT128_t' else: raise TypeError("Not a recognized complex type") return r_type
Returns the **real** type for the real or imaginary part of a **real** complex type. For instance: COMPLEX128_t -> FLOAT64_t Args: cysparse:
Below is the the instruction that describes the task: ### Input: Returns the **real** type for the real or imaginary part of a **real** complex type. For instance: COMPLEX128_t -> FLOAT64_t Args: cysparse: ### Response: def cysparse_real_type_from_real_cysparse_complex_type(cysparse_type): """ Returns the **real** type for the real or imaginary part of a **real** complex type. For instance: COMPLEX128_t -> FLOAT64_t Args: cysparse: """ r_type = None if cysparse_type in ['COMPLEX64_t']: r_type = 'FLOAT32_t' elif cysparse_type in ['COMPLEX128_t']: r_type = 'FLOAT64_t' elif cysparse_type in ['COMPLEX256_t']: r_type = 'FLOAT128_t' else: raise TypeError("Not a recognized complex type") return r_type
def get_mysql_credentials(cfg_file): """Get the credentials and database name from options in config file.""" try: parser = ConfigParser.ConfigParser() cfg_fp = open(cfg_file) parser.readfp(cfg_fp) cfg_fp.close() except ConfigParser.NoOptionError: cfg_fp.close() print('Failed to find mysql connections credentials.') sys.exit(1) except IOError: print('ERROR: Cannot open %s.', cfg_file) sys.exit(1) value = parser.get('dfa_mysql', 'connection') try: # Find location of pattern in connection parameter as shown below: # http://username:password@host/databasename?characterset=encoding' sobj = re.search(r"(://).*(@).*(/).*(\?)", value) # The list parameter contains: # indices[0], is the index of '://' # indices[1], is the index of '@' # indices[2], is the index of '/' # indices[3], is the index of '?' indices = [sobj.start(1), sobj.start(2), sobj.start(3), sobj.start(4)] # Get the credentials cred = value[indices[0] + 3:indices[1]].split(':') # Get the host name host = value[indices[1] + 1:indices[2]] # Get the database name db_name = value[indices[2] + 1:indices[3]] # Get the character encoding charset = value[indices[3] + 1:].split('=')[1] return cred[0], cred[1], host, db_name, charset except (ValueError, IndexError, AttributeError): print('Failed to find mysql connections credentials.') sys.exit(1)
Get the credentials and database name from options in config file.
Below is the the instruction that describes the task: ### Input: Get the credentials and database name from options in config file. ### Response: def get_mysql_credentials(cfg_file): """Get the credentials and database name from options in config file.""" try: parser = ConfigParser.ConfigParser() cfg_fp = open(cfg_file) parser.readfp(cfg_fp) cfg_fp.close() except ConfigParser.NoOptionError: cfg_fp.close() print('Failed to find mysql connections credentials.') sys.exit(1) except IOError: print('ERROR: Cannot open %s.', cfg_file) sys.exit(1) value = parser.get('dfa_mysql', 'connection') try: # Find location of pattern in connection parameter as shown below: # http://username:password@host/databasename?characterset=encoding' sobj = re.search(r"(://).*(@).*(/).*(\?)", value) # The list parameter contains: # indices[0], is the index of '://' # indices[1], is the index of '@' # indices[2], is the index of '/' # indices[3], is the index of '?' indices = [sobj.start(1), sobj.start(2), sobj.start(3), sobj.start(4)] # Get the credentials cred = value[indices[0] + 3:indices[1]].split(':') # Get the host name host = value[indices[1] + 1:indices[2]] # Get the database name db_name = value[indices[2] + 1:indices[3]] # Get the character encoding charset = value[indices[3] + 1:].split('=')[1] return cred[0], cred[1], host, db_name, charset except (ValueError, IndexError, AttributeError): print('Failed to find mysql connections credentials.') sys.exit(1)
def show_grid(images, rows=None, cols=None): """ Converts the input images to a grid image and shows it in a new window. dtype support:: minimum of ( :func:`imgaug.imgaug.draw_grid`, :func:`imgaug.imgaug.imshow` ) Parameters ---------- images : (N,H,W,3) ndarray or iterable of (H,W,3) array See :func:`imgaug.draw_grid`. rows : None or int, optional See :func:`imgaug.draw_grid`. cols : None or int, optional See :func:`imgaug.draw_grid`. """ grid = draw_grid(images, rows=rows, cols=cols) imshow(grid)
Converts the input images to a grid image and shows it in a new window. dtype support:: minimum of ( :func:`imgaug.imgaug.draw_grid`, :func:`imgaug.imgaug.imshow` ) Parameters ---------- images : (N,H,W,3) ndarray or iterable of (H,W,3) array See :func:`imgaug.draw_grid`. rows : None or int, optional See :func:`imgaug.draw_grid`. cols : None or int, optional See :func:`imgaug.draw_grid`.
Below is the the instruction that describes the task: ### Input: Converts the input images to a grid image and shows it in a new window. dtype support:: minimum of ( :func:`imgaug.imgaug.draw_grid`, :func:`imgaug.imgaug.imshow` ) Parameters ---------- images : (N,H,W,3) ndarray or iterable of (H,W,3) array See :func:`imgaug.draw_grid`. rows : None or int, optional See :func:`imgaug.draw_grid`. cols : None or int, optional See :func:`imgaug.draw_grid`. ### Response: def show_grid(images, rows=None, cols=None): """ Converts the input images to a grid image and shows it in a new window. dtype support:: minimum of ( :func:`imgaug.imgaug.draw_grid`, :func:`imgaug.imgaug.imshow` ) Parameters ---------- images : (N,H,W,3) ndarray or iterable of (H,W,3) array See :func:`imgaug.draw_grid`. rows : None or int, optional See :func:`imgaug.draw_grid`. cols : None or int, optional See :func:`imgaug.draw_grid`. """ grid = draw_grid(images, rows=rows, cols=cols) imshow(grid)
def _make_grid_of_axes(self, bounding_rect=cfg.bounding_rect_default, num_rows=cfg.num_rows_per_view_default, num_cols=cfg.num_cols_grid_default, axis_pad=cfg.axis_pad_default, commn_annot=None, **axis_kwargs): """Creates a grid of axes bounded within a given rectangle.""" axes_in_grid = list() extents = self._compute_cell_extents_grid(bounding_rect=bounding_rect, num_cols=num_cols, num_rows=num_rows, axis_pad=axis_pad) for cell_ext in extents: ax_cell = self.fig.add_axes(cell_ext, frameon=False, visible=False, **axis_kwargs) if commn_annot is not None: ax_cell.set_title(commn_annot) ax_cell.set_axis_off() axes_in_grid.append(ax_cell) return axes_in_grid
Creates a grid of axes bounded within a given rectangle.
Below is the the instruction that describes the task: ### Input: Creates a grid of axes bounded within a given rectangle. ### Response: def _make_grid_of_axes(self, bounding_rect=cfg.bounding_rect_default, num_rows=cfg.num_rows_per_view_default, num_cols=cfg.num_cols_grid_default, axis_pad=cfg.axis_pad_default, commn_annot=None, **axis_kwargs): """Creates a grid of axes bounded within a given rectangle.""" axes_in_grid = list() extents = self._compute_cell_extents_grid(bounding_rect=bounding_rect, num_cols=num_cols, num_rows=num_rows, axis_pad=axis_pad) for cell_ext in extents: ax_cell = self.fig.add_axes(cell_ext, frameon=False, visible=False, **axis_kwargs) if commn_annot is not None: ax_cell.set_title(commn_annot) ax_cell.set_axis_off() axes_in_grid.append(ax_cell) return axes_in_grid
def from_kwargs(cls, **kwargs): """Creates a new instance of self from the given keyword arguments. Each argument will correspond to a field in the returned array, with the name of the field given by the keyword, and the value(s) whatever the keyword was set to. Each keyword may be set to a single value or a list of values. The number of values that each argument is set to must be the same; this will be the size of the returned array. Examples -------- Create an array with fields 'mass1' and 'mass2': >>> a = FieldArray.from_kwargs(mass1=[1.1, 3.], mass2=[2., 3.]) >>> a.fieldnames ('mass1', 'mass2') >>> a.mass1, a.mass2 (array([ 1.1, 3. ]), array([ 2., 3.])) Create an array with only a single element in it: >>> a = FieldArray.from_kwargs(mass1=1.1, mass2=2.) >>> a.mass1, a.mass2 (array([ 1.1]), array([ 2.])) """ arrays = [] names = [] for p,vals in kwargs.items(): if not isinstance(vals, numpy.ndarray): if not isinstance(vals, list): vals = [vals] vals = numpy.array(vals) arrays.append(vals) names.append(p) return cls.from_arrays(arrays, names=names)
Creates a new instance of self from the given keyword arguments. Each argument will correspond to a field in the returned array, with the name of the field given by the keyword, and the value(s) whatever the keyword was set to. Each keyword may be set to a single value or a list of values. The number of values that each argument is set to must be the same; this will be the size of the returned array. Examples -------- Create an array with fields 'mass1' and 'mass2': >>> a = FieldArray.from_kwargs(mass1=[1.1, 3.], mass2=[2., 3.]) >>> a.fieldnames ('mass1', 'mass2') >>> a.mass1, a.mass2 (array([ 1.1, 3. ]), array([ 2., 3.])) Create an array with only a single element in it: >>> a = FieldArray.from_kwargs(mass1=1.1, mass2=2.) >>> a.mass1, a.mass2 (array([ 1.1]), array([ 2.]))
Below is the the instruction that describes the task: ### Input: Creates a new instance of self from the given keyword arguments. Each argument will correspond to a field in the returned array, with the name of the field given by the keyword, and the value(s) whatever the keyword was set to. Each keyword may be set to a single value or a list of values. The number of values that each argument is set to must be the same; this will be the size of the returned array. Examples -------- Create an array with fields 'mass1' and 'mass2': >>> a = FieldArray.from_kwargs(mass1=[1.1, 3.], mass2=[2., 3.]) >>> a.fieldnames ('mass1', 'mass2') >>> a.mass1, a.mass2 (array([ 1.1, 3. ]), array([ 2., 3.])) Create an array with only a single element in it: >>> a = FieldArray.from_kwargs(mass1=1.1, mass2=2.) >>> a.mass1, a.mass2 (array([ 1.1]), array([ 2.])) ### Response: def from_kwargs(cls, **kwargs): """Creates a new instance of self from the given keyword arguments. Each argument will correspond to a field in the returned array, with the name of the field given by the keyword, and the value(s) whatever the keyword was set to. Each keyword may be set to a single value or a list of values. The number of values that each argument is set to must be the same; this will be the size of the returned array. Examples -------- Create an array with fields 'mass1' and 'mass2': >>> a = FieldArray.from_kwargs(mass1=[1.1, 3.], mass2=[2., 3.]) >>> a.fieldnames ('mass1', 'mass2') >>> a.mass1, a.mass2 (array([ 1.1, 3. ]), array([ 2., 3.])) Create an array with only a single element in it: >>> a = FieldArray.from_kwargs(mass1=1.1, mass2=2.) >>> a.mass1, a.mass2 (array([ 1.1]), array([ 2.])) """ arrays = [] names = [] for p,vals in kwargs.items(): if not isinstance(vals, numpy.ndarray): if not isinstance(vals, list): vals = [vals] vals = numpy.array(vals) arrays.append(vals) names.append(p) return cls.from_arrays(arrays, names=names)
def web(connection, host, port): """Run a combine web interface.""" from bio2bel.web.application import create_application app = create_application(connection=connection) app.run(host=host, port=port)
Run a combine web interface.
Below is the the instruction that describes the task: ### Input: Run a combine web interface. ### Response: def web(connection, host, port): """Run a combine web interface.""" from bio2bel.web.application import create_application app = create_application(connection=connection) app.run(host=host, port=port)
def reflectance_from_tbs(self, sun_zenith, tb_near_ir, tb_thermal, **kwargs): """ The relfectance calculated is without units and should be between 0 and 1. Inputs: sun_zenith: Sun zenith angle for every pixel - in degrees tb_near_ir: The 3.7 (or 3.9 or equivalent) IR Tb's at every pixel (Kelvin) tb_thermal: The 10.8 (or 11 or 12 or equivalent) IR Tb's at every pixel (Kelvin) tb_ir_co2: The 13.4 micron channel (or similar - co2 absorption band) brightness temperatures at every pixel. If None, no CO2 absorption correction will be applied. """ # Check for dask arrays if hasattr(tb_near_ir, 'compute') or hasattr(tb_thermal, 'compute'): compute = False else: compute = True if hasattr(tb_near_ir, 'mask') or hasattr(tb_thermal, 'mask'): is_masked = True else: is_masked = False if np.isscalar(tb_near_ir): tb_nir = np.array([tb_near_ir, ]) else: tb_nir = np.asanyarray(tb_near_ir) if np.isscalar(tb_thermal): tb_therm = np.array([tb_thermal, ]) else: tb_therm = np.asanyarray(tb_thermal) if tb_therm.shape != tb_nir.shape: errmsg = 'Dimensions do not match! {0} and {1}'.format( str(tb_therm.shape), str(tb_nir.shape)) raise ValueError(errmsg) tb_ir_co2 = kwargs.get('tb_ir_co2') lut = kwargs.get('lut', self.lut) if tb_ir_co2 is None: co2corr = False tbco2 = None else: co2corr = True if np.isscalar(tb_ir_co2): tbco2 = np.array([tb_ir_co2, ]) else: tbco2 = np.asanyarray(tb_ir_co2) if not self.rsr: raise NotImplementedError("Reflectance calculations without " "rsr not yet supported!") # Assume rsr is in microns!!! # FIXME! self._rad3x_t11 = self.tb2radiance(tb_therm, lut=lut)['radiance'] thermal_emiss_one = self._rad3x_t11 * self.rsr_integral l_nir = self.tb2radiance(tb_nir, lut=lut)['radiance'] * self.rsr_integral if thermal_emiss_one.ravel().shape[0] < 10: LOG.info('thermal_emiss_one = %s', str(thermal_emiss_one)) if l_nir.ravel().shape[0] < 10: LOG.info('l_nir = %s', str(l_nir)) sunzmask = (sun_zenith < 0.0) | (sun_zenith > 88.0) sunz = where(sunzmask, 88.0, sun_zenith) mu0 = np.cos(np.deg2rad(sunz)) # mu0 = np.where(np.less(mu0, 0.1), 0.1, mu0) self._rad3x = l_nir self._solar_radiance = self.solar_flux * mu0 / np.pi # CO2 correction to the 3.9 radiance, only if tbs of a co2 band around # 13.4 micron is provided: if co2corr: self.derive_rad39_corr(tb_therm, tbco2) LOG.info("CO2 correction applied...") else: self._rad3x_correction = 1.0 nomin = l_nir - thermal_emiss_one * self._rad3x_correction denom = self._solar_radiance - thermal_emiss_one * self._rad3x_correction data = nomin / denom mask = (self._solar_radiance - thermal_emiss_one * self._rad3x_correction) < EPSILON logical_or(sunzmask, mask, out=mask) logical_or(mask, np.isnan(tb_nir), out=mask) self._r3x = where(mask, np.nan, data) # Reflectances should be between 0 and 1, but values above 1 is # perfectly possible and okay! (Multiply by 100 to get reflectances # in percent) if hasattr(self._r3x, 'compute') and compute: res = self._r3x.compute() else: res = self._r3x if is_masked: res = np.ma.masked_array(res, mask=np.isnan(res)) return res
The relfectance calculated is without units and should be between 0 and 1. Inputs: sun_zenith: Sun zenith angle for every pixel - in degrees tb_near_ir: The 3.7 (or 3.9 or equivalent) IR Tb's at every pixel (Kelvin) tb_thermal: The 10.8 (or 11 or 12 or equivalent) IR Tb's at every pixel (Kelvin) tb_ir_co2: The 13.4 micron channel (or similar - co2 absorption band) brightness temperatures at every pixel. If None, no CO2 absorption correction will be applied.
Below is the the instruction that describes the task: ### Input: The relfectance calculated is without units and should be between 0 and 1. Inputs: sun_zenith: Sun zenith angle for every pixel - in degrees tb_near_ir: The 3.7 (or 3.9 or equivalent) IR Tb's at every pixel (Kelvin) tb_thermal: The 10.8 (or 11 or 12 or equivalent) IR Tb's at every pixel (Kelvin) tb_ir_co2: The 13.4 micron channel (or similar - co2 absorption band) brightness temperatures at every pixel. If None, no CO2 absorption correction will be applied. ### Response: def reflectance_from_tbs(self, sun_zenith, tb_near_ir, tb_thermal, **kwargs): """ The relfectance calculated is without units and should be between 0 and 1. Inputs: sun_zenith: Sun zenith angle for every pixel - in degrees tb_near_ir: The 3.7 (or 3.9 or equivalent) IR Tb's at every pixel (Kelvin) tb_thermal: The 10.8 (or 11 or 12 or equivalent) IR Tb's at every pixel (Kelvin) tb_ir_co2: The 13.4 micron channel (or similar - co2 absorption band) brightness temperatures at every pixel. If None, no CO2 absorption correction will be applied. """ # Check for dask arrays if hasattr(tb_near_ir, 'compute') or hasattr(tb_thermal, 'compute'): compute = False else: compute = True if hasattr(tb_near_ir, 'mask') or hasattr(tb_thermal, 'mask'): is_masked = True else: is_masked = False if np.isscalar(tb_near_ir): tb_nir = np.array([tb_near_ir, ]) else: tb_nir = np.asanyarray(tb_near_ir) if np.isscalar(tb_thermal): tb_therm = np.array([tb_thermal, ]) else: tb_therm = np.asanyarray(tb_thermal) if tb_therm.shape != tb_nir.shape: errmsg = 'Dimensions do not match! {0} and {1}'.format( str(tb_therm.shape), str(tb_nir.shape)) raise ValueError(errmsg) tb_ir_co2 = kwargs.get('tb_ir_co2') lut = kwargs.get('lut', self.lut) if tb_ir_co2 is None: co2corr = False tbco2 = None else: co2corr = True if np.isscalar(tb_ir_co2): tbco2 = np.array([tb_ir_co2, ]) else: tbco2 = np.asanyarray(tb_ir_co2) if not self.rsr: raise NotImplementedError("Reflectance calculations without " "rsr not yet supported!") # Assume rsr is in microns!!! # FIXME! self._rad3x_t11 = self.tb2radiance(tb_therm, lut=lut)['radiance'] thermal_emiss_one = self._rad3x_t11 * self.rsr_integral l_nir = self.tb2radiance(tb_nir, lut=lut)['radiance'] * self.rsr_integral if thermal_emiss_one.ravel().shape[0] < 10: LOG.info('thermal_emiss_one = %s', str(thermal_emiss_one)) if l_nir.ravel().shape[0] < 10: LOG.info('l_nir = %s', str(l_nir)) sunzmask = (sun_zenith < 0.0) | (sun_zenith > 88.0) sunz = where(sunzmask, 88.0, sun_zenith) mu0 = np.cos(np.deg2rad(sunz)) # mu0 = np.where(np.less(mu0, 0.1), 0.1, mu0) self._rad3x = l_nir self._solar_radiance = self.solar_flux * mu0 / np.pi # CO2 correction to the 3.9 radiance, only if tbs of a co2 band around # 13.4 micron is provided: if co2corr: self.derive_rad39_corr(tb_therm, tbco2) LOG.info("CO2 correction applied...") else: self._rad3x_correction = 1.0 nomin = l_nir - thermal_emiss_one * self._rad3x_correction denom = self._solar_radiance - thermal_emiss_one * self._rad3x_correction data = nomin / denom mask = (self._solar_radiance - thermal_emiss_one * self._rad3x_correction) < EPSILON logical_or(sunzmask, mask, out=mask) logical_or(mask, np.isnan(tb_nir), out=mask) self._r3x = where(mask, np.nan, data) # Reflectances should be between 0 and 1, but values above 1 is # perfectly possible and okay! (Multiply by 100 to get reflectances # in percent) if hasattr(self._r3x, 'compute') and compute: res = self._r3x.compute() else: res = self._r3x if is_masked: res = np.ma.masked_array(res, mask=np.isnan(res)) return res
def password_change(self, wallet, password): """ Changes the password for **wallet** to **password** .. enable_control required :param wallet: Wallet to change password for :type wallet: str :param password: Password to set :type password: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.password_change( ... wallet="000D1BAEC8EC208142C99059B393051BAC8380F9B5A2E6B2489A277D81789F3F", ... password="test" ... ) True """ wallet = self._process_value(wallet, 'wallet') payload = {"wallet": wallet, "password": password} resp = self.call('password_change', payload) return resp['changed'] == '1'
Changes the password for **wallet** to **password** .. enable_control required :param wallet: Wallet to change password for :type wallet: str :param password: Password to set :type password: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.password_change( ... wallet="000D1BAEC8EC208142C99059B393051BAC8380F9B5A2E6B2489A277D81789F3F", ... password="test" ... ) True
Below is the the instruction that describes the task: ### Input: Changes the password for **wallet** to **password** .. enable_control required :param wallet: Wallet to change password for :type wallet: str :param password: Password to set :type password: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.password_change( ... wallet="000D1BAEC8EC208142C99059B393051BAC8380F9B5A2E6B2489A277D81789F3F", ... password="test" ... ) True ### Response: def password_change(self, wallet, password): """ Changes the password for **wallet** to **password** .. enable_control required :param wallet: Wallet to change password for :type wallet: str :param password: Password to set :type password: str :raises: :py:exc:`nano.rpc.RPCException` >>> rpc.password_change( ... wallet="000D1BAEC8EC208142C99059B393051BAC8380F9B5A2E6B2489A277D81789F3F", ... password="test" ... ) True """ wallet = self._process_value(wallet, 'wallet') payload = {"wallet": wallet, "password": password} resp = self.call('password_change', payload) return resp['changed'] == '1'
def generate_classified_legend( analysis, exposure, hazard, use_rounding, debug_mode): """Generate an ordered python structure with the classified symbology. :param analysis: The analysis layer. :type analysis: QgsVectorLayer :param exposure: The exposure layer. :type exposure: QgsVectorLayer :param hazard: The hazard layer. :type hazard: QgsVectorLayer :param use_rounding: Boolean if we round number in the legend. :type use_rounding: bool :param debug_mode: Boolean if run in debug mode,to display the not exposed. :type debug_mode: bool :return: The ordered dictionary to use to build the classified style. :rtype: OrderedDict """ # We need to read the analysis layer to get the number of features. analysis_row = next(analysis.getFeatures()) # Let's style the hazard class in each layers. hazard_classification = hazard.keywords['classification'] hazard_classification = definition(hazard_classification) # Let's check if there is some thresholds: thresholds = hazard.keywords.get('thresholds') if thresholds: hazard_unit = hazard.keywords.get('continuous_hazard_unit') hazard_unit = definition(hazard_unit)['abbreviation'] else: hazard_unit = None exposure = exposure.keywords['exposure'] exposure_definitions = definition(exposure) exposure_units = exposure_definitions['units'] exposure_unit = exposure_units[0] coefficient = 1 # We check if can use a greater unit, such as kilometre for instance. if len(exposure_units) > 1: # We use only two units for now. delta = coefficient_between_units( exposure_units[1], exposure_units[0]) all_values_are_greater = True # We check if all values are greater than the coefficient for i, hazard_class in enumerate(hazard_classification['classes']): field_name = hazard_count_field['field_name'] % hazard_class['key'] try: value = analysis_row[field_name] except KeyError: value = 0 if 0 < value < delta: # 0 is fine, we can still keep the second unit. all_values_are_greater = False if all_values_are_greater: # If yes, we can use this unit. exposure_unit = exposure_units[1] coefficient = delta classes = OrderedDict() for i, hazard_class in enumerate(hazard_classification['classes']): # Get the hazard class name. field_name = hazard_count_field['field_name'] % hazard_class['key'] # Get the number of affected feature by this hazard class. try: value = analysis_row[field_name] except KeyError: # The field might not exist if no feature impacted in this hazard # zone. value = 0 value = format_number( value, use_rounding, exposure_definitions['use_population_rounding'], coefficient) minimum = None maximum = None # Check if we need to add thresholds. if thresholds: if i == 0: minimum = thresholds[hazard_class['key']][0] elif i == len(hazard_classification['classes']) - 1: maximum = thresholds[hazard_class['key']][1] else: minimum = thresholds[hazard_class['key']][0] maximum = thresholds[hazard_class['key']][1] label = _format_label( hazard_class=hazard_class['name'], value=value, exposure_unit=exposure_unit['abbreviation'], minimum=minimum, maximum=maximum, hazard_unit=hazard_unit) classes[hazard_class['key']] = (hazard_class['color'], label) if exposure_definitions['display_not_exposed'] or debug_mode: classes[not_exposed_class['key']] = _add_not_exposed( analysis_row, use_rounding, exposure_definitions['use_population_rounding'], exposure_unit['abbreviation'], coefficient) return classes
Generate an ordered python structure with the classified symbology. :param analysis: The analysis layer. :type analysis: QgsVectorLayer :param exposure: The exposure layer. :type exposure: QgsVectorLayer :param hazard: The hazard layer. :type hazard: QgsVectorLayer :param use_rounding: Boolean if we round number in the legend. :type use_rounding: bool :param debug_mode: Boolean if run in debug mode,to display the not exposed. :type debug_mode: bool :return: The ordered dictionary to use to build the classified style. :rtype: OrderedDict
Below is the the instruction that describes the task: ### Input: Generate an ordered python structure with the classified symbology. :param analysis: The analysis layer. :type analysis: QgsVectorLayer :param exposure: The exposure layer. :type exposure: QgsVectorLayer :param hazard: The hazard layer. :type hazard: QgsVectorLayer :param use_rounding: Boolean if we round number in the legend. :type use_rounding: bool :param debug_mode: Boolean if run in debug mode,to display the not exposed. :type debug_mode: bool :return: The ordered dictionary to use to build the classified style. :rtype: OrderedDict ### Response: def generate_classified_legend( analysis, exposure, hazard, use_rounding, debug_mode): """Generate an ordered python structure with the classified symbology. :param analysis: The analysis layer. :type analysis: QgsVectorLayer :param exposure: The exposure layer. :type exposure: QgsVectorLayer :param hazard: The hazard layer. :type hazard: QgsVectorLayer :param use_rounding: Boolean if we round number in the legend. :type use_rounding: bool :param debug_mode: Boolean if run in debug mode,to display the not exposed. :type debug_mode: bool :return: The ordered dictionary to use to build the classified style. :rtype: OrderedDict """ # We need to read the analysis layer to get the number of features. analysis_row = next(analysis.getFeatures()) # Let's style the hazard class in each layers. hazard_classification = hazard.keywords['classification'] hazard_classification = definition(hazard_classification) # Let's check if there is some thresholds: thresholds = hazard.keywords.get('thresholds') if thresholds: hazard_unit = hazard.keywords.get('continuous_hazard_unit') hazard_unit = definition(hazard_unit)['abbreviation'] else: hazard_unit = None exposure = exposure.keywords['exposure'] exposure_definitions = definition(exposure) exposure_units = exposure_definitions['units'] exposure_unit = exposure_units[0] coefficient = 1 # We check if can use a greater unit, such as kilometre for instance. if len(exposure_units) > 1: # We use only two units for now. delta = coefficient_between_units( exposure_units[1], exposure_units[0]) all_values_are_greater = True # We check if all values are greater than the coefficient for i, hazard_class in enumerate(hazard_classification['classes']): field_name = hazard_count_field['field_name'] % hazard_class['key'] try: value = analysis_row[field_name] except KeyError: value = 0 if 0 < value < delta: # 0 is fine, we can still keep the second unit. all_values_are_greater = False if all_values_are_greater: # If yes, we can use this unit. exposure_unit = exposure_units[1] coefficient = delta classes = OrderedDict() for i, hazard_class in enumerate(hazard_classification['classes']): # Get the hazard class name. field_name = hazard_count_field['field_name'] % hazard_class['key'] # Get the number of affected feature by this hazard class. try: value = analysis_row[field_name] except KeyError: # The field might not exist if no feature impacted in this hazard # zone. value = 0 value = format_number( value, use_rounding, exposure_definitions['use_population_rounding'], coefficient) minimum = None maximum = None # Check if we need to add thresholds. if thresholds: if i == 0: minimum = thresholds[hazard_class['key']][0] elif i == len(hazard_classification['classes']) - 1: maximum = thresholds[hazard_class['key']][1] else: minimum = thresholds[hazard_class['key']][0] maximum = thresholds[hazard_class['key']][1] label = _format_label( hazard_class=hazard_class['name'], value=value, exposure_unit=exposure_unit['abbreviation'], minimum=minimum, maximum=maximum, hazard_unit=hazard_unit) classes[hazard_class['key']] = (hazard_class['color'], label) if exposure_definitions['display_not_exposed'] or debug_mode: classes[not_exposed_class['key']] = _add_not_exposed( analysis_row, use_rounding, exposure_definitions['use_population_rounding'], exposure_unit['abbreviation'], coefficient) return classes
def _evaluate(self,R,z,phi=0.,t=0.): """ NAME: _evaluate PURPOSE: evaluate the potential at R,z INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z) HISTORY: 2015-02-15 - Written - Trick (MPIA) """ l,n = bovy_coords.Rz_to_lambdanu(R,z,ac=self._ac,Delta=self._Delta) return -1./(nu.sqrt(l) + nu.sqrt(n))
NAME: _evaluate PURPOSE: evaluate the potential at R,z INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z) HISTORY: 2015-02-15 - Written - Trick (MPIA)
Below is the the instruction that describes the task: ### Input: NAME: _evaluate PURPOSE: evaluate the potential at R,z INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z) HISTORY: 2015-02-15 - Written - Trick (MPIA) ### Response: def _evaluate(self,R,z,phi=0.,t=0.): """ NAME: _evaluate PURPOSE: evaluate the potential at R,z INPUT: R - Galactocentric cylindrical radius z - vertical height phi - azimuth t - time OUTPUT: Phi(R,z) HISTORY: 2015-02-15 - Written - Trick (MPIA) """ l,n = bovy_coords.Rz_to_lambdanu(R,z,ac=self._ac,Delta=self._Delta) return -1./(nu.sqrt(l) + nu.sqrt(n))
def plotActivation(self, position=None, time=None, velocity=None): """ Plot the activation of the current cell populations. Assumes that two axes have already been created, ax1 and ax2. If done in a Jupyter notebook, this plotting will overwrite the old plot. :param position: The current location of the animal :param time: The current time in the simulation :param velocity: The current velocity of the animal """ self.ax1.clear() y = self.activations["n"] + self.activations["s"] + self.activations["e"] + \ self.activations["w"] self.ax1.matshow(y.reshape(self.dimensions)) self.ax2.clear() self.ax2.matshow(self.activationsI.reshape(self.dimensions)) self.ax3.clear() self.ax3.matshow(self.activationHistoryI.reshape(self.dimensions)) titleString = "" if time is not None: titleString += "Time = {}".format(str(time)) if velocity is not None: titleString += " Velocity = {}".format(str(velocity)[:4]) if position is not None: titleString += " Position = {}".format(str(position)[:4]) plt.suptitle(titleString) self.ax1.set_xlabel("Excitatory activity") self.ax2.set_xlabel("Inhibitory activity") self.ax3.set_xlabel("Boosting activity") plt.tight_layout() self.fig.canvas.draw()
Plot the activation of the current cell populations. Assumes that two axes have already been created, ax1 and ax2. If done in a Jupyter notebook, this plotting will overwrite the old plot. :param position: The current location of the animal :param time: The current time in the simulation :param velocity: The current velocity of the animal
Below is the the instruction that describes the task: ### Input: Plot the activation of the current cell populations. Assumes that two axes have already been created, ax1 and ax2. If done in a Jupyter notebook, this plotting will overwrite the old plot. :param position: The current location of the animal :param time: The current time in the simulation :param velocity: The current velocity of the animal ### Response: def plotActivation(self, position=None, time=None, velocity=None): """ Plot the activation of the current cell populations. Assumes that two axes have already been created, ax1 and ax2. If done in a Jupyter notebook, this plotting will overwrite the old plot. :param position: The current location of the animal :param time: The current time in the simulation :param velocity: The current velocity of the animal """ self.ax1.clear() y = self.activations["n"] + self.activations["s"] + self.activations["e"] + \ self.activations["w"] self.ax1.matshow(y.reshape(self.dimensions)) self.ax2.clear() self.ax2.matshow(self.activationsI.reshape(self.dimensions)) self.ax3.clear() self.ax3.matshow(self.activationHistoryI.reshape(self.dimensions)) titleString = "" if time is not None: titleString += "Time = {}".format(str(time)) if velocity is not None: titleString += " Velocity = {}".format(str(velocity)[:4]) if position is not None: titleString += " Position = {}".format(str(position)[:4]) plt.suptitle(titleString) self.ax1.set_xlabel("Excitatory activity") self.ax2.set_xlabel("Inhibitory activity") self.ax3.set_xlabel("Boosting activity") plt.tight_layout() self.fig.canvas.draw()
def get_dataset(self, key, info): """Read data from file and return the corresponding projectables.""" datadict = { 1000: ['EV_250_Aggr1km_RefSB', 'EV_500_Aggr1km_RefSB', 'EV_1KM_RefSB', 'EV_1KM_Emissive'], 500: ['EV_250_Aggr500_RefSB', 'EV_500_RefSB'], 250: ['EV_250_RefSB']} platform_name = self.metadata['INVENTORYMETADATA']['ASSOCIATEDPLATFORMINSTRUMENTSENSOR'][ 'ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER']['ASSOCIATEDPLATFORMSHORTNAME']['VALUE'] info.update({'platform_name': 'EOS-' + platform_name}) info.update({'sensor': 'modis'}) if self.resolution != key.resolution: return datasets = datadict[self.resolution] for dataset in datasets: subdata = self.sd.select(dataset) var_attrs = subdata.attributes() band_names = var_attrs["band_names"].split(",") # get the relative indices of the desired channel try: index = band_names.index(key.name) except ValueError: continue uncertainty = self.sd.select(dataset + "_Uncert_Indexes") array = xr.DataArray(from_sds(subdata, chunks=CHUNK_SIZE)[index, :, :], dims=['y', 'x']).astype(np.float32) valid_range = var_attrs['valid_range'] # Fill values: # Data Value Meaning # 65535 Fill Value (includes reflective band data at night mode # and completely missing L1A scans) # 65534 L1A DN is missing within a scan # 65533 Detector is saturated # 65532 Cannot compute zero point DN, e.g., SV is saturated # 65531 Detector is dead (see comments below) # 65530 RSB dn** below the minimum of the scaling range # 65529 TEB radiance or RSB dn** exceeds the maximum of the # scaling range # 65528 Aggregation algorithm failure # 65527 Rotation of Earth view Sector from nominal science # collection position # 65526 Calibration coefficient b1 could not be computed # 65525 Subframe is dead # 65524 Both sides of the PCLW electronics on simultaneously # 65501 - 65523 (reserved for future use) # 65500 NAD closed upper limit array = array.where(array >= np.float32(valid_range[0])) array = array.where(array <= np.float32(valid_range[1])) array = array.where(from_sds(uncertainty, chunks=CHUNK_SIZE)[index, :, :] < 15) if key.calibration == 'brightness_temperature': projectable = calibrate_bt(array, var_attrs, index, key.name) info.setdefault('units', 'K') info.setdefault('standard_name', 'toa_brightness_temperature') elif key.calibration == 'reflectance': projectable = calibrate_refl(array, var_attrs, index) info.setdefault('units', '%') info.setdefault('standard_name', 'toa_bidirectional_reflectance') elif key.calibration == 'radiance': projectable = calibrate_radiance(array, var_attrs, index) info.setdefault('units', var_attrs.get('radiance_units')) info.setdefault('standard_name', 'toa_outgoing_radiance_per_unit_wavelength') elif key.calibration == 'counts': projectable = calibrate_counts(array, var_attrs, index) info.setdefault('units', 'counts') info.setdefault('standard_name', 'counts') # made up else: raise ValueError("Unknown calibration for " "key: {}".format(key)) projectable.attrs = info # if ((platform_name == 'Aqua' and key.name in ["6", "27", "36"]) or # (platform_name == 'Terra' and key.name in ["29"])): # height, width = projectable.shape # row_indices = projectable.mask.sum(1) == width # if row_indices.sum() != height: # projectable.mask[row_indices, :] = True # Get the orbit number # if not satscene.orbit: # mda = self.data.attributes()["CoreMetadata.0"] # orbit_idx = mda.index("ORBITNUMBER") # satscene.orbit = mda[orbit_idx + 111:orbit_idx + 116] # Trimming out dead sensor lines (detectors) on terra: # (in addition channel 27, 30, 34, 35, and 36 are nosiy) # if satscene.satname == "terra": # for band in ["29"]: # if not satscene[band].is_loaded() or satscene[band].data.mask.all(): # continue # width = satscene[band].data.shape[1] # height = satscene[band].data.shape[0] # indices = satscene[band].data.mask.sum(1) < width # if indices.sum() == height: # continue # satscene[band] = satscene[band].data[indices, :] # satscene[band].area = geometry.SwathDefinition( # lons=satscene[band].area.lons[indices, :], # lats=satscene[band].area.lats[indices, :]) return projectable
Read data from file and return the corresponding projectables.
Below is the the instruction that describes the task: ### Input: Read data from file and return the corresponding projectables. ### Response: def get_dataset(self, key, info): """Read data from file and return the corresponding projectables.""" datadict = { 1000: ['EV_250_Aggr1km_RefSB', 'EV_500_Aggr1km_RefSB', 'EV_1KM_RefSB', 'EV_1KM_Emissive'], 500: ['EV_250_Aggr500_RefSB', 'EV_500_RefSB'], 250: ['EV_250_RefSB']} platform_name = self.metadata['INVENTORYMETADATA']['ASSOCIATEDPLATFORMINSTRUMENTSENSOR'][ 'ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER']['ASSOCIATEDPLATFORMSHORTNAME']['VALUE'] info.update({'platform_name': 'EOS-' + platform_name}) info.update({'sensor': 'modis'}) if self.resolution != key.resolution: return datasets = datadict[self.resolution] for dataset in datasets: subdata = self.sd.select(dataset) var_attrs = subdata.attributes() band_names = var_attrs["band_names"].split(",") # get the relative indices of the desired channel try: index = band_names.index(key.name) except ValueError: continue uncertainty = self.sd.select(dataset + "_Uncert_Indexes") array = xr.DataArray(from_sds(subdata, chunks=CHUNK_SIZE)[index, :, :], dims=['y', 'x']).astype(np.float32) valid_range = var_attrs['valid_range'] # Fill values: # Data Value Meaning # 65535 Fill Value (includes reflective band data at night mode # and completely missing L1A scans) # 65534 L1A DN is missing within a scan # 65533 Detector is saturated # 65532 Cannot compute zero point DN, e.g., SV is saturated # 65531 Detector is dead (see comments below) # 65530 RSB dn** below the minimum of the scaling range # 65529 TEB radiance or RSB dn** exceeds the maximum of the # scaling range # 65528 Aggregation algorithm failure # 65527 Rotation of Earth view Sector from nominal science # collection position # 65526 Calibration coefficient b1 could not be computed # 65525 Subframe is dead # 65524 Both sides of the PCLW electronics on simultaneously # 65501 - 65523 (reserved for future use) # 65500 NAD closed upper limit array = array.where(array >= np.float32(valid_range[0])) array = array.where(array <= np.float32(valid_range[1])) array = array.where(from_sds(uncertainty, chunks=CHUNK_SIZE)[index, :, :] < 15) if key.calibration == 'brightness_temperature': projectable = calibrate_bt(array, var_attrs, index, key.name) info.setdefault('units', 'K') info.setdefault('standard_name', 'toa_brightness_temperature') elif key.calibration == 'reflectance': projectable = calibrate_refl(array, var_attrs, index) info.setdefault('units', '%') info.setdefault('standard_name', 'toa_bidirectional_reflectance') elif key.calibration == 'radiance': projectable = calibrate_radiance(array, var_attrs, index) info.setdefault('units', var_attrs.get('radiance_units')) info.setdefault('standard_name', 'toa_outgoing_radiance_per_unit_wavelength') elif key.calibration == 'counts': projectable = calibrate_counts(array, var_attrs, index) info.setdefault('units', 'counts') info.setdefault('standard_name', 'counts') # made up else: raise ValueError("Unknown calibration for " "key: {}".format(key)) projectable.attrs = info # if ((platform_name == 'Aqua' and key.name in ["6", "27", "36"]) or # (platform_name == 'Terra' and key.name in ["29"])): # height, width = projectable.shape # row_indices = projectable.mask.sum(1) == width # if row_indices.sum() != height: # projectable.mask[row_indices, :] = True # Get the orbit number # if not satscene.orbit: # mda = self.data.attributes()["CoreMetadata.0"] # orbit_idx = mda.index("ORBITNUMBER") # satscene.orbit = mda[orbit_idx + 111:orbit_idx + 116] # Trimming out dead sensor lines (detectors) on terra: # (in addition channel 27, 30, 34, 35, and 36 are nosiy) # if satscene.satname == "terra": # for band in ["29"]: # if not satscene[band].is_loaded() or satscene[band].data.mask.all(): # continue # width = satscene[band].data.shape[1] # height = satscene[band].data.shape[0] # indices = satscene[band].data.mask.sum(1) < width # if indices.sum() == height: # continue # satscene[band] = satscene[band].data[indices, :] # satscene[band].area = geometry.SwathDefinition( # lons=satscene[band].area.lons[indices, :], # lats=satscene[band].area.lats[indices, :]) return projectable
def _read_by_weight(self, F, att_weights, value): """Read from the value matrix given the attention weights. Parameters ---------- F : symbol or ndarray att_weights : Symbol or NDArray Attention weights. For single-head attention, Shape (batch_size, query_length, memory_length). For multi-head attention, Shape (batch_size, num_heads, query_length, memory_length). value : Symbol or NDArray Value of the memory. Shape (batch_size, memory_length, total_value_dim) Returns ------- context_vec: Symbol or NDArray Shape (batch_size, query_length, context_vec_dim) """ output = F.batch_dot(att_weights, value) return output
Read from the value matrix given the attention weights. Parameters ---------- F : symbol or ndarray att_weights : Symbol or NDArray Attention weights. For single-head attention, Shape (batch_size, query_length, memory_length). For multi-head attention, Shape (batch_size, num_heads, query_length, memory_length). value : Symbol or NDArray Value of the memory. Shape (batch_size, memory_length, total_value_dim) Returns ------- context_vec: Symbol or NDArray Shape (batch_size, query_length, context_vec_dim)
Below is the the instruction that describes the task: ### Input: Read from the value matrix given the attention weights. Parameters ---------- F : symbol or ndarray att_weights : Symbol or NDArray Attention weights. For single-head attention, Shape (batch_size, query_length, memory_length). For multi-head attention, Shape (batch_size, num_heads, query_length, memory_length). value : Symbol or NDArray Value of the memory. Shape (batch_size, memory_length, total_value_dim) Returns ------- context_vec: Symbol or NDArray Shape (batch_size, query_length, context_vec_dim) ### Response: def _read_by_weight(self, F, att_weights, value): """Read from the value matrix given the attention weights. Parameters ---------- F : symbol or ndarray att_weights : Symbol or NDArray Attention weights. For single-head attention, Shape (batch_size, query_length, memory_length). For multi-head attention, Shape (batch_size, num_heads, query_length, memory_length). value : Symbol or NDArray Value of the memory. Shape (batch_size, memory_length, total_value_dim) Returns ------- context_vec: Symbol or NDArray Shape (batch_size, query_length, context_vec_dim) """ output = F.batch_dot(att_weights, value) return output
def for_meters(cls, meter_x, meter_y, zoom): """Creates a tile from X Y meters in Spherical Mercator EPSG:900913""" point = Point.from_meters(meter_x=meter_x, meter_y=meter_y) pixel_x, pixel_y = point.pixels(zoom=zoom) return cls.for_pixels(pixel_x=pixel_x, pixel_y=pixel_y, zoom=zoom)
Creates a tile from X Y meters in Spherical Mercator EPSG:900913
Below is the the instruction that describes the task: ### Input: Creates a tile from X Y meters in Spherical Mercator EPSG:900913 ### Response: def for_meters(cls, meter_x, meter_y, zoom): """Creates a tile from X Y meters in Spherical Mercator EPSG:900913""" point = Point.from_meters(meter_x=meter_x, meter_y=meter_y) pixel_x, pixel_y = point.pixels(zoom=zoom) return cls.for_pixels(pixel_x=pixel_x, pixel_y=pixel_y, zoom=zoom)
def multiple_sequence_alignment(seqs_fp, threads=1): """Perform multiple sequence alignment on FASTA file using MAFFT. Parameters ---------- seqs_fp: string filepath to FASTA file for multiple sequence alignment threads: integer, optional number of threads to use. 0 to use all threads Returns ------- msa_fp : str name of output alignment file or None if error encountered """ logger = logging.getLogger(__name__) logger.info('multiple_sequence_alignment seqs file %s' % seqs_fp) # for mafft we use -1 to denote all threads and not 0 if threads == 0: threads = -1 if stat(seqs_fp).st_size == 0: logger.warning('msa failed. file %s has no reads' % seqs_fp) return None msa_fp = seqs_fp + '.msa' params = ['mafft', '--quiet', '--preservecase', '--parttree', '--auto', '--thread', str(threads), seqs_fp] sout, serr, res = _system_call(params, stdoutfilename=msa_fp) if not res == 0: logger.info('msa failed for file %s (maybe only 1 read?)' % seqs_fp) logger.debug('stderr : %s' % serr) return None return msa_fp
Perform multiple sequence alignment on FASTA file using MAFFT. Parameters ---------- seqs_fp: string filepath to FASTA file for multiple sequence alignment threads: integer, optional number of threads to use. 0 to use all threads Returns ------- msa_fp : str name of output alignment file or None if error encountered
Below is the the instruction that describes the task: ### Input: Perform multiple sequence alignment on FASTA file using MAFFT. Parameters ---------- seqs_fp: string filepath to FASTA file for multiple sequence alignment threads: integer, optional number of threads to use. 0 to use all threads Returns ------- msa_fp : str name of output alignment file or None if error encountered ### Response: def multiple_sequence_alignment(seqs_fp, threads=1): """Perform multiple sequence alignment on FASTA file using MAFFT. Parameters ---------- seqs_fp: string filepath to FASTA file for multiple sequence alignment threads: integer, optional number of threads to use. 0 to use all threads Returns ------- msa_fp : str name of output alignment file or None if error encountered """ logger = logging.getLogger(__name__) logger.info('multiple_sequence_alignment seqs file %s' % seqs_fp) # for mafft we use -1 to denote all threads and not 0 if threads == 0: threads = -1 if stat(seqs_fp).st_size == 0: logger.warning('msa failed. file %s has no reads' % seqs_fp) return None msa_fp = seqs_fp + '.msa' params = ['mafft', '--quiet', '--preservecase', '--parttree', '--auto', '--thread', str(threads), seqs_fp] sout, serr, res = _system_call(params, stdoutfilename=msa_fp) if not res == 0: logger.info('msa failed for file %s (maybe only 1 read?)' % seqs_fp) logger.debug('stderr : %s' % serr) return None return msa_fp
def contains(self, string): """Summary Returns: TYPE: Description """ # Check that self.weld_type is a string type vectype = self.weld_type if isinstance(vectype, WeldVec): elem_type = vectype.elemType if isinstance(elem_type, WeldChar): return SeriesWeld( grizzly_impl.contains( self.expr, elem_type, string ), WeldBit(), self.df, self.column_name ) raise Exception("Cannot call to_lower on non string type")
Summary Returns: TYPE: Description
Below is the the instruction that describes the task: ### Input: Summary Returns: TYPE: Description ### Response: def contains(self, string): """Summary Returns: TYPE: Description """ # Check that self.weld_type is a string type vectype = self.weld_type if isinstance(vectype, WeldVec): elem_type = vectype.elemType if isinstance(elem_type, WeldChar): return SeriesWeld( grizzly_impl.contains( self.expr, elem_type, string ), WeldBit(), self.df, self.column_name ) raise Exception("Cannot call to_lower on non string type")
def flasher(msg, severity=None): """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == 'danger': logging.error(msg) else: logging.info(msg)
Flask's flash if available, logging call if not
Below is the the instruction that describes the task: ### Input: Flask's flash if available, logging call if not ### Response: def flasher(msg, severity=None): """Flask's flash if available, logging call if not""" try: flash(msg, severity) except RuntimeError: if severity == 'danger': logging.error(msg) else: logging.info(msg)
def _fetch(self, key): """Helper function to fetch values from owning section. Returns a 2-tuple: the value, and the section where it was found. """ # switch off interpolation before we try and fetch anything ! save_interp = self.section.main.interpolation self.section.main.interpolation = False # Start at section that "owns" this InterpolationEngine current_section = self.section while True: # try the current section first val = current_section.get(key) if val is not None and not isinstance(val, Section): break # try "DEFAULT" next val = current_section.get('DEFAULT', {}).get(key) if val is not None and not isinstance(val, Section): break # move up to parent and try again # top-level's parent is itself if current_section.parent is current_section: # reached top level, time to give up break current_section = current_section.parent # restore interpolation to previous value before returning self.section.main.interpolation = save_interp if val is None: raise MissingInterpolationOption(key) return val, current_section
Helper function to fetch values from owning section. Returns a 2-tuple: the value, and the section where it was found.
Below is the the instruction that describes the task: ### Input: Helper function to fetch values from owning section. Returns a 2-tuple: the value, and the section where it was found. ### Response: def _fetch(self, key): """Helper function to fetch values from owning section. Returns a 2-tuple: the value, and the section where it was found. """ # switch off interpolation before we try and fetch anything ! save_interp = self.section.main.interpolation self.section.main.interpolation = False # Start at section that "owns" this InterpolationEngine current_section = self.section while True: # try the current section first val = current_section.get(key) if val is not None and not isinstance(val, Section): break # try "DEFAULT" next val = current_section.get('DEFAULT', {}).get(key) if val is not None and not isinstance(val, Section): break # move up to parent and try again # top-level's parent is itself if current_section.parent is current_section: # reached top level, time to give up break current_section = current_section.parent # restore interpolation to previous value before returning self.section.main.interpolation = save_interp if val is None: raise MissingInterpolationOption(key) return val, current_section
def url(self): """ Returns the rendered URL of the chart """ self.render() return self._apiurl + '&'.join(self._parts()).replace(' ','+')
Returns the rendered URL of the chart
Below is the the instruction that describes the task: ### Input: Returns the rendered URL of the chart ### Response: def url(self): """ Returns the rendered URL of the chart """ self.render() return self._apiurl + '&'.join(self._parts()).replace(' ','+')
def set_install_id(filename, install_id): """ Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id """ if get_install_id(filename) is None: raise InstallNameError('{0} has no install id'.format(filename)) back_tick(['install_name_tool', '-id', install_id, filename])
Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id
Below is the the instruction that describes the task: ### Input: Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id ### Response: def set_install_id(filename, install_id): """ Set install id for library named in `filename` Parameters ---------- filename : str filename of library install_id : str install id for library `filename` Raises ------ RuntimeError if `filename` has not install id """ if get_install_id(filename) is None: raise InstallNameError('{0} has no install id'.format(filename)) back_tick(['install_name_tool', '-id', install_id, filename])
def train(self): """Train the network using the training dataset. Parameters ---------- None Returns ------- None """ self.stamp_start = time.time() for iteration, batch in tqdm.tqdm(enumerate(self.iter_train), desc='train', total=self.max_iter, ncols=80): self.epoch = self.iter_train.epoch self.iteration = iteration ############ # validate # ############ if self.interval_validate and \ self.iteration % self.interval_validate == 0: self.validate() ######### # train # ######### batch = map(datasets.transform_lsvrc2012_vgg16, batch) in_vars = utils.batch_to_vars(batch, device=self.device) self.model.zerograds() loss = self.model(*in_vars) if loss is not None: loss.backward() self.optimizer.update() lbl_true = zip(*batch)[1] lbl_pred = chainer.functions.argmax(self.model.score, axis=1) lbl_pred = chainer.cuda.to_cpu(lbl_pred.data) acc = utils.label_accuracy_score( lbl_true, lbl_pred, self.model.n_class) self._write_log(**{ 'epoch': self.epoch, 'iteration': self.iteration, 'elapsed_time': time.time() - self.stamp_start, 'train/loss': float(loss.data), 'train/acc': acc[0], 'train/acc_cls': acc[1], 'train/mean_iu': acc[2], 'train/fwavacc': acc[3], }) if iteration >= self.max_iter: self._save_model() break
Train the network using the training dataset. Parameters ---------- None Returns ------- None
Below is the the instruction that describes the task: ### Input: Train the network using the training dataset. Parameters ---------- None Returns ------- None ### Response: def train(self): """Train the network using the training dataset. Parameters ---------- None Returns ------- None """ self.stamp_start = time.time() for iteration, batch in tqdm.tqdm(enumerate(self.iter_train), desc='train', total=self.max_iter, ncols=80): self.epoch = self.iter_train.epoch self.iteration = iteration ############ # validate # ############ if self.interval_validate and \ self.iteration % self.interval_validate == 0: self.validate() ######### # train # ######### batch = map(datasets.transform_lsvrc2012_vgg16, batch) in_vars = utils.batch_to_vars(batch, device=self.device) self.model.zerograds() loss = self.model(*in_vars) if loss is not None: loss.backward() self.optimizer.update() lbl_true = zip(*batch)[1] lbl_pred = chainer.functions.argmax(self.model.score, axis=1) lbl_pred = chainer.cuda.to_cpu(lbl_pred.data) acc = utils.label_accuracy_score( lbl_true, lbl_pred, self.model.n_class) self._write_log(**{ 'epoch': self.epoch, 'iteration': self.iteration, 'elapsed_time': time.time() - self.stamp_start, 'train/loss': float(loss.data), 'train/acc': acc[0], 'train/acc_cls': acc[1], 'train/mean_iu': acc[2], 'train/fwavacc': acc[3], }) if iteration >= self.max_iter: self._save_model() break
def get_parameters(rq, variables, endpoint, query_metadata, auth=None): """ ?_name The variable specifies the API mandatory parameter name. The value is incorporated in the query as plain literal. ?__name The parameter name is optional. ?_name_iri The variable is substituted with the parameter value as a IRI (also: number or literal). ?_name_en The parameter value is considered as literal with the language 'en' (e.g., en,it,es, etc.). ?_name_integer The parameter value is considered as literal and the XSD datatype 'integer' is added during substitution. ?_name_prefix_datatype The parameter value is considered as literal and the datatype 'prefix:datatype' is added during substitution. The prefix must be specified according to the SPARQL syntax. """ # variables = translateQuery(Query.parseString(rq, parseAll=True)).algebra['_vars'] ## Aggregates internal_matcher = re.compile("__agg_\d+__") ## Basil-style variables variable_matcher = re.compile( "(?P<required>[_]{1,2})(?P<name>[^_]+)_?(?P<type>[a-zA-Z0-9]+)?_?(?P<userdefined>[a-zA-Z0-9]+)?.*$") parameters = {} for v in variables: if internal_matcher.match(v): continue match = variable_matcher.match(v) # TODO: currently only one parameter per triple pattern is supported if match: vname = match.group('name') vrequired = True if match.group('required') == '_' else False vtype = 'string' # All these can be None vcodes = get_enumeration(rq, vname, endpoint, query_metadata, auth) vdefault = get_defaults(rq, vname, query_metadata) vlang = None vdatatype = None vformat = None mtype = match.group('type') muserdefined = match.group('userdefined') if mtype in ['number', 'literal', 'string']: vtype = mtype elif mtype in ['iri']: # TODO: proper form validation of input parameter uris vtype = 'string' vformat = 'iri' elif mtype: vtype = 'string' if mtype in static.XSD_DATATYPES: vdatatype = 'xsd:{}'.format(mtype) elif len(mtype) == 2: vlang = mtype elif muserdefined: vdatatype = '{}:{}'.format(mtype, muserdefined) parameters[vname] = { 'original': '?{}'.format(v), 'required': vrequired, 'name': vname, 'type': vtype } # Possibly None parameter attributes if vcodes is not None: parameters[vname]['enum'] = sorted(vcodes) if vlang is not None: parameters[vname]['lang'] = vlang if vdatatype is not None: parameters[vname]['datatype'] = vdatatype if vformat is not None: parameters[vname]['format'] = vformat if vdefault is not None: parameters[vname]['default'] = vdefault glogger.info('Finished parsing the following parameters: {}'.format(parameters)) return parameters
?_name The variable specifies the API mandatory parameter name. The value is incorporated in the query as plain literal. ?__name The parameter name is optional. ?_name_iri The variable is substituted with the parameter value as a IRI (also: number or literal). ?_name_en The parameter value is considered as literal with the language 'en' (e.g., en,it,es, etc.). ?_name_integer The parameter value is considered as literal and the XSD datatype 'integer' is added during substitution. ?_name_prefix_datatype The parameter value is considered as literal and the datatype 'prefix:datatype' is added during substitution. The prefix must be specified according to the SPARQL syntax.
Below is the the instruction that describes the task: ### Input: ?_name The variable specifies the API mandatory parameter name. The value is incorporated in the query as plain literal. ?__name The parameter name is optional. ?_name_iri The variable is substituted with the parameter value as a IRI (also: number or literal). ?_name_en The parameter value is considered as literal with the language 'en' (e.g., en,it,es, etc.). ?_name_integer The parameter value is considered as literal and the XSD datatype 'integer' is added during substitution. ?_name_prefix_datatype The parameter value is considered as literal and the datatype 'prefix:datatype' is added during substitution. The prefix must be specified according to the SPARQL syntax. ### Response: def get_parameters(rq, variables, endpoint, query_metadata, auth=None): """ ?_name The variable specifies the API mandatory parameter name. The value is incorporated in the query as plain literal. ?__name The parameter name is optional. ?_name_iri The variable is substituted with the parameter value as a IRI (also: number or literal). ?_name_en The parameter value is considered as literal with the language 'en' (e.g., en,it,es, etc.). ?_name_integer The parameter value is considered as literal and the XSD datatype 'integer' is added during substitution. ?_name_prefix_datatype The parameter value is considered as literal and the datatype 'prefix:datatype' is added during substitution. The prefix must be specified according to the SPARQL syntax. """ # variables = translateQuery(Query.parseString(rq, parseAll=True)).algebra['_vars'] ## Aggregates internal_matcher = re.compile("__agg_\d+__") ## Basil-style variables variable_matcher = re.compile( "(?P<required>[_]{1,2})(?P<name>[^_]+)_?(?P<type>[a-zA-Z0-9]+)?_?(?P<userdefined>[a-zA-Z0-9]+)?.*$") parameters = {} for v in variables: if internal_matcher.match(v): continue match = variable_matcher.match(v) # TODO: currently only one parameter per triple pattern is supported if match: vname = match.group('name') vrequired = True if match.group('required') == '_' else False vtype = 'string' # All these can be None vcodes = get_enumeration(rq, vname, endpoint, query_metadata, auth) vdefault = get_defaults(rq, vname, query_metadata) vlang = None vdatatype = None vformat = None mtype = match.group('type') muserdefined = match.group('userdefined') if mtype in ['number', 'literal', 'string']: vtype = mtype elif mtype in ['iri']: # TODO: proper form validation of input parameter uris vtype = 'string' vformat = 'iri' elif mtype: vtype = 'string' if mtype in static.XSD_DATATYPES: vdatatype = 'xsd:{}'.format(mtype) elif len(mtype) == 2: vlang = mtype elif muserdefined: vdatatype = '{}:{}'.format(mtype, muserdefined) parameters[vname] = { 'original': '?{}'.format(v), 'required': vrequired, 'name': vname, 'type': vtype } # Possibly None parameter attributes if vcodes is not None: parameters[vname]['enum'] = sorted(vcodes) if vlang is not None: parameters[vname]['lang'] = vlang if vdatatype is not None: parameters[vname]['datatype'] = vdatatype if vformat is not None: parameters[vname]['format'] = vformat if vdefault is not None: parameters[vname]['default'] = vdefault glogger.info('Finished parsing the following parameters: {}'.format(parameters)) return parameters
def create_blueprint(endpoints): """Create Invenio-Records-UI blueprint. The factory installs one URL route per endpoint defined, and adds an error handler for rendering tombstones. :param endpoints: Dictionary of endpoints to be installed. See usage documentation for further details. :returns: The initialized blueprint. """ blueprint = Blueprint( 'invenio_records_ui', __name__, url_prefix='', template_folder='templates', static_folder='static', ) @blueprint.errorhandler(PIDDeletedError) def tombstone_errorhandler(error): return render_template( current_app.config['RECORDS_UI_TOMBSTONE_TEMPLATE'], pid=error.pid, record=error.record or {}, ), 410 @blueprint.context_processor def inject_export_formats(): return dict( export_formats=( current_app.extensions['invenio-records-ui'].export_formats) ) for endpoint, options in (endpoints or {}).items(): blueprint.add_url_rule(**create_url_rule(endpoint, **options)) return blueprint
Create Invenio-Records-UI blueprint. The factory installs one URL route per endpoint defined, and adds an error handler for rendering tombstones. :param endpoints: Dictionary of endpoints to be installed. See usage documentation for further details. :returns: The initialized blueprint.
Below is the the instruction that describes the task: ### Input: Create Invenio-Records-UI blueprint. The factory installs one URL route per endpoint defined, and adds an error handler for rendering tombstones. :param endpoints: Dictionary of endpoints to be installed. See usage documentation for further details. :returns: The initialized blueprint. ### Response: def create_blueprint(endpoints): """Create Invenio-Records-UI blueprint. The factory installs one URL route per endpoint defined, and adds an error handler for rendering tombstones. :param endpoints: Dictionary of endpoints to be installed. See usage documentation for further details. :returns: The initialized blueprint. """ blueprint = Blueprint( 'invenio_records_ui', __name__, url_prefix='', template_folder='templates', static_folder='static', ) @blueprint.errorhandler(PIDDeletedError) def tombstone_errorhandler(error): return render_template( current_app.config['RECORDS_UI_TOMBSTONE_TEMPLATE'], pid=error.pid, record=error.record or {}, ), 410 @blueprint.context_processor def inject_export_formats(): return dict( export_formats=( current_app.extensions['invenio-records-ui'].export_formats) ) for endpoint, options in (endpoints or {}).items(): blueprint.add_url_rule(**create_url_rule(endpoint, **options)) return blueprint
def stop(self): """ Stop the RpcConsumer. The RpcConsumer ordinary unregisters from the QueueConsumer when the last Rpc subclass unregisters from it. If no providers were registered, we should unregister from the QueueConsumer as soon as we're asked to stop. """ if not self._providers_registered: self.queue_consumer.unregister_provider(self) self._unregistered_from_queue_consumer.send(True)
Stop the RpcConsumer. The RpcConsumer ordinary unregisters from the QueueConsumer when the last Rpc subclass unregisters from it. If no providers were registered, we should unregister from the QueueConsumer as soon as we're asked to stop.
Below is the the instruction that describes the task: ### Input: Stop the RpcConsumer. The RpcConsumer ordinary unregisters from the QueueConsumer when the last Rpc subclass unregisters from it. If no providers were registered, we should unregister from the QueueConsumer as soon as we're asked to stop. ### Response: def stop(self): """ Stop the RpcConsumer. The RpcConsumer ordinary unregisters from the QueueConsumer when the last Rpc subclass unregisters from it. If no providers were registered, we should unregister from the QueueConsumer as soon as we're asked to stop. """ if not self._providers_registered: self.queue_consumer.unregister_provider(self) self._unregistered_from_queue_consumer.send(True)
def get_object_or_child_by_type(self, *types): """ Get object if child already been read or get child. Use this method for fast access to objects in case of static configurations. :param types: requested object types. :return: all children of the specified types. """ objects = self.get_objects_or_children_by_type(*types) return objects[0] if any(objects) else None
Get object if child already been read or get child. Use this method for fast access to objects in case of static configurations. :param types: requested object types. :return: all children of the specified types.
Below is the the instruction that describes the task: ### Input: Get object if child already been read or get child. Use this method for fast access to objects in case of static configurations. :param types: requested object types. :return: all children of the specified types. ### Response: def get_object_or_child_by_type(self, *types): """ Get object if child already been read or get child. Use this method for fast access to objects in case of static configurations. :param types: requested object types. :return: all children of the specified types. """ objects = self.get_objects_or_children_by_type(*types) return objects[0] if any(objects) else None
def answer(part, module='mlai2014.json'): """Returns the answers to the lab classes.""" marks = json.load(open(os.path.join(data_directory, module), 'rb')) return marks['Lab ' + str(part+1)]
Returns the answers to the lab classes.
Below is the the instruction that describes the task: ### Input: Returns the answers to the lab classes. ### Response: def answer(part, module='mlai2014.json'): """Returns the answers to the lab classes.""" marks = json.load(open(os.path.join(data_directory, module), 'rb')) return marks['Lab ' + str(part+1)]
def import_medusa_data(mat_filename, config_file): """Import measurement data (a .mat file) of the FZJ EIT160 system. This data format is identified as 'FZJ-EZ-2017'. Parameters ---------- mat_filename: string filename to the .mat data file. Note that only MNU0 single-potentials are supported! config_file: string filename for configuration file. The configuration file contains N rows with 4 columns each (a, b, m, n) Returns ------- """ df_emd, df_md = _read_mat_mnu0(mat_filename) # 'configs' can be a numpy array or a filename if not isinstance(config_file, np.ndarray): configs = np.loadtxt(config_file).astype(int) else: configs = config_file # construct four-point measurements via superposition print('constructing four-point measurements') quadpole_list = [] if df_emd is not None: index = 0 for Ar, Br, M, N in configs: # print('constructing', Ar, Br, M, N) # the order of A and B doesn't concern us A = np.min((Ar, Br)) B = np.max((Ar, Br)) # first choice: correct ordering query_M = df_emd.query('a=={0} and b=={1} and p=={2}'.format( A, B, M )) query_N = df_emd.query('a=={0} and b=={1} and p=={2}'.format( A, B, N )) if query_M.size == 0 or query_N.size == 0: continue index += 1 # keep these columns as they are (no subtracting) keep_cols = [ 'datetime', 'frequency', 'a', 'b', 'Zg1', 'Zg2', 'Zg3', 'Is', 'Il', 'Zg', 'Iab', ] df4 = pd.DataFrame() diff_cols = ['Zt', ] df4[keep_cols] = query_M[keep_cols] for col in diff_cols: df4[col] = query_M[col].values - query_N[col].values df4['m'] = query_M['p'].values df4['n'] = query_N['p'].values quadpole_list.append(df4) if quadpole_list: dfn = pd.concat(quadpole_list) Rsign = np.sign(dfn['Zt'].real) dfn['r'] = Rsign * np.abs(dfn['Zt']) dfn['Vmn'] = dfn['r'] * dfn['Iab'] dfn['rpha'] = np.arctan2( np.imag(dfn['Zt'].values), np.real(dfn['Zt'].values) ) * 1e3 else: dfn = pd.DataFrame() return dfn, df_md
Import measurement data (a .mat file) of the FZJ EIT160 system. This data format is identified as 'FZJ-EZ-2017'. Parameters ---------- mat_filename: string filename to the .mat data file. Note that only MNU0 single-potentials are supported! config_file: string filename for configuration file. The configuration file contains N rows with 4 columns each (a, b, m, n) Returns -------
Below is the the instruction that describes the task: ### Input: Import measurement data (a .mat file) of the FZJ EIT160 system. This data format is identified as 'FZJ-EZ-2017'. Parameters ---------- mat_filename: string filename to the .mat data file. Note that only MNU0 single-potentials are supported! config_file: string filename for configuration file. The configuration file contains N rows with 4 columns each (a, b, m, n) Returns ------- ### Response: def import_medusa_data(mat_filename, config_file): """Import measurement data (a .mat file) of the FZJ EIT160 system. This data format is identified as 'FZJ-EZ-2017'. Parameters ---------- mat_filename: string filename to the .mat data file. Note that only MNU0 single-potentials are supported! config_file: string filename for configuration file. The configuration file contains N rows with 4 columns each (a, b, m, n) Returns ------- """ df_emd, df_md = _read_mat_mnu0(mat_filename) # 'configs' can be a numpy array or a filename if not isinstance(config_file, np.ndarray): configs = np.loadtxt(config_file).astype(int) else: configs = config_file # construct four-point measurements via superposition print('constructing four-point measurements') quadpole_list = [] if df_emd is not None: index = 0 for Ar, Br, M, N in configs: # print('constructing', Ar, Br, M, N) # the order of A and B doesn't concern us A = np.min((Ar, Br)) B = np.max((Ar, Br)) # first choice: correct ordering query_M = df_emd.query('a=={0} and b=={1} and p=={2}'.format( A, B, M )) query_N = df_emd.query('a=={0} and b=={1} and p=={2}'.format( A, B, N )) if query_M.size == 0 or query_N.size == 0: continue index += 1 # keep these columns as they are (no subtracting) keep_cols = [ 'datetime', 'frequency', 'a', 'b', 'Zg1', 'Zg2', 'Zg3', 'Is', 'Il', 'Zg', 'Iab', ] df4 = pd.DataFrame() diff_cols = ['Zt', ] df4[keep_cols] = query_M[keep_cols] for col in diff_cols: df4[col] = query_M[col].values - query_N[col].values df4['m'] = query_M['p'].values df4['n'] = query_N['p'].values quadpole_list.append(df4) if quadpole_list: dfn = pd.concat(quadpole_list) Rsign = np.sign(dfn['Zt'].real) dfn['r'] = Rsign * np.abs(dfn['Zt']) dfn['Vmn'] = dfn['r'] * dfn['Iab'] dfn['rpha'] = np.arctan2( np.imag(dfn['Zt'].values), np.real(dfn['Zt'].values) ) * 1e3 else: dfn = pd.DataFrame() return dfn, df_md
def escape(identifier, ansi_quotes, should_quote): """ Escape identifiers. ANSI uses single quotes, but many databases use back quotes. """ if not should_quote(identifier): return identifier quote = '"' if ansi_quotes else '`' identifier = identifier.replace(quote, 2*quote) return '{0}{1}{2}'.format(quote, identifier, quote)
Escape identifiers. ANSI uses single quotes, but many databases use back quotes.
Below is the the instruction that describes the task: ### Input: Escape identifiers. ANSI uses single quotes, but many databases use back quotes. ### Response: def escape(identifier, ansi_quotes, should_quote): """ Escape identifiers. ANSI uses single quotes, but many databases use back quotes. """ if not should_quote(identifier): return identifier quote = '"' if ansi_quotes else '`' identifier = identifier.replace(quote, 2*quote) return '{0}{1}{2}'.format(quote, identifier, quote)
def is_valid_ipv4 (ip): """ Return True if given ip is a valid IPv4 address. """ if not _ipv4_re.match(ip): return False a, b, c, d = [int(i) for i in ip.split(".")] return a <= 255 and b <= 255 and c <= 255 and d <= 255
Return True if given ip is a valid IPv4 address.
Below is the the instruction that describes the task: ### Input: Return True if given ip is a valid IPv4 address. ### Response: def is_valid_ipv4 (ip): """ Return True if given ip is a valid IPv4 address. """ if not _ipv4_re.match(ip): return False a, b, c, d = [int(i) for i in ip.split(".")] return a <= 255 and b <= 255 and c <= 255 and d <= 255
def get_api_id(self, lambda_name): """ Given a lambda_name, return the API id. """ try: response = self.cf_client.describe_stack_resource(StackName=lambda_name, LogicalResourceId='Api') return response['StackResourceDetail'].get('PhysicalResourceId', None) except: # pragma: no cover try: # Try the old method (project was probably made on an older, non CF version) response = self.apigateway_client.get_rest_apis(limit=500) for item in response['items']: if item['name'] == lambda_name: return item['id'] logger.exception('Could not get API ID.') return None except: # pragma: no cover # We don't even have an API deployed. That's okay! return None
Given a lambda_name, return the API id.
Below is the the instruction that describes the task: ### Input: Given a lambda_name, return the API id. ### Response: def get_api_id(self, lambda_name): """ Given a lambda_name, return the API id. """ try: response = self.cf_client.describe_stack_resource(StackName=lambda_name, LogicalResourceId='Api') return response['StackResourceDetail'].get('PhysicalResourceId', None) except: # pragma: no cover try: # Try the old method (project was probably made on an older, non CF version) response = self.apigateway_client.get_rest_apis(limit=500) for item in response['items']: if item['name'] == lambda_name: return item['id'] logger.exception('Could not get API ID.') return None except: # pragma: no cover # We don't even have an API deployed. That's okay! return None
def fromdict(dict): """Takes a dictionary as an argument and returns a new State object from the dictionary. :param dict: the dictionary to convert """ index = dict['index'] seed = hb_decode(dict['seed']) n = dict['n'] root = hb_decode(dict['root']) hmac = hb_decode(dict['hmac']) timestamp = dict['timestamp'] self = State(index, seed, n, root, hmac, timestamp) return self
Takes a dictionary as an argument and returns a new State object from the dictionary. :param dict: the dictionary to convert
Below is the the instruction that describes the task: ### Input: Takes a dictionary as an argument and returns a new State object from the dictionary. :param dict: the dictionary to convert ### Response: def fromdict(dict): """Takes a dictionary as an argument and returns a new State object from the dictionary. :param dict: the dictionary to convert """ index = dict['index'] seed = hb_decode(dict['seed']) n = dict['n'] root = hb_decode(dict['root']) hmac = hb_decode(dict['hmac']) timestamp = dict['timestamp'] self = State(index, seed, n, root, hmac, timestamp) return self
def group_add(self, name, restrict, repos, lces=[], assets=[], queries=[], policies=[], dashboards=[], credentials=[], description=''): '''group_add name, restrict, repos ''' return self.raw_query('group', 'add', data={ 'lces': [{'id': i} for i in lces], 'assets': [{'id': i} for i in assets], 'queries': [{'id': i} for i in queries], 'policies': [{'id': i} for i in policies], 'dashboardTabs': [{'id': i} for i in dashboards], 'credentials': [{'id': i} for i in credentials], 'repositories': [{'id': i} for i in repos], 'definingAssets': [{'id': i} for i in restrict], 'name': name, 'description': description, 'users': [], 'context': '' })
group_add name, restrict, repos
Below is the the instruction that describes the task: ### Input: group_add name, restrict, repos ### Response: def group_add(self, name, restrict, repos, lces=[], assets=[], queries=[], policies=[], dashboards=[], credentials=[], description=''): '''group_add name, restrict, repos ''' return self.raw_query('group', 'add', data={ 'lces': [{'id': i} for i in lces], 'assets': [{'id': i} for i in assets], 'queries': [{'id': i} for i in queries], 'policies': [{'id': i} for i in policies], 'dashboardTabs': [{'id': i} for i in dashboards], 'credentials': [{'id': i} for i in credentials], 'repositories': [{'id': i} for i in repos], 'definingAssets': [{'id': i} for i in restrict], 'name': name, 'description': description, 'users': [], 'context': '' })
def verify_connectivity(config): """ Verify connectivity to satellite server """ logger.debug("Verifying Connectivity") ic = InsightsConnection(config) try: branch_info = ic.get_branch_info() except requests.ConnectionError as e: logger.debug(e) logger.debug("Failed to connect to satellite") return False except LookupError as e: logger.debug(e) logger.debug("Failed to parse response from satellite") return False try: remote_leaf = branch_info['remote_leaf'] return remote_leaf except LookupError as e: logger.debug(e) logger.debug("Failed to find accurate branch_info") return False
Verify connectivity to satellite server
Below is the the instruction that describes the task: ### Input: Verify connectivity to satellite server ### Response: def verify_connectivity(config): """ Verify connectivity to satellite server """ logger.debug("Verifying Connectivity") ic = InsightsConnection(config) try: branch_info = ic.get_branch_info() except requests.ConnectionError as e: logger.debug(e) logger.debug("Failed to connect to satellite") return False except LookupError as e: logger.debug(e) logger.debug("Failed to parse response from satellite") return False try: remote_leaf = branch_info['remote_leaf'] return remote_leaf except LookupError as e: logger.debug(e) logger.debug("Failed to find accurate branch_info") return False
def parse_response(self, resp): """ Parse the xmlrpc response. """ p, u = self.getparser() if hasattr(resp,'text'): # modern requests will do this for us text = resp.text # this is unicode(py2)/str(py3) else: encoding = requests.utils.get_encoding_from_headers(resp.headers) if encoding is None: encoding='utf-8' # FIXME: what to do here? if sys.version_info[0]==2: text = unicode(resp.content, encoding, errors='replace') else: assert sys.version_info[0]==3 text = str(resp.content, encoding, errors='replace') p.feed(text) p.close() return u.close()
Parse the xmlrpc response.
Below is the the instruction that describes the task: ### Input: Parse the xmlrpc response. ### Response: def parse_response(self, resp): """ Parse the xmlrpc response. """ p, u = self.getparser() if hasattr(resp,'text'): # modern requests will do this for us text = resp.text # this is unicode(py2)/str(py3) else: encoding = requests.utils.get_encoding_from_headers(resp.headers) if encoding is None: encoding='utf-8' # FIXME: what to do here? if sys.version_info[0]==2: text = unicode(resp.content, encoding, errors='replace') else: assert sys.version_info[0]==3 text = str(resp.content, encoding, errors='replace') p.feed(text) p.close() return u.close()
def validate_path(xj_path): """Validates XJ path. :param str xj_path: XJ Path :raise: XJPathError if validation fails. """ if not isinstance(xj_path, str): raise XJPathError('XJPath must be a string') for path in split(xj_path, '.'): if path == '*': continue if path.startswith('@'): if path == '@first' or path == '@last': continue try: int(path[1:]) except ValueError: raise XJPathError('Array index must be either integer or ' '@first or @last')
Validates XJ path. :param str xj_path: XJ Path :raise: XJPathError if validation fails.
Below is the the instruction that describes the task: ### Input: Validates XJ path. :param str xj_path: XJ Path :raise: XJPathError if validation fails. ### Response: def validate_path(xj_path): """Validates XJ path. :param str xj_path: XJ Path :raise: XJPathError if validation fails. """ if not isinstance(xj_path, str): raise XJPathError('XJPath must be a string') for path in split(xj_path, '.'): if path == '*': continue if path.startswith('@'): if path == '@first' or path == '@last': continue try: int(path[1:]) except ValueError: raise XJPathError('Array index must be either integer or ' '@first or @last')
def next(self): """Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file. """ if not self._zip: self._zip = zipfile.ZipFile(self._reader(self._blob_key)) # Get a list of entries, reversed so we can pop entries off in order self._entries = self._zip.infolist()[self._start_index:self._end_index] self._entries.reverse() if not self._entries: raise StopIteration() entry = self._entries.pop() self._start_index += 1 return (entry, lambda: self._read(entry))
Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file.
Below is the the instruction that describes the task: ### Input: Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file. ### Response: def next(self): """Returns the next input from this input reader as (ZipInfo, opener) tuple. Returns: The next input from this input reader, in the form of a 2-tuple. The first element of the tuple is a zipfile.ZipInfo object. The second element of the tuple is a zero-argument function that, when called, returns the complete body of the file. """ if not self._zip: self._zip = zipfile.ZipFile(self._reader(self._blob_key)) # Get a list of entries, reversed so we can pop entries off in order self._entries = self._zip.infolist()[self._start_index:self._end_index] self._entries.reverse() if not self._entries: raise StopIteration() entry = self._entries.pop() self._start_index += 1 return (entry, lambda: self._read(entry))
def find_enclosing_bracket_left(self, left_ch, right_ch, start_pos=None): """ Find the left bracket enclosing current position. Return the relative position to the cursor position. When `start_pos` is given, don't look past the position. """ if self.current_char == left_ch: return 0 if start_pos is None: start_pos = 0 else: start_pos = max(0, start_pos) stack = 1 # Look backward. for i in range(self.cursor_position - 1, start_pos - 1, -1): c = self.text[i] if c == right_ch: stack += 1 elif c == left_ch: stack -= 1 if stack == 0: return i - self.cursor_position
Find the left bracket enclosing current position. Return the relative position to the cursor position. When `start_pos` is given, don't look past the position.
Below is the the instruction that describes the task: ### Input: Find the left bracket enclosing current position. Return the relative position to the cursor position. When `start_pos` is given, don't look past the position. ### Response: def find_enclosing_bracket_left(self, left_ch, right_ch, start_pos=None): """ Find the left bracket enclosing current position. Return the relative position to the cursor position. When `start_pos` is given, don't look past the position. """ if self.current_char == left_ch: return 0 if start_pos is None: start_pos = 0 else: start_pos = max(0, start_pos) stack = 1 # Look backward. for i in range(self.cursor_position - 1, start_pos - 1, -1): c = self.text[i] if c == right_ch: stack += 1 elif c == left_ch: stack -= 1 if stack == 0: return i - self.cursor_position
def cancel(batch_fn, cancel_fn, ops): """Cancel operations. Args: batch_fn: API-specific batch function. cancel_fn: API-specific cancel function. ops: A list of operations to cancel. Returns: A list of operations canceled and a list of error messages. """ # Canceling many operations one-by-one can be slow. # The Pipelines API doesn't directly support a list of operations to cancel, # but the requests can be performed in batch. canceled_ops = [] error_messages = [] max_batch = 256 total_ops = len(ops) for first_op in range(0, total_ops, max_batch): batch_canceled, batch_messages = _cancel_batch( batch_fn, cancel_fn, ops[first_op:first_op + max_batch]) canceled_ops.extend(batch_canceled) error_messages.extend(batch_messages) return canceled_ops, error_messages
Cancel operations. Args: batch_fn: API-specific batch function. cancel_fn: API-specific cancel function. ops: A list of operations to cancel. Returns: A list of operations canceled and a list of error messages.
Below is the the instruction that describes the task: ### Input: Cancel operations. Args: batch_fn: API-specific batch function. cancel_fn: API-specific cancel function. ops: A list of operations to cancel. Returns: A list of operations canceled and a list of error messages. ### Response: def cancel(batch_fn, cancel_fn, ops): """Cancel operations. Args: batch_fn: API-specific batch function. cancel_fn: API-specific cancel function. ops: A list of operations to cancel. Returns: A list of operations canceled and a list of error messages. """ # Canceling many operations one-by-one can be slow. # The Pipelines API doesn't directly support a list of operations to cancel, # but the requests can be performed in batch. canceled_ops = [] error_messages = [] max_batch = 256 total_ops = len(ops) for first_op in range(0, total_ops, max_batch): batch_canceled, batch_messages = _cancel_batch( batch_fn, cancel_fn, ops[first_op:first_op + max_batch]) canceled_ops.extend(batch_canceled) error_messages.extend(batch_messages) return canceled_ops, error_messages
def get_or_create(name=None, group=None, config=None, extra=0, verbose=0, backend_opts=None): """ Creates a virtual machine instance. """ require('vm_type', 'vm_group') backend_opts = backend_opts or {} verbose = int(verbose) extra = int(extra) if config: config_fn = common.find_template(config) config = yaml.load(open(config_fn)) env.update(config) env.vm_type = (env.vm_type or '').lower() assert env.vm_type, 'No VM type specified.' group = group or env.vm_group assert group, 'No VM group specified.' ret = exists(name=name, group=group) if not extra and ret: if verbose: print('VM %s:%s exists.' % (name, group)) return ret today = datetime.date.today() release = int('%i%02i%02i' % (today.year, today.month, today.day)) if not name: existing_instances = list_instances( group=group, release=release, verbose=verbose) name = env.vm_name_template.format(index=len(existing_instances)+1) if env.vm_type == EC2: return get_or_create_ec2_instance( name=name, group=group, release=release, verbose=verbose, backend_opts=backend_opts) else: raise NotImplementedError
Creates a virtual machine instance.
Below is the the instruction that describes the task: ### Input: Creates a virtual machine instance. ### Response: def get_or_create(name=None, group=None, config=None, extra=0, verbose=0, backend_opts=None): """ Creates a virtual machine instance. """ require('vm_type', 'vm_group') backend_opts = backend_opts or {} verbose = int(verbose) extra = int(extra) if config: config_fn = common.find_template(config) config = yaml.load(open(config_fn)) env.update(config) env.vm_type = (env.vm_type or '').lower() assert env.vm_type, 'No VM type specified.' group = group or env.vm_group assert group, 'No VM group specified.' ret = exists(name=name, group=group) if not extra and ret: if verbose: print('VM %s:%s exists.' % (name, group)) return ret today = datetime.date.today() release = int('%i%02i%02i' % (today.year, today.month, today.day)) if not name: existing_instances = list_instances( group=group, release=release, verbose=verbose) name = env.vm_name_template.format(index=len(existing_instances)+1) if env.vm_type == EC2: return get_or_create_ec2_instance( name=name, group=group, release=release, verbose=verbose, backend_opts=backend_opts) else: raise NotImplementedError
def SG(self): r'''Specific gravity of the chemical, [dimensionless]. For gas-phase conditions, this is calculated at 15.6 °C (60 °F) and 1 atm for the chemical and the reference fluid, air. For liquid and solid phase conditions, this is calculated based on a reference fluid of water at 4°C at 1 atm, but the with the liquid or solid chemical's density at the currently specified conditions. Examples -------- >>> Chemical('MTBE').SG 0.7428160596603596 ''' phase = self.phase if phase == 'l': return self.SGl elif phase == 's': return self.SGs elif phase == 'g': return self.SGg rho = self.rho if rho is not None: return SG(rho) return None
r'''Specific gravity of the chemical, [dimensionless]. For gas-phase conditions, this is calculated at 15.6 °C (60 °F) and 1 atm for the chemical and the reference fluid, air. For liquid and solid phase conditions, this is calculated based on a reference fluid of water at 4°C at 1 atm, but the with the liquid or solid chemical's density at the currently specified conditions. Examples -------- >>> Chemical('MTBE').SG 0.7428160596603596
Below is the the instruction that describes the task: ### Input: r'''Specific gravity of the chemical, [dimensionless]. For gas-phase conditions, this is calculated at 15.6 °C (60 °F) and 1 atm for the chemical and the reference fluid, air. For liquid and solid phase conditions, this is calculated based on a reference fluid of water at 4°C at 1 atm, but the with the liquid or solid chemical's density at the currently specified conditions. Examples -------- >>> Chemical('MTBE').SG 0.7428160596603596 ### Response: def SG(self): r'''Specific gravity of the chemical, [dimensionless]. For gas-phase conditions, this is calculated at 15.6 °C (60 °F) and 1 atm for the chemical and the reference fluid, air. For liquid and solid phase conditions, this is calculated based on a reference fluid of water at 4°C at 1 atm, but the with the liquid or solid chemical's density at the currently specified conditions. Examples -------- >>> Chemical('MTBE').SG 0.7428160596603596 ''' phase = self.phase if phase == 'l': return self.SGl elif phase == 's': return self.SGs elif phase == 'g': return self.SGg rho = self.rho if rho is not None: return SG(rho) return None
def xy(self): """CIE xy color space coordinates as array [x, y] of real values (0..1).""" if self._xy != (None, None): self._x, self._y = self._xy if self._x is not None and self._y is not None: x = self._x if self._x > 1: x = self._x / 65555 y = self._y if self._y > 1: y = self._y / 65555 return (x, y) return None
CIE xy color space coordinates as array [x, y] of real values (0..1).
Below is the the instruction that describes the task: ### Input: CIE xy color space coordinates as array [x, y] of real values (0..1). ### Response: def xy(self): """CIE xy color space coordinates as array [x, y] of real values (0..1).""" if self._xy != (None, None): self._x, self._y = self._xy if self._x is not None and self._y is not None: x = self._x if self._x > 1: x = self._x / 65555 y = self._y if self._y > 1: y = self._y / 65555 return (x, y) return None
def _client_run(self): """MessageReceiver Link is now open - start receiving messages. Will return True if operation successful and client can remain open for further work. :rtype: bool """ self._connection.work() now = self._counter.get_current_ms() if self._last_activity_timestamp and not self._was_message_received: # If no messages are coming through, back off a little to keep CPU use low. time.sleep(0.05) if self._timeout > 0: timespan = now - self._last_activity_timestamp if timespan >= self._timeout: _logger.info("Timeout reached, closing receiver.") self._shutdown = True else: self._last_activity_timestamp = now self._was_message_received = False return True
MessageReceiver Link is now open - start receiving messages. Will return True if operation successful and client can remain open for further work. :rtype: bool
Below is the the instruction that describes the task: ### Input: MessageReceiver Link is now open - start receiving messages. Will return True if operation successful and client can remain open for further work. :rtype: bool ### Response: def _client_run(self): """MessageReceiver Link is now open - start receiving messages. Will return True if operation successful and client can remain open for further work. :rtype: bool """ self._connection.work() now = self._counter.get_current_ms() if self._last_activity_timestamp and not self._was_message_received: # If no messages are coming through, back off a little to keep CPU use low. time.sleep(0.05) if self._timeout > 0: timespan = now - self._last_activity_timestamp if timespan >= self._timeout: _logger.info("Timeout reached, closing receiver.") self._shutdown = True else: self._last_activity_timestamp = now self._was_message_received = False return True
def user_return(self, frame, return_value): """This function is called when a return trap is set here.""" # This is useful when debugging in an active interpreter (otherwise, # the debugger will stop before reaching the target file) if self._wait_for_mainpyfile: if (self.mainpyfile != self.canonic(frame.f_code.co_filename) or frame.f_lineno<= 0): return self._wait_for_mainpyfile = 0 self._old_Pdb_user_return(frame, return_value)
This function is called when a return trap is set here.
Below is the the instruction that describes the task: ### Input: This function is called when a return trap is set here. ### Response: def user_return(self, frame, return_value): """This function is called when a return trap is set here.""" # This is useful when debugging in an active interpreter (otherwise, # the debugger will stop before reaching the target file) if self._wait_for_mainpyfile: if (self.mainpyfile != self.canonic(frame.f_code.co_filename) or frame.f_lineno<= 0): return self._wait_for_mainpyfile = 0 self._old_Pdb_user_return(frame, return_value)
def get_data_path(cls): """ Read data path from the following sources in order of priority: 1. Environment variable If not found raises an exception :return: str - datapath """ marvin_path = os.environ.get(cls._key) if not marvin_path: raise InvalidConfigException('Data path not set!') is_path_created = check_path(marvin_path, create=True) if not is_path_created: raise InvalidConfigException('Data path does not exist!') return marvin_path
Read data path from the following sources in order of priority: 1. Environment variable If not found raises an exception :return: str - datapath
Below is the the instruction that describes the task: ### Input: Read data path from the following sources in order of priority: 1. Environment variable If not found raises an exception :return: str - datapath ### Response: def get_data_path(cls): """ Read data path from the following sources in order of priority: 1. Environment variable If not found raises an exception :return: str - datapath """ marvin_path = os.environ.get(cls._key) if not marvin_path: raise InvalidConfigException('Data path not set!') is_path_created = check_path(marvin_path, create=True) if not is_path_created: raise InvalidConfigException('Data path does not exist!') return marvin_path
def _parse_request_reply(self): "waiting for a reply to our request" # we need at least 6 bytes of data: 4 for the "header", such # as it is, and 2 more if it's DOMAINNAME (for the size) or 4 # or 16 more if it's an IPv4/6 address reply. plus there's 2 # bytes on the end for the bound port. if len(self._data) < 8: return msg = self._data[:4] # not changing self._data yet, in case we've not got # enough bytes so far. (version, reply, _, typ) = struct.unpack('BBBB', msg) if version != 5: self.reply_error(SocksError( "Expected version 5, got {}".format(version))) return if reply != self.SUCCEEDED: self.reply_error(_create_socks_error(reply)) return reply_dispatcher = { self.REPLY_IPV4: self._parse_ipv4_reply, self.REPLY_HOST: self._parse_domain_name_reply, self.REPLY_IPV6: self._parse_ipv6_reply, } try: method = reply_dispatcher[typ] except KeyError: self.reply_error(SocksError( "Unexpected response type {}".format(typ))) return method()
waiting for a reply to our request
Below is the the instruction that describes the task: ### Input: waiting for a reply to our request ### Response: def _parse_request_reply(self): "waiting for a reply to our request" # we need at least 6 bytes of data: 4 for the "header", such # as it is, and 2 more if it's DOMAINNAME (for the size) or 4 # or 16 more if it's an IPv4/6 address reply. plus there's 2 # bytes on the end for the bound port. if len(self._data) < 8: return msg = self._data[:4] # not changing self._data yet, in case we've not got # enough bytes so far. (version, reply, _, typ) = struct.unpack('BBBB', msg) if version != 5: self.reply_error(SocksError( "Expected version 5, got {}".format(version))) return if reply != self.SUCCEEDED: self.reply_error(_create_socks_error(reply)) return reply_dispatcher = { self.REPLY_IPV4: self._parse_ipv4_reply, self.REPLY_HOST: self._parse_domain_name_reply, self.REPLY_IPV6: self._parse_ipv6_reply, } try: method = reply_dispatcher[typ] except KeyError: self.reply_error(SocksError( "Unexpected response type {}".format(typ))) return method()
def bold(*content, sep=' '): """ Make bold text (Markdown) :param content: :param sep: :return: """ return _md(_join(*content, sep=sep), symbols=MD_SYMBOLS[0])
Make bold text (Markdown) :param content: :param sep: :return:
Below is the the instruction that describes the task: ### Input: Make bold text (Markdown) :param content: :param sep: :return: ### Response: def bold(*content, sep=' '): """ Make bold text (Markdown) :param content: :param sep: :return: """ return _md(_join(*content, sep=sep), symbols=MD_SYMBOLS[0])
def matplotlib_to_ginga_cmap(cm, name=None): """Convert matplotlib colormap to Ginga's.""" if name is None: name = cm.name arr = cm(np.arange(0, min_cmap_len) / np.float(min_cmap_len - 1)) clst = arr[:, 0:3] return ColorMap(name, clst)
Convert matplotlib colormap to Ginga's.
Below is the the instruction that describes the task: ### Input: Convert matplotlib colormap to Ginga's. ### Response: def matplotlib_to_ginga_cmap(cm, name=None): """Convert matplotlib colormap to Ginga's.""" if name is None: name = cm.name arr = cm(np.arange(0, min_cmap_len) / np.float(min_cmap_len - 1)) clst = arr[:, 0:3] return ColorMap(name, clst)
def gather_data(registry): """Gathers the metrics""" # Get the host name of the machine host = socket.gethostname() # Create our collectors ram_metric = Gauge("memory_usage_bytes", "Memory usage in bytes.", {'host': host}) cpu_metric = Gauge("cpu_usage_percent", "CPU usage percent.", {'host': host}) # register the metric collectors registry.register(ram_metric) registry.register(cpu_metric) # Start gathering metrics every second while True: time.sleep(1) # Add ram metrics ram = psutil.virtual_memory() swap = psutil.swap_memory() ram_metric.set({'type': "virtual", }, ram.used) ram_metric.set({'type': "virtual", 'status': "cached"}, ram.cached) ram_metric.set({'type': "swap"}, swap.used) # Add cpu metrics for c, p in enumerate(psutil.cpu_percent(interval=1, percpu=True)): cpu_metric.set({'core': c}, p)
Gathers the metrics
Below is the the instruction that describes the task: ### Input: Gathers the metrics ### Response: def gather_data(registry): """Gathers the metrics""" # Get the host name of the machine host = socket.gethostname() # Create our collectors ram_metric = Gauge("memory_usage_bytes", "Memory usage in bytes.", {'host': host}) cpu_metric = Gauge("cpu_usage_percent", "CPU usage percent.", {'host': host}) # register the metric collectors registry.register(ram_metric) registry.register(cpu_metric) # Start gathering metrics every second while True: time.sleep(1) # Add ram metrics ram = psutil.virtual_memory() swap = psutil.swap_memory() ram_metric.set({'type': "virtual", }, ram.used) ram_metric.set({'type': "virtual", 'status': "cached"}, ram.cached) ram_metric.set({'type': "swap"}, swap.used) # Add cpu metrics for c, p in enumerate(psutil.cpu_percent(interval=1, percpu=True)): cpu_metric.set({'core': c}, p)
def status(self, code=None): """Check status code in response returned by application. If ``code`` is not None, assert that ``code`` is returned by application, else simply return the status code. :param code: ``code`` to assert that application returns :type code: int Example usage:: check50.flask.app("application.py").status(200) status = check50.flask.app("application.py").get("/").status() if status != 200: raise check50.Failure(f"expected status code 200, but got {status}") """ if code is None: return self.response.status_code log(_("checking that status code {} is returned...").format(code)) if code != self.response.status_code: raise Failure(_("expected status code {}, but got {}").format( code, self.response.status_code)) return self
Check status code in response returned by application. If ``code`` is not None, assert that ``code`` is returned by application, else simply return the status code. :param code: ``code`` to assert that application returns :type code: int Example usage:: check50.flask.app("application.py").status(200) status = check50.flask.app("application.py").get("/").status() if status != 200: raise check50.Failure(f"expected status code 200, but got {status}")
Below is the the instruction that describes the task: ### Input: Check status code in response returned by application. If ``code`` is not None, assert that ``code`` is returned by application, else simply return the status code. :param code: ``code`` to assert that application returns :type code: int Example usage:: check50.flask.app("application.py").status(200) status = check50.flask.app("application.py").get("/").status() if status != 200: raise check50.Failure(f"expected status code 200, but got {status}") ### Response: def status(self, code=None): """Check status code in response returned by application. If ``code`` is not None, assert that ``code`` is returned by application, else simply return the status code. :param code: ``code`` to assert that application returns :type code: int Example usage:: check50.flask.app("application.py").status(200) status = check50.flask.app("application.py").get("/").status() if status != 200: raise check50.Failure(f"expected status code 200, but got {status}") """ if code is None: return self.response.status_code log(_("checking that status code {} is returned...").format(code)) if code != self.response.status_code: raise Failure(_("expected status code {}, but got {}").format( code, self.response.status_code)) return self
def get_ip_interface_output_interface_ip_address_ipv4(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_ip_interface = ET.Element("get_ip_interface") config = get_ip_interface output = ET.SubElement(get_ip_interface, "output") interface = ET.SubElement(output, "interface") interface_type_key = ET.SubElement(interface, "interface-type") interface_type_key.text = kwargs.pop('interface_type') interface_name_key = ET.SubElement(interface, "interface-name") interface_name_key.text = kwargs.pop('interface_name') ip_address = ET.SubElement(interface, "ip-address") ipv4 = ET.SubElement(ip_address, "ipv4") ipv4.text = kwargs.pop('ipv4') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def get_ip_interface_output_interface_ip_address_ipv4(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") get_ip_interface = ET.Element("get_ip_interface") config = get_ip_interface output = ET.SubElement(get_ip_interface, "output") interface = ET.SubElement(output, "interface") interface_type_key = ET.SubElement(interface, "interface-type") interface_type_key.text = kwargs.pop('interface_type') interface_name_key = ET.SubElement(interface, "interface-name") interface_name_key.text = kwargs.pop('interface_name') ip_address = ET.SubElement(interface, "ip-address") ipv4 = ET.SubElement(ip_address, "ipv4") ipv4.text = kwargs.pop('ipv4') callback = kwargs.pop('callback', self._callback) return callback(config)
def rename(args): """Supply two names: Existing instance name or ID, and new name to assign to the instance.""" old_name, new_name = args.names add_tags(resources.ec2.Instance(resolve_instance_id(old_name)), Name=new_name, dry_run=args.dry_run)
Supply two names: Existing instance name or ID, and new name to assign to the instance.
Below is the the instruction that describes the task: ### Input: Supply two names: Existing instance name or ID, and new name to assign to the instance. ### Response: def rename(args): """Supply two names: Existing instance name or ID, and new name to assign to the instance.""" old_name, new_name = args.names add_tags(resources.ec2.Instance(resolve_instance_id(old_name)), Name=new_name, dry_run=args.dry_run)
def _check_fact_ref_eval(cls, cpel_dom): """ Returns the result (True, False, Error) of performing the specified check, unless the check isn’t supported, in which case it returns False. Error is a catch-all for all results other than True and False. :param string cpel_dom: XML infoset for the check_fact_ref element. :returns: result of performing the specified check :rtype: boolean or error """ CHECK_SYSTEM = "check-system" CHECK_LOCATION = "check-location" CHECK_ID = "check-id" checksystemID = cpel_dom.getAttribute(CHECK_SYSTEM) if (checksystemID == "http://oval.mitre.org/XMLSchema/ovaldefinitions-5"): # Perform an OVAL check. # First attribute is the URI of an OVAL definitions file. # Second attribute is an OVAL definition ID. return CPELanguage2_3._ovalcheck(cpel_dom.getAttribute(CHECK_LOCATION), cpel_dom.getAttribute(CHECK_ID)) if (checksystemID == "http://scap.nist.gov/schema/ocil/2"): # Perform an OCIL check. # First attribute is the URI of an OCIL questionnaire file. # Second attribute is OCIL questionnaire ID. return CPELanguage2_3._ocilcheck(cpel_dom.getAttribute(CHECK_LOCATION), cpel_dom.getAttribute(CHECK_ID)) # Can add additional check systems here, with each returning a # True, False, or Error value return False
Returns the result (True, False, Error) of performing the specified check, unless the check isn’t supported, in which case it returns False. Error is a catch-all for all results other than True and False. :param string cpel_dom: XML infoset for the check_fact_ref element. :returns: result of performing the specified check :rtype: boolean or error
Below is the the instruction that describes the task: ### Input: Returns the result (True, False, Error) of performing the specified check, unless the check isn’t supported, in which case it returns False. Error is a catch-all for all results other than True and False. :param string cpel_dom: XML infoset for the check_fact_ref element. :returns: result of performing the specified check :rtype: boolean or error ### Response: def _check_fact_ref_eval(cls, cpel_dom): """ Returns the result (True, False, Error) of performing the specified check, unless the check isn’t supported, in which case it returns False. Error is a catch-all for all results other than True and False. :param string cpel_dom: XML infoset for the check_fact_ref element. :returns: result of performing the specified check :rtype: boolean or error """ CHECK_SYSTEM = "check-system" CHECK_LOCATION = "check-location" CHECK_ID = "check-id" checksystemID = cpel_dom.getAttribute(CHECK_SYSTEM) if (checksystemID == "http://oval.mitre.org/XMLSchema/ovaldefinitions-5"): # Perform an OVAL check. # First attribute is the URI of an OVAL definitions file. # Second attribute is an OVAL definition ID. return CPELanguage2_3._ovalcheck(cpel_dom.getAttribute(CHECK_LOCATION), cpel_dom.getAttribute(CHECK_ID)) if (checksystemID == "http://scap.nist.gov/schema/ocil/2"): # Perform an OCIL check. # First attribute is the URI of an OCIL questionnaire file. # Second attribute is OCIL questionnaire ID. return CPELanguage2_3._ocilcheck(cpel_dom.getAttribute(CHECK_LOCATION), cpel_dom.getAttribute(CHECK_ID)) # Can add additional check systems here, with each returning a # True, False, or Error value return False
def deserialize(self, data, fields=None): """ Deserializes msgpack bytes to OrderedDict (in the same sorted order as for serialize) :param data: the data in bytes :return: sorted OrderedDict """ # TODO: it can be that we returned data by `get_lines`, that is already deserialized if not isinstance(data, (bytes, bytearray)): return data return msgpack.unpackb(data, encoding='utf-8', object_pairs_hook=decode_to_sorted)
Deserializes msgpack bytes to OrderedDict (in the same sorted order as for serialize) :param data: the data in bytes :return: sorted OrderedDict
Below is the the instruction that describes the task: ### Input: Deserializes msgpack bytes to OrderedDict (in the same sorted order as for serialize) :param data: the data in bytes :return: sorted OrderedDict ### Response: def deserialize(self, data, fields=None): """ Deserializes msgpack bytes to OrderedDict (in the same sorted order as for serialize) :param data: the data in bytes :return: sorted OrderedDict """ # TODO: it can be that we returned data by `get_lines`, that is already deserialized if not isinstance(data, (bytes, bytearray)): return data return msgpack.unpackb(data, encoding='utf-8', object_pairs_hook=decode_to_sorted)