question
stringclasses
96 values
options
sequencelengths
2
4
answer
stringlengths
1
95
question_type
stringclasses
3 values
tid
int64
1
105
difficulty
stringclasses
3 values
format_hint
stringclasses
1 value
relevant_concepts
sequencelengths
1
8
question_hint
stringclasses
93 values
category
stringclasses
5 values
subcategory
stringclasses
13 values
id
int64
1
763
ts1
sequencelengths
128
308
ts2
sequencelengths
128
299
Is the two time series lagged version of each other despite amplitude difference?
[ "Yes, they are lagged versions", "No, they are not lagged versions" ]
Yes, they are lagged versions
binary
101
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
301
[ -1.454593934307179, -1.5688102185223085, -1.374689194836004, -1.4272472584272737, -1.490436973072406, -1.3453200997309203, -1.5444712693889109, -1.4292803700396577, -1.4228836700749061, -1.3577054038640262, -1.295159381780007, -1.3832201144713518, -1.2358147311601098, -1.3129594338902355, -1.2556273598038752, -1.082063749264609, -0.888703142439601, -0.9261617302578512, -0.861217203987937, -0.9116275926532781, -0.5605252929572513, -0.4511297951400196, -0.4393424500638619, -0.3955124863057044, -0.3384249142321017, -0.2771812475644926, -0.31083571401864635, -0.3661314366044329, -0.38742552752847886, -0.5472421988009075, -0.4465200260637803, -0.5589415087253323, -0.7075761724577215, -0.7095890703791631, -0.7278359045380476, -0.6928301650220429, -0.7725084590149728, -0.8275539109660678, -0.7304993874171913, -0.641985071320748, -0.5593171620129596, -0.5545539521790674, -0.5308662730953173, -0.49855229221564745, -0.5905477034375801, -0.38384511896449885, -0.19711921237419713, -0.08574375358613875, -0.14546146571836827, -0.06985837245611318, 0.06733647246109307, -0.10418996427446574, 0.13342800555660814, -0.11048281421715338, -0.01167735992947757, 0.1921134894518182, 0.17625882771890544, 0.15515950812375987, 0.24878423571228148, 0.5084699017988829, 0.4690563532933837, 0.3595445803953207, 0.300119402180638, 0.08241349342281709, 0.20830427454001696, 0.1362154439567546, 0.10700046419423045, 0.23455480252858232, 0.18170142722662008, 0.288147143773114, 0.14257808467460747, 0.27701737824882916, 0.32496203042800165, 0.31254077142660275, 0.33089570148512115, 0.15045575801366906, 0.16560048471134697, 0.14573441618131952, -0.030873280971077884, -0.12497683584119539, -0.14310063792928918, -0.22825999730543187, -0.5665058697004833, -0.41556621398693855, -0.43549119085373506, -0.7543626465904195, -0.4549810955985866, -0.28090315043588515, -0.32984020024380295, -0.4479819257905556, -0.39144323475272114, -0.36307135319849243, -0.28705517537755426, -0.40479343442622445, -0.2508550759818011, -0.31724771546877417, -0.2217853063061937, -0.3335384929342186, 0.0378054020673629, 0.13533723978419082, 0.539787320079726, 0.6558402775674119, 0.5771072621778236, 0.6934096596259299, 0.819695872369283, 0.8720463648884753, 0.9604450309743952, 1.0672604914192831, 0.9279186055883029, 0.7785956572271405, 0.6672242078918309, 0.6851092208511611, 0.6538143771746661, 0.5170120825306888, 0.6257328319813732, 0.6654236367619885, 0.6891122088229569, 0.6529348884176308, 0.5998967237683153, 0.4819185502652395, 0.612855069962099, 0.5142056807353839, 0.5435680839491898, 0.7766284527981182, 0.73003661877355, 0.8647539441117021, 0.9445028634579871, 0.9881793322339482 ]
[ -1.3254154259029143, -1.561198511295905, -1.6519973330478246, -2.3334617590057287, -1.903978545026533, -2.3833480659740505, -3.0171319822037774, -3.0257150562699913, -3.1035202581092722, -2.9542544400029636, -3.2940057465774766, -3.5287216683695344, -3.11487745142855, -2.737449007152565, -2.384949866023907, -2.364639356304698, -2.2636341826856947, -2.1258461268135918, -2.5181180944373547, -1.6367303333830134, -0.8405238942617798, -0.36561465929577597, -0.6202532779936857, -0.29787878389112427, 0.2871253054289177, -0.4442700103160167, 0.5689421415763682, -0.47110296422307685, -0.04979271134661729, 0.819179299416675, 0.7515744127014548, 0.6616061033784661, 1.0608255385825582, 2.1681351950797763, 2.000074310108149, 1.5331119033740175, 1.2797206605387572, 0.3514143020212843, 0.8882174290316336, 0.5808278859991814, 0.4562540899444329, 1.000150688837338, 0.7747818660898509, 1.2286704907526809, 0.6079584304526875, 1.1812127429866548, 1.3856505817609115, 1.3326858561933663, 1.4109519831013895, 0.6415491322058007, 0.7061268286573155, 0.6214171492536055, -0.13164485611472188, -0.5329060292425724, -0.6101866176054975, -0.9733093975392686, -2.4156027917709766, -1.771990301183083, -1.8569511679978488, -3.2166313052943205, -1.940056870570543, -1.1977818248713687, -1.4064512852593813, -1.910212141623078, -1.6691289909996287, -1.5481501980942252, -1.2240142955640336, -1.726054755279997, -1.0696556810469395, -1.3527564464151245, -0.9457010663813173, -1.4222209473680503, 0.16120368677950198, 0.577083189669536, 2.301673869745691, 2.7965281388616487, 2.460807536566406, 2.956725427256292, 3.495214689911794, 3.7184392011543803, 4.095374509342585, 4.550839736192561, 3.956680581933649, 3.3199617936051093, 2.845069655099657, 2.9213320374440093, 2.7878896217582794, 2.2045593818838287, 2.6681488342497133, 2.8373919506297467, 2.938400931937914, 2.784139447911098, 2.5579826762874727, 2.054919212121168, 2.6132375622765425, 2.1925927768155464, 2.317795192130104, 3.311573558345971, 3.112904188153952, 3.687344038810422, 4.027396494604844, 4.213634635377668, 4.470956113305203, 4.414207915120178, 4.435001771481509, 4.107263879354189, 4.132052647343281, 3.7821240697234897, 4.383442977003505, 3.3672497077866197, 3.6548895172545746, 3.856147333077931, 4.003249507342467, 4.61583586292551, 4.444751834518411, 4.597485312783309, 3.571100521804047, 3.3227669773713595, 3.8344438925051176, 3.0337088522037083, 3.1292254041323795, 2.724112529814455, 2.6577492557182385, 2.2884167130297697, 1.5426716727060463, 1.773477535626697, 1.743821770990624, 2.110135704420051 ]
The given time series has multiple cycle patterns with same amplitude and period. How are they combined together?
[ "Additive", "Multiplicative" ]
Multiplicative
multiple-choice
27
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Multiplicative Composition" ]
For additive composition, the patterns are added together. This changes amplitude. For multiplicative composition, the overall shape of the time series might be distorted with cyclic patterns unobservable.
Pattern Recognition
Cycle Recognition
302
[ 0.012399078406580803, -2.7630842203040853, -4.8797891163895475, -6.903377814500099, -7.9234575914261605, -8.276942216624295, -8.295322207003453, -7.7969150388878345, -6.863610974361039, -5.722037868584934, -4.429194383401253, -2.8736095309934155, -1.5478544714317575, -0.3698435077788875, 0.706320857159506, 1.3169502023097934, 1.4743649498204003, 1.369309459314391, 0.6010567400418334, -0.6257522026666552, -2.0933136671782466, -4.3574250299616555, -6.666687593144951, -8.991859523466916, -11.620773989857659, 14.042827960035105, 16.18067759204957, -17.07334944372888, -16.02728800644905, -14.202477060061172, -12.198614125973616, -10.067611955531115, -7.980469220046744, -5.84115560044369, -3.7927219747905045, -2.009386240020848, -0.7496495398326184, 0.07937304816722307, 0.39707816432247245, 0.4655716783013769, -0.2385290804698619, -1.1768882660922384, -2.1586352729858795, -3.6152487836151836, -5.010530100907802, -6.6575886286781305, -7.960752084379395, -9.405269708485747, -10.186242822429007, 10.653538048216957, 10.736618767288384, 9.911422572343724, 8.72728246197263, 6.611435876944855, -3.760929840678363, -0.837985324903202, 1.7584804765378115, 3.3771503724023906, 4.989879789621316, 5.861020016344158, 6.0271905132063495, 6.02902105149178, 5.329370498795476, 4.309973983395595, 3.3276979625810936, 1.9967797739442712, 0.6514349555320589, -0.5570533480865113, -1.7271368746068967, -2.2175180590271015, -2.7758167365070845, -2.576220968127911, -2.323101205772539, 1.0268091700374642, -0.34715148974659044, -2.404841408765845, -4.829569725771094, -7.5295148068318865, -10.06836305050792, -12.918326184239087, 15.353178792813209, 15.240114307978992, 14.54698303853633, 13.522227173962374, 11.875418936119718, 10.142188435368906, 8.411129294300085, 6.1508288682555845, 4.557835907774224, 3.005653466027838, 1.6086654611947502, 0.6149559566012707, 0.0036645491109541864, -0.08858644202324233, 0.1263963945784094, 1.1514791150020813, 2.272921716686369, -3.842228944256437, -5.433777349747433, -7.176340815885201, -8.96995500955204, -10.319013582490554, -11.709585288354, -12.608985209573715, -13.136292268841098, -12.928956994858579, -12.288120004124686, 9.937313928160023, 6.77904166763605, 3.837151543610666, 1.398234394536817, -0.7579329803790785, -2.1526495945527264, -3.4880112987939516, -4.001430086593163, -4.173355531010748, -3.952509438521458, -3.27956285954385, -2.382918722750401, -1.0651619963388017, 0.4129112364907093, -1.680152333615606, -2.77993405311269, -3.9445445846694653, -4.280486078251881, -4.381260505183254, -4.355391480444173, -3.3144153907888 ]
null
The given time series has a cycle component and a trend component. Is it an additive or multiplicative model?
[ "Multiplicative", "Additive" ]
Multiplicative
multiple_choice
11
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Additive Composition", "Multiplicative Composition" ]
For a multiplicative composition, the amplitude of the cyclic component will increase or decrease depending on the trend component.
Pattern Recognition
Trend Recognition
303
[ -0.29469042192840145, 0.18042961658689644, 0.1274081431206034, 0.20357352225416045, 0.2834732438863311, 0.4423923616490795, 0.5088863448563541, 0.7667457154690192, 0.6921451327013918, 0.9283109212450309, 1.0107423090738912, 0.9284565454224539, 0.9213406238236054, 0.6596010462020575, 0.47493445559129155, 0.34961876396837815, 0.09683409892833485, -0.49648263536514214, -0.6223111377214128, -1.1058875824555943, -1.441583637430644, -1.901777719494243, -2.15426607871556, -2.2113037896169576, -2.4645131282474257, -2.57323519967429, -2.5107260273902665, -2.305095399841925, -2.0542727796688713, -1.7430525479635075, -1.1650672608054153, -0.6313531018983713, -0.07456135964752232, 0.5463551851286685, 1.2822663088293638, 1.9147910484261563, 2.6187194270285037, 3.165705289408118, 3.4436579703464036, 3.7886906889036793, 4.0403230979422915, 4.266777465171507, 3.905802201089887, 3.8292094097977025, 3.38769479465406, 2.8752303292702313, 2.0476330318672855, 1.052730720402554, 0.16476888566374537, -0.8336060806519875, -1.7576336507296026, -2.683472534600718, -3.676167010078388, -4.20151744621502, -5.128892120230056, -5.337103071402709, -5.630755134754533, -5.720978269033491, -5.71558743890004, -5.219914671028548, -4.770207489862286, -3.736972394549417, -2.843959765272723, -1.7424518663428021, -0.585681260903744, 0.5845751602148981, 2.0320766061116102, 3.507532820118781, 4.521959476174412, 5.568182378374302, 6.485929857233528, 7.21028490847435, 7.515242775216777, 7.361139364731302, 7.051699442474221, 6.981923138655068, 6.197148993502516, 4.960740922988634, 3.56750462910194, 2.367707758498741, 0.7127816953541063, -0.9027776348634128, -2.422899031117435, -4.042401267560034, -5.638097442750349, -6.816626152969024, -7.750043764869347, -8.518807737258298, -8.983134464523586, -9.016990816560625, -8.897377173764296, -8.245921938813298, -7.671151456753321, -6.144452819902476, -4.526457361559261, -2.9352335522110673, -1.0879854929784134, 0.7885860126143425, 2.9329892398235238, 4.758080099813636, 6.513028045256218, 7.771903001876883, 9.166334156677575, 10.062589680759608, 10.599474713022751, 10.703559559635197, 10.455872175927112, 9.891238443981983, 8.540008449014431, 7.47756655500707, 5.6090684360479015, 3.571226030306782, 1.5071410355400392, -0.9811639521984588, -3.1629292659990904, -5.289871777972078, -7.15767119724118, -9.069736229934978, -10.472708115919358, -11.649533111695522, -12.187128738881913, -12.253606906042027, -12.032750562207182, -11.380178969647233, -10.094570914055845, -8.484161867515372, -6.5166139739049065, -4.197463436745387 ]
null
Which additive combination of patterns best describes the time series?
[ "SawtoothWave + SquareWave", "SineWave + SquareWave", "SineWave + SawtoothWave" ]
SawtoothWave + SquareWave
multiple-choice
17
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition" ]
Imagine the shape of the time series as addition of two different patterns.
Pattern Recognition
Cycle Recognition
304
[ -0.6625612059314151, 0.2022558861568119, 0.2513518484745503, 0.30044781079228866, 0.34954377311002705, 0.39863973542776543, 0.44773569774550376, 0.49683166006324214, 0.5459276223809806, 0.595023584698719, 0.6441195470164573, 0.6932155093341957, 0.742311471651934, 0.7914074339696725, 0.8405033962874108, 0.8895993586051493, 0.9386953209228877, 0.9877912832406259, -0.5945550139826128, -0.5454590516648745, -0.496363089347136, -0.44726712702939775, -0.39817116471165925, -0.349075202393921, -0.2999792400761827, -0.2508832777584442, -0.20178731544070572, -1.4778137649857976, -1.4287178026680594, -1.3796218403503209, -1.3305258780325824, -1.281429915714844, -1.2323339533971058, -1.1832379910793673, -1.1341420287616288, -1.0850460664438906, 0.5954921554148249, 0.6445881177325634, 0.6936840800503018, 0.7427800423680402, 0.7918760046857786, 0.8409719670035168, 0.8900679293212553, 0.9391638916389936, 0.9882598539567321, 1.0373558162744705, 1.0864517785922088, 1.1355477409099473, 1.1846437032276855, 1.233739665545424, 1.2828356278631623, 1.3319315901809008, 1.381027552498639, 1.4301235148163773, -1.4773451942696916, -1.4282492319519533, -1.3791532696342146, -1.3300573073164763, -1.280961344998738, -1.2318653826809998, -1.1827694203632613, -1.1336734580455228, -1.0845774957277845, -1.0354815334100462, -0.9863855710923077, -0.9372896087745693, -0.888193646456831, -0.8390976841390926, -0.7900017218213542, -0.7409057595036158, -0.6918097971858773, -0.642713834868139, 1.0378243869905766, 1.0869203493083148, 1.1360163116260533, 1.1851122739437918, 1.23420823626153, 1.2833041985792686, 1.3324001608970069, 1.3814961232147454, 1.4305920855324836, 0.15456563598739181, 0.2036615983051302, 0.2527575606228686, 0.30185352294060697, 0.35094948525834535, 0.4000454475760837, 0.44914140989382206, 0.49823737221156045, 0.5473333345292988, -1.03501296269394, -0.9859170003762017, -0.9368210380584633, -0.8877250757407249, -0.8386291134229864, -0.7895331511052481, -0.7404371887875097, -0.6913412264697714, -0.642245264152033, -0.5931493018342946, -0.5440533395165562, -0.4949573771988177, -0.44586141488107933, -0.39676545256334106, -0.34766949024560256, -0.2985735279278643, -0.24947756561012602, -0.20038160329238752, 0.15503420670349788, 0.20413016902123626, 0.25322613133897465, 0.30232209365671303, 0.3514180559744514, 0.4005140182921898, 0.4496099806099282, 0.49870594292766657, 0.5478019052454048, 0.5968978675631433, 0.6459938298808816, 0.6950897921986201, 0.7441857545163585, 0.7932817168340969, 0.8423776791518351, 0.8914736414695736, 0.9405696037873119, 0.9896655661050504, -0.5926807311181885, -0.54358476880045 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude increase over time", "Amplitude remain the same over time", "Amplitude decrease over time" ]
Amplitude increase over time
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
305
[ 0.0394314143770797, 0.307972565908608, 0.7136818743213204, 1.1135487086610119, 1.31127541937128, 1.631563114728388, 1.9577501089856513, 2.2631861644173537, 1.9729590706957676, 2.435956058234392, 2.211477517513254, 2.271914620112699, 2.1699845994475044, 2.0325914693275133, 1.5742897761390593, 1.350446585758582, 1.0559438476796248, 0.6848576132566875, 0.4920624282916606, -0.01776408621666397, -0.5419279527901093, -0.8029694489868937, -1.236869159160518, -1.4117070332367905, -1.593469239436886, -1.95259343240944, -2.1022473118930844, -2.2078138403931664, -2.2250127270501365, -2.1849776227336752, -2.0921769583633645, -1.8242271539113828, -2.0374292591050276, -0.9512856703874802, -0.20852414996268498, 0.7901964185742416, 1.5390721685445836, 2.02662597532081, 2.4339176242639984, 2.615386237899923, 2.4870068504985476, 2.4860252684958275, 1.7576155072953505, 1.204462615990641, 0.30314711170230024, -0.8676329926286128, -1.818109707893846, -2.8945836277229, -3.85756945807625, -4.842232930998175, -5.560960426320069, -6.084552576073001, -6.493026504078542, -6.689243121061538, -6.682056378812919, -6.326651777048417, -5.963000281776613, -5.133752484775548, -4.63661451685138, -3.4483644340344393, -2.456226465491842, -1.5414085204104988, -0.5063521333417177, 0.5020258276178775, 0.5471402584218488, 1.1702890569355986, 2.279065845104559, 3.0045087572520752, 3.9423482212570193, 4.3545799693166245, 5.405986606147567, 5.596971454033566, 6.242883523087387, 6.388744097210781, 6.484833187734269, 6.635919060279309, 6.625801667704045, 6.153690594342919, 6.042274722382911, 5.518209052721669, 5.018104796682547, 4.307872956491639, 3.5150907360835437, 2.661018548411462, 1.990997957646999, 1.111032429560415, 0.2187407645113726, -0.6901550554772398, -1.4989162538610619, -2.270224656049308, -3.355727077053615, -4.083425266260608, -4.268213697074319, -5.0620731116805056, -5.411503147678619, -5.585628112104365, -5.722263838788183, -4.482226469455333, -3.44781657511283, -2.3283280057261875, -1.2925188979669886, -0.45311797979463253, 0.34320363516230873, 1.0937603129467999, 1.7283346373835669, 2.199879292581591, 2.2850193751993744, 2.603044221296571, 2.4660792213768348, 2.058055334533559, 1.7068285292067276, 1.2825630117362512, 0.8573673481798911, -0.08708674620851067, -1.0838672694061626, -1.8662724605446792, -3.0627318873503135, -4.04405248012159, -5.102747679001279, -6.144586197910076, -7.160872388376828, -8.26427775906236, -9.467784799042862, -10.329093322234366, -11.133860980471592, -11.908206957672677, -12.5258502431737, -13.152525261270313 ]
null
Two time series are given. Both of them have a noise component. Do they have the same level of noise?
[ "No, they have different level of noise", "Yes, they both have the same level of noise" ]
Yes, they both have the same level of noise
binary
88
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Variance" ]
Noise level refers to the amplitude of the random fluctuations in the time series. Both time series have a white noise component added to it. You should check the amplitude of the noise for both time series.
Similarity Analysis
Shape
306
[ 0.09221734565070863, 0.3849265488907937, 0.8705622299181536, 1.2389424187076756, 1.4122938354701375, 1.5297934007827916, 1.556101366128169, 1.5512827199602313, 1.313341201419355, 1.1519795410513556, 0.7909238774552897, 0.3188833046723529, 0.045174581258693114, -0.43145775923492735, -0.8168310620184973, -1.163489005381404, -1.3314641714840363, -1.3870453370432951, -1.4332294947463646, -1.4165629819742196, -1.2209379951344252, -0.8938231927365465, -0.7052112627820724, -0.42306949232243646, 0.2188962572400352, 0.42995362166559425, 0.7745247639797844, 0.9660131780325951, 1.425315417481481, 1.3336279489677034, 1.4445094150234163, 1.4966476803817257, 1.3285031639575289, 0.9224250998278213, 0.6369140710474217, 0.1806634344375389, -0.18792026518582247, -0.4982251971699562, -0.9303470759655205, -1.1988447259744466, -1.5336161066846963, -1.3902880514628255, -1.4646490868588982, -1.3432331937468827, -1.1016095321246229, -1.0358801544440694, -0.6457309512289499, -0.41357402943443483, 0.49130709562291286, 0.5513574362969956, 1.019931022450401, 1.0783993131818037, 1.504563766512262, 1.6958754182332432, 1.504460068519505, 1.3049264047252236, 1.190067602545011, 0.6956358715201334, 0.5651466265335987, 0.26216457279238875, -0.22487414190979668, -0.6357178943664265, -0.8983987493894288, -1.1685834671337625, -1.5875010151104822, -1.5064833514021618, -1.2604383667040493, -1.5218121258864645, -1.184761150778763, -0.6883101577609751, -0.4170780751262628, -0.18723176564943017, 0.28575742179581437, 0.6475646354933666, 0.9106373864370999, 1.2472868333927773, 1.4088913350558012, 1.530602051897465, 1.4214691177133822, 1.2417647971938608, 1.1433636259423259, 1.0174193737142638, 0.49382789478555106, 0.05844147290199293, -0.23335548186671767, -0.7035291285753686, -0.8320928176657995, -1.279763092621973, -1.3809946177750885, -1.5974579335674919, -1.436997456785423, -1.321869602513579, -1.1234395760744198, -0.8587872304231793, -0.5071099451006599, -0.01899649226313447, 0.41501575421854064, 0.7143178242775121, 1.08020855558965, 1.2991529199752851, 1.4738201580691632, 1.5033298917387317, 1.478838625459326, 1.5979885831262979, 1.1182997207031642, 0.8351578684653472, 0.444431878918666, -0.02345915487452219, -0.26578145829877825, -0.7948695605103236, -0.9776683771841121, -1.3588303495270613, -1.5716439121350836, -1.4869170511715335, -1.5759879511433952, -1.2522973681220113, -1.1749756001624396, -0.7638907893096166, -0.5007846100026545, 0.3240058033658653, 0.2725071230131165, 0.8048028753151717, 1.228275812854358, 1.4503871266425776, 1.571205924954577, 1.490521432546225, 1.5878643110665527, 1.3737675897556798 ]
[ 0.02122996176604766, 0.41176511045915976, 0.7167199941689585, 0.961014633244601, 1.403770161310486, 1.5459097228866039, 1.3576425081318981, 1.3564804999354745, 1.183179422463456, 0.9325022746003057, 0.6121343578882383, 0.3261128203836232, -0.23446692028494318, -0.6238906843073685, -0.7557402367507122, -1.2016183711400479, -1.473270676999013, -1.4887675692851783, -1.4614116813712668, -1.1567912588493372, -1.0078917626004587, -0.693384123667304, -0.3749083550183591, 0.022302285064896024, 0.24873270458808644, 0.6643638718432905, 0.9019687851200395, 1.223579712685403, 1.465851910602201, 1.461702307355272, 1.5244758175449837, 1.1225598746136058, 1.039822362645358, 0.5458120788662508, 0.3119483343942328, -0.013631755372804297, -0.4929117688772765, -0.7657295525395142, -1.2062763659179223, -1.4850832209355602, -1.3751589448226802, -1.2641586122656798, -1.4408499846952982, -1.0238037850857546, -0.8628012546594099, -0.6585334538666426, -0.25761423136685463, 0.24816092752043695, 0.579182364711107, 0.8161518353089753, 1.0366923581528829, 1.2920349761621615, 1.4662016798003605, 1.4106796537741628, 1.2226714665153235, 1.0615480972259341, 0.8379090877890524, 0.41229245669957765, -0.027497125065573676, -0.30968341584407666, -0.8562190240221305, -1.0849738182344288, -1.3072795530314196, -1.5415941812898721, -1.487110688211731, -1.5743526511589663, -0.9975945828083752, -1.0177286291158907, -0.43310154448896343, -0.21243639417484075, 0.23149510709381546, 0.5046069805249909, 0.912354794415094, 1.2296034876012878, 1.418992395440395, 1.5192647127868097, 1.3889568307612528, 1.2576771384297931, 0.9309041249827886, 0.8476610806331863, 0.5505363600009028, 0.21856909269540625, -0.3019981354980623, -0.7743767645495193, -1.181719033683546, -1.1482487867880262, -1.5810254231604486, -1.482141346521131, -1.4114878848063381, -1.2355806805843494, -0.9749450493801153, -0.643170375646689, -0.5290227256749309, 0.10446383500306677, 0.26300667162361263, 0.9066776392609438, 1.0645943699619633, 1.1092887841358032, 1.3517358552657013, 1.3796952124676498, 1.4544428069983886, 1.156227266640043, 0.8892318534301131, 0.6287356823321875, 0.11955152082826534, -0.18629167033566413, -0.5650964491577929, -1.0876586892845577, -1.067236691006779, -1.5234299928255666, -1.3556885908452498, -1.5594989549567457, -1.2052684934568776, -0.8444301979983695, -0.7419158167572089, -0.38364616292133036, 0.0917747858853378, 0.3842892412276613, 0.9550980135709799, 1.092083505800314, 1.2621245975001638, 1.3669206106352318, 1.3507355859094348, 1.2989249732887982, 1.144901857785766, 0.8633387077644537, 0.5118369040734296, 0.4109227939399937 ]
You are given two time series which both have trend components. Do they have the same type of trend?
[ "No, time series 1 has linear trend and time series 2 has exponential trend", "No, time series 1 has exponential trend and time series 2 has log trend", "Yes, they both have exponential trend" ]
No, time series 1 has exponential trend and time series 2 has log trend
multiple_choice
86
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
First identify the trend component for each time series. Then, check if they are equal.
Similarity Analysis
Shape
307
[ 1.0221852516803045, 1.5781076305010608, 2.3145137124119333, 2.680439832586591, 3.137292043989887, 3.289859077556235, 3.766415525564126, 4.077046039092639, 3.733423873210269, 3.710656162523255, 3.5920751820850425, 2.9550572991771147, 2.665821352248786, 2.295438384306093, 1.8016474968073575, 1.0204924636886215, 0.2986570773803384, -0.2718308507141367, -0.6695587942656035, -1.082089114667299, -1.2489115591526554, -1.5455662378087758, -1.7158750011146595, -1.7090853033069011, -1.1968079034636605, -1.1373367619609676, -0.8605899937452752, -0.31974363045694987, 0.17966602938737303, 0.6349531863944, 1.5310761464950213, 2.291234290969766, 2.5247617679987835, 3.204424587881552, 3.553008672436038, 3.995716359402134, 4.127328584022041, 4.082084843259048, 4.063174901215664, 3.8941066288331987, 3.8087894202990698, 3.3963185655563515, 2.7426523844081583, 2.3401257667731694, 1.605796825089606, 0.9855787165758234, 0.4360763187041569, -0.08517353779896272, -0.6444576922606488, -0.971401755935024, -1.1711955599170896, -1.3920864280816696, -1.427197850024933, -1.2781430129453355, -1.030801522936873, -0.7573114975450365, -0.35077441736035886, 0.24492220110676916, 0.6543572154496988, 1.4129766106300965, 1.812265400295833, 2.494838170048361, 3.0338147853543833, 3.801845105888595, 4.0847836080964655, 4.232237273353929, 4.559568423487056, 4.632021612990141, 4.476898207989813, 4.175629727518011, 3.8727099260501356, 3.4971342185828163, 2.840579904519982, 2.317904321493934, 1.6897907496508993, 0.9554351110187044, 0.6378432747339828, 0.23567566087873112, -0.4955444829283923, -0.6516183787708483, -1.0575623094128423, -1.0605899670408765, -0.8934853627115598, -0.9373814954643254, -0.605017532575356, -0.39111067758170004, 0.20899562407222477, 0.6437334426049444, 1.4843167963376602, 2.153064814859154, 2.670114154080085, 3.3098080506577836, 3.778350271157417, 4.332306665074596, 4.616719302176345, 4.63406481450745, 5.029214052033604, 4.868639512525445, 4.624646118405716, 4.431279896353969, 3.9009628659946154, 3.492626230855163, 3.0907730617240152, 2.5154392710076268, 1.9240558901855576, 1.3063656490769096, 0.6884812380598272, 0.26848664328124205, -0.16671938028516614, -0.5770395604771645, -0.6638644419899633, -0.5420492334527365, -0.3860270429965488, -0.2661655852537026, 0.1552284223012116, 0.4459888012058298, 1.1338844187591601, 1.7502249133513994, 1.9939967803916212, 2.8223294379650636, 3.4243032005296468, 3.944534036596628, 4.538375856611601, 4.904750960748486, 5.130104285403491, 5.382775094126299, 5.559127245648273, 5.3800497788185595 ]
[ 0.06269547482561326, 0.5718776693846975, 1.21933127540037, 1.579905614978096, 2.1088883977287765, 2.5199827858753574, 2.6730026690457946, 2.876867157377855, 3.0338450110906394, 2.940972736297333, 2.8212293835837237, 2.3893668181781633, 2.0736547846080873, 1.5460553804308519, 1.1763560357258458, 0.6869622003511465, 0.07175556343682096, -0.39752794806370484, -0.9868291278602593, -1.3338079450034968, -1.7501133815360563, -2.107022695939549, -2.119001518104602, -2.267870723642004, -1.8427306395909304, -1.9050373489004968, -1.4966461852636332, -1.1587769390951705, -0.8004267036937942, -0.3291347536512593, 0.5087345882473938, 1.1737287254210316, 1.5181208885555886, 1.963084566178558, 2.5757319505732927, 2.916794440726869, 3.2541714591042625, 3.5829959147548673, 3.6058140021954928, 3.4998479116434242, 3.498448574061172, 3.254629566355688, 2.805382436354558, 2.422185544408018, 1.9667183466983633, 1.421986014823137, 0.8297915219630414, 0.4209713860676897, -0.18267261109562294, -0.7528114922358704, -1.1468754388732094, -1.4635134889241728, -1.5469747309138144, -1.7630366191920874, -1.7175646368677076, -1.427889231003179, -1.262912141837315, -0.8105024150502016, -0.4130935941068889, -0.10537158558973964, 0.5541498817557708, 1.2394443391612786, 1.594462125913593, 2.3111390803951406, 2.77110289209934, 3.0378548274555146, 3.577984338018143, 3.734877385578015, 3.844155226046283, 3.988248907275147, 3.7041040519257242, 3.6272995804717056, 3.644058234637349, 3.0581999844425214, 2.436448013049681, 2.143821106176814, 1.3528602710606097, 0.8389168836734434, 0.2391684768386709, -0.11978749435941498, -0.445687541747251, -1.0384387520348564, -1.4039641865769135, -1.2402480357577745, -1.230648668036644, -1.5055500060384233, -1.066384452239621, -0.7902357406068558, -0.498570380582817, -0.08888517691678013, 0.6778871931278871, 1.1606022210035754, 1.7444574509698652, 2.2214850196337337, 2.7329270687866, 3.039851670198006, 3.6579346069594525, 4.126793714049679, 4.090410235759024, 4.110098808729576, 4.272020805378654, 4.141549839410035, 3.763636056630278, 3.4328362224885463, 3.0577004753236956, 2.5162336838793116, 2.0905963083275876, 1.6746136661525555, 0.7057646071443578, 0.47467356640069036, -0.11103107880456306, -0.3839509344032238, -0.76224274811868, -1.0376747037505163, -1.0649646052059958, -1.1612168475060707, -1.06423727916684, -0.6603103703450955, -0.4800846223113453, 0.10033949486196192, 0.5389769116482999, 0.8499621314929698, 1.5968373371689466, 2.2596228484347805, 2.734002818684601, 3.0220875069302813, 3.8437367793948862, 4.078134124512157 ]
The given time series is a sine wave followed by a square wave patterns with different amplitude. How does the amplitude vary over time?
[ "Decrease", "Remain the same", "Increase" ]
Decrease
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Focus on the amplitude instead of cyclic pattern change, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
308
[ -0.06284857063107556, 0.8707866417458584, 1.6964208544553852, 2.566915454124122, 3.2376881317440325, 3.8014033572518637, 4.016865529679159, 4.390770523647038, 4.671261898237344, 4.59662831648179, 4.067481848325735, 3.74120167290652, 3.3538622408519356, 2.4737310035217464, 1.7351527883483246, 1.0239487713749336, -0.05682845052386774, -0.9707849907802998, -1.800191166168695, -2.3945486204402977, -3.231245523220192, -3.843685181446082, -4.3195519126345525, -4.470306702333025, -4.540933502456481, -4.6193912698110156, -4.174690043556814, -3.826213243304079, -3.229487651734827, -2.6167093362787632, -1.7671543290241547, -0.9624832886629543, -0.06648079438452245, 0.9782668905332196, 1.7680149610613127, 2.4670256081168227, 3.5080721976218063, 3.7444717556880756, 4.3840756355394666, 4.380398305865478, 4.652368223628854, 4.482797277011269, 4.172355107316213, 3.819120047628071, 3.2234302476820234, 2.4297285707298424, 1.6222017271527465, 0.6817611622336577, -0.031454055183458784, -1.0861642351177954, -1.8221319348096656, -2.5547889703523388, -3.2839964157940518, -3.94051665900362, -4.191647461354051, -4.572606936522804, -4.739855836674069, -4.5319152096182975, -4.168403698332535, -3.855158558876127, -3.1145580003551627, -2.5706517991204376, -1.752182039531813, -0.9234271129365229, -0.7504482576603947, 0.8096825592769707, 0.7170306215114935, 0.7753857820577806, 0.5078917174959883, 0.8928040526325554, 0.7979321523360603, 0.5743830011849013, 0.6693386721534829, 0.7728474100301307, 0.6835897403754073, 0.8943417486544969, 0.8568641048850064, 0.8509604106376779, 0.5545721227644205, 0.7624609748652016, 0.7452451712249853, 0.7196013708754322, -2.494162767104658, -2.5652690596968926, -2.431123165693265, -2.3759901035545092, -2.384606865145919, -2.4664363641594345, -2.2527212693549363, -2.3386477275382354, -2.4628010593555416, -2.500872460008438, -2.3188425227100944, -2.351887170712013, -2.5936879593707096, -2.344063107065412, -2.4680825924606795, -2.5387363920476225, -2.650565824912353, 0.7881151968161109, 0.8137840577638985, 0.9737395816969128, 0.9107301970607595, 0.7567181441482875, 0.8539410557078647, 0.8976317585531733, 0.8236025550876126, 0.7562914003827707, 0.7617895706615464, 0.8535541233315862, 0.8563048728383957, 0.7857113547095366, 0.5530915957805571, 0.685954543556762, 0.8769757084471023, 0.6019230165503034, -2.334227137351565, -2.349029512874436, -2.448535600794966, -2.3928521355654255, -2.3997677711523977, -2.4643325518249077, -2.5900341507471434, -2.355917941482118, -2.311922237849923, -2.5735042914125206, -2.5937707395052563, -2.4663249294640206 ]
null
The given time series has a trend and a cyclic component. It also has an anomaly. What is the most likely combination of components without the anomaly?
[ "Linear trend and sine wave", "Exponential trend and square wave", "Log trend and sawtooth wave" ]
Linear trend and sine wave
multiple_choice
70
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Exponential Trend", "Square Wave", "Log Trend", "Sawtooth Wave", "Cutoff Anomaly", "Flip Anomaly" ]
The anomaly only influences a small part of the time series. You should focus on the overall pattern of the time series without the anomaly. Can you recover the original pattern?
Anolmaly Detection
General Anomaly Detection
309
[ 0, 0.6351469435880382, 1.191258890729145, 1.6004558251765897, 1.8155932798882313, 1.8169162956530283, 1.6148476312354236, 1.2485166977351165, 0.7802368430093386, 0.28671046089276353, -0.15179676603660686, -0.4627845453992414, -0.5917506486695445, -0.5098833424708699, -0.2181278696256712, 0.25294696218685264, 0.8474632545211587, 1.4921206111787133, 2.106541738322117, 2.6146168762029456, 2.955245912164888, 3.0909620357022787, 3.013219794993848, 2.7436011998969976, 2.3307696423190047, 1.8436015569040007, 1.3614652177780147, 0.9630187196180997, 0.7151081932763821, 0.6633331591091245, 0.8256106217501809, 1.1896462684291795, 1.7146696852895302, 2.337188683696644, 2.9799505723189776, 3.5628455832171984, 4.014213545031753, 4.280957982161627, 4.336040138433076, 4.182295220578019, 3.852032237844595, 3.4024739162800333, 2.907680297076255, 2.44809592034594, 2.099195902271684, 1.9208333955416141, 1.948791929917855, 2.189734933538041, 2.620265258286577, 3.190227447596301, 3.82978666540516, 4.4592851679544685, 5.000485178393452, 5.387611347599266, 5.576634270974786, 5.551484787918293, 5.326321979247459, 4.943534757972105, 4.467759108408645, 3.9767553790543513, 3.550433205889136, 3.259573085764111, 3.155836434269273, 3.2644741060861384, 3.580762495491668, 4.07067022492261, 4.675661325338238, 5.32095698867184, 5.926089830636823, 6.416261037798623, 6.732897453933592, 6.841918581070419, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, 0.008943323301087614, 0.007549977972447358, -0.0020716589010457425, 10.150240645582894, 9.711900184320514, 9.218401112278213, 8.750005257496747, 8.383431386030477 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Sine wave with linear trend", "Square wave with log trend", "Sawtooth wave with exponential trend" ]
Square wave with log trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
310
[ 0, 2.085728540588434, 2.1293326874577403, 2.1711146891706656, 2.2112207455533497, 2.2497801374827606, 2.286907740802107, 2.3227060899961414, 2.3572670850545263, 2.390673413087294, 2.422999740051215, 2.4543137158033774, 2.4846768265073846, 2.5141451213948147, 2.5427698354710655, 2.5705979255470703, 2.5976725336826063, 2.624033389526562, 2.649717160973713, -1.4055143238054453, -1.3810854682553768, -1.357239178551604, -1.333948315228389, -1.3111875922131333, -1.288933411814536, -1.267163717675838, -1.2458578633960178, -1.2249964948573488, -1.2045614445783994, -1.1845356366472464, -1.1649030009883417, -1.1456483958845212, -1.1267575378182961, -1.108216937818053, -1.0900138435985858, -1.0721361868743076, -1.0545725352999593, 3.042960036151752, 3.059927646530493, 3.076612154008303, 3.093022850844572, 3.1091685791774832, 3.1250577596347515, 3.140698417706668, 3.156098208088231, 3.171264437175212, 3.186204083879626, 3.2009238189130804, 3.215430022671346, 3.2297288018401806, 3.2438260048305683, 3.2577272361410317, 3.2714378697352746, 3.2849630615150813, 3.298307760960914, -0.7687953627052617, -0.7557975715076843, -0.742966557469265, -0.7302980948543687, -0.7177881165253088, -0.7054327061037644, -0.6932280906105637, -0.6811706335492205, -0.6692568284015061, -0.6574832925059426, -0.6458467612924821, -0.6343440828487903, -0.6229722127955031, -0.6117282094496121, -0.6006092292567566, -0.589612522474676, -0.5787354290914337, -0.5679753749632501, 3.5229422165533215, 3.5334755892204166, 3.543899165469764, 3.5542152106717926, 3.5644259208019635, 3.5745334252465057, 3.584539789467774, 3.5944470175375667, 3.604257054546176, 3.6139717888944265, 3.623593054475439, 3.6331226327524346, 3.642562254738473, 3.6519136028836128, 3.6611783128746564, 3.6703579753522786, 3.6794541375500653, 3.6884683048596685, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246 ]
null
The time series has three cyclic pattern composed additively. Which cycle pattern is most dominant in the given time series?
[ "SquareWave", "SawtoothWave", "SineWave" ]
SquareWave
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Amplitude" ]
The cyclic patterns have different period and amplitude. The dominant pattern is the one that has the highest amplitude. Identify the pattern with the highest peak.
Pattern Recognition
Cycle Recognition
311
[ -0.4903103683506714, 5.147153283805812, 5.010254709965767, 5.136704842533323, 5.3266462005122115, 5.181442660844915, 5.281428874840519, 5.176303229391481, 5.572097222489672, 5.533728301102452, 5.460069481691427, 5.523612554355772, 5.54167952545846, 5.66725652763821, 5.50109123221622, 5.647680635702312, -5.318536651054579, -5.288713131577187, -5.622887712896249, -5.446295676947582, -5.480366281748104, -5.358161327882309, -5.571887170228303, -5.5743840185146425, -5.154582442321164, -5.313664671072581, -5.369065878765346, -5.352227197181979, -5.382870091820928, -5.307935081817021, -5.482099573542149, -5.412151297366856, 5.59895471032457, 5.458788888219848, 5.6784345007684305, 5.493689933393204, 5.628039226685375, 5.526599271731374, 5.668295370312177, 5.391883058864035, 5.380110239295339, 5.392275250605752, 5.492323726143583, 5.6313610559119365, 5.636975570111748, 5.249494339706485, 5.5107794722873695, -5.847081675119071, -5.4357129101012465, -5.390116382653925, -5.489937574317836, -5.458757315668901, -5.438321118177165, -5.499995208605833, -5.351656308383564, -5.388750257393987, -5.240988972565949, -5.3115565503094695, -5.350400038488762, -5.380096114409049, -6.324061452273702, -5.965438466317823, -6.10024600179595, 5.0421344648262885, 5.23061514478662, 5.040546609287954, 5.078875843697137, 5.173205146094081, 5.233903005927689, 5.463735824785982, 5.4748127818826555, 5.422550895760155, 5.546382694373971, 5.42311680467193, 5.508659476272402, 5.484505724564706, 5.419464022736169, 5.700500502698133, -5.356979822089409, -5.381595204803062, -5.359491561083041, -5.488371455687464, -5.416715150931519, -5.269307333270317, -5.342526473615493, -5.300791943804649, -5.281555342528053, -5.333996041027576, -5.359693968814607, -5.423665051268844, -5.278841582199889, -5.206161594023275, -5.43811093560772, -5.283572769042343, 5.757545005359814, 5.62031183004011, 5.850303103491752, 5.657562687018967, 5.673533200629054, 5.6547949150166845, 5.481105349203942, 5.746577652557803, 5.538187104012682, 5.59889381999866, 5.672135715750468, 5.74953784637745, 5.488012242260546, 5.545607689629204, 5.724638306033716, -5.388524050276543, -5.367336734348159, -5.536753066637417, -5.4642547944173, -5.435222158909744, -5.493670036611179, -5.562067096374656, -5.429652207407214, -5.224428197676475, -5.332481377448434, -6.127475868909665, -6.22029024876399, -6.285456703830967, -6.049643147035335, -6.122357895268433, -6.011519472819128, 4.842745971852187, 5.0929302316962035, 5.136902895290291 ]
null
Despite the noise, does the given two time series have similar pattern?
[ "No, they have different shape", "Yes, they have similar shape" ]
No, they have different shape
binary
80
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
312
[ 0.2201327889843222, 0.153022101856071, 0.692421094751236, 0.9859807783226548, 1.081462783530458, 0.9603326028793551, 0.7387852964154148, 1.4505753411738713, 1.9315747125627978, 1.604929950375288, 1.284527014597965, 1.588494299895432, 1.6974823760109976, 1.4949808418325001, 1.1520723474816306, 1.566384388299382, 1.3222611630804815, 1.7011183734729813, 1.2105182410348756, 1.1070868483795573, 0.7944475272092492, 0.6277569246756085, 0.05861698927285064, -0.04571224914342681, 0.15044183676775047, -0.25381105850316105, -0.5986420588080106, -0.6358440844164981, -0.8331891636176143, -0.7210819091867159, -1.251920746625697, -1.6397845532940962, -1.5681441129612825, -1.5141219866394602, -1.4984529311084043, -2.052773775280224, -1.6808774511589553, -1.8825574375164793, -1.7580567173267498, -1.3883461299380706, -1.2937372387209605, -1.4387877198288939, -1.1720452000486956, -1.0650145931237733, -0.17998419203213, -0.48988257431874993, -0.49111371290049916, 0.1692204275560944, 0.40595321348586977, 0.7201112673025036, 1.000348326093627, 0.9350465832494502, 0.9203732801448197, 1.1292947354984604, 1.2703648626091912, 1.383690679646975, 1.8224121262799733, 1.6569446000219976, 1.9044086398288251, 1.8687645928994319, 1.5066712593568177, 1.3456356222890162, 1.374789401441704, 1.4413880363585152, 1.431431221496534, 1.1281129305607476, 1.2295385145361541, 0.7954467517984272, 0.7486349362356274, 0.5047933586347272, 0.6037580772960536, -0.1670865012573797, 0.24024542189548587, -0.5461762477731895, -0.9136927695569451, -0.8961175545820056, -0.39680728899967244, -1.0395735698152966, -1.2504330264889152, -1.3403589240050193, -1.755393696064699, -1.6102631539638816, -1.7195893851112916, -1.3727327329561065, -1.7403247966161808, -1.7481485021772498, -1.8300320361110076, -1.4656437452889557, -1.3054398391805302, -1.4508132932994613, -0.9451024819662983, -0.7961773469720584, -0.43242351486806274, -0.17380183050671344, -0.17128304019654228, -0.16794125676282823, 0.10198834573113175, 0.8446178114148396, 0.7407392391462115, 1.2599127879464187, 1.197474962119918, 1.4163241016115937, 1.5989529258856343, 1.2874662940154409, 1.6875049673674112, 1.444222060442398, 1.6704839992794993, 1.8610540975410301, 1.503118783473562, 1.7652655795712235, 1.2699447240868116, 1.6869798114914485, 1.1885543344512322, 0.9559728800986932, 0.6939148235737975, 0.6675034047609616, 0.19050359812188794, 0.24096751019235046, 0.34301756067015937, -0.1443082445820343, -0.5698871067699063, -0.511084804896175, -0.7409570838704718, -0.5759368224352375, -0.9908764146144836, -1.2495148513171388, -1.2682532000705307, -1.5893620341102812 ]
[ -0.01508263618123989, 2.0683789959977323, 1.4094751299481694, 1.930180037939607, 1.7144326401738639, 1.6782930510607486, 1.6260117485726766, 1.7673257394242567, 1.7278850420104859, 1.6536504579660256, 1.596059386288089, 1.355524844821232, 1.591830186441085, 1.6341319060592248, 1.7668371497447874, 2.1292081122477198, -1.8597821740141027, -1.941337106060853, -1.8794901535720387, -1.705921981790996, -1.6188638433521645, -1.5909218926975104, -1.5710493356645658, -1.5427448177890242, -1.792367662806053, -1.3259628985631775, -1.8075446395431718, -1.7147228200432372, -1.4774255209568807, -1.623305929713866, -2.184760284115967, -1.7354637692520485, 1.9089838865287163, 1.4678968794055074, 1.8867294943372164, 1.8146217233141098, 1.9733750320816936, 1.5982046708436908, 1.935769618429268, 1.7685125847915855, 2.089800996121877, 2.293800922874084, 2.0442570231219297, 1.832694670933064, 2.20079173452378, 1.8572865436450159, 1.5550017926068957, -1.744445596701734, -1.5842564980524187, -1.5714001041874062, -1.961643913272951, -1.9552973926033537, -1.8048529045533888, -1.6296822126201809, -1.6040784253354352, -1.708329910490457, -1.9034766820149485, -1.3892023467075585, -1.951002547680027, -1.4761227863406667, -1.588826278621346, -1.4805244745370734, -1.8254775938960024, 1.7080600956935783, 1.7475994467676277, 1.641311383191116, 1.7816426260104388, 2.0524088265256606, 1.4772241658778245, 1.6051485936692012, 1.5834418715701677, 1.7177072828842095, 1.709485681515645, 1.8910538521995601, 1.743335555895694, 1.7971675906552795, 1.8162805444138193, 1.7856717475525814, 1.8772535476029375, -1.761055611737968, -1.4073172560964196, -1.2282669659676606, -1.595344740358005, -1.6909927025696068, -1.6116744734479702, -1.956797552488148, -1.7005698418183361, -1.8828558567011409, -1.634595551863353, -1.8818627969068484, -1.8055464243831982, -2.1109851164160296, -1.9712400733009527, -1.6656161747242098, 1.562821719647733, 1.9493457320685343, 1.5458131176287566, 1.8272418355685733, 1.5842158095170673, 1.8136848903181242, 1.4296334694923911, 1.6459543401855075, 1.567348278253872, 1.913237450373215, 1.8290434282022598, 1.4900757243883227, 1.695954787987243, 1.582127366766852, 1.9266423740851275, 1.9908957648422068, -2.0249199646135816, -1.5712503404351228, -1.901250149162961, -1.787174289855283, -1.7301400894992276, -1.3732697026003244, -1.9373608807175962, -1.5696409907827586, -1.9708918169453427, -1.984709652279566, -1.730898245627588, -1.7322450371134746, -2.3030545990052698, -1.5046716774363196, -2.1644137601975895, 1.7074034480887588, 2.0021140256324803, 2.178427728649155 ]
Are the given two time series likely to have the same underlying distribution?
[ "Yes, they have the same underlying distribution", "No, they have different underlying distribution" ]
No, they have different underlying distribution
binary
93
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
313
[ -1.0711540179192405, 1.7070862280754655, 0.6321233412280761, 0.4194286291906984, -0.3975758848327504, 4.0078125646983045, 4.776412236702714, 2.8751376665648842, -3.2456154640553914, -0.7759943807860672, 0.6395799937409897, -2.6082708259399423, 0.20237402241764985, -0.04910462829199118, 3.104579173341491, -1.282410569594641, 3.238571949110606, -2.699900854019926, -2.455510761103511, -1.1870628164786052, 0.2667111599728605, -6.830006731243921, 1.3461943244558163, 4.6480077424678505, 1.8040899551344465, -0.54078273702285, -3.2414217940809786, -5.211579899213608, -4.614178747228644, -0.524662643781515, 5.84731440850816, -7.90664664014394, 2.0325755682900404, -1.9905821687849994, -0.870035628263806, -2.665035142653383, -3.7159939902627035, 0.23494698893473193, 0.7834829909680583, 1.8285941374886334, -4.751361480624486, 2.507190808577134, 2.446804819162739, 1.196217265156914, -1.1945385989283892, 0.8206414224838792, -0.3853664752994844, 2.6620117394177534, -0.8373857181926694, 0.4037795451851508, -4.928047558881221, 1.1561644940279934, -2.1709131637026595, 1.524232277159906, 2.2732267221537485, -1.6617303127490908, 0.2386544617698174, 0.5530791489410494, 1.1550039584080931, 2.200010903217503, 1.8608665743595747, -0.9207607693734136, 4.622906076318292, 2.1717619498718035, 3.9363727991401216, 1.0865097658571228, 1.080430914993035, -0.442197869697341, -1.255486712786299, 2.544348181130389, 0.8165157840965989, -0.3379212937110819, -2.9548819538156605, 4.413654089653644, 0.30961432534198846, -3.581214408625073, 0.25091898098949134, -0.5985687700152816, -0.6795134755323816, 1.6296529690336972, -0.6049396181804862, -0.844352701181517, 3.967785184860147, -5.018952984326232, -0.10714952482119228, 2.703821700489195, 1.6615102062334535, 3.009900426310278, 5.977247208537019, 4.8417097267084035, -3.3161793562989557, -4.619870309317489, 0.9952265181038572, -3.814937745928997, -5.659149712316829, 0.8162635003157688, 1.6696497167417563, 4.870816519590289, 2.077264371951962, 5.630383697326455, 0.9351383978651406, -3.240481889695088, 2.3301979738872425, 3.7016044961171146, 1.1350442139689467, 4.180542569610381, -0.39864926430091896, 1.5249266302246327, -0.43767062616462216, 6.594672524251109, 2.3173048495718067, -3.166857590429173, 5.23650505804212, -2.1473363239608187, 0.12927131645891538, 1.2736696700285175, 1.7681488196592485, 1.2055791259526363, -3.4560523486275927, 1.4783809587435344, 3.043956842025521, 2.96347205982014, -3.6182108731688096, -1.9216204920686457, -2.8910805371293122, 0.9091273114394669, -4.393712287413169, -3.2565808372465592 ]
[ 2.5363457480285034, 2.1473512695182926, 2.0758184119813254, 1.1247388870513515, 1.3562299933457422, 1.377175463294931, 0.9035993817138575, 0.7412970337740377, 0.8597332045593424, 1.2555813032270817, 1.5133415187474257, 1.982003597389255, 2.587618314799859, 2.9712773027528883, 2.950285625826712, 3.0065489438967177, 2.8254916998473347, 3.0897754030631153, 2.4284847738534814, 2.584931378626526, 2.6120313837185423, 2.243838880545039, 1.9399554163657375, 2.936750829799206, 2.2824612725325673, 2.2424979019779863, 2.6808913621923205, 2.816064648907563, 2.8634661140327196, 2.2735556225641527, 2.3102542947958, 1.48348223055356, 1.4913456558726645, 1.452531181781891, 1.975674006672332, 1.4218881472851719, 1.142993310206701, 1.6530459369830073, 1.5117292399171778, 1.0339268756504914, 0.798676429267523, 1.385661346425564, 1.4466724181465602, 0.9671615694435073, 1.354364443509338, 0.5397969613561399, 0.40215998099869465, 0.6488045813116227, 1.1866923529728384, 0.2801404862078656, 0.5007559107625086, 0.7347658150306501, 0.44082303528322603, 0.5943312871717252, -0.289680283503556, -1.37279391308391, -1.0320381960896892, -1.1360651194760039, -1.4638541840801422, -1.2439680985585222, -1.5614788045877903, -1.5152064088058814, -1.380261844161206, -1.9222612671855643, -1.4116175184549453, -1.5345913993159035, -2.099144308446582, -2.275020030551062, -2.39871177082918, -2.68629635562517, -3.0639385108317474, -3.2074194382075047, -3.6680678839338614, -2.9740781121903686, -3.1522106055172117, -2.5367448892862283, -2.813541740542457, -3.0239383027534306, -2.811647757532573, -2.563614629516188, -2.2429968003080867, -2.8532984687115373, -2.7944209521694465, -2.9247827020877897, -2.3382503537327213, -2.9698130668011036, -3.041732606928333, -2.65263589938229, -2.397835330843732, -2.150518221940741, -2.258712564088429, -2.6622925996395903, -3.0639342020365077, -2.3916065800800825, -2.2625198083330496, -2.6990319438440444, -2.389224354901667, -2.149008197174998, -1.9710940095858243, -1.689392944251344, -1.3714566665551724, -1.5736581990094995, -0.6934767030846717, -0.40898218409792486, -0.1874256716423459, -0.1625902928664176, 0.1089784728161299, -0.5597277387380376, 0.043457211591218625, 0.6126678371374021, 1.2387175741446326, 1.3122881515071887, 1.073497683873239, 0.6513910102148942, 1.0554966811895643, 0.9570711237702445, 0.9279885189155962, 1.0909647736084849, 0.7750997975274446, 1.266111180447603, 1.1097453339840173, 0.6433077590277776, 0.45593903643898215, 0.9148064674734606, 0.5759812573064259, 0.898909575308931, 0.7809381063626598, 0.8250639339879386 ]
Both time series have a cyclic components. Which time series has a higher amplitude of the cyclic component?
[ "Time series 1 has higher amplitude", "Time series 2 has higher amplitude" ]
Time series 1 has higher amplitude
binary
83
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Amplitude refers to the height of the peak and the depth of the trough in the cyclic component. You should check the height of the peak and the depth of the trough for both time series.
Similarity Analysis
Shape
314
[ 0.07111924534215756, 1.208407714391953, 2.616869596949802, 3.9638560508401275, 5.336659068191588, 5.946361573085826, 6.66031994276968, 7.380769098544863, 7.468315739778561, 7.515361581251105, 7.043039905727364, 6.569346893646354, 5.955621802293656, 4.865866021495575, 3.898723074303892, 2.62466830725047, 1.2226438990643906, 0.056679569603555274, -1.0705718714352757, -2.2388331322848094, -3.3116059895495638, -4.323082753480094, -4.930745427394861, -5.2918561780372695, -5.315162293445667, -5.173169361268151, -4.897365056000647, -4.01690577047413, -3.390985144550733, -2.352800832027904, -1.00061568608482, 0.40890854857419995, 1.9055117084109858, 3.164699773810897, 4.638444669681793, 5.65177454616076, 7.153943088401526, 7.748042561728607, 8.676368583218768, 9.344481701259573, 9.440103830282379, 9.561494979087007, 9.341090413360197, 8.96629652176541, 8.458828274992852, 7.4375631002900855, 6.344311577142245, 4.934300114427769, 4.025359928045169, 2.786798272679536, 1.2903996920568992, 0.279250991414458, -0.749555792752497, -1.5653435329757137, -2.429245339752633, -2.9126050026424704, -3.0921936402905095, -2.8818670913505553, -2.61079033588438, -2.1718086430963384, -1.2897805318133122, -0.6449828765596137, 0.826004168955486, 1.9203624588096502, 3.579025614708199, 4.70171904908755, 6.1141330241859215, 7.582618939255785, 8.807614260981678, 9.75767244575039, 10.707964538665555, 11.366719673835956, 11.758948683558422, 11.825162900186033, 11.80271540290491, 11.526822655967761, 10.66135934310603, 9.886553713101248, 8.981998046589561, 7.744245467584717, 6.447019009330586, 5.469572784616644, 3.8758820747513747, 2.852601583097122, 1.8662816873378931, 0.8620734065491736, 0.02762009266794794, -0.5950645627320217, -0.761911607524164, -0.9511806381811185, -0.6221921734470115, -0.17663460002492803, 0.522276724791652, 1.3572034007971407, 2.723155404529436, 3.7995166992027363, 5.081279714937471, 6.534423641972808, 7.8327590853482905, 9.226991024282263, 10.765041148153314, 11.56933244476557, 12.578953678314715, 13.269415372548055, 13.702170555589666, 14.08625876907166, 14.026331328611125, 13.8362019846046, 13.305445308200548, 12.572751135214185, 11.458596601972598, 10.529295876215665, 9.336908487032398, 7.911327804117303, 6.712304569332597, 5.3672376502749, 4.435288979516522, 3.422683810365088, 2.6600551545428095, 1.8620615003586145, 1.531413889030723, 1.4373129498328647, 1.3744799346117738, 1.7280310689108294, 2.3612208278463735, 3.2390269692230422, 4.223876311051776, 5.440027027717587 ]
[ 0.08809151690332453, 0.32774731162737164, 0.7005112842774304, 0.9374771301012439, 1.2392219476012394, 1.6189522166649857, 1.8697498370122276, 2.1753085756264428, 2.438563169668835, 2.4181487895551914, 2.718355338006739, 2.633972917771882, 3.0231917193170887, 2.775237982366576, 2.9259064652225395, 2.7174031467398856, 2.7485346894124594, 2.826888195954037, 2.4732398906793445, 2.6359067949988915, 2.2572983459623805, 2.1840144812721274, 1.9463132652020012, 1.767105949091001, 1.3949096733838593, 1.3120053610000986, 1.3111162656894269, 1.0043833879656743, 0.9193906669264723, 0.6408123959215193, 0.6587186538097306, 0.7715888307423817, 0.5101655397701317, 0.7234530011217604, 0.7182056644052892, 0.7614068868140689, 0.877324757136202, 1.0114430958815113, 1.209006906418881, 1.562149194981302, 1.6745484096731649, 2.1724492629733465, 2.3172155345136054, 2.542709273059181, 3.023782612710236, 3.323273739364609, 3.433365256980289, 3.8317628945053173, 4.253719019302519, 4.425791008906154, 5.096361734167008, 5.252678468553892, 5.428359040355179, 5.627301523837607, 5.803196931017056, 5.835702539481746, 5.993368399072937, 6.455830643130261, 6.486229080957361, 6.298782293524862, 6.439916956339784, 6.359363207729852, 6.29980787686763, 5.995363861798445, 5.832733089055458, 5.986436968834651, 5.50801959122117, 5.516553096529039, 5.312415333159235, 5.1182562268374, 5.013008830120834, 4.7381959798230575, 4.681777706410585, 4.508960745435973, 4.577976889488444, 4.127274789225802, 4.194283065946481, 4.190709058340183, 4.111101252403263, 4.026798382680014, 4.345573923730464, 4.348832437084844, 4.319288716772432, 4.655223865745746, 4.979755117839559, 5.034774410720437, 5.29468474605673, 5.732502904482249, 5.77990212489962, 6.367135169484301, 6.6207656782971025, 6.767036337467914, 7.13060793870125, 7.479989378131096, 7.676331053740798, 8.200401784003933, 8.384083524180754, 8.778041251896772, 8.870712141274064, 9.315240312568061, 9.48877983968644, 9.503272938945607, 9.733881475288548, 9.794579750019075, 9.98698090536978, 9.752512799794292, 9.823210526993806, 9.724492750823911, 9.712990593275725, 9.65456578346968, 9.405038092152644, 9.282956322845685, 9.249578064851601, 9.111356916963423, 8.84146121361651, 8.593540769842994, 8.40292851875314, 8.308487660000647, 8.117125170854926, 7.787812104615504, 7.890114554876332, 7.6524963768836365, 7.531272444271311, 7.471961873857084, 7.616522997326536, 7.570781785765511, 7.5098596720704025, 7.812594943380181 ]
Are there any granger causality between the two time series?
[ "Yes, time series 2 granger causes time series 1", "Yes, time series 1 granger causes time series 2", "No, they are not granger causality" ]
Yes, time series 2 granger causes time series 1
binary
105
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
315
[ 10.44625065120206, 13.115517968041726, 14.50213461887928, 16.63526718458792, 18.17839804409935, 19.645340163681578, 19.44786891982923, 19.384700060013618, 17.34062416735522, 16.37159404462634, 16.135728578822558, 19.831789446871078, 21.984146625866334, 21.75534948085808, 22.192104887586463, 21.177218601060027, 21.73768563685155, 21.75603766771353, 21.282062314580042, 22.580873834650465, 20.850636030914387, 20.989863488305236, 20.525023655143908, 19.937264893413456, 20.124170534677447, 20.597983571560544, 19.4173914638999, 19.25879708945074, 19.265628433032486, 20.196251477102198, 20.638424487867717, 21.239334163775656, 21.72500754832682, 23.623046536239443, 21.971200985959122, 20.389007783513634, 19.228265155694817, 19.503501211522476, 18.55579961599308, 18.565100284081947, 19.577728586782058, 20.630210489277285, 22.415731223218177, 22.113952362455198, 22.55678580435398, 21.888432855462746, 22.092139161094074, 22.275350824974094, 22.566009990660323, 21.666192253592968, 23.273062564742368, 21.743961093368394, 21.07678810388624, 21.54688220099214, 21.404152942888526, 21.874280067444094, 21.3922100291412, 23.350756349732237, 22.48370083000985, 20.32530950528332, 22.137855207472256, 19.98777681748038, 19.6518456508314, 19.351771814275853, 21.38632672850494, 23.115104696549466, 21.563802290742256, 21.376013702859172, 20.95893277286833, 20.218867089433342, 20.45569872783914, 19.663000101416657, 20.102713687558733, 17.947285841633764, 18.186456567671883, 19.63942083550988, 18.37339564200634, 15.661438608527149, 15.927058266964012, 16.69732298602621, 18.68623681808019, 19.898679454377362, 19.104287977943372, 19.258355979707854, 21.139280673754303, 19.675170542161545, 19.96968483446932, 20.164102720391863, 19.264814542031026, 20.932456018444466, 19.419066042714952, 18.961384106916622, 20.568055254304575, 20.901854309289106, 19.491096148759365, 19.087072913531077, 20.18166066960061, 20.65192350357123, 20.072159819648, 20.423397002368866, 20.246801600543193, 20.09013352853431, 20.72992705052785, 22.30169080106161, 24.3741917248872, 24.312830967425214, 23.64241832658797, 22.06998476617002, 21.36750897608123, 21.09073040837283, 21.349228138926783, 20.446838329094444, 20.785046767390845, 21.861928567986485, 22.069175063863774, 22.79160487857213, 21.790461899271133, 20.44074731250143, 19.744444828942843, 18.325995778347835, 21.040832244776308, 22.36931847302227, 22.05032219175974, 20.349000280506004, 22.419939381335027, 20.26209820944095, 18.91591869914151, 19.478650175345837 ]
[ 10.44625065120206, 10.071826334637652, 9.262105938589434, 11.723746267940268, 10.772232397854427, 11.641245912858462, 11.106627296417301, 8.803632989778118, 6.850871209184231, 6.06887314924275, 8.65687759380057, 10.884566059943856, 14.540432268449491, 13.096648538069534, 11.269325319120357, 7.034809483417046, 7.914659875691861, 11.935997330071812, 12.84683301121077, 11.186662655696523, 10.070264334941191, 11.136503883689691, 9.431427512956382, 8.577263496155698, 8.688781589267547, 11.905667530479134, 7.801484522465637, 8.943553597768771, 9.078710876442276, 11.029632742619867, 9.63491148189236, 9.420198417585073, 10.685856255107582, 13.498318512416898, 10.64637277555079, 6.539981257258737, 6.062073941901692, 8.181588109476472, 8.904603884493728, 10.661455084661366, 12.452399706684542, 10.681737045739755, 11.55984833514768, 10.799159621294828, 9.416378714825298, 9.122835821147872, 11.240090295022089, 11.27644371746484, 9.384990541983395, 7.948787174446675, 8.81082280563265, 9.349507185574517, 8.049782989451376, 12.397994330389311, 11.931321345438336, 11.114604161504376, 8.876169400338481, 8.080067598332723, 9.443782319602022, 8.771392245445607, 13.061094494321871, 10.245689649996686, 8.96541663002374, 8.990280867780797, 12.148441548312004, 11.678203911459041, 8.716583992884622, 10.291734158546381, 11.016917147364445, 10.80151297130028, 9.628623935368273, 10.922211459965403, 10.969498544959748, 6.933702252475828, 7.845838827619037, 7.991044751898447, 9.202117081074226, 6.909629210161185, 8.54304682391243, 9.695793715526001, 12.221209679198791, 12.401083104443256, 8.16618645196778, 8.879029024798728, 11.205585987273865, 11.222331749235694, 10.82855969568928, 9.501289529029803, 9.5985958234873, 8.93813210709127, 7.973547961054251, 8.619308133939521, 11.599180126668623, 11.910551629151371, 10.854026374169075, 9.379590158592448, 9.492113115274794, 11.433959008332057, 10.28545935577605, 8.413642918955397, 10.164951560546726, 10.547551304280852, 10.851482924274752, 11.611149941644706, 9.849480577164464, 9.303172706015966, 7.419352961232152, 8.98794446351753, 11.12643590760466, 9.503065441626326, 10.456247623535388, 10.65848702050946, 11.03242049516305, 11.400148235236115, 10.141915006952859, 10.733204867412152, 7.869376157616904, 8.487304925756925, 9.306531791865988, 9.136656814461356, 11.168558023020815, 12.88870560874158, 10.265769429811524, 8.584150995965699, 7.695967076482981, 8.073386196230308, 7.690562244471298, 9.485366818141939 ]
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "Yes, time series 1 granger causes time series 2", "No, they are not granger causality" ]
Yes, time series 1 granger causes time series 2
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
316
[ 3.181080497178017, 2.500225381681429, 3.0668112139664023, 3.4174990243930954, 3.293532381320485, 2.575698410020438, 2.647931331938701, 1.4244938651346715, 1.5366445452016355, 2.21812256378811, 1.2397624374379619, 0.0414281906713279, 1.276450666340771, 0.7980925691541522, 1.686333333989461, 1.5659167106324952, 1.4392780881091143, 1.7820896290657848, 1.090857348082324, 1.1944618969155334, 0.8961608342304032, -0.13638314243038988, 0.1275069096028691, -0.07838346520921029, -0.20116714248268128, -1.1474379468952727, 0.09693844315488469, 0.7824745637067445, 1.5363846688540674, 1.2975458550119832, -0.05456792186347976, 1.4724923526699691, 1.424717890634194, 0.8392028901873613, 1.165115871690344, 2.077731943892048, 2.059707838612618, 3.059474323601462, 3.906313108621166, 3.0646497764829177, 2.5377877018494006, 3.286522377747466, 1.1654275871860944, 1.0485625042688753, -0.07025875624890386, -0.4428942734356864, -0.6765530504431142, -0.956677935900445, -1.388511984195008, -2.2464102741211596, -0.4542778062064574, 1.0059616623573053, 0.09729826142819349, 1.3344154391706424, 1.0220582001918503, 1.123074792220297, 1.0735984797877498, 0.5577159594775176, 1.3270274743416899, 1.4254629338578515, 1.0528292762871432, 0.03272124096215719, -0.6660146396269797, -1.949472092778378, -1.9399140360136586, -2.8756323128150365, -3.083284163726853, -2.011949486964469, -1.0741716006624502, -1.0994101300602475, -1.167504984970242, 0.30244032416917693, 0.7096393133584794, 0.4533149920629421, -0.661742734876679, -0.3537583060140023, 0.29472145006410894, -0.19919086751876663, 0.02851162680749781, -0.2557801412540002, -0.3996820638666368, -2.3450046198923307, -2.5184239228704457, -1.760437247995073, -2.2541548873022075, -2.2130825250065342, -2.8041890941042773, -2.5223460575845826, -2.6916537694402454, -3.4260824031486083, -2.3841097993466702, -1.6577425764797638, -2.1307421499761916, -1.7415025644950914, -1.3212797082069718, -0.81903997750264, -2.1438430116023452, -1.3567391255501118, -1.8022083822258799, -2.082007633938205, -0.01934770325633327, 0.21669855849106803, -0.08538165785826524, -1.809785086535203, -0.7230757259909859, -1.7749462595981946, -2.5595732495541945, -2.8186701972025148, -1.711124020963858, -1.1064983071956533, -1.229917450918513, -0.9888521772116207, -1.4583165535350924, -1.3491160295193663, -1.2917712433966013, -0.5342532674067214, 0.2220200406282642, 0.6082797173805232, 0.32494639992214996, 0.9050054268341621, 0.8330917900834797, -0.012898146675984767, -0.3282441883228925, -0.2621493293081037, 0.44958296256995767, 0.3060753142322383, -0.6394430842968216, -0.5950746070383136 ]
[ 3.181080497178017, 3.6121579664038164, 2.792952185344176, 1.8693498084950029, -0.3998439045028015, -0.3354951069225295, -1.8080764935276963, -2.7518422607742945, -2.948515357762173, -3.649041430097575, -3.2973974352028965, -4.059778544568264, -2.447266733912043, -0.9356221383641288, -3.061365660662273, -1.7411582529143823, -2.568061889823653, -1.593370291648756, -1.5978123438349143, -1.6692299394365895, -1.7429023959519547, -0.16491507110415005, -1.432365123066434, -0.6764591062878437, 0.7129838881554458, 1.7210387835596053, 3.852613606061199, 2.421832745064243, 2.362958637136233, 1.648169673801658, 2.6794784576615536, 1.7490602526963688, 0.729210511237143, 1.8874028889851076, 0.8572026278459177, -0.990763923503921, -1.5103521872205823, -1.2591329361628962, -0.5432113893130128, -0.8636739451514341, -0.14130769799719944, -2.3168990841890453, -2.7091583325052198, -2.8126524618171276, -2.4164805256805453, -1.8223348349938933, -0.7204508434673387, -0.9959543072597091, -0.1774299259679088, 0.6289313175728877, -0.35195983216525695, -0.48132315953480065, -0.49529872816192433, -0.8375400547036324, -0.84153780070291, -0.904207161466341, -1.2946001940620175, 0.203173451241768, -1.3204717348486366, -2.2473329876702017, 0.5828525866851799, -0.8303658889659926, -1.987857778326142, -0.6085354583189083, -2.2844335250917043, -1.3427766381031816, 1.9165358016438685, 0.46199240506147543, -1.4104596154081759, -2.189891846365187, -0.43931386166780206, 0.7069960840643443, -0.2791692006946858, 0.3258343422010713, 1.9066926170454876, 3.3607052486802953, 2.3780128881605176, -0.3841262383309112, -1.178850554341585, -1.6267297501599056, -1.6648460085219328, -0.9505008854453907, 0.8473266673186246, 2.269734514431165, 2.007210165090562, 3.1407706976863805, 3.4268851162706886, 3.1837265273919333, 4.089641090543289, 4.222722001261362, 5.898610757440467, 3.6321263510027757, 2.9112454128151497, 2.660530960342796, 2.6705476286852514, 3.580158051388605, 3.2635306066194394, 1.3805486737628925, 2.597906913116158, 3.4520326194776283, 0.7967873974135391, 0.30330950163742304, -1.3049292803312822, -1.4194654254025654, -2.0989385513681853, -0.6188591260744676, 0.28006314586867054, -0.3171947044073693, 0.9980015818874727, -0.38793706212091883, 0.21324757540222594, -0.4675791517199503, -0.43117185677025466, 0.5485162370489383, 1.3946340059626046, 2.6794609621951673, 2.005219881566763, 1.8545870397097879, 1.0172191169383518, 0.6805413954721213, 0.7010247402906322, 0.44955657175234354, -1.2648763645455676, -0.5922169725566879, -0.35453083362964727, -1.0948432429228512, -2.015565971075593, 0.011485928992670313 ]
What type of noise is present in the given time series?
[ "No significant noise", "Red Noise", "Gaussian White Noise" ]
No significant noise
multiple_choice
63
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
Observe the pattern of fluctuations in the time series.
Noise Understanding
Signal to Noise Ratio Understanding
317
[ 9.291979823200297, 9.300287327118811, 9.132633440842891, 9.276345760786468, 9.278586543493999, 9.12315259485286, 9.187898985738482, 9.08305295921303, 9.278987598389946, 9.278563589103724, 9.349107048410506, 9.196177725858291, 9.25887985035483, 9.30830887301347, 9.14777850174236, 9.133761471282007, 9.15063643763823, 9.185071199660278, 9.137025377835977, 9.154605161426263, 9.298462994998859, 9.208386168540601, 9.24553590156455, 9.16650565942425, 9.160454649096076, 9.243587142417452, 9.228886195490004, 9.28897580150408, 9.337237992419796, 9.15353738769002, 9.296644370094242, 9.117738080256496, 9.408412406364626, 9.14479095290906, 9.280923956004953, 9.117052852884152, 9.20324807192241, 9.359741040614434, 9.141896722055922, 9.420432412054332, 9.216780428661345, 9.307200721314313, 9.254407170487523, 9.259393296263424, 9.08581798984045, 9.173682591515357, 9.327503034667382, 9.185529691063708, 9.230063217838266, 9.074636670054863, 9.16771679417635, 9.320780221663531, 9.099043319073544, 9.283361781767022, 9.233652979674538, 9.195518048089514, 9.191465302907389, 9.172007177695486, 9.180215957987583, 9.302963330603657, 9.177444063920511, 9.38387711525735, 9.244875404158867, 9.164151095659111, 9.306984430270834, 9.27477284748625, 9.06479684042297, 9.121916710661923, 9.206628097535173, 9.071301327805578, 9.409956410909954, 9.293054027583324, 9.21603777044729, 9.185678517490492, 9.16199409622426, 9.036236612550365, 9.057543108565428, 9.392498062502293, 9.362309569968632, 9.164195723277565, 9.300959398325912, 9.263944847944527, 9.274808980422685, 9.085904259091633, 9.050602113085638, 9.326269570506394, 9.034829491245667, 9.203607300583338, 9.183374590467178, 9.174853353181517, 9.246250465430244, 9.154811193162079, 9.253742687496796, 9.230277365542452, 9.410712452793549, 9.089569816061855, 9.219964494821896, 9.257024922746076, 9.193633387161645, 9.094024915916595, 9.333137210433787, 9.248322830311373, 9.100493445742105, 9.257699890529011, 9.37410457717679, 9.213919358081066, 9.217062746870443, 9.361793900011314, 9.12782381495773, 9.376499773571531, 9.30694250257293, 9.132078967765278, 9.155670558564202, 9.168893295989067, 9.048262190898207, 9.241275070292348, 9.136251805123797, 9.24460062069905, 9.098277012259278, 9.30234328618687, 9.28525564370465, 9.15220394325006, 9.250416516563192, 9.224909703612763, 9.353894191366777, 9.122100354480951, 9.20322898366845, 9.15821317505313 ]
null
The given time series is a sine wave followed by a square wave. What is the most likely amplitude of the square wave?
[ "4.52", "2.91", "16.1" ]
4.52
multiple-choice
25
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
After the sine wave, the square wave follows. Begin by identifying where the square wave starts. Next, measure the distance between its peak and baseline.
Pattern Recognition
Cycle Recognition
318
[ -0.03279231073955779, 0.7287146800396347, 1.2229134757289886, 1.5628112548987971, 2.061336091411446, 2.3176933758119533, 2.196156997732221, 1.8249989629494432, 1.49870698243548, 0.8293089188034267, 0.2564518663805514, -0.6743786588059104, -1.2522392107390625, -1.568067419331459, -1.84737731613852, -2.132869266370355, -2.1943886019689485, -1.9993239250169519, -1.536514099221268, -0.833674014959124, -0.3500880796812745, 0.4576609433202838, 1.0538818428118473, 1.7033603405028706, 1.9521600407129316, 2.1467637992216906, 2.2799809557306636, 1.8923504060189336, 1.5715386318165423, 0.9269783167864782, 0.34624848667278285, -0.003362843668273441, -0.7755594963272248, -1.5519981857170022, -1.733343554509116, -2.1879301638929336, -2.120292895493393, -1.9844620570003932, -1.5519220229328776, -1.2829487472932284, -0.6990750797672863, -0.2314156207097826, 0.684348416424172, 1.3629987750430563, 1.8499967851909618, 2.1975289133918317, 2.216083766514398, 2.1479896701384518, 1.8186993182913045, 1.427670162942854, 0.6817201730022857, -0.019927053186646282, -0.6274804347909622, -1.1378715924007796, -1.7955621859260975, -2.0794710369931493, -2.2384746377044307, -2.0587743436126034, -1.8298390175892176, -1.4705067517307195, -0.8760638956320814, -0.2316141207876131, 0.35346865727528565, 0.9676710364258557, 1.1755896086268656, 5.2921126839143735, 5.46689512750088, 5.520647212253615, 5.597020607126541, 5.654576117004925, 5.72669862481342, 5.531854396107593, 5.538551901925622, 5.577286470456124, 5.487913370561714, 5.4226017371890185, 5.531400417768204, 5.615562693594786, 5.516733119776958, 5.5823690032664155, 5.354143733107452, 5.542865926736551, 5.5006808053231735, 5.413513088845487, -3.4314622799068637, -3.3126189733379166, -3.3981876376972595, -3.391808629717504, -3.4259358268036677, -3.432538385300726, -3.6771267238228997, -3.5099786252725473, -3.4463165536007616, -3.4440430521452616, -3.3700129113383777, -3.600423295228666, -3.436456368724578, -3.6036876306646097, -3.5183534892492543, -3.5033798309888757, -3.410926438860453, -3.4226881914253138, -3.4851504714941846, -3.7123872823874193, 5.585508837693811, 5.514257816690727, 5.680206053556516, 5.656374818828643, 5.44722317370404, 5.599242888293665, 5.6012165250106465, 5.593943822356298, 5.580983571869166, 5.604040923041431, 5.691174045952005, 5.485887431071952, 5.450444502068894, 5.619296977945156, 5.35268925493149, 5.606427850450893, 5.588719361248811, 5.306475212033384, 5.477391798433569, 5.698622916955404, -3.6429011833369422, -3.4759243687704053, -3.5976740602647266, -3.568078160671525 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Sawtooth wave with exponential trend", "Sine wave with linear trend", "Square wave with log trend" ]
Sine wave with linear trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
319
[ 0, 0.9352375187582895, 1.6230082807362949, 1.8872861706899315, 1.674302312517303, 1.0680674895359825, 0.2661192535725212, -0.47750476263628006, -0.9256044189145733, -0.9262938618929408, -0.4568491227470217, 0.36973174950546195, 1.3373498498092151, 2.189190541494866, 2.7018627169952607, 2.7498890924034827, 2.3419299725440066, 1.6182831263474455, 0.8103815280869584, 0.17398147375469009, -0.08467114957876709, 0.1316184582139559, 0.7829350541750644, 1.7037763972195696, 2.650831731324792, 3.373222640217564, 3.6849285934933693, 3.518488810268276, 2.944477365765306, 2.1511293145345785, 1.3899995206265892, 0.9033418292306934, 0.8541733292851563, 1.2792133034733166, 2.0782828181088235, 3.043225162325449, 3.9179981576778946, 4.472590419567965, 4.569422845226703, 4.203066026637514, 3.501807654566169, 2.6906174232261897, 2.0262010169640563, 1.7228923027528704, 1.8907777507863501, 2.503915810053105, 3.407825918459866, 4.364085161406623, 5.119158066129724, 5.477589207699103, 5.358428811917046, 4.818601970141776, 4.036475058070129, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 7.265156480154763, 6.4554146922413125, 5.7417425786256295, 5.352693529656134, 5.423106206893031, 5.9551782622167195, 6.817831902470742, 7.784554453406952, 8.59878981256144, 9.048003074291548, 9.02503677093528, 8.559045929845896, 7.807081371749948, 7.008751049779352, 6.417048148923562, 6.225315031914171, 6.5114276516714416, 7.215313711281576, 8.156294805163146, 9.085246076284912, 9.756515531068926, 9.998840780872065, 9.76479040968675, 9.144456846802466, 8.339447778703946, 7.604684463121552, 7.174809063776232, 7.196446312811468, 7.685874734735839, 8.524327234472597, 9.492277712564261, 10.332815578918446, 10.825812714109752, 10.851471778964921, 10.424910248702318, 9.691796181783955, 8.88629562390943, 8.263471719926969, 8.025651087494202, 8.26401458444666, 8.932274504618643, 9.860037275389788 ]
null
The time series has three cyclic pattern composed additively. Which cycle pattern is most dominant in the given time series?
[ "SawtoothWave", "SquareWave", "SineWave" ]
SawtoothWave
multiple-choice
21
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Amplitude" ]
The cyclic patterns have different period and amplitude. The dominant pattern is the one that has the highest amplitude. Identify the pattern with the highest peak.
Pattern Recognition
Cycle Recognition
320
[ -4.480091378850447, -3.7978805150066024, -3.6734622672464035, -3.451834278921806, -3.4562981059422726, -3.1293712478007234, -2.938933050779155, -2.896477861231622, -2.7305013062438306, -2.718503496362463, -2.631613625313623, -2.3969906292358583, -2.413767861906275, -2.45106729756793, -2.32519982269934, -2.2573014227344768, -2.998552297318896, -3.0097871703963355, -3.0654078627550345, -2.98401765978626, -2.735181861253855, -2.70600684652641, -2.8349342968036044, -2.5191276333947497, -2.543693837798069, -2.3430163170566636, -2.313708335418417, -2.0405718283989094, -2.1250489899342915, -1.8739231733557677, -1.5569693224929833, -0.7759950576782936, -0.35946468703809925, -0.20971450992424207, 0.08278489744990217, 0.30371928867195086, 0.44752821468993526, 0.5695335264602863, 0.7116305314450716, 0.8250120292133101, 1.020294702839576, 1.2727403171286076, 1.15827287420604, 1.3028111332142567, 1.4248459317955926, 1.6105301086472776, 0.635880073157702, 0.77178378842345, 0.8305691908756773, 0.8361840835415405, 0.7189059966892021, 1.0406994635004838, 1.0684950829576447, 0.9919609627830107, 0.9135591487196928, 0.9714111958366838, 1.2396841029875245, 1.2430085640490718, 1.2531713289944435, 1.3916121908338979, 1.6398711712633183, 2.8205767795602346, 3.101635199386763, 3.1786479356432484, 3.2685381393245754, 3.5262635840475047, 3.701714398263418, 3.9313611043966423, 4.0360692542642065, 4.321871345633713, 4.472200165344202, 4.560868335343615, 4.6931954277141275, 4.937996148632392, 4.90308693246627, 4.93927093466326, 4.076348019715049, 4.238190793598865, -4.529109637690665, -4.568592342797336, -4.445441128454736, -4.461323491875352, -4.410502418002052, -4.415961730358173, -4.273473432075327, -4.229460588465622, -4.112817350899699, -4.059819132043893, -4.0333348988336635, -4.078288267760724, -3.7226051514211753, -2.7624298565589034, -2.622245610655833, -2.333745827148452, -2.2545723294192466, -2.1415066482103855, -2.0178311928088735, -1.84277537024726, -1.636307532685137, -1.4353620386294048, -1.1201064524136308, -0.8610281751532818, -0.9007362667567104, -0.9730273891082754, -0.6893370297453083, -0.259689783909672, -1.1921633123410948, -1.0920774716413288, -1.0349192607621867, -1.0335850726796962, -0.6557756080575166, -0.8262548472244033, -0.6015585227702227, -0.7435953390361286, -0.5805728707577599, -0.409497240870102, -0.4853715173600899, -0.44825579125775233, -0.3583224067395356, -0.4356042025414091, -0.38954803305167074, 0.8734879068702208, 0.8449392112188143, 1.0549137702456082, 1.2058995633863265, 1.3367167180323054, 1.1902562294826675, 1.4301321210433913 ]
null
Weak stationarity requires the mean, variance to be constant over time. Does the following time-series exhibit weak stationarity?
[ "Yes", "No, the mean is different overtime", "No, the variance is different overtime" ]
Yes
multiple_choice
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
For mean, check if the average value changes over time. For variance, check if the degree of variation changes over time.
Pattern Recognition
Stationarity Detection
321
[ -0.5293096958813308, -0.4834661651404665, 0.2186338009948357, -0.04792238017531202, -0.04623669759263075, -0.015777305609461945, 0.15796550201907705, -0.2293297073069197, 0.15691030495002223, 0.031559781327612925, -0.26815689498611395, 0.17052394026406778, 0.01603620568864104, -0.2930391705648874, -0.27179264180661683, 0.13433651584632036, 0.2840570168837492, 0.07913518701124775, 0.24902777750844762, 0.3451526361153869, -0.06305299582289028, 0.04607828500706361, 0.1874070684205299, -0.3212393505492814, 0.2895923001358595, 0.3817390327158046, -0.2066866271653013, 0.8035356079536122, 0.22247616986774477, -0.042733893272743094, -0.5816364129947184, -0.02569487762795725, 0.11815249909835787, 0.08613451778881576, -0.36698655386957013, -0.1851921718783912, 0.19045344871239006, 0.16594172911043165, 0.26382145975357507, 0.033248043888682674, -0.008881620348590252, 0.14322645546843885, 0.026435970325936434, -0.4284187388624324, 0.4257291012748485, 0.25809108536707814, 0.11845911871894087, -0.38308929403301667, 0.23455744650810934, -0.12283337862348458, 0.23244164168190154, 0.1529966564983998, -0.09516281374839156, 0.2945540636407766, -0.3337289879611967, 0.015739460603062368, 0.46443869679545374, 0.13626689568960018, 0.2557752241235166, 0.022212079524079307, -0.005999723414443602, -0.34176430124775603, -0.04364662904830961, 0.18865010426501755, -0.30632379605821647, -0.26963421352570316, 0.11740001525887038, 0.2314818591985916, 0.5642314828772625, -0.07677300107576719, -0.0691820642574885, 0.23284773256379615, 0.1597668312434735, -0.07231110512758875, -0.007933094627056103, -0.1759150972322462, -0.32370185541580304, -0.03783840030498765, 0.4263466149586103, -0.20120268111239029, -0.4018091481103415, -0.2810424065931837, 0.14885444334345344, 0.12006250312829585, 0.35581063281547365, 0.29724268099155443, 0.08332369178804025, 0.1821574321537696, -0.2098310665357975, 0.19299604496077524, -0.030471683148853387, 0.23820611031909983, 0.11723375778501763, -0.13254185492048348, -0.3081241701122872, -0.1400806072233544, 0.05169954838269387, -0.2284984331068515, -0.04280294220631108, 0.3045526798633789, 0.3289776214999413, 0.13389046136778562, 0.381723983037287, -0.3543082096806561, 0.36331471962618206, -0.3807586182700126, 0.0028102444385281586, -0.22760908061740412, 0.20689161931422628, -0.4384612307231115, -0.4941696216217241, -0.18324990451706505, -0.20305952402109131, -0.15986461937853275, -0.1889927736717423, 0.19244828824571586, -0.0237254664322625, 0.433752226474703, 0.06464526627293052, 0.24703810020488182, 0.16235377247718444, -0.25151385472769655, -0.14582733503648215, 0.2783659573804508, -0.4973233530117035, 0.13626781384644168, -0.04991106931013471, -0.2085717619145637 ]
null
There are two time series given. Is one of them a scaled version of the other?
[ "No, they do not share similar pattern", "Yes, time series 1 is a scaled version of time series 2", "Yes, time series 2 is a scaled version of time series 1" ]
Yes, time series 2 is a scaled version of time series 1
binary
86
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Moving Average Process" ]
Scaled version refers to the same pattern but with different amplitude. You should check if the pattern is the same for both time series. If they are the same, you should check the amplitude of the cyclic component.
Similarity Analysis
Shape
322
[ -0.09704165795625277, 0.29942071627276035, 0.3755681705063507, 0.33832852420701487, 0.7309932684699745, 0.7587437635712959, 0.9149071587358675, 1.0476132949888692, 1.0475815661099535, 1.362653187471904, 1.0626698379224655, 1.220854128703198, 1.2299663417256164, 1.1465703192295227, 1.049018812149162, 0.9327582095155643, 0.7712901940765263, 0.632067578777437, 0.6769677032199273, 0.3516392096279393, 0.43508894484646177, 0.10997556406350617, -0.40341112633152615, -0.22506773361102586, -0.4886110126586114, -0.7816371086657596, -0.6575289048452118, -0.9596507743266262, -1.0762515099187364, -1.072372265010098, -1.0571027354889875, -1.1959573074103729, -1.2126642137640993, -1.269505834568332, -1.0440142403166326, -1.0757972144784886, -1.0183963247615666, -0.9168043881120238, -0.6459143642085176, -0.6252241853854782, -0.3333658129758285, -0.31124848389924636, -0.013878521511568931, 0.114462994799266, 0.17649288049176243, 0.43475509439847965, 0.38659234365283157, 0.680221966499881, 0.7293386384176865, 1.199989158605258, 0.9349121185303778, 1.417533091938205, 1.2525108786240333, 1.1650951149396562, 1.286939548287739, 1.1048297720734503, 0.9657685766826697, 1.0279034026184417, 0.9810012465064468, 0.9099378190997955, 0.6858925824443685, 0.4233158894697978, 0.4446082694885698, 0.2453262689351015, -0.023839343918093545, -0.10832498965243491, -0.18457356181055304, -0.6222626606849071, -0.8103194650060728, -0.9143365612489852, -1.110031418813445, -1.012649609147273, -1.3060600814458698, -1.0668602718697526, -1.282810424081707, -1.075405192194811, -1.4362109217216539, -1.1624763324499983, -1.1721634103711616, -0.803657003995727, -0.6467138465507155, -0.9068579524837552, -0.4290122640194346, -0.24061808527229533, -0.13921813738029937, 0.06648155328644771, 0.23855513821587404, 0.44910217785204565, 0.42019743440288576, 0.8052240540314886, 0.8468764683494003, 0.9636050066731628, 1.1073462295107455, 1.0026734881267938, 1.0288005956026862, 1.2005759600739188, 1.3690841958250053, 1.0717151365926356, 1.1572984524083219, 0.9927529420621906, 0.8807163248328027, 0.8961897937394715, 0.7838753161388284, 0.4755450467608251, 0.5272824971845179, 0.25657955443740893, 0.011252462446648612, -0.10951039986303407, -0.11715942735819601, -0.41496737793803784, -0.7190085003104213, -0.7956516163912974, -0.9079609636435506, -0.9617438712728988, -1.0890602741611106, -0.9839114424655223, -1.2309148731196204, -1.3896527704473116, -1.1770550946225518, -1.1982924664623114, -1.235049346946544, -1.061777773705163, -0.9123919410916274, -0.6285577831535554, -0.740632089752711, -0.39416261314973045, -0.03455511078794901, -0.09594751117467842 ]
[ -0.020424048966517182, 1.7565337298387504, 3.3931497219622604, 5.083173509791226, 6.442527942484304, 7.939224827848279, 9.218943115951525, 10.238684434074187, 11.214106792454569, 11.989860512821494, 12.43209141271611, 12.871830086856162, 13.199170491080727, 13.07387849690954, 12.615691781424049, 12.163674210408256, 11.550440518587633, 10.594095268617439, 9.549714280917232, 8.284687424809318, 6.876667874299481, 5.347711576525633, 3.664225810041084, 2.2090986205850527, 0.43804086364922507, -1.3919305507708468, -2.9485370828204247, -4.427158885800698, -6.246934152420607, -7.599901856235102, -8.79945282476302, -9.841377410044034, -10.883748793167706, -11.651635221247597, -12.401642909659627, -12.856149412636196, -12.948993021151477, -13.103320934915528, -12.873484812726588, -12.439894901131435, -11.557964770949166, -10.897606203376355, -9.680475049174484, -8.568461033843274, -7.132314401297919, -5.8910507847565405, -4.284387322529023, -2.5471338154676615, -0.9629557290032654, 0.5188663854466338, 2.3061854900513086, 3.966420481714708, 5.5399504741955505, 7.1837472790824615, 8.501942808697134, 9.69546596256786, 10.929193882706063, 11.715460924566534, 12.353712369106963, 12.59427441964547, 13.006837169055833, 13.070345881080387, 12.820395077123527, 12.638832976244226, 11.871014708321892, 10.942256645482733, 9.97944534117053, 9.15289628011745, 7.578829874174941, 5.981681896234409, 4.594749502059976, 2.8593039064129817, 1.4700904178420564, -0.5037906785827697, -2.1300332093301337, -3.6376339049811004, -5.114454900548837, -6.732281953043482, -8.238541908604425, -9.346242894398813, -10.506343980568504, -11.266383150956262, -12.023895813077322, -12.690236558076352, -12.87429556568376, -13.024226602055611, -12.79541118801138, -12.522778656073195, -11.995477652968848, -11.169476770940499, -10.363754339863986, -9.332228050141694, -7.969633600518142, -6.626400226670593, -5.021323237074621, -3.4814211487848414, -1.7948509194763895, -0.27238537639403637, 1.584567794326044, 3.0652722982228378, 4.896597696206605, 6.423068946354745, 7.782021956981492, 9.069116504369811, 10.155426822853322, 11.08689197530596, 11.928659861778861, 12.711792049641586, 12.910485053120897, 12.911414619206301, 12.815346315829503, 12.565324279171971, 12.18171309819446, 11.65197665095526, 10.53616634997236, 9.71583783041464, 8.366600625033941, 7.032329804841191, 5.548085387840002, 3.9879940654577495, 2.2485108701794974, 0.3786227007997426, -1.134593699356348, -2.8343720374157924, -4.338423678172107, -5.89835570821997, -7.3992780915186644, -8.524922811874465 ]
Despite the noise, does the given two time series have similar pattern?
[ "Yes, they have similar shape", "No, they have different shape" ]
No, they have different shape
binary
80
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
323
[ 0.12527938661924798, 0.1519622963230306, 0.20505069647077412, 0.7912168072385074, 0.8353081143301146, 1.228561898856844, 1.6641971938644522, 1.6547326855192626, 1.9726377032116957, 1.6288283323665937, 2.1359860786713587, 2.309369121125786, 2.0097311962070865, 2.4509789918385456, 1.7718386356397402, 1.7400868582672093, 1.891393289796956, 1.6366409381433542, 1.3145468519633141, 1.4000653208317126, 1.139303946161596, 0.7251766485473521, 0.6405078827363501, 0.5047731887013434, -0.024306715877623605, -0.056413858841028855, -0.587769413104963, -0.796801693304963, -0.6764162838966998, -0.9977769506092735, -1.7011035335975075, -1.5798381383181843, -1.563352456184886, -1.7622666692277718, -1.765461171587278, -1.9336393297727434, -2.018636966049888, -2.0269946490476602, -1.7452969433167556, -1.7611525369798813, -1.7242876951525197, -1.6626280649515877, -1.6374492363918327, -1.410992135317154, -0.9362808297444659, -0.7356297963833203, -0.8245415129945489, -0.4284168812335617, -0.09484499698161312, 0.14918700695359602, 0.4036979255001508, 0.34695405139483637, 0.5763974925069157, 1.2726141202077588, 1.5510374965051215, 1.1428684289050761, 1.599693804149921, 1.9075080076663824, 1.4144603546264836, 1.7203000638939958, 1.9641905958287793, 1.877964992834175, 2.0208993526217336, 2.2220043730187626, 1.6742136181660596, 1.7410994547652419, 1.5196499940460106, 1.4471013634700123, 1.228661187570171, 1.542256968790435, 1.083219406349219, 0.22658003278446776, 0.11120223720280328, -0.12070991051416935, -0.46893934297919615, -0.7490196174956533, -0.7563999971802176, -1.1020914913793853, -1.3499164305822977, -0.9658343652623432, -1.679557446839016, -1.783839846368656, -1.6686263324430077, -1.997803161635736, -2.201561768636272, -2.0473005050281037, -1.5881547771425353, -2.0473785474508057, -2.0622755558129167, -1.6935318715088465, -1.706937476188112, -0.9388394450183676, -1.4602471648951516, -0.750744569169408, -0.6412351191895987, -0.7121115620909713, -0.3879303152520111, -0.33816626367579217, 0.017350590597341203, 0.30250529263341547, 0.6606156384517615, 0.5849273931821726, 1.153792954300533, 1.268253730221119, 1.5614640257169057, 1.7511441900143463, 1.7291107445152945, 1.9751276690946789, 1.9321071783119774, 2.1379603840749013, 2.0592246372138803, 2.005840103608447, 1.8901108568000706, 2.0790463762566835, 1.7800227090400236, 1.2856199126288717, 1.2807454806545477, 1.1318368553477423, 0.9602189901503095, 0.7627470435171181, 0.29346099567149736, 0.2156050683049836, -0.09052042285751019, -0.06718878976273276, -0.7348826887643601, -0.7821853964393543, -1.1457153430241396, -0.849240673725348 ]
[ 0.2513227205306962, 2.1409444280692758, 2.3101732741302476, 2.6436006695609393, 2.5608726207560357, 2.554602367676658, 2.5075865522993133, 2.659655988160978, 2.625611332026887, 2.4113047832034953, 2.22956431116201, 2.1314029589087657, 2.448688266099975, 2.1014356782986434, 2.519615355882477, 2.407809703523913, 2.858198218439683, 2.5380418656458565, 2.4635709752349317, 2.1461820672013294, 2.2169517940841943, 2.605686839600649, -2.5320353433452087, -1.962340861539495, -2.4860262701144475, -2.4356315551196444, -2.732795407442981, -2.279929698044332, -2.6545601886305508, -2.3645335947652577, -2.3070573483132697, -2.45037735933379, -2.1180218240199347, -2.591556625477445, -2.1343079685230855, -2.7236052148673755, -2.309610312771468, -2.4978987074056866, -2.611042529370049, -2.8016717608937984, -2.5215498399307577, -2.5341790271835363, -2.4348347665565035, 2.614379006409543, 2.3077227765263264, 2.8210695473815153, 2.3617090686862716, 2.589854806952875, 2.487449487800052, 2.4296740684162788, 2.4774274476004017, 2.2813585075132745, 2.391902784632909, 2.2014649604881655, 2.3595619439233415, 2.3760826257438077, 2.6384602837016637, 2.403030972477984, 2.3797996863999207, 2.513424044478203, 2.505586533011908, 2.3512078768844042, 2.548261689651155, 2.4336865716117844, -2.5879486712783963, -2.568511777335194, -2.279545873277007, -2.5625016097993067, -2.4171909438461667, -2.725896064023488, -2.2463550114689435, -2.5860148659790934, -2.389358111798618, -2.5197296367480146, -2.3916491795889034, -2.3807279670744568, -2.4983486631894163, -2.8426089208062493, -2.2512129892657473, -2.4973965436075622, -2.395814809712582, -2.3310722731657414, -2.560850840576001, -2.3659889198265027, -2.6189364299722433, 2.546924582443105, 2.4733565638429695, 2.384916982447304, 2.478814445209995, 2.258377316468165, 2.531223996682175, 2.551980426951959, 2.538544039128218, 2.769850176655592, 2.450421268326392, 2.4641914767218145, 2.2353621309230554, 2.7839099094559763, 2.169787332120494, 2.515128732487371, 2.346459796405678, 2.4818793336823233, 2.207804156722077, 2.647748705101571, 2.278380091487487, 2.7026666337672927, 2.283893920776137, -2.274373527326514, -2.6356089864251984, -2.5923379534004303, -2.469785228820219, -2.639001351844152, -2.6448911680634035, -2.6366842717471064, -2.405644894226207, -2.4695058908838474, -2.4588897655686663, -2.5343425820195704, -2.3596760311752614, -2.259404404923271, -2.35429259830715, -2.511210321397261, -2.7135730278822603, -2.8648321510842107, -2.482388981222014, -2.868054293725706, -2.50927707781451, -2.188891371386081 ]
Is the given time series likely to be stationary after differencing?
[ "Yes", "No" ]
Yes
binary
32
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Differencing is a common technique to make a time series stationary. Focus on checking if the trend is removed after differencing.
Pattern Recognition
Stationarity Detection
324
[ 0, 0.00837139543737535, 0.0167427908747507, 0.02511418631212605, 0.0334855817495014, 0.04185697718687675, 0.0502283726242521, 0.05859976806162745, 0.0669711634990028, 0.07534255893637815, 0.0837139543737535, 0.09208534981112884, 0.1004567452485042, 0.10882814068587955, 0.1171995361232549, 0.12557093156063023, 0.1339423269980056, 0.14231372243538096, 0.1506851178727563, 0.15905651331013165, 0.167427908747507, 0.17579930418488235, 0.18417069962225768, 0.19254209505963304, 0.2009134904970084, 0.20928488593438374, 0.2176562813717591, 0.22602767680913444, 0.2343990722465098, 0.24277046768388513, 0.25114186312126047, 0.25951325855863583, 0.2678846539960112, 0.27625604943338655, 0.2846274448707619, 0.2929988403081372, 0.3013702357455126, 0.30974163118288794, 0.3181130266202633, 0.3264844220576386, 0.334855817495014, 0.34322721293238934, 0.3515986083697647, 0.35997000380714006, 0.36834139924451537, 0.37671279468189073, 0.3850841901192661, 0.39345558555664145, 0.4018269809940168, 0.4101983764313921, 0.4185697718687675, 0.42694116730614284, 0.4353125627435182, 0.4436839581808935, 0.4520553536182689, 0.46042674905564424, 0.4687981444930196, 0.47716953993039496, 0.48554093536777027, 0.4939123308051456, 0.5022837262425209, 0.5106551216798964, 0.5190265171172717, 0.5273979125546471, 0.5357693079920224, 0.5441407034293977, 0.5525120988667731, 0.5608834943041484, 0.5692548897415238, 0.5776262851788991, 0.5859976806162744, 0.5943690760536499, 0.6027404714910252, 0.6111118669284006, 0.6194832623657759, 0.6278546578031512, 0.6362260532405266, 0.6445974486779019, 0.6529688441152772, 0.6613402395526526, 0.669711634990028, 0.6780830304274034, 0.6864544258647787, 0.694825821302154, 0.7031972167395294, 0.7115686121769047, 0.7199400076142801, 0.7283114030516554, 0.7366827984890307, 0.7450541939264061, 0.7534255893637815, 0.7617969848011569, 0.7701683802385322, 0.7785397756759075, 0.7869111711132829, 0.7952825665506582, 0.8036539619880336, 0.8120253574254089, 0.8203967528627842, 0.8287681483001597, 0.837139543737535, 0.8455109391749103, 0.8538823346122857, 0.862253730049661, 0.8706251254870364, 0.8789965209244117, 0.887367916361787, 0.8957393117991624, 0.9041107072365377, 0.9124821026739132, 0.9208534981112885, 0.9292248935486638, 0.9375962889860392, 0.9459676844234145, 0.9543390798607899, 0.9627104752981652, 0.9710818707355405, 0.979453266172916, 0.9878246616102913, 0.9961960570476666, 1.0045674524850419, 1.0129388479224173, 1.0213102433597927, 1.0296816387971681, 1.0380530342345433, 1.0464244296719187, 1.0547958251092941, 1.0631672205466693 ]
null
The given time series is a random walk process. What is the most likely noise level?
[ "7.53", "1.71", "3.94" ]
3.94
multiple_choice
55
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the past value.
Noise Understanding
Red Noise Recognition
325
[ -6.735005356846018, -5.75672089487241, -3.9688121974628756, -2.938336573300162, -4.17554767568274, -3.0653373060555262, -2.229564998078681, -1.6118464850348495, -1.7543698112526929, -1.1833751626323885, -1.1797319283791308, -2.3113462981209927, -2.9106558345540807, -2.2035705780557575, -3.3303796683185425, -3.9702746815738146, -3.3470024454565244, -3.2418514357083903, -2.5009930529099895, -3.992568436265833, -3.1735165814475703, -4.218289562963223, -5.1187959255586195, -5.395779227395193, -4.173405466852863, -4.543494325051878, -2.0237945888636446, -4.4235698296209245, -5.912403188836183, -4.4630597846869335, -2.85697320753846, -3.9676010515892783, -3.8102416787841196, -2.721068531877092, -3.285423469075763, -2.7783548081459424, -2.894464102332942, -4.58896951448029, -4.977699643637733, -5.040755151944249, -4.893494206951426, -6.793865220173414, -5.929803459124334, -5.921944061688371, -7.04970285287602, -4.864722896574555, -5.524647460071438, -5.57433411043834, -5.1699296201517715, -2.913896120986154, -2.2733340394855697, -1.2418777916183144, -2.472431749677104, -2.5477048365334696, -2.931613762750784, -2.1480033635138907, -1.329595621908653, 0.4780493159092861, -1.9312926767356864, -2.6718128235151504, -1.2626251905136376, -2.7047612833169383, -1.8488111151813476, -0.349756706512362, -0.4949977706872108, -2.0635623022206726, -2.216867911305972, -0.6801871938152251, 0.9570776009769218, 1.1639865252540005, 0.11237946053437961, 1.7479631533929867, 2.793286709383316, 1.8367802900279502, 2.150181315669606, 2.4850603599988768, 1.8935146122480604, 2.3104096337740536, 3.440001807726658, 3.1692621428308314, 4.456020334095464, 2.483222825720902, 4.92484673318565, 4.758671702252114, 6.036032153581222, 6.256772405016121, 5.584275554350042, 5.426165135387602, 3.2282923108885107, 4.1532942518259715, 4.390882455685439, 4.087217066228167, 4.965703570684045, 4.687013154594255, 5.312014038493947, 6.487501146382263, 6.036168989594032, 5.286024197638473, 3.188225786581246, 3.345843984112067, 3.9208769446756038, 2.4551220426179206, 3.9600060312084078, 3.0982254614691254, 1.0347835673216137, 2.604659372898009, 0.3970952886722705, 1.5855986206162318, 2.237962626494808, 2.6422943652205633, 1.8848801611377395, 2.4402910508254028, 3.554282136377723, 2.5636406086975008, 3.6166756459340808, 4.633085273057002, 5.10963729014819, 4.4123193872547075, 5.283569479446333, 5.875311044644686, 4.945661589799011, 4.482673172129389, 5.424726726790187, 5.349136445919938, 6.481179299357785, 6.119300391502814, 5.085419527895732, 7.352181960725908 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Sawtooth wave with exponential trend", "Square wave with log trend", "Sine wave with linear trend" ]
Square wave with log trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
326
[ 0, 1.8560908665479756, 1.9178187825762925, 1.9759568815294446, 2.0308998503489297, 2.082980662337893, 2.1324828084273397, 2.1796496407594126, 2.22469160993638, 2.267791941237553, 2.309111137196326, 2.348790586210558, 2.3869554820681373, 2.4237172064978356, 2.4591752890683782, 2.493419031332879, 2.5265288619608333, 2.5585774746165426, 2.589630789084604, 2.6197487675993507, 2.64898611179109, 2.6773928606060022, 2.7050149056185204, 2.731894437064212, -0.8225306125292536, -0.7970224541290758, -0.7721488101279403, -0.7478788781447909, -0.7241840456931052, -0.7010376873901003, -0.6784149851095698, -0.6562927680321604, -0.6346493700085429, -0.6134645020343157, -0.5927191379552108, -0.5723954117889145, -0.5524765252748589, -0.5329466644532395, -0.5137909242352823, -0.4949952400633848, -0.4765463258761864, -0.4584316176931722, -0.44063922221880447, -0.423157869939603, -0.40597687225094403, -0.3890860822051234, -0.37247585851973186, -0.3561370325266784, 3.2405400662290793, 3.2563618619498134, 3.2719372224379337, 3.287273706896989, 3.302378531969035, 3.317258592125543, 3.331920478563317, 3.3463704967350583, 3.3606146826312777, 3.374658817918778, 3.388508444030745, 3.4021688752943664, 3.415645211173831, 3.4289423476992735, 3.442064988145777, 3.455017653020716, 3.4678046894125125, 3.480430279749184, 3.492898450010837, 3.505213077436462, 3.517377897761936, 3.529396512023046, 3.5412723929545282, 3.5530088910135733, -0.015991703953320613, -0.004524381332558836, 0.006812931258541877, 0.01802314876350075, 0.02910908917811983, 0.04007347780254911, 0.050918951262762135, 0.06164806131628531, 0.0722632784559254, 0.08276699532422449, 0.0931615299504498, 0.10344912882106927, 0.11363196979389167, 0.12371216486532366, 0.1336917627995402, 0.1435727516277565, 0.15335706102522506, 0.16304656457307076, 0.1726430819115905, 0.1821483807912121, 0.19156417902689094, 0.20089214636135133, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711 ]
null
The following time series has an anomaly. What is the most likely type of anomaly?
[ "Speed up/down: the period of cyclic components is different from other parts of the time series", "Spike: the pattern of time series is distorted by random large spikes", "Flip: the pattern is flipped at certain point in time" ]
Spike: the pattern of time series is distorted by random large spikes
multiple_choice
64
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Spike Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
Anomaly is an observation that deviates from the general pattern in the time series. You should check if the time series has any sudden changes or unexpected patterns. If so, check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
327
[ -13.534668075341989, 0.9031762778515465, -2.221788791186645, -0.0120465107617172, 0.34123283484887196, 0.6945121804594607, 2.056664784638572, -8.091208655501692, -4.815909870491938, -0.03613953228515143, 0.2300666186473262, -7.1846252761362885, 1.0236985045466154, 1.3769778501572043, 1.7302571957677935, -0.06023255380858583, -2.801002790381978, 0.6463261374125921, 0.9996054830231812, 0.13706415646807812, 1.7061641742443594, 2.0594435198549483, 0.2689537702785689, 0.6222331158891579, 4.577026723086608, 1.328791807110336, -1.9571775738017516, 5.664295227720717, 2.3886298439421028, 9.238159530424625, 0.9514194399763126, 1.3046987855869019, -2.4755466108275157, 2.3721846173893133, 0.04847863979728606, 2.717816168029258, 3.071095513639847, 5.381032848432075, 1.6338851096740563, 1.9871644552846455, 2.340443800895234, 2.693723146505824, 5.564440036735348, 3.400281837727001, 4.522502185531374, 1.9630714337612112, 0.4939273056374278, -1.486760573215879, 3.0229094705929778, 5.986496180399273, 8.629108936654928, 6.553773667560629, 8.694026305670931, 14.563780831076844, 1.4757307885747106, 3.3520957946801326, 3.7053751402907213, 4.058654485901311, 4.4119338315119, 2.6214440819355205, 2.9747234275461096, 9.040652182835768, 3.681282118767288, 4.034561464377877, 5.208466615178839, 4.741120155599054, 7.876024866364844, 3.3039097516332645, 7.104767566061729, -0.46972139787945455, 4.363747788465032, 4.71702713407562, 8.684402489210935, 11.37711348727239, 5.625536529918251, 8.401032372715562, 4.339654766941597, 4.6929341125521855, 5.046213458162775, 1.7769320998816367, 9.877062978502718, 3.9622823998075734, 4.3155617454181625, 4.668841091028752, 5.022120436639341, 5.815513069443178, -0.8726625847740568, 5.919884237530294, 4.291468723894729, 4.644748069505317, 5.195072148345903, 4.706984534891158, 5.121937323845219, 9.532854373795564, 6.411144797558262, 10.4117165300717, 4.973934393592471, 5.327213739203061, 5.680493084813651, 6.033772430424239, 9.720140650435852, 6.740331121645418, 10.051036801848639, 13.577942310181228, 5.656400063290215, 6.009679408900805, 11.326260641856033, 6.716238100121982, 7.069517445732572, 7.422796791343161, 5.632307041766781, 12.472397019746548, 10.587299302393454, 3.8575573409447537, 8.474438323172945, 8.605976366581043, 7.751983115430315, 12.197825478606628, 13.061391561351519, 6.702346484340343, 13.26818117630399, 7.374610748296292, 7.727890093906881, 8.08116943951747, 8.43444878512806, -0.4003014107533813, 7.7718173066792104, 7.350517726772858 ]
null
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 5 to 20", "Lagging step is between 60 to 75", "Lagging step is between 30 to 45" ]
Lagging step is between 30 to 45
multiple_choice
100
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
328
[ 1.1550895591541637, 1.0423779926303758, 1.27873544403682, 0.944468385801828, 1.2207141934273489, 1.3395711444544462, 1.8427970370430777, 1.5817959557998698, 1.0591553134176965, 1.253881568210515, 1.3449343972508732, 1.4108139751934825, 1.0699195245802715, 1.3221027216401702, 1.11602748462326, 1.1817647194658283, 1.0322513802607127, 1.1475439202812976, 0.7587268113634821, 0.9212893789882691, 1.1352258195351421, 1.1729575099556098, 1.707773748090208, 1.775170137272771, 2.074072387141626, 2.1041387552909194, 2.37397077914004, 1.875134061817073, 1.8858521393751928, 1.519221242121765, 1.5649070466723347, 1.6898981709542535, 1.9526049633525802, 2.1119895401622237, 2.002399665892906, 1.7572290916216518, 0.9951254955335106, 1.0175256111292053, 1.3877112269497356, 1.4229753558834088, 1.3954027109700518, 1.4419441753618276, 1.3158089506921946, 1.3792387207402539, 1.2474900904253898, 0.9550530042118967, 0.9305557772840491, 0.8989648454358382, 1.5090222757384402, 1.2469035644141553, 1.1950316852155298, 1.1115296122447258, 0.965882963810204, 1.1328137749367386, 1.8609002440732052, 1.7565241042681985, 1.9243623553289337, 1.3022018640809976, 1.1741731506013755, 1.6801466724949183, 1.6622596563921268, 1.8256881692500646, 1.6230857704419546, 1.7068779979836726, 2.2380763613811796, 1.8606614080612376, 2.5720190129594647, 2.06907011169853, 1.9111196361244187, 1.639166977966388, 1.5505260341203944, 1.2743486834618472, 0.9735055196689926, 0.5874159646205406, 0.7969487981013753, 0.7195328641975134, 0.5570249161754451, 0.6488528131417365, 0.16259639011384774, 0.2622699334209582, 0.2317635168453279, 0.21125513903816157, 0.38015796877678026, 0.9148529494234416, 1.0199277596938965, 0.9549016964842125, 0.5701467342546026, -0.20766870235400778, -0.16606357707423894, -0.5758656979111155, -1.402300913485407, -1.5164511498584468, -1.4385394908967826, -1.1963918175749462, -0.8511303995877599, -0.5662310638553698, -0.2725923123651595, -0.7502060635298162, -0.7988746780557158, -0.6102341924894911, -0.5951469325438237, -0.6456223372204627, -0.6364836860215659, -0.5566030175810022, -0.5816191890027711, -0.8569430189014837, -1.4109303644706008, -1.477307428979895, -1.4586063086820913, -1.4434523661278287, -1.133434315327387, -0.7656091354030417, -0.7994513371297067, -0.83096480550552, -0.644506327372036, -0.5057354446158682, -0.6497148741107243, -0.43531496971335554, -0.4829356076484621, -0.5236384411027273, -0.3825689352527655, -0.4805488120622651, -0.4497485838396794, -0.3529471703385283, -0.08709083255408066, 0.1563050721914361, 0.24318384035878396, -0.6055385029169331 ]
[ 1.3792387207402539, 1.2474900904253898, 0.9550530042118967, 0.9305557772840491, 0.8989648454358382, 1.5090222757384402, 1.2469035644141553, 1.1950316852155298, 1.1115296122447258, 0.965882963810204, 1.1328137749367386, 1.8609002440732052, 1.7565241042681985, 1.9243623553289337, 1.3022018640809976, 1.1741731506013755, 1.6801466724949183, 1.6622596563921268, 1.8256881692500646, 1.6230857704419546, 1.7068779979836726, 2.2380763613811796, 1.8606614080612376, 2.5720190129594647, 2.06907011169853, 1.9111196361244187, 1.639166977966388, 1.5505260341203944, 1.2743486834618472, 0.9735055196689926, 0.5874159646205406, 0.7969487981013753, 0.7195328641975134, 0.5570249161754451, 0.6488528131417365, 0.16259639011384774, 0.2622699334209582, 0.2317635168453279, 0.21125513903816157, 0.38015796877678026, 0.9148529494234416, 1.0199277596938965, 0.9549016964842125, 0.5701467342546026, -0.20766870235400778, -0.16606357707423894, -0.5758656979111155, -1.402300913485407, -1.5164511498584468, -1.4385394908967826, -1.1963918175749462, -0.8511303995877599, -0.5662310638553698, -0.2725923123651595, -0.7502060635298162, -0.7988746780557158, -0.6102341924894911, -0.5951469325438237, -0.6456223372204627, -0.6364836860215659, -0.5566030175810022, -0.5816191890027711, -0.8569430189014837, -1.4109303644706008, -1.477307428979895, -1.4586063086820913, -1.4434523661278287, -1.133434315327387, -0.7656091354030417, -0.7994513371297067, -0.83096480550552, -0.644506327372036, -0.5057354446158682, -0.6497148741107243, -0.43531496971335554, -0.4829356076484621, -0.5236384411027273, -0.3825689352527655, -0.4805488120622651, -0.4497485838396794, -0.3529471703385283, -0.08709083255408066, 0.1563050721914361, 0.24318384035878396, -0.6055385029169331, -0.5263680976505705, -0.3969220975075667, -0.20141924110434703, -0.5124470972297926, -1.2028315441307862, -0.9405566664852028, -1.338937353162027, -0.9413234957741584, -1.1295788892021124, -1.4637536394024024, -1.350009567007616, -1.149546258845652, -0.968472253750633, -0.8052811078598243, -1.0355496786953176, -1.532306038570048, -1.6590772905799926, -2.031815504480125, -1.8910925156685248, -1.606669584342816, -1.5504854145351579, -1.5507927952218379, -1.6517872076376774, -1.3328458165181036, -1.9283603581658673, -2.3207628442491037, -1.7264635685915648, -2.134745086168426, -1.9619805099644587, -1.7222773047789308, -2.348953138971447, -2.9131799858899687, -2.501724840573632, -2.8182569334911998, -3.1259034770912533, -3.2953624327077837, -3.611093675159563, -3.439880668984998, -3.824438208991667, -4.463967830651404, -4.087765218294156, -4.456340120128802, -4.700997732513838 ]
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "Yes, time series 1 granger causes time series 2", "No, they are not granger causality" ]
Yes, time series 1 granger causes time series 2
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
329
[ 1.2816221996379964, 1.3035740830286957, 1.1937201429014497, 1.5913797668121754, 1.9650530121491985, 2.1729824509341187, 2.086507630355773, 2.6121603236142468, 2.200976059646084, 1.8293674875368662, 1.8071849313822022, 2.4039678982585753, 2.3503963048243137, 2.3018799822849574, 1.9201173417668478, 2.170563269064854, 2.4229278367992704, 2.6318447304029045, 2.4652511939069615, 2.27814230685131, 1.935773058489353, 1.9579792848358064, 1.6719288011062226, 1.360194002803187, 1.2480169273246555, 1.1185071056685962, 0.9760709945507481, 1.0995676600614404, 1.1204964907256565, 1.0442038095455437, 1.0926586239970777, 0.8301402366696335, 0.8580139843568686, 0.8978877567403432, 0.49993851154727437, 0.7635600849721512, 0.5301901966688967, 0.5541007728455445, 0.8623924075042546, 1.1074761617010285, 1.1165663281059064, 1.0205904750032122, 1.2714553409131657, 1.4500887318037665, 1.2863693564241117, 1.0759119612579282, 0.5272316754813389, 0.5680134081013617, 0.5461182123499073, 0.846938174893961, 0.9420022126807264, 1.2952550054529692, 1.1106196653129292, 1.4119582844684366, 1.2719214835366777, 1.4777991405962974, 1.0915757852746943, 1.153830607417113, 0.628361249409333, 0.5576334738702926, 0.6742223469253745, 0.5362898264313924, 0.25817417163102996, 0.4821939379503374, 0.4548009535807398, 0.32518139565303744, 0.33627383105930264, 1.0343628416106032, 1.339766219782623, 1.6475712032775878, 1.7628871881456336, 1.8069661123291145, 1.1725752867036392, 0.992807294312879, 0.8655695945682553, 0.36916997997131784, 0.06273060502883308, -0.4617190310866593, -0.4718657150664204, -0.25508784279945684, 0.037943662867473686, 0.1477627031552848, -0.1073077521767749, -0.6188446125947641, -1.083996160251119, -1.4199741476556207, -1.6553101544565287, -1.697605438732399, -1.9661172835846412, -1.8763694489219247, -1.9378665769335648, -1.9350744763405345, -1.6331797989114762, -1.945659962024101, -1.8348030250942988, -1.8385026008529284, -1.9267969963123388, -1.6924150257850878, -1.459685741836138, -1.7102802562392312, -1.7585094025222536, -1.6840553187210074, -1.756337050080098, -1.601445806233387, -1.5269969288846497, -1.0418048952300942, -1.4469642043272726, -1.4793805654015186, -1.7199172369373834, -1.5599727186339154, -1.9881379012325318, -1.8964475585284646, -2.06326025377426, -2.2576381992478187, -2.640615526061313, -2.763749825298836, -2.476615618701148, -2.483284617432331, -2.3170988814650606, -1.8763654788807433, -1.806533101239191, -1.9544818272100357, -1.8307713352921278, -1.9748801095720334, -2.108431917904995, -2.510841322919361, -2.2656038127667975, -2.3678025118066532 ]
[ 1.2816221996379964, 1.142265754677152, -0.5674847425654196, -1.380334545691974, -2.4412088596522383, -1.6823525507679684, -1.9149677923535557, -3.043955537539684, -3.6153478623494615, -2.6800833610823247, -1.4214591575989457, -0.4951527890250145, -0.38658843316261704, -1.4047304798214264, -5.278099391618417, -4.919191556619604, -4.877812771655997, -4.647522820137077, -4.422571082483903, -5.6293049839912905, -4.593095027168901, -3.583413715373372, -2.678922463397366, -1.6333685646364104, -1.0858559111765533, -1.7035991135530093, -1.8577696413852616, -1.7965097882205245, -1.7507028313205797, -0.7248635028911727, -0.2757895397166078, 1.5144354626365066, 3.21860721450116, 2.3509936410849783, -2.1535302290564937, -0.7078484550947921, -1.4291827038695266, -2.3507972563099893, -2.696755669158792, -2.9973731181750733, -2.271483970188339, -3.9179956983142277, -4.701792180365764, -3.8428292961551964, -2.6753431126847556, -1.7388889076811767, -2.3864025200561425, -3.2061037756295203, -3.4178547139608835, -2.978896968233909, -1.3129973778161246, -3.640152912454643, -3.6112295182090275, -4.7895855062037915, -5.902940802855417, -4.2128607262053865, -3.0763776678583827, -2.249478040162758, -1.137420317748068, -1.5936530807853972, -1.818958874064773, 0.5390898256587793, 0.019105675703971398, 0.6214863278347386, 0.36935823861872324, -1.932651640100353, -4.067883368803791, -4.445066497176017, -3.1603757026998984, -2.4271675014660037, -1.4904364274421518, -2.591294755791032, -0.7997646514468049, -1.763349305054093, -1.2501422589425097, -0.8586659243906954, -0.702276104929847, 0.8792723931580695, -0.000181822639180651, -1.3914329273567103, -1.0533278041341472, -1.027942198479134, 2.9382123497743637, 3.5441262060632726, 3.041110401759453, 2.0169458641397737, 0.4792952197325524, 0.06864744585943416, 0.9155056711018218, 2.8994096492298307, 4.07484503781424, 4.240701567666478, 3.7625134994693292, 3.98860844842102, 3.4090605060430237, 5.096516550034301, 4.463294043269299, 4.144268512376861, 1.7623360046992635, 1.8600742682496134, 2.999660924625997, 1.9468302892052936, 1.4007486600298593, 2.3274501179702574, 0.9513440123776626, 2.368379928869273, 2.015229965607084, 1.8155224743241432, 1.087832818446328, 1.9597254177323846, 4.819003851480687, 5.491007900691887, 4.524127339043891, 5.7958682284083745, 5.271469311875432, 6.556156886016405, 6.943966723938492, 3.3491186159616904, 2.388441017580655, 3.604283376046695, 3.7339301625929133, 2.7227303502457607, 2.344062875425179, 0.9169646686214632, 1.5029010768408924, 4.3291947829008475, 5.1547922160263955, 7.304758573439649 ]
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sine wave with linear trend", "Sawtooth wave with linear trend" ]
Sine wave with linear trend
multiple_choice
66
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
330
[ -16.509310757455253, 3.531389308192215, -0.054661250456823574, 2.8026589191980507, 2.486975087355485, 1.5637296971002552, 1.6428493100528043, -13.493849405784683, -7.620986618287693, -1.956847607569235, -1.5593887331543692, -10.746238447100424, 1.0685651486146408, 2.4151690390949234, 3.347600917334224, 3.6284302666755273, -0.8990241991094958, 2.198547450680999, 0.9200995478297529, -1.8750195364218227, -1.0096345661775883, -1.0910350782404459, -0.4669343089688578, 0.7101284122912055, 6.90625553650084, 3.4356762484071197, -0.5485396250425181, 9.241500544878669, 3.8962151666221283, 11.431088372680044, 1.5364297001282483, 0.4029963641917751, -5.7190031689508185, 0.27270148070560957, -2.542356177176271, 1.767973186089304, 3.198666433942188, 9.874956043895756, 5.1781210821294374, 5.220471739862402, 4.577848731837874, 3.4464731434790057, 5.491953267421946, 1.0841032050315504, 4.400544584483413, 0.6996670855020226, -0.8814576989470717, -2.6748164341282594, 4.256735594636568, 8.894194539384703, 12.554963353287173, 9.260775022131277, 13.726111546862466, 19.850898349948956, 0.7662924146939187, 1.7801195463003108, 1.3472295034596442, 1.6237133324355448, 2.5527392531135713, 3.8978144932708254, 5.307897603358974, 13.981532008266896, 6.931008495389177, 6.735735792408104, 6.988359099920968, 4.676692743253988, 9.943025320145995, 2.49216457137723, 6.739234549767929, -3.3687771223139835, 3.584473216339526, 4.966346060292325, 11.138079128949986, 15.26177789298822, 10.41692016103627, 13.314138669771811, 6.545856766725764, 5.289506179465338, 4.062235415279941, -1.5775323225075377, 8.480742508350243, 3.5259835799049264, 4.626412354875477, 6.034942411345867, 7.383061617955978, 8.90190362347743, -0.14066084813679325, 7.9646576516622325, 7.180991431281299, 5.903136069276159, 4.9779287490500685, 3.1146637084319524, 3.110591947473913, 9.105780944839427, 5.677001834908635, 11.933370318074537, 8.40402131830953, 9.2443068791479, 9.410638977951123, 8.876513332825812, 12.223584788387189, 6.51933845142561, 9.301529719083563, 15.695324039823726, 4.767318002003991, 5.494585960629391, 13.3094507746375, 8.165298989933126, 9.412012772969522, 10.150801198368912, 10.197548585857884, 18.15168119864952, 14.057222702302557, 3.3849026225794825, 7.957440545555323, 7.117784752881059, 5.671692493306526, 11.92243945091204, 16.734761650608547, 9.269019714462708, 18.68087599940101, 11.037865571440909, 10.965208507223554, 10.227067725477614, 9.045962719359583, -1.5650814845598742, 7.785965719242154, 6.322916186659402 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period decrease over time", "Period increase over time", "Period remain the same over time" ]
Period remain the same over time
multiple-choice
30
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
331
[ 0.08758002601002078, 0.33408743390671597, 0.8928076498751039, 1.2526236597804536, 1.3608015184163498, 1.7717402707802388, 2.053812258993145, 1.979637474102682, 2.1794180998846526, 2.2589317612571356, 2.179790488880582, 1.8759596618702352, 1.8444629351011903, 1.535615965346231, 1.0949054082073455, 0.6330209693379072, 0.18593190282748656, -0.06674597597935322, -0.3613988571876998, -0.9080889962946949, -1.3334473767540462, -1.4754226147051595, -1.796155466365832, -1.9540488425064522, -2.1798002429429286, -2.211221521422021, -2.1978825050026964, -1.9903254092838791, -1.8979270888438828, -1.563062788529424, -1.3858158431224517, -0.928839769866031, -0.5287737440284862, -0.16552877727221157, 0.30046400053267663, 0.5607290990970908, 1.056882049557469, 1.355029257084043, 1.5480546503929875, 1.6784779182078864, 1.8744083979466553, 1.9256951430618292, 2.2166060896349857, 2.092669180022076, 2.010425860888244, 1.7899615345079067, 1.6090034194168295, 1.3003267377351446, 0.8884264813200815, 0.5083454280447466, 0.10872650927081881, -0.173358175396027, -0.9089525492792945, -1.1466323313621585, -1.3262475054837939, -1.5855872613129898, -1.877717133090945, -2.095500549268804, -1.974675092631535, -2.1509461556627096, -2.0974208856937437, -1.825363847777045, -1.7002837114675347, -1.3818016681334215, -1.0462320658817725, -0.8248874044041136, -0.21893118349593993, -0.2360909497021045, 0.21762553915269434, 0.7384523422324676, 1.1267124294542155, 1.5268510714160872, 1.690863379683992, 1.9660645231105855, 2.085138307040677, 2.3705851555115394, 2.0779535063737584, 1.9026956317448978, 2.022755319181471, 1.612242255125176, 1.3881571229744114, 0.9973442447794972, 0.7630420049879901, 0.15506369174109746, -0.39452796513900734, -0.3881142168824505, -0.8778446309184776, -1.1485514250349922, -1.4387386543128147, -1.9108190797784843, -2.003464115750453, -2.078813747219788, -2.1852617543429997, -2.174403249860072, -2.058081161631905, -1.750399262219422, -1.641448496756725, -1.255611020080356, -0.9348515416499554, -0.685834297360713, -0.15840523640250745, 0.06496461068389725, 0.6587277717009039, 1.085736073717771, 1.451823330446814, 1.5404465483028411, 1.8207188283523248, 2.0755687559189786, 2.100540675423326, 1.9808151389115787, 2.068804112857821, 2.0257467218563803, 1.9091103418715534, 1.7126450811547511, 1.2433997459598918, 0.9315293653995407, 0.5842242654063254, -0.12077845470382632, -0.42447069608490023, -0.707797709603268, -0.9327600025858076, -1.3574768378598236, -1.6697223066515863, -1.9479769278974217, -2.037384867447547, -2.2215949299202835, -2.245934133128613, -2.1671483698857155 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sine wave with linear trend", "Sawtooth wave with exponential trend" ]
Sine wave with linear trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
332
[ 0, 1.5157753173867214, 2.5538894732002846, 2.79539575722198, 2.1860396542185137, 0.9542862162960688, -0.46459296565590813, -1.573149255203539, -1.9770462879018824, -1.5160877473985148, -0.31744645857383025, 1.2465918533926206, 2.6823294819420793, 3.5386997196739722, 3.557144660329161, 2.7575273045598854, 1.4315315984834776, 0.045743401529017014, -0.9133839284293448, -1.101165405885592, -0.4292143246018094, 0.9051891256481449, 2.4846489643431693, 3.8103433104035735, 4.467769993407197, 4.26447490551805, 3.2939995245285836, 1.904799499834285, 0.5844618514351039, -0.20230758748487387, -0.16809390132163227, 0.701726364235022, 2.1441262065064635, 3.7058252367616147, 4.893903031258976, 5.33958384080497, 4.9207712354240165, 3.8026175905443056, 2.3826482235936304, 1.1586740112880163, 0.5633817090203963, 0.8205633316117096, 1.870755854196692, 3.390999237633105, 4.902147697546654, 5.928077457448903, 6.153890366785847, 5.5305464128908, 4.2911584489860735, 2.8735348215110843, 1.7747069786164755, 1.3857787735085227, 1.8619727682352254, 3.0710537904767827, 4.637267261617691, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, 5.257443287271108, 6.781995451792734, 8.288358773890693, 9.30199945462578, 9.512102686647484, 8.874848376798218, 7.627971429852806, 6.211768587644986, 5.122799208123561, 4.748891432062348, 5.240276921375436, 6.459672762954155, 8.027897030465352, 9.449861132574378, 10.279074948524226, 10.266003948730724, 9.440983065833985, 8.104137181063647, 6.725657387635915, 5.789568649933171, 5.632900825048299, 6.3337023570895346, 7.685106797588233, 9.264069176620568, 10.571932906088145, 11.200120468350947, 10.965893159251985, 9.973070433763874, 8.577533385941752, 7.268974664691272, 6.508186270315961, 6.573950289204784, 7.4704068160158466, 8.925678307287185, 10.482207458194512, 11.648791662207035, 12.063796934410728, 11.61531953259899, 10.478368676902548, 9.056715511795133, 7.848730396576179, 7.281787323165398, 7.57025859076459 ]
null
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Sawtooth wave with linear trend", "Sine wave with linear trend", "Square wave with log trend" ]
Sine wave with linear trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
333
[ -11.811551549807112, 2.041236618349781, -0.8124014575608833, 1.275601435776651, 1.4525105035052477, 1.4611784080923615, 2.264158401116102, -7.974761208913206, -3.5467470838917965, 0.24738943707397126, -0.20176135597110098, -7.8383227080554105, -0.5309973408842815, -0.5046720094219798, -0.31077698283223343, 0.0317631866905389, -2.4486699829474086, 0.9908398579020431, 1.4914268306323353, 0.7723223000477097, 2.238755565486329, 2.3984957963978513, 2.3895767467404676, 2.220800516692884, 5.3361434819912565, 1.5439640651813846, -2.3054834169286087, 4.223363439426754, 0.5220409846529879, 6.557780044443503, 0.44501228953288385, 0.6556848182541379, -2.905745945366242, 1.8142805692095838, -0.21342700005077342, 2.477911285364684, 2.9008577709917094, 7.086371724467804, 3.3426232824747464, 3.316214235002711, 3.1321749223611595, 2.8232480840823353, 4.825140818684737, 2.0402591311429417, 4.448913713280165, 1.439371380134681, -0.39240727062790004, -2.542669878387933, 1.6237485267439105, 4.466864082784607, 7.104877663830769, 5.31413590251397, 9.530837366663096, 15.17120901299944, 2.7164354410472424, 4.284891153740421, 4.241115402678231, 4.042173673541032, 3.722846010812177, 3.3343703843472405, 2.9374379616708004, 8.00803589033915, 2.3582929031061193, 2.2704205759446907, 3.1276195475761766, 2.593376289622168, 7.643240940752659, 3.450783309071702, 7.230066808984576, 0.20231030282215112, 4.849218296738038, 5.117904265167873, 8.650544949839695, 10.806738615661104, 6.8391735568561725, 8.80565513183204, 4.229397819450978, 3.83520489639114, 3.500576270808741, -0.1544252237044268, 7.116676816420299, 3.30502445519957, 3.5645278985996454, 3.9585137094724803, 4.440702983689401, 5.369874095629929, -0.8241340924931819, 5.667633051214267, 6.074098321881756, 6.163854820122461, 6.272568259079731, 5.247590827126066, 4.967620260194304, 8.417810612572875, 4.73362794062086, 7.865206326539156, 4.201051477430442, 4.147225235813655, 4.26196267412919, 4.537160850661486, 8.101701480688305, 5.43095163988831, 8.74540851570374, 14.257559549196538, 6.791758820299406, 7.02849576857875, 11.804509829300038, 7.0056852513346115, 6.764421763952869, 6.417336368205707, 6.019461785419113, 11.780622062916287, 9.344155430381296, 2.4384846185929785, 6.442751999861919, 6.364856002746385, 5.511230412071554, 9.806665854898899, 12.8155381318405, 6.9643546153439555, 13.317371749614374, 7.760738490615118, 7.981079331960438, 8.03542828222975, 7.923938092045901, 0.9932646247305232, 8.048394025185363, 6.914642563922027 ]
null
The time series shows a structural break. What is the most likely cause of this break?
[ "Sudden shift in trend direction", "Change in variance in underlying distribution", "Abrupt frequency change" ]
Change in variance in underlying distribution
multiple_choice
71
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Gaussian White Noise", "Sine Wave" ]
You know the time series shows a structural break. Can you first identify the place where the break happens? Then, you should check the type of break based on the given options.
Anolmaly Detection
General Anomaly Detection
334
[ -1.0022756440904983, 0.32503283879166456, 0.18712400612559127, 0.6444632661282023, -0.9909376865120219, -0.45352254668979336, 0.576998283427965, 1.4129102657937431, 1.0941485757708267, 0.0929476910838213, -0.5520969259077302, 0.45742791395682353, -1.2362729938176418, -0.9254587366306499, 1.7101941126249374, 0.45540473260705283, -0.39366105924348466, 0.9392072065650886, 1.4578214515717451, -0.5036633880165594, -0.4841465332093327, -0.6260097407768043, 1.0918018688759286, 1.1027976232629633, 1.5698825916079067, 1.1424954313097364, -1.8488957413100187, 0.31826245705328843, -1.1988865266544186, -0.581003981939333, 0.19324065850518318, 0.9464870693847761, -1.0091031846730085, -2.633327210358992, 0.2044963897875954, 2.9945068640001016, -0.22977414379596448, 0.05314347940050448, 2.0187466161278427, 0.6686338321707876, 0.24564943421911678, 0.5008078454482437, 0.28346392375832796, -1.2910573255603102, -1.5195225875240796, 2.1373053668857493, 0.2082939470651454, 0.11338315623543517, -0.10220542580945169, 0.8847610845315379, 2.8757034526584144, 0.5935076121707977, -0.6661556089822241, -0.15110987995497221, 1.2131717153060673, -0.6601676354195771, 0.9653825821278589, -2.62881627248577, -0.2603961848101868, 0.7115258742125017, 1.4387352668064493, -0.9271270263049436, -1.7022577291018037, -0.2953478717421359, -21.751147385930505, -3.136690358051801, -0.42219412870235495, -25.444480261687882, 15.04105941221289, -3.292586903296937, 20.303318201008928, -35.467951751710615, -19.687832918104938, 9.554808403547662, -15.530168040295408, -3.4321743050515874, -0.28201939049174257, 2.721758269067194, -13.212958750828973, 2.5507588262780363, -15.21432536814611, 12.559621214596152, -2.484817074296668, 2.660382118887508, 48.69959059914664, -21.4019855379377, 26.177585825309645, -50.99513982644564, -39.91901915856965, -23.947804950304562, -22.74459775440554, 3.5881700993083294, 5.230414060417897, -5.153444286067392, -3.152729508549181, 9.766340106918692, 15.58983297699467, -25.58544425493819, -7.194698310398082, -1.6220584376482923, 8.957066252732565, -15.026031449772615, -1.9963247015101429, 0.2762817583716572, -13.725873924281158, -14.180473085428197, 1.5872128396687148, -2.7803417279842844, 9.246116457659392, -20.375431637140974, -6.9809933990555795, -4.665287968465486, 15.220740557840523, -18.2240742115482, 4.17822716435867, 4.523365388394561, 31.092756395640844, -19.495225734731147, -12.825317785619056, -18.165772533871216, -32.129222101920895, 33.34791637581186, -23.964222597068712, -15.857982835667832, 24.789373654069262, -33.71784479697336, 14.12428385756448, -27.23426293682249 ]
null
There are two time series given. Is one of them a scaled version of the other?
[ "Yes, time series 1 is a scaled version of time series 2", "No, they do not share similar pattern", "Yes, time series 2 is a scaled version of time series 1" ]
Yes, time series 1 is a scaled version of time series 2
binary
86
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Moving Average Process" ]
Scaled version refers to the same pattern but with different amplitude. You should check if the pattern is the same for both time series. If they are the same, you should check the amplitude of the cyclic component.
Similarity Analysis
Shape
335
[ 0.10227605566412248, 1.7450788304477665, 3.419383635383805, 4.945413781780008, 6.492637933923148, 7.771913592524889, 8.84163383297389, 9.998767777074999, 10.788859603132144, 11.355664118638154, 11.758852884898337, 11.616561233748483, 11.436662559053172, 11.093702878184681, 10.247343738627581, 9.420356731381123, 8.243248818575298, 6.959747819607411, 5.608995026250969, 3.9253046926161312, 2.385540377113207, 0.4051839142780953, -1.2615513497259907, -3.0452484518620815, -4.56403123904849, -5.799662922309115, -7.39561949620117, -8.714694887268601, -9.626171851177137, -10.464175641362766, -11.302603196316676, -11.31297089975827, -11.667498255244846, -11.534443934864134, -11.154314577751501, -10.541705315601234, -9.811616305671176, -8.485730151366337, -7.485027010360115, -5.959108538144339, -4.569828895658625, -2.957286004467559, -1.0090843645611174, 0.5086030806466072, 2.2235126695602045, 3.9146329152255057, 5.72179350742971, 7.135783896172251, 8.355023765585154, 9.641924878753066, 10.189778067142706, 11.055201417344083, 11.465029878170114, 11.500718327358502, 11.691702032966532, 11.312357415978672, 10.985258042854674, 10.028739781575435, 9.04175968997599, 8.062546446778047, 6.554025027724157, 5.186380997121294, 3.5124608813894698, 1.8387285009847065, 0.056674797756505926, -1.5843238307746212, -3.3279873690913266, -5.003860986049641, -6.436126494443785, -7.660245575083421, -8.930393889694036, -9.907926029024603, -10.769575825829019, -11.51566430381462, -11.751466018472042, -11.714291427543328, -11.602382718650544, -11.096463458939397, -10.416515481460122, -9.505989777420078, -8.197393390687477, -7.05427488548333, -5.511011656428204, -4.022443849829216, -2.244323046317311, -0.5792874469460939, 0.9787035888538838, 2.9308252564945088, 4.3269069218375975, 5.935546653177146, 7.368570955746345, 8.636568231066175, 9.738587665026587, 10.445748567292574, 11.227695092604884, 11.60846150086969, 11.694616438092144, 11.567036689849589, 11.146208704881218, 10.67338752691088, 9.727969854471356, 8.774769621308666, 7.508659140435495, 5.990666251947447, 4.5036554804367235, 3.0110288498022864, 1.2274623172996562, -0.49427019443207226, -2.223668510185409, -3.8827067569603506, -5.225523228951261, -6.96536667003242, -8.021528266453814, -9.340766878600975, -10.310756684606405, -10.923230366250214, -11.435602651212298, -11.692653214367155, -11.630599177371097, -11.376679000881545, -10.883780249214654, -10.015685592975851, -9.282469706453956, -8.06024272699382, -6.706355257847662, -5.24882941893001, -3.5387773434191394, -1.8244851785792993 ]
[ -0.19625304945209215, 0.3122322841810108, 0.6805292385516013, 1.0241292072240384, 1.2449657461002277, 1.6377744157881342, 1.843089793229509, 2.1304736345738124, 2.1820689981034693, 2.4683290926639065, 2.53047749409196, 2.6298178895716413, 2.6912375558763464, 2.6130910554523012, 2.6054218936547544, 2.352308750334482, 2.2688812704594277, 2.0977218612291515, 1.7545097337365334, 1.4353666006909773, 1.1628970646707375, 0.8158665122953938, 0.534218900002535, 0.15466921302652356, -0.2043107646215141, -0.6354615031561629, -0.9490057056201934, -1.2761536335809538, -1.7304847381203154, -1.7747453419818078, -2.2860315078560722, -2.2465802227559735, -2.4473914746700007, -2.613548492201423, -2.6097343547454304, -2.622269244333488, -2.761438662387082, -2.4074505162416235, -2.413618583728779, -2.01683916284732, -1.9556823154476919, -1.778842520507125, -1.569274641860058, -1.2003956029838594, -0.8416110008035678, -0.36166205444733757, -0.027852447418970874, 0.2550707980785981, 0.7434409156588039, 0.7111389921803006, 1.2885722167620561, 1.6746672263154698, 1.8823134746219095, 1.9393210905088776, 2.4186600452869946, 2.5212569271069136, 2.6000959842997355, 2.6483619706316204, 2.864337508232297, 2.6861044857081913, 2.545817036532239, 2.3702089898739693, 2.363590087676242, 2.1810947602115967, 1.8446583121446012, 1.5061195310906623, 1.3892186765170225, 0.8388046373300597, 0.7788543794087062, 0.15217405416797808, -0.2626126350275038, -0.6077639148517299, -0.9526292716887441, -1.198848585826166, -1.5340378769099379, -1.6695795226974557, -1.9362392856313662, -2.2621637878439738, -2.103862679582754, -2.568097743949971, -2.638443478404568, -2.791422781572798, -2.6585919962855344, -2.559163157161844, -2.598326473955103, -2.3754047199469994, -2.0959199164668525, -1.9452467299620273, -1.6956931019563197, -1.2438982498719273, -1.1259692070250982, -0.76394231283808, -0.2828183890771276, 0.14415204680845642, 0.4490917447494777, 0.7474966534600421, 1.076607459342694, 1.5251961586810368, 1.8010028366921098, 1.9796604585091624, 2.1703597231673504, 2.3848801359345546, 2.448297533696578, 2.5995419476415496, 2.6113145926467167, 2.6472227942715203, 2.560362305940078, 2.5588774128723246, 2.44321804984314, 2.1350997015043465, 1.8638206507110666, 1.7525241025091516, 1.4054305276385628, 1.0304993564013425, 0.8654224947650486, 0.3187418505913817, -0.18353551140478763, -0.4148132689116732, -0.5356611231805608, -1.0699902070793559, -1.4114903463586184, -1.6541324057571944, -1.8222216103916797, -2.1629657463520346, -2.2874689247791675, -2.5145270188873075, -2.5390188668870635, -2.6367055656603275 ]
Both time series have a cyclic components. Which time series has a higher amplitude of the cyclic component?
[ "Time series 1 has higher amplitude", "Time series 2 has higher amplitude" ]
Time series 2 has higher amplitude
binary
83
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Amplitude refers to the height of the peak and the depth of the trough in the cyclic component. You should check the height of the peak and the depth of the trough for both time series.
Similarity Analysis
Shape
336
[ -0.1079909840860808, 1.1851180047645735, 1.4096448389486713, 1.304235605197331, 1.3724321468936924, 1.2838998657811425, 1.4923807825555964, 1.7037126406538594, 1.631224253600645, 1.6920527832909493, 1.9019871967823376, 1.82764326241678, 2.0557889714523765, -0.36544920487273874, -0.10161591333403323, 0.06281554446723742, 0.06655224795901112, -0.15337686243417975, 0.03710410310208738, 0.14432320929522546, 0.3370978459475399, 0.1705244191715162, 0.269376498269223, 0.27833895680631654, 0.42385800933136236, 2.680014091238197, 3.0325492774708973, 2.875604898902288, 3.0770190896959133, 3.0773074457206273, 3.143490557607027, 3.1515339820764523, 3.3552645472592952, 3.361280656326287, 3.423104558871785, 3.421672041075916, 3.5056204439942342, 1.4439202948034506, 1.475618678716286, 1.5325442835284175, 1.512376737426637, 1.8497756914617696, 1.6749781816692655, 1.7875075239683336, 1.8394133617692319, 2.121171778898661, 1.9642031324176012, 2.0226343341066224, 2.1402835775316826, 4.357835096369083, 4.50593309152128, 4.799517412363733, 4.659910544417894, 4.7238495155512705, 4.693318368603519, 5.003613507845565, 5.094179997005894, 5.053128699024627, 5.100827918263991, 5.079551995329698, 5.209746223073871, 2.9235278509395295, 2.9620161483637335, 2.9934754887848616, 3.2508628123007437, 3.1395419022570232, 3.294999743693672, 3.40642428100055, 3.5796601929887792, 3.489893070890312, 3.726626253342171, 3.776798847898478, 3.6433360583327907, 6.1614861630837, 6.088429435996847, 6.134476370354236, 6.224020089701325, 6.319188779082617, 6.345618826230548, 6.370738054754016, 6.447165595936501, 6.6037693707921985, 6.64141266915592, 6.777773928193408, 6.797863183089607, 4.636759439404028, 4.755923197804909, 4.906117716028576, 4.977712078182325, 5.033434419880385, 5.054022629358924, 5.243102709109835, 5.145927958040804, 5.202284097464484, 5.461705577998409, 5.032300499953983, 5.351091670615329, 7.796467614990045, 7.836828271863041, 8.062951068590262, 7.884718417455671, 7.898472019899537, 7.9759292399867645, 8.108528465456137, 8.306470343280973, 8.375303619090218, 8.273871985534129, 8.372358235901103, 8.353481163828867, 6.200350913424971, 6.42328212404507, 6.546461476090347, 6.384095903686027, 6.545703841461971, 6.564684335156744, 6.742963241235693, 6.685308407560674, 6.599098450366194, 6.959696949939176, 6.896563450358132, 6.974551376270827, 7.105638474044643, 9.396099769286007, 9.474012505361811, 9.33301095747778, 9.619199109721878, 9.440246507998943, 9.775692591927985 ]
[ 0.11183812821105804, 7.094318692877504, 7.308776472135119, 7.4264135519653465, 7.320557742893688, 7.477584207428642, 7.176442449512151, 7.609565114535998, 7.547507392507913, 7.563487496901931, 7.73243704578292, 7.851724333991808, 7.772129416481748, 7.929191686578177, 7.657754438947528, 7.9244401139105705, 7.889407310768676, -6.504268230936766, -6.57355199802448, -6.274742683710992, -6.203629917342666, -6.112194181658056, -6.08398494706694, -6.2340424936093415, -5.983038507445353, -5.927711842658443, -6.04858251964796, -5.974978834824579, -6.0264746159737665, -5.74020810027654, -5.994712978011829, -5.74527473025162, -5.81369225037263, 8.552784334856403, 8.520859254682854, 8.731553935868833, 8.67139850313308, 8.84826142584719, 9.06431567878681, 8.952095145017575, 9.17663492852909, 8.923442018879747, 8.938337730154567, 9.008492717258612, 9.149446688132848, 9.473014076707747, 9.07927020250711, 9.352210451605435, 9.265010072112078, -5.015427715908202, -5.074086936002802, -4.815608646545274, -4.863152526317802, -4.705252192025935, -4.751710561765157, -4.917635012959162, -4.570055869717016, -4.836247746618565, -4.7771754857523, -4.637143019546884, -4.591045839802017, -4.316295683141696, -4.428250992427942, -4.2416343586285015, -4.378402169757624, 10.127733163375149, 10.188135223552244, 10.255100000035666, 10.183763306813317, 10.237232901303349, 10.289967798182191, 10.199302083006035, 10.400915601635825, 10.415699828381964, 10.556838009224286, 10.552723302849435, 10.721993832015727, 10.6401269651182, 10.62166001390226, 10.728412771667802, 10.839822239465878, -3.737969241919981, -3.587410887095897, -3.5405412428757344, -3.3852620830725106, -3.3288699834641275, -3.3267133987228945, -3.539937517492238, -3.412503057971686, -3.2264419558712807, -3.207933250134478, -3.1124868039880913, -3.1152011921883007, -2.870334663402911, -3.2081306025755287, -2.903711215010957, -2.806410471620653, 11.598521281971955, 11.65185720086317, 11.711003958829085, 11.602256845256205, 11.597268924146173, 11.54871159850134, 11.760681948329776, 11.763951385229198, 12.002628044917335, 11.902473818463447, 11.872951521682742, 11.901901015936327, 12.264399032637755, 12.108070861687155, 12.076891512785858, 12.212208605817391, -1.9385606758625396, -2.122455189782064, -1.97002358868035, -1.875316089965199, -2.138342116956284, -1.9682785037113086, -1.7535661331015302, -1.8848426739007287, -1.7286873241368115, -1.8012355580490824, -1.725180122560855, -1.6925988468434345, -1.5274329849862023, -1.526179523008888, -1.491689124000807 ]
The given time series has a trend and a cyclic component. It also has an anomaly. What is the most likely combination of components without the anomaly?
[ "Log trend and sawtooth wave", "Exponential trend and square wave", "Linear trend and sine wave" ]
Log trend and sawtooth wave
multiple_choice
70
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Exponential Trend", "Square Wave", "Log Trend", "Sawtooth Wave", "Cutoff Anomaly", "Flip Anomaly" ]
The anomaly only influences a small part of the time series. You should focus on the overall pattern of the time series without the anomaly. Can you recover the original pattern?
Anolmaly Detection
General Anomaly Detection
337
[ -2.5425406933718913, -2.003234755520052, -1.4679989572826768, -0.9363593385725397, -0.40792019161851917, 0.11765227041485044, 0.6406421947705238, 1.1612934689116443, 1.6798169844230046, 2.196396333132369, 2.7111923247564356, -1.8607347796819798, -1.3490967923985004, -0.8388635297440858, -0.32993529978253755, 0.17777733953750374, 0.6843549390765575, 1.1898702992704973, 1.6943894336139036, 2.197972386927552, 2.7006739339075594, 3.202544178378787, -1.3814523170210875, -0.8811105368956182, -0.38147294512155105, 0.11749640098303882, 0.615830760601443, 1.1135609700795421, 1.6107156726868068, 2.107321521771173, 2.6034033609214076, 3.0989843841906475, 3.594086278971873, -0.9963520330121616, -0.5021487342560949, -0.008367329095632314, 0.48500899585958335, 0.9779960685285141, 1.4706088068995318, 1.9628612874689344, 2.4547668073637134, 2.946337940835326, 3.437586590725642, -1.1565573513111207, -0.6659204149036972, -0.17557383212381916, 0.31449204552623367, 0.8042863934620788, 1.2938179444485498, 1.7830950166227941, 2.272125539334294, 2.7609170770027527, 3.249476851173559, 3.737811760931799, -0.8591529849245272, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, 4.020142686103696, -0.5815060514931762, -0.09817204036109506, 0.3850652632758931, 0.8682077338108187, 1.3512571916648675, 1.8342154053398028, 2.3170840933737495, 2.7998649262057427, 3.2825595279541018, 3.7651694781133695, 4.247696313174243, -0.35493985857311605, 0.1274251914141724, 0.609711492881859, 1.0919204251046604, 1.5740533314348077, 2.0561115205387632, 2.5380962675811616, 3.020008815358675, 3.5018503753863017, 3.983622128938466, 4.465325228047165, -0.13812059028451085, 0.3434485438111916, 0.8249523134854628, 1.3063917629943187, 1.7877679117675491, 2.2690817551894926, 2.7503342653493594, 3.231526391762515, 3.712659062064063, 4.193733182675986, 4.674749639449061, 0.0706279115368873, 0.551531618965809, 1.032380202745014, 1.5131744723934257, 1.9939152197275765, 2.474603219374022, 2.9552392292633525, 3.4358239911065813, 3.9163582308546627 ]
null
What is the most dominant pattern in this complex time series?
[ "Seasonality", "Noise", "Trend" ]
Seasonality
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
338
[ 0.19549465385329418, 1.2613874641141058, 2.8521906573916773, 4.2025314066256705, 5.4281553985586966, 6.279765188160607, 7.197735859881213, 8.018445065644617, 8.470567525020158, 8.824015316191042, 8.7577016588323, 8.593905106050592, 8.363962228468992, 7.771047606019321, 6.696568052952382, 5.731280564866692, 4.6386539474735695, 3.0714399007971536, 1.8511826559922702, 0.3312649268198452, -0.9575716393779369, -2.4946035952531034, -3.6618440875310574, -5.094477565978108, -6.107634567220918, -7.05292332035581, -7.60496825280213, -8.169924484670481, -8.482184118529313, -8.70847971686893, -8.350119890588484, -8.160618646730825, -7.473176888666473, -6.5100511297177075, -5.81436636045669, -4.592625216738883, -3.576084157348363, -1.9770904799330298, -0.32185612143189773, 0.6483751021279903, 2.5134815822782106, 3.890274420883484, 5.328691116199964, 6.447057238913958, 7.2159956467260296, 7.894122265572061, 8.28353018613811, 8.927596591246303, 9.1136765643519, 8.710792774498675, 8.600670655654168, 8.229745533613285, 7.238755267078762, 6.326648606800195, 5.060043109871289, 3.9172465578282756, 2.7264387306822875, 1.1382553443888825, -0.29915619061965903, -1.6398456494190488, -3.014055735983477, -4.486759332411641, -5.452056219037445, -6.5283201290440145, -7.094667023097716, -7.897714379911463, -8.359702463445498, -8.264469943479176, -8.701542726578767, -8.095094331855236, -7.646199401487167, -6.886384108237553, -5.767906791444757, -4.760095986250929, -3.5888443923987574, -2.5488935493779916, -0.9056451642148085, 0.5834825431965798, 2.0171839784209076, 3.3149154189399077, 4.685587550368749, 5.9932816514110305, 6.780552996255324, 7.822599023183122, 8.366528239664795, 8.675677882400764, 9.096350573387769, 9.100999867014048, 8.900266484212008, 8.21218002918444, 7.596389192352268, 6.7657259877658085, 5.227692188171812, 4.463163163374063, 3.142533017141123, 2.0106358343990784, 0.6063507447151406, -0.9698013368930538, -2.4307462363810295, -3.586043060432426, -4.914107076921931, -5.794869344914752, -6.7725535307960465, -7.339585480509229, -7.839816350440407, -8.136927586385461, -8.183848532455375, -8.048818443456529, -7.671884736169423, -6.820755188750405, -6.126676817260147, -5.343612526890787, -4.169854220524315, -2.7550953534987435, -1.204646785018158, -0.05333418982281683, 1.341517637569528, 2.867680707642592, 4.26902924258442, 5.564438791119617, 6.453024789071235, 7.500328439308961, 8.21524268627065, 8.78221882270946, 9.211242858162654, 9.126000564175754, 9.573421756422315, 8.70381332671254 ]
null
What is the most likely variance of the given time series?
[ "1", "varies across time", "0.16" ]
1
multiple_choice
42
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
339
[ 1.8923966412611404, 1.059070733203394, 0.0817437164823509, 0.9480472132923259, 1.0067889819114222, 1.8139087890996506, 0.7435821448536541, 1.4571694689116501, 0.7453913590713901, 1.1940153966836031, 2.205359916301912, 2.0813774361189776, 2.1835197408868487, 1.4207169536640798, 1.135785167495576, 1.4026597745647917, 1.512801172598437, 1.4943187231079544, 0.9641613657369317, 0.9645817690968939, 1.0630583518320567, 1.9174942468398612, 1.993332923204851, 3.0173428537509106, 1.6605992082785144, 1.0760563456069971, 1.2536699611619742, 1.4375629450419762, 2.2929978215066957, 1.9302684503260361, 0.9146920085035986, 1.584349307679749, 0.9020909967842544, 1.9595157390314701, 1.3357157575086611, 1.4097470324681103, 0.8026506000726359, 2.147491754417651, 2.400902738759364, 1.4780121511014168, 1.771823413336556, 1.641965482243935, 1.8017243482197143, 1.53071618409248, 1.4205691070204092, 2.6856239589393773, 0.7125514414128431, 2.3160445494414326, 2.237722392247619, 2.955582879988089, 2.0435036110173517, 2.0096320959933336, 1.8251618638961309, 2.4418130698796134, 1.9450924584440976, 1.7705390944718662, 2.002668471994991, 1.9346461360813838, 1.9424890956833152, 2.5261179224629755, 2.4247815978600444, 2.8360321778726565, 2.6746455497914305, 2.0400828390496795, 1.6212093078522254, 2.1960841247570655, 3.148372830835222, 3.1800284139237975, 3.3454639677909848, 3.316425153172038, 3.486046677074892, 3.191350301310807, 3.936091144798905, 3.2285958624869964, 4.129284984252318, 2.865085257927926, 2.9016918280083077, 3.18161952592202, 3.309999520651033, 3.2198369756774254, 3.7028162506372477, 3.435161401361473, 3.2369022223975383, 3.3974855292352144, 4.260175710597653, 3.8666795148216613, 2.927572087730654, 4.579531851256672, 4.100392130157834, 4.263544604693539, 4.469793854795052, 4.557855233138752, 3.6711303256536447, 3.659759599150921, 5.458244643868163, 3.977194908197683, 4.582778663689041, 5.277446948785606, 4.309284641305288, 4.421376651718574, 5.136163999346119, 4.851973803855992, 5.066826093703666, 4.853935191088576, 4.707007434779583, 4.88094346830018, 5.722825346145253, 5.0576698499474135, 5.500720358303082, 4.884094246908237, 6.472046119195175, 5.696052054228214, 5.792444920368066, 6.173139078993052, 5.558270010910046, 6.485688585901907, 5.22215850094361, 5.766018877544747, 5.76697703229018, 5.3231199318410045, 6.0963931501585105, 6.43358875022805, 6.014969723141345, 6.044691197124319, 6.785897832931882, 6.830480158109456, 6.844352606596207, 6.452566414803525 ]
null
What is the most likely autocorrelation at lag 1 for the given time series?
[ "Negative autocorrelation", "High positive autocorrelation", "No autocorrelation" ]
Negative autocorrelation
multiple_choice
45
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Autocorrelation" ]
While it is hard to directly measure the autocorrelation for higher order lags, the autocorrelation at lag 1 can be approximated by observing the time series pattern. You can tell this by checking the sign and magnitude changes at each step compared to the previous step.
Pattern Recognition
AR/MA recognition
340
[ -12.64753202503362, 11.98827382906349, -18.682572731091692, -1.3367635339411912, 9.437383008099363, 2.0204522330721106, -21.43876118557079, 9.978928317718545, -7.422308678306561, 7.451724360654532, 14.48862962229057, -17.860284873278587, 12.57516314589131, -3.561556775576764, -0.6527854986173289, -4.5275329059847795, -2.2485727731439726, 4.128660768074265, -5.059833043349515, 10.872666142165256, -5.123551511009191, -25.055056836011804, 2.528779725196756, -7.030650930518311, 15.424546637476443, -18.856421711115974, 18.831048884464973, -9.079881750285839, 12.666567983013195, -15.607497185681714, 1.0051226556049428, -13.926341985499658, 40.85042562567648, -28.126077528566604, 40.90669112630552, -41.05645551913267, 45.32834884886365, -41.03078594654411, 32.53514432938165, -28.891753324645254, 14.319042152152335, -20.097590549169194, 15.686999413222479, -18.42039756090263, 16.003520372144354, -21.181109419230047, 24.019496412268992, -23.815231310135875, 35.42152365689608, -28.843468122328538, 22.05296065556383, -1.6070177783678297, -3.6671836239595113, -1.1353112591840109, -6.101488973634604, 6.925528278335616, -12.892225843742615, 18.080430849040788, -14.930130142746632, 20.333008873471925, -9.004557496903036, 2.078819481960453, -9.03278908517415, 3.9426290073781667, -3.0654214795323615, 5.7925572880287834, -0.18273249387738044, -0.1730828661711055, -6.6733277844023124, -0.5275777964544064, 5.605599358797833, -10.986313933967036, 14.391395999911417, -5.58351157946778, 19.805975156760002, -20.65331767836721, 13.271113862498089, -33.74386570853142, 17.564363816397787, -23.612781282284608, 23.94694197017011, -1.0837645496755357, 6.674591479497347, 4.568246117997322, -10.767898934098685, -3.3654271508415885, 0.27212730954390585, -6.455244265059935, -3.446709627101283, 4.9399744940025965, -15.811182786015154, 20.91375307713874, -20.725413818419746, 16.127946420181974, -11.904494055260285, 4.856450293727068, 8.770328001086634, -23.074070533947573, 31.292606388246146, -28.504625221500593, 32.011174646976684, -23.596530304978295, 27.382191780772217, -23.089872648445155, 20.85625836400949, -5.705959119540193, 5.523256135801361, 8.882177175166053, -3.5837743732546965, -4.460180194623423, 0.020033047660815928, 8.86504928493324, -19.489844840876803, 23.52067606737063, -22.474225035560494, 5.082186972020615, -1.9931872595965965, -5.407353357487393, -1.3903640147094567, -5.145070782374486, 5.264988599576938, -8.111655634904366, 10.39881162067119, 1.8051552258626025, 3.9727558509835825, 14.87487588387544, 8.613584795439339, -9.793430441129853 ]
null
The given time series is a white noise process. What is the most likely noise level?
[ "1.71", "9.72", "3.69" ]
1.71
multiple_choice
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the mean.
Noise Understanding
White Noise Recognition
341
[ -0.451552883818474, 1.3902950479890053, 1.204324052769853, -0.5082892411074745, 1.332537761831176, 1.5474006125486683, -2.000670486393858, 1.708309681576208, -0.29479854180254017, -0.48919009334014263, -0.26263740675835723, 2.0478732246920175, 2.1304927425303815, 0.8201373760735003, 0.712485865516223, -0.20271413882174558, 4.6006029189578745, -1.0363399899887185, -0.7415753059471597, 0.5068814775767702, -1.5625332640194334, 1.811320670474772, -2.416493657311431, -1.085189386261154, -0.5832714546318587, -1.66990951714975, 1.7997065989745056, -2.0429993933929165, -1.693162001738402, -1.08671284507276, 1.5577785587363653, 2.5861489474878208, 0.816330732700678, -1.963088356677443, -0.8926120884975598, 2.792085732355702, -0.05132849235355307, -2.3723525343877725, 3.5176245114074187, -0.9967689471352706, -0.11155389658763057, -1.2148861564413436, -1.4743777942032665, 2.2247147018463242, 0.23915620639883362, 0.614053680513696, -2.146371328118153, -0.6866695776489881, -0.9290105535025421, -1.4005995541940957, 0.8969843664413634, -0.5362280644726541, 1.149760871386474, 1.2738892280305438, -0.7533467353315987, 0.804720836178899, -0.7295931024832409, -1.331546577335649, -1.7650771075346479, 0.10968582888058487, -1.3249249697683796, 2.4322087827737446, 2.923206133684356, 0.7597134804749617, 0.44758462299736235, -0.10916807977644459, 4.236271746303063, 3.4676458056529507, -0.40793700574876945, -0.3751266751088672, 0.679528259187476, -1.9978885891634366, -3.012057521762242, -2.3846809851206, -0.4577974021795619, -1.6294393601249306, 2.5156803398959893, -2.550149571208618, -2.3028971303429002, -3.1239430150517373, -1.1611021721743977, -0.4537510316971669, -0.24141622034374274, -0.009472221811167872, -1.0321275152397584, -1.7221553524217528, 0.46561078985805376, -1.705940618090072, 1.2798710793377108, -2.440846535233581, -1.3047290015257633, 3.45892675180611, 3.7239715497004218, -2.409637464521931, 2.1100818854263115, 2.776128087643496, 1.8667027231508793, 0.037443224905057554, -3.3205407684580566, 0.15574940653862093, 0.6045528639678455, 0.282093847767355, 0.8141947468170251, -1.377276107429472, -0.7577230339181646, -4.033076040608949, 1.5464844141663452, -1.3652790613112014, -0.4568053586100337, 0.41360035005345447, -0.9294822680488024, -1.9509113615339748, 0.5059453867288494, -3.0401186258623887, 1.3192765549529202, 1.1827241803464257, -0.9016740237595368, -0.8030008698662654, -1.7266768096525724, -0.49607558319448153, -0.48935946969096905, -0.6127007561355807, 2.4199665608028096, -3.0605370795116893, -1.7261237791027524, 1.414129052372634, 3.5752974468239707, -1.5394066530080734 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period decrease over time", "Period increase over time", "Period remain the same over time" ]
Period decrease over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
342
[ 0.023850487380859514, 0.1459211297037104, 0.16006407866856232, 0.3150001240888818, 0.496126916544155, 0.5273321707489633, 0.7408632626294787, 0.7626354119761285, 1.030473909109912, 1.1887599527903605, 1.099870912061299, 1.313417240536721, 1.2861483064989854, 1.293529012297453, 1.4178216638224643, 1.5352527487034369, 1.4070692523298116, 1.6998869915437527, 1.6897224889050282, 1.8170091715194556, 1.8054684120067583, 1.7760836433753968, 1.7395816732888887, 1.930117417367456, 1.9890616842677535, 1.7240070118594886, 1.8396702536484937, 1.63406282085034, 1.6071894618998541, 1.5806609510957337, 1.6334093452859364, 1.3956910883449698, 1.658178840479299, 1.7822486312480152, 1.938610277968113, 2.024520236602134, 2.3144839011769758, 2.1123940392245544, 2.614583491281187, 2.745485649787842, 2.691349315440334, 3.0615698997140135, 3.2105086423001223, 3.085119664631684, 3.258664197454515, 3.6776644796157743, 3.532860832012143, 3.715160553397596, 3.7817537916721107, 3.7449607493606667, 3.828550051371032, 3.5214142538400273, 3.700104992660982, 3.390196603040846, 3.4835616005791676, 3.5485772426376303, 3.467121607446268, 3.4542369563292064, 3.350999309967052, 3.2566107948022096, 3.138843179459368, 3.0216065977454725, 2.749078821399463, 2.6198913422385046, 2.68868276824541, 3.048910971740872, 3.294728819216406, 3.849485833922069, 4.132336084260479, 4.266490830955549, 4.592766612032628, 5.039282401146623, 5.038436377270273, 5.201833990020321, 5.194443598490503, 5.2685186361361405, 5.446032748357504, 5.251970943332969, 5.130989508654086, 4.989930678591444, 5.051255081837232, 4.568361517574482, 4.213554544224035, 3.932802348748773, 3.753434663669411, 3.1909007824244666, 3.025040190758295, 2.5483816854265346, 2.077025286465784, 1.8151740671712324, 1.5809826518470487, 1.403911686102751, 1.0689597465830165, 0.6939912943351978, 0.6036336146929733, 0.2952246285761754, 0.18425145302549187, 0.9077863460223506, 1.2852112164051004, 1.9592448116351486, 2.284650961694111, 2.2945197328972164, 2.4161629453398685, 2.2734446621485795, 2.0554347388972256, 1.4249436517842335, 1.0959557421519768, 0.33611478345320656, -0.033338105314465474, -0.5493049532808859, -1.1904229893402198, -1.3564664063912484, -1.8501548468259046, -1.639970058083512, -1.5016227855197792, -1.352904397765201, -1.0155733229016701, -0.4702395282279688, -0.002659357156712394, 0.9005979595736942, 1.1360354511789377, 1.8158839666949567, 1.9943579689054838, 2.4775250928956245, 2.614097062497671, 2.384758557242396, 2.15157736297193, 1.6648044478369823 ]
null
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Sawtooth wave with linear trend", "Square wave with log trend", "Sine wave with linear trend" ]
Square wave with log trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
343
[ 0, 7.7700000666492395, -1.2860006306864349, 1.2392634521358163, 1.2893610015595252, 1.3370680678241382, 1.3826024299829491, 1.426153398820285, -0.026856997208416278, 1.507947637309989, -0.3616459059139707, -0.27149247842920654, 1.6193169840408257, 3.9204974003361572, 0.6908581995528957, 1.529690378013424, 1.7508033084649752, -0.36262846859319764, 0.42919366052007224, -0.30458267947385087, -0.2767762561818953, -4.625008391779799, -0.22338074484569426, -0.19771543065549824, -3.154060785319827, -0.14828021802827196, -0.43409671058270294, -0.10117415555350362, -0.1808293224843303, 0.433092656680503, -0.03443117395883433, -0.013138022297033647, 0.07108684928574349, -2.6717820919762776, 2.191918213146547, 2.2115400625573054, 2.230784292699755, 2.2496651640075305, 4.269894629977744, 3.651999887001825, 0.67969469635099, 2.321813696096074, 2.339065845162019, 2.3560253983541184, 5.189569709795345, 2.38910527498578, 2.405243707629147, 4.3908096285802, 2.4367596339616, -0.8034873562102796, 2.46731257867146, 0.3384768835698426, -3.5047470902917937, 0.6360356016428825, 0.38198392566357753, 0.7398464020456925, -0.9464232047016505, -1.4857818288920832, 2.277952090145736, 1.514427720160665, -0.1801934547302011, 2.879360103104841, 2.415631342034699, 4.53618833574326, 0.5146896931807987, 0.5270408308513685, 0.5392412772367066, 0.5512946651074178, 2.7069735926192933, 2.718743248676618, 2.7303759898096898, 2.7418749648517142, 2.7532432152421746, 1.1077809450994152, 0.6106476648122467, 5.2786535897970195, 4.227935291140799, 9.712233786957805, -0.15504480670065934, 4.454160992836478, 2.839816253540258, 2.850129319932167, 2.8603371117656353, 2.8033990244168074, -1.4868680383464818, -1.1645540393036222, 0.756388046830881, 3.4095004556842747, 0.7757188139235167, 1.9210613870901088, 7.073591875639662, 0.7336930053932457, 0.8132941856566491, 0.8224714893795253, 0.8315653355338104, 0.05366361737844394, 0.8495086317986851, 0.858360970903068, 0.8671356332183084, 0.9900247189155857, 0.8844572978617751, -0.17889108982970225, 1.6708691178554216, 3.053658986036777, -2.1661888569573753, 2.465771630716565, 3.0784607721365704, 2.3301053628606283, 4.5270962944794375, 0.6663714142277866, 0.16572371618966208, 1.425204926991717, 3.1262919029223175, 3.13404596968913, 3.141740373240435, 3.1493760247202296, 3.1569538145588343, -0.6512614144314366, 3.171939271180996, 1.0355795255629023, 1.042934380195304, 2.1666514060849593, 1.0574837703835267, -0.4851787537500365, 1.071824507957309, 1.0789184855843756, 1.0859624929725422, 1.0929572291848477 ]
null
The given time series is a sine wave followed by a square wave. What is the most likely amplitude of the square wave?
[ "5.15", "8.12", "1.07" ]
8.12
multiple-choice
24
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
After the sine wave, the square wave follows. Begin by identifying where the square wave starts. Next, measure the distance between its peak and baseline.
Pattern Recognition
Cycle Recognition
344
[ -0.0014497232258022684, 0.6537640687154676, 1.3995748103441634, 2.042053769304228, 2.515025825620034, 2.6861856652993223, 2.9394990583000102, 2.835673386617045, 2.5019823859622488, 1.9380954961032217, 1.4587405759025707, 0.7304651233783264, -0.2778700708440097, -0.8064189838038117, -1.3219007109808731, -2.000540499798039, -2.4193312010631876, -2.8658376756597366, -2.850199671943938, -2.74945314673419, -2.410210309470524, -1.9730220180301328, -1.4233767219175715, -0.581466580601656, 0.08678156958699651, 0.964753517246795, 1.5815054831927717, 1.9603156616287252, 2.71026839181117, 2.8561768795808855, 2.8122233290815633, 2.671422438482089, 2.241571723072808, 1.8533873206329912, 1.2939427869583233, 0.6814456041147465, -0.2559646951811129, -0.9791037503611704, -1.5333677055107797, -2.3224355989115306, -2.5928022977478946, -2.902859998750217, -2.837792128422921, -2.5830674359848924, -2.482039130097008, -1.6850096353972226, -1.114818331765446, -0.41159696752178015, 0.46374460949024965, 0.9819693118899567, 1.5853156316974368, 2.155802942400349, 2.693753454496462, 2.7899865068761214, 2.7540822461627963, 2.5484709460173014, 2.284817906335227, 1.7283810959234873, 0.9329158882799327, 0.20532738609064402, -0.46360711019552847, -1.0453828493245134, -1.8271383640185288, -2.4557146986183005, -2.3167284039621663, 5.8175826120135286, 5.665272093972752, 5.691998467353216, 5.888171499744002, 5.690734882066916, 5.892385933860712, 5.659104412602941, 5.662836501673963, 5.81609231638856, 5.738313843782269, 5.76029915700196, 5.828943188581795, 5.7573632105099195, 5.718963443682846, 5.862828034232699, 5.831848776986215, 5.818103185410811, 5.811963288356246, 5.733584169014202, 5.712735222749275, 5.779304563929502, 5.735242062271006, 5.8125300563304725, -10.46907470673437, -10.428109715167585, -10.439200049080709, -10.253383630749497, -10.568530240227936, -10.448645325013779, -10.5406811875667, -10.478217688036734, -10.511611198435382, -10.36601315851123, -10.577301797321807, -10.3518298416803, -10.376941686873977, -10.224369023624478, -10.2496093533123, -10.509702756559374, -10.30622466702925, -10.46234665102955, -10.399464931531652, -10.257901469672289, -10.505732171494849, -10.424316575889284, -10.624651708854513, 5.902570915871479, 6.024042648296822, 5.871103298549509, 5.950589203196609, 5.927972722412648, 5.74311749471952, 5.84619780092801, 5.86316805177498, 5.6971365461921195, 5.958243851555425, 5.763308184069413, 5.792095387182256, 5.787413233417197, 5.817526004435789, 6.106745430017666, 5.7531241113253415, 5.659191764413039 ]
null
One type of noise in time series is white noise. Is the given time series noisy based on your understanding of white noise?
[ "No", "Yes" ]
No
binary
55
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
When we say a time series is noisy, it typically refers to there are random fluctuations that disrupt the overal pattern of the time series. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
345
[ 0, 0.05797140915575416, 0.11594281831150832, 0.17391422746726248, 0.23188563662301664, 0.2898570457787708, 0.34782845493452497, 0.4057998640902791, 0.4637712732460333, 0.5217426824017874, 0.5797140915575416, 0.6376855007132958, 0.6956569098690499, 0.7536283190248041, 0.8115997281805583, 0.8695711373363124, 0.9275425464920666, 0.9855139556478207, 1.043485364803575, 1.101456773959329, 1.1594281831150832, 1.2173995922708374, 1.2753710014265915, 1.3333424105823457, 1.3913138197380999, 1.449285228893854, 1.5072566380496082, 1.5652280472053623, 1.6231994563611165, 1.6811708655168707, 1.7391422746726248, 1.797113683828379, 1.8550850929841332, 1.9130565021398873, 1.9710279112956415, 2.028999320451396, 2.08697072960715, 2.1449421387629037, 2.202913547918658, 2.2608849570744125, 2.3188563662301664, 2.3768277753859204, 2.4347991845416748, 2.492770593697429, 2.550742002853183, 2.608713412008937, 2.6666848211646914, 2.724656230320446, 2.7826276394761997, 2.8405990486319537, 2.898570457787708, 2.9565418669434624, 3.0145132760992164, 3.0724846852549703, 3.1304560944107247, 3.188427503566479, 3.246398912722233, 3.304370321877987, 3.3623417310337413, 3.4203131401894957, 3.4782845493452497, 3.5362559585010036, 3.594227367656758, 3.6521987768125124, 3.7101701859682663, 3.7681415951240202, 3.8261130042797746, 3.884084413435529, 3.942055822591283, 4.000027231747037, 4.057998640902792, 4.115970050058546, 4.1739414592143, 4.2319128683700535, 4.2898842775258075, 4.347855686681562, 4.405827095837316, 4.46379850499307, 4.521769914148825, 4.579741323304579, 4.637712732460333, 4.695684141616087, 4.753655550771841, 4.811626959927596, 4.8695983690833495, 4.9275697782391035, 4.985541187394858, 5.043512596550612, 5.101484005706366, 5.15945541486212, 5.217426824017874, 5.275398233173629, 5.333369642329383, 5.391341051485137, 5.449312460640892, 5.5072838697966455, 5.5652552789523995, 5.623226688108153, 5.681198097263907, 5.739169506419662, 5.797140915575416, 5.85511232473117, 5.913083733886925, 5.971055143042679, 6.029026552198433, 6.086997961354187, 6.144969370509941, 6.2029407796656955, 6.260912188821449, 6.318883597977203, 6.376855007132958, 6.434826416288712, 6.492797825444466, 6.55076923460022, 6.608740643755974, 6.666712052911729, 6.724683462067483, 6.782654871223237, 6.8406262803789915, 6.898597689534745, 6.956569098690499, 7.014540507846253, 7.072511917002007, 7.130483326157762, 7.188454735313516, 7.24642614446927, 7.304397553625025, 7.362368962780779 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. Do they have the same type of anomaly?
[ "No. They have different types of anomalies", "Yes, Time series 1 and time series 2 both have flip anomaly" ]
No. They have different types of anomalies
binary
77
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Flip Anomaly", "Spike Anomaly" ]
For each time series, identify the type of anomaly based on the given definitions. Then, check if they have the same type of anomaly.
Anolmaly Detection
General Anomaly Detection
346
[ -2.46398788362281, -2.3883371112675396, -2.3126863389122696, -2.237035566556999, -2.161384794201729, -2.0857340218464584, -2.0100832494911884, -1.9344324771359183, -1.858781704780648, -1.7831309324253777, -1.7074801600701073, -1.631829387714837, -1.556178615359567, -1.480527843004297, -1.4048770706490266, -1.3292262982937562, -1.253575525938486, -1.1779247535832158, -1.1022739812279454, -1.0266232088726752, -0.9509724365174048, -0.8753216641621351, -0.7996708918068642, -0.7240201194515941, -0.6483693470963239, -0.5727185747410539, -0.49706780238578374, -0.4214170300305129, -0.34576625767524316, -0.27011548531997276, -0.19446471296470214, -0.11881394060943218, -0.043163168254162, 0.03248760410110818, 0.10813837645637858, 0.18378914881164876, 0.25943992116691916, 0.33509069352218956, -4.517234301368161, -4.44158352901289, -4.365932756657619, -4.29028198430235, -4.214631211947079, -4.138980439591808, -4.063329667236538, -3.9876788948812685, -3.9120281225259985, -3.8363773501707277, -3.7607265778154577, -3.6850758054601878, -3.609425033104917, -3.533774260749647, -3.458123488394377, -3.382472716039107, -3.306821943683836, -3.231171171328566, -3.155520398973296, -3.0798696266180254, -3.004218854262755, -2.9285680819074855, -2.8529173095522147, -2.7772665371969447, -2.701615764841674, -2.6259649924864044, -2.550314220131134, -2.474663447775863, -2.3990126754205936, -2.323361903065323, -2.247711130710053, -2.1720603583547824, -2.0964095859995124, -2.020758813644242, -1.9451080412889716, -1.8694572689337017, -1.7938064965784308, -1.7181557242231609, -6.570480719113511, -6.49482994675824, -6.41917917440297, -6.3435284020477, -6.267877629692429, -6.192226857337159, -6.116576084981889, -6.0409253126266185, -5.9652745402713485, -5.889623767916078, -5.813972995560808, -5.738322223205538, -5.662671450850267, -5.587020678494998, -5.511369906139727, -5.435719133784457, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174 ]
[ -4.539530617741618, -2.7878401911030477, 1.3664489352325577, -5.808319120144158, -0.504203544721994, 3.4509485007954117, -1.0973023696179776, -0.9886727249385194, -0.8800430802590615, -0.7714134355796036, -0.6627837909001456, -0.5541541462206878, 1.413965977960914, -0.33689485686177184, -0.228265212182314, 1.114635066679674, -0.011005922823398073, 0.9250602916751667, 0.20625336653551785, -2.230094718751589, 7.070597634211634, 0.5321423005738914, 0.6407719452533495, 3.088466467999032, -2.6144097544298925, 3.770760846865611, 5.202950765422154, 1.1839201686506393, 1.292549813330097, 1.401179458009555, 4.438514424866318, 8.376031407502268, 1.7270683920479288, 1.8356980367273867, 1.9443276814068442, 2.052957326086303, 1.8869012510350196, 3.4856186662190916, 3.364596277009999, 2.487475904804134, 2.5961055494835925, 7.883155454506581, 1.870487524291966, 12.612980986829726, 5.25965234351381, 3.139253772880882, -0.5673222221003278, 3.356513062239798, 3.4651427069192553, 0.07561187620926346, 0.18424152088872137, 0.033407887226118704, 0.4015008102476374, -4.886726545481182, -0.9720124255565614, 0.7273897442860111, 0.836019388965469, -3.493471153667045, 1.0532786783243848, 1.1619083230038427, 1.270537967683301, 1.379167612362759, 1.6951740304295355, -2.475566070629111, 2.9797245055767845, 3.8115601994504105, 5.7808387206294976, 2.030945480439506, -2.768566403310805, -1.0929292728596889, 4.19172023134209, 4.2958990104224615, 2.574093703836796, 2.682723348516254, 2.7913529931957117, 2.899982637875169, 6.407378185682452, 5.437915178850868, 3.225871571913544, 6.038436163935895, 3.4431308612724596, 3.5517605059519175, 3.660390150631375, 3.769019795310833, 12.123947208860923, 3.986279084669749, 6.539807496808903, -1.5419894899473743, 4.312168018708123, 8.300337828608402, 4.758433946748814, 4.638056952746496, 4.7466865974259544, 4.855316242105413, 4.96394588678487, 5.072575531464329, 5.34356128651484, 2.968416634131738, 1.900303990113252, 2.00893363479271, -5.0972929565383485, 2.226192924151626, 2.334822568831084, 2.443452213510542, -0.27138510631938084, 2.6607115028694577, 4.568429588462794, 5.962345839531087, 2.986600436907832, 1.9035222269105252, 3.2038597262667476, 0.9849117875909079, 9.710798872640503, 4.972553153207163, 3.638378304984579, 7.017020656983856, 3.855637594343495, 3.9642672390229525, 4.072896883702411, 2.4563743127672724, 8.803705917855549, 4.398785817740785, 6.08858480324593, 4.6160451070997, 1.4223541461713562, 4.833304396458617, -6.605538238169801, 5.050563685817532 ]
Is the two time series lagged version of each other despite amplitude difference?
[ "No, they are not lagged versions", "Yes, they are lagged versions" ]
Yes, they are lagged versions
binary
101
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
347
[ 1.5550768839452918, 1.5872274665911104, 1.3460940047854555, 1.4215473571298805, 1.3189461270296605, 1.5535924773477559, 1.7270044270957472, 1.6158797701923293, 1.5874849190143894, 1.4639386845752533, 1.1457378882094738, 0.953521118456702, 0.9979563984598646, 1.0708712997134828, 1.1041719589743049, 1.036531087749639, 1.2457008730733947, 1.259945350857276, 1.4175969604519352, 1.0199617205445675, 0.1406594139842651, 0.20427746707542213, -0.11511873047180923, -0.16274499506609122, -0.23046746292703418, 0.1253873508603401, 0.21505639763198672, 0.25223777012648113, 0.43986988455343357, 0.5224776648113979, 0.41987813141898817, 0.6600757646176804, 0.4112980304343465, 0.4837618228456693, 0.1368360625320281, 0.1825550847681274, 0.22581845063273248, 0.6016369852781511, 0.2508096688556992, 0.1161060573380407, 0.3005305191085624, 0.375700113761218, 0.41611991728844033, 0.2017786275005809, 0.0693321909033474, 0.3484386971404872, 0.3368916468724265, 0.42103773738764927, 0.39521544575889606, 0.12999778420383437, 0.33933431511982776, 0.4521462078563471, 0.9690113055349701, 0.7413438079974677, 0.9257437214502586, 0.6317289446523616, 0.6670020404633258, 0.885909964452038, 0.42139000977977115, 0.3754493648352865, 0.249192076835021, 0.09183111622344795, 0.17818598872992145, 0.4294152012968886, 0.39953750544776206, 0.44560233262744964, 0.47122744576667047, 0.4716317459903504, 0.22742885170909113, 0.4759139201533738, 0.542089208613772, 0.6306115884586071, 0.44981265628112377, 0.34686713076906545, 0.3073823264716622, -0.03652938446200017, -0.4149437176466051, -0.5496161139309658, -0.432480256883005, -0.5788970365650941, -0.8072872320346985, -0.989919020750781, -1.0919952030020026, -1.1713213763256904, -0.6858665818932742, -0.4494474783628866, -0.21971920413568857, 0.04224677174418547, -0.1816634459557122, -0.4556864819710992, -0.7038186301391518, -0.40465631984746664, -0.5273227922189988, -0.8078449997416803, -0.9044633784539614, -0.9579526658636681, -0.8977812413453131, -0.8415244095100818, -1.0271814137288457, -0.8734747013156053, -1.0167656233302695, -1.051798800596879, -0.8978415332246233, -1.041721556854334, -1.1693556553356734, -1.0367187372652769, -1.229000685108542, -1.3152612633760112, -1.1906780113725108, -0.7302027651511368, -0.5944864834636048, -0.4885326778575189, -0.36954047234337695, -0.610122417792696, -0.5842085710581221, -0.5908814601498459, -0.5187903909155852, -0.4926722508219998, -0.40755324696324824, -0.4773762648410738, -0.464237637234481, -0.7394855520155122, -0.8112006217148197, -0.4994111386174252, -0.4279424229323992, -0.43263238704786255, -0.007569807153006595, -0.31263437438435404 ]
[ 1.542908980641255, 2.425553390195461, 1.5113800348033917, 1.7776597662695337, 0.5028258772200175, 0.6708276965951353, 0.829805816031076, 2.210810800111155, 0.9216400225496891, 0.42665017577433706, 1.1043471955120014, 1.3805698277047964, 1.5290988250287236, 0.7414676621046657, 0.2547721636056394, 1.2803934160708321, 1.2379619431615452, 1.5471701372225846, 1.4522820192820391, 0.4776975357914278, 1.2469379161728231, 1.6614831601417788, 3.5607861752649486, 2.7241857422688147, 3.4017925553082677, 2.3213884913251572, 2.4510050924990066, 3.2554170791730117, 1.5484646181606605, 1.3796484108917837, 0.9156959233719505, 0.3374480434230616, 0.6547727582446898, 1.5779544608949816, 1.4681641150851295, 1.6374366497299597, 1.731600203947073, 1.7330858694278706, 0.8357234909401049, 1.7488213995219726, 1.9919930229571257, 2.3172825882620645, 1.6529081536987573, 1.2746184454622278, 1.1295252515313117, -0.1342330336501263, -1.5247766923558894, -2.0196518337913245, -1.589217495180672, -2.127249241498601, -2.9665053430001724, -3.637614900452768, -4.012710068597696, -4.3042067102717745, -2.5203258506189425, -1.6515662493521892, -0.8073931646180803, 0.15524248263875456, -0.6675512279528785, -1.6744924605002487, -2.586293507390831, -1.4869740128067586, -1.937731477135753, -2.9685549491592393, -3.3235945500700548, -3.520149444781119, -3.2990399743888514, -3.092315297474473, -3.774541490489126, -3.209721726797793, -3.7362670119109507, -3.8650019942315956, -3.2992615264895364, -3.8279715591909858, -4.2969833558220385, -3.809587902851471, -4.516158504992506, -4.833136720634263, -4.375335744660403, -2.68324620821111, -2.184535143819006, -1.7951910318733015, -1.3579352455487823, -2.241991871597472, -2.1467673198576307, -2.171287912229635, -1.9063778113637788, -1.8104025511808977, -1.4976192322853181, -1.7541950176806995, -1.7059150406811725, -2.7173572850848218, -2.9808857158521764, -1.8351656662875526, -1.5725425025312885, -1.5897765216696007, -0.027816460453953765, -1.1488247369888294, -2.06275543390221, -0.6518836544647146, -0.6140226422702248, -0.8138540661856479, -1.8017166616687064, -1.4329201301236936, -0.9844131254438445, -1.8860193133215435, -2.001573436271942, -2.2779596481307163, -2.0670946245865207, -2.9890938420150808, -1.9577833005649088, -1.2033596890406895, -1.502531016693461, -1.6808091847388686, -1.7931889824383784, -2.4343323565655077, -2.799614007777255, -3.0222532872610954, -1.6936287138530555, -0.9138376478689454, -0.1439017781026513, 0.16083000825830351, -0.7595849168280455, -0.7937638381340537, 0.005690623909824378, -1.0308237853191133, -0.5064535091739418, 1.4068307656955465 ]
You are given two time series with different underlying functional form. Are they likely to have the same variance?
[ "Yes, they have the same variance", "No, time series have different variance" ]
Yes, they have the same variance
binary
94
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Variance" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
348
[ 1.3290786739890195, 0.026110352955185875, 1.0648809812421385, -0.06494490837797702, 2.2038520971122035, 1.1779964949594808, -0.16005542327640132, 0.020528901765270877, 0.02398752617552971, -1.1360593887706503, -0.4819449196995168, -0.557976889419804, 0.2325133563860684, -0.8151382819699597, -0.15007187418829074, -0.3661698115162787, 0.07582953278578751, 1.4681062680661983, 1.0954362826790291, -1.3104990159324559, -0.05183856397937658, -0.30286819457178726, -0.6465996275392881, 2.153021388967867, -0.5267678056840817, -0.4574368781984707, 1.754389360272837, 0.969036033175824, -0.44329827616039186, 0.7606045076590366, -0.2394351032549895, -0.1728163786333453, -0.8053828502973771, -2.4330531485066085, -1.424873320506421, -1.1046056050160964, 0.4190037738664481, 0.15343830436913744, 1.086233284206993, -1.2033368435859424, 1.7867904854396723, 1.6943538935456013, 0.03543665004790963, -0.6862503770635967, -0.6345030743032286, 0.19813560818929982, 1.8825953030555844, -0.09492023943085592, -1.5820325775681554, 1.895367654099805, -0.4003861099801894, 1.4537960520722502, 0.625776514830617, -0.14842887645064792, 0.9659395548597023, -0.7347458774539148, -0.29095686434046103, -0.5307353543328125, -0.20068113121288503, 0.547750589298914, 0.5402821640258872, -1.5553169997929828, -0.5355397709355034, -0.36289119871837233, 0.5861515903256684, -1.4003172972356626, 0.7064677488979768, -1.1267089583484735, 0.248347684001961, 1.114439665000423, -1.2268803845717138, 0.24174967554716129, -0.1854812457315436, -0.9774476666350193, -1.224962756530279, -0.7075339168824166, -0.8104997409185407, -0.2055954310453375, -0.42662438037789724, 0.42361621207250466, 0.8084922744288522, -1.5290056365971425, -0.25065057443684424, -0.9499246437962544, -1.0851663211038929, -1.5688016350846476, -1.6426894821953608, -0.5191259997204938, 0.39290783333463586, 0.3893470228067903, -1.0526792839030832, -1.153820886643598, 0.23924485380013444, -0.4317426573035036, 0.8897101816034021, -1.1107211447182976, -1.8577109514317192, 0.6124842102978152, -1.8900392636050203, -1.4457999022463426, -0.669228389697547, -0.28499344175087615, 0.6014773275666381, -1.0142181770395167, 1.317711726208887, -1.5160985818001365, -0.37193894006746886, 0.8301549592649, 0.8830936491984772, -2.95502594877693, 2.7079441417835346, -0.32222817278141624, 0.2784453374190063, -0.3336388799719015, 2.1351538879952523, 1.2893437409279578, 2.1075069382383202, 0.4732330748923653, 0.912147027016459, -1.0446187930902044, -0.2645963657171757, 0.912954620306918, 0.31824563798746663, 0.1057043387164432, -0.7756687991346262, 1.1654714207692922, 1.1512802750714317, 1.0422088065347175 ]
[ -1.3772410428040218, -1.3730215184595913, -0.903598983622148, -0.5124037269401472, -0.8851858534637271, -0.7530833148417156, -0.47828990782111963, -0.7593687169651193, -0.3821042321450957, -0.08242063697908336, -0.2562641092002596, -0.8228409223413145, -0.5780346465123387, 0.24236095245083963, 0.3490121780242076, 0.6168451491459428, 0.13021688976203535, 0.11026058315933267, 0.06371596852550704, -0.3064389358921658, -0.12279043248572512, 0.044826040253231204, -0.07800393271502218, -0.0833215446860762, 0.7739620565559869, 0.5148041678729404, 0.04236520036777904, -0.44010447597757874, -0.33606176708506774, -1.3986178505879654, -1.61172205110859, -2.016225380493144, -2.040132863618787, -2.062306415527913, -1.91834709974914, -1.6613146507637293, -1.1845155696807803, -1.3321955794494391, -1.6104434107422598, -1.2543956835821852, -1.9471587628853888, -1.6308939590528357, -1.5711695198443665, -1.3836566821531788, -1.2312512227320211, -1.1742799055172919, -1.100298706573175, -1.5640654604341628, -1.8360221015199454, -1.0938431927590417, -0.812866890317426, -0.3699733699243777, -0.5141959864969441, -0.4810565423140271, -0.2611161836671773, 0.24237100798863842, 0.1786318366683275, 0.37784873008322356, 0.6746261500721641, 1.0650317926530624, 0.9808333875892487, 1.5160638642541406, 0.92206454462716, 0.4504055180074608, 0.651122866491338, 0.8408282703993775, 0.7427174312176746, 0.5580256368143443, 0.3789014551551586, 0.0034708452148263596, -0.015295524919586644, -0.6650801862390442, -0.19236680351658583, -0.03290087596253237, 0.5073591730607364, 0.5746089106157838, 0.5590854510740524, 0.6114693917391759, 0.31935459493225093, -0.19989370227367118, -0.6110108451198298, -0.7890290315382887, -1.1579035041736154, -0.594696958811674, -0.889249799745718, -0.7248772589375997, -0.48085605093868733, 0.03588161196017534, 0.3205344106995734, 0.24809889642351377, 0.960489386004991, 0.4410069136894049, 0.04844361060337068, 0.14027970436163903, 0.1761411389084507, 0.5173620025831854, 0.5844063283037809, 0.7385102494061784, 1.154495893916417, 1.2132810519308699, 1.4970703421959217, 1.1815248846558757, 0.89352852930857, 1.261436768941491, 1.311974123669177, 1.3826691103964446, 1.0930695887663642, 0.9224060630707909, 1.042130087323742, 0.916394985001566, 0.556457873786784, 0.2013747138221348, -0.06476633916540377, -0.2063046257905553, -0.32177371493089785, 0.3331592814363863, 0.7190820349793411, 0.8430717448304931, 1.620781531758224, 1.5725324000542211, 1.771088222268092, 1.9083963724385744, 2.1057250121898425, 1.79319408408761, 1.666065054864245, 1.327180261343754, 1.4974125820820157, 1.4988020676571503 ]
What type of trend does the time series exhibit in the latter half?
[ "Exponential", "Linear", "No trend" ]
Linear
multiple_choice
14
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
Focus on the pattern of growth or decline in the second half of the time series.
Pattern Recognition
Trend Recognition
349
[ 1.0687547714621224, 1.1086118288551299, 0.9182367644720026, 1.0549182830281627, 0.9790821995184349, 1.006763184716619, 0.9833930991750707, 1.0040435766027598, 1.145931282171551, 1.0263257990864085, 0.9779490761492698, 1.0489063574380748, 0.8336984485712097, 0.9681420052389565, 1.1786252424521684, 1.043180857757905, 1.0138760491949057, 1.082955348847107, 1.1433141909550408, 1.2065351381950251, 1.0325822048464242, 1.0389217929690329, 1.0634605331009765, 1.19276307215917, 1.0996356405913987, 1.314619236626442, 1.086045601253574, 1.2826255566068234, 1.0211200040726809, 0.9755999444795866, 1.1086189552466204, 1.2368933862056177, 1.0794653165926984, 1.0697338978561721, 1.2381292270097337, 1.210393789036867, 1.0649143087995414, 1.0633552130441368, 1.2356771437160479, 0.9938810944892476, 1.2693569157678966, 1.234940106474507, 0.9420349924310116, 1.1760683805056817, 0.9810265220124813, 1.0628227032168902, 1.1374693592401885, 1.0654390650908978, 1.4185021562467164, 1.2875767607718032, 1.3424165577158103, 1.1961625718282005, 1.217773467110783, 1.3773519324078678, 1.2672220309829993, 1.289659660754731, 1.1419214009255927, 1.146079312075854, 1.2684029426936576, 1.2842517138925922, 1.1519189524271318, 1.292164560498271, 1.1388602826522765, 1.2671362877148804, 1.1220045381917936, 1.4041339973131626, 1.2457943973835461, 1.213141429047478, 1.1735061224463323, 1.169463085508978, 1.3428843161247883, 1.4052051519718611, 1.4007799121904054, 1.4556474607650458, 1.4963880210720037, 1.4229443325509583, 1.2824440308932579, 1.3552630922639093, 1.1182001198264349, 1.4132363428045425, 1.3699865508179476, 1.5201644751212193, 1.2918874151205697, 1.4233565754368973, 1.2770522764130359, 1.3719650111139305, 1.2250234356931713, 1.529736329707559, 1.5049783046614476, 1.358026597705229, 1.4370602393583387, 1.4203069308875345, 1.3608006703335669, 1.4399410856944348, 1.388926234641592, 1.5368189280842448, 1.423285899364104, 1.6890019502815679, 1.4477452951648062, 1.472388818580002, 1.5195092669949204, 1.555980185999561, 1.4856542025101387, 1.5340763769499883, 1.5073004942497914, 1.4167435040104197, 1.3953684093592784, 1.575689872304755, 1.6630698833428301, 1.3538331302648317, 1.379053884499529, 1.3836696610729016, 1.6111879189119753, 1.625115430265539, 1.4472028734298688, 1.7709971113753422, 1.5175034939790144, 1.7051462896220377, 1.648017564196592, 1.4769350777504098, 1.5365235604003722, 1.4966667853592046, 1.4550582416127404, 1.569749714463997, 1.4807934976816188, 1.5887404475305804, 1.8051125234576924, 1.687067340930072 ]
null
One type of noise in time series is white noise. Is the given time series noisy based on your understanding of white noise?
[ "Yes", "No" ]
Yes
binary
55
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
When we say a time series is noisy, it typically refers to there are random fluctuations that disrupt the overal pattern of the time series. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
350
[ 0.8725300299213348, 0.7890992749303043, -1.1757112974409942, -1.0657339454830974, 0.5813538618299863, 0.7984417888185005, 0.027679835773541855, -0.7465398292137884, -0.22730538735684072, -0.09283179636594341, 0.36495318132816534, -0.2979339800043235, 1.730940158501131, -0.23121609915255428, -0.7710298225771256, -0.10884538339264338, -1.42466297230161, 2.800531857372384, 0.8363495917694858, -0.009752594889141453, 2.250779532047369, -0.42522168186273135, 0.020617305075950193, -0.9737078189565284, -1.283902727347657, 0.17626902813242112, 1.5438635336730808, -1.2070672205058703, -0.4852550418515944, -0.27349050878135844, 1.0620529956151292, -0.6428503953305637, 1.055844916696402, 1.1160861181043182, -0.8862385113893623, -0.5169424526823699, 0.1630283695002374, -0.6197320996606872, -1.321585234584779, 1.9632825108417784, -2.4292873812081766, 0.2707515465484223, 2.0120862991234114, -1.242096068864302, 0.23657967770670843, 1.5345061226290613, -4.22960196258979, 0.05869063197213559, -2.2591413823483655, 1.3011659865112688, -0.9963456232730421, 2.527667849594272, -1.4817596889035674, 0.6408422170847592, -1.3561486183841436, -0.35263343034625116, 0.0988806999981798, 0.18226296674302658, 2.3576777973211316, 2.143513076543008, -1.1011302995308359, 0.23040164897486104, -1.7108159854036373, -2.039943872700353, -0.9851070785951884, 2.2954065904526924, -2.3244092944128103, 0.9366696265777815, 0.6497078823657058, -1.0153192568320117, 0.7699041418903961, 0.9113582179472405, 0.1243140252997515, -0.07048148709746244, -0.4551661977386475, -1.2320770891776385, 0.5735261601783348, -0.6693944383761856, 0.37895925932306096, -0.6995918670644465, -1.0370289514157176, -0.6946107295742171, 1.80551667582071, -1.7652131889154652, 2.692034321727393, 0.9982907566916186, -1.8566131740555998, -0.7973472655012402, -2.2214109745061106, 0.6455549386949528, 1.8983625766588443, 0.10729115770959846, 1.7020488028722702, 0.2033250972022813, 1.413762509684937, 0.42903848412958256, 0.07846734012361531, 1.2139227744285566, -0.32049853176491544, 2.030950981393004, -0.528712712163292, 0.7064990467870145, -0.8017256173245976, -2.3419753751886403, 0.4217940195993781, -2.3206074938673438, 3.013365894998999, -0.505109339685334, -0.06944685470796444, -0.5570254540015196, 0.10600391716242016, 0.41732343101439595, -1.0783364675186753, -3.529065490826595, -1.612932284636681, -0.6965890718668725, 0.47250080421334995, 0.019963560524171836, 1.0907751910566355, -2.2374562236487483, -1.3488561652437134, -0.5558570370979586, 2.147470692367382, 4.011584250927122, -1.9509388332876307, 1.5961079289531017, -0.02465161796121247, 0.7906320334810616 ]
null
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sawtooth wave with linear trend", "Sine wave with linear trend" ]
Sine wave with linear trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
351
[ -17.22629198835497, 3.0327454552700264, -1.0541739245188613, 2.0989277414718917, 2.5020365415513655, 2.6890415451472736, 4.043535470428003, -10.72689944304225, -4.163331025090666, 1.384310461704839, 0.6245889587612051, -10.750044802532022, -0.45826159910129427, -0.8887314353132609, -1.1342156278395834, -1.1630613682681141, -5.241579437356236, -0.5517961787073913, 0.04319473480052505, -0.9115075451430087, 1.5617928621609385, 2.351026610294262, 3.0665923451692945, 3.645605338493797, 9.016693649339215, 4.214461543426731, -0.8668810413970949, 8.913825255314736, 3.451506839874707, 11.85503423589465, 2.2348338245456603, 1.5991765596982594, -4.67457731457634, 1.115380344378424, -2.8201434555453218, 0.3634789532135918, 0.5727143885147847, 6.663471024577152, 1.5985761412542872, 2.3292989858147664, 3.1235769965907054, 3.910782596078902, 8.100633070713107, 5.19182391135893, 9.600656648828227, 5.739321465095888, 3.1581440257935847, -0.3433331984350385, 4.947646938040462, 7.9751356143244, 10.497112508816455, 6.506693299610568, 11.384961483330562, 18.59581208985942, -0.20817385521668985, 1.890579249322387, 2.1108828386566034, 2.543808060633504, 3.154273256396065, 3.88973233437705, 4.68534367767683, 13.366479180962429, 6.1750315638873765, 6.737578513083852, 8.244441280514156, 7.263621548105945, 13.998352984078364, 6.905144230220039, 11.208782244714431, -0.3343103166437169, 5.214663163167894, 4.583407218723887, 9.029595614556566, 11.85742968684037, 6.167499706799148, 9.520260444286642, 3.6495759978782734, 4.092270074412943, 4.710278832272106, 0.44314311335024126, 11.947755940807356, 7.029716285468346, 7.728728450526178, 8.28286430931677, 8.645118831782462, 9.395694965824, -0.4213909722358018, 8.184123428483433, 7.938998137442267, 7.349319102098491, 6.97697818075185, 5.185227702562321, 4.726937935061847, 9.938177826681478, 4.930500934964908, 9.987814013490237, 5.188790746033522, 5.641164730929525, 6.266585546048053, 7.011035930246321, 12.415847449206561, 8.58887766291888, 13.369877685374146, 21.265289419901066, 10.179537741472764, 10.310543829382967, 17.075681172968316, 9.910716836780132, 9.434223883902597, 8.840210727302132, 8.19461462700394, 16.53463772766446, 12.903072298126574, 2.724069697942359, 8.423244228454196, 8.14395096197827, 6.72852383635739, 12.847303417055457, 17.14848849007344, 8.61929167350285, 18.004964164746376, 10.147824593610801, 10.835042968070686, 11.3720107180714, 11.713411623541718, 2.096458924855007, 12.797639375551222, 11.412864002475398 ]
null
The given time series is a sine wave followed by a square wave patterns with different amplitude. How does the amplitude vary over time?
[ "Increase", "Remain the same", "Decrease" ]
Increase
multiple-choice
19
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Focus on the amplitude instead of cyclic pattern change, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
352
[ 0.1496003169555526, 0.5288633000512467, 0.9784849602767148, 1.5052499827030312, 1.8398299583607114, 2.1111823027691883, 2.2926581706406584, 2.487523421856909, 2.1128124621693614, 2.083604655434668, 1.6292516324811024, 1.1208562445878123, 0.630011790183709, -0.0017575269594101322, -0.43265930637736694, -1.0300611872622587, -1.7155086087393745, -1.8915985153974386, -2.1032587888242977, -2.3440910856247146, -2.3014355558494017, -2.2396181574576106, -2.0536619325008822, -1.697064453091034, -1.2321679120358415, -0.48526155096785656, -0.24278198975444254, 0.497647081248604, 1.0129560256023873, 1.523158918720813, 1.7373484446862064, 2.223145002095313, 2.188243124785236, 2.4269167861180496, 2.1150400552657294, 1.9045564051325274, 1.5400601982280069, 1.1001153088546989, 0.5528327105834406, -0.05208031249024997, -0.5330199656586717, -1.0456668269122142, -1.6302184178016978, -1.882119258849153, -2.0646803358100962, -2.245333990697601, -2.2200496458572654, -2.1589048990381396, -2.005947658554285, -1.6183005427825172, -1.040930567132305, -0.45181916274467226, 0.2910835087408751, 0.6685357401212981, 0.9779961903915472, 1.479304985133977, 2.1543687602165087, 2.163505728246291, 2.3210348649079013, 2.216852265702469, 2.331483780269148, 1.9605774102484403, 1.4575264881386016, 0.9707630704634735, 1.1008659939389878, 5.611979456910646, 5.690769861144713, 5.662255686735321, 5.581110804545738, 5.553178679876464, 5.591564624592717, 5.552490754756924, 5.594539286142124, 5.609202932284539, 5.517765750084595, 5.670626825632389, 5.570516067975634, 5.523370404394067, 5.572398096594414, 5.63178465508463, 5.615862659403931, -3.425055829233753, -3.3774330282166467, -3.336773620323396, -3.4387190244553945, -3.574207879447749, -3.4941787209772297, -3.5676994791625005, -3.2975822333529714, -3.2685275524714834, -3.402236520974565, -3.3814217564602966, -3.4421733214005337, -3.4306620491781206, -3.6270130625571118, -3.4746608772498906, -3.5553829469588254, -3.4391319869703625, 5.601597854883748, 5.802241035657212, 5.699221608294885, 5.636010037674765, 5.580864870708639, 5.7751609852985935, 5.604563374809948, 5.640726235586128, 5.611783799865284, 5.567143448851868, 5.6112094616611525, 5.411362154354769, 5.452788199298482, 5.642521893589564, 5.76437880847535, 5.642380949837018, -3.539304526213865, -3.6115530161309333, -3.3888149146766358, -3.5239871558257096, -3.4029440988689434, -3.428281124917628, -3.4194376014987307, -3.463907469988844, -3.4289032022272354, -3.479213080849833, -3.53079829416102, -3.563617546775805, -3.7057685205212976, -3.4853785969646505 ]
null
You are given two time series following similar pattern. One has an anomaly and the other does not. Which time series has the anomaly, and what is the likely type of anomaly?
[ "Time series 1 with flip anomaly", "Time series 2 with cutoff anomaly", "Time series 1 with speed up/down anomaly" ]
Time series 1 with flip anomaly
multiple_choice
73
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Speed Up/Down Anomaly", "Cutoff Anomaly", "Flip Anomaly" ]
You should first identify the time series with the anomaly. Remember, both time series share similar pattern. Then, you should check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
353
[ 0, 0.2608388997549282, 0.5003762913628106, 0.6986838817581067, 0.8384912828668734, 0.9062993580047232, 0.8932504521888901, 0.7956994064215936, 0.6154485451508152, 0.359631488294469, 0.04025327795868927, -0.32658353413025704, -0.7217169477213937, -1.1241608044022686, -1.5124576734620545, -1.8660621186189128, -2.166665172454554, -2.399374635480947, -2.553675111119661, -2.6241058873368095, -2.6106129648688823, -2.51855253831914, -2.3583457057134822, -2.1448066658808314, -1.8961877118351997, -1.6330025852599972, -1.376704045285624, -1.148300902918482, -0.9670036748641861, -0.8489861655206685, -0.8063428125345828, -0.8463090112936391, -0.970794680625404, -1.1762611386823123, -1.4539492262861855, -1.7904439716177794, -2.527494067926794, -2.5442274266709317, -2.6392092731003505, -2.801830178024497, -3.0171203179285087, -3.2667145140340974, -3.530036155066862, -3.7856236814062747, -4.012514117985819, -4.191594465627135, -4.306833832518384, -4.346316875708355, -4.303011931162265, -4.17522431439354, -3.9667055693620124, -3.686411622839864, -3.3479254349757115, -2.96858136525037, -2.5683477021220193, -2.168539394788037, -2.5945742882279177, -2.7456300839991536, -2.9754099135291066, -3.27358724089995, -3.6254262426014527, -4.012731761634841, -4.415022269719427, -4.810850221857817, -5.17918468577454, -5.500767114154322, -5.7593528589723615, -5.942758392916746, -6.043646728117268, -6.060000399669721, -5.995251522776158, -5.858060539286014, -5.661757916881058, -5.423484792116362, -5.163087956302555, -4.9018404196575025, -4.661070033361626, -4.460784576256276, -4.318381940833248, -4.247528567184536, -4.257278427371211, -4.351489355436465, -4.528574349714663, -4.781603879888984, -5.0987526035089825, -5.464061694107705, -5.85846763695812, -6.261031170505297, -6.65028714899417, -7.00562830655207, -7.308633717506619, -7.54425631291154, -7.7017928992827045, -7.775574146678396, -7.765330065609401, -7.676207412080753, -7.518437898738183, -7.306678601095808, -7.059067079971208, -6.796052132252744, -6.539075546384105, -6.30918984402548, -6.125701116042097, -6.004924443249167, -5.959132134495466, -5.995762584577068, -6.116940753451974, -6.3193411793638035, -6.594402356819411, -6.928878659409673, -7.305694227422681, -7.705043773848833, -8.10566934462841, -8.486230725991508, -8.82668115472182, -9.109559645319262, -9.321116623380545, -9.45220030053587, -9.498846650225518, -9.462534951157997, -9.35009242468039, -9.173254113672652, -8.947906375649008, -8.693062758757925, -8.429638281476814, -8.17910113282944, -7.962088712117161, -7.797077226030668 ]
[ 0, 0.26239566159787847, 0.5210092736778649, 0.7721221172084873, 1.012141073660994, 1.237658791843, 1.4455107440547867, 1.6328282161618959, 1.7970863442643166, 1.9361463935873824, 2.048291571633598, 2.1322557759035337, 2.1872447948046894, 2.2129496067387326, 2.209551554673655, 2.17771930955255, 2.1185976733867826, 2.0337884095259553, 1.9253234211021382, 1.7956307267757974, 1.6474938035201574, 1.4840049772497936, 1.308513641768215, 1.1245701731090683, 0.9358664784263366, 0.746174174943403, 0.559281434155587, 0.3789295488311015, 0.2087502849971331, 0.05220506795314628, -0.08747297935730236, -0.20733317504773474, -0.30475668750940255, -0.37750038779313777, -0.4237344108434884, -0.44207279662160825, -0.43159669803074463, -0.39186976702721465, -0.32294546127615154, -0.2253661490019545, -0.10015402702272502, 0.05120599595362463, 0.22679116415208633, 0.42427307131019387, 0.6409566498822891, 0.8738252999934906, 1.1195914024582239, 1.3747513700219527, 1.635644314992029, 1.8985133508672136, 2.159568501468928, 2.415050164159738, 2.6612920644563833, 2.8947826478611662, 3.112223880904457, 3.3105864767737834, 3.4871606207753576, 3.6396013462293064, 3.765967800978422, 3.864755746992036, 3.934922748858591, 3.9759056293851396, 3.9876299000094546, 3.970511008112328, 3.9254473803437913, 3.8538053784528916, 3.757396419535899, 3.6384466438248446, 3.499559637929729, 3.3436728377344695, 3.1740083409807838, 2.9940189531842236, 2.807330370344429, 2.6176804666011386, 2.42885670346528, 2.244632708708618, 2.068705086899626, 1.904631519694262, 1.7557711923933894, 1.6252285443251753, 1.5158012849533733, 1.4299335461825753, 1.3696749553260412, 1.3366463140598843, 1.3320124580701898, 1.3564627518587413, 1.4101995453221814, 1.4929347853993957, 1.603894839525141, 1.7418334501211106, 1.9050526032012292, 2.0914309616460525, 2.29845938703054, 2.523282955191602, 2.7627487619839632, 3.013458718716125, 3.271826453205946, 3.5341373636465714, 3.796610819679741, 4.0554634691183695, 4.306972590246155, 4.547538428858938, 4.773744476212839, 4.9824146785239165, 5.170666620045251, 5.335959789169877, 5.4761381193428065, 5.589466092433832, 5.67465780001947, 5.730898475942373, 5.757858139585126, 5.755697121401547, 5.725063378180391, 5.667081642997399, 5.583334591539948, 5.475836340174529, 5.3469987195323805, 5.199590888362678, 5.036692963920056, 4.861644445346414, 4.6779882936984, 4.489411605001534, 4.299683869761718, 4.11259385277966, 3.9318861502169566, 3.7611984862667787, 3.604000799397566, 3.463537138171711 ]
Is the noise in the time series more likely to be additive or multiplicative to the signal?
[ "Additive", "Multiplicative" ]
Additive
binary
57
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Additive Composition", "Multiplicative Composition", "Gaussian White Noise" ]
Additive noise is added to the signal, while multiplicative noise is multiplied to the signal. When a trend component is added with a white noise, the general trend still remains. When a trend component is multiplied with a white noise, the noise is amplified. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
354
[ -0.6486983482191357, -0.14146694680014857, 0.08862887998191041, -0.24900870080039603, 1.4264734684817055, 2.243901686981556, -1.4487183344181804, -0.560914036518599, 1.8375725360141104, 1.2086204381169707, 1.0962319248845698, 1.4373861526223823, 0.8571147162083173, 1.332400534539456, 0.5312582712475182, 0.6984583134829503, 0.9035226023094061, 0.6320531466208816, 1.633382303284164, 1.5128651489315406, -0.7419719328646182, 1.1020244729590152, 1.4047905656574255, 3.084419077481851, 1.201184914454391, 1.6744500176014963, 1.5517658138187491, 3.113046607021296, 0.47986728182657945, 0.9817677520089807, 0.9728839681605115, 1.963226135787459, 0.4110102897769152, 3.643264775484118, 2.58182849535538, 2.826626319052619, 4.514264198771976, 1.9568184205507606, 3.304993641399371, 3.0746790743488663, 4.162714520252267, 3.3170794062852607, 2.094136191610551, 3.156525339691735, 2.0724117882779867, 2.327723249368848, 2.87632475094184, 2.7547626732115074, 2.059129788194735, 0.6485926579765251, 3.4598187784907264, 3.5989093614527303, 3.6575532518745337, 5.3723285404159125, 1.7482633635465983, 5.120140944670521, 6.188607375673508, 5.471427127267853, 3.2708640481325983, 4.193133590566588, 2.944676278697752, 3.1094981352507878, 5.742307809575685, 4.708078883100284, 4.836134905932012, 2.8821074517546803, 2.5697422894800823, 5.340418155149162, 4.725172656383842, 4.016741592937914, 6.259093824626584, 5.097540743925309, 3.614355404271187, 2.5118258966416405, 5.291373087858141, 4.21064610742406, 4.627579814545789, 4.601634172594805, 6.434588123168002, 5.867550962107072, 4.924554113403296, 4.958559968066844, 5.4619192177886, 6.627988006156616, 5.367896568212188, 4.726414254024874, 4.114167903480975, 5.375849182174274, 4.246909959206727, 5.958989347734145, 6.141350948257762, 6.994404704790748, 5.557465985517515, 6.9504107205020365, 7.63366682648178, 6.0493117155373, 8.427344474838, 7.635156729067432, 5.645385605141288, 9.37555337117722, 6.2120532969495645, 7.846526117079934, 7.083481520568203, 6.798085364393014, 7.937878137667239, 6.7603789840910435, 6.579793641412502, 6.675005094553071, 5.56215659167257, 7.992682688440366, 6.206365723533442, 7.200957949918231, 7.060304632128505, 7.752177006387209, 7.150393471957616, 6.939805362737038, 7.734260695597151, 7.705290527776064, 6.27854065846942, 7.360866936508559, 8.901772538658575, 10.236367592219988, 5.838199179292558, 8.616624366154976, 7.906177935089601, 7.221638338709234, 7.460139782109878, 6.974828372173563 ]
null
The following time series has an anomaly. What is the most likely type of anomaly?
[ "Cutoff: the pattern of time series disappeared for certain point in time", "Wander: the pattern deviates off for certain point in time", "Scale: the pattern is at obviously different scale at certain point in time" ]
Scale: the pattern is at obviously different scale at certain point in time
multiple_choice
65
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Scale Anomaly", "Wander Anomaly" ]
Anomaly is an observation that deviates from the general pattern in the time series. You should check if the time series has any sudden changes or unexpected patterns. If so, check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
355
[ -2.5930859737204655, -2.3196643794326692, -2.046242785144873, -1.7728211908570768, -1.4993995965692806, -1.2259780022814843, -0.952556407993688, -0.6791348137058919, -0.40571321941809557, -0.13229162513029924, 0.14112996915749687, 0.414551563445293, 0.6879731577330894, 0.9613947520208855, 1.2348163463086816, 1.5082379405964783, 1.7816595348842743, 2.0550811291720703, 2.328502723459867, 2.601924317747663, 2.875345912035459, 3.1487675063232556, 3.4221891006110514, 3.695610694898848, 3.9690322891866443, 4.242453883474441, -0.6702964696786944, -0.39687487539089816, -0.12345328110310172, 0.1499683131846945, 0.4233899074724907, 0.6968115017602867, 0.9702330960480832, 1.2436546903358794, 1.5170762846236754, 1.7904978789114718, 2.063919473199268, 2.3373410674870643, 0.6526906654437151, 0.7210460640156642, 0.7894014625876133, 0.8577568611595623, 0.9261122597315115, 0.9944676583034604, 1.0628230568754096, 1.1311784554473585, 1.1995338540193075, 1.2678892525912566, 1.3362446511632058, 1.4046000497351547, 1.472955448307104, 1.5413108468790528, 0.31312325859076917, 0.38147865716271834, 0.4498340557346674, 0.5181894543066164, 0.5865448528785655, 0.6549002514505146, 0.7232556500224636, 0.7916110485944127, 0.8599664471663617, 0.9283218457383107, 0.9966772443102597, 1.0650326428822088, 1.133388041454158, 1.2017434400261071, 1.270098838598056, 1.3384542371700052, 1.4068096357419542, 1.4751650343139031, 1.5435204328858523, 1.6118758314578012, 1.6802312300297504, 1.7485866286016996, 1.8169420271736485, 1.8852974257455974, 1.9536528243175466, 0.7254652360292629, 0.793820634601212, 0.8621760331731612, 0.9305314317451102, 0.9988868303170593, 1.0672422288890082, 1.1355976274609572, 1.2039530260329063, 1.2723084246048555, 1.3406638231768044, 1.4090192217487536, 1.4773746203207028, 1.5457300188926517, 1.6140854174646007, 1.6824408160365498, 1.7507962146084988, 1.819151613180448, 1.887507011752397, 1.9558624103243463, 2.024217808896295, 2.092573207468244, 8.643714424160773, 8.91713601844857, 9.190557612736367, 9.463979207024162, 9.737400801311958, 4.824650448158824, 5.098072042446619, 5.3714936367344155, 5.644915231022212, 5.918336825310008, 6.191758419597805, 6.4651800138856, 6.738601608173397, 7.012023202461193, 7.285444796748989, 7.558866391036785, 7.832287985324582, 8.105709579612377, 8.379131173900175, 8.65255276818797, 8.925974362475767, 9.199395956763563, 9.47281755105136, 9.746239145339155, 10.01966073962695, 10.293082333914747, 10.566503928202543, 10.83992552249034, 11.113347116778137, 11.386768711065933 ]
null
You are given two time series which both have trend components. Do they have the same type of trend?
[ "No, time series 1 has linear trend and time series 2 has exponential trend", "No, time series 1 has exponential trend and time series 2 has log trend", "Yes, they both have exponential trend" ]
No, time series 1 has exponential trend and time series 2 has log trend
multiple_choice
85
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
First identify the trend component for each time series. Then, check if they are equal.
Similarity Analysis
Shape
356
[ 1.0330693226656855, 1.2790469250593635, 1.6946932749070531, 2.0349035462616745, 2.625777121447741, 2.609703478898238, 2.7571573502365916, 2.8070096012213615, 2.932072063458058, 2.4906119113005905, 2.4405970001711013, 2.008799858818336, 1.601258964537247, 1.394307702596956, 1.1163688751790803, 0.6013783930827821, 0.3450447002808896, -0.022448318799063005, -0.33146820832662494, -0.4071428996363332, -0.7300366677391994, -0.6829163293701722, -0.8629136798153607, -0.5471569187692368, -0.376052794463844, -0.19080488262439815, 0.3024557292311023, 0.5648696214194876, 1.2106193436641772, 1.195522103664692, 1.8483468800789473, 2.1766088164833466, 2.4401354279090564, 2.6437374870989077, 2.853359699878166, 3.016690502378019, 2.71837040014892, 2.6926663539274585, 2.4742241150087265, 2.2036433047821298, 2.0232693478488595, 1.681338583953622, 1.3384930895275404, 0.8978006402251361, 0.5267183122555732, -0.02775213366673998, -0.0310853882340886, -0.42675985711978165, -0.45087742130197567, -0.7546841568606156, -0.6152876512903153, -0.3832079560293184, -0.27881762756203116, -0.0883777473348713, 0.44621687160740475, 0.5697975368073378, 1.081829168801913, 1.550541854851238, 2.084674183657055, 2.184683857112266, 2.507675760003029, 2.7301065513113976, 2.9604509273578787, 3.072352392520096, 3.111151129995253, 2.9777695797631214, 2.6700017152758706, 2.545133388467405, 2.156394022769955, 1.8605062871827491, 1.47838968150473, 1.1662189318996123, 0.5854875141338545, 0.2159945385639706, 0.014327697007564956, -0.14847593691537475, -0.4207253879629953, -0.376892610655839, -0.41918281234492744, -0.40668991295570345, -0.14530604227554456, 0.014144041820042988, 0.40243055437318853, 0.6381552491766623, 1.13351179410343, 1.6437203273006953, 2.012645129187698, 2.3596949536020437, 2.6398011329209363, 2.876897924935696, 2.9082978574428497, 3.1042892394775974, 3.144611171428204, 2.927062860572357, 2.6937106231676693, 2.73606813678857, 2.3198967865892515, 1.9802935103141222, 1.630061420581735, 1.0815256424195343, 0.7544917947723295, 0.5895291451387361, 0.08159863479681063, -0.1421751256736542, -0.35355073737077736, -0.44794518031742503, -0.2622583638221372, -0.5309362931814696, -0.1551632822907799, 0.16275409038109476, 0.623271749883033, 0.7018288605677263, 1.0771962513377913, 1.525571888173959, 2.0771654325725355, 2.38713670603671, 2.552144604608459, 2.966611841756565, 3.2978127243904867, 3.2718972924287812, 3.2765872890644587, 3.2086979304202123, 3.069082152145143, 2.665755874982292, 2.469445350836305, 2.1252933091299915, 1.7135942550326704, 1.4364352937413867 ]
[ -0.06339934632565143, 0.15762671027404498, 0.2573792405229734, 0.6036620344715405, 0.8317716507191069, 0.8594100405621988, 1.1175002791376347, 1.144102742458413, 1.0067311960634364, 1.3319217483963601, 1.3727729817865073, 1.4287733200059762, 1.4465526441667378, 1.3304570954803345, 1.499192421677633, 1.2754834370818118, 1.1706933595441746, 1.1543186599752073, 0.9540829750073326, 1.0671816859614043, 0.637107542631582, 0.5332559261456329, 0.2591019896162295, 0.2565501827466733, 0.03896013669251453, -0.18059477817751624, -0.3787330700584151, -0.5540597653235597, -0.49681212308724226, -0.7743034159925457, -0.5808730439371484, -0.8915137368476228, -0.8126689468078238, -0.8878565294143478, -0.7762507225555431, -0.7318174008855908, -0.6207589852066984, -0.725642038288169, -0.5358110589170125, -0.22954609366297607, -0.11111209344482476, -0.2633026568679539, 0.19886180411062276, 0.2399452703654829, 0.47014660242958134, 0.6932574732904725, 1.0553422689191394, 0.972385309502551, 1.103374015605716, 1.4427767466222343, 1.5328778532008993, 1.7756702832702587, 1.7181096898580321, 1.9502276493407404, 1.882508503597961, 1.960648353525764, 2.0717433844143613, 1.869139213775988, 1.9423995025644434, 1.7053391588431301, 1.6965288251809394, 1.4167438322068064, 1.3810158580950516, 1.1814760046835655, 1.2538598892779365, 1.1421502238148842, 0.7647344571703062, 0.553842032108798, 0.3332766966843723, 0.33075834102439483, 0.09321540004435128, -0.039575261289561584, 0.05576779311312585, -0.24102797183473607, -0.2363702420356083, -0.35099295498610245, -0.5292804338140301, -0.5910274429246066, -0.34546697108803176, -0.18648781885689714, -0.26368545700839846, -0.147765708696795, -0.19391216592304567, 0.12449384914263123, 0.26700341840406955, 0.2554236346733161, 0.5493614320311758, 0.49615401611996024, 0.9279054593654358, 0.9821824508317043, 1.0982359792856353, 1.4368227994385974, 1.3856699771923258, 1.7508192429443512, 1.7415646781717595, 1.8402011260844913, 2.0803795668688236, 2.1343546116753944, 2.3507252113074535, 2.1052743100196065, 2.3747889089206264, 2.101925849604751, 2.261482810287039, 2.2104963111068545, 2.0404143461989737, 1.8175630100478637, 1.6151400280699735, 1.4281556628741676, 1.6526143956755046, 1.2731778690899185, 1.0227450907621825, 0.8476619427794657, 0.8095265558037716, 0.5895510304729579, 0.28236150417536565, 0.418201291238101, 0.23790018387683526, 0.27893422123839673, 0.11977684520440544, -0.3712314882363789, 0.03676709883981388, -0.003101097859343288, -0.19131855515786864, -0.1296931648974935, 0.01054010791678027, -0.052709111951266374, 0.12583389695262348, 0.37161655473373145 ]
What is the most dominant pattern in this complex time series?
[ "Trend", "Seasonality", "Noise" ]
Trend
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
357
[ -0.033637542510087104, 0.42922284183015524, 0.6241473863796883, 0.7233139210772985, 0.8624015197273619, 1.2566002677767274, 0.8275568570746393, 0.938252063485253, 1.0050278195650295, 0.9961951869623273, 0.8905512318633405, 0.8968060281034447, 0.6304965869861914, 0.3826581512165613, 0.44720716269094596, 0.28176667117842236, 0.4551271336395225, 0.41791462723059625, 0.9127478282868585, 1.006925930332307, 1.6112449537951041, 1.6843413977115815, 2.159150242054288, 2.0928960241967203, 2.26635491521393, 2.514417061681257, 2.4271636178184166, 2.590903058155044, 2.531090168432817, 2.418958494097012, 2.118831694955319, 2.2477688050527673, 2.040182944749331, 2.03819049498942, 2.0644064693839352, 2.007661169402247, 2.0088831971522785, 1.9689118935781627, 2.3364229836126684, 2.5600725292714634, 2.924313958100062, 3.3405628804685414, 3.2881524072546817, 3.521189272568632, 3.652856594631256, 4.170772400992624, 4.087540865408815, 3.9777483465513366, 3.979059379299763, 3.7335886138400216, 4.020217486167338, 3.641717536864939, 3.4636128538321835, 3.6423966365252, 3.663744023650139, 3.3947570644395606, 3.490983835643953, 3.736979499236517, 3.921419257009932, 4.256580268839684, 4.21714486656142, 4.533087320857539, 4.936574962440234, 5.024186754049369, 5.442723967047757, 5.327988152226281, 5.430439792110165, 5.589927904882129, 5.670584342360798, 5.544040068882983, 5.475964746669303, 5.499286674523964, 5.39349402947044, 4.963673473664197, 5.052650248189288, 4.771972707033918, 5.090997442476985, 4.94105247354819, 5.215868478109364, 5.6648757261054365, 5.675520487059755, 5.889843943373475, 6.1298042015451815, 6.548591759631043, 6.7803933490492465, 7.074729884802253, 6.964565244576733, 6.9100643892384825, 6.934667788042517, 7.028730786082354, 7.080462309783734, 6.984440082299903, 6.780636691056291, 6.730361441986917, 6.534252135513016, 6.418164221461328, 6.40148275542042, 6.519749632512267, 6.619915391250134, 6.500520614597097, 7.143830233969173, 7.12642271419359, 7.6325659345405, 8.011923359382799, 8.096188203330502, 8.473765238351092, 8.456147351916815, 8.339088255393786, 8.579845213210724, 8.838424747876358, 8.566917053913828, 8.55362982117608, 8.475715620812156, 8.444938540953048, 8.141315964884258, 8.000297769973908, 8.163953684394365, 8.145988196996178, 8.07389306117745, 8.190114123498317, 8.480990884206498, 8.969610707755882, 9.012933418373128, 9.430259300755578, 9.49592326337166, 9.951055314759286, 10.026811115684392, 10.235694623557707 ]
null
One type of noise in time series is white noise. Is the given time series noisy based on your understanding of white noise?
[ "No", "Yes" ]
No
binary
55
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
When we say a time series is noisy, it typically refers to there are random fluctuations that disrupt the overal pattern of the time series. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
358
[ 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888, 8.935090073982888 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period increase over time", "Period decrease over time", "Period remain the same over time" ]
Period remain the same over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
359
[ 0.004165092016071125, 0.4221844486460553, 0.9221906803962568, 1.4563667446559483, 1.6367730583657867, 1.9542943156316197, 1.753791925783516, 1.637921450911056, 1.2622992994809714, 0.7001296774180553, 0.03595072794704099, -0.194865027086006, -0.9303609611374819, -1.3169559250137945, -1.620761811473149, -1.7952137429595283, -1.7170727620522719, -1.6724770601166687, -1.3948525571669104, -0.8648083297079174, -0.40403543704264755, 0.00670836708854651, 0.502684502148683, 1.0165404536505565, 1.476493259079648, 1.6058475609392586, 1.8326619662618182, 1.739505752910277, 1.2691290111783706, 1.016470758289976, 0.3979735332415933, 0.11976440656107142, -0.28472623180012235, -1.0921472316225302, -1.4649014496620383, -1.6585716388515563, -1.9101455401969907, -1.9097004457319615, -1.5853116611781433, -1.3778914871890762, -1.046323832317465, -0.5947990457802643, 0.3812160883628591, 0.8051600802772663, 1.1167447772630779, 1.5355915285160564, 1.7052937124135685, 1.8744949176789747, 1.6430478135454318, 1.423446672152889, 1.139460678746101, 0.7569070736740408, 0.1481686576597254, -0.3467449046821103, -1.0031848571200952, -1.4484844399826882, -1.8693745378893498, -1.8067132977584761, -1.7510000671711223, -1.6327067873653394, -1.3497831278833834, -0.7025692431400385, -0.2440258940697842, 0.3714570333450209, 0.6705590316024457, 1.1518312150597012, 1.6895558010276908, 1.7697073798353244, 1.7628685339720165, 1.6512125529684196, 1.4281758936832762, 1.1289286532020322, 0.519257678287321, 0.07280944118567938, -0.5004963347902727, -1.1267556017377218, -1.5249212755818042, -1.7506553495188517, -1.954265349827794, -1.8229243036181229, -1.4114928830577196, -1.216498397628547, -0.8312109828091581, -0.03621551786450433, 0.22644660182409232, 0.7418324678018944, 1.4039808521913764, 1.6747618766129941, 1.7782935392434451, 1.895773764268318, 1.7006229021552686, 1.2594154590760833, 0.7215949288873957, 0.40132510227113016, 0.02198974900308666, -0.6661186903749466, -1.0578776701601078, -1.4666005695368527, -1.9017663776849685, -1.864342278099359, -1.7147958802516476, -1.5986528752283597, -1.188508698288441, -0.6415851858465872, -0.14066930759294666, 0.5029141148267404, 0.9468680371074933, 1.2413429758220793, 1.5971507169084527, 1.8067157964775191, 1.9357164818282664, 1.5893725162407069, 1.1508586706175397, 0.9362674222668027, 0.304362968704058, -0.2951241626414134, -0.696221377666335, -1.0694275667811426, -1.5876007023309449, -1.7061901086095674, -1.7550990931976447, -1.6472856576855395, -1.5473226672367062, -1.2010261449302466, -0.7041104309264627, 0.011309450001485047, 0.542905716809964, 0.8815058715568344 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "No, they have different underlying distribution", "Yes, they have the same underlying distribution" ]
Yes, they have the same underlying distribution
binary
91
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
360
[ 0.005150743374613423, -1.8987725212795246, -3.067508569164985, 3.734209375170549, 2.234700936854358, -2.6763589887692985, 0.18508457864490657, -0.29913338264193057, -0.4391586558959226, -0.8550048176423333, 0.6925906885457158, 1.688848208618287, 0.6782012953874471, -0.2076470048034486, -0.30172694003309536, 1.8230967093350368, 0.8501808774920757, 0.0834933649856977, -0.17771278188486883, 0.7202825560802992, -0.9783837574225291, 1.695873676978407, -2.1164490677469154, -0.9066819932291882, 1.165642831588989, -2.246068236770398, -2.9607093555184667, 0.08587099488662095, -3.329516456639163, -2.3867671019034833, 1.5234210587597325, -0.23231247107748254, 2.627907546390842, -2.4337024537981917, -0.0838687740823564, 0.9302603322078628, -2.124946343000033, 2.1069757865661023, 1.0907103645577183, -3.162496418854161, -0.15719682199476093, 0.7159838170704583, -1.3149336509323601, -2.7460503715087796, 0.5136479987606656, 4.432978085312958, -0.8763551108816564, 3.1625495981244565, -1.5137027931112392, 0.2910895549189152, 1.664361995235163, 0.09435525748356405, -0.5583175008831207, 1.416689559896523, 3.7253780757373174, 0.6045091713311062, -1.0836595220753735, -0.41052750936455457, 5.100295980751918, 0.5297916701368848, -1.0006681807922293, -2.1808765558618113, -3.5876111364348318, 0.6278423952987531, 1.2009319209462075, -0.8274349936714073, 0.18597878316432653, -2.0974958403970456, 0.33335269339345164, 0.8410954220354068, -0.9523095142411772, 3.266344961132433, -1.8445999264855721, 0.5804537643520904, 1.5669279609876896, -0.23123749225143675, -0.39188199916690647, -2.8309009511132963, 2.6384312093571856, -0.3389040961667868, 0.8583184133789423, 1.461374976705419, -1.3212242532685086, -0.47969894929403206, 2.5645097489110715, -2.18528726918189, 4.287563912911277, -1.4228382053120134, -2.239103143932862, 0.28497282021648, 4.321357108756744, -3.6884289407074804, -0.46773886664656544, 0.9019849085663643, 0.18172059061772883, 1.1375850128922393, -1.517972081143364, -1.1249585293908095, -0.34598655998757877, -1.9943885530179912, -0.2223534978367469, -0.694139098933938, -1.0555919184592466, 0.5919598727246217, -3.5470655945635277, -0.338919556405704, 4.402656745527081, -2.04760749913538, 2.5039071850424035, 0.13365908914743815, -1.077731559168579, -2.6986819622672273, 0.35292900380176917, 2.7719239080200073, -0.6479524109610311, -0.124123223516485, 1.9455789460273556, 0.6044500802484722, -2.977863986689732, 0.3185639566089926, 2.8900479957261243, -0.18520100615763907, -5.26646729553668, 0.6107478021554639, -0.5168162434510718, -3.6663215676015284, -3.3098658640907868, 1.7642632021869857 ]
[ -2.18213826943022, -2.5771977517276747, -0.03250341987649996, -1.8760240414888214, 0.23758307985697893, -0.35567050403496314, -3.2626418209370653, -1.3535366339907042, 1.1073740099689509, 0.33014575686655456, -0.27658528905432805, 5.236762178934883, 2.1163121689120676, 2.2960173615525448, -0.4457788921382135, 0.5694770024505259, -1.1978250135883473, 2.147927017257348, -0.2444171701750072, 0.5393818975452694, 0.3594163597253504, -0.11023270134939653, 7.83640979609123, -1.968767934109221, -1.8046916623057514, 1.9781797820469544, -1.528648567860859, -1.029303387813981, -2.9738736051378334, 1.224262579600343, 1.3833213969939, -0.8974595592249728, 1.9997614826238848, -5.046316564052181, -2.1085519066014506, -0.5581647400742464, -3.1819109630677014, -4.738360729919119, -0.976437593167893, 1.7304661169899687, 3.486267187492481, -1.626133115799354, 1.8236569976962858, 1.6835577587626667, 3.25940890370659, -1.0385317718941862, -4.952907479995205, 0.19192274456769987, -2.8242436063306124, -1.9570877432072573, -0.8557906636702437, -0.9033490544509244, 0.47212287114030344, 1.9928397277213041, -0.8695002843858017, 1.1580465008894445, 0.06407796561852855, 2.496318629574586, -0.5507615417935495, -0.3020463182727342, -1.0159620461003496, -0.37073039846787587, -2.199564927098201, -2.3997795456974362, 2.0382963929053894, -2.919719199851371, -0.9212738541817438, 2.682481576561612, -1.0255018533801625, 2.300181167328597, -1.6142342427154064, -2.896520464775129, -4.303461425036971, 3.52230587227562, -2.9737037427064665, 1.9310608491970103, -2.733333679836262, 3.4359314374008183, 5.9562429144256965, -4.746522197244554, -2.870243787991324, 2.1755335601427834, 1.4712158588785011, 2.112059424395295, -1.6456073282009744, 5.315684600580055, 0.47349557674147036, -3.1602183667457764, -0.6749870551129901, -3.3189831501711775, 4.455918663251886, -1.862104645730416, 1.3598694025623688, -1.1425784696351418, -1.754275219487137, -5.102998135603704, 1.6759687311766085, 3.5230400674384734, -2.5859941411245195, -4.267401596928521, 2.2097717062530764, -4.611517327577667, 3.3238384233897458, -2.401129000236218, -2.896675429293142, 0.5346851884648687, -2.6866953905574538, -1.750114911689136, 1.0019983480095511, -6.698311272728362, 4.425996548691767, 0.11371364910509947, -3.483072358820717, -2.759399573391721, 2.7202186054053503, 1.6226520152083084, 3.7913155725964156, -1.8995491939026412, 0.7713412983156436, 1.100435663185325, 2.079224493602086, 3.206710709233202, -1.8916845305842833, -0.1774162985076518, -1.5765763993554291, -0.12470256344361459, 1.7455344508774493, -4.5165594484167 ]
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "5.4", "7.47", "1.28" ]
7.47
multiple-choice
24
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
361
[ -7.294160122420287, -7.09780440416216, -6.733849802717525, -6.503142205901269, -6.0283276341550085, -5.6612231443763275, -5.494125810187576, -5.193877442405542, -4.649420997967541, -4.37848389943575, -3.954434086938334, -3.7603491577034283, -3.4381154588135927, -2.912215237836928, -2.618681876994431, -2.4455927697754727, -1.7510322526113926, -1.6669271580022507, -0.9296482727345414, -0.9002017575961521, -0.44846334465640475, 0.025256182808004346, 0.35768535779045785, 0.757536288868555, 0.7557957075961227, 1.1436974649717229, 1.62906442537014, 2.039620124988798, 2.303703320099354, 2.4902073441042685, 3.052845246810379, 3.332942975328785, 3.6809249014948913, 3.8229344388477133, 4.47965858431489, 4.763611253133894, 5.277787986007536, 5.440001448928812, 5.853266909872123, 6.228995397669035, 6.32037810743068, 7.10584494119525, 7.1502763909811184, -7.352473159243698, -6.988690935524741, -6.785046865780396, -6.169689736598315, -5.978611559569343, -5.677373666957229, -5.292994923789361, -4.881239816929013, -4.607404537070655, -4.171110679275011, -4.078610200971818, -3.6357393028194034, -3.4256416520793955, -2.662880121675879, -2.3150010413533897, -2.1015579641302953, -1.9163006947366057, -1.2268703771851805, -1.1771189689818937, -0.7888175506209494, -0.4023628141190703, -0.02398387725195427, 0.34442547195487017, 0.6976220587701747, 0.9639541697256288, 1.3943973566749799, 1.6578471787880305, 2.0838789716631116, 2.4248584889972586, 2.8005947235322823, 3.1372873475928564, 3.37842812343792, 3.817723061323242, 4.1863727011971195, 4.341100971749051, 4.791989658159109, 5.229386166242336, 5.688684709831753, 5.949426162209955, 6.393354625533132, 6.525460171055967, 6.939497242536716, 7.3442324065028535, -7.564261744031063, -6.831365567631342, -6.819356194289968, -6.184390516138374, -5.866220660673659, -5.8196824567411225, -5.465448598944643, -4.744113598267802, -4.416708900806109, -4.277086787985299, -3.928007629802589, -3.4393785598222695, -3.142732788870438, -2.6868381689984004, -2.395138914901713, -1.9356132447110774, -1.6477278630770686, -1.3234776527160932, -1.081586746422228, -0.7397257145697554, -0.3531888063858097, 0.18526208231673075, 0.3097209856223219, 0.7255820405069924, 0.8242295342671494, 1.4654713812805797, 1.9727910196237752, 2.00288806382646, 2.762876771703718, 2.812837301694997, 2.8865008003291868, 3.4544207837091214, 3.975199147271112, 4.391267694807474, 4.612326512245951, 5.0464567827469695, 5.1210994697481285, 5.520032548416264, 5.7692934621737635, 6.2259137660130435, 6.71179265549409, 7.006047016327117 ]
null
Does the following time series exhibit a mean reversion property?
[ "Yes", "No" ]
Yes
binary
47
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean Reversion" ]
Mean reversion first requires the time series have constant mean. You should check this first. Then, see if the time series tends to revert back to the mean after a shock.
Pattern Recognition
AR/MA recognition
362
[ -10.154046869713136, 23.91536565084442, -11.45794522914645, 4.47161232396764, 1.8483105766855346, -6.11282538947305, 0.23296277587587255, 2.2332524949596433, -20.919404442545694, -0.5136547710937691, -5.211951475534712, -5.958750022916468, 7.909473344285914, -15.407819430640842, -1.7967814688402424, 16.093912864287734, -15.132893296295546, 12.781596683915676, -24.47275920926711, 14.134380122161863, -10.198278200630831, -3.3513132137183614, 6.438030754431409, -11.156811502733177, 6.008511704253774, -10.823875485696988, 27.181882233646967, -21.880478034296914, 6.927273137878531, 2.6836306107290646, -14.355340988293474, 13.572908740682333, -30.455028231343626, 11.082162096090597, -6.897117318181243, 12.902359654499099, -8.608204911699575, 5.730081105477255, -7.595101840274692, -8.70913843145452, -0.23113133878347103, -4.421482638571098, 14.108408373046036, -7.850543802752216, -11.349966511425567, 12.320812903088402, -13.707473126633888, 4.196758498247524, 2.7593560898106593, 8.102510353110983, 2.8307929086731995, -10.656809559164945, 5.43332388881981, -1.0340247970202094, 10.58267110883976, -13.257879265524707, 8.749713645781595, -18.06312065668556, 2.4884302845417405, 6.134513996308588, 8.654789088661358, -7.643932486732425, 16.15047496830618, -9.304019724168604, 0.9920182332836411, 2.8203414684572263, 13.124092489893911, -10.857534383014645, 24.33246406455178, -45.66342229253887, 44.74976287778333, -34.92933961984495, 24.953398191217286, -19.045110787618807, -4.63960051591388, 1.5149615343559848, 2.359156487632676, 12.89161525730902, -15.495994388583691, 4.311859481935077, -8.467058021393427, 15.927667594135483, -9.454622978711543, 2.2660963452988465, 3.3197972548944836, -1.6850623104351832, 11.03449975367704, -15.848130741715156, 9.401883127394443, -11.442588033237131, -5.481079054731481, 7.346066014430946, -3.266300089745864, 2.6641746382213, -4.477211044328515, -10.57193858504133, 4.251097640379475, -6.828023277571275, -2.5603540701591694, 0.43542613946724407, 3.6921676565715886, 15.908124886848032, -10.980721781160037, 11.36008133215567, -9.832524223386207, -11.321692774281448, 8.79221546493299, -6.431470272536128, 29.777597342881762, -25.745687522116636, 23.612023441029436, -19.23673644987598, 3.7026087837054646, 8.466141118185833, 0.7464174323190749, 7.313185524575209, -14.944422967607558, 25.983481483447036, -34.805295814680434, 33.71280758974705, -5.065689813697858, -5.852811400348597, -0.9807281757488413, 1.7810961914754853, -6.4596334943423805, -10.338927515187422, 8.956771760210211, -17.788454545429218 ]
null
Does the trend of the time series change direction?
[ "Yes", "No" ]
No
binary
12
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the overall direction of the time series changes at any point.
Pattern Recognition
Trend Recognition
363
[ 0.04126680758492897, -0.012429962635335776, 0.11886940936567816, 0.014395411043169465, -0.013904323703481245, 0.11828441223861677, -0.08617758756894768, 0.09721824551681874, -0.03811838063202317, 0.18354872873233885, 0.04863380105377539, 0.09249802423098996, 0.1254203743107299, -0.08371469494077965, 0.041741493650232483, 0.20554403400688848, 0.19657805818197174, 0.14982739916169854, 0.00626978515469058, 0.19232414008217516, 0.21141608217070673, 0.1571214982054571, 0.273066097953501, 0.10418265971101, 0.12749498019556305, -0.04768522201640951, 0.2741394559398492, 0.2254270213877555, 0.0483131721388281, 0.048494401259580266, 0.1376276298509912, 0.2988577211725506, 0.20505215448513447, 0.1657213198076961, 0.1543948549941084, 0.1575310836919183, 0.08324393106912292, 0.15762314882180545, 0.17753939483612285, 0.3467996978587038, 0.2756927498434783, 0.22200062866598175, 0.518959185982748, 0.2514898424567781, 0.42793825703802824, 0.4771607442137671, 0.18960040842728826, 0.34876408440253764, 0.30138849155554565, 0.3011435932531496, 0.4150691520522899, 0.31348134641649195, 0.33248138616332795, 0.37004823903568845, 0.3583563195442565, 0.29170048234263607, 0.4809433227683148, 0.51155940516789, 0.45370488503022516, 0.3944405356754801, 0.37134963195171516, 0.37877171446540714, 0.6688643694529003, 0.5449827590805973, 0.38798620498214964, 0.48809948709798207, 0.44666147689843055, 0.5413722535207575, 0.5449237737339228, 0.6021018331705572, 0.43067170621656103, 0.5262099959226483, 0.36225304515829104, 0.4149126833479657, 0.6200439957175163, 0.45779611636315226, 0.4752137751774337, 0.5594189278540325, 0.6316505994642745, 0.4767200251531103, 0.2604034479072302, 0.5088808675892648, 0.7079520779074242, 0.6355380569959752, 0.733427587441251, 0.5138117227885345, 0.47418950560203543, 0.6756715973904627, 0.6623866730049065, 0.6757165084886868, 0.7409634949420763, 0.7009965011313991, 0.7067870909470335, 0.7426479145346788, 0.7302809640491782, 0.770358636176282, 0.7915921557259273, 0.8472048238216334, 0.6529798154266089, 0.7646373078496088, 0.693295754380874, 0.6577707012003327, 0.6783522681007768, 0.7950676275007655, 0.7952558519599063, 0.8008826093118007, 0.7503075007693166, 0.7787526917695875, 0.861267702415212, 0.655376514178669, 0.8025393119215085, 0.815849048673417, 0.8844135135790185, 0.6973330930336513, 0.9675042945870286, 0.8563762588561158, 0.8685436435548646, 0.8141032686913885, 0.9081734513671234, 0.8701692204397985, 0.9847162837951194, 0.7471034414662657, 0.9037832702945292, 0.9325830803257277, 0.8848944449829024, 0.8720005674459078, 0.8831292983918129, 0.9400750791894175 ]
null
Both time series have a cyclic components. Which time series has a higher amplitude of the cyclic component?
[ "Time series 1 has higher amplitude", "Time series 2 has higher amplitude" ]
Time series 1 has higher amplitude
binary
83
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Amplitude refers to the height of the peak and the depth of the trough in the cyclic component. You should check the height of the peak and the depth of the trough for both time series.
Similarity Analysis
Shape
364
[ 0.01010334879827962, 1.1770409711620649, 2.209969352318052, 3.247838369991814, 3.980382997684763, 4.808985437212513, 5.624169936411659, 5.95405507016144, 6.1137243639739, 6.219549456438879, 6.037252174334634, 5.808557624940205, 5.071233832499237, 4.238719652168748, 3.4955106771267985, 2.6340689082401267, 1.6787148487351116, 0.4007282069280473, -0.4136150516066879, -1.4763345062550213, -2.3013239438617723, -2.8957809126211127, -3.4906936840431095, -4.0443225922185615, -4.212912190453152, -4.270797036960849, -3.7446968927164814, -3.6237741557277827, -3.165923128988829, -2.2110009061066935, -1.3238923653730093, -0.28154765551748784, 0.8287530598406965, 1.8166163314063501, 2.84383519448439, 3.960227007717218, 4.9843697261716216, 5.9028893411116545, 6.862420005784077, 7.372816993227623, 7.922795298538852, 8.150719476618356, 8.028028156801142, 7.818558938590562, 7.523932535167155, 7.081544135074533, 6.454370874494505, 5.55946754815961, 4.77589568646607, 3.6669885031814817, 2.7298403460399148, 1.7089180190065711, 0.9103456293121, -0.23772275776167556, -0.6798442340815303, -1.5747063917238433, -2.093886592524111, -2.2382082270378363, -1.9498860244874603, -2.0383531956682464, -1.7212555430413061, -1.1656892427710666, -0.6128664699453377, 0.3557072237467469, 1.30347312319598, 2.5524319805316944, 3.481061355334851, 4.588667447928114, 5.620291894185847, 6.799181535848098, 7.765646249331493, 8.438232822556564, 9.269340705738877, 9.734880334111814, 10.107029379140098, 10.219220957456608, 9.996694876150707, 9.57595991640112, 9.105013496681757, 8.708592173678868, 7.754599632168158, 7.010203223814137, 5.909214849316078, 4.92172419357004, 3.9287636897510994, 2.740922071363377, 1.9989163105036336, 1.0602445598180466, 0.5120533980628598, 0.12714225205491292, -0.3316763047577135, -0.2677736561535299, -0.36491919653836574, 0.20928732549034607, 0.5309854759629958, 1.17377269688625, 1.9664189129723006, 3.0122180008802357, 3.934104073426913, 5.183656086775551, 6.483294205411853, 7.472084032625116, 8.43573086320093, 9.547680952876567, 10.386838116291559, 11.26492032444557, 11.669979306647717, 11.952011805390702, 12.141690994938541, 11.964134665529228, 11.69781285907332, 11.412258518951463, 10.455557718538593, 9.944928328042977, 8.952003627395976, 7.968554802675016, 6.933319481633949, 5.9893411363010856, 4.987817791311964, 4.0389292975321895, 3.2030905751005045, 2.4114609360472863, 2.0200350596708034, 1.7137113654805252, 1.6485044397720452, 1.900853570977873, 1.9163982262328392, 2.3436863319702317 ]
[ -0.07144960913030979, 0.35149830554539563, 0.7244134126475831, 1.054378779369177, 1.3606278527129922, 1.6455974011868484, 1.7609105173247404, 2.199089811190432, 2.1245234697856246, 2.295739079160019, 2.496106978905553, 2.4611770687545973, 2.175184917496735, 2.352773324860247, 2.352042781772285, 2.0092741883313368, 2.0649130736191292, 1.8486019159385747, 1.7269544020702978, 1.3237934026596698, 1.2690156153423742, 0.9606027240682665, 0.9020283786960511, 0.7970309299157579, 0.4838424279404558, 0.21413586328422723, 0.26406810255511226, -0.007394753381813987, -0.2200766045850674, -0.15373654378432236, -0.05130733724473699, 0.021130190350092296, -0.06455123875408873, 0.09019963833706936, 0.3568234604214505, 0.6723579383675313, 0.9454961300527884, 1.1811501110972091, 1.3931923563225228, 1.9756453961644467, 2.0292459991117857, 2.6036338497886877, 2.8798805832003627, 3.255588919005787, 3.3872042431880334, 3.6980064240618176, 3.9694983101648895, 4.134439037696045, 4.385130170195387, 4.660466186786344, 4.470222166176462, 4.587926554504599, 4.587262411249319, 4.622137977772566, 4.5454569363314015, 4.526465992867485, 4.309635218516484, 4.165194133409088, 3.980505715851071, 3.7541199053928604, 3.578451377216159, 3.2707598043335073, 3.2256307996592697, 3.1030100550304445, 2.723661819020622, 2.502454144001456, 2.3967019213204863, 2.11157153194581, 2.1640347899847634, 2.0373422563672468, 2.1682368424313974, 2.094871048789274, 2.2269376722594245, 2.2108490437646173, 2.458122905751874, 2.8261690365764283, 2.9530112214087523, 3.4247926638103783, 3.52546751758676, 3.9865826260384254, 4.197033423741277, 4.648618631601708, 4.791536041820641, 5.225983785496481, 5.497773344348914, 5.960444412154155, 6.181053170034423, 6.24225332312545, 6.539628559366563, 6.637552458446505, 6.92265744715344, 7.024265093691264, 6.77873508433476, 6.9883921214271405, 6.765018275758956, 6.725251043620925, 6.6222262483029946, 6.638917481263875, 6.170191036737419, 6.1483015532162515, 5.729187674657392, 5.497688911311718, 5.400688620428237, 5.1835617732099495, 4.69574451916061, 4.912813309868343, 4.426867473969056, 4.501286272993748, 4.559292609649156, 4.5971645691951295, 4.3312896492729855, 4.258843848985073, 4.609450884677146, 4.6883424328898435, 4.715947662749268, 4.905292716577137, 5.132613047423197, 5.438454589778054, 5.799013543391791, 6.025461358057205, 6.366665896993971, 6.81062405284637, 6.934667343414078, 7.37548436427845, 7.562776787728116, 8.03930750639293, 8.10756647962499, 8.633243161462088 ]
The given time series is a sine wave. What is the most likely amplitude of the sine wave?
[ "15.9", "2.58", "5.92" ]
5.92
multiple-choice
21
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
365
[ 0.042293443184520274, 1.5042475330215603, 2.6411759170059215, 3.7300472064251724, 4.659946988569303, 5.499522089637285, 5.796298210472744, 5.954021130294898, 5.673009125462047, 5.301228551084686, 4.4063098226497335, 3.5089726007468376, 2.301887511541388, 0.8359458352580289, -0.38462119556922747, -1.887014646978756, -3.063747551726127, -4.241774975883437, -4.957352794434459, -5.573770367459699, -5.842858531850849, -6.008476294585058, -5.738546358414898, -5.026612937233988, -3.976939104021376, -2.859722670990789, -1.5593177438303558, -0.3693143753509281, 1.0528075091842686, 2.2679898735254524, 3.6571431675163173, 4.445319676983933, 5.39075296067626, 5.725132690375474, 6.080586758584576, 5.800438399883028, 5.35107782410351, 4.529818310658216, 3.848267224154242, 2.5646386648855897, 1.2201548543730047, -0.16559764949808534, -1.6040989996693988, -2.737708878258581, -3.9301464557308994, -4.828355546579274, -5.399601084945161, -5.8241318678899425, -5.9046564739502845, -5.50396201572897, -5.171345178367949, -4.427311514448782, -3.2880597350685647, -1.969954275968144, -0.5872570621912122, 0.6321059879910644, 2.401072486663614, 3.2687072043951777, 4.311670734064811, 4.985964786731029, 5.518169379003044, 5.7317463503018375, 5.981775474764223, 5.590892502582604, 4.804813459388166, 3.764281903374619, 2.733023064861751, 1.631696068076827, 0.08901859125851919, -1.308273562978299, -2.549157043147102, -3.700331500868754, -4.562786415920506, -5.577288403226824, -5.775889487152077, -5.991941296898187, -5.791576186482365, -5.174421020481822, -4.613831025802609, -3.4619617758718704, -2.2438144263641338, -0.9245743915153066, 0.4495987454692465, 1.7774805009488852, 3.0424785257472005, 3.975396927148814, 5.0777457148938145, 5.438711262300303, 5.915853292401621, 5.821006414382426, 5.415672130661427, 4.932858272909465, 4.116149167168228, 3.186168762551548, 1.9875177023772428, 0.4550270875708489, -1.033258388438648, -2.3399442750566624, -3.330103611890435, -4.353964369522635, -5.268645790421884, -5.832621333822702, -5.8205523244235255, -5.933615971279194, -5.438512791152875, -4.644296707539966, -3.9408055773368447, -2.496320506934416, -1.0672992168830386, 0.06152680164579082, 1.3994823526274576, 2.6858820522052786, 3.8404120722349195, 4.679189060731958, 5.322310549476584, 5.794136479690108, 5.930751664978943, 5.588182935831859, 5.024726682048635, 4.313439639478812, 3.191438497273877, 2.183158752124215, 0.4509467001146479, -0.6846963014820351, -1.7594392694305871, -3.155197059083025, -4.18092304085624, -5.056079905913417 ]
null
Is time series 1 a lagged version of time series 2?
[ "Yes", "No, time series 2 is a lagged version of time series 1", "No, they do not share similar pattern" ]
Yes
multiple_choice
99
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 1 is a lagged version, then it should look the same to time series 2 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
366
[ 2.2640178249255234, 1.553743847902963, 3.7948898738431898, -1.3082782826902588, 3.3041348852441876, 3.5437178010961183, -1.52907201624013, 1.2288983178069615, 0.5761321505475694, -2.826898001992239, 0.763880481754152, 1.8220953537584135, -0.9741153457236641, 2.541156662788606, 2.7550473878457504, 0.7238678725495564, 2.1774558560049915, -0.6291377021454254, 0.08106203520301403, 0.9047965533209748, -0.4899341526041566, 2.1699782303315986, 2.780618340802077, -2.262746241848663, 2.9641203424399327, 2.560987535533773, -0.644129953074429, 2.1412033447253087, 0.5289591767238084, -1.696627410434692, 3.0352092241827995, 2.6612869312315093, -0.6197603276229805, 1.922788413201437, 0.8443136583235687, -1.5759966065780544, 0.38090346845252143, 1.5047327546046851, 1.669183102441672, -0.8354834102441167, 1.765297612554606, 0.9497013678289097, -0.6306748699365827, 0.9356318824694716, 0.6973662444891567, 0.2653870300082162, 1.9905360772562366, -1.7448631778408268, 1.5663570015311366, 0.08514313694538034, -0.1981015763893086, 2.183479334600048, 1.3684461872743885, 1.5589995912961767, 3.0661130206123017, 2.416635415408521, 0.6364030356692717, 2.264163177722001, 2.191283835429637, -0.7843681731291511, 1.1669039492269517, 1.827309562308433, 2.140186242803653, 1.3759981708382671, 0.7436526615150196, -0.4379940614565423, -1.2913325926327568, 0.4308584699141731, -1.541716750275969, 1.9875431732766162, 0.3673044955050655, -1.557159062786413, 1.3573671703435746, 0.5645677232689762, 0.12410642280736045, 0.678008834537918, -0.2455463061715415, 1.213096641267765, 1.7125563515139983, -0.3264577152379504, 1.4218616914960756, 1.0503799754732381, -0.2033583403946021, 1.9947078367256776, 1.0954275260652353, 0.7049151236062936, 1.566001772526438, 0.9749939178146279, 2.008355547115247, 2.28318381956749, -1.1924410294746783, 2.4245951761905262, 1.7728953867912685, -1.4049817895300076, 3.507231068446981, 0.6487521515637101, -0.8234939940890502, 1.8878981499746454, 0.8055148858663344, -0.31272694661744327, 2.151906986219261, 0.9744162491002438, 0.005416014821096771, 2.3632868620934584, 0.2644681292878235, 1.540536278156472, 2.9692828902869257, -0.8445694432435441, 2.736096079337412, -0.14111373059698162, 0.9777334667498074, 4.6147080221756696, 1.1015675397958145, -0.2311331701173467, 3.219924795208059, 1.8949864556187304, -0.12900014398813286, 3.8216107365874796, 0.8709932385126891, -0.9164094486950336, 2.8831788008040875, 2.18197696130971, 4.846690075879007, 1.5970097439764808, -1.0760528430973593, 2.7960891863817783, -2.3690521011868633, 0.041627715134582854 ]
[ 1.8623794565421243, 1.785316630092617, 1.873972832429624, 0.7174825783809582, 3.392808458721876, 2.278911290634088, 3.698852412181269, 2.2640178249255234, 1.553743847902963, 3.7948898738431898, -1.3082782826902588, 3.3041348852441876, 3.5437178010961183, -1.52907201624013, 1.2288983178069615, 0.5761321505475694, -2.826898001992239, 0.763880481754152, 1.8220953537584135, -0.9741153457236641, 2.541156662788606, 2.7550473878457504, 0.7238678725495564, 2.1774558560049915, -0.6291377021454254, 0.08106203520301403, 0.9047965533209748, -0.4899341526041566, 2.1699782303315986, 2.780618340802077, -2.262746241848663, 2.9641203424399327, 2.560987535533773, -0.644129953074429, 2.1412033447253087, 0.5289591767238084, -1.696627410434692, 3.0352092241827995, 2.6612869312315093, -0.6197603276229805, 1.922788413201437, 0.8443136583235687, -1.5759966065780544, 0.38090346845252143, 1.5047327546046851, 1.669183102441672, -0.8354834102441167, 1.765297612554606, 0.9497013678289097, -0.6306748699365827, 0.9356318824694716, 0.6973662444891567, 0.2653870300082162, 1.9905360772562366, -1.7448631778408268, 1.5663570015311366, 0.08514313694538034, -0.1981015763893086, 2.183479334600048, 1.3684461872743885, 1.5589995912961767, 3.0661130206123017, 2.416635415408521, 0.6364030356692717, 2.264163177722001, 2.191283835429637, -0.7843681731291511, 1.1669039492269517, 1.827309562308433, 2.140186242803653, 1.3759981708382671, 0.7436526615150196, -0.4379940614565423, -1.2913325926327568, 0.4308584699141731, -1.541716750275969, 1.9875431732766162, 0.3673044955050655, -1.557159062786413, 1.3573671703435746, 0.5645677232689762, 0.12410642280736045, 0.678008834537918, -0.2455463061715415, 1.213096641267765, 1.7125563515139983, -0.3264577152379504, 1.4218616914960756, 1.0503799754732381, -0.2033583403946021, 1.9947078367256776, 1.0954275260652353, 0.7049151236062936, 1.566001772526438, 0.9749939178146279, 2.008355547115247, 2.28318381956749, -1.1924410294746783, 2.4245951761905262, 1.7728953867912685, -1.4049817895300076, 3.507231068446981, 0.6487521515637101, -0.8234939940890502, 1.8878981499746454, 0.8055148858663344, -0.31272694661744327, 2.151906986219261, 0.9744162491002438, 0.005416014821096771, 2.3632868620934584, 0.2644681292878235, 1.540536278156472, 2.9692828902869257, -0.8445694432435441, 2.736096079337412, -0.14111373059698162, 0.9777334667498074, 4.6147080221756696, 1.1015675397958145, -0.2311331701173467, 3.219924795208059, 1.8949864556187304, -0.12900014398813286, 3.8216107365874796, 0.8709932385126891, -0.9164094486950336, 2.8831788008040875 ]
The given time series is a random walk process. What is the most likely noise level?
[ "0.71", "7.65", "3.26" ]
0.71
multiple_choice
55
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the past value.
Noise Understanding
Red Noise Recognition
367
[ -1.13796791518888, -1.3208832869087122, -0.9465328026009161, -1.0217086489444218, -0.8344837212641646, -0.9770173376146629, -1.0536993070491818, -1.175904359337133, -0.957846218042039, -1.2318242128464147, -1.567447799840811, -1.35755795335333, -1.2712119082856927, -1.445140607323876, -1.5011730119219604, -1.0762402536561522, -1.1701752060169963, -1.142185124938856, -1.2983973954405894, -1.1500315960003067, -1.213818640850156, -1.203739615660426, -1.0677605820293463, -1.2791636853638302, -1.1893415324091114, -1.0432678649976086, -1.1173309921791228, -0.8415499944618001, -1.1260350848190162, -1.0262281942703178, -0.909938406825769, -1.1810721128898214, -0.761572533199118, -0.5137537833194737, -0.04950795859297924, -0.04395626865751605, -0.0092358060621123, -0.07081266321000358, 0.18514262360625322, 0.45642779954565704, 0.44681369466710663, 0.5767166844698968, 0.7682267069131709, 0.38828637131120636, 0.3462652231117813, 0.5605187525921269, 0.3085914951071689, 0.3127458180708214, 0.5801631200631787, 0.2945895853724373, 0.2877468459112224, 0.3200373865597308, 0.07837633469518517, 0.2517519925864125, 0.21713250401981407, 0.4955564798679241, 0.4598115272761743, 0.42062151128001923, 0.5504575582059382, 0.5275256168802397, 0.300147162913323, 0.5168431663777967, 0.8513137099762162, 0.5788574308955601, 0.7322698772896707, 0.7083096382801637, 0.7940944480572738, 0.9829175648120763, 0.6314600106461733, 0.681858007014137, 0.5893649960810364, 0.3745576938622679, 0.40530865060408333, 0.4998618230059326, 0.25498888374568346, 0.261696402518569, -0.011649427434531054, 0.045941202800126604, 0.27212723250494375, 0.059908188429425274, 0.19332576788658326, -0.019171601373324257, 0.42388514020582224, 0.4041268438714897, 0.35902160658486804, 0.321791251683729, 0.05416342598378604, 0.3295990380645776, 0.49416709662477487, 0.7833930873867223, 0.8156332283592698, 0.6433810033809706, 0.7008831351740571, 0.4686159977727292, -0.05782558546909548, 0.10377929203039733, 0.18648910534250907, 0.16491016682103424, 0.3819780293869346, 0.4506304064656111, 0.40095908352743703, 0.46704317854858557, 0.31559751814607234, 0.35690031113099685, 0.47155647570739645, 0.2514547598512723, 0.5645704378813716, 0.6464289337931698, 0.44176653674849214, 0.42396025088217787, 0.45388982437403547, 0.5304900174519385, 0.5753560941510479, 0.351998217685075, 0.4263305776663195, 0.6113620415204425, 0.7737496116646313, 0.5666241581075055, 0.35029567638616405, 0.5935149100595921, 0.4118133357054546, 0.5545787837161529, 0.4786936608002727, 0.32685157104357226, 0.3927764483012316, 0.2437167481684086, 0.29858042299640486, 0.3498666880454254 ]
null
The given time series is a white noise process. What is the most likely noise level?
[ "8.65", "1.8", "4.61" ]
8.65
multiple_choice
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the mean.
Noise Understanding
White Noise Recognition
368
[ -4.950685276142873, 17.212353863273687, -26.177096252074776, -5.773692406828512, -10.129609131757487, 0.7300876658579024, 5.138466286957691, 9.628634902262261, -3.667023251094064, -7.867559597111547, -12.641038762181955, 0.3766225871685269, 18.426176613075384, -5.010639227875879, -0.5838823291903994, 1.2548338506077934, -3.657032376348136, 12.337695667592893, 10.285824216432744, 7.181884402448798, 8.280986586059813, -5.971382234837194, -9.737425607573627, -6.130906371862799, 2.4355372698035223, -3.032053686624075, 4.957470732267207, 0.8663527201632971, -11.880618977639529, 10.843557014523313, -4.552708316661227, 6.8976022263257395, -7.430571912723035, -7.668827684986366, -8.265683805788779, -12.34520430718268, -12.237626511638902, 3.256282746935894, -8.033876570980695, 2.8280172910047274, 0.9495088986205745, 7.557525095049032, -8.581904878734704, 9.129982257971824, -7.875976275128898, -23.861827703768217, 1.4846422810583229, -7.483902596719751, 13.081857469364804, 2.5474794831455947, -0.7248699898637525, 1.8680709535581026, -4.274081431392887, 14.620101439766305, -4.733368300058806, 3.943045132468101, -7.046752260268286, 0.2008263542681246, -10.754170004561368, 2.0645273885874054, 0.5789083800867433, 4.689385963997327, 4.13958481942713, 0.32977538229535763, 17.702790786918804, 0.016640376155421605, 0.5224258245975202, -0.7319432392445819, 1.7422091618928468, -2.617709588346327, -3.032750397481363, 6.499192149178479, -0.47960588224753753, 9.025423722688089, -16.479090251841452, 13.350602189987056, 7.835117357317341, -0.5938172149033781, -0.8155502134424893, 5.555080348838001, -8.981236454607718, 0.30703933173135617, 1.4976858319106294, -17.57683553661392, 2.839329179752109, -11.800140496082067, 9.393900855801581, 11.689260204106615, 12.986427769627356, -2.7527081704214726, -2.9561003436593167, -16.92268437985048, 5.946996217132533, -13.071536074620196, -12.686728205635077, -2.7339465263737823, -9.818786277975613, -8.293354326327112, 0.47405036187154787, 7.697727143785036, 4.606091991532384, 1.7669871109093755, 10.080908270686848, 1.0375808947805374, -4.438319189724413, -6.648310283447761, 4.725987537004601, -9.402606083713223, 2.8971092401756477, -3.8545202435113226, -7.289444220449441, -7.422081816697552, 8.187387957271303, -7.370177093622938, -2.493723231115947, -4.185600908372867, 9.228274612382718, 13.265770650732529, 7.96869376015593, -3.203996588675335, 2.9412784338213256, -7.760459288250126, 1.8625211408330626, -15.203513102888214, 2.0867527671548634, -0.4229840062000243, 3.7037480759656765, 0.12923293648888912 ]
null
The given time series has multiple trends followed by each other, what is the correct ordering of the trend components?
[ "Log", "Exponential -> Linear -> Log", "Linear -> Exponential -> Log", "Linear -> Exponential" ]
Linear -> Exponential
multiple_choice
9
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
Identify the different components first, and then check the assignment of each component.
Pattern Recognition
Trend Recognition
369
[ -0.040149168160748844, 0.009068626426828326, 0.018845849802717113, 0.20035377435478863, 0.2993414621404703, 0.231235461200875, 0.3249005260754344, 0.19022395225416916, 0.6030543128300657, 0.35212544661351597, 0.6026147349565313, 0.6454759190482108, 0.6827449085378607, 0.741557475492395, 0.6900133460598677, 0.8148986191864269, 1.0011138808048183, 1.08724804159699, 0.9751560736695574, 0.9177178904530854, 1.052406134344797, 1.372056904933515, 1.1713864224232293, 1.290094180369699, 1.4979194595713845, 1.3601522988094161, 1.4528020363520844, 1.6053190803662085, 1.7535636140172528, 1.5743414167685297, 1.834619803623871, 1.7237710841990457, 1.719844760612709, 1.8899069501636836, 1.8057081773297932, 2.025179802226666, 2.349457136167557, 2.2015660925531977, 2.137029723222541, 2.3092535537427215, 2.167394866087277, 2.2406932513225115, 2.365857913375327, 2.4388661868551624, 2.3572714609229273, 2.5124676696065857, 2.5851702230927485, 2.8103400055489423, 2.583321895105321, 2.630565268653972, 2.843254692946711, 2.9972851349327185, 2.993870452037756, 3.025492515949727, 3.022877699581002, 3.1758626714843627, 3.2474547765102755, 3.1955484438838626, 3.182930755457412, 3.2400946729144993, 3.4786939862282718, 3.292906902287475, 3.6715538279006665, 3.51474901699522, 4.591314779375104, 4.675603561007875, 4.584166344807217, 4.6557704421951875, 4.766401169227047, 4.721594658016677, 4.75638826567015, 4.824092263629066, 5.104149642027025, 5.087157782020686, 5.035069289423062, 5.271703326686819, 5.18385007524939, 5.1390817132798725, 5.483748975011636, 5.662239518552891, 5.640734342967967, 5.487445957548857, 5.769186082863678, 5.843743849493385, 6.013174666271249, 5.9994725454174995, 6.1646035669107055, 6.174821717117702, 6.463243796409659, 6.43261329754521, 6.7503333513862875, 6.773339787479956, 6.682447881618224, 7.230839263965861, 7.362721891851279, 7.617761471419534, 7.45022851892932, 7.778525853688259, 8.050206972284123, 8.295986844909248, 8.303390346568518, 8.713190997336506, 8.843165692822673, 8.955513670665063, 9.31747918919404, 9.706847261733088, 9.748789457751714, 10.280915598964057, 10.545578841542072, 10.805408430902702, 10.994960035835069, 11.34543945334059, 11.818975478330367, 12.120349365634985, 12.590344663633946, 13.122833108421874, 13.431818376414055, 13.875222659103715, 14.341556792015911, 14.960131740218674, 15.497359720861816, 15.942398831205741, 16.470033330762185, 17.060566222561427, 17.787837793191063, 18.327478098554906, 19.095518444744474, 19.594688859985364 ]
null
The given time series is a sine wave. What is the most likely amplitude of the sine wave?
[ "1.01", "8.83", "18.33" ]
1.01
multiple-choice
21
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
370
[ 0.0027999545194562925, 0.03736160671845422, 0.1608230519427662, 0.29108721498211454, 0.5592830508423823, 0.6600212406156678, 0.6391713214754526, 0.813853260244667, 0.7823253361709084, 1.0291511585069693, 0.9963162428855362, 0.9753066533146189, 0.8752948043573384, 0.944819083784565, 0.8844501568073028, 0.8901288985565575, 0.7901975914336481, 0.752257374954515, 0.5105889899742782, 0.24773739040805354, 0.39888017841966683, 0.06612036038689004, -0.09423340157566668, -0.13145025216098133, -0.23794692487826655, -0.45688996439742957, -0.5851722582102232, -0.6871978696301542, -0.6101759621632508, -0.8406850826493144, -1.0088685409614302, -1.0611296146981055, -1.0242693195907127, -0.9890937497087087, -0.9577731940894094, -0.966775198799022, -1.0166700070567694, -0.9093812350663272, -0.7106331413126766, -0.7998738404233527, -0.6192743401633221, -0.38884862763605765, -0.2279246245259106, -0.19524657851033764, -0.0740329453033381, -0.02141818192111833, 0.30483126844512115, 0.520536357746824, 0.7737344195056552, 0.6740035946521323, 0.7356100890341546, 0.7391328686475012, 0.7168992598153509, 0.9779227571384485, 1.2313564704971631, 1.139426115041717, 1.1196274501503223, 1.0078493561283244, 0.974748640821643, 0.6330144594819426, 0.8705962262494003, 0.6393630315785093, 0.5160274923630666, 0.43096721055838416, 0.29535094938907674, 0.1203764788843686, 0.05074474671946263, -0.15024714893189775, -0.22626170942085413, -0.5221256724715395, -0.524404324621138, -0.7320846079208544, -0.7935155791086007, -0.8072513778769976, -1.0576586418364065, -1.0370897274073894, -0.9363048558532343, -1.1528608760763241, -0.8317181272397212, -0.8666868124790048, -0.9943149457538816, -0.9622812385739588, -0.7842627956234579, -0.8538917476644294, -0.7997610324512584, -0.5238021516757354, -0.35996754449910884, -0.19883160821529047, -0.12726385133711743, 0.2054149228778659, 0.07074441200702272, 0.24423264015925283, 0.5373089400739071, 0.4932221224815485, 0.59781872042934, 0.8241872627180047, 0.7841437685630478, 0.9359107279294656, 0.919832276906993, 0.9243079838035959, 0.8005417204760652, 1.0046619625183117, 0.8259598095565105, 0.8746739639366674, 0.7631456246469261, 0.7001560120847732, 0.5977675402545385, 0.51168109232645, 0.28920655229317416, 0.34862330933417146, -0.10253532749908242, -0.08425963352631177, -0.12054152877288173, -0.2949380723270288, -0.5716467496904414, -0.6769824104611547, -0.8068207053001266, -0.7419753010120108, -0.9554908232920372, -0.9178265521372252, -0.9597432255219668, -0.7722996140366087, -0.9804478178267935, -1.0751366491160042, -1.102259530434285, -0.9267861115086342, -0.8359491256420102, -0.9533478519381053 ]
null
Piece-wise stationarity means a time series is stationary in distinct segments, with abrupt changes between segments. Each segment has its own constant statistical properties. Does the time series exhibit piecewise stationarity?
[ "No", "Yes" ]
Yes
binary
38
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Linear Trend", "Gaussian White Noise" ]
Look for segments of the time series that are individually stationary, even if the whole series is not.
Pattern Recognition
Stationarity Detection
371
[ 7.572929664744318, 7.767140616119843, 7.80724576532075, 7.925592159901309, 7.791107601340638, 7.906531602385498, 7.686869002917665, 7.8245208071454035, 8.323064808423554, 8.133631900262811, 8.081230736650852, 7.959214894957699, 7.854545678802942, 7.839126534074424, 7.506402359485586, 7.926126056101066, 7.945255796126603, 7.738620822798103, 7.774062151996912, 7.992688969333693, 7.618556412031063, 7.9384714440178215, 8.035118523459333, 7.687779930072046, 8.611433829960284, 7.706991541280077, 7.7396811419143114, 8.049870617917504, 8.217985216682273, 7.926473912854811, 8.2266469438917, 7.798012616651707, 7.928396950227534, 7.667254483745291, 8.139814249807435, 8.222580658063332, 8.05492866950929, 7.934142603869618, 8.155472695773861, 8.010636244793261, 7.989497747977541, 7.778176708981513, 7.905444453758129, 8.189540933057248, 7.742042809734078, 7.906522836602638, 7.822836519677565, 7.6504858327782035, 7.999569537559024, 8.207460850783201, 8.017108857668179, 7.546742969827355, 8.34615831933878, 7.435618425104445, 7.765617430143938, 8.268717079212927, 7.91908184774254, 7.718164428233269, 7.576831248635059, 7.654451419880327, 7.733099690466482, 8.143517839295638, 7.966291200969383, 8.240027824733126, 7.700842291778707, 7.407555069876602, 7.981047517268762, 7.80161935815635, 7.861763199337876, 8.069864871453166, 8.11780876072982, 8.20478766476606, 7.489902749394614, 8.413700376933603, 8.014819269501706, 7.691423593198396, 8.154557265607128, 7.595765913576012, 7.797287531676222, 8.105436128287181, 7.892989574842466, 7.939745173890636, 7.843801106725395, 7.959594663190514, 7.888256314286293, 7.740976586949902, 7.957239669027704, 7.901133872215172, 7.745736280658473, 7.622405875980241, 7.761737417370786, 7.812506747897606, 7.995092726008796, 7.70922084339501, 8.024336541823024, 7.912207278419543, 8.069503385779099, 7.809717817687369, 7.919898889085642, 7.628801760918247, 7.548883979456789, 8.0170760928424, 8.402895427452798, 7.923155465036879, 7.609045731725794, 7.610913635941191, 8.084126855217693, 8.136989971390559, 8.00352345143212, 7.8349185670220685, 8.089047151339821, 7.538719868087525, 8.2814895249299, 7.928431132684842, 7.60422952039505, 7.831235171202817, 8.83817538185299, 7.91694668651518, 8.223665204022243, 8.135283731312748, 8.09758254089385, 7.793421857664079, 7.625751320976596, 7.916568831693072, 7.894534664927314, 8.253567808755347, 8.35932714032711, 8.363439973991659 ]
null
In which part of the time series does the anomaly occur?
[ "Middle", "Beginning", "End" ]
End
multiple_choice
77
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Spike Anomaly", "Cutoff Anomaly", "Wander Anomaly" ]
Identify where in the time series sequence the unusual pattern or disruption occurs.
Anolmaly Detection
General Anomaly Detection
372
[ 0.04967141530112327, 0.36131749003445235, 0.8084154160863162, 1.2512880846214964, 1.4114561540379618, 1.7219509444824084, 2.1828976285019053, 2.345512673228163, 2.425497197953527, 2.686675611210689, 2.6995487135904743, 2.7643100855016027, 2.850483999777623, 2.6005514507802205, 2.5358296833887417, 2.5209249023431743, 2.2994819830509208, 2.2137761087853307, 1.8350552189589902, 1.4946777848757546, 1.464288845020929, 0.9544520237027613, 0.6267041000111985, 0.11043231273907197, -0.17194503264766825, -0.4735420044354296, -0.9569772187360863, -1.1452465184196992, -1.5613830880638797, -1.8208256601520694, -2.1087702597205458, -2.082289015414372, -2.445803603364736, -2.6819764604888063, -2.578117338653257, -2.8174868721487467, -2.659736641582349, -2.812214316090609, -2.6361925857075605, -2.3242804549187803, -2.06697194425424, -1.880366865222524, -1.6298767193363395, -1.3382834873848526, -1.1204214501253795, -0.689420772419002, -0.3109121411875249, 0.20017611117166806, 0.4882214116066725, 0.6303927889725466, 1.178858911115932, 1.428320794877511, 1.6941940087169027, 2.0872951974659504, 2.3577081678103005, 2.5361490855706994, 2.503851944298175, 2.655131103511268, 2.76899849435708, 2.833667072234192, 2.6386198490798476, 2.5692325891523513, 2.330791756035732, 2.130175547401668, 2.0973497360875384, 1.895677700462761, 1.4632916310043365, 1.2529813597964299, 0.8483424680504981, 0.39075475032028034, 0.12444653224449509, -0.1283022146820838, -0.6528982941804498, -0.8502591341240759, -1.609879648539146, -1.5845355957640062, -1.9487449765287699, -2.2447425663090335, -2.4250858818989194, -2.8105038799422224, -2.7660489613126686, -2.7931451870228745, -2.716719990663767, -2.90218215029997, -2.8674458450443305, -2.724496728678558, -2.423941418288816, -2.279986565775233, -2.123001408460348, -1.7399275236634688, -1.471762977718098, -1.049285827755865, -0.8614293638533166, -0.4557388160881626, -0.08712513031662497, 0.18095955929109103, 0.7256728028900028, 1.0779131412778393, 1.388767595362127, 1.6759968411753432, 1.8383676616084415, 2.182586913012316, 2.3951086550530167, 2.5102611595236533, 2.6890253629077074, 2.811784832856163, 2.976653352289252, 2.7723293176193295, 2.6982862001614265, 2.535087236193066, 2.175364628393207, 2.147185537437559, 1.9002675097033264, 1.8513968839412704, 1.2682925176750053, 0.9774802181850104, 0.5871094122588292, 0.10683846430356614, -0.032422196441782736, -0.4388022697638498, -0.7924633876216136, -1.3039291789923595, -1.3918486161677364, -1.9634229371066814, -2.0223923729560496, -2.081954916667795, -2.5780866161171114, -2.668580458331792 ]
null
What is the most likely mean of the given time series?
[ "27.54", "2.95", "-17.78" ]
-17.78
multiple_choice
41
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
The given time series is stationary. Check the average value of the time series over time.
Pattern Recognition
First Two Moment Recognition
373
[ -17.791825576136247, -17.77080206932149, -18.09656298230573, -17.715549316083184, -17.76283783367642, -17.938121134956887, -17.75454171360481, -18.017168958201882, -17.904857845903948, -17.776520898988903, -18.082851289872522, -17.98784823487892, -17.961261880120894, -17.76901699853277, -17.704612562852784, -17.941864238078733, -17.951845628161525, -17.758535707895845, -17.763330423821742, -17.90762044666407, -17.45789322110444, -17.750305857184742, -17.813356937055055, -17.851755156333798, -17.603694759386894, -17.686170547602284, -18.0921033072149, -17.906833085730213, -17.862548739239166, -17.78522160216307, -17.671572312123825, -17.973402476034163, -17.797217426121453, -17.48091410415277, -17.777928478119644, -17.906563542532023, -18.020360486108622, -17.869682591388973, -17.974931167022707, -17.853268429224304, -17.68667927883816, -17.77652385867709, -17.868457891593728, -18.101535186889482, -17.635141844017344, -17.84577853929707, -17.763892936687558, -17.945231151374077, -17.855821420351262, -17.88622322971822, -18.020308384277666, -17.94456052292997, -17.785711739359265, -17.730000878875813, -17.90472089833877, -17.996973475839578, -17.84648203864022, -17.644454102048403, -17.950106723292887, -17.78080547642313, -17.900542894697484, -17.582412209902127, -17.873186513147267, -17.665371135313674, -17.602585708999715, -17.508973330274323, -18.02375711867909, -18.031723622180692, -17.57588421804372, -17.605001458086964, -17.8928051223014, -18.35873402368374, -17.76871208313304, -18.052954405287316, -17.93028691271719, -17.75087468995492, -17.726965164016892, -17.50188959843222, -17.849380418672226, -17.956713147878048, -17.61997340129987, -17.716041496072837, -17.847672418939727, -17.777448318162985, -17.850322409270618, -17.660030854398276, -17.48292841225187, -17.912110923456638, -17.708248806580013, -18.055134394241662, -17.973830665343442, -17.683056166053763, -17.795615768780923, -17.980340456804544, -17.781538245104898, -17.626798369546176, -18.040404707061636, -17.472508050020906, -17.681194187194265, -17.67764906171543, -17.783335545420368, -17.47240282113296, -17.611965507692886, -17.848462711914326, -17.648408981643303, -17.913471403852892, -17.83293314646678, -17.522283427535005, -17.71417198749527, -17.665456933672534, -17.575100761515362, -17.685605251093865, -17.92734894466665, -17.487669065647136, -17.69130934424207, -17.678745628054394, -17.773159862136325, -17.58556871157451, -17.442557792840674, -17.84984394106286, -17.593632537289785, -17.776983786725204, -18.138421676423587, -18.032780771702324, -17.707644167940582, -17.603423945870905, -17.6747838424839, -17.64632677877665 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly", "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with flip anomaly and time series 2 with speed up/down anomaly
multiple_choice
74
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
374
[ 0, 0.35181483095732957, 0.692532005195398, 1.0113572218999722, 1.29809459979334, 1.5434253828891191, 1.739162669911945, 1.878475204319868, 1.9560741075997852, 1.9683574514567332, 1.9135087169972476, 1.7915464495120652, 1.604323751538166, 1.3554776280573648, 1.0503295684871063, 0.6957400830678192, 0.29992116991378337, -0.1277881610346453, -0.5771771710752276, -1.0374425046282956, -1.4974835003814557, -1.9462056293255547, -2.372823765163348, -2.7671569971543675, -3.1199069266481194, -3.4229118400333234, -3.6693698102522028, -3.8540246283706114, -3.9733094827400914, -4.025444458263082, -4.0104851906060555, -3.930321345391258, -3.788624963938563, -3.590750087533361, -3.343586404004319, -3.055370917201051, -2.7354627874112643, -2.394087497484186, -2.0420573379129108, -1.6904758514526557, -1.3504343163201917, -1.0327085646459988, -0.7474644236866701, -0.5039798316007404, -0.3103912237896673, -0.17347112236673512, -0.098443008374959, -0.08883853724621948, -0.1464010005358638, -0.27103767281890434, -0.4608223463517076, -0.7120479842138225, -1.0193280526494464, -1.3757437626755944, -1.773033196088333, -2.201817146082759, -2.651855499103765, -3.1123271496959704, -3.5721257968436033, -4.020163536168488, -4.44567394925358, -4.838506405105447, -5.18940352898661, -5.49025425397073, -5.734315538023106, -5.91639668594096, -6.033001237689035, -6.082422544594207, -6.064790420811285, -5.982067594836019, -5.837996058063707, -5.637994776962574, -5.3890115649131385, -5.099333162816263, -4.778358719941478, -4.436342866946348, -4.084115404199616, -3.732785267764735, -3.3934368651724958, -3.0768270816842893, -2.7930912394196787, -2.5514660469941273, -2.3600371128749895, -2.225517924211324, -2.153066332780318, -2.1461435644310063, -2.206419606020795, -2.333727556105207, -2.5260681872108077, -2.7796645949809653, -3.0890654403528286, -3.4472939626271253, -3.846038690138851, -4.2758806354276375, -4.726550764497949, -5.1872107022130605, -5.646749000703936, -6.094084872257165, -6.518471084103485, -6.909787735438089, -7.258818886239192, -4.847371798406657, -4.591413470406369, -4.39652301313653, -4.266547030787118, -4.203557681844197, -4.207796036365361, -4.2776654862980195, -4.409775388970375, -4.599033750754476, -4.8387864173813275, -5.120998966122395, -5.436476327790889, -5.775114135166534, -6.126174927201585, -6.478581658929811, -6.821220493946594, -7.143244602587741, -7.434370661444011, -7.685159949358089, -7.887276356107954, -8.033714251075494, -8.1189899830802, -8.139291776704914, -8.092583927677879, -7.9786624491165465, -7.7991606475358335, -7.5575044761998615 ]
[ 0, 0.26239566159787847, 0.5210092736778649, 0.7721221172084873, 1.012141073660994, 1.237658791843, 1.4455107440547867, 1.6328282161618959, 1.7970863442643166, 1.9361463935873824, 2.048291571633598, 2.1322557759035337, 2.1872447948046894, 2.2129496067387326, 2.209551554673655, 2.17771930955255, 2.1185976733867826, 2.0337884095259553, 1.9253234211021382, 1.7956307267757974, 1.6474938035201574, 1.4840049772497936, 1.308513641768215, 1.1245701731090683, 0.9358664784263366, 0.746174174943403, 0.559281434155587, 0.3789295488311015, 0.2087502849971331, 0.05220506795314628, -0.08747297935730236, -0.20733317504773474, -0.30475668750940255, -0.37750038779313777, -0.4237344108434884, -0.44207279662160825, -0.43159669803074463, -0.39186976702721465, -0.32294546127615154, -0.2253661490019545, -0.10015402702272502, 0.05120599595362463, 0.22679116415208633, 0.42427307131019387, 0.6409566498822891, 0.8738252999934906, 1.1195914024582239, 1.1809589895938042, 1.2423265767293845, 1.3036941638649648, 1.3650617510005452, 1.4275904474842467, 1.4903368519707207, 1.5530832564571948, 1.6158296609436689, 1.6789012449461733, 1.7421229118022303, 1.8053445786582873, 1.8685662455143446, 1.9315583066395825, 1.9943437226070835, 2.0571291385745845, 2.119914554542085, 2.1822061171503924, 2.2436510740000806, 2.305096030849769, 2.366540987699458, 2.4275181084785555, 2.486740843992939, 2.5459635795073217, 2.605186315021705, 2.664247641461507, 2.72040360455886, 2.776559567656213, 2.832715530753566, 2.8888714938509183, 2.9415737992755453, 2.9938697920327924, 3.04616578479004, 3.098461777547287, 3.1473767459952238, 3.1950842057612645, 3.242791665527305, 3.290499125293345, 3.3351727499891926, 3.3776399491794447, 3.4201071483696963, 3.462574347559949, 3.5025976562643653, 3.539260615550758, 3.5759235748371507, 3.6125865341235435, 3.6475992231121617, 3.6779911552670126, 3.708383087421863, 3.7387750195767135, 3.7684687616369947, 3.7922278878934335, 3.815987014149872, 3.839746140406311, 3.8635052666627496, 3.880743165138846, 3.897618773182701, 3.914494381226556, 3.931369989270411, 3.9427043084522393, 3.952560950604194, 3.962417592756149, 3.9722742349081037, 3.9776865312521243, 3.9805062925415164, 3.9833260538309085, 3.9861458151203006, 3.985679646502187, 3.9815624446535107, 3.977445242804835, 3.973328040956159, 3.9670884541045908, 3.956250366413424, 3.945412278722257, 3.93457419103109, 3.9227267979935037, 3.9054964431083508, 3.888266088223198, 3.8710357333380445, 3.8538053784528916, 3.757396419535899, 3.6384466438248446, 3.499559637929729, 3.3436728377344695, 3.1740083409807838, 2.9940189531842236, 2.807330370344429, 2.6176804666011386, 2.42885670346528, 2.244632708708618, 2.068705086899626, 1.904631519694262, 1.7557711923933894, 1.6252285443251753, 1.5158012849533733, 1.4299335461825753, 1.3696749553260412, 1.3366463140598843, 1.3320124580701898, 1.3564627518587413, 1.4101995453221814, 1.4929347853993957, 1.603894839525141, 1.7418334501211106, 1.9050526032012292, 2.0914309616460525, 2.29845938703054, 2.523282955191602, 2.7627487619839632, 3.013458718716125, 3.271826453205946, 3.5341373636465714, 3.796610819679741, 4.0554634691183695, 4.306972590246155, 4.547538428858938, 4.773744476212839, 4.9824146785239165, 5.170666620045251, 5.335959789169877, 5.4761381193428065, 5.589466092433832, 5.67465780001947, 5.730898475942373, 5.757858139585126, 5.755697121401547, 5.725063378180391, 5.667081642997399, 5.583334591539948, 5.475836340174529, 5.3469987195323805, 5.199590888362678, 5.036692963920056, 4.861644445346414, 4.6779882936984, 4.489411605001534, 4.299683869761718, 4.11259385277966, 3.9318861502169566, 3.7611984862667787, 3.604000799397566, 3.463537138171711 ]
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly", "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly
multiple_choice
74
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
375
[ 0, 0.5303250499769698, 0.9816151035070082, 1.2859901443433843, 1.3963057054439576, 1.292806827597686, 0.9859162695690131, 0.5147634424576375, -0.058338305879208824, -0.6566865816068523, -1.200015702147291, -1.6158253751209941, -1.8496133720023655, -1.8725679594147593, -1.685634380180629, -1.3193814419791736, -0.8296870432559362, -0.2898515802094499, 0.21974765332288548, 0.6230008975926457, 0.8588080399435195, 0.8897022698698419, 0.7071381355503427, 0.33269764684242353, -0.1849558043466375, -0.7769457833727097, -1.3639040161097644, -1.8671724078807477, -2.219904827833534, -2.37650175561186, -2.319046186581872, -2.0598324335139413, -1.6396309102646596, -1.121933805468614, -0.5839938104573491, -0.10592069317019648, 0.24062537503328962, 0.4025479185520948, 0.35280818121247615, 0.09424136974635067, -0.3408435065981418, -0.895223721773772, -1.494839234588619, -2.059245504930003, -2.5129674166153264, -2.796151816956465, -2.8730151761912923, -2.736894066182175, -2.4111856350447076, -1.9460453393460515, -1.4113080151482607, -0.8866314062100211, -0.45025328938210585, -0.16794901378735938, -0.0837479840229085, -0.21371936069047015, -0.5437040629723728, -1.0313131778587956, -1.6119107210333241, -2.207736343998686, -2.7388804107749687, -3.1345624245110626, -3.3431209696169693, -3.339305191411172, -3.1278386956167115, -2.7427528597968376, -2.242583652992278, -1.7021098832697446, -1.2017989349158311, -0.816449621365098, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, -2.6251436096309826, -2.2586143550386533, -2.0713254969754136, -2.093895987088113, -2.327325279598781, -2.742852268578522, -3.2860146234519694, -3.8843355891053406, -4.457553337497874, -4.9289491025752135 ]
[ 0, 0.5902164558873864, 1.1234853896481911, 1.5487164686831802, 1.8259313134268398, 1.930375369776011, 1.8550639744783894, 1.6115007445360614, 1.2284944025472377, 0.7491957303436143, 0.2266594073636081, -0.28161279064784556, -0.7195861874834677, -1.038456507604105, -1.2016695131818058, -1.1886806953206246, -0.9970683261764752, -0.6427825394866555, -0.15850482097790763, 0.40971336099239775, 1.007187059644164, 1.5762223279892933, 2.0620501799501203, 2.418459712217898, 2.612551006728645, 2.6281189663128703, 2.4673200478893302, 2.1504504656877694, 1.7138586768322703, 1.2062068551604619, 0.6834658696819784, 0.20315854617163898, -0.18155669372088767, -0.42735330390708026, -0.5051928532625858, -0.4033116980639033, -0.1284309010199287, 0.29493504618210675, 0.8269995972686605, 1.4167962932933482, 2.007420785440387, 2.5418835840731453, 2.9689715647207917, 3.248515361023777, 3.3555208806132995, 3.2827400075861597, 3.041416088646672, 2.6601275278740895, 2.1818484291732365, 1.6595286063971675, 1.1506475677244605, 0.7113026100878028, 0.39043907735135197, 0.2248162140513974, 0.23522638874284874, 0.42435654891771835, 0.5112318684439653, 0.5981071879702121, 0.6849825074964591, 0.771857827022706, 0.8892169701172555, 1.0083016126590674, 1.1273862552008793, 1.2464708977426913, 1.3842057017806282, 1.5241785251981004, 1.6641513486155726, 1.8041241720330443, 1.950323353289043, 2.09771481583327, 2.245106278377497, 2.392497740921724, 2.534535403297232, 2.6751129383539984, 2.815690473410765, 2.9562680084675312, 3.081949610014317, 3.202181479789158, 3.3224133495639987, 3.44264521933884, 3.5413088302742763, 3.6297558975489412, 3.7182029648236066, 3.806650032098272, 3.870125351632507, 3.918617622522485, 3.9671098934124625, 4.01560216430244, 4.0389428103767635, 4.043419737839347, 4.04789666530193, 4.052373592764513, 4.034298459663691, 3.9952265805210767, 3.956154701378463, 3.917082822235849, 3.8600880425728468, 3.7824129930786268, 3.7047379435844072, 3.6270628940901877, 3.5371949263714035, 3.4298327716347647, 3.3224706168981255, 3.2151084621614867, 3.101418575280421, 2.9763387705393867, 2.851258965798352, 2.726179161057318, 2.599907567710452, 2.470901871091385, 2.3418961744723172, 2.21289047785325, 2.0864521946502053, 1.9677161516952302, 1.8489801087402542, 1.730244065785278, 1.6161062075994945, 1.5207791052876805, 1.4254520029758664, 1.3301249006640523, 1.23967502146829, 1.178488480968834, 1.1173019404693783, 1.0561153999699224, 0.9986217830544267, 0.9787959866953259, 0.9589701903362249, 0.939144393977124, 0.920901700279473, 0.9454027784409728, 0.9699038566024726, 0.9944049347639724, 1.0189060129254723, 1.085377865413441, 1.1526128228891634, 1.219847780364886, 1.2870827378406087, 1.388438611372879, 1.4924191707556531, 1.596399730138427, 1.700380289521201, 1.8279665560496106, 1.958925066455968, 2.0898835768623254, 2.2208420872686827, 2.363658373381772, 2.5090524368224143, 2.6544465002630564, 2.799840563703698, 2.945548238214088, 3.0913507253734713, 3.237153212532855, 3.3829556996922383, 3.5190005347387974, 3.651142308940227, 3.783284083141656, 3.9154258573430853, 4.0301744518751095, 4.135991413603926, 4.2418083753327425, 4.347625337061559, 4.431414341298533, 4.500949961276078, 4.570485581253624, 4.6400212012311695, 4.686026576876173, 4.71305594902719, 4.740085321178207, 4.7671146933292246, 4.771964423406927, 4.754634511411315, 4.737304599415705, 4.719974687420093, 4.684051087267264, 4.625071313799485, 4.566091540331706, 4.507111766863927, 4.434516880724286, 4.340880456819038, 4.24724403291379, 4.153607609008542, 4.051794765951247, 3.9340594224399674, 3.816324078928687, 3.6985887354174065, 3.5776926613432756, 3.4488947608620104, 3.3200968603807484, 3.1912989598994828, 3.0632233989024873, 2.937537114661138, 2.811850830419793, 2.686164546178444, 2.563507860551491, 2.45478732855074, 2.3460667965499917, 2.237346264549241, 2.132260097529139, 2.0526144853735597, 1.9729688732179826, 1.8933232610624033, 1.816405767625429, 1.7749538175302877, 1.7335018674351474, 1.692049917340006, 1.6513726832150823, 1.6533048274520752, 1.6552369716890678, 1.6571691159260606, 1.6591012601630533, 1.7035703309033183, 1.7496148433659278, 1.795659355828536, 1.8417038682911457, 1.9244534259331287, 2.0108015174162297, 2.0971496088993278, 2.1834977003824285, 2.2975739088722253, 2.4162714701964756, 2.534969031520722, 2.653666592844972, 2.7892939094740026, 2.929059610733095, 3.0688253119921836, 3.208591013251276, 3.354071640408681, 3.5014572428655284, 3.6488428453223722, 3.7962284477792196, 3.9390092208610112, 4.079782760625476, 4.220556300389937, 4.3613298401544025, 4.489140834177481, 4.609750413899792, 4.7303599936221055, 4.8509695733444165, 4.952933006531029, 5.041900640616999, 5.130868274702971, 5.219835908788941, 5.2874470351595875, 5.33654918817695, 5.385651341194315, 5.4347534942116775, 5.462646782751218, 5.467760179814577, 5.472873576877936, 5.477986973941295, 5.464419936050352, 5.425945651553674, 5.387471367056995, 5.348997082560317, 5.296008982056588, 5.218831188207777, 5.141653394358964, 5.064475600510153, 4.977706831888793, 4.870690449858725, 4.763674067828656, 4.656657685798585, 4.544845402921054, 4.419924324393789, 4.2950032458665275, 4.170082167339261, 4.044276246581267, 3.915225904310583, 3.786175562039902, 3.6571252197692177, 3.529693410773563, 3.4107139422141546, 3.2917344736547496, 3.1727550050953415, 3.0562650219929566, 2.9605207510324028, 2.864776480071852, 2.769032209111298, 2.675109887734654, 2.613375342340362, 2.5516407969460713, 2.4899062515517794, 2.428171706157489, 2.345283167396186, 2.4420344236591545, 2.7122320346730433, 3.1318431856901237, 3.66146752024933, 4.250389561539336, 4.841794921086079, 5.378613795164035, 5.809390731279849, 6.093576945137473, 6.205700860564282, 6.137987922342861, 5.901160227901677, 5.523333733823415, 5.047126462132091, 4.525275134293083 ]
You are given two time series which both have upward trend. Which time series has a higher slope in terms of magnitude?
[ "Time series 1 has higher slope", "Time series 2 has higher slope" ]
Time series 1 has higher slope
binary
81
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Sine Wave", "Sawtooth Wave" ]
Slope refers to the steepness of the trend. You should check the direction of the trend and the steepness of the trend. If the trend is upward, you should check the magnitude of the slope.
Similarity Analysis
Shape
376
[ -0.015219998035766666, 0.5067187748614674, 1.0938366521046943, 1.4544752651500683, 2.197405698670603, 2.5400628853547005, 2.786226721969417, 3.011493585893351, 3.294436173814652, 3.5134286242842796, 3.5352234084442546, 3.5220778118582494, 3.2453039507019494, 2.805421851778778, 2.9626966869374574, 2.5065218854282434, 2.232035830391773, 1.9441856921183083, 1.6159320223546554, 0.9003365821922634, 0.5834276093182164, 0.33724504573483427, -0.21435831767075159, -0.46765612053982725, -0.6863077728198331, -0.7782710789657459, -0.8687774583718617, -0.8965247675720812, -0.841324177183647, -0.4889956744331584, -0.18275168276791443, 0.15906280243011237, 0.3560587946713966, 0.9393696034564062, 1.372640340538654, 1.8195067136393213, 2.4965220467952163, 2.91276562268367, 3.478629986421796, 3.896871395127552, 4.469575454571109, 4.9737736097299, 5.477851288654698, 5.589387063409398, 5.748986782863297, 6.150234227750151, 6.0150978586031, 5.873333356498921, 5.964321406919241, 5.74663634034126, 5.769784404422738, 5.289722953482639, 4.882820516492474, 4.425523934306414, 4.150219858788081, 3.854909437464216, 3.3395705987152153, 2.8440099013631635, 2.6376748784385495, 2.281083031979249, 2.0910878191360585, 1.8384531344489374, 1.7385163922334794, 1.7167365112161619, 1.9173362599005195, 1.933531418835714, 2.152015003812926, 2.407159383568535, 2.918980875948715, 3.3368374596988817, 3.742005214797299, 4.234073255822911, 5.034358169031234, 5.210009158464682, 5.993962720136558, 6.601494639519251, 6.628898921013873, 7.497106994319788, 7.789381965106232, 8.164726403483934, 8.360875646457508, 8.675744703589459, 8.697371526323447, 8.6843054708757, 8.510381471732085, 8.640945737261452, 8.236015653654716, 8.184800568280599, 7.818334778557802, 7.07845242914261, 6.795610594716511, 6.350264183824024, 6.044314496500517, 5.679565099186259, 5.325815467180155, 5.093290492179372, 4.8769065301988395, 4.628489549154013, 4.352343180726594, 4.285252540227827, 4.400554331022272, 4.562560944391786, 4.702719781319241, 4.865142331584635, 5.417940024443222, 5.723637143114126, 6.186661228792277, 6.730644325924001, 7.247470479742685, 7.784499205006263, 8.242904795878365, 8.895282230020984, 9.484379108400713, 9.90711301892563, 10.38923812069233, 10.572360176166637, 10.796886569307766, 11.102078946159802, 11.1858221960506, 11.233948941344076, 11.26206404501027, 11.06811390466125, 10.798368171877001, 10.607807616421601, 10.383310438898842, 10.05883427859156, 9.669802508973822, 9.241388838593936 ]
[ -0.016809346596524437, 0.38097321627084374, 0.6613425656905645, 0.971931036067269, 1.118441061251838, 1.4140190353778577, 1.5816307891852843, 1.6432317056657428, 1.4745361205541483, 1.5368477462027752, 1.2407947723627561, 1.2019180030339254, 0.8653282356759332, 0.8209092737959948, 0.355249849941514, 0.109679357251132, -0.0643779378694459, -0.6384336895034983, -0.7566118235609552, -1.112351631291253, -1.0931396906370874, -1.0182242294706711, -1.2542022252268803, -1.2055653093882879, -0.9834172416361134, -0.5648774031888326, -0.4343323297672368, -0.3022199086432712, 0.26170635753549376, 0.2920484360442369, 1.0105621285282265, 1.2045656520300914, 1.5854373330008378, 1.4895958997659633, 1.8608502762696004, 1.95601772866731, 1.9249339392311835, 1.8810022856494568, 1.97641723581636, 1.8353987940729894, 1.698107284055324, 1.2632849198728437, 1.01069697235596, 0.577855069133474, 0.5566762850997917, 0.10676796472968987, -0.10503413263755285, -0.3391819918264439, -0.45542660339771474, -0.810059974618287, -0.7153621678692648, -0.7750196052595595, -0.4784652923953242, -0.621363334930114, -0.2085112437310179, -0.02651874076049765, 0.2723774746563299, 0.5785093195946327, 1.0497425090493306, 1.2794254478890452, 1.4192900498187924, 1.9787407203565133, 2.19906398592505, 2.335822098489689, 2.2810415509965956, 2.3436399867441082, 2.229006889089903, 2.3691378265619427, 2.030150805221376, 1.7790077660231391, 1.8187168112245928, 1.475854144715031, 1.0554799500040726, 0.7624073036745783, 0.2347871328397565, 0.29444231754785266, -0.09817951889776025, -0.17486709524695437, -0.5739384358613507, -0.27650395011105694, -0.4277209437322719, -0.3975678985900575, -0.13448980729684062, 0.05937982293512553, 0.4964277654406455, 0.6553142939153053, 1.1664677074037206, 1.405544318755758, 1.7982883601424051, 2.0237626890996183, 2.4309278792068154, 2.4201950941846375, 2.720586391852429, 2.7775600465933885, 2.994740555839453, 2.9716381258564284, 2.719464968576351, 2.424493060456991, 2.3756045370921517, 1.9018032370486277, 1.9355262937939584, 1.4141301752356612, 1.1461818045189665, 0.7835960043413189, 0.4933384402814721, 0.4317712313292214, 0.17071832522306798, 0.08214279366604159, -0.06260069193505613, 0.15443488424392504, 0.2660060376546389, 0.3169815346398924, 0.691329384581169, 0.8297851186730615, 1.2305015916586517, 1.3251706309276001, 1.8652267488554601, 2.1371597834614486, 2.491186728111022, 2.7609195312708454, 2.987267000223432, 3.2018095691796735, 3.182826913163213, 3.3249191358053514, 3.348815650602645, 2.973663857329403, 2.8632080390691144, 2.640318327622076 ]
Is the given time series likely to be a random walk process?
[ "No", "Yes" ]
Yes
binary
54
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
Random walk is a non-stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is correlated over time. Does the time series seem to have these properties?
Noise Understanding
Red Noise Recognition
377
[ 0.9527575734796346, 1.4748328934042052, 1.6664900329029375, 1.5868802791399572, 1.611139157351728, 1.4830728167067646, 2.0223353586779984, 2.32432054747782, 2.258622479502982, 2.4833421950153345, 2.592877590194951, 1.9054060268582564, 2.0148124644877976, 1.8014960795719994, 1.708255636901317, 1.5787736807541162, 1.5115154103003285, 1.6522079497187823, 1.1763436423812783, 1.241186390743259, 1.46379693156629, 1.837630076551938, 1.5649583633582225, 1.556789238141717, 1.6700959019653818, 1.8679151657450963, 1.6936344143250806, 2.043356594803317, 1.641127004148305, 1.3189173211907403, 1.4131802206248245, 1.0798601632401563, 0.7275184509412966, 0.6182742499965826, 0.7848389357760399, 0.4186400687047844, 0.4906159779770335, 0.4930326847057118, 0.5364812690446572, 0.4708179302843791, 0.5437515136987252, 0.7005337489792718, 0.8997574341544001, 0.512181122739699, 0.6391359727409117, 0.6592674587917771, 0.5656635609597394, -0.019331321650721822, -0.20624972012500287, -0.041150374312308315, -0.007030590884788801, 0.26281934389977096, 0.12878308978528502, 0.09031175536307876, -0.2714392840375116, -0.006740149013463981, 0.17348355040745697, -0.12126271797421817, -0.48839908043568975, -0.37001479080799204, -0.4111863771910467, -0.6515910741126232, -1.0246328033884635, -0.8231203196073233, -0.3721666591246673, -0.7844512114817872, -0.5118115629053465, -0.6204670930519797, -0.7773183147779831, -1.3475149217366973, -1.6006881085001963, -1.5137202015185454, -1.6076039717896284, -1.2292368221383998, -1.4360637183508902, -1.3921889600219446, -1.4542491919574156, -1.3310388457585889, -1.4377771040200382, -1.6623276458724254, -1.5534312712835683, -2.189731859010634, -1.3650843458963167, -1.25431370484964, -1.3997547358656603, -1.4027629132144903, -1.4891202636418455, -1.7863719481285543, -1.7205088630471255, -1.6145547357134484, -1.691927099350715, -1.593004630070239, -0.7992930722359428, -1.0604855037536207, -1.0786872957618798, -0.7397163143674742, -0.1797955273450538, -0.2857285021437555, -0.5296860256068588, -0.8664168587200756, -0.9567702345165481, -0.9995342880751092, -0.4203969692176711, -0.05280878886982314, -0.19914074625997, -0.43663445175818544, -0.40564077663307835, 0.00937073121787238, -0.11756947282909799, -0.16472044616106557, -0.28438637640838915, -0.3727482967226286, -0.3169766511056075, -0.5250602762230113, -0.5555310196281308, -0.45565503359756887, -0.493547452796395, -0.9949257576492435, -0.7320358369579453, -0.797268899252526, -0.8576966345128041, -0.6471625890755122, -0.6082549485421741, -0.6235554081770743, -0.880817699158677, -0.8074863255673016, -0.720144384730121, -0.8962081141465854 ]
null
The given time series is a sine wave followed by a square wave patterns with different amplitude. How does the amplitude vary over time?
[ "Increase", "Remain the same", "Decrease" ]
Decrease
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Focus on the amplitude instead of cyclic pattern change, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
378
[ 0.021494016993893264, 1.096025106001649, 2.296559335167893, 3.2852963090471645, 4.081798821485621, 4.871279039205841, 5.368902704861661, 5.908988691996132, 6.017110569181866, 5.556237994138693, 5.307034648885618, 4.711065664356035, 3.6561930412972834, 2.8471944580362933, 1.994044628105816, 0.6466325136392186, -0.6311241132913352, -1.8232531195431263, -3.057661151775261, -3.7794708582656145, -4.445945451545896, -5.346012016914262, -5.86628592054315, -5.914627364792054, -5.69573524727683, -5.525285096381884, -5.03823180072722, -4.224806644540309, -3.300985781198443, -2.423740252238043, -1.1738898134969606, -0.021907660762848977, 1.1425685755610626, 2.234320002302964, 3.463732822651243, 4.200591591736463, 4.786084873797551, 5.528140326200462, 5.864781325384039, 5.765717176637227, 5.602741038416407, 5.175172994419063, 4.571931185033772, 3.8949207170159075, 2.7953082967279843, 1.798071610015588, 0.4543453611184889, -0.67262563783222, -1.6983346409721685, -2.96022949471036, -3.7463164880990423, -4.720473871247929, -5.308935373543608, -5.512529230003229, -5.893031884011701, -5.764981635801773, -5.410967949750047, -4.918668906299612, -4.181919366235982, -3.3066714111618514, -2.389486273289511, -1.0900444001336935, -0.017609272530947954, 1.3114439578248704, 1.3710733784795215, 2.689410655044689, 3.0073471639291007, 2.828860601999686, 2.856871458967943, 2.778727635935151, 2.8888131540930178, 2.8766478695041307, 2.9776586637156752, 2.7958270535233645, 3.036046621380181, 2.9364377898172793, 2.879063278863931, 2.8518879447968413, 2.8393094364730054, 2.84583200374574, 2.8868065768799376, 2.849066385117017, 2.8059134355356417, 2.8874123106700607, 2.7863375693138517, 2.902213071286565, -0.42453861256535874, -0.33255881809410015, -0.30332448794773686, -0.30336385298281066, -0.37042140341202195, -0.35874878694060003, -0.43450701162912814, -0.3344679401689498, -0.3231817729511122, -0.5589648243697374, -0.3643971894565582, -0.26541892824639784, -0.437860938477763, -0.4596866066306725, -0.4442182551259165, -0.5527195083001972, -0.3896335135723935, -0.3992353650075594, -0.38252922572955445, -0.3606342468955044, -0.4820312492354322, 2.8972863010885948, 2.914286247177963, 2.821127208104687, 2.9119781810115875, 2.8780370438250644, 2.806847404242052, 2.898245250834758, 2.8408953068510683, 2.939672908587829, 2.8460497431794867, 2.740989823009884, 2.8966650797391553, 2.892906705969534, 2.761852669906624, 2.9450199927299208, 2.939788464799938, 2.782968361938899, 2.804003751080399, 2.8557656198834374, 2.7940811680826263, 2.934006099677558 ]
null
One type of noise in time series is random walk. Is the given time series noisy based on your understanding of random walk
[ "No", "Yes" ]
Yes
binary
56
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
When we say a time series is noisy, it typically refers to there are random fluctuations that disrupt the overal pattern of the time series. When the time series has a random walk noise applied to it, it seems like the pattern are even more disrupted. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
379
[ -2.8767393370978, -3.0184699026041337, -2.926546134060981, -2.7458017582926755, -2.442840081457931, -2.663532824562233, -2.634869180141026, -2.568468117266955, -2.0639963365773335, -1.9211268794665763, -2.2429659045089827, -2.3705781971954196, -2.036031065371, -2.2938468417831817, -2.4521780851947454, -2.423582492568866, -2.514817574440063, -2.475813079973568, -2.6666259172640094, -2.1909724038525975, -2.0455988581042464, -1.68660280024111, -1.6867372570054777, -1.5634363260239965, -1.8321301075820355, -2.0126176829421585, -1.9570186767721678, -2.0669577323936856, -1.7372426583945924, -1.5860807468339422, -1.5964854579516026, -2.012964135654289, -1.5963649025086604, -1.5037854764044012, -1.4652618160178377, -1.0647377218939051, -1.6628526851778702, -1.3650061678006233, -1.465795434218355, -1.185081475161579, -1.7873629882188151, -1.7010054305960434, -1.7356517023879072, -1.3001942537924627, -1.5049021213494538, -1.690700204884789, -1.7959719531906253, -1.5599510475480183, -1.495571860812222, -1.0335631662138092, -0.8712520274688141, -1.15504394594957, -1.1580234502778528, -1.3803528793379227, -1.7083267896358996, -1.514241861117871, -1.3592334749508075, -1.0579414946310297, -1.1831378535960384, -1.1062148558525715, -0.9773896747375734, -0.5338758950396072, -0.07594953078410557, -0.09941314378414089, 0.14316643774355423, 0.5836273441937129, 0.4042819643550404, 1.0262370582504063, 0.926007610609567, 1.1337254205568978, 1.2549364542087522, 1.3501116375542597, 1.3575535683063833, 1.379403992777556, 1.151537943434986, 1.441508673670753, 1.1785008781122095, 1.1685238921922239, 1.3654037296331145, 1.2200781345741014, 1.0835498424374534, 0.7850271679053867, 0.6830512293806504, 1.246186928498359, 0.9799252644116934, 1.1327452137872964, 1.4318256659367055, 1.3677599413336021, 1.4410912000490652, 1.2904931611535304, 1.4185455758303265, 1.3886187055445094, 1.9034067646820865, 1.936808837412804, 2.2459520733389784, 2.5130026719214, 2.5197429772658384, 2.5153161400504414, 2.3756108647649254, 2.412042383758333, 2.704030525183919, 2.9890073126108, 2.2986723410538623, 2.1623215244247143, 1.9622429627708968, 2.174483297042582, 2.1027462353725617, 1.906886174050681, 1.6823195166072058, 2.1422113821684765, 1.95263936250618, 2.5026185308070796, 2.1637315440234657, 2.1979709880721843, 2.3880572674189113, 2.6004967378861443, 2.8323166999706157, 2.6233927548644185, 2.470563130073713, 2.590491903767956, 2.5403028470521067, 2.6642014376006586, 2.040974282912989, 1.6611070491360582, 1.5360869927276768, 1.6513302726453554, 1.831718094799231, 1.665371803979795 ]
null
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "38.6", "51.24", "19.15" ]
51.24
multiple-choice
26
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
380
[ -2.5589504836519144, -2.1719230085623265, -2.3335336289074564, -2.079842754061, -2.397290482681889, -1.9289487937861445, -1.9819148398325057, -2.05858956090742, -1.721616368153624, -1.6938824769866105, -1.5054976424551074, -1.3623113656565569, -1.5122500671995671, -1.161759201389635, -1.162519195324822, -0.9277990703893094, -0.9835140548701663, -0.9099561653352645, -0.76012591612497, -0.652561293667623, -0.6289418885665248, -0.5122099256246229, -0.4851830500922163, -0.30587604973159965, -0.09469657886456519, -0.07597904636668035, 0.1387468565169236, 0.1193813360351405, 0.0948564389163736, 0.39781968333262047, 0.3708138363618786, 0.5149233774771229, 0.7621012669901448, 0.6223409721578385, 0.8549863527646859, 0.9345440949029249, 1.108772457338472, 1.2242791782312206, 1.2652316979961646, 1.3028942888014927, 1.4863529597503857, 1.6726652549505032, 1.636454627160333, 1.7125419655702585, 1.8781685586676165, 1.9433081908260357, 1.9057485022855518, 2.163536480605337, 2.1050111155774696, 2.3772193769829477, 2.3601409957897035, 2.543626704537251, -2.4496024817381867, -2.143187581875496, -2.214218964402904, -2.0519301237191057, -1.9011512669356896, -1.9393165012168805, -1.859589157001848, -1.8947462920229325, -1.6996532184920932, -1.6602150423273832, -1.5279281984879782, -1.200672019968036, -1.3762762066672838, 1.1197664057155052, 1.3448097089562465, 1.302883911110861, 1.3081217127471558, 1.0067433431768766, 1.4022234592592646, 1.1515048892777273, 1.2851518407663916, 1.4597363425488192, 1.4228896383061778, 1.1096001509398474, 1.0629046297868887, 1.3503910233719087, 1.221561944646516, 1.1572682193569082, 1.269478218181021, 1.191068405741172, 1.2774887771919905, 1.2140545442689894, -3.910594285828865, -4.072286347575321, -3.8403868773484184, -3.913070741588438, -3.9182033417213247, -4.094600071362882, -3.8128698369972573, -3.9842046885983087, -3.910028192418698, -4.015115525036343, -3.9567441721934724, -3.9531203434497413, -4.264826171862024, -3.924588266196199, -3.7862989324894736, -3.9288550527624864, -4.078603903550656, -3.9178369220462934, -3.876885025644348, 1.2586030151061547, 1.1999436528441116, 1.183141440904723, 1.1827253879504354, 1.2771340535882374, 1.0666439639811531, 1.1701690474015753, 1.366917345788211, 1.3707758901448337, 1.0595416547069498, 1.094215002360755, 1.1802943055343225, 1.2966153151985513, 1.024608928081817, 1.2018754999953682, 1.1599384478291515, 1.3399528309156394, 1.0396655160901906, 1.2166104250364782, -4.022194022396541, -3.835853186033953, -3.923067814026357, -4.041414644587455, -3.897494434328774, -4.0217159639925395 ]
null
The following time series has an anomaly. What is the most likely type of anomaly?
[ "Speed up/down: the period of cyclic components is different from other parts of the time series", "Flip: the pattern is flipped at certain point in time", "Spike: the pattern of time series is distorted by random large spikes" ]
Spike: the pattern of time series is distorted by random large spikes
multiple_choice
64
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Spike Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
Anomaly is an observation that deviates from the general pattern in the time series. You should check if the time series has any sudden changes or unexpected patterns. If so, check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
381
[ -15.86575313856563, 1.1715114599921181, -2.6823311014304028, -0.19049511989196827, 0.09306283634124402, 0.3766207925744563, 1.8602418394493059, -10.347408351958446, -4.038053008669693, 1.510852617507305, -0.39150168914208716, -9.34800981216027, 0.27918850902373205, 0.5627464652569442, 0.8463044214901566, 1.1298623777233687, -2.2669772508327948, 1.6969782901897932, 1.9805362464230052, 0.8178654508153782, 0.46531418170621996, 0.7488721379394322, 1.0324300941726445, 1.3159880504058568, 5.883577027425922, 1.883103962872281, -2.1622545600181526, 6.766879664594782, 2.733777831571918, 10.744679332137036, 1.2185557668551326, 1.5021137230883446, -3.1311902109386587, 2.4985554563589947, -0.40218278445744504, 2.6363455480211937, 2.9199035042544055, 8.080953413044764, 3.4870194167208304, 3.770577372954042, 1.971797352004045, 2.2553553082372573, 5.5334260584553885, 2.8224712207036817, 6.570721943762214, 3.3895871331701057, 1.5053572847679968, -0.9873580887335907, 4.240261001869743, 7.6288011710778925, 8.553202188929589, 5.947902961421473, 10.907111519174702, 17.752562356884685, 2.0475477636599875, 4.142828718319018, 4.426386674552232, 4.709944630785444, 4.993502587018655, 5.277060543251867, 3.47828052230187, 10.55708223002358, 4.045396434768294, 4.328954391001506, 5.588653534121134, 4.896070303467931, 11.038425733522743, 5.463186215934355, 9.847667293461836, -1.3812587430050902, 4.2315221074507825, 4.515080063683994, 9.097635134004433, 12.163966402287304, 7.735778342364243, 10.90058286859922, 5.932869844850056, 6.216427801083268, 6.499985757316479, 0.3921397982747301, 9.890641767036797, 5.268321648832907, 5.551879605066119, 5.835437561299331, 6.118995517532543, 6.926071871320455, -1.1662391707953033, 6.776880741231828, 7.253227342465393, 5.454447321515395, 5.972391618695107, 5.2551366138509845, 5.6120556413591896, 10.72220722847441, 6.872237102681456, 11.494279538630973, 7.439353015147881, 7.722910971381093, 8.006468927614305, 6.207688906664307, 10.455983664101252, 6.774804819130733, 10.576245876430551, 17.18488949944379, 7.625478687830368, 7.909036644063581, 14.09648327226493, 8.476152556530005, 8.759710512763217, 6.96093049181322, 7.2444884480464316, 15.244161337223192, 12.865151251943484, 4.723396743367398, 10.078544132513061, 10.098338974614775, 8.945836185445705, 14.09753172168993, 17.5381110558018, 7.754965582019536, 15.42840953870551, 8.281287989428556, 8.56484594566177, 8.848403901894981, 9.131961858128193, 1.0363137142094985, 10.62044581301915, 9.98263572682783 ]
null
The following time series has an anomaly. What is the most likely type of anomaly?
[ "Wander: the pattern deviates off for certain point in time", "Cutoff: the pattern of time series disappeared for certain point in time", "Scale: the pattern is at obviously different scale at certain point in time" ]
Cutoff: the pattern of time series disappeared for certain point in time
multiple_choice
66
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Scale Anomaly", "Wander Anomaly" ]
Anomaly is an observation that deviates from the general pattern in the time series. You should check if the time series has any sudden changes or unexpected patterns. If so, check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
382
[ -2.574746690010211, -2.1361123883796234, -1.6974780867490356, -1.2588437851184477, -0.8202094834878602, -0.38157518185727224, 0.05705911977331524, 0.4956934214039027, 0.9343277230344906, 1.3729620246650787, 1.8115963262956665, 2.250230627926254, 2.6888649295568414, 3.12749923118743, 3.566133532818016, -1.1447255455718173, -0.7060912439412295, -0.26745694231064165, 0.17117735931994593, 0.6098116609505337, 1.0484459625811215, 1.4870802642117091, 1.925714565842297, 2.3643488674728843, 2.8029831691034723, 3.2416174707340604, 3.680251772364648, 4.118886073995235, 4.557520375625824, -0.15333870276401118, 0.2852955988665764, 0.7239299004971642, 1.162564202127752, 1.60119850375834, 2.0398328053889276, 2.478467107019515, 2.917101408650103, 3.355735710280691, 3.7943700119112784, 4.233004313541866, 4.671638615172454, 5.110272916803041, 5.548907218433629, 0.8380481400437949, 1.2766824416743825, 1.7153167433049705, 2.1539510449355577, 2.5925853465661457, 3.0312196481967333, 3.4698539498273213, 3.9084882514579093, 4.3471225530884965, 4.785756854719084, 5.224391156349672, 5.66302545798026, 6.101659759610848, 6.540294061241435, 1.829434982851601, 2.268069284482189, 2.7067035861127766, 3.1453378877433638, 3.5839721893739513, 4.02260649100454, 4.461240792635127, 4.899875094265715, 5.338509395896303, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, 8.751304225950308, 9.189938527580896, 9.628572829211484, 10.067207130842071, 10.50584143247266, 5.7949823540828245, 6.233616655713414, 6.672250957344, 7.110885258974589, 7.549519560605176, 7.988153862235764, 8.426788163866352, 8.865422465496938, 9.304056767127527, 9.742691068758115, 10.181325370388702, 10.61995967201929, 11.058593973649877, 11.497228275280465, 11.935862576911054 ]
null
What is the most likely mean of the given time series?
[ "-14.73", "21.1", "2.04" ]
21.1
multiple_choice
41
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
The given time series is stationary. Check the average value of the time series over time.
Pattern Recognition
First Two Moment Recognition
383
[ 21.399445501672453, 20.935499930145863, 21.165597005339222, 20.89618564591067, 21.169385315501764, 21.07799210477209, 21.236021440215147, 21.2568420729599, 21.036048740997906, 21.1803117851884, 21.008466634965586, 21.38080071282068, 21.02731209557797, 21.06048677705763, 21.00413476401324, 20.948366342377504, 21.532240577516827, 21.205715700576718, 21.117436411044295, 21.00257070242438, 21.33796866063262, 20.987921014815125, 21.12855604440441, 21.567958292145043, 20.90105819273442, 21.216934693382996, 21.163959814841395, 21.21452573758665, 21.042944530017667, 20.978083796386258, 21.150864892644336, 21.006831758831417, 20.61102078348911, 20.929080312268123, 21.036241477792135, 20.875608690621615, 21.13493078017837, 20.943191893892987, 21.0939009896991, 21.560555575379325, 21.362003116341395, 21.227890875732367, 21.4848707337762, 21.08775007338797, 21.08989796547758, 20.880304732575052, 21.372797883572417, 21.516053407290755, 21.29455920498066, 21.40344606376308, 20.52540583129083, 21.596815639519548, 21.08104831413894, 21.600249486914176, 21.46849929713064, 21.26607338893735, 21.030676956289, 21.13646124016582, 20.699994148979265, 21.29949516167772, 20.563883475193844, 21.04003541377512, 21.42873836737297, 21.255162990415226, 20.780208978418482, 20.820222350162723, 20.97699068033575, 21.119607624583455, 21.28804704566431, 21.230559604942997, 20.879638309646534, 21.233639561819682, 21.256136292613693, 21.20616067304945, 21.626040919348057, 21.256343513088943, 21.307308267671214, 21.498931593130106, 21.2824687194679, 20.986778275496555, 21.365316360816053, 21.018361436964717, 20.89570742338309, 20.913778140117394, 21.36292033431032, 21.233958816479035, 21.326936883791834, 21.234981272973428, 21.14292050222409, 21.170178111051094, 21.22780362214426, 20.975924068854425, 20.83077500692577, 21.00069376834482, 21.217894649985464, 20.966354388061077, 21.55248237736037, 21.196188006096815, 21.12828345589244, 20.975112154087213, 21.296316533431074, 20.847310938448846, 21.169705390757514, 21.01115780551996, 21.128587794385766, 21.205686491847267, 20.8612980314648, 20.750450012039394, 20.90646060962293, 21.288614911822, 21.181810522800546, 21.01804338909705, 21.51840734926631, 21.374263110419285, 21.323270421232916, 20.950238374165128, 21.32092494928396, 21.17496780293011, 20.950647878290976, 21.081099492060286, 20.883926355637552, 20.952500789126667, 20.861611745825872, 21.304930197536365, 21.088100405567516, 20.90436168724689, 21.212249785888858, 21.10338517561118 ]
null
The given time series has a cyclic component and a trend component added together. What is the most likely type of the trend component?
[ "Linear", "Exponential", "Log" ]
Log
multiple_choice
10
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend", "Sine Wave", "Additive Composition" ]
Despite having a cyclic component, check the general trend of the time series.
Pattern Recognition
Trend Recognition
384
[ 0.05634599541832393, 0.5782925540689365, 0.6825612528254354, 1.0973153614302125, 1.588698766594857, 1.6336414922033586, 2.2033691085977503, 2.2558622147611502, 2.543418861710409, 2.635877688985315, 2.635227308103958, 2.9720820536544417, 3.1989609796041396, 2.895706933318354, 2.9054015841822918, 2.63192025246701, 2.9620783136084725, 2.8217143324833858, 2.437356088956298, 2.264324676971166, 2.1197092020335484, 2.210665186490091, 2.0440437332331416, 1.6967827651731744, 1.659116543796958, 1.44993576893011, 1.2311152894398003, 1.2115421053934567, 0.8572660612014804, 0.9756318250341725, 0.6939397612393418, 0.8761059096636539, 0.5557689236783387, 0.6080711202805152, 0.6654201054856738, 0.7107667268695954, 0.8298776617390061, 0.7558367059652323, 1.0111344711135846, 1.1839572333136226, 1.2949397599600097, 1.58500993037964, 1.6228226750510402, 1.9499590313247246, 2.140795570017903, 2.4215489997197777, 2.836453897335123, 3.072135318714002, 3.2780240010208086, 3.318025918974277, 3.652311655348158, 3.750666946299125, 3.899375836928706, 4.017323136054181, 4.303830881185472, 4.338543705588551, 4.320369143125328, 4.242201798492767, 4.24604299157099, 4.248156021888909, 4.067335561366775, 4.110885823504654, 3.797938937000108, 3.780469534621402, 3.3449261033848363, 3.3363730639064757, 3.405486095168101, 3.1004022365683293, 2.9463465002927434, 2.523262900240285, 2.4029412418964022, 2.3328006564148143, 2.0933194428635042, 1.9232874389360022, 1.898230737747993, 1.5171010258808022, 1.5143873128610161, 1.2967153908839926, 1.330993513149572, 1.5462233586957241, 1.375561954754679, 1.5992160327954452, 1.7788554819526123, 1.7100712900701065, 1.9202269642838958, 2.1059706007487473, 2.0929693802362466, 2.353699999643196, 2.5282916805604887, 2.7974678397958423, 3.1503069918725326, 3.2476085326644317, 3.528705534795222, 3.645574023064777, 4.078557639133661, 4.092205441624728, 4.471025230573637, 4.474906277937956, 4.453563339579358, 4.675737647697707, 4.656548551942314, 4.8619895018502675, 4.78679692395409, 4.808776928619203, 4.705267128383635, 4.607793178891179, 4.460175712017117, 4.510682823339107, 4.257282924701627, 4.071809003317371, 3.896769345294256, 3.650436621943774, 3.4813485011004097, 3.323790703679806, 2.9913604862629697, 2.802390005578798, 2.834813034435456, 2.4794028786384854, 2.295923170605842, 2.0721471055879483, 2.170069182965744, 1.883399082603612, 1.9189911988396193, 1.7102502863189475, 1.9533717506368626, 2.010000041598989, 1.9915501820326544, 1.8696246256667521 ]
null
The time series shows a structural break. What is the most likely cause of this break?
[ "Change in variance in underlying distribution", "Sudden shift in trend direction", "Abrupt frequency change" ]
Sudden shift in trend direction
multiple_choice
72
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Gaussian White Noise", "Sine Wave" ]
You know the time series shows a structural break. Can you first identify the place where the break happens? Then, you should check the type of break based on the given options.
Anolmaly Detection
General Anomaly Detection
385
[ 0.08387621439092308, 0.00995173009916929, 0.05625890201522031, 0.09438863890677493, 0.32055876349020795, 0.4426717730189358, 0.1528733543146613, 0.2692016032920833, 0.4006575110039727, 0.3958088629806889, 0.5229182216771979, 0.6228747170188604, 0.6545106103262197, 0.6888452075591334, 0.8420792375410571, 0.5655727918324084, 0.9207762339944155, 0.7797640260649144, 0.947873546216386, 0.8146922359958135, 0.8751070543093648, 1.08046625732183, 0.8696793605735772, 1.2097944053523275, 1.2851443824325899, 1.2252243522562616, 1.2699198051061562, 1.2206779217323898, 1.4197843111385362, 1.435403730213847, 1.3567845006456565, 1.4580848799141544, 1.5295971671283277, 1.554548324620924, 1.50583523761278, 1.7603262444811014, 1.7143710027074572, 1.7885563605619121, 1.777491058907773, 1.9311426997196495, 1.9517830054355254, 2.1014896605853615, 2.076568927641153, 2.056538450838478, 2.0511330439468676, 2.259997828763723, 2.193442785168347, 2.2528264730623055, 2.3010989037675946, 2.3264331280060837, 2.399437834323744, 2.6558103246949236, 2.4067051976838316, 2.4783348166953743, 2.746515514261895, 2.6189004686718973, 2.6596166133888492, 2.8564629621486173, 2.6592548494180335, 2.9317176887464833, 2.902431723428232, 2.99264812825421, 3.0390688453711596, 2.9799653258726178, 3.1961797972108066, 3.0843454827229437, 3.2285419904455592, 3.3597273717735336, 3.4221429278802016, 3.3058379589764204, 3.4271619546695247, 3.3931973828999964, 3.7278237193221706, 3.6037545318576094, 3.582445609528856, 3.6535938179658713, 3.711345976839638, 3.7626076240483144, 3.743231282880245, 3.7760962093963184, 3.8486414378221205, 3.7981554381649842, 4.032249884042086, 3.9285497737546766, 3.9510231047960374, 4.103880500713029, 4.140601519075389, 4.226875064298212, 4.193388914454606, 4.259253030246084, 4.416017071252965, 4.45822467546857, 4.502353294711654, 4.495095386004069, 4.556888721777082, 4.611338182889839, 4.570987954812827, 4.832294623483269, 4.866346601392363, 4.860910191918625, 4.787197308853303, 4.9319957139634125, 5.024216130620309, 4.852357281346152, 5.192425982363051, 4.897333879752557, 5.190031057513978, 5.313196540843252, 5.2048597984902365, 5.249417539585567, 5.379527893507501, 5.546247838111131, 5.381250719798541, 5.379559799081019, 5.463575607381748, 5.398999588388859, 5.692324612163932, 5.599438351695965, 5.67831057623573, 5.838404439459121, 5.75804912855117, 5.91994703520593, 5.788526979960396, 6.036505607849358, 6.023122001818441, 6.028371431284862, 6.098616517836143, 6.005148874251424, 6.1929229127863294, 6.216253694530907, 6.152775246697745, 6.2116109650508475, 6.20195508724142, 6.090311499837057, 5.84599043312197, 6.131001682883067, 5.945315046708385, 5.668290118588866, 6.04534253877563, 5.892146583234179, 5.669270250291196, 5.55607981155653, 5.616809787064422, 5.532884452771953, 5.503021869058746, 5.301011954548374, 5.430912289266212, 5.209949980146663, 5.261533872624944, 5.049924477008855, 5.330593906925077, 5.071492948541422, 5.226524946597432, 4.957023021867841, 4.754277493843538, 4.8295231141844965, 4.772803921940068, 4.656239659865691, 4.618107597914291, 4.567402168947023, 4.328022460224851, 4.2570658261236, 4.220291072030321, 4.248628116623985, 4.149717865334763, 4.010639031184979, 4.1218886141244075, 4.008822780381261, 3.933572302799869, 3.82704157844056, 3.7511788040165657, 3.641029603367395, 3.7546978540971963, 3.5271356419733135, 3.5545850821030833, 3.6360081803561752, 3.3727424715552066, 3.4381995653912307, 3.3351613582180484, 3.245598318235756, 3.193647511395296, 3.077283115572897, 3.026412474674504, 2.9042845882677573, 2.8994028004989087, 2.77289559410232, 2.868144808283499, 2.5337906614031644, 2.688006838678727, 2.6097212850035763, 2.5368253165741215, 2.550834720338237, 2.3559335717425633, 2.3462504204992327, 2.0852139525185516, 2.151497558418845, 2.2147639950450597, 1.9314352836690583, 2.017486899222951, 1.8699219606246662, 1.8627360759310425, 1.7482281295272257, 1.6214374232692124, 1.720918420489705, 1.6135195180864204, 1.6159032115527852, 1.5702451956791206, 1.549488383883306, 1.3764722900138404, 1.426146823225065, 1.1378683753208179, 1.2625029142778965, 1.153707078283039, 1.0672384071969017, 1.0245634706569047, 0.8201774647022161, 0.7327377768384302, 0.9595563817338015, 0.7078624506015448, 0.642596431535772, 0.4868259315874821, 0.38504015375709777, 0.46054720172072255, 0.3713814027462481, 0.3418747358665353, 0.2865777995256778, 0.4629696189086989, 0.11632661800390429, 0.2443397321673146, 0.1867092481726337, 0.03403036049050778, -0.12868359599643256, -0.3051570910596242, -0.18505436441779127, -0.19480643888591737, -0.18575779513254406, -0.5193612316903505, -0.5125569698890289, -0.6464296847176176, -0.679229919623855, -0.6132822616614308, -0.811490386726397, -0.889825922226355, -0.7915381128272565, -0.8900027148999591, -0.963914368815627, -1.128043119133881, -0.9972909501973348, -1.1889831529916557, -1.0162520535529886, -1.301993345186291, -1.6152836410228413, -1.683575305020643, -1.447231652063239, -1.4434161257195361, -1.7156872486498314, -1.491045453084562, -1.5986823313676974, -1.8077664434278229, -1.8387146202411544, -1.8670458874427458, -1.8313383141543758, -2.0159631019167006 ]
null
The given time series has multiple cycle patterns with same amplitude and period. How are they combined together?
[ "Additive", "Multiplicative" ]
Multiplicative
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Multiplicative Composition" ]
For additive composition, the patterns are added together. This changes amplitude. For multiplicative composition, the overall shape of the time series might be distorted with cyclic patterns unobservable.
Pattern Recognition
Cycle Recognition
386
[ 0.016855830129803528, -1.8622494680142632, -3.5836201622889257, -4.743697237975495, -5.124413254307951, -5.186458473607655, -4.859506836721918, -4.108560067423486, -3.033572526491448, -1.8237934950589219, -0.49284903480213915, 0.7134466626255445, 1.9511763768236408, 2.8083992287235295, 3.3381937906867116, 3.414383393579814, 3.0599502622031443, 2.3922696665578447, 0.9368536194098982, -0.7252427839427453, -3.1464660540500904, 5.3473159423952294, 6.447361217276164, 7.144737383961224, 7.312356888640057, -7.078681897625219, -6.352330082703743, -5.143588891350598, -4.008663476060833, -2.6364944834813437, -1.3609414409600027, -0.005937220339842883, 0.9454899802425839, 1.5697042076506167, 1.7498026703381373, 1.8031407394321317, 1.2499181131614505, 0.039775237373212535, -1.3895294864934487, -3.19908527357328, -5.626347794584611, -7.981539937192164, 9.45153121723115, 9.749159018084315, 9.568407342237958, 8.817080246598103, 7.558558076099466, 6.174552313021079, 4.861951310428615, -3.3530425557462316, -1.997932184156863, -0.7728222708810548, 0.10586545868022668, 0.7196562504786493, 0.7328509461919616, 0.4717180297546189, -0.15680213817581556, -1.5128956758288394, -2.9664278428596984, -4.906712795226729, -7.103378968492538, -9.45444360049985, -11.573365471239608, 11.72301275183469, 10.966106590385595, 9.834734548488125, 8.361071520392588, 6.68908010474873, 4.964953475553649, 3.641568273364989, 2.2082187325704523, 0.855235364725487, 0.17511614505313639, 0.144080277525861, 0.11289645046974675, -0.5815162457491846, -1.3597919960551896, -2.598553449237376, -4.304469440534166, -6.090177971268158, -8.1384654242395, -9.985810797850574, -12.034947069813063, 13.187791984187951, 12.002180267464, 10.248055448799779, 8.387018684235063, 6.847333174942257, 4.835247941586382, 3.1577072254550305, 1.8260553968304967, 0.7750510521675589, 0.19502558300013428, -0.12215025271446665, 0.254085324262171, 0.909619461533163, 1.742036702887268, -3.2771957344987093, -4.852440280963572, -6.54157133521051, -8.171267161029888, -9.831810684970106, -11.154684888739169, -12.766980480067083, 12.183221551144324, 10.425990846478527, 7.951394594671241, 6.237726399126979, 4.154098524969601, 2.491789402002901, 1.0144036367089855, 0.1618252625442207, -0.12122000003277072, -0.3590060964064415, -0.025467060349825123, 0.8267613075058162, 1.8680895443578587, 3.2770463559475664, 4.670976301322467, 6.312250943334296, 7.756081981978092, -9.321106552537522, -10.121302473107395, -10.927113837596343, -10.971331858965598, 9.35907972031781, 6.7463478184027705, 4.7371657173039585 ]
null
What is the most likely linear trend coefficient of the given time series?
[ "0", "3.58", "7.14" ]
0
multiple_choice
2
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
The bigger the slope of the line, the higher the trend coefficient.
Pattern Recognition
Trend Recognition
387
[ 6.395289509719057, 6.422385030664015, 6.567712547319095, 6.3904826192951125, 6.368031114054266, 6.443672624228716, 6.24782926151632, 6.413820224909983, 6.385895014273348, 6.346116263902472, 6.442266622326079, 6.413181280325699, 6.294191395287091, 6.36828003642694, 6.224590654020411, 6.428518517603499, 6.427879475128151, 6.358873619112219, 6.4443404901341355, 6.3275161929160415, 6.347769730863002, 6.436461517313716, 6.365579157400593, 6.405704637515599, 6.373592444653006, 6.383381233763419, 6.3861827265981015, 6.364419638768122, 6.4291069556239115, 6.369472310795421, 6.410726248006149, 6.3630111074895295, 6.311376515671147, 6.468205325169396, 6.441739058385986, 6.556418903455346, 6.3428050294587415, 6.39632698968849, 6.401483802757464, 6.473136591865089, 6.377216573419281, 6.334660260460377, 6.4871379776014475, 6.3894243907486175, 6.466039369020829, 6.458575562683827, 6.407804877538321, 6.398547751690732, 6.384622562720466, 6.408746936322412, 6.465043087945902, 6.358671181719815, 6.41669747442383, 6.338019622421684, 6.346001339723821, 6.407737670125538, 6.284080118403201, 6.5417968271517415, 6.333248961683686, 6.407151211729804, 6.484600267447779, 6.354410950700192, 6.2621243261647885, 6.38120099263601, 6.353647229821178, 6.26381158779171, 6.427981420078989, 6.422994911761412, 6.482940709510518, 6.337879189457049, 6.307220589885654, 6.383650959508853, 6.404058255686993, 6.468776710352075, 6.500134243893822, 6.487565494788635, 6.427446450317809, 6.46096644318878, 6.368666932712315, 6.420514435086902, 6.333362401923289, 6.4137387323595, 6.415402779231421, 6.520104408437492, 6.395043611412732, 6.41549226792339, 6.424909338541284, 6.380568061183932, 6.3582832300272, 6.492970952750006, 6.346846704341467, 6.32460493295794, 6.453323884784633, 6.4839334719006585, 6.380786674856718, 6.381770962472058, 6.427831024540235, 6.364349393386667, 6.359615183630969, 6.466100202287238, 6.448636181742343, 6.493762396962631, 6.329433315321735, 6.3775143310510005, 6.427743598266811, 6.3503910615619175, 6.450851146413262, 6.488215950260603, 6.372329156323867, 6.412194409062931, 6.503021867013719, 6.525049057368154, 6.457524551171214, 6.447757926443243, 6.354998645439061, 6.432745093014663, 6.445411434555393, 6.396236633698886, 6.371597276309498, 6.3275931703067, 6.298337148357318, 6.284866879257301, 6.446861424416626, 6.419187887784632, 6.378709830850651, 6.388475350283144, 6.4232113474757995, 6.39917274010545 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. Do they have the same type of anomaly?
[ "No. They have different types of anomalies", "Yes, Time series 1 and time series 2 both have flip anomaly" ]
Yes, Time series 1 and time series 2 both have flip anomaly
binary
77
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Flip Anomaly", "Spike Anomaly" ]
For each time series, identify the type of anomaly based on the given definitions. Then, check if they have the same type of anomaly.
Anolmaly Detection
General Anomaly Detection
388
[ 0, 0.3524388080912234, 0.6896612537568745, 0.9969956723471667, 1.2608402963017262, 1.4691501555223427, 1.611868249307387, 1.681285555252765, 1.6723169879363555, 1.58268342893555, 1.4129933120774418, 1.1667208434270846, 0.8500816356695259, 0.47181020878243807, 0.04284732177340622, -0.42405167198061233, -0.9147734261482325, -1.4143518147226484, -1.907503672122978, -2.3791758823122913, -2.815084232867629, -3.2022247447260983, -3.5293391736151043, -3.787318019683891, -3.9695266188628544, -4.072042642908611, -4.09379650638238, -4.03660965443474, -3.9051293608148825, -3.706662370129919, -3.450913339436605, -3.149637442131432, -2.8162195698239882, -2.46519519543912, -2.1117300491374573, -1.7710772330149882, -1.458031208162962, -1.1863981996290256, -0.9685019771113685, -0.8147427028780738, -0.733224638764586, -7.0409864909884075, -7.3953366342091735, -7.742373373379727, -8.067073723101359, -8.355214270258925, -8.593880327343498, -8.77192823752662, -8.88038428242281, -8.912765912900728, -8.865313803893306, -8.73712642637658, -8.530192319264945, -8.249318905990716, -7.901960403910005, -7.49795098683518, -7.049152752633693, -6.569031097542643, -6.072172697459242, -5.57376335095641, -5.089044375596549, -4.632767016840525, -4.2186643999920665, -3.858959927632161, -3.5639297203646056, -3.341534764113745, -3.1971359319408292, -3.1333020816989294, -3.1497180990251166, -3.2431961774406366, -3.407789931767118, -3.6350072599584684, -3.914114333566313, -4.232519834939284, -4.5762256866764215, -4.930328138642063, -5.279551275207802, -5.608793844845039, -5.903669837293791, -6.151023457350243, -6.339400060835906, -6.459456194726277, -6.50429406329577, -6.4697084474460524, -6.35433723828465, -6.159710196326623, -5.890194190893654, -5.5528368799673435, -5.15711442626487, -4.714592280505644, -4.238511174758063, -3.743313145998496, -3.2441245567440102, -2.7562146189894365, -2.294448804583686, -1.872756708229763, -1.5036334119344243, -1.1976922004872637, -0.9632846393441956, -0.8062016149286011, -0.7294660391643668, -6.694607725911448, -6.371199770979975, -6.084939775652426, -5.848675109614296, -5.673463467469624, -5.568177038154937, -5.53918490856211, -5.590125070318486, -5.721774191162458, -5.932019812688375, -6.2159359696938346, -6.565959524195305, -6.972160901910487, -7.422599539695404, -7.903751320039225, -8.400992691810146, -8.899124147256888, -9.382914316440285, -9.837645202230718, -10.249639038178378, -10.606747909406511, -10.898788609644175, -11.117907167888486, -11.258859995791642, -11.319201591583225, -11.29937208131939, -11.202681463758415 ]
[ 0, 1.785614716720143, 1.8221491957455611, 1.8586836747709794, 1.8952181537963975, 1.9317526328218155, 1.9682871118472338, 2.004821590872652, 2.04135606989807, 2.077890548923488, 2.114425027948906, 2.150959506974324, 2.187493985999742, 2.2240284650251607, 2.260562944050579, 2.297097423075997, 2.333631902101415, 2.370166381126833, 2.406700860152251, 2.4432353391776696, 2.4797698182030876, 2.5163042972285057, 2.5528387762539237, 2.589373255279342, 2.62590773430476, -0.835718262059272, -0.7991837830338538, -0.7626493040084357, -0.7261148249830176, -0.6895803459575995, -0.6530458669321813, -0.6165113879067632, -0.5799769088813451, -0.5434424298559271, -0.506907950830509, -0.4703734718050907, -0.43383899277967264, -0.3973045137542546, -0.3607700347288363, -0.3242355557034182, -0.28770107667800016, -0.2511665976525821, -0.21463211862716403, -0.17809763960174574, -0.14156316057632767, -0.10502868155090961, -0.06849420252549132, -0.031959723500073256, 0.004574755525344809, 5.694803972439882, 5.658269493414464, 5.621735014389046, 5.585200535363628, 5.5486660563382095, 5.5121315773127915, 5.475597098287373, 5.439062619261955, 5.402528140236537, 5.365993661211119, 5.329459182185701, 1.7947642277708327, 1.7582297487454146, 1.7216952697199965, 1.6851607906945785, 1.6486263116691604, 1.6120918326437423, 1.5755573536183238, 1.5390228745929058, 1.5024883955674877, 1.4659539165420696, 1.4294194375166516, 1.3928849584912335, 1.3563504794658154, 1.319816000440397, 1.2832815214149789, 1.2467470423895608, 1.2102125633641427, 1.1736780843387247, 1.1371436053133066, 1.1006091262878885, 1.0640746472624705, 1.0275401682370524, 0.9910056892116339, 0.9544712101862158, 0.9179367311607978, 4.37956272752483, 4.343028248499412, 4.3064937694739935, 4.2699592904485755, 4.233424811423157, 4.196890332397739, 4.160355853372321, 4.123821374346903, 4.087286895321485, 4.050752416296067, 4.014217937270649, 3.9776834582452305, 3.9411489792198124, 3.904614500194394, 3.868080021168976, 3.831545542143558, 3.7950110631181397, 3.7584765840927217, 3.7219421050673036, 3.6854076260418855, 3.6488731470164675, 3.6123386679910494, 3.575804188965631, 3.539269709940213, 5.7313384514653, 5.767872930490718, 5.804407409516136, 5.840941888541554, 5.877476367566972, 5.91401084659239, 5.950545325617808, 5.987079804643226, 6.023614283668644, 6.060148762694062, 6.0966832417194805, 6.1332177207449, 6.169752199770318, 2.708126203406286, 2.744660682431704, 2.781195161457122, 2.8177296404825403, 2.8542641195079583, 2.8907985985333764 ]
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 60 to 75", "Lagging step is between 5 to 20", "Lagging step is between 30 to 45" ]
Lagging step is between 30 to 45
multiple_choice
100
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
389
[ -1.1285044785104934, -1.100325010245673, -0.9430325595710002, -0.9167390359489983, -0.900834924442478, -0.7694944343875905, -0.7200360071935965, -0.7730509443687184, -0.6614733343640921, -0.7223337303591957, -0.7757578024505777, -0.8455793211968289, -0.9226193390068232, -0.8952037845386887, -0.9164255659629548, -1.2026307900991968, -1.224705130091546, -1.2673221461569542, -1.1938549662101487, -1.240203360218022, -1.0312575612546158, -0.9163207670018639, -0.9484049998259844, -0.8538069194164324, -0.810589258998891, -0.7913782527178271, -0.7253310725464519, -0.7208817873804824, -0.7011042112272402, -0.6333536858816429, -0.46446521010615294, -0.44379533785147274, -0.4811365274926867, -0.6481141631492136, -0.4867260117068501, -0.5083871640893397, -0.4643797557844925, -0.30754994837059285, -0.2888214250369816, -0.3048400953520615, -0.18802064299619045, -0.15010835420557805, -0.1018799686199374, -0.22721504335402015, -0.12798489928138293, -0.09707919556777418, -0.20994203280625168, -0.1700254961417546, -0.3397428349285812, -0.14703066464979714, -0.23769807633235202, -0.10506982237477414, -0.1719648210280551, -0.12586599278628036, -0.20092153381643557, -0.11887274088995535, -0.13823621895392432, -0.09974443156651615, -0.09850484129891608, -0.21088016644931856, -0.1693991435592624, -0.21080862899028788, -0.12479384252093531, -0.14420184285393728, -0.15051845094272456, -0.012036877345828353, 0.18393889344497555, 0.248618617361588, 0.22499095841406974, 0.19416151255590247, 0.12679571874700726, 0.07534726311669952, 0.052832965175588706, 0.21446381926830083, 0.19823520327979333, 0.0973479970180402, 0.10077647228300553, 0.11543397825485521, 0.11836628377170896, 0.18416981187564674, 0.18984801113280692, 0.2531036524417831, 0.18889218634183252, 0.33542159209132877, 0.356197186944345, 0.38912967328797565, 0.3245751940159255, 0.36340003015658556, 0.416973680265683, 0.3207179157451376, 0.18419762281189672, 0.20836227523272294, 0.16814327831771564, 0.18953122058347863, 0.08329680663067371, -0.04511124874534993, -0.028103564400121246, -0.05688593051140224, -0.23056731069458297, -0.12004885266023746, -0.22765094482572246, -0.015901889659969606, -0.06724983646373955, -0.03420695518177458, 0.10131417151062007, 0.22305112359706175, 0.3864826820964789, 0.2611545713719367, 0.16768854964184626, 0.18628499981818333, 0.25538460047564104, 0.25446073715802336, 0.11967648103638749, 0.1605379959766245, 0.14455379316949007, 0.12758317907683236, -0.05986063686651748, 0.00576128416969072, 0.017709570198029604, 0.16542678656574922, 0.15929583767697367, 0.20589779808679362, 0.2743449301582937, 0.13065998282584412, 0.34597820017369557, 0.3105299443906855, 0.35122593602373653, 0.4039369761185451 ]
[ -0.5083871640893397, -0.4643797557844925, -0.30754994837059285, -0.2888214250369816, -0.3048400953520615, -0.18802064299619045, -0.15010835420557805, -0.1018799686199374, -0.22721504335402015, -0.12798489928138293, -0.09707919556777418, -0.20994203280625168, -0.1700254961417546, -0.3397428349285812, -0.14703066464979714, -0.23769807633235202, -0.10506982237477414, -0.1719648210280551, -0.12586599278628036, -0.20092153381643557, -0.11887274088995535, -0.13823621895392432, -0.09974443156651615, -0.09850484129891608, -0.21088016644931856, -0.1693991435592624, -0.21080862899028788, -0.12479384252093531, -0.14420184285393728, -0.15051845094272456, -0.012036877345828353, 0.18393889344497555, 0.248618617361588, 0.22499095841406974, 0.19416151255590247, 0.12679571874700726, 0.07534726311669952, 0.052832965175588706, 0.21446381926830083, 0.19823520327979333, 0.0973479970180402, 0.10077647228300553, 0.11543397825485521, 0.11836628377170896, 0.18416981187564674, 0.18984801113280692, 0.2531036524417831, 0.18889218634183252, 0.33542159209132877, 0.356197186944345, 0.38912967328797565, 0.3245751940159255, 0.36340003015658556, 0.416973680265683, 0.3207179157451376, 0.18419762281189672, 0.20836227523272294, 0.16814327831771564, 0.18953122058347863, 0.08329680663067371, -0.04511124874534993, -0.028103564400121246, -0.05688593051140224, -0.23056731069458297, -0.12004885266023746, -0.22765094482572246, -0.015901889659969606, -0.06724983646373955, -0.03420695518177458, 0.10131417151062007, 0.22305112359706175, 0.3864826820964789, 0.2611545713719367, 0.16768854964184626, 0.18628499981818333, 0.25538460047564104, 0.25446073715802336, 0.11967648103638749, 0.1605379959766245, 0.14455379316949007, 0.12758317907683236, -0.05986063686651748, 0.00576128416969072, 0.017709570198029604, 0.16542678656574922, 0.15929583767697367, 0.20589779808679362, 0.2743449301582937, 0.13065998282584412, 0.34597820017369557, 0.3105299443906855, 0.35122593602373653, 0.4039369761185451, 0.3368915106305964, 0.4888724486668183, 0.5107568892447442, 0.49319104349650367, 0.5045883332731534, 0.5674757198160347, 0.5683642594441541, 0.6409348942149058, 0.5022932185070144, 0.4407456325683613, 0.2647519456934624, 0.42907809891519055, 0.5923332129454018, 0.6438950493714509, 0.560570586371257, 0.7572245168002014, 0.7074895641398585, 0.6899455661928648, 0.7030729591803498, 0.7402264768643025, 0.793202527367501, 0.8494831111259026, 0.8375907776305599, 0.8925662463034154, 0.876997072618034, 0.924665733861677, 0.9655859697654265, 1.028357751824968, 1.0808535882462933, 1.0444475225120087, 1.0821930257928445, 1.1359587878803563, 1.0297171065734025, 1.0071670459331457, 1.0572064091286282 ]
Is the given time series likely to be stationary after differencing?
[ "No", "Yes" ]
No
binary
32
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Differencing is a common technique to make a time series stationary. Focus on checking if the trend is removed after differencing.
Pattern Recognition
Stationarity Detection
390
[ 0.09134737320174066, 0.5377031917141588, 1.251963836363244, 1.8497502601742943, 2.4330654100562668, 2.4271027586553404, 2.7363011337519754, 2.7249285946040596, 2.290541769737283, 2.1853348954763296, 1.768389678719473, 1.1734406831206083, 0.4728302194157144, -0.14797775444514605, -0.8158512912494279, -1.602828132325757, -1.9286735692626442, -2.3807457308887776, -2.6684559457471972, -2.4459199167415604, -2.502260183140594, -2.516360717302689, -1.9949297200608318, -1.3890045928410908, -1.0965992211658397, -0.29404631186064106, 0.37418939769534065, 0.8759279813278142, 1.622101676468068, 2.1805080530867, 2.579007088490049, 2.6153846974403345, 2.942545392548751, 2.3754290805017333, 2.349215718161498, 1.7644804420887996, 1.391317860805204, 0.7229022135257178, 0.17158699295824809, -0.5533115027447456, -1.2519713761356064, -1.8032629816960355, -1.9871421608383661, -2.4570125776151968, -2.8409193320993724, -2.6230682095134075, -2.542703130320892, -2.2149026924421684, -1.6912037381331009, -1.1052068216656816, -0.6855761709984264, 0.05751970229223005, 0.6624043325097334, 1.3897569987150344, 1.8392654124461432, 2.284939665200154, 2.5361674158752505, 2.6783801771934312, 2.822244781645106, 2.6928902224326907, 2.144804021093796, 1.622644772331275, 0.899652581027542, 0.34553815872648846, -0.2542865176924226, -0.9616653042090255, -1.5457327681415178, -1.831780816285781, -2.3704231322282583, -2.6015914291221005, -2.7625143219869224, -2.495643968204159, -2.3945325613044575, -2.0413669555882676, -1.6427693142512125, -0.8962143671254862, -0.29676088325612293, 0.590095303208098, 1.2436595184686214, 1.509159898553916, 1.99491569066125, 2.426205655538374, 2.570186259274602, 2.7107298802429636, 2.530514799944202, 2.310036858845252, 1.9640632449591777, 1.223598128169462, 0.8164805826948106, -0.012429423891766433, -0.3849032222287805, -1.0614836784267645, -1.7845443139213557, -2.3117542124291184, -2.638742464354467, -2.5907906337885858, -2.6737389436429915, -2.4086566455120653, -1.9599310838285828, -1.8042276075203723, -1.2923344680311977, -0.5213105231868814, 0.23543321476660195, 0.6811024710655897, 1.3858119164180085, 2.042755297979112, 2.150336044439801, 2.6047742510610337, 2.638373184402761, 2.65272511917788, 2.49915556471958, 2.090927052239397, 1.483077430179344, 0.9531987648164831, 0.5043838838207904, -0.2689090362471512, -0.8630017551293603, -1.5098253185116841, -1.9487199356391682, -2.44098448073443, -2.7042858399733194, -2.6180458371985003, -2.4852208797833932, -2.435438165511091, -2.005559956129371, -1.4501558761994933, -0.670798077431781, -0.12493027928789709 ]
null
Are there any granger causality between the two time series?
[ "Yes, time series 1 granger causes time series 2", "No, they are not granger causality", "Yes, time series 2 granger causes time series 1" ]
Yes, time series 2 granger causes time series 1
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
391
[ 11.685597429599015, 15.534673637233379, 20.56603368031533, 23.9681432416088, 25.477663936853673, 24.789010164475453, 27.951754837399328, 28.240601955273277, 29.650341468993243, 29.034898838079787, 28.443929173334393, 30.41768434149022, 32.609083406623036, 32.96517094821341, 32.82337920571403, 31.760115083448106, 32.53585641488431, 32.98444059287387, 30.833833006908492, 28.678901244949472, 29.638045426840623, 28.64035243622853, 27.450419884502878, 26.89354059995041, 27.120146301687882, 28.829896380114313, 30.180163486665357, 31.954186495080418, 30.916539423583885, 32.33506511751441, 33.58315484001398, 35.214832570898096, 35.397902319172076, 34.36019097932757, 33.8111056165813, 34.308000974315135, 33.46661798877964, 32.91849938291464, 33.39482144262421, 33.351307662407706, 33.69806245351754, 33.42624096709363, 34.934272152876964, 35.30162222627945, 35.90250041123346, 36.135781527399544, 35.684341587211705, 35.94252845353249, 32.83033390206145, 34.27089432264105, 33.02669812233473, 32.228106951846605, 33.64903501220744, 33.851162669184355, 33.16595888992249, 34.46661344106719, 36.61815838972362, 32.156987527280634, 31.813303538154052, 34.30604455960692, 32.88666036628309, 32.60820470087627, 33.70177539633405, 32.60674313245249, 34.07334722150474, 33.0255280432966, 32.605976816154445, 32.480826825558765, 32.46218099449834, 31.114227060873446, 31.64973682520041, 31.42800098320758, 31.50086371395815, 30.66540857351897, 29.66352510594393, 28.932236088029786, 29.107222507567815, 31.43433430012487, 30.658892411171433, 28.3306711552105, 29.02366280731516, 29.7357781729211, 27.903851663566208, 29.595600048439984, 29.12975707472271, 27.527947190196716, 28.947770415514913, 29.09781660658877, 27.42303994295846, 27.623183135398712, 28.902239875871203, 29.39410519885149, 30.053181595527313, 29.436402918310844, 29.600075909995017, 29.376175263721084, 30.240799991730935, 28.85620919841132, 28.632579607945534, 30.502870106960557, 29.876412703519392, 30.824777207608573, 31.601003453264934, 32.70512060901795, 33.80091717008185, 32.635738687183135, 32.85406792155739, 32.898305392610524, 31.460344277223268, 31.57798251695851, 32.695246482051616, 31.180864726001854, 30.269427074309377, 31.485197008647397, 30.529165299020374, 30.223048651676656, 29.89253519094185, 31.285464034442803, 30.31143998807595, 29.656937837051714, 27.568522761429655, 28.5029234034502, 28.90895414565942, 27.896747229504435, 29.227615988652797, 28.20878057668335, 29.942372962236323, 30.4701211002568 ]
[ 11.685597429599015, 10.684493073684104, 11.352577228685607, 10.2063858268832, 11.920148031284095, 10.362113318266534, 9.620316122355941, 10.646526426945307, 11.599964370066491, 10.258025993002228, 8.859127177076832, 11.008089649142393, 12.404122264352115, 10.481778265654151, 8.689973965010472, 9.614526557840668, 10.80984113789604, 10.84573558301739, 9.640214541975098, 8.478013175663063, 10.72731775208348, 9.854714758632838, 7.851438160620146, 10.564040023044578, 11.102215321916844, 8.243069337287034, 9.143559732949344, 10.450184203869547, 9.15855938583999, 9.875743291781424, 10.503703409320686, 9.553188104856405, 12.052422874626037, 11.134735865791875, 8.930559176268487, 11.251822518415857, 11.025067060151276, 11.865062952356073, 8.720582243236317, 9.903732708929825, 12.767983354420492, 8.39111434717788, 10.462034869320537, 11.235749356595814, 9.600583005520008, 11.53460675503116, 10.03335354938471, 10.15849067668461, 10.132896000986268, 9.754977206617955, 13.32153667619258, 10.283802700617334, 9.287768962715935, 12.752589794141779, 8.93649034677544, 10.360068727165732, 13.943388119453457, 7.7959976321139255, 7.862584432245511, 13.942609971455829, 8.74368164969333, 8.999258214265735, 11.457518979522927, 9.95775253970603, 11.652511078675793, 10.319430412622664, 8.58445196028364, 11.467973395027173, 10.907328065015006, 7.310846509134309, 9.94816982466423, 10.25328701099257, 9.869337631718532, 10.067826231039442, 8.517953601249564, 8.52973969505276, 10.524517179254113, 11.171541100433481, 8.458746290835734, 8.078233802730358, 10.505368853200215, 9.548381526148052, 7.4499134364215625, 10.898955339103487, 9.882761034138701, 6.981170767353821, 12.224888256609816, 11.205139599582791, 7.585065945559675, 9.505481737911035, 10.68773593781717, 9.665712232015512, 9.052668064316762, 10.045161103651528, 8.696062893451286, 6.5552846019207855, 12.188712821156784, 9.911135309159704, 4.828867931985382, 12.086953657333467, 10.504786176133091, 7.696127436352269, 11.312398972396581, 10.925815033133883, 9.97713391553339, 9.513940781784633, 9.48433976266627, 13.09970322066971, 10.738278814550156, 7.92377209100759, 10.182085563480797, 10.989456176316686, 10.328444538358749, 9.343796063468526, 8.953122029421982, 10.477665046514517, 8.172169643593048, 9.64577431808247, 13.170497154344325, 7.226584832095785, 9.334034232705864, 11.93971379583965, 9.979740381957109, 10.174031225743285, 9.715212598319184, 9.75641497783967, 7.943815596661436, 10.019305318038422 ]
Weak stationarity requires the mean, variance to be constant over time. Does the following time-series exhibit weak stationarity?
[ "No, the variance is different overtime", "No, the mean is different overtime", "Yes" ]
No, the mean is different overtime
multiple_choice
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
For mean, check if the average value changes over time. For variance, check if the degree of variation changes over time.
Pattern Recognition
Stationarity Detection
392
[ 10.006632526435583, 9.872604522830782, 9.781371701458395, 9.925772582895032, 9.94760542508227, 9.939756410922824, 10.121797807080476, 9.996768347304338, 9.98891717114447, 9.996269748439127, 9.995633430778348, 9.918956593327547, 9.86971768267032, 10.210413485137995, 9.948654829285038, 9.965437666722675, 9.9678018445248, 9.887575355122717, 9.981120943475068, 9.83537818783985, 10.03486632661529, 9.937657200570388, 10.076099465528582, 10.015011537974312, 10.00265136269356, 9.883899128122394, 9.970294367303618, 10.038834899746062, 9.97493084453762, 9.827516396240496, 10.06181978735124, 10.03886369767181, 9.813208569188335, 9.97585991927081, 10.044803387954568, 9.903318017460213, 9.830771948585326, 9.85580149758503, 9.952386479270508, 10.056336894686618, 9.854545221879812, 9.855299525045087, 9.932932252866003, 10.032038935874025, 10.138655284224045, 9.972066643670761, 9.895798254742996, 9.883638973976746, 10.100491920474212, 9.83698879749483, 9.98265914876178, 10.0950416998475, 9.947443752234085, 9.85516826034482, 10.01619679816507, 9.973670844128225, 10.010315727204706, 10.02113716357434, 10.015051973015352, 9.99287827271042, 10.03097361568745, 10.098181472487473, 9.88493224288232, 9.936709025477015, 2.971870761635544, 2.885214009999494, 2.766126499684869, 2.925780355562043, 2.8433538822380138, 3.104530543131431, 2.991824451939802, 3.008457085286769, 2.8966638832280314, 2.9235475486612925, 2.8582569398327164, 2.8086873716949268, 2.801319964476497, 3.106155589691958, 2.9321816883083325, 2.7602262092199026, 2.9886439964344635, 3.1548138048382275, 2.738929954917927, 2.952523836220369, 2.7802280969189073, 3.0080463892762146, 2.6785514856234256, 2.900381501901185, 2.936869719152514, 2.7540337976608273, 2.9369017241481177, 2.846012590892353, 3.064809869193244, 2.750117733990625, 2.9833450149357885, 2.882498249697986, 3.0218591574576363, 3.0241581431024565, 2.8673335402044007, 2.8880268868407217, 2.9833695559051274, 2.944691408265853, 2.8807646350698226, 2.809156318895479, 2.929027715466974, 2.781386105983008, 2.957319579173497, 3.0035534683093768, 2.8098745317171856, 2.8507706968009856, 2.829433225168698, 2.9978840240963898, 2.897966115486872, 2.8558918331035095, 2.9572486529620474, 2.8444203213678563, 2.8721183470077754, 2.781000244602049, 2.9763600601169466, 2.783299714815609, 3.0357895254976452, 2.9163939313510197, 2.8768237535765335, 2.8911855285022146, 3.063490527868994, 2.757879485308644, 2.7652900008345376, 2.9884343904473734 ]
null
The given time series has a cyclic component and a trend component added together. What is the most likely type of the trend component?
[ "Log", "Exponential", "Linear" ]
Linear
multiple_choice
10
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend", "Sine Wave", "Additive Composition" ]
Despite having a cyclic component, check the general trend of the time series.
Pattern Recognition
Trend Recognition
393
[ -0.13240868298658867, 0.21007748017215988, 0.45723021045568346, 0.7704185011265305, 0.8281554390002553, 1.2209673566821004, 0.9753876772112823, 1.365421141671988, 1.2319255176624861, 1.3127836154016297, 1.161911719875963, 1.1538674460080496, 0.8520883838676249, 0.6044208183263062, 0.661167589461634, 0.30363554313078067, 0.13409176990703375, 0.04345487501705461, -0.3545667981911502, -0.3339675680261095, -0.5581404907534013, -0.5758045584394198, -0.5727827140810073, -0.69966632460093, -0.5497148338807297, -0.21391077749084925, -0.09702740745540911, 0.005779782603049781, 0.26060379453029625, 0.4487336297715298, 0.8635815229961868, 0.9554820528597894, 1.234150677911934, 1.5394383342748656, 1.5309081476710167, 1.9111294192196466, 1.7061083830088295, 2.079718341604096, 1.889231441856576, 1.8646906074231717, 1.617805226477323, 1.6392025361334641, 1.4250249297483424, 1.286917690339589, 1.136023555384925, 1.0407803063531589, 0.7642633454783897, 0.5859647921123918, 0.27988355058492326, 0.16649517736853947, 0.3374575891306447, 0.03026216167153238, 0.26217169817418035, 0.11290878265493207, 0.22520367831707316, 0.46397985010371906, 0.6554620090206643, 0.7212893595401175, 0.9223672079304291, 1.2000019427224589, 1.4895415040034088, 1.7906899886878775, 1.9335637179819944, 2.2031138697232415, 2.4814269997392273, 2.4935531971291063, 2.5807767422438097, 2.445095078226047, 2.3333763451290452, 2.5878658084873174, 2.44834618600333, 2.276418966032644, 2.1903510693675705, 1.9742719271376903, 1.892853842550216, 1.5837806307738167, 1.300989130526391, 1.290475948867414, 1.0099609750087664, 0.9570669222551859, 0.7685813090396347, 0.7073276976169803, 0.7837487695608395, 0.8275393485426534, 0.971812330113049, 1.0378642429785656, 1.0600746494479625, 1.410565828481914, 1.766195512642987, 1.9035589228981418, 2.1587289491322417, 2.5255799994928205, 2.583028783123145, 2.70186491569942, 3.0086878591659385, 3.1051541003287126, 3.141274259105896, 3.257460012017839, 3.313377548956599, 3.206138330769799, 3.1377541587582822, 3.1509717632420733, 2.7676003018205044, 2.6401028224194576, 2.3592592373126506, 2.1209530630007163, 1.9500766035677026, 1.7809781308321202, 1.7113675154985566, 1.7909787307868617, 1.405498050615179, 1.4013556255621804, 1.4500206589318523, 1.5570397601667125, 1.651047283833696, 1.902688722787932, 1.7179528844294134, 1.937681192909297, 2.3634741994883903, 2.7708953645174383, 2.7541229979815376, 2.8508068653681398, 3.4312539619954965, 3.5938871338479137, 3.6210463319724444, 3.751104875456533, 3.8270232736266374, 3.9618446817668658 ]
null
You are given two time series following similar pattern. One has an anomaly and the other does not. Which time series has the anomaly, and what is the likely type of anomaly?
[ "Time series 1 with flip anomaly", "Time series 2 with cutoff anomaly", "Time series 1 with speed up/down anomaly" ]
Time series 2 with cutoff anomaly
multiple_choice
73
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Speed Up/Down Anomaly", "Cutoff Anomaly", "Flip Anomaly" ]
You should first identify the time series with the anomaly. Remember, both time series share similar pattern. Then, you should check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
394
[ 0, 0.28967248751287666, 0.5717899469821527, 0.838957345087602, 1.0840962497073703, 1.3005947316500026, 1.4824473871369364, 1.6243825157442315, 1.7219737605243766, 1.771733846077317, 1.7711884294560714, 1.7189284999477823, 1.6146402180469077, 1.459111561713125, 1.2542156391644892, 1.0028710215949974, 0.7089799358605546, 0.3773456260423267, 0.01357063394237179, -0.3760618473489873, -0.7847210342088135, -1.2051732096992192, -1.6299349138048786, -2.0514314225423336, -2.4621571597892102, -2.854834644751866, -3.222568609001052, -3.5589920193004922, -3.858400913866327, -4.115875196596123, -4.327382831177806, -4.489865228533704, -4.60130201932842, -4.660753839836875, -4.668382225085466, -4.625446187984308, -4.534275556895123, -4.3982216362718045, -4.221586235245615, -4.009530567134507, -3.7679659491344526, -3.503428616872876, -3.2229413049077387, -2.933864524516802, -2.6437406883045647, -2.360134382639206, -2.0904721705102016, -1.8418853173415706, -1.621058770395799, -1.4340895899693216, -1.2863578304177397, -1.182412605395636, -1.1258757501359637, -1.1193651209371294, -1.1644391561636889, -1.2615638728063225, -1.4101029975231554, -1.6083314411598768, -1.8534718313953435, -2.1417533298516704, -2.4684914880841355, -2.8281874513205727, -3.214644409087753, -3.6210988266207087, -4.040363677934451, -4.464980647275475, -4.887378075744729, -5.30003130821676, -5.695622044848213, -6.067193322548719, -6.408296844332798, -6.7131295365221035, -6.9766564418918575, -7.194717346222584, -7.364114880199846, -7.4826822309059775, -7.549329028960601, -7.564064439546408, -7.527996968315795, -7.443310986288683, -7.313220470879692, -7.141900942692478, -6.934401039472882, -6.696535599841358, -6.434762520997428, -6.156045998211262, -5.867709042314126, -5.577278398461705, -5.292325150364514, -5.020304385549644, -4.768397317102796, -4.54335920531797, -4.3513762998562875, -4.197934831985657, -4.087704831285498, -4.0244412272592704, -4.0109043302508, -4.048801375659953, -4.138750369390469, -4.280267000183969, -4.471774896000911, -4.710639007246567, -4.993221409877061, -5.314958346629082, -5.670456874851855, -6.053609074205976, -6.457721395624092, -6.875656412277948, -7.299983970656095, -7.723138540788014, -8.137579433369417, -8.535950490830508, -8.911235870529541, -9.256908621011666, -9.567068904896605, -9.83656894121432, -10.06112202125341, -10.2373932892665, -10.363070365546587, -10.436912316271986, -10.458775933073026, -10.429618765791615, -10.35147884420812, -10.22743151817366, -10.061524330155125, -9.858691299413394, -9.624648433040209, -9.365772676642639 ]
[ 0, 0.5112382930910787, 0.9901451562843151, 1.4066913423642005, 1.735288040908853, 1.9566089479108442, 2.058966409131825, 2.0391436479152025, 1.902623818077866, 1.663199572005329, 1.3419909449344303, 0.9659414876784862, 0.565899731744075, 0.17442259749350109, -0.17654284474799087, -0.45793418877517866, -0.6456431020057537, -0.7222319766134795, -0.6781755869150112, -0.5125393399045206, -0.2330458236197852, 0.1444750852844512, 0.5972133992707536, 1.097003221460931, 1.6123283185485218, 2.1105662568224703, 2.560311305984947, 2.9336107067289294, 3.207955067036906, 3.3678811596029474, 3.4060729920368242, 3.3238827473555936, 3.131234500820899, 2.8459175690337197, 2.492319808871688, 2.0996910626277674, 1.7000604019861336, 1.3259554749735654, 1.0080863514243508, 0.773158790405513, 0.6419726374656791, 0.6279407566968878, 0.7361339581154394, 0.9629199269934621, 1.296221865437387, 1.716378429454039, 2.1975437290680135, 2.709527703476737, 3.219945826008681, 3.6965250675996133, 4.109401921001636, 4.43324885326105, 4.649077770889471, 4.745592080695562, 4.719991071815063, 4.5781693423389935, 4.33429707022382, 4.009811015594773, 3.631888100847883, 3.2315102583756694, 2.841258339823694, 2.492992173153575, 2.2155819607151983, 2.0328525557573247, 1.9618869966439652, 2.0118100968407155, 2.183138706019623, 2.4677449074071496, 2.8494347719345128, 3.3051014585855, 3.8063705536035233, 4.321620490998196, 4.818234188858358, 5.264921572091181, 5.6339476046878, 5.903107182878238, 6.057306265490327, 6.089636655990039, 6.001867905576321, 5.804321311017294, 5.5151349793024, 5.158972290709659, 4.765265725102753, 4.366121101067546, 3.99403145804527, 3.67956336612653, 3.449180411478916, 3.323358837691009, 3.315129520144147, 3.4291500931737335, 3.661373299871827, 3.999335179921531, 4.423042574841422, 4.906396755191867, 5.419051799345676, 5.928575396628226, 6.4027582132880205, 6.811907381235184, 7.130960800035609, 7.3412717017688705, 7.431936407527801, 7.400570731704788, 7.253479749639968, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821 ]
Is the given time series stationary?
[ "Yes", "No" ]
Yes
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Try to see if the time series has a constant mean, and degree of variation over time.
Pattern Recognition
Stationarity Detection
395
[ -0.3041606512013246, 0.6069726789448069, -0.4923232020034598, 0.33965166941715724, -0.05554666411677663, -0.42062484915226395, 0.2029790598879961, 0.04040669425380506, -0.1952581968844905, -0.07681111631586833, -0.17956967559690543, 0.06073798897931486, 0.3355532656664468, 0.7516952181271213, -0.6435904811672479, 0.7618381216268416, -0.7098410862634652, -0.03189708664640068, 0.17758858349319595, 0.2756841864760647, -0.2556226588802648, 0.02862788380031034, -0.2047867444504331, -0.0468119313336407, 0.5400843705250951, 0.12829305828495743, -0.20015901582833037, 0.4505411056339657, 0.2687203259536287, 0.2522934198535428, 0.3387685264560545, -0.24986567587902364, -0.4162384195974882, 0.202325543826125, 0.05797662425737837, -0.03590921364238223, 0.12209747605386168, 0.698460698019431, -0.24642407523170326, 0.3976120426130264, -0.22476768748374937, -0.26374166800034904, 0.46591230552729773, 0.39257912448088017, 0.3457941300663947, 0.35341527471279444, 0.00010039903956368147, 0.1621678537350705, -0.06616310736085577, 0.17575427484305287, -0.1498302227768431, -0.009767318464513737, 0.14945073877673243, -0.35735294748733093, 0.9933231981954938, -0.5302381168952031, -0.47058371222772566, 0.443900566334095, 0.26040215814158224, 0.2570965124962864, 0.16608849127734526, -0.06061981933856241, -0.5047848827674027, 0.2289990024420379, -0.2870325978182299, 0.3484352888493256, -0.04170191265124936, -0.3654400750192178, -0.15999833871873637, 0.23859876547978515, -0.1661341629293545, -0.40585136329918664, 0.046980350421480674, 0.07760595694051128, -0.4477130952442323, -0.353633895913131, 0.2362562382996206, -0.4568524026956281, -0.6288231607432848, -0.25061690265890346, -0.06046164674340253, 0.4412934036937399, 0.7450085784005669, 0.355215879093452, -0.16418103673100198, -0.16880417407397844, -0.40982249800749765, -0.08357875669405196, -0.266084045302412, 0.07381593800948408, -0.46310599263098007, 0.3915572109872305, 0.7458370340453948, -0.04746445503774281, 0.32036230682028394, 0.3038662666917738, -0.2582855256773405, 0.2484668059844539, 0.059294196434565447, -0.061813408040834586, -0.350719652236664, -0.07704491268699, 0.07540290301394925, 0.7152796096509954, 0.6025489982288911, 0.7840384213762839, -0.2729592948696438, 0.3092341810980065, 0.02995650082854253, 0.8803690301565805, -0.43322657699378214, -0.3554586686365817, -0.3402845374878152, -0.8842830406472516, -0.2306166435653977, -0.34962614417465837, -0.02622486597953827, 0.08896473523018181, 0.8805731719875487, 0.4579029559447105, -0.3452953946915337, -0.3755617285529551, 0.28621313815190275, -0.7334308831434171, 0.840184853350648, 0.43981598145360384, -0.14425568884664722, -0.8114037658706509 ]
null
Does time series 1 granger cause time series 2?
[ "Yes, time series 1 granger causes time series 2", "No, they are not granger causality", "No, time series 2 granger causes time series 1" ]
No, time series 2 granger causes time series 1
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
396
[ -2.8191949146519453, -3.0708494676959326, -3.601303236507218, -3.3811900983329624, -3.411188866601499, -2.7306288828090035, -0.7685690510232208, -0.14508419435784864, -0.32575037923913486, -0.5074228752821924, -1.8157748262189883, -0.6824613212351889, -0.5998210370073455, -0.695253329686462, 2.8561944736654303, 2.66341087000248, 1.2620603205501895, 0.6069687840631486, 1.306433798236549, 1.2456048962994322, -0.5135909822707323, 0.384645204984848, 0.02020792640757807, 2.3366772871589454, 3.237463508133153, 1.925777558788728, 2.8526731478615233, 1.8596308848041774, 2.4659963076709053, 2.371591240602673, 0.6604426335401189, -0.6101543192934135, 0.06422343459333812, -0.5809455595191935, -1.1132547404841717, -2.0109836964617913, -1.3362797877751906, 1.1298773449629071, -0.0032242075766157896, 0.020620868845327905, 1.4744099241124062, 1.1579155316405387, 1.1863145309948062, -0.3263678753426379, 0.07552388627573609, -0.40168493326930577, 0.8949181200314524, 1.9602575453539157, 4.3726281742053805, 4.462199603977168, 3.9133605759038366, 3.2836691979548025, 1.9262844919686328, 1.7808670456163198, 1.2566959835707583, 0.7269218785609399, 1.6056092927825176, 0.14804103695367576, 1.3265016352610601, 2.5766624795167985, 1.961009654252973, -0.8734956762353812, -1.7833105131983644, -0.4566123821909587, -0.267650171865708, -1.0112239305008464, -1.2934082441206125, 0.13973271131800458, 0.5787016622482197, 0.25511303888481485, -0.017687709691086462, -0.10988892362721692, -1.108194830021678, 0.8751575293587778, 0.7299260939511389, 2.3962734130918215, 3.3714096559267324, 3.255685587884443, 1.8385159988182616, 1.9852221895331117, 1.6622266205468077, 0.3622927076685638, 0.8028677757630398, -0.6368473690832751, 0.4606905988315747, -0.3577463326587788, -0.06794850762851123, 0.29595044491488237, 0.18484411369350073, 0.9087672533100994, 0.2784101629019389, 0.9738773418943651, -0.731718648113034, -0.36162565100329225, 1.3409536241569944, 0.1186741504076354, -0.5580590986937677, 0.3139177250435601, 0.8944004348729477, 0.8496566511270385, 1.022634367287439, 1.5033759137047333, 2.2721976436487403, 2.1790003796643354, 1.8449413616046018, 2.2249227517548404, 3.565084313690055, 2.967832197598826, 1.3957112457990548, 2.489384941683901, 1.7795381568901154, -0.671430762144839, 0.6042720668552668, -0.2573098068768206, -0.10393616860743946, 0.41763900228673034, 0.44472309816380284, 0.8754126074432649, 0.4808154346697899, 0.8757359288227029, 0.3308806587091189, 0.8579431153344863, 1.2848219607490574, 0.2080141943551278, 1.427942635565036, 0.6408234149116616, 1.6743507721312758, 2.312718144198654 ]
[ -2.8191949146519453, -3.063056702865343, -2.815811251791696, -2.1143307195001495, -1.9485401643521625, -2.450897445699045, -2.2641322052025883, -1.761460531450175, -2.0176134043777108, -2.0739102963071305, -2.067740193387958, -2.397454189021209, -2.125129572480569, -2.175936532665407, -1.9997025975519858, -2.37251342815155, -2.5562775179941664, -2.2528251600383244, -2.4094420188489716, -1.683992438675529, -1.8518685079222421, -1.757484690998873, -1.3657291675854895, -1.961545243731949, -2.7012121525122588, -3.3420980240395433, -2.8117214865626634, -3.0435417762386985, -1.9689132618881628, -2.205938016788231, -2.128413136734064, -1.4806155485722408, -0.6379116075114195, 0.2280688257957515, 0.7356699397701306, 1.1658501829122752, 1.4147543080521552, 1.7417221919051682, 1.5101843712249305, 1.1664817302847814, 1.1650642143881167, 1.0935743781217067, 0.9031858544288259, 1.1957188921265853, 1.5970160947287229, 1.6341533738321954, 2.2548227504550096, 1.775230842410606, 1.693879878792723, 1.3927627180780633, 0.6086824929668541, 0.5739506317352481, 0.5228078826958075, 1.158566112414664, 1.4235525922427912, 0.9933201347433812, 1.772172959537135, 2.285095323930491, 2.529618412412995, 2.434478728794704, 2.0314449357098794, 1.8750912000797975, 2.3324442758345185, 3.124106674248035, 3.772380446099633, 3.567028372546037, 3.0967081650012847, 3.155890566880136, 2.4130182743341764, 2.5487720611974747, 2.4867683115611356, 2.290999312468101, 1.6211088165994407, 1.8368579658488189, 1.6130851287886965, 1.121635538400505, -0.08492209468778515, -0.09648034259392393, 0.6479933624274875, 1.3458422484318384, 1.153828798235685, 0.9008562267178624, 1.0977752803638683, 0.6783812686171015, 0.805155669174133, 1.1269647307456339, 1.6423653232548643, 1.600293375609204, 1.5147356863427475, 1.145919570992539, 0.7985700852094625, 0.7034325888856305, 0.8577526416763482, 1.2415241856380104, 0.9041310015484534, 1.5311680381997947, 1.417276538727487, 1.408300731443829, 1.0944178446935728, 0.07606179873550757, 0.4474247321207937, 0.7569524013984663, 0.6387745032005009, 0.6669154441076262, 0.8836471890200254, 0.2272650446743236, 0.005024699344342745, 0.3386732455873488, -0.1882189269409005, -0.06490338765224243, -0.6347657503948726, -0.43883146103783616, -0.453803458483528, -1.1322755046335333, -0.6430008304132434, -0.9515823624508051, -1.2919469218171078, -1.2076933690730864, -0.7251827002368706, -1.1519012511680808, -1.1259912582371838, -0.9458573487091524, -0.6547029209857258, -0.58058472093794, -0.7347629288864143, -1.0824106099287647, -1.046223955676639, -1.4965997962462219 ]
In which part of the time series does the anomaly occur?
[ "Beginning", "Middle", "End" ]
Middle
multiple_choice
77
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Spike Anomaly", "Cutoff Anomaly", "Wander Anomaly" ]
Identify where in the time series sequence the unusual pattern or disruption occurs.
Anolmaly Detection
General Anomaly Detection
397
[ 0.04967141530112327, 0.36131749003445235, 0.8084154160863162, 1.2512880846214964, 1.4114561540379618, 1.7219509444824084, 2.1828976285019053, 2.345512673228163, 2.425497197953527, 2.686675611210689, 2.6995487135904743, 2.7643100855016027, 2.850483999777623, 2.6005514507802205, 2.5358296833887417, 2.5209249023431743, 2.2994819830509208, 2.2137761087853307, 1.8350552189589902, 1.4946777848757546, 1.464288845020929, 0.9544520237027613, 0.6267041000111985, 0.11043231273907197, -0.17194503264766825, -0.4735420044354296, -0.9569772187360863, -1.1452465184196992, -1.5613830880638797, -1.8208256601520694, -2.1087702597205458, -2.082289015414372, -2.445803603364736, -2.6819764604888063, -2.578117338653257, -2.8174868721487467, -2.659736641582349, -2.812214316090609, -2.6361925857075605, -2.3242804549187803, -2.06697194425424, -1.880366865222524, -1.6298767193363395, -1.3382834873848526, -1.1204214501253795, 0.01706604953678462, 0.008735894156353792, 0.00009144345740137356, -0.0036553929683254232, 0.006490867326291062, -0.012228735366753068, 0.005363360323820653, -0.009146909312612774, 0.0062054821596173515, -0.0016093737686306336, -0.0038826439897661413, -0.008855123738288487, -0.0035674502576819415, 0.005561217985339653, 0.01043860610918658, 0.005264481613346957, 0.013638865244171053, 0.025391627162693324, -0.003244909578288935, -0.0020586671709550515, 2.195677700462761, 1.7632916310043365, 1.55298135979643, 1.148342468050498, 0.6907547503202803, 0.4244465322444951, 0.17169778531791619, -0.3528982941804498, -0.550259134124076, -1.309879648539146, -1.284535595764006, -1.6487449765287698, -1.9447425663090336, -2.1250858818989196, -2.5105038799422226, -2.466048961312669, -2.4931451870228747, -2.416719990663767, -2.6021821502999702, -2.5674458450443307, -2.4244967286785584, -2.1239414182888163, -1.979986565775233, -1.8230014084603483, -1.4399275236634688, -1.171762977718098, -0.7492858277558649, -0.5614293638533165, -0.15573881608816256, 0.21287486968337502, 0.480959559291091, 1.0256728028900028, 1.3779131412778394, 1.688767595362127, 1.9759968411753432, 2.1383676616084415, 2.482586913012316, 2.6951086550530166, 2.810261159523653, 2.9890253629077073, 3.111784832856163, 3.276653352289252, 3.0723293176193294, 2.9982862001614263, 2.8350872361930657, 2.4753646283932067, 2.4471855374375586, 2.2002675097033264, 2.1513968839412705, 1.5682925176750053, 1.2774802181850105, 0.8871094122588292, 0.4068384643035661, 0.26757780355821725, -0.1388022697638498, -0.4924633876216137, -1.0039291789923595, -1.0918486161677363, -1.6634229371066813, -1.7223923729560495, -1.781954916667795, -2.2780866161171116, -2.368580458331792 ]
null
Is the mean stable over time in the given time series?
[ "No", "Yes" ]
No
binary
43
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
Check if the average value of the time series changes over time.
Pattern Recognition
First Two Moment Recognition
398
[ 1.7093480847123825, 1.8192678345729403, 1.7703341607437866, 1.8234826953521277, 1.6803753120037956, 1.8805354640548961, 1.8687860786540886, 1.7416666284318219, 1.715153995411919, 1.645205823920464, 1.655077642177968, 1.7323791935474142, 1.786949560844466, 1.791687745168715, 1.9458386538545747, 1.7203613092381855, 1.7104329299321999, 1.762229775077483, 1.6799433443920355, 1.9244786383441643, 1.9508242961537472, 1.850773656259537, 1.8646249936670314, 1.755377877926923, 1.8388328298125156, 1.8963821999886006, 1.7393950125274174, 1.9148274739460018, 1.7691698916854917, 1.7617237619836856, 1.6838215978760815, 1.7936205980632252, 1.8835558697866086, 1.5455653653956503, 1.8058684126835487, 1.8441375706848926, 1.783468765971473, 1.5747956710824633, 1.6356505000086665, 1.7635525675768573, 1.6042296766741029, 2.0400713189530375, 1.9013236939896718, 1.6678856974624947, 1.8588810662987898, 1.8385534142887878, 1.7352946433781204, 1.8698410074308194, 1.5629026573596263, 1.7373672803760951, 1.7192886192476924, 1.9512968542243199, 1.675511601689118, 1.840083844317058, 1.7028000239466368, 1.8778245372810265, 1.7283890262367405, 1.6501083455953314, 1.7685549494923654, 1.8559341596106, 1.8238267678580355, 1.6222660647144154, 1.6117359348498908, 1.7072092559309993, 1.6730562695432432, 1.708568223278432, 1.7798744721890163, 1.912409188521214, 1.85282343824097, 1.7891887181455612, 1.8431735970784846, 2.0064929038289603, 1.9782161722692126, 1.9453726361282335, 2.1069359823116818, 2.151712412617409, 2.1747882781733994, 2.115360288781681, 2.062703038815829, 2.157360036261595, 2.1361521368981444, 1.9710200918823646, 2.23797163760887, 2.0739123775123818, 2.243426578822361, 2.2849608963826387, 2.5249362080835116, 2.279120531899358, 2.448241068783846, 2.4205637118294914, 2.525439903310618, 2.4402874194832136, 2.3759446932765376, 2.5717403420126796, 2.5899837146742457, 2.634260448951225, 2.6127142892500155, 2.6343446877769883, 2.7775862507670217, 2.7956275879947046, 2.67117612891217, 2.7639849321607026, 2.685860320451165, 2.8900632586827064, 2.9067052517202203, 3.0292909489435638, 2.9886247327486046, 2.9600312560761726, 3.2273287129900137, 3.0313472688174263, 3.0794099705597833, 2.870022803268625, 3.1595037503174517, 3.347169912276639, 3.16138412032195, 3.2383465493772663, 3.298104012403736, 3.3946158621333185, 3.3025599913452393, 3.110607559566984, 3.31897112533038, 3.4009964627280596, 3.4202810381332966, 3.3625026149179886, 3.3682054458189747, 3.396051660626751, 3.4444985822890106, 3.4997530355243307 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly", "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with cutoff anomaly and time series 2 with flip anomaly
multiple_choice
74
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
399
[ -1.5175599632000338, -1.3646506047177336, -1.2117412462354333, -1.0588318877531333, -0.905922529270833, -0.7530131707885329, -0.6001038123062328, -0.44719445382393247, -0.2942850953416322, -0.1413757368593322, 0.01153362162296806, 0.16444298010526787, 0.3173523385875684, 0.47026169706986887, 0.6231710555521689, 0.7760804140344689, 0.9289897725167694, -1.9532207954009984, -1.8003114369186983, -1.6474020784363979, -1.4944927199540978, -1.3415833614717976, -1.1886740029894973, -1.0357646445071973, -0.8828552860248968, -0.7299459275425966, -0.5770365690602965, -0.4241272105779963, -0.27121785209569604, -0.11830849361339602, 0.03460086486890446, 0.18751022335120404, 0.3404195818335045, 0.49332894031580454, -2.388881627601963, -2.235972269119663, -2.0830629106373624, -1.9301535521550621, -1.7772441936727619, -1.6243348351904618, -1.4714254767081618, -1.3185161182258616, -1.1656067597435613, -1.0126974012612613, -0.8597880427789608, -0.706878684296661, -0.5539693258143605, -0.4010599673320605, -0.2481506088497598, -0.09524125036745978, -2.9774518182852274, -2.8245424598029274, -2.671633101320627, -2.518723742838327, -2.3658143843560264, -2.2129050258737264, -2.0599956673914264, -1.9070863089091261, -1.7541769504268259, -1.6012675919445256, -1.4483582334622254, -1.2954488749799253, -1.1425395164976249, -0.9896301580153248, -0.8367207995330244, -0.6838114410507243, -0.5309020825684243, -3.413112650486192, -3.260203292003892, -3.1072939335215914, -2.954384575039291, -2.801475216556991, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, 0.008943323301087614, 0.007549977972447358, -0.0020716589010457425, -3.9555483546775845, -3.802638996195284, -3.6497296377129835, -3.4968202792306835, -3.3439109207483835 ]
[ 0, 0.5895648940604998, 1.1209391597706895, 1.5431157192019527, 1.8161913540152175, 1.9154795940977187, 1.8340576445086794, 1.583485509199388, 1.1926234453354896, 0.7046694582066011, 0.17272160744276613, -0.3456783882329881, -0.7944589930448442, -1.1247818458737397, -1.3000611257445964, -1.299723003928496, -1.1213184848398678, -0.7807722994229263, -0.31074222927540196, 0.24274241086498594, 0.8250174096749558, 1.3784082559805975, 1.8481642062676142, 2.1880915022627407, 2.365306359722285, 2.363618882073049, 2.1851998642203383, 1.8503590598298074, 1.395457725131695, 0.8691701457497809, 0.32747866350835275, -0.17208301780399948, -0.5763461529061178, -0.8419743894176143, -0.9399199732623605, -0.8584103898536107, -0.6041582543596677, -0.201670007736092, 0.30927548213624134, 0.8777190849769061, 1.4467634518307362, 1.9594257834963202, 2.3644993544854724, 2.6218209226552682, 2.706402260596696, 2.611000872539639, 2.346865493934706, 1.9425796987508073, 1.4411225536190848, 0.8954486388781924, 0.3630420431637099, -0.09999553260691707, -0.44471450810652846, -0.6343515614674518, -0.6481103980636533, -0.48330028820164417, -0.15561241918360857, 0.30249436247738326, 0.8451323890978792, 1.4177051832617347, 1.9625231787538282, 2.4247375611778583, 2.7579819190384063, 2.9291414484321834, 2.9217591876722144, 2.7377289428889426, 2.397100783577713, 1.9360191137558656, 1.403005393457344, 0.8539678419635158, 0.3464513871374434, -0.06628073227498832, -0.3407249896338671, -0.44761179055432443, -0.23709304499253236, -0.040942627152517286, 0.30995715694920745, 0.7786416130223422, 1.3160241122359146, 1.8659446390002314, 2.370945850164166, 2.778182563935326, 3.0448568732577566, 3.1426198690407325, 3.060487245286886, 2.8059689089801862, 2.404296411490773, 1.8958276618756158, 1.331895853384474, 0.7695295508840821, 0.2655869907177333, -0.12909210583203, -0.3749157056359693, -0.2574531177983874, -0.09906957406572836, 0.22261951977736127, 0.6753727190373688, 1.213461425382816, 1.7823732948521698, 2.3244190725136087, 2.784666177441657, 3.116588754617285, 3.286853072412612, 3.278746076103584, 3.0938944625146414, 2.75209746490692, 2.289290546654176, 1.7538494427715907, 1.201614687572801, 0.6901483678047869, 0.2728138080636202, -0.006712892868205422, -0.11893497302898548, -0.051568741163204646, 0.1891930933869661, 0.5793184313485142, 1.0794076167113738, 1.6387458585092074, 2.20051943991022, 2.7076592150179066, 3.108710375730878, 3.3631247690714963, 3.4454314374632653, 3.347856431902171, 3.0811224439756657, 2.673346012688496, 2.167145731056928, 1.6152588804059071 ]
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "2.32", "19.82", "6.86" ]
2.32
multiple-choice
24
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
400
[ -2.241651898358753, -2.174123574660597, -1.9944407356577576, -1.9962952494889517, -1.9740179527614625, -1.7943245481077124, -1.744695480268626, -1.6299104073600645, -1.4690318110088234, -1.4260093001119127, -1.269750825050466, -1.3205035028565857, -1.0020000294985585, -0.9153962167742752, -0.8894129914919617, -0.6339669256165473, -0.4983218427717772, -0.6450222070459759, -0.45272606254034503, -0.3455551837370986, -0.25481862294390056, 0.029931807285515782, 0.03541434514041564, 0.13615811081198953, 0.07003599442772987, 0.44177666981468294, 0.36212166323376765, 0.5998534016711023, 0.7294104683656438, 0.9455512700790447, 0.786416006508623, 0.7231594667638064, 1.1513082727466135, 1.4207870723476839, 1.4724432254158968, 1.4773271675747708, 1.5150102434094581, 1.7526987575617485, 1.6824445138529256, 1.9352475466843495, 2.0459714215907443, 2.2092580323493256, 2.4870156814158997, -2.276058152512197, -2.258383475875468, -2.1022319085985632, -2.1687694319429207, -1.95352051863756, -1.8171648134146097, -1.7208327734714037, -1.5453758105492177, -1.535040655065455, -1.2328829591694328, -1.2371526834847055, -1.130290786165033, -1.0543375897771075, -0.898216413814563, -0.7234130198083428, -0.7848232319208412, -0.656109223331922, -0.512857541376708, -0.5092593949210084, -0.3487854526204816, -0.2066691180774431, 0.03620452327365013, 0.082834374027925, 0.18374986818984199, 0.3572933091952394, 0.36627897006385707, 0.5268752698220408, 0.5853192454612568, 0.7299902916198243, 0.7529908268440579, 0.6751976127029282, 1.0134640482372954, 1.2769794139912745, 1.3351387765307947, 1.4468696206911071, 1.5817555803379664, 1.5748209031788436, 1.693499350748614, 1.7198152263899744, 1.8577857662560586, 2.058782802761233, 2.2254067674263553, 2.198886332066728, -2.358537393605178, -2.2056530353090222, -2.037772520376415, -2.1344660409573266, -2.111886018732341, -1.829508972442421, -1.7887138941593237, -1.609644035407284, -1.4657954115989456, -1.3885295846941446, -1.0901453544194142, -1.0949049954809018, -0.9897194000546962, -0.849733485686084, -0.9180248759431464, -0.5924177494976879, -0.5960927209679059, -0.41365559466488355, -0.4800767437676655, -0.4204542611399018, -0.07547678281043788, -0.011812160077834012, -0.0318456321979821, 0.07920585103565411, 0.38652827352995556, 0.26285624172710087, 0.6538773622647847, 0.5073606293997565, 0.7690745313507358, 0.7801861271403545, 0.9811793537488419, 0.9742618463545435, 1.120206591884088, 1.248390435956244, 1.2518924087638796, 1.5340062248093942, 1.5164150695455778, 1.6526890705840895, 1.6839267605825952, 1.6349409680892695, 1.9798841936341387, 2.3480611479808022 ]
null