question
stringclasses
96 values
options
sequencelengths
2
4
answer
stringlengths
1
95
question_type
stringclasses
3 values
tid
int64
1
105
difficulty
stringclasses
3 values
format_hint
stringclasses
1 value
relevant_concepts
sequencelengths
1
8
question_hint
stringclasses
93 values
category
stringclasses
5 values
subcategory
stringclasses
13 values
id
int64
1
763
ts1
sequencelengths
128
308
ts2
sequencelengths
128
299
Which of the following time series is more likely to be an AR(1) process?
[ "Time Series 1", "Time Series 2" ]
Time Series 1
multiple_choice
48
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Stationarity" ]
AR(1) process is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. The other option is likely not stationary.
Pattern Recognition
AR/MA recognition
501
[ 6.399870091632681, -5.2553705014003596, 4.629111668455207, -6.231354786203297, -25.21322341196856, -14.51434851547993, -19.16761037940263, -18.67670331998933, -8.001472033811437, -15.704967791761948, -28.586043281771943, -10.67459820359851, -9.122764157527467, 5.275234101710863, 10.48151629382985, 14.941682637903885, 13.587696225178005, 12.496223678022538, 21.342086614523147, 25.21838907649244, 14.284481867738366, 16.3575938018634, 6.892640814553337, 2.3880521629708253, 7.594270506784485, -0.2689632761021912, 1.260958584376819, 4.809791979739476, 0.45449037758600186, 7.560430476027684, 1.6536872344733364, 10.74925527744574, 9.906363661080281, 9.653549627910966, -1.2647090825510965, -3.3580053233085896, -0.7378401061357853, 9.65393598674115, 4.506305418094454, 13.812133817716488, 3.4934912031044174, 6.136422636500582, -0.15862167404821736, 15.3147945722313, 25.88858675551761, 23.567936962851356, 13.503628532108817, -4.366838543119988, 0.2894383119973001, 2.306925564950485, 10.427138573473588, -6.321913630400914, -3.642338183629337, 1.3759871580209029, -7.91891579422152, -5.169877205057378, -11.405391633121095, -17.37784966727582, -19.20833157606178, -18.027648759203274, -2.034770234856987, -4.845529738295712, -12.334936931583378, -1.73904625077407, 8.885650379958602, 15.30299921996533, 25.935072430726635, 22.67065435748533, 19.692584961907478, 8.71531955531426, 20.962442259809755, 15.84831397863336, 9.642921960493542, 3.784257116594587, 9.393141446676678, 8.349962822695145, 8.57498768708667, 3.6146408689190936, 0.9087086810397824, -0.7536892178669999, 13.612753745786273, -7.12211329682397, -1.2157775151406902, 9.909001439643028, -10.45808041468001, -9.08125013432646, 2.5561077523650093, -5.484801122434835, -1.7024309905759787, -10.681723095635965, -8.214526315375325, 6.204268721635124, 21.919527143627207, 20.087988562269636, 3.280737371935178, -0.48012297248536306, -18.51579125684218, -17.752496219298354, -4.555013250045484, -17.2728368327876, -15.889007894354673, -20.873084631651267, 1.238424163948352, 4.9776042297034415, 12.485821845219562, 12.914613735616847, 17.941529374453772, 25.15963218822459, 20.51073032617625, 11.09672190489341, -0.47505362230322135, 17.207274910796727, 21.972606448853824, -4.6539343864825256, -6.169385113721446, -0.7746720426349869, 16.102823916036773, 1.8555026278696705, 5.747909499863665, 0.6010267413929333, -11.488491638689043, 4.263505241045596, -6.23089871291788, 4.72311987435172, -12.167349706535928, -14.634013611570968, -5.986871948462014, 2.378275381033176 ]
[ 0.3715320382216581, 0.8380173276247264, -0.2454316217009003, 1.1841106106679806, 0.30327342482533654, 0.6248924302534589, 0.30920513774899533, 0.41792578782148204, -0.8513918004544424, -0.800798371307238, -0.4602312105123823, 0.4373838809818823, -0.50056708537741, -0.2517880850962595, -0.06177530675685998, 1.2057824884765789, 0.5126192669517093, -1.2427198486747077, 0.1358027565432486, -0.2580355688612133, -0.1941730004843067, 0.0005480826027923611, 0.9574352746113334, -0.6918191489984111, 0.17338597292133257, 0.24716160246515465, -0.1882613614960117, -0.5428406737749235, -0.6423516387765021, -0.35771888231685206, 0.6272891027197048, -0.30473661013187037, -0.08430946996112737, -0.9839083140763373, -0.4033944624312386, 0.1950483181564392, -1.4178354099954642, 0.8885951866459566, -0.5041795861862896, 1.4992753885254928, 0.3571622405494167, -1.5603867299821994, 0.23601452928225763, -0.270453171367596, 0.2466072488547825, 1.374900318497119, 0.5995206567752628, -0.19196114616973076, -1.187927676484201, 0.7422256178993064, 0.43348611450883334, 0.9847001686491307, -0.12149338242558538, 0.250965900623199, -0.20942695079398926, 0.07385712694392708, -1.2879762020483394, 0.27066158840927695, 0.32519539110256274, -0.4284845959540057, 0.5159110355156008, 0.7420417966432583, 1.1907244856117627, -0.8674698994915396, 0.5692565237335147, 1.1377732322362097, -0.2983223243692791, 1.186263576506124, -0.6173240041198439, 0.059281530825555456, -1.468698907272554, -1.5879501897702823, -1.3210171667387245, 1.2065157954548509, -0.6595744307152335, -0.657416019521498, 0.34718253752436623, -0.6323314183873691, 1.024744744779869, 1.5848761040636263, -1.8893409060325634, 0.4424395882584289, -1.7522700246771206, -1.1566772902276212, 0.40620017959509674, -0.8025369671632447, 0.2218911398233079, 0.026414367753955417, -1.401542006911355, 0.5590753803497088, 0.254272826590776, 0.03301889287254928, -0.5511126230115282, 0.33138211471744594, -1.1003507371973524, -0.8572440958254007, 0.2729225500023487, 0.8760593784129471, -0.4057600035860949, 0.38865004871088926, 0.17430001499496675, 0.3523318438595093, -0.5883046511209647, -0.12692238538330677, -0.03251541015008582, 1.2742549070031153, -0.9392827832110586, -1.193807671928405, 2.550733236958858, 0.26275326464718285, 0.46645961707419376, 0.5461104092411874, 0.6564246638151021, 0.7645244278560215, 0.6603127764140014, 0.9584376793749146, 0.14235245867514054, 0.911838623698969, 1.6089783145302847, 0.1666101921954461, 0.40886838783685003, -0.4930808964603385, -0.14017177907080114, 0.30007229772141264, -0.331011336133287, 0.07864550757401033, 0.29027127338474423, 1.2931641228933517 ]
Given that following time series exhibit piecewise linear trend, how many pieces are there?
[ "1", "4", "2" ]
4
multiple_choice
5
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Piecewise Linear Trend" ]
Check if the time series values increase or decrease linearly over time with different slopes. The slope change could be both positive and negative.
Pattern Recognition
Trend Recognition
502
[ 0.022226613244824178, -0.03237350038339877, 0.1467088799406428, 0.004586668712830727, 0.17307451170646063, 0.13747920677092962, 0.1860216653685591, -0.0009337837558347079, 0.13431250530930144, 0.13475887138870069, 0.013401205116110648, 0.2816681163478413, 0.10498213943750179, 0.14132563200532486, 0.11651101708983697, 0.30352141901733326, 0.09637000029372275, 0.32631063797812554, 0.38453474231670126, 0.3493613722156176, 0.38246656359837083, 0.4027185479322186, 0.24738165406252433, 0.5013577704622215, 0.3274368328431237, 0.3823658822581627, 0.3713010979427504, 0.4692792276262636, 0.38188147698547686, 0.4579369594836424, 0.34327119110599136, 0.5988322794314355, 0.5494398531762986, 0.7519368182320134, 1.0330449272605213, 1.4432196907357842, 1.60682456388133, 1.9888874693623553, 2.3912878523698913, 2.4928192975539436, 2.909602128220595, 3.203111607843036, 3.4606024351241307, 3.7187541944209173, 4.189409894361662, 4.306970360936439, 4.484320370241085, 5.028374655358062, 5.1429879970590875, 5.631103482362292, 5.99420272850204, 6.2224844273984745, 6.565447605588268, 6.959108421933396, 7.152576593342238, 7.387754922184799, 7.816889437115533, 8.127769209088738, 8.427965868770933, 8.500671374766302, 8.713280926276974, 9.092160579624238, 9.516640995387956, 9.76098976418276, 9.724425771131866, 9.783585031532136, 9.562919405486408, 9.70657986552498, 9.786771722142705, 9.712320544115832, 9.709032983845473, 9.782052302659444, 9.598163717178918, 9.521931901533343, 9.688655593936973, 9.669279174775953, 9.590459301150231, 9.501056055618498, 9.499694142779633, 9.354341904467818, 9.57577687470374, 9.554710374638026, 9.298239990640525, 9.498634496079909, 9.434744475192288, 9.274599920654397, 9.238660333588323, 9.379072702637833, 9.284415986309062, 9.488644304756813, 9.384372281168828, 9.31894477737925, 9.30634638610836, 9.369588225746929, 9.303616338885039, 9.251404195564, 9.103401434084647, 9.23353718523962, 8.542939149952774, 8.34791808895818, 7.9396144720117965, 7.884882052514321, 7.572028217350475, 7.35935975444307, 6.8348404844807495, 6.845952551313886, 6.37983338141343, 6.171591338608605, 6.005563922397698, 5.664448400927381, 5.397430925165477, 5.1700694884739296, 4.8589456074618615, 4.507870690197717, 4.251249504613665, 4.01499922228697, 3.630170682051753, 3.5452420943298533, 3.2004215584563345, 2.9049487291523826, 2.7426356952479325, 2.337289612008247, 2.056973813598742, 1.7526679738981867, 1.5613524881757763, 1.283805735100934, 0.9122472412013906, 0.6870212005256409 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Sawtooth wave with exponential trend", "Square wave with log trend", "Sine wave with linear trend" ]
Sine wave with linear trend
multiple_choice
68
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
503
[ 0, 0.8361394078377509, 1.5839513386939843, 2.1652469563428993, 2.5209509454841084, 2.617882452621167, 2.4525637395527067, 2.051619374422272, 1.468720139311884, 0.7784224469535311, 0.06761040711036714, -0.5744771377416654, -1.066489863961813, -1.3443037372202418, -1.368381468950505, -1.1283107911755421, -0.6439996253054256, 0.03660904215541305, 0.8430402797417463, 1.6903766531448738, 2.4890054453277357, 3.1549048231429566, 3.6192882561595647, 3.8365001562160037, 3.789256439277869, 3.4906284734097737, 2.982542686037754, 2.330968052595275, 1.6183438691054408, 0.9341169843640855, 0.36447467245390075, -0.01754834551669049, -0.1604531681535737, -0.040187998446144846, 0.3370910785250827, 0.9357267198148862, 1.69465324114147, 2.5344060216220208, 3.3662428244698632, 4.1023300458197305, 4.66582466641821, 4.9996946526294135, 5.073265359891323, 4.885740511828432, 4.466293600576857, 3.870719216965321, 3.175028686529518, 2.4667251341996725, 1.834759466527288, 1.3593201707687468, 1.102628905421541, 1.1017984073638605, 1.3645725184065811, 1.8684373109262782, 2.563205341734752, 3.376776401444027, 4.223413513582091, 5.013584225589064, 5.664237562303304, 6.1083370051695525, 6.302555257247227, 6.232247552916613, 5.913132652543766, 5.38948856967749, 4.729070133646085, 4.015331773480271, 3.3378482283837316, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, 0.008943323301087614, 0.007549977972447358, -0.0020716589010457425, -0.006234773949849601, -0.015081532895474828, 0.010996469757848204, 7.266800490608974, 6.656946118691635, 6.21609497883152, 6.002498539285912, 6.048322911350959, 6.3559566727244565, 6.897736695390609 ]
null
Is the given time series stationary?
[ "No", "Yes" ]
No
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Try to see if the time series has a constant mean, and degree of variation over time.
Pattern Recognition
Stationarity Detection
504
[ -0.09264842366745296, 1.5867847306265808, 1.2316039388355704, 1.2590740552812387, 0.28012854629962913, 1.766494376696464, 0.8599713534175022, 0.9644248279179919, 0.5906632139346638, 0.24856299796493186, 1.7376869442481238, 1.819542797903961, 1.1109665146867531, 0.8717847430127628, 1.0409652059623176, 1.0729578053064586, 0.6663851766384707, 1.1390129346221118, 1.3807969102953739, 1.8327139366088767, 1.3504350436765131, 0.5751072912633131, 1.5603241454491048, 1.2761532988329987, 2.1101975693613246, 2.1609060887678138, 2.199903745301684, 1.2087016409043934, 2.5065665342422188, 1.7095828307601564, 2.370108447527541, 1.3287541564402277, 1.4542554059719361, 1.7644064707005551, 1.7275250183832829, 2.30354527278176, 1.5849927444633587, 2.3086534432530894, 2.1181276948164496, 1.6713603628835163, 2.1318280217308625, 1.594683396645574, 3.033643835388078, 0.5540045272518228, 2.250682796491254, 1.060370606531396, 1.858720634159498, 1.958054712634746, 2.784421038262571, 1.7147158617559666, 2.7454344161872686, 1.533112082130991, 2.827409432269347, 1.9489251134459156, 2.255314427632532, 2.083390317105388, 2.926234196042636, 2.862892810022691, 2.575249195004128, 1.812552113376156, 2.06648348664351, 1.9457421495783478, 1.3725306849005292, 3.1643765837534215, 2.4074729454294137, 2.4403648763015475, 3.396458423862316, 2.4497852020526767, 2.307501553032377, 2.6559157513854594, 2.243108430576465, 3.0233870523858175, 2.7067652516783705, 2.6829778511274274, 2.683318746503925, 2.9714653793563777, 3.1112811490093755, 2.85518596020038, 2.9821018502388283, 3.1677231997666975, 3.164974056515901, 3.320128722423842, 3.015382597448883, 3.905872057621297, 3.5025884972073165, 3.2536020579671945, 3.7298319721638715, 3.5733447454108394, 2.79729131892619, 3.8891542516076427, 3.2642080373659117, 4.297280123074622, 3.766130583838204, 4.334826202455169, 3.688326490346894, 4.097916947555331, 4.728475406133404, 4.05014467310856, 3.951454985158062, 4.63751927508837, 4.691903794798422, 4.164725005986445, 3.5123623477305586, 4.267055734861322, 4.978717015652319, 4.321500658752954, 4.773554823050008, 4.521327995408564, 3.9560898126477184, 4.657607643551812, 5.406176924607402, 3.959851372739183, 5.347548415550425, 4.706054337894119, 5.682088191687155, 5.814975973958618, 5.4529804440358856, 5.536464463484753, 5.301685483802791, 5.116885778710036, 6.724795404551039, 5.530564280556327, 6.835647695193685, 5.711967143200901, 6.495617382184032, 5.756781005134999, 6.681422044613031, 6.352368841252032 ]
null
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "4.1", "1.17", "17.78" ]
4.1
multiple-choice
23
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
505
[ -4.251001717031342, -3.7142640344378757, -3.565323588598345, -2.986254173191108, -2.5224704143899777, -2.2624109001257415, -1.6684463367856166, -1.2598802002570237, -1.0917867532632322, -0.6310568781636295, -0.11291894836777809, 0.1763451803186228, 0.4258922731782854, 0.9398722213758086, 1.2577756932467166, 1.8427525123629445, 2.1813901293968714, 2.4782854226819055, 2.9127401157055286, 3.1565773539993316, 3.600875963084875, 4.220445824953943, -3.7427269031942565, -3.266205590729031, -2.9471486651233083, -2.4500575924171026, -2.3925053327359205, -1.8225791406338432, -1.2504150203662476, -0.9304116441877656, -0.5046275646207548, -0.24897705262136693, 0.08685296244699944, 0.4267113552636015, 0.8085991893102997, 1.3878622519413584, 1.7473414980066482, 2.0782272452755826, 2.5245678529378424, 2.876858160601938, 3.3476989520807363, 3.7356100546756608, 3.922618166380416, -3.756626099461038, -3.562013175983369, -2.9929602299108446, -2.5569676785056896, -2.3599058437111085, -1.8813159855338193, -1.4498528770216994, -1.038549825862285, -0.7009374905780513, -0.4014417382519781, 0.09925055404061889, 0.3282911147825034, 0.8591155250524424, 1.2271065045950205, 1.646681495864828, 1.9930400627052582, 2.287068373881262, 2.7900663228819873, 3.308646864688726, 3.730575129827931, 4.237226674545033, -3.6507379871240437, -3.550732623386564, -3.0830183936029636, -2.655588999715419, -2.273002222410956, -1.868628708753907, -1.2459587023447172, -1.2060588018346567, -0.7803425636327908, -0.15574265975839557, 0.00714081016826644, 0.49696120675437977, 0.9499330759516846, 1.2839814378821233, 1.6433722967632252, 2.106921007666431, 2.3126172722905918, 2.7411520122355446, 3.2332162812757166, 3.3615727937518316, 4.099039299251782, -3.8254761201998253, -3.4516479851974324, -3.2411382509955966, -2.817883678527409, -2.3402169351734647, -1.8307513864697622, -1.7302917754751252, -1.0549294969334744, -0.7809049121779902, -0.37837992979726315, 0.05818590889003928, 0.4486225357496554, 0.7393121502154111, 1.2619102153000115, 1.356343589707539, 1.9321057122844731, 2.3813799745029853, 2.720381063907903, 2.96104916227681, 3.6084071277935115, 3.796629805948815, -3.8984790882282256, -3.487560030524578, -3.112016577610748, -2.6082340031568467, -2.3415971544985403, -1.9046611607854218, -1.5641329073261838, -1.1083826983503762, -0.6414645798181952, -0.37819572933167206, 0.0750993207234655, 0.5313113756974409, 0.9103611041507048, 1.1249779363362122, 1.6560143095159066, 1.9661123871901656, 2.4418224682028944, 2.7758271240298535, 3.135394670521234, 3.540089268196306, 3.9110800530096195, -3.898206712717539 ]
null
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "Yes, time series 1 granger causes time series 2", "No, they are not granger causality" ]
No, time series 2 granger causes time series 1
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
506
[ 0.9664395783973945, 2.15404249229368, 2.757660252373363, 1.9105200025806468, 2.4343825030203012, 2.1511297644760368, 3.5209094596707375, 4.045223586553336, 2.7513685330363478, 3.1382949382902026, 3.5465299830483654, 0.5069131595907228, 1.5029157006943274, 1.0531839965047358, 0.07220994967530725, -0.7770837655523024, -0.7679028648630436, -0.03923279720482459, -1.4247890257946145, -0.7507222522629509, 0.03359815543698963, 2.19334878645077, 0.7890938289961078, 0.410375067359283, 0.42841110459924453, 1.6260701668855955, 1.047990778653002, 2.0648978336754364, -0.1438785583807114, -1.1591321921211537, -0.7090209259813858, -1.7248190656155131, -2.2414018365132327, -2.307608028653104, -1.135839405885438, -2.625970078961974, -1.7662315138039162, -0.3219769837265758, -0.21901542574487745, -0.28539659450060195, 0.1741912384367105, -0.010722953885182102, 1.2675572713449583, 0.19331183138662666, 0.26735126542077775, 0.48392819958287997, 0.2878676690293691, -2.6193074589013943, -2.3347025735976885, -0.7720937491236984, 0.23699357788777797, 0.3828046785602939, -1.0508902883641202, -0.5939691245542223, -1.2250380041626108, -0.5786816348618637, -0.496888389877299, -1.5560458584345618, -2.2059180587043725, -1.416655836161408, -1.2217035353698895, -1.5607055282932247, -1.8083316329707877, -1.7475404302975803, 0.27307833006480364, -0.10899840388509618, 0.07987149544708398, 0.2694625982702955, -0.7443779732464433, -1.9808479164069865, -2.592496190465726, -1.697438599600962, -1.1602694465526315, -0.22857077394735292, 0.17467098259110103, -0.06120954773211623, -0.5210010657490118, 0.39852162155531534, -0.662135272016549, -1.4267311374998228, -0.620142754522475, -1.8360176119466325, 0.9729661132430221, 0.8999812950708395, 1.1097864051920445, -0.0324167233518351, -0.4305270406357086, -0.7951234837834441, -0.9468758622634269, -0.20531878773082501, -0.7175449414044758, 0.03486940707477104, 2.4252859746873745, 1.8282541785145823, 1.477602685973753, 1.1558763605905522, 2.4919536559118707, 1.6666596971029057, 0.13901497148397568, -1.282289343828973, -1.4064742335615796, -1.7679250269810378, 0.3575449106645443, 1.6743642693780407, 0.21129510051267442, -1.017584839589893, -0.9297152551655731, 0.3290036970808534, 0.2892849891164465, -0.7889877058754147, -1.1810144703110232, -1.7706422292747934, -0.922705174680167, -1.7614185401775213, -2.425267765408222, -0.8161321622006021, -1.5119765041905109, -2.804194692896033, -2.199095021903813, -2.1413588440240656, -0.9621971840462029, -0.614949752069024, -0.6156685449740167, -0.3078940527639643, -1.2546225962026991, -1.2348916688885774, -0.06549955924273043, -1.3359816116410093 ]
[ 0.9664395783973945, 0.44528210864878337, 0.42777047586277944, 0.938076256818583, 0.5611383157495501, -0.4447354726797657, -0.6390985518926565, -1.0212412714505275, -2.015616326164215, -1.8911695245103517, -1.8007059121850908, -1.3017100635490506, -1.791312405533789, -2.4898539345067503, -2.667520423082222, -2.7061106351252606, -2.3036428246266203, -1.687472573189303, -1.15695868754199, -1.0361577193093179, -0.686917091202347, -0.9667001284932261, -0.8931410319306123, -1.4135254033718743, -1.386142904531564, -1.3474198811601232, -0.5951524171264245, -0.6951776742133846, -0.6558447829808545, -0.5523343002659867, -0.7510108244784889, -1.101559076987472, -0.5342068488347311, -0.9626953338446305, -1.5427620936296091, -1.245605708175464, -0.7398441569447721, -0.9370308230523746, -1.1275095423852741, -1.0040876904040417, -1.313294875213136, -1.6547658278138324, -1.2705384923157632, -1.005328930140922, -0.43258298822942615, -0.9797441913463543, -1.199231969176961, -1.0764059296185422, -1.4807395241119243, -1.2004349176748161, -0.6654881603574059, -0.9203130444819922, -0.903455150762038, -0.26760566950228176, 0.5183597110037221, 0.844143751728844, 1.1033679802378467, 0.730435194741906, 0.8873465565574225, 1.1305793792561154, 1.0386846013825781, 0.7788719351246562, 0.21917009385866515, -0.5399123298888847, -1.390795002624196, -1.1376804597235857, -1.0731618189780283, -1.284502233273587, -1.4292903679716558, -1.3373517403870097, -1.4092368735254805, -1.9948229544922276, -1.5960023564830705, -1.4631526828867951, -1.3470017900674869, -0.9811341256290327, -1.3365541137793109, -0.8063668399242135, -0.8675409477921514, -0.4793794457748198, -0.15855432849851556, -0.6123281141527127, -0.3926490431371054, -0.250124368495492, -0.23688350272120962, -0.27810736767599975, -0.31562761844560816, 0.03937479615805938, 0.2918200985664898, 0.3051339981906674, -0.3465798271887245, -0.13059497449364693, 0.18549697150977085, 1.1903717848681072, 1.6601469807793543, 0.8305407595171546, 0.8648006196174253, 1.6560530816748624, 1.9284343171610085, 2.071997536781772, 2.465239207616955, 2.193369345592696, 2.40221062966147, 2.292800126931335, 2.2842281132864684, 2.6461171008637585, 2.24130638394212, 2.8039283078149047, 2.6192338078345, 2.7330976434473477, 2.1213218630804738, 2.435764217462785, 3.067632153467765, 2.8428242663920353, 2.357851815017947, 2.479281547076278, 3.1147780546799426, 2.4814456089343384, 1.998183414005895, 1.7997824199722983, 1.4414363786382045, 1.0844699845014367, 0.16970740013178578, 0.42702173457441656, 0.574983049930775, -0.16711540606906086, 0.4694229774896595, 1.203764796320487 ]
Is the given time series stationary?
[ "No", "Yes" ]
Yes
binary
30
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Try to see if the time series has a constant mean, and degree of variation over time.
Pattern Recognition
Stationarity Detection
507
[ 1.782719674154033, 2.6229225734198365, 0.0856757858200429, -1.454458909507809, -1.230513521734615, -0.4633420969615735, 2.0437141190732313, -2.0754954537277226, -3.099727333029445, 0.7237779047644424, 1.1072099360685503, 3.477419702047393, -2.1501125724693306, -0.22776001950964544, 1.8627481379171633, 0.24110786280411542, -0.44476859434495813, 1.502308420517564, -0.9902137392224158, 1.4905119641312856, -2.3115216048776155, -2.6795095458171225, -0.5492308977299426, -4.466269302362166, 0.20578515992951746, -2.778462322918228, 0.45625724942361445, 0.2985013970458994, -0.1359838107923864, 0.7627113740835939, 0.46477684462042007, -0.5471631451446198, 3.4438542088884687, 0.7556190659659976, 1.3201208907907438, 1.8285868592582486, 1.288803887503152, 3.6605259116874613, 0.2952580315039256, -0.07219140378368873, -1.1579212571623676, -0.5183028583138817, -1.1603861247990184, 1.2724917472444042, -1.635133501950505, 0.11189640789813471, 1.0013676761529564, 0.26598998507022037, -1.6842684481043178, 1.0492437864677382, -0.23108858661878173, -5.106548087656081, -1.817395115340495, 2.5663254178992023, 2.608982405271741, 1.120221683089576, 1.3341079254946049, -1.3659458450260387, -0.4901564224761661, 2.2344451604746234, 0.8617788187103695, 0.1759901171034593, -0.5343157269303659, 2.132479387558311, 1.8884226698356228, 1.1209764867599112, 0.18644732180139725, -0.7445522308790409, 1.3443992129485494, -1.9891695761112498, -1.3690961814814693, -2.566107926255256, 2.3607590247497465, -1.1580687239240615, 0.6552483990170945, -0.35279905980452947, 5.149080207580668, 0.7252921405965808, -3.1438484411319365, 2.0595161742728627, -0.716509940037234, -0.49586124814779325, -1.1505309335710883, 0.2294244779482516, 0.36786347324755087, -1.0865067024903303, -0.9759745346847566, 0.27525161974776036, -4.18145838960477, -2.7030888499704275, 3.1156442180914055, 0.4889225644632068, -0.8800255714900168, -2.9647983398595663, -0.06093749504926149, 1.7840612603809458, 4.582640547525566, 3.523999686672426, -1.4770327705705681, -0.8316120621037875, -2.7424591672601437, -1.5902018447660806, -0.3116532408813596, -0.851350561337394, 3.6768882654024884, -2.4654184244742905, -0.16676156321125013, -3.799892132953818, 0.6113234864619164, -2.2673837726979142, 1.9899031223296724, -0.47024385480721825, -2.4691064897556476, -3.660097229430699, -1.6885443344268114, 0.1529439632396804, 0.8380297723930119, -0.8036808572968341, 1.6053285583320334, -2.2112420997851863, -5.165814420288285, 0.5336708410027675, 2.2434610931260655, 2.3225593555151565, -2.1975486000060487, -0.7260604417801303, 1.2981183914658974, -1.078550185818204 ]
null
What is the most likely variance of the given time series?
[ "0.41", "varies across time", "1" ]
varies across time
multiple_choice
43
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
508
[ 5.78020935998441, 1.9293180190506454, 7.4623697895294825, -2.1453081277482204, 0.5795232610734209, 3.874204435040705, -2.700271776391519, -3.7579080872667694, -2.9787292911604624, -3.5166446581265594, 2.3314053833517776, -8.79173295023408, -7.621587319690988, 8.892620483038485, -3.4233482258086094, 1.0495212140077845, -7.147503406236787, 0.4470206900252125, -3.374622947243715, -7.4391654083777805, 6.159373322219599, 5.760235036510157, -0.3671437447400221, 4.682392441978194, 9.040901776336572, 3.5132702358366426, 2.166145233102109, 1.122431174508054, 2.902253350444752, -1.7474616746280498, -1.2982100533693832, 2.294832313174895, -2.148561182472915, -1.8950174615984032, 0.0006066545238453058, 5.436804916447027, -5.3727782594365365, 3.6478313328679426, 3.599004875121741, 3.6707856654085673, -3.7626473191764114, -7.927135896139785, -7.0974383412442945, -7.728162064176358, -6.423068044182282, -9.025881350713808, -6.792907710412438, -6.436346865141954, -8.268757812234897, -7.486510565049014, -7.24712955774647, -9.209900907988414, -7.168140729112674, -5.481602863591232, -8.01746826098917, -10.189819430731662, -8.88848681521304, -10.862001337736602, -5.846359045230622, -6.78720865753785, -8.807054400578597, -10.081118563159729, -9.310313750042075, -8.972094526626078, -7.797717478007124, -8.038172047013141, -5.850657066561023, -9.143918187082658, -10.515797607221957, -9.871497689802746, -8.083945242886616, -9.041315837684422, -8.562004091597892, -8.790142324060312, -6.409832657625219, -9.05338645368013, -8.656106775937205, -7.0303009494272946, -8.794134941784161, -7.357774311465758, -7.473894179861727, -7.679911074809827, -9.856396266386692, -6.086794228546763, 58.0311556073883, -5.906254574495236, -36.394199438300355, -5.263584667799665, 22.519400769996395, -23.8097068776245, -9.870752387219925, 3.8235153379878573, 28.768909064513007, 16.31247396024068, 17.47679504632, -18.369055701026205, 5.542216987855886, -26.90305430563079, 18.54266281541264, 27.2290960644676, 9.876332206361246, -16.76526968232247, -12.029871143618154, 46.01834143439717, -16.10016228854432, 24.07282177364848, 3.78941359284344, -15.801145418533828, -44.976046857974744, -0.028749998565289925, -3.27759415816887, 46.16678326387566, -30.841790558673257, 60.408379483036306, 4.910863620793327, 4.74659442569645, -23.221349603646832, 2.9672641601564207, 7.5683407117434065, 21.029872709424787, -34.34896470730865, 34.65084514607548, 4.4474232989625175, 11.512809945454364, -12.401934799747146, -32.9399651653355, -3.821896953886065, -0.6980720088351191 ]
null
What is the direction of the linear trend of the given time series, if any?
[ "Upward", "Downward", "No Trend" ]
Upward
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
509
[ -0.3242832629545181, 0.17539005643905983, 0.060138076537849375, 0.285796221429173, 0.07709484738015984, -0.0699155699295888, 0.04710339171752302, 0.23804166007979105, -0.024736193673502035, 0.04714186529353109, 0.09937511427814097, -0.04975314646301257, 0.03312283647896619, 0.2101237801562787, 0.40487621066518586, 0.26318769664891845, 0.2132521748368282, 0.08911617519749013, 0.4413515546270853, 0.3389547193867174, 0.15248879332193807, 0.4483268913967758, 0.4025961994515915, 0.17522314119491156, 0.31415402753690946, 0.25923208210131865, 0.8222424689971377, 0.4668659531354665, 0.4200968386212374, 0.4841509741104688, 0.6572216082389581, 0.4141380299801582, 0.3389911255434226, 0.6047581482090405, 0.43954881551817476, 0.296170418784493, 0.27578450570350177, 0.7804170542864974, 0.5487324108735402, 0.435873578781773, 0.512106721981121, 0.7089411289333118, 0.5293937142954481, 0.340156002959954, 0.6658362277077989, 0.8346922440370601, 0.836775025840739, 0.5518393554617589, 0.88687225763036, 0.7151642739895493, 0.9096127740647437, 0.8061961416786615, 0.45196305178864327, 1.0399220643157059, 0.7560121228337181, 0.8620689727463965, 0.5384795727341443, 0.8771783142339464, 0.9959867976062681, 1.1560395507018306, 1.0759053161343095, 0.9410950238040328, 0.5862790500440436, 0.8946370220178648, 0.7811510001882881, 0.940342095128045, 0.6992328031353454, 0.8898099531960166, 0.8497101930046906, 0.8580993337519386, 0.8736754721917335, 0.9581909722990603, 1.0461614227880551, 0.5708251426847996, 0.6060985259660505, 0.9778870656369064, 1.0164737368638925, 1.0982662407527308, 0.9510526168847963, 1.0943725353790037, 1.128767123352824, 0.991338354094155, 1.3122323352056604, 1.179126958948485, 1.2579497878357309, 1.1877941485449517, 1.559070779422663, 1.3081291937106831, 1.131473173372133, 1.3752414497458882, 0.9571919373753978, 1.279700487485709, 1.3285876669081296, 1.309370192590722, 1.2415536410140267, 1.1361987075359503, 1.1891904956192159, 1.3596125453654173, 1.1599088151520158, 1.6802990570620329, 0.9192677397961385, 1.34019256911332, 1.4302319895726268, 1.5138076582796225, 1.2776095751317844, 1.6515900445582907, 1.2213224280834685, 1.380551293337679, 1.602873859260371, 1.6903860975435947, 1.2748629669406855, 1.9999628647817596, 1.3915017705795212, 1.3324874909652344, 1.6651304518900474, 1.5294711332456714, 1.5173470678455514, 1.722950023324462, 1.363858806080408, 1.3469777998435135, 1.554866956639912, 1.8629921676058951, 1.5901486835285052, 1.9822211664978726, 1.926113940261006, 1.7786745879049646, 1.8024801221598943, 1.80617237937597 ]
null
The given time series is a sine wave followed by a square wave patterns with different amplitude. How does the amplitude vary over time?
[ "Remain the same", "Increase", "Decrease" ]
Decrease
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Focus on the amplitude instead of cyclic pattern change, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
510
[ -0.0731631738908528, 1.0474746512073887, 1.683417847601818, 2.5003945394737173, 2.9993740516898764, 3.5963953900992993, 3.9319366495646135, 3.8782251686119613, 4.253267743192254, 3.984231149976995, 3.4465373457071635, 2.8512750377527682, 2.3391162195401307, 1.5528767953368035, 0.7505906890526184, -0.1269651799910373, -0.950113447809956, -1.6658859497760141, -2.4827457543466425, -3.259936207594803, -3.49309329945147, -3.7774253883740796, -3.7622233910057368, -4.143448665179958, -3.780280302122924, -3.6161731923945553, -2.8036981181616265, -2.237077219605177, -1.2156040130894752, -0.6481624115652302, 0.12314032219753829, 1.0946359880620502, 1.7428774792575834, 2.72745783462967, 3.0391941482380473, 3.696811164088372, 3.7693170094440327, 4.050414233396598, 4.169631447819154, 3.785160664855609, 3.2389541110834372, 2.749740728802812, 2.05916009261532, 1.3171493253735194, 0.28896101447369316, -0.3783634183983793, -1.5517635105107586, -2.1307383669623645, -2.810568889789386, -3.268943159394324, -3.7515854197693215, -4.148170370566661, -4.1807278334114635, -3.9544884046079454, -3.6967266266298386, -3.2962956409052295, -2.69126552472098, -1.8602069260968275, -1.1819662632670784, -0.2888565711189571, 0.799614643825934, 1.2768764313735437, 2.0072400850582537, 2.9459557349281758, 2.7997324623189046, 4.955262338341403, 4.908970453302554, 4.961106077038914, 5.146939902325299, 5.067298936977477, 5.073308442304363, 4.845463385536401, 4.871970717460378, 4.703178225167123, 4.9061480090073895, 5.08275640975423, 5.038780742690502, 4.964934764820453, 4.98485606274386, 4.918197536858124, 5.0075619793558435, 5.063673919063726, 4.8254974123746175, 5.0170508598994, 5.080329578211131, 4.945576062219328, 5.057156152327723, 1.0295728902282204, 0.7376731664822759, 0.7874381507814975, 0.6743017374148259, 0.7662325620411702, 0.7941346082791955, 0.7675916798079789, 0.6461379138100795, 0.7687436229135102, 0.8943270396527288, 0.7929710222324179, 0.8443061646881492, 0.7244062487797023, 0.8230974697233361, 0.7760342296026177, 0.6530163728122419, 0.7799595462608525, 0.6489377794369341, 0.6848194182924859, 0.7670402765102026, 0.7778318731189775, 0.6291841992732522, 0.8535060228992527, 5.044286718945712, 4.916613247554577, 4.8333276114707475, 4.972595633207522, 4.942491719729549, 4.998400136820967, 4.950774425000108, 4.786340405041164, 4.948251397285549, 4.9565241800088335, 5.05045219359307, 4.91726612365456, 5.154953558452921, 4.795922036050489, 5.118202840895927, 4.964654194027855, 5.073044578350021, 4.995066239521538 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "Yes, they have the same underlying distribution", "No, they have different underlying distribution" ]
No, they have different underlying distribution
binary
93
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
511
[ -3.7115480681445643, 1.7446797780215713, 2.0988018615039947, 1.6648311505819202, 0.275102689762175, -1.976709305868345, -5.1149011949602405, 0.42424453318850663, 2.4696085164831163, 2.1710640764822546, 1.8050192728687482, -0.12702101044213368, 2.1485465573068656, 1.9844758992855691, -0.9399687826819684, 1.6095725911721677, -1.1283430801682028, 1.140766029877267, -2.8249069897117605, -2.5468612223625273, 2.2752535209275195, 1.9623847277728559, 1.3458116628993109, 0.284746041964217, -5.13357978760689, -0.1578702101523887, 1.0036166378805558, -1.2150329244415463, -1.5637585649241479, 3.064516568423746, -0.16015706409973118, 1.1204070774980814, 1.5701780321476264, -2.2395322564699542, 0.2933560051682791, 2.7132986904208445, 3.924571944061416, 0.02480304232608356, -0.3395845867482413, 0.5548372700834854, 0.6570340861295303, 3.102661937956728, -2.1806197984218914, -0.3956241073618675, -2.3946013254658784, -2.0424608504495056, 0.9559010240715105, 1.796868568214713, -1.3324729983622694, 1.7359577740483594, 2.2949712408609404, 4.199292434244273, 0.25860419599558826, -1.2341001298286833, -2.2449675525909414, -2.3353038251410547, 2.724043632913881, -3.2958255916162136, 2.6751255874446027, -1.860585756903663, -1.4310748956719228, -0.18433167766148892, -1.4467905363237357, 2.051167706718069, 4.116968139419948, -1.314021195193478, -0.9461350534500528, -0.47571733108705044, 1.0739821178807178, -0.2393609227068209, 2.943912395405261, 2.384554032801407, -2.6453521949698495, 1.0604838035196666, 3.3804693318654726, -1.088134450256582, -0.7750699766526035, -1.1414397609786073, -1.076882886288805, -3.664378441279528, -2.763594668276221, 0.12583392657600326, 3.391626339803654, -1.269809228515171, -1.3005451880201793, 3.5782693591058155, -2.392367522611838, -3.606103043570269, -1.9380456083339535, -1.326109481948842, -3.8694242665266003, -0.3384930149456116, 1.9544690919560201, -2.717246928841588, 0.03723680785835032, 0.9199960962039795, -0.07628781710600338, 0.4562149913716444, 0.49897868049274285, -1.6856702283842804, 3.1533035691260065, 2.848043284910965, 2.533179541693634, 2.190549589978851, -3.4471034895152335, 2.0564366083493, 1.3672422397749602, -3.3237933685627, -0.5893623680391515, 0.7164289332568764, 3.6745572327784473, 1.5416460049597727, -1.9209005073818013, 3.7392945519678054, 0.024165292269763064, -0.5420107890461936, -0.592903716204497, -3.6002556611748826, -0.2010703178209297, 1.1098944878434114, -0.8450696027378354, 0.8609709422708712, -1.7521273230630263, -0.3652245385941174, 0.5049116897140027, 0.4751519513426412, -3.600049063583081, -0.8823772855903971 ]
[ -0.654767262218251, -1.0026247455050188, -0.9495559061078597, -0.9035523507511216, -0.12565967400349304, 0.5374478195626975, 1.122581046658353, 0.5865405949495548, 0.7902295718497071, 0.8839988150562801, 0.40436202805321375, -0.005824431905827057, 1.0801108573722105, 0.8562522922533033, 1.7292318220313514, 2.3674842117894546, 2.39406888295318, 2.810128825514497, 2.119151267922848, 2.1786911615257503, 2.990996454267529, 3.4652783406440806, 3.385848063802577, 4.291304147525497, 4.371351191585825, 4.020582375926913, 4.045936527490698, 4.405739260999052, 3.454464840134133, 3.487085585160828, 4.182438115151056, 4.027048336699396, 4.41154965830738, 4.990592935357594, 6.150251720334341, 5.5849099003567835, 6.034357204068377, 5.619356921052367, 4.632474221699858, 3.7078429433316495, 3.924288179972786, 3.9801647762600525, 3.7153051954681637, 2.79725891495834, 2.3600031408663793, 2.327633128519134, 2.626337744895145, 3.02124574147165, 2.7466913715683803, 2.613920276741227, 3.464852422655508, 3.1107340678429196, 2.6781592769338203, 2.462283291866962, 2.5174963636985175, 2.2176150070551195, 2.1020166505256843, 2.260735897222003, 1.9777360456092756, 2.096547685855348, 1.5360216128904645, 0.9536169824503574, 0.9726754220859294, -0.03907703963389283, -1.2295508756155737, -0.8916281482688806, -0.4115991724393016, -0.4853429122271543, -0.9323310515584168, -0.38740849001320643, -0.920795483702602, -1.8198983240054494, -1.4275932301758016, -1.4527237641378867, -0.7702231383920408, -1.9790674348017028, -2.8653905515134057, -2.8084598144299866, -2.6214197704933526, -2.14892361944395, -2.1529704262036593, -1.9103390493899288, -2.2767775457043684, -1.2568513966263914, -1.8930543018012014, -1.5243977206614339, -2.2874076565899726, -1.9608493195511794, -2.5069240559807566, -2.1078742662955516, -1.849797708190033, -1.1180114814492732, -1.200363471934262, -0.8898785859315522, -1.274063679745199, -1.5623454748077883, -1.656573920332904, -2.3398938418372177, -2.9880763459481607, -2.757223937533719, -2.8440759567592773, -3.307951572218177, -3.733282336721249, -4.008294962666352, -4.089349253056385, -3.6179340873437322, -4.958994930205862, -4.081097884589477, -3.511572467597558, -4.67498424233346, -4.142603874819903, -3.6619216675834565, -3.375290917739882, -3.9959153666593275, -3.4753146803941735, -3.6559526008211845, -3.4564091035967617, -2.0845695024099538, -1.9009405285182706, -2.526026639311443, -2.847226161462142, -3.223338617792541, -2.7589921959959005, -3.390707809991359, -3.982015542093144, -4.519814419473382, -4.489757410771595, -4.24418296708875 ]
Which of the following best describe the cycle pattern in the given time series?
[ "Period increase over time", "Period remain the same over time", "Period decrease over time" ]
Period remain the same over time
multiple-choice
30
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
512
[ 0.061992633239580486, 0.17722692675966345, 0.5378480193905703, 0.7880726119800587, 1.0219609139422388, 1.0796621372000903, 0.9613659481928022, 1.0417138396965562, 1.01580213840726, 0.9107208277800743, 0.5436098380537729, 0.563084961778467, -0.12885158899949345, -0.28348830213710907, -0.5081817148323239, -0.7598003268164232, -1.0540816645280358, -1.015933061118572, -1.083621709827918, -1.102155619211476, -0.9871040567983679, -0.9088248844406202, -0.8172936787721288, -0.47316827146932156, -0.10530986324756367, 0.1837159795930458, 0.4490116093212431, 0.7478853016939476, 0.837411149883384, 1.041741891283315, 1.1714163500221508, 1.1074897030536917, 0.9199395842911693, 0.8076594282890821, 0.7869211999531828, 0.5967688855690462, 0.29861151877130443, -0.08406254732842271, -0.5088893403590159, -0.6449245293404151, -0.7013558230563854, -0.9525595505520555, -1.1251924688930897, -1.0588996209492436, -1.1921599772109177, -1.008109611788694, -0.8584880733198377, -0.4652521389313908, -0.16921444741348077, 0.031420352380388164, 0.243856137564682, 0.5917168112291389, 0.7684864689699825, 0.9071776615974946, 1.1253717899661044, 1.0484861105967154, 0.9264380237707056, 0.8361374715844626, 0.633795866436438, 0.5901594873213998, 0.3145075827173796, 0.02386026887806736, -0.21398651885693054, -0.4221726862139057, -0.8335592979345019, -0.9156653241249192, -1.2332894398152212, -0.9856699427700992, -1.2222608361820164, -1.0707426880146527, -0.8956378207595503, -0.7695910770297164, -0.3541813566853277, -0.052988955040572695, 0.1946361516940209, 0.3334472353125578, 0.927608947717522, 0.9779750789804471, 1.3194802461066018, 1.0390201374448975, 1.2050800877079857, 1.103942010506505, 0.8461249658705353, 0.8078316153832314, 0.37383093471497875, 0.09864510747788494, -0.5009176045485944, -0.3912558393767578, -0.8146394557208513, -0.9421803035052562, -1.1363408488722533, -1.1488905730699186, -1.073193967095503, -1.048198519400656, -0.840990338228219, -0.587988356828568, -0.5069802265389164, -0.24255429181493987, 0.18929754931613413, 0.4792940012109466, 0.7069832811900834, 0.7533682114943436, 1.0506408515443586, 1.112718161843212, 1.2278768878948845, 1.0122738158982798, 0.7794149400675873, 0.8293230155702777, 0.2686261993317619, 0.18094367966600844, -0.13532268481076679, -0.4209217606408704, -0.6568235510210194, -0.6858603270153754, -0.8980455378706496, -1.1132456828559727, -1.011040874637431, -1.192930535260357, -1.0972761503044888, -0.7174779734936897, -0.5193368289200415, -0.3587803151443322, -0.1411605257170251, 0.4053164807981595, 0.35721507465764357, 0.7044194938913863, 0.9718359179318558, 1.2514282526885763 ]
null
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "18.64", "53.37", "38.17" ]
18.64
multiple-choice
25
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
513
[ -2.0777326523246478, -1.8779455881948326, -1.723005321747643, -1.560445717154236, -1.2026871116348525, -0.9896631345228599, -0.6754302607182638, -0.5509293994522577, -0.3344670450028303, -0.09657632688070743, 0.06560744998563815, 0.5332776099569587, 0.7336559929252197, 0.729496636556569, 1.162300935638359, 1.1285121170365975, 1.6426480487296669, 1.7055905822965278, 2.042322185163851, -2.262682150371653, -1.9584951025965505, -1.560647880715084, -1.446502493789573, -1.2293014604997845, -0.7746125017286244, -0.4619962483578163, -0.35828427381442507, -0.33006722268114935, 0.18657926976285694, 0.08519061250497936, 0.4419911950510152, 0.7090246191460157, 1.1270571288198834, 1.2570257601799113, 1.3504905789335169, 1.5334772233242244, 1.9592986177712555, 2.036849958657625, -1.9642034476473533, -1.891748603371032, -1.4667386669339701, -1.2436884358929121, -1.1856134546447465, -0.727182635203035, -0.5437638636771908, -0.2941295172347289, -0.1748933097990214, 0.11197670259336652, 0.3315254503399849, 0.5414770249667596, 0.8044508952474978, 1.1441513667992818, 1.3571086352787667, 1.362534005650219, 1.8103667570765287, 2.062047414649368, -2.148248000774183, -1.8511790210704384, -1.621517062731184, -1.5248073891401854, -1.2468998542368577, -0.9025166996101339, -0.7960734451897093, -0.41783476359160326, -0.3848874754328579, 1.1194290431993632, 1.2030423193182618, 0.9959886307722048, 1.0227819663982223, 1.03712816377758, 0.9990220665022422, 1.0592797564114804, 0.8339414561001172, 1.025552397870568, 0.8673181940130265, -2.1320936257977423, -1.962542316933993, -2.0557429218818863, -1.9660698505654037, -2.0579089583970975, -1.9251906663978688, -2.0597393685991148, -2.231323146993297, -2.013292039835857, -2.2527172826072395, -2.181103388290225, 0.916767206101459, 0.9042909112242973, 0.9505567785596876, 0.9008550766482055, 0.8644665926427488, 1.1592454334853934, 0.9372474043621265, 0.7819850936865763, 0.9689700217003904, 0.8925887531985607, -2.1243280607662656, -1.964797049901736, -2.0806470599155062, -2.1510909581587727, -1.99120594704126, -1.9208372149760757, -1.9821440817729998, -2.281186855202027, -2.1473302482766856, -2.0310864449733637, -2.060261238563386, 0.9723343436073965, 0.9067861897172327, 0.864503450693572, 1.205840030782618, 1.0077729543152072, 1.0692740378880579, 1.005686976359697, 1.009696728865115, 0.9988515190203873, 0.8930172730938728, -2.187280243840409, -1.9972087606624858, -2.0170470573098678, -1.9420032081910137, -1.9622952153727817, -2.1166825173119515, -1.9225721671447973, -1.9593285785215326, -1.966747141051251, -1.8108986188391034, -1.8314354217861655 ]
null
The time series has three cyclic pattern composed additively. Which cycle pattern is most dominant in the given time series?
[ "SquareWave", "SineWave", "SawtoothWave" ]
SawtoothWave
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Amplitude" ]
The cyclic patterns have different period and amplitude. The dominant pattern is the one that has the highest amplitude. Identify the pattern with the highest peak.
Pattern Recognition
Cycle Recognition
514
[ -5.884305190202722, -5.3769246944051705, -5.0188787953241345, -4.888017169174915, -4.669657142302126, -4.322384400298163, -4.152408333563814, -3.877783266505547, -3.9336949347056427, -3.6211095547363437, -3.5035565954823853, -3.563802788616303, -3.481340477798935, -3.4760454189764793, -3.344330138432311, -3.192917633903384, -2.835789981626335, -2.778804648454823, -2.6594782452582577, -2.22502995268115, -1.8651337766694993, -1.62979027176199, -1.151967168045839, -0.895444594961786, -0.7653762767053642, -0.7117905495960831, -0.3730331745453183, -0.335773966105429, 0.05441953981668625, -0.0010377724597570581, 0.40010881915421304, 0.4859839362950865, 0.5266946451513437, 0.48305052167442186, 0.6460774154488693, 0.6703387887467472, 0.7344416254092248, 0.9498239042515092, 1.2346154807717966, 1.3868697315515741, 1.780525772440581, 1.9960014353051136, 2.2934284116717523, 2.390131899802894, 2.8511944513852123, 3.096637846708185, 3.4927181922736326, 3.725390758848264, 4.00960175348875, 4.3708281773249, 4.779715615411582, 4.978759924857518, 4.833566573494846, 5.091870094618873, 5.261073841829558, 5.389467635060668, 5.165101838421835, 5.382456600968989, 5.643949485569054, -6.1395612345254555, -6.0210851470608215, -5.858196970171062, -5.5367643662970645, -5.319980997767919, -4.832342197271298, -4.422788619919256, -4.310182176159328, -3.837922866085038, -3.47657969892081, -3.2849666940254236, -3.201740762511463, -2.793935792904104, -2.666364460348768, -2.5388752889639017, -2.755659897796875, -2.604333278434857, -2.4856739872121127, -2.222467959036624, -2.365932899891962, -2.122730995151539, -2.1076547749570422, -1.9899808225051634, -1.7656242498766466, -1.6667940123045537, -1.2447129222008062, -1.1773418794594073, -0.7473248295087974, -0.3226623330375668, 0.11306163813440426, 0.4535069485844791, 0.5834873058814907, 0.8914375982229463, 1.2094813446932915, 1.1769397762064422, 1.5130941055753033, 1.5196614132420758, 1.6881426634119523, 1.7435169498226346, 1.9080020963569155, 2.282715635071857, 2.405076497637716, 2.460258135371443, 2.580889341390025, 2.921469343608335, 2.7924494555467083, 3.3591347315908484, 3.4375711618285965, 3.8266578901667145, 4.057640297541895, 4.348337435268379, 4.7926658594335425, 5.160981644331401, 5.394369566208404, 5.5535368268296725, 6.195038413217346, 6.143348656123533, 6.270834927419543, 6.264573033095078, -5.480882806420139, -5.365501960080043, -5.154967423168911, -5.283660734337753, -5.1986187784877, -4.921736154797844, -5.084014469632967, -5.01152670963712, -4.825566723064849, -4.319368003313632 ]
null
You are given two time series with same underlying pattern but different noise level. Which time series has higher magnitude of noise?
[ "Time series 2", "Time series 1" ]
Time series 1
multiple_choice
61
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Exponential Trend", "Gaussian White Noise", "Variance" ]
When the noise level is high, it can distort the pattern in the time series. Both time series have the same underlying pattern, but different noise level. To tell which time series has higher noise level, you should check the degree of distortion of the time series pattern.
Noise Understanding
Signal to Noise Ratio Understanding
515
[ 0.5969662206250976, 1.1578699377999961, 1.1407811125781082, 2.0942283497280414, 2.6088552721460627, 1.5158506984463602, 3.298349095534268, 3.42400914668674, 3.3065790835115556, 4.906038687209924, 4.531189658646216, 3.619375205723683, 4.656247454639901, 4.882120809962547, 4.3018226575673815, 4.34642358209435, 4.220201541749969, 2.851076293654952, 3.604006170295556, 3.345442514605505, 3.915511489356734, 3.0754955714807175, 2.445712547523434, 2.218415265862554, 2.432862884200761, 1.481148418662952, 0.8771308736387593, 0.7476218697829764, 1.0273676611320979, 0.49461144269665824, -0.01847885543291871, -0.20360953802205867, -0.8050529458793723, -0.8109173435485497, -1.1938111026111973, -1.1143469839018145, -0.3530503722488235, -1.5771524079338997, -1.346790954665415, -1.5459240298514798, -1.5234309959996324, -0.7048895199495706, -0.7003348035524823, 0.7499382245750558, 0.02546565414057092, 1.1424996263743363, 1.3412691773444987, 1.1358031407310145, 2.696549672006829, 2.1895013545392783, 3.232220427661335, 3.5953095092826683, 3.520529310357948, 4.094042919468452, 4.419228075991014, 3.901858945546401, 4.842514017102847, 5.659391847380425, 6.158230380576149, 5.268680578283074, 6.085428350182006, 6.044439514003211, 6.012578773892079, 6.305821723756232, 6.246935430442687, 6.373332048913597, 6.744250182069581, 6.294497874150555, 5.897932948443601, 6.479826620946735, 5.876117045157085, 5.021951553927759, 4.184987411315825, 4.008825211345931, 4.668018671483605, 3.5802358778162384, 3.086634570912317, 2.914123528312743, 2.6650716893191904, 3.168454066043461, 2.423295049464862, 1.6032258453809418, 2.1264974837168613, 2.081578154263913, 1.6316737780243222, 2.3944983464905967, 1.5978312118018052, 2.402251270335267, 2.2350657735814217, 2.5374084014506026, 1.7103857901942834, 2.5410487853535653, 2.742232632769342, 2.3760857766013666, 3.9962908472191243, 3.425925773792189, 3.95035743117322, 4.193665058952543, 5.515422565768608, 4.880080007727454, 6.438106096158017, 7.139564343212103, 7.37015716666974, 7.932466059384042, 8.415219734997434, 7.999402764089679, 9.604547680910546, 9.040066548361068, 9.585668459199933, 9.763683856123595, 10.44647677281627, 10.159809435756191, 10.646394021108108, 10.134658445278601, 11.429389068845824, 11.233276288144744, 10.760273621400856, 10.640210593999475, 11.128276349750017, 10.349830640444772, 10.63413138007707, 10.995205794693563, 9.832091326734064, 10.23081953453606, 10.004472334932903, 9.595215382213125, 9.192433297886373, 9.86132886695263 ]
[ 0.9402431364233034, 1.2130917588618557, 1.8470496589450116, 2.0401415175108295, 2.589665989980547, 2.991735046789451, 3.231537302634025, 3.5540003924238786, 3.891079968582584, 3.9884002713358826, 4.085008734106382, 4.330971267151749, 4.4126065693389895, 4.43674895027796, 4.186597844739003, 4.030300727770847, 3.9957089899456846, 3.964348384695914, 3.713356863253966, 3.4442508370798346, 3.256481810957289, 2.761551131532454, 2.6086349584509354, 2.375323400842847, 1.9761016578428832, 1.6426217324689827, 1.3859659191798155, 0.8788586377560429, 0.49171042308572316, 0.3654804941641943, 0.07649922099591709, -0.24355002026889414, -0.541218809139876, -0.7138046782264243, -0.9898362369370473, -0.8556626887312225, -0.9183743731092215, -1.1693847772919832, -0.915668913063344, -0.8783644328827032, -0.8901740284449128, -0.7321035829591719, -0.35418088571191697, -0.1706766522117322, 0.34888381228443466, 0.5930610341242148, 0.9046352535474047, 1.2925881187432608, 1.7745685990007343, 2.1398861704796075, 2.5256924385089428, 2.7989849458622853, 3.619400014346178, 3.6081592198347026, 4.07593809472126, 4.308516833601256, 4.867748655753265, 5.137379274136575, 5.471664865731794, 5.455093851088606, 5.93230326601359, 5.8882608672174825, 6.05661528624649, 6.220977536011826, 6.164063393522809, 6.135822520143989, 6.103309683585095, 5.945313142712077, 5.708526528752378, 5.530867179711672, 5.3423401150820995, 4.9785951638748, 4.893148478431145, 4.531605944886912, 4.208880074117984, 4.014641773345876, 3.578650945147154, 3.274924091941101, 2.9603009689641437, 2.777436933044929, 2.5325110981891514, 2.222784725479654, 2.093205637124343, 1.9044848611878689, 1.800855363363199, 1.6435660212215617, 1.7852096292797919, 1.6778611004086907, 1.8903928151099825, 2.0128361828406383, 2.364850716324041, 2.39040020860355, 2.692527996575279, 3.0489366251359757, 3.385746117167392, 3.9715517019880515, 4.14128460828625, 4.662382526852822, 5.198035927649863, 5.731163201417952, 6.091144540332713, 6.425497390039994, 7.08655753069831, 7.7113546650788996, 8.063665240951455, 8.497756713688554, 8.780878391920673, 9.15353751639895, 9.620666432858329, 9.787364623070934, 10.278841934613867, 10.344163432438265, 10.610470430916275, 10.56375366197618, 10.807676277750687, 10.779319760456621, 10.674207860617559, 10.928969317946013, 10.970078180500325, 10.816424689697147, 10.639617791184866, 10.373094284183306, 10.318308909157443, 10.16890443983333, 9.860291884432286, 9.525447774313264, 9.394389660079204, 9.42419998734023 ]
The given time series has a trend and a cyclic component. It also has an anomaly. What is the most likely combination of components without the anomaly?
[ "Linear trend and sine wave", "Log trend and sawtooth wave", "Exponential trend and square wave" ]
Log trend and sawtooth wave
multiple_choice
71
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Exponential Trend", "Square Wave", "Log Trend", "Sawtooth Wave", "Cutoff Anomaly", "Flip Anomaly" ]
The anomaly only influences a small part of the time series. You should focus on the overall pattern of the time series without the anomaly. Can you recover the original pattern?
Anolmaly Detection
General Anomaly Detection
516
[ -2.46398788362281, -2.0817374692063297, -1.704586899340528, -1.3318782823670798, -0.9630733537033078, -0.5977261228545567, -0.2354629173866843, 0.12403245386918044, 0.48102991762811365, 0.835761743721878, 1.1884292395133538, 1.539208019782328, 1.8882522010385245, 2.235697773389535, 2.581665336206365, 2.9262623364097995, -1.6583908531488558, -1.3162563318725558, -0.9752319933191022, -0.6352473780466553, -0.29623852853868815, 0.04185278696855599, 0.37907973818683993, 0.7154910030127164, 1.0511312596628288, 1.38604161320265, 1.7202599666919003, 2.053821345358259, 2.3867581807572344, 2.7191005607025343, 3.0508764497986425, 3.382111884629875, -1.2151446202231295, -0.8849188489747486, -0.5551653504619869, -0.2258642460019773, 0.10300311382812133, 0.431454248501002, 0.7595056370184561, 1.0871727987051136, 1.4144703663091345, 1.7414121522724706, 2.0680112089225426, 2.394279883242361, 2.720229866794726, 3.0458722413060846, 3.3712175203551293, 3.696275687558856, -0.9069195356422224, -0.5824075888182301, -0.25815564641443056, 0.0658444785094976, 0.38960059219791354, 0.713120143442747, 1.0364102450797354, 1.3594776938926616, 1.6823289890650102, 2.0049703493044166, 2.3274077287528563, 2.649646831784442, 2.971693126782874, 3.2935518589818322, 3.61522806244375, 3.93672657124544, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, -0.17311353790509276, 0.1431102494779828, 0.4592710675825393, 0.7753699040156035, 1.0914077233305028, 1.4073854677388504, 1.723304057795258, 2.039164393056015, 2.3549673527129147, 2.670713796203347, 2.986404563797711, 3.302040477165157, 3.6176223399186074, 3.9331509381399603, 4.248627040886335, 4.564051400678176 ]
null
Is the given time series a white noise process?
[ "No", "Yes" ]
Yes
binary
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is uncorrelated over time. Does the time series seem to have these properties?
Noise Understanding
White Noise Recognition
517
[ -1.2686796518071723, -0.3878154612166989, 0.5392875960035097, 1.441512463243895, -0.7963075584379767, -0.42720939725321455, -1.6876846325864892, -1.6908628694602672, 1.2281025392656002, 1.8895966595691458, -0.08962511969969127, 1.5288921120257228, 0.4486848423996431, -0.9427036230347183, 0.5425344075323201, 2.1698620220229303, -0.01742700257214251, 2.3797520552029288, -3.782314008802688, 1.325998808169729, -0.008492150236990265, -0.5378423924325655, 0.18777870566925417, -2.90038706923591, -0.27473294376936613, 0.915625892632911, 2.2519296247646086, -0.6561335956062512, -1.1053046844063914, -0.680027093865418, 1.3279492276511247, 0.5641296723576386, -0.864036615019609, 0.7385785945744404, 0.0956348358799845, 1.446735281624315, -0.8111627545060742, -0.6733420356933443, -0.5136991394090108, -2.3347575686067286, 0.39257906983399654, 0.49659179979538304, 0.01402206601085188, -0.45616302447571755, -2.1735167362725, -0.556746322830905, -0.5820066591898516, -1.1698270399998916, -0.23497042299973336, 0.5349013955755841, 3.015594779310205, 0.32265978969210907, 0.17997733424695433, -0.09191521192700554, -2.915771910595806, 0.04586721595015311, 0.010196631232113992, 3.6467207646840136, -0.23517916071583117, 0.534407584373708, -0.17158056264407165, -1.7690697938038036, 1.649727195141635, 1.0513730643706733, 1.3513177418656341, -1.3100455232200148, 1.9572205407832197, -1.9901219108465031, 1.0837650822738785, 3.3563220083693563, -1.6229959834364447, -0.8894398780858417, 0.27468471438995007, -0.8184854974646827, -2.25852943757785, 0.17928721300557074, -1.6703347602219123, 0.6973860331170408, -1.6895761861616605, 2.199389929745471, -1.188476946932097, -0.603076262158816, 1.3714066294259002, -1.970987497615283, 0.2937993980509492, 1.954329564453837, -2.24316791550112, 0.13061604276820565, 0.5022718523698196, 1.1621191008413823, -1.9351632122052846, -1.9148177523306682, 0.7950484971222188, 0.38103429521951476, 0.378990552079398, 0.47598359461221756, -0.9985622409367374, 0.41113619623355036, 0.5938476031458584, -1.1846745697441068, 2.9841904744682255, 0.5084869441560621, -1.7843995578925747, 1.0338884266165944, -1.419413836141599, 1.1066401125597862, 1.6998338485833044, -1.26810658155055, 1.3717865343335243, 0.697986786073642, 1.2565542880700713, 2.7476621319640153, -0.27446924554147717, -1.0886538909419143, -1.2397437820971602, -1.148608080756776, -0.19740429981269847, 0.45063134002404315, 0.48564663492621923, 1.2894981353252681, 0.0172191273078433, 2.170395992401708, -0.26527897789779964, 3.980603137158409, 0.9838968374202814, -1.2931956261441548, -1.6121651539757862, 0.8264040400022641 ]
null
Does any part of the given time series, composed of several concatenated patterns, appear to be stationary?
[ "No", "Yes" ]
No
binary
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
You can try to identify different parts in the time series first, and see if any part is stationary.
Pattern Recognition
Stationarity Detection
518
[ -0.06997255079925854, 0.3298909290544455, 0.5984197415004683, 0.8742228600149848, 1.223096927037808, 1.4751766219711036, 1.5508549256214308, 1.71267523104813, 1.8670222941221823, 1.7435700602446496, 1.8545585622248235, 2.1273931791372545, 2.092508612897772, 1.7945826581451785, 1.7253645225171512, 1.5074125215432517, 1.5576607480470785, 1.1055063905619698, 0.700915258264013, 0.3213452290019271, -0.050463410352227886, -0.17880963533091232, -0.579394063911804, -0.9386122609474022, -1.1347407948642168, -1.4264974691954115, -1.3665487293390297, -1.6275236909775752, -1.856125293005754, -1.8028701093916955, -1.9922892765661921, -2.0877725582170306, -1.8033677448498893, -1.8093357777749524, -1.8302063944001619, -1.567729640098182, -1.4216568215229304, -1.226060798874381, -0.7229907553289375, -0.3331063200921621, -0.3598868265606989, 0.14551520683475544, 0.33128152918248155, 0.6453390301325289, 0.9160193349978176, 1.1468834793510962, 1.4668416132310773, 1.572847699897065, 1.8375774687832436, 1.9170580545074005, 1.9640464356382288, 1.915787970705563, 1.9197717992656842, 1.9768857895767333, 1.830138322126015, 1.5186766973310046, 1.4243261066433643, 1.253870050076165, 0.7481090989420277, 0.6839518641949734, 0.2629527950973344, 0.07804843652908973, -0.3640628763841242, -0.7701107717181395, -1.0402462134820065, -1.1396936122450851, -1.3583335006418364, -1.681634079662276, -1.6964146229065582, -2.053653035616091, -1.9764675026649388, -2.126493186839339, -2.058436123568502, -1.9289910565595296, -1.9142830515520906, -1.7177480743823073, -1.3897947983540144, -1.3238152597055182, -0.9281611816990606, -0.8462550835398213, -0.3844267400618137, 0.013024753964584107, -0.06890430586748819, 0.4037253658276656, 0.8347853705018629, 1.0319645983143972, 1.339560723017903, 1.4612635612924028, 1.7133648640740913, 1.8316586085714028, 2.0626137064773724, 2.0236313897362, 2.0368034868864187, 1.9190941648340607, 1.8221611055128624, 1.693831222724946, 1.6014044631882158, 1.3076029465951313, 1.1343366448159125, 1.0422809953910186, 0.6313921266906756, 0.20827771841931045, 0.0518758066253039, -0.41655648247944393, -0.878132654877304, -1.0576705086619584, -1.403736735965248, -1.4826828247034571, -1.6421536250466915, -1.633735535587301, -1.88324890667421, -2.0068693318592006, -1.9238509630937395, -2.2020329172412687, -1.8843964371359747, -1.7125549233270396, -1.7766412157397586, -1.3148297847400592, -1.1618038431602415, -0.9752081335971681, -0.5862320868347497, -0.12283210729810595, -0.023788218016678204, 0.29177156824359585, 0.5235919915123801, 0.773583698752378, 1.2102323480441735, 1.2834258469518156 ]
null
Two time series are given. Both of them have a noise component. Do they have the same type of noise?
[ "No, they have different noise", "Yes, they both have Gaussian white noise" ]
Yes, they both have Gaussian white noise
binary
88
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Additive Composition" ]
When a white noise is added to a time series, it is expected the random fluctuations have similar amplitude or distribution. Random walk, on the other hand, can result in very different noise patterns.
Similarity Analysis
Shape
519
[ 1.0375399442578994, -0.33014708447848556, 0.08471605536936655, -0.45959900595496217, 0.22458731478743144, 1.1767543952825956, 1.6641364608965565, 0.06671500883790038, 1.9119182055426491, 2.4215524036967473, 1.472446547027672, 2.898596947252935, 0.18155873736992933, -0.38310084554154944, -1.035617079388357, 2.099430095909036, 1.1007658981964759, 0.22105460361815263, 0.37892985845356647, -1.207038006054138, 2.18602666066263, -0.30124747865856194, -0.47949772519074224, -0.004696376948121417, -0.3701192993675478, -0.7235517875322932, -1.8071031027378228, -0.5852584667397385, 0.8154417153070317, 0.2995055923359695, 0.597873282755484, -1.4274432691947325, -1.8005253574409248, -0.8081928553804814, -0.47863680428340016, 0.7231667943388331, -1.889534091087654, 1.5120760059448275, 0.004613029078125885, -0.08881891163780165, -0.5082759086096381, -0.9996808466248303, 1.6109434431744596, 0.9711427720663912, -0.30777878855048235, -0.2566481960501992, 0.7291757383190013, 2.7300339693261018, 0.7671082306427175, -0.5401391097791869, 0.6260050574846674, 0.48282047323870314, -2.079169417846994, 0.4079172350348922, 0.06254450712887502, 0.8125533295980659, 1.7848412804417655, 0.8838233227259853, -0.6833103212230015, -1.680767226958255, 1.855732876263838, -0.7812565035607666, -0.9253402994175765, -1.0353085941350728, -0.8560738362572538, -1.2113253791452798, -1.6228981219627345, -1.5483383597465135, -0.957814885504428, -1.3655944599068741, -1.4085940617606179, -0.4429851834593871, -0.6423361687234448, 1.289776232897894, -2.6859137489329554, 1.2368357790374618, 1.5675278524904206, -1.5850331322907454, 0.29860776785299437, 0.4044396748869758, -0.5192507196983922, 0.19740378723555574, -0.07630547886956074, 2.8159911586286857, 1.99840708112044, 2.302877770490891, 1.6920735431889384, -0.24734318274271505, 0.243262018421036, 1.1212575594531435, -0.7442278097601633, 1.0232385212439603, -0.10662390418451514, -0.4214842826453053, 0.4852669751832887, 0.04599985583655586, -0.9204022748540577, 0.4547314128832928, -1.9106592620038223, -0.3149158582111369, -0.4123659162736183, -1.3608540913470004, -0.7409279783099922, -2.303389954765881, -0.08334988397611787, -1.118549679044289, -1.3559213605833942, 0.34010519789103777, -1.2686654468095222, -1.8120505878094701, -1.7879357720487359, 0.553605755507913, -1.1524314021498345, 2.0595311349326493, -1.6091746483408365, 2.323699275876322, 0.9747976038896476, 0.7817458077590362, 0.4230782041775166, 1.4289688872773878, 1.0245610077398355, 2.1674617973443926, 1.1498968239460141, 1.1278406213602943, 0.5278203749384713, 0.7228689887252546, 0.9536810735401802, -1.2167086654640376 ]
[ -1.348185422105713, 1.0848378915938026, 0.8477330268694485, 0.8157334918403243, 1.3226197030273648, 1.9322583044819153, 1.2962726701141447, 1.275326996313793, 2.4293192939977217, 1.393880032729311, 2.875669274114461, 0.8146319260998407, 3.5498899035529283, 2.9505055147492847, 2.6455539448703207, 3.2398987659368754, 3.7488658953221323, 2.8856409830198277, -0.2161281050214785, 0.0687725915779438, 0.42234432650605325, 0.7528146826007787, 0.9105822008414844, -0.6738451754791117, -0.10331332315395955, -1.3821084766960159, -1.563366139082174, -2.666132013353555, -2.467170735535003, -3.151702599165975, -2.9988775127420144, -1.1551547765855652, -3.30337793735739, 0.17649963204865893, -2.0193152800296112, -2.3383517780927496, -3.3457103217390545, -1.7054760719688185, -2.855625600350341, -1.9902610580003681, 0.6543657315389568, -1.7601890399110238, -0.24267029449549637, -1.7973429415792581, -0.8112610998244634, 1.326694096550334, -0.7307424041069794, 2.0509123664821955, 1.2840706214550277, 0.3411108781480626, 1.846631630623134, 2.475100460578497, 2.3850530269503865, 0.4212972863122597, 1.4560486361579243, 2.087192010865802, 2.368877219965872, 3.127661251702847, 2.702276401203224, 1.1604016967119524, 2.80122901264764, 2.912390135186554, 2.7000482324176893, 3.0201421866982425, 2.5367311545666884, 1.8941296165433599, 1.0705420927829872, -0.8354673501756663, 0.924720466043555, 0.36329589333398826, 0.0848320673386786, -1.8024168882318037, -1.9359817185461536, -0.11531096030126453, -1.5000748069390686, -1.0442224053234406, -1.9308798872771855, -2.126896437234513, -1.3761719396325507, -2.945751207476915, -2.4041650579247493, -2.987171464111663, -2.9375812548015667, -2.7444255231704178, -2.1005146394281526, -2.6460889825751677, -0.7164285404455126, -2.635376664400546, -1.6642207805393112, -1.6264981604830189, 0.5726121275462089, -0.34933397982880376, 0.8244692234753002, -1.3506095489942365, 0.7418460910410731, 1.6955422614104552, 1.204494007249013, 2.483356548519782, 1.1701855108629804, 3.3353941295017737, 4.428106202295347, 1.9303843440791009, 1.969573150216842, 3.945910532560897, 4.103722237389325, 1.9865063292681926, 2.028259839058317, 2.060726421385467, 0.8490566475299894, 1.0855226058945684, 0.7738534203141896, 0.7513269375199718, 1.1976400612684843, 1.1570832120254428, 2.1469451010719247, -0.7392992384064878, 0.9012245417946789, -0.6377115639502824, -0.806020936687573, -0.40066255630124004, -2.4973556120245304, -1.2661020549805788, -1.725629083440332, -1.6084126500935765, -1.9818524508744362, 0.05587573173156324, -3.1214530789200507, -3.053334419274818 ]
What type of noise is present in the given time series?
[ "No significant noise", "Gaussian White Noise", "Red Noise" ]
Gaussian White Noise
multiple_choice
62
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
Observe the pattern of fluctuations in the time series.
Noise Understanding
Signal to Noise Ratio Understanding
520
[ -0.27842437325955116, 0.11599721349737907, 0.35468205852466983, 1.5544461753948775, -0.8570905725045819, 0.3081425120435062, 1.1031983358937223, 0.6365023880191132, 0.9488798929955723, -0.5397609939378277, 0.13509134923774432, -0.8438250158997205, -0.4613766726005739, 0.6412715329979994, -0.6737852626439702, -0.2589149448871598, -0.5116886304543841, 0.22108249904641641, -0.9268863343472739, -0.13313544737963304, 0.5021448190342814, -0.20533143801122175, 0.7443647275473179, 0.15751312348269542, -0.31858958939409204, -0.37463239313602487, 0.3892289513970747, -0.29992805542649204, 0.10220214974203087, 1.1266346930066864, 0.4333031896283993, -0.5757165607508874, 0.1722797662624057, 0.4852187174143048, -0.3875326399663832, 0.7531040272599517, 0.1004121671979728, 1.13083838160045, -0.11379931217512622, 0.20326081934748302, -0.1825337230292723, -0.20238683704630328, -0.4526302786368529, 0.625548944022244, -0.9081639885244664, -1.4612426832179628, 0.20694192994783112, 0.1530201400735387, -0.2722109209237829, 0.0280771318903811, -1.2890007728201032, 1.029575078738822, -0.3482975418637094, 0.6377969648941895, -0.500583993367929, -0.7661554137889158, -0.5882674358351601, 0.13244666778835515, 0.5348264349439229, 0.863138864531852, 0.7562036324228902, -0.6596041127480523, -0.16662361383068303, -0.4252398773769943, -0.14333721578055844, 0.1552085135385675, -0.4830520569075054, 1.1361238497376018, 0.06480214667375875, 0.5222006576365981, -0.6988342508573253, 1.1095908907846967, 0.40055406800936594, -0.11603576739296723, 0.3202273348256951, 0.33996155764528335, 0.17890424304381047, -0.2181999485208042, -0.8783960539516069, 1.0071342011668112, 0.1790405791324981, -0.49306489827046185, 0.0705221479212941, 0.5727989049179862, 0.689074206925416, -0.18473863829969012, -0.3772777542971849, -0.32447798657241395, 0.5220316957021092, 0.6578542666847195, -0.08861799814748245, 0.44455879412607496, -0.2461172308888826, -0.8156591667045472, 0.3785449942951331, -0.06618901298004956, -0.06443992703948379, 0.47084598116429666, -0.6906644918416884, -1.0851804462797439, 0.15136333402736712, 0.9854565278402986, 0.49468904820433707, -0.6273969646410718, 0.06692434973276346, 0.46919243394223153, 0.42148622619781073, -0.5350646005742374, -0.4084437691522334, -1.323700782510453, 0.1290592786328231, 0.37340149017261615, 0.6253476185433707, -0.47011622241385387, 0.07688602154696167, -0.10632851676518237, -0.6208149357684857, 0.6434229929050952, -0.1507204615840925, -0.21171757798616053, 0.7801066293535677, 0.4003194759031954, -0.48960283856476594, -1.079427223453409, -0.4295002956491131, 0.23566373758649434, -0.27422472930473113, -0.7786111977516296 ]
null
Is the given time series a white noise process?
[ "No", "Yes" ]
No
binary
50
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is uncorrelated over time. Does the time series seem to have these properties?
Noise Understanding
White Noise Recognition
521
[ 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592, 6.781746111659592 ]
null
Are the two time series flipped versions of each other despite noise?
[ "No, they are not flipped versions", "Yes, they are flipped versions" ]
Yes, they are flipped versions
binary
90
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Both time series have a trend and a cyclic component. Then we say two time series are flipped versions of each other, we mean that the sign of each step is flipped. You should check if the sign of each step is flipped for both time series. At a high level, you should check if the time series are mirror images of each other.
Similarity Analysis
Shape
522
[ 0.10945732912205675, 0.4033207670400555, 0.6866513219593533, 0.858809549821752, 1.0493682118027279, 1.3915571236968949, 1.6995376860551057, 1.9190522157186773, 1.9606488682178305, 2.195522103206195, 2.1649359895432863, 2.4961403778996947, 2.3901635260659266, 2.586390016435745, 2.400825146080566, 2.59580580433607, 2.4717588837768356, 2.2798114200250126, 2.3188235409824656, 2.058089538739837, 2.0379275831326087, 1.7628678542086653, 1.4302861250898546, 1.3046499613052387, 1.1525068860236602, 1.121070870878795, 0.8630699431684085, 0.7279984928867569, 0.5314766209580395, 0.12474985480204465, -0.01331682835610402, -0.1897497633455487, -0.34833502639664704, -0.5735927235124797, -0.47254619956836946, -0.6527168360559064, -0.550668854965141, -0.3277834625144178, -0.5509249743636297, -0.40966403002842905, -0.23664504440307987, -0.1674517473889924, -0.005864125123186202, 0.11564665690638434, 0.340001455203428, 0.500081986503357, 0.9321207747327526, 0.9399954297566364, 1.4894928390360684, 1.538097552664583, 2.064764664415539, 2.223158730255422, 2.4214370000045906, 2.880793143105666, 3.182368353679511, 3.2971169704832537, 3.6458796761740895, 3.556612524273619, 3.840060788958504, 4.261729643648203, 4.241950829579964, 4.1799279719620985, 4.367111720702107, 4.384028370233956, 4.467663367680163, 4.424093052319779, 4.425972474676247, 4.319504521433323, 4.3541657653859875, 4.12808450490021, 3.9772431775153287, 3.875298651144062, 3.532017899617736, 3.2452077780253585, 3.284749326363486, 2.9663400803226234, 2.755394637913255, 2.4707832965093925, 2.272931503052571, 2.2314011061460937, 2.072501374441414, 1.898264506670046, 1.7666161316858848, 1.6359636381550156, 1.5105847822490044, 1.4268056918909808, 1.5422846551903213, 1.3917713064881148, 1.5055113936653899, 1.4589612066212139, 1.5752641503388205, 1.7494076036365678, 1.8529975554177394, 2.2001760198308964, 2.1968897645629233, 2.574509938068121, 2.8292710205359035, 2.9015685745939512, 3.316785560153361, 3.6725412819517964, 3.979880673345154, 4.206613699024495, 4.580816626273844, 4.780435589881971, 5.059360828387314, 5.334594159200136, 5.635022521187488, 5.686053110506875, 5.891942167689207, 6.034103038436282, 6.199601922393436, 6.477276667422835, 6.462774807687163, 6.331763379977454, 6.3927187812764625, 6.466948810136056, 6.28593246069703, 6.22242105952098, 6.321191743507577, 5.9927960190888, 5.995446635006786, 5.852819194715578, 5.4660525025516735, 5.250903203713367, 5.104943022260024, 4.812397070452327, 4.7220668419815075, 4.482055034484952 ]
[ -0.03605800158863016, -0.42973089149204813, -0.6578684298870564, -0.903283319131064, -0.9243828218672687, -1.4167584964959712, -1.7775774503687771, -1.5155647851013292, -2.0725547352228526, -2.14804895611781, -2.2108343196895874, -2.477758225990305, -2.639464991799166, -2.5853875533623656, -2.4786364086934296, -2.3983172312518537, -2.454038128153513, -2.445264118824866, -2.2109826002510404, -2.0880874087552903, -2.2451721043719357, -1.89814419634271, -1.717403705492184, -1.2568629947474512, -1.1248294889630426, -0.9917201324493612, -0.6728418243269709, -0.7256520815434722, -0.5071443300141182, -0.12487040152273075, -0.18392371828052742, 0.14904698058448906, 0.022244994127634476, 0.3749746395263302, 0.413452152733843, 0.3841699325678394, 0.41948833183092726, 0.4882873368571269, 0.5141044966749424, 0.3777281605919238, 0.40892830017161974, 0.18026750469917152, 0.1460432971672153, 0.026201263732837793, -0.36823192912349556, -0.7223108277893071, -0.9400967380034178, -1.1059533658454852, -1.5670829750153978, -1.6215612520544498, -1.7767206708280714, -2.040330353456544, -2.426504774758327, -2.9045257529239255, -3.0260113318251944, -3.3870206994793377, -3.7384469596645937, -3.6751112774827734, -4.019970391112753, -4.186385057866902, -4.1782439581524455, -4.501570397131491, -4.408227633191359, -4.437993119395163, -4.695420862669253, -4.513444824937215, -4.500608356750981, -4.461940419746765, -4.153144439936364, -4.210611754633611, -3.881286604896203, -3.70432059982078, -3.543694777429881, -3.3091890388667116, -3.2462679371659777, -2.9794769710263176, -2.692337075661651, -2.6015667919778984, -2.307098792624294, -2.1139218352325417, -1.978904183117807, -1.866228201662002, -1.7263047360790793, -1.5427357662037566, -1.582143629985129, -1.4221042452151131, -1.3557538213352942, -1.2823412286604228, -1.5668313203772173, -1.5406015140360392, -1.662281289874917, -1.8776033519922422, -1.8856507699306742, -1.9829509124356535, -2.338671259938948, -2.595383130938043, -2.789735304235648, -3.2300222902335363, -3.1122712854335863, -3.7589769919369607, -4.0161232390521695, -4.272721497654557, -4.179537650878863, -4.919756093932602, -4.955352126116219, -5.258659574463142, -5.525263291835064, -5.794366714213625, -6.004567159160291, -6.1902767430411325, -6.314407045015481, -6.3599459620361705, -6.44709454165994, -6.335796982912115, -6.377660797153428, -6.5192181100759, -6.460304187463175, -6.367335005246898, -6.135254100724509, -6.145182795130489, -5.783855508155812, -5.8350228567487115, -5.5133116315439805, -5.508316500003144, -4.980412021701591, -5.097600247111542, -4.673817021214887, -4.464672300069116 ]
You are given two time series which both have trend components. Do they have the same type of trend?
[ "No, time series 1 has linear trend and time series 2 has exponential trend", "No, time series 1 has exponential trend and time series 2 has log trend", "Yes, they both have exponential trend" ]
No, time series 1 has exponential trend and time series 2 has log trend
multiple_choice
85
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
First identify the trend component for each time series. Then, check if they are equal.
Similarity Analysis
Shape
523
[ 1.0125545279299764, 1.1652282411846016, 1.3639579004550437, 1.557326501293474, 1.5808107901807085, 1.9080305068708285, 2.0653501847561397, 2.032259801076843, 2.073330487144092, 2.098379287405998, 2.3675435772160687, 2.137126071483044, 2.2103364500420093, 2.061533161889596, 1.9660097753172958, 1.8003525439799146, 1.6455611261028709, 1.6648870086288774, 1.3260961011621952, 1.2963029907970212, 1.0781564676348434, 0.962142608007168, 0.6467774104438847, 0.6440998474029023, 0.3618252997367306, 0.4903705023569805, -0.05607916612800237, 0.24428139260645573, -0.09078026907359231, -0.10905343079085142, -0.2173185799408937, -0.31106864692981234, -0.17609114414838434, -0.10139160801941349, 0.03800689834513435, 0.24050783062021103, 0.27767144355551926, 0.42805816886824277, 0.6092305205860238, 0.5698608927411464, 0.7605148583473024, 0.9610138953423973, 1.2554812661021162, 1.281545926909484, 1.56527102042303, 1.648639662669381, 1.9675349565158904, 2.0747420725025423, 2.089374288071599, 1.9920570238034367, 2.1936270546288896, 2.2573418436490695, 2.28438830489944, 2.329717511462518, 2.1907042932912266, 1.9950527096546307, 1.8274342053097459, 1.6396649708119415, 1.6915592525741956, 1.4025213690294775, 1.2707115847760233, 0.966639910230198, 0.7201605351735789, 0.6277530574124421, 0.4702178826820942, 0.36562313830868887, 0.13555570162670022, 0.0948691822787347, 0.1162539331706992, -0.23739692410844895, -0.3234088924032872, -0.0007628149311463828, -0.25702355088515744, -0.1059772352891645, 0.06256515813684571, 0.09083099143366645, 0.2075567073310151, 0.36054617380560144, 0.7605962483214852, 0.8555044658371495, 0.7860686582213979, 1.1435725147002755, 1.2727607849347875, 1.400292852732519, 1.483512329272184, 1.7794149432740438, 1.8477690503552084, 1.9652021287826487, 2.028959274510681, 2.283448471640847, 2.157942418898546, 2.182046449709547, 2.3312025719725056, 2.2060121720556514, 2.148387798337957, 2.177215350760238, 2.0952877226499487, 1.6199730677810495, 1.6707276662006048, 1.3790232660997046, 1.3073465430219118, 1.1650448149348698, 0.9479771610889899, 0.7011127734302889, 0.522974523931877, 0.5412233622765806, 0.47458413430531515, -0.013904583328441578, 0.051893902847500374, 0.07443043539359125, -0.05936545535104895, -0.1973372396989258, -0.13539988716032836, -0.030786666801973093, -0.03744600056839779, 0.06912804403068899, 0.17713185821009003, 0.25371629079076, 0.5338523995688874, 0.5659781793597596, 0.686349059557621, 1.1905424512342997, 1.1436935449423322, 1.0741879580887312, 1.6368829958773163, 1.8040321423324475, 1.8783436857126516, 2.0321549461481085 ]
[ 0.2159742312668137, 0.34316565039408703, 0.8818961781050313, 1.474719503469254, 1.875964375839014, 1.9636454320347043, 2.4984920985755155, 2.623182454026361, 2.880762006015219, 2.935421861831591, 2.952496209518747, 3.141645508749604, 2.80229701635162, 2.9174975653048105, 2.746538709013785, 2.435878380572615, 2.00349246326119, 1.705401262264875, 1.1911399629004404, 0.8873302547877759, 0.5944203495838345, -0.01494985599119239, -0.3011701270368342, -0.46068891739025125, -1.0296801143666163, -1.2364077364875858, -1.5670753039520706, -1.8898376188492267, -2.0554178588729513, -2.1449769734128066, -2.426227804515242, -2.121882764848212, -2.1596628569337537, -1.917985817792621, -1.7856260388812037, -1.5931175167989975, -1.2592232029888857, -0.9174505670885166, -0.4127117695113072, -0.1497069878552643, 0.29507820299883547, 0.5704852014551679, 1.1206670512288395, 1.6879279138720564, 1.9813466645988997, 2.19608381066708, 2.533897633761378, 2.8381331066490305, 3.2407724216471685, 3.399369120114861, 3.075787468578331, 3.458825419719754, 3.4628962777520105, 3.2691914013890346, 3.1819306006725077, 3.1515987160872974, 2.803870658635212, 2.410751013849497, 2.100308004949303, 1.723487201751367, 1.379643622679094, 0.8011373488048756, 0.4671301584195162, 0.23487873240495727, -0.26171389797317157, -0.698944892070153, -1.019311343411837, -1.1479695330049096, -1.5036979790285139, -1.5772603712955497, -1.8076630248632881, -1.9118410541794344, -1.7640257046081282, -1.7236396039036215, -1.5081874011472933, -1.2914965489463663, -1.1637784167558631, -0.7917815660587787, -0.5217945634060286, -0.041262337171253285, 0.3227797358190494, 0.6575414405103734, 1.07632947568316, 1.597885933456543, 2.098109121013704, 2.4603059162833345, 2.6325855499805235, 2.959989312239204, 3.24448238390882, 3.470304152743291, 3.5064613051987026, 3.863472922157472, 3.771293070019489, 3.8309789041974125, 3.6574920937053266, 3.529903914114552, 3.2495242743120327, 3.048994903439665, 2.6528638104198765, 2.387992756098389, 2.1562370504451263, 1.6624913553118867, 1.228542391508987, 0.6554283072765015, 0.44094429363795623, 0.06601338900154823, -0.33047964457632906, -0.6563898785476903, -0.9682597856459365, -1.1149530527430807, -1.2095888215560777, -1.4252252783323882, -1.6013043639720062, -1.5751422702737201, -1.3304063206826182, -1.354524154695504, -1.0341943101955986, -0.830658744942929, -0.5967566941379777, -0.05845649096591357, 0.31004777852179133, 0.5092055575125631, 1.1132251950966705, 1.5240398023151591, 1.9949052039556483, 2.333898480457049, 2.8419259364952576, 3.0356726646980716 ]
The following time series has an anomaly with short term disruption on its pattern. What is the likely pattern of the time series without the anomaly?
[ "Sine wave with linear trend", "Square wave with log trend", "Sawtooth wave with linear trend" ]
Sine wave with linear trend
multiple_choice
73
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Wander Anomaly" ]
Wander anomaly brings short term disruption on the pattern. You should focus on the overall pattern of the time series without the anomaly.
Anolmaly Detection
General Anomaly Detection
524
[ 0.04967141530112327, 0.03096869846781148, 0.2384583700064651, 0.523017969996691, 0.5874840309874574, 0.8391737941715411, 1.2483404894933794, 1.335461886645424, 1.2880629325867052, 1.3476262703131976, 1.0709727172380485, 0.7554046342436924, 0.37956638208515114, -0.39274681423099933, -1.0076207859190254, -1.5585433608991917, -2.2535722748772926, -2.699407811987451, -3.2751980616251597, -3.605721555183547, -3.385368539285678, -3.3831670603183457, -2.9335763286924124, -2.421385550040912, -1.4570465469106546, -0.3443834748382155, 0.6876620518511489, 2.037663583783176, 3.0966402806456634, 4.161084306288441, 4.961459617962293, 5.765991471114958, 5.81074178014032, 5.57349889622577, 5.251014281373527, 4.1699003314120375, 3.1067353606989423, 1.4155403382776999, -0.18141938901788984, -1.7756321004939057, -3.4448419738017595, -5.087736650701484, -6.455197423651023, -7.465989337003022, -8.148648025336675, -8.154000256378541, -7.698472391669515, -6.611388575886678, -5.280100559298923, -3.691219862763276, -1.3851647713201933, 0.8166452116296388, 3.0969860459753464, 5.42586005024482, 7.4135228802591655, 8.961242538992494, 9.840194680271708, 10.362040979227276, 10.257005800072749, 9.502806734575486, 7.918762688128525, 5.959859191117874, 3.4375692159039235, 0.6958265217507201, -1.9753988784415348, -4.755261676830698, -7.514164605223633, -9.632609174147973, -11.396201658762969, -12.531512064774002, -12.716946257244917, -12.098081591895838, -10.97702077255705, -8.82080836776844, -6.631944773322811, -3.217468094540197, 0.06099779805324376, 3.4520105347220573, 6.784148830079415, 9.52156350692217, 12.101350240026726, 13.854293858401046, 14.82896596642805, 14.58366237974789, 13.580359947210717, 11.745748996643043, 9.22565740126465, 5.871192162571534, 2.030710983527953, -1.8543089965316226, -5.8759917925989225, -9.51079171292644, -12.9035191079603, -15.38311903323285, -17.02544610411273, -17.766250770303063, -17.160841509902706, -15.67615571749437, -13.225506996982997, -9.919136703938838, -6.042869579105096, -1.5204866826533652, 3.071849057857101, 7.48974897437352, 11.616697836014716, 15.074346764657427, 17.737503313995383, 19.021701106988104, 19.315195465052412, 18.357377071192584, 16.073567753769588, 13.097604629112455, 9.05264381835477, 4.586797330317165, -0.7566144612343192, -5.847838562631249, -10.766565934804158, -15.20164091997521, -18.450596603575864, -20.897690756356575, -22.0619641577423, -22.0669666340101, -20.3254666205642, -17.821861925581146, -13.716978426929007, -8.752740582412937, -3.6526141192447774, 2.0961339195981066 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period decrease over time", "Period remain the same over time", "Period increase over time" ]
Period remain the same over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
525
[ -0.1462914886978079, 0.3536312666876073, 0.5870637015251255, 1.0317165661803567, 1.5999785007224654, 1.7135530317573089, 1.8107664091371654, 2.012286097154426, 2.0207719891532414, 2.0550941564975926, 2.053058061444042, 1.7897595401345756, 1.62445242966957, 1.3488855306077099, 0.9684292331554009, 0.5677755892460603, 0.20644003169865538, -0.06271207741523191, -0.4412766209199479, -1.0017703457814178, -1.2510863615508647, -1.593854702043487, -1.6783147426181944, -1.9828519520560302, -1.8244461566898402, -2.0590841021224375, -1.9252499539684125, -2.035053451645537, -1.7540239813144196, -1.4529672783854644, -1.3236163911385836, -0.880699081897832, -0.4087046919076831, -0.1595772520875178, 0.17954659231940012, 0.8271884387065543, 0.8889585853189963, 1.3452989758028602, 1.5353256101765864, 1.7319807561576563, 2.054627550787288, 2.0445056160969477, 2.1170462464418733, 1.7887384160128241, 1.930962281416322, 1.6083256919280349, 1.2326714122559908, 1.2988482298822766, 0.82093449252724, 0.40705092965333073, 0.11913223771489839, -0.37097962352253444, -0.851497409968589, -1.1376804872098403, -1.4968615531070788, -1.7372475976161417, -2.0113644021812433, -2.11414024757904, -1.9877234479052346, -2.0303895866162103, -2.0271664183631417, -1.9228634756517156, -1.63928052753405, -1.489136698995782, -0.9832836173532782, -0.5412917356956984, -0.016495607392777473, 0.02810204774961446, 0.6155221827326856, 0.8225204059002741, 1.116833311663539, 1.4096387921841733, 1.7754836418283504, 1.844776476074503, 1.9849269634929136, 2.036817487929053, 1.9683479479517674, 1.8501795625107658, 1.5091527491049326, 1.5192901843560207, 1.2223429428015913, 0.7977344277513807, 0.5442973201742672, 0.2607236645891852, -0.26812527144247944, -0.5193859777568937, -0.7874013983778583, -1.0811210112788467, -1.728664294663215, -1.9467510908162897, -2.0266800577533304, -2.0528945830834777, -1.9174059193081412, -1.9500627082121307, -1.9984851512432877, -1.7381178504767734, -1.4205058398877113, -1.2543725443970382, -0.7540559426463954, -0.4974555499908268, -0.15345286412291745, 0.3067401005244731, 0.8181305478358204, 1.16548694473397, 1.442907793582662, 1.789767472915763, 1.976602187912115, 2.038995345785852, 2.0841581011928634, 2.0757966315948146, 1.9602791093090912, 1.5998027795171514, 1.7085643995588695, 1.356009444676817, 0.8692090488638483, 0.773086285232333, 0.1884274190153032, -0.15500105868364694, -0.42840393189578907, -0.8764712897584415, -1.100823283864881, -1.5616929770212264, -1.5953791017178043, -2.0177452134880665, -1.9149063646217326, -2.307336102800425, -2.1512431498454414, -1.8994719974684058 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period remain the same over time", "Period increase over time", "Period decrease over time" ]
Period increase over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
526
[ -0.008054367303887512, 0.4585388992614994, 0.5518767595062624, 0.8902952339981791, 1.3855439400202794, 1.804046007407521, 1.859584601890262, 2.1166388772395717, 1.9892999058363012, 2.012822378581054, 2.105986413284198, 2.0799777036602136, 1.7204020955957786, 1.643688360995732, 1.427659458792754, 1.0865020908463119, 0.7888446409765165, 0.5956375399195663, 0.20979053637016648, -0.11054521054181386, -0.5044149598931902, -0.9575944289873034, -1.1349827811318887, -1.5455147816241204, -1.7125939999651796, -1.9675806313860849, -2.0537320852949517, -2.0547156272929414, -2.1210107860966834, -2.1151220053103033, -1.806015770392973, -1.769281676115657, -1.8101153090211632, -1.6131627239880664, -1.4456984798176538, -1.0460901247621204, -0.9444587412531186, -0.5406933117577769, -0.44132726873542605, -0.1519077054551802, -0.18322429145978258, -0.2127259691776862, -0.30088007374103887, -0.04397824488173929, -0.3049366946598075, -0.30372797778596694, -0.21875830892247858, -0.48078617872374635, -0.6873923217471969, -0.8408498216465436, -1.0729430905626456, -1.247975400382353, -1.717026279204711, -1.9475948551418258, -2.2516699144680175, -2.402685808304467, -2.6374215647447086, -3.003951423536769, -3.0727437897652976, -3.012743564811847, -3.248404958042901, -3.281575169838052, -3.4076763825124514, -3.5880494199853006, -3.4122036597484704, -3.1491007219088885, -3.226683666512781, -2.8900797770382027, -2.9943561470503415, -2.6851445134800764, -2.50016166548904, -2.4585638004927763, -2.0589304267549378, -2.241166376423111, -2.1429192941108512, -1.966087916243177, -1.9723399975955875, -1.9606897325278483, -1.8559466719176223, -1.6103558253841592, -1.6673501910564184, -1.428391476649313, -1.6157297129845751, -1.4850117292487992, -1.5009767253351518, -1.6052407019724435, -1.6665903860162719, -1.7823734171013865, -1.5955733361227262, -1.5836995682254473, -1.925776896064977, -1.8773086848638525, -1.9901983725476795, -1.96085274535219, -2.1499997496258714, -2.09400963642567, -2.2647470125641367, -2.1483454047618813, -1.8712091766383607, -1.6622487195721538, -1.3794729460476471, -1.2799455782471183, -1.015058598395243, -0.9616677364321219, -0.7437842549650386, -0.6336838594050955, -0.490839778101813, -0.14072214704945035, -0.2136194946735973, -0.06340368665847546, 0.17595704996360273, 0.23270593371635978, 0.39358243347547217, 0.3346095175904384, 0.26792394862322666, 0.5598274332326447, 0.4228261169382452, 0.34394588829663475, 0.34428320369097604, 0.3200364592937567, 0.22667004235000496, 0.045993655354687496, 0.2648691744016004, 0.004514768872975946, -0.08398884156954112, -0.016437489347703754, -0.426631447422485, -0.43813034274604523 ]
null
Two time series are given. One has noise and the other does not. Do they have similar pattern?
[ "Yes, they have similar pattern", "No, they have different pattern" ]
Yes, they have similar pattern
binary
83
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
527
[ -0.000550048206836588, 0.4465303906725981, 0.8250604009129524, 1.3957196933040352, 1.350976055053813, 1.8607667569424722, 2.2868727581442894, 2.5067401213358047, 2.5058746197261748, 2.4456208697025805, 2.42790376945316, 2.4714667871112406, 2.128600354605747, 1.6451652068202742, 1.2802655968598122, 0.8544528387446866, 1.0326752701624669, 0.46891204244060364, -0.15768409792178603, -0.6666625612717242, -1.1120983920962464, -1.1687129571173736, -1.3528963266698977, -2.146765716181223, -2.0262107031532595, -2.4056245482959713, -2.5352255669135246, -2.19502574640268, -2.422548356289589, -2.209776196639736, -1.996578263040128, -2.084193397575154, -1.358917966699409, -1.1421204933964137, -0.8944195546696895, -0.2750358818310572, 0.16729042362748045, 0.9137567916666477, 0.908178402324109, 1.3408752052602766, 1.87669976674409, 1.8377085896915102, 2.1781868742646115, 2.1115765284301786, 2.6860917665845445, 2.42075662234484, 2.3787698577515433, 2.3911795037488064, 1.8201181575635172, 1.596993358047914, 1.0907646925153562, 0.6920269340458348, 0.2928909043821556, -0.06321021861626239, -0.48450049235360526, -0.7798291228315782, -1.419476301708039, -1.5419533537535113, -1.8230299558715262, -2.267369914651754, -2.5201706701398896, -2.4534447277501896, -2.5445955452763713, -2.414754922931509, -2.0223478462247937, -2.1266243018006605, -2.004925364073005, -1.7329602397580903, -1.3540358130418406, -1.0677439355276594, -0.15586138559846832, -0.34551826997316015, 0.639125805321945, 0.7912318700107219, 1.2553640230307508, 1.5285507183648281, 2.2939118945932435, 2.241554083806271, 2.5595359465538743, 2.7492213352026456, 2.5311829030942805, 2.1901978853149355, 2.2396252356079542, 1.9179230347292098, 1.6833138800552352, 1.4266339545599003, 1.0348162089938824, 0.7267744530759462, 0.31825719182888473, -0.26409166957283814, -0.5931671302362096, -1.199141709289304, -1.2074706745224815, -1.918448454079876, -1.8440596166668053, -2.59134580199131, -2.512647767678355, -2.5665784221023085, -2.4297767388985214, -2.22024551252868, -2.474286462917851, -2.2078564229838644, -1.9660361792335939, -1.0680073230544032, -0.8770268423758615, -0.7284761353722553, -0.15918768661098387, 0.609035771703892, 0.7485928745249346, 1.1430238472123995, 1.4223841085575035, 1.69218675644036, 2.3927350466759334, 2.6819383618730246, 2.2674008913977497, 2.7852160276292017, 2.3677924092901628, 2.455522568789172, 2.4405009661494605, 1.8712357278670413, 1.5167023963824509, 1.3747918109927624, 0.5866777409725803, 0.606744820751838, -0.03730650465980652, -0.6225481917091285, -1.0530188389767317, -1.604752621772156 ]
[ 0, 0.5482888036208319, 1.0815282200022245, 1.585081936282306, 2.0451284503218528, 2.4490404421898107, 2.7857313678310542, 3.04595976164111, 3.2225828954750977, 3.3107528316787067, 3.3080494888932757, 3.2145470682554156, 3.03281201673014, 2.7678325834797897, 2.426881902799902, 2.0193183617106296, 1.5563287316981382, 1.0506211151053706, 0.5160761341551037, -0.03263406325890105, -0.5804485235140664, -1.1123308791097228, -1.6136820656799296, -2.0707410359448257, -2.4709624718359904, -2.803361127383644, -3.0588133508696247, -3.230307510090192, -3.3131364470761033, -3.305026679788146, -3.2062008044703663, -3.0193713858461586, -2.749666502858638, -2.4044889935698697, -1.9933132626536767, -1.5274252286937622, -1.0196125491928443, -0.4838136259720846, 0.06526497496758463, 0.6125521880930705, 1.143026117740764, 1.6421263579075167, 2.096153645110367, 2.4926458746751505, 2.8207201595891482, 3.0713715431135618, 3.237720166116031, 3.315200104893977, 3.301684696283284, 3.1975449101387787, 3.0056391669833142, 2.731234880309829, 2.3818638770369778, 1.9671156645261547, 1.4983742185501896, 0.9885055168366609, 0.4515043947400201, -0.09788958388018752, -0.6445966970295123, -1.1736109715821017, -1.6704120660311492, -2.1213638236614956, -2.51408855668877, -2.8378067880439524, -3.083633125598002, -3.2448201476945364, -3.3169436058399135, -3.298023861122101, -3.1885802211812497, -2.991616686295114, -2.712539495819617, -2.359008738163319, -1.940728097293303, -1.469178506793555, -0.957303022117983, -0.41915156063931946, 0.13050473935951687, 0.6765789557078513, 1.204082486980617, 1.6985364584317553, 2.1463691369904616, 2.5352884471053168, 2.854619362651117, 3.095596914192344, 3.2516067691633643, 3.3183667815398206, 3.294044527840279, 3.1793076033394234, 2.977305297966344, 2.693582154846381, 2.335925784124788, 1.9141531092661597, 1.4398409129241707, 0.9260080783370042, 0.3867582480612132, -0.16310729168133392, -0.7084958755242198, -1.2344377212285569, -1.726496819068904, -2.1711671702738258, -2.5562434986002334, -2.871156259779767, -3.1072617535246563, -3.258079375122098, -3.319469494554187, -3.289747080731632, -3.16972795209237, -2.9627063840822996, -2.6743646881462833, -2.312617244097942, -1.8873932668554203, -1.4103642701442636, -0.8946237077219205, -0.35432758530606223, 0.19569409233849663, 0.7403443741846665, 1.2646737428477242, 1.7542904477431256, 2.1957555287056807, 2.5769516874936325, 2.887415882421835, 3.118626517093271, 3.264237340495575, 3.320251638391358, 3.2851319348109973, 3.1598421925701192, 2.9478213544953156, 2.6548889515964302 ]
Seasonal stationarity refers to a time series where statistical properties remain constant within seasons but may vary between seasons. Does the time series exhibit seasonal stationarity?
[ "Yes", "No" ]
Yes
binary
37
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Sine Wave", "Linear Trend", "Gaussian White Noise" ]
Determine if the statistical properties of the series are constant within seasons across years.
Pattern Recognition
Stationarity Detection
528
[ 0.02091687329101105, -0.18389158520820323, 0.6531233703592491, 1.0776337717381215, 1.3538565341733224, 1.9212225778157794, 2.7086889841537025, 2.430084636883548, 2.788679496967774, 2.220800715945663, 2.955086734184004, 3.8323115256980658, 3.3839363205500996, 2.682889590019136, 3.5770159931969387, 2.565571326763545, 2.725785055234415, 2.1665554618818614, 1.9653219964478814, 0.9995276841733174, 1.7300967390232806, 0.7120732586183606, 0.6658188289443848, 0.3613138481172107, -0.1902447080881146, -0.5121845431454036, -0.42094095229709166, -0.9638443657523604, -1.604794601311239, -2.002283358927196, -2.1738265876484553, -2.638498219246007, -2.4966014742923317, -2.51709103538624, -2.864582997071171, -3.0697495420145136, -3.0583498294199774, -2.733110147134949, -3.107602623468797, -2.9137282992033104, -2.887992795423115, -2.1249938802990775, -1.6599671973794639, -1.1640178645944386, -0.910046928092588, -1.2073157126885066, -0.47514639417360777, -0.49742959671383996, 0.7771728196989958, 0.911480750706031, 0.9222391832546255, 1.0532660975457606, 0.49977580392995513, 1.3500188915833309, 1.7043236068664527, 2.007771219630296, 3.482452029608856, 2.409989364803973, 2.6124846334455807, 2.5634912683963846, 3.697282669723563, 2.935234509243314, 3.00887387608678, 2.754315047221525, 1.9403827101367757, 2.791214027607413, 2.0949934074684715, 1.5756074299175162, 1.7936995874731592, 0.7546201591214644, 0.3966920776366228, -0.13398852976768666, 0.08341159946631105, -0.2826940953438658, -1.074907655864778, -1.6052948189856797, -1.7284616725047663, -2.339221368055528, -1.868287492575247, -3.064181733057374, -2.1687118941553076, -2.456478348614505, -3.226913720969618, -3.0834921451428623, -2.990742462322012, -2.6734660315969263, -2.305391277464908, -2.203156085743297, -2.5915163165305892, -1.7598827793590248, -1.3512125719557315, -1.6222540186351118, -1.2261819620084915, -0.3383351579845977, -0.1300864050257584, 0.5009106671729606, 1.2456845631172944, 0.9085603541144172, 1.2366125381047683, 1.950058790892438, 2.3885308378145607, 1.7528777726971376, 2.41925315833101, 2.328513449802878, 2.8919939259234484, 3.251574316125393, 2.8127458522046314, 3.283327524426993, 2.6671599593257334, 2.737677580699529, 2.948747922049907, 2.3372773397993716, 1.8224600658075165, 2.371883383276168, 1.6664156080575794, 1.9481224710416918, 1.2778338339827513, 0.19097144804892288, 0.6885218426714798, 0.6138225984553702, -0.22019203885578834, -0.4890403321813263, -1.160904438357278, -1.7032902160196013, -1.6853601793489705, -1.8563591806780215, -2.1604820589077933, -2.7421912204473444 ]
null
What type of noise is present in the given time series?
[ "Gaussian White Noise", "Red Noise", "No significant noise" ]
Red Noise
multiple_choice
62
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
Observe the pattern of fluctuations in the time series.
Noise Understanding
Signal to Noise Ratio Understanding
529
[ 3.1048615846287304, 2.8704355284745597, 2.3907048666771704, 2.411389868405772, 2.527173251015046, 2.8349661756556848, 2.632331223190398, 2.3233302307700634, 2.5923754959800833, 3.651629055948476, 3.299538394097158, 2.644504758572312, 2.5523924679981445, 2.2518108180890937, 2.035292840131469, 1.9855637016810497, 1.761727021213624, 1.6418468032107505, 1.2919487436548485, 1.329101500771863, 1.1448479547301382, 1.386059233244695, 0.9924610776828386, 0.8964586929510396, 0.783067174328193, 1.1640402659819522, 0.7323667331133561, 0.6399048155636302, 0.8121044095020097, 0.7667503352036946, 0.9658550288656012, 0.4277120326056042, 0.590524625089588, 0.5873579374863097, 0.8021138478237775, 0.7383596247793539, 0.5684995509444701, 0.7870516472999481, 0.5490323777857924, 0.10794379927856351, -0.23126439937949567, -0.19307173823240031, -0.42650755678175417, -0.5435850558448313, -0.09026542278430272, -0.4266350518406869, -0.796383676949132, -0.7666993005175411, -1.0278669361334012, -1.2544053893727822, -1.35644063985408, -1.3756973558969592, -1.6431763319040478, -1.4927789481376181, -1.7409957958275777, -2.0066087086312763, -2.513094087925049, -3.362857024828969, -3.0847811654322075, -3.6321785848234693, -3.544483198445537, -3.07434366459076, -2.764318774946584, -2.855535872077532, -2.8392568865207064, -1.831039067046291, -2.691550984759868, -2.74643186945752, -2.2948408605183186, -2.113293646843629, -1.935034656778188, -1.964873795465518, -2.524161424635661, -1.786521993699068, -1.6438219068769993, -1.5628038699836233, -1.1506020966600339, -1.0203760625919942, -0.8267899647882344, -0.7851435418647851, -0.3218465252646817, -0.7469631902254197, -0.4543920984744283, -0.5874942936051916, -0.22732357779082113, -0.025311348281758142, -0.7728538563804519, -0.27548657165834045, -0.2311365872112084, 0.09569426976569628, 0.6129928264173944, 0.6399620992831273, 0.6804460924884015, 0.28252307837041946, 0.4476439470077115, 0.8501927178486839, 0.654817253120345, 1.0223838109747723, 1.109751181302588, 1.0625482428248432, 1.2518576450591516, 0.17206029706152423, 0.46478761786517564, -0.13417268024998233, -0.4211644962592853, -0.3486395909149298, -0.8380277414767663, -0.41425908928736055, -0.18269074799106416, -0.2586378547828175, 0.4846015492447776, 0.6795179070686361, 0.7429274750661795, 0.11585332187120408, 0.24359521568265674, -0.3197990143175477, -0.17938040863349447, -0.12672035995189093, -0.21917440363861576, 0.41437055331673267, 0.18652325298145883, -0.33871192540830175, -0.11183322696867676, -0.18547206732600835, 0.14120711242370518, 0.2815678004157095, -0.3424397304883041, 0.03728994335866277 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Period increase over time", "Period remain the same over time", "Period decrease over time" ]
Period remain the same over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Period" ]
Check the time interval between two peaks, and see how it changes over time.
Pattern Recognition
Cycle Recognition
530
[ 0.14581924771811205, 0.5040180054503791, 1.301655578523892, 1.4706698988512608, 1.9045447600506145, 2.1307762329947377, 2.1845522527540884, 1.9328763050855868, 1.8771117118849154, 1.6330087129310882, 1.1712116081932518, 0.7344090441995837, 0.19226236065795743, -0.4693187915822219, -1.0741085347054624, -1.2911707209038001, -1.9544293159596877, -2.1314742303791405, -2.2735092307445735, -2.0862674009991653, -1.8592592589014285, -1.7072231402622386, -1.254448198728816, -0.7379694620623838, -0.052428197289272616, 0.15316982928366396, 0.9465314405926707, 1.3938930096521216, 1.7139445942540295, 2.063089029880691, 2.25022870432586, 2.2367864359566507, 2.253136372127063, 1.7746429888338513, 1.3731278406740006, 0.8705714407311756, 0.4037193931078143, -0.21801663174630456, -0.7625713974349132, -1.260868904096007, -1.6916942688869487, -2.0441274408690018, -2.115827636859421, -2.218385280008465, -2.016494929728901, -1.8178878361308586, -1.4982395125660248, -0.8375654467861645, -0.47326258464397186, 0.16077064166680544, 0.5835217291807243, 0.9629466882360113, 1.5440031560707275, 1.7167132446443536, 2.109356623188053, 2.3419767462342227, 2.022048171119676, 1.6802694837610659, 1.6946341562011251, 1.0490554304572755, 0.5747608427308637, 0.09694001097241767, -0.4889865176363608, -0.9900096029354799, -1.428613385550492, -2.046820666591422, -2.2438638352030664, -2.077033001314641, -2.219503659405176, -2.014712546500767, -1.751560965503326, -1.236534039099492, -0.7229434902840093, -0.22840733330880794, 0.32225198319330994, 0.9934822648968775, 1.3515576186202067, 1.7480465507894605, 1.8472552881859854, 2.380817030691732, 2.25822337029561, 1.9490466450253363, 1.6114510911419753, 1.2932017995670366, 0.7960944742340752, 0.1232339058004599, -0.567663965352408, -0.9080654184374655, -1.4982888968759769, -1.722905096597479, -2.0057000540876424, -2.270994613570433, -2.2341046862061664, -1.8676634430808525, -1.6951283489282924, -1.429766117106415, -0.6760369716167908, -0.48598587346187644, 0.11550891188198535, 0.7358345733483574, 1.094691264803099, 1.84552971971633, 1.9937390912797839, 2.0752216870400098, 2.235877464002667, 2.0982464207551454, 1.8084565302892732, 1.3522107048982739, 0.8665426311849787, 0.6994002932789714, -0.21566469651284464, -0.4664102318266915, -1.2345877175400155, -1.509249163903068, -1.8752225157070779, -2.0621397214659587, -2.122167576205693, -2.2785915439075946, -1.9676480824284117, -1.694232093699128, -1.0933144185077714, -0.7261263163159282, -0.23432751315091685, 0.4999847599709826, 0.8282786414438392, 1.5313985383235722, 1.7369224687548663, 2.0130824732196984 ]
null
Is the given time series a white noise process?
[ "Yes", "No" ]
Yes
binary
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is uncorrelated over time. Does the time series seem to have these properties?
Noise Understanding
White Noise Recognition
531
[ -1.8516089497783748, 0.16129512097959844, -1.3915681776609121, 0.5731073153557599, -1.4483036118598016, 1.792660750794433, -0.9829379463967747, -0.5185618364940872, 1.1579258596512887, -1.6479877427852407, 0.2341100382004287, 1.6113130487225962, -1.8213369437812243, 0.0821649744879604, 0.43407418207746523, 0.956955467016808, -1.610566283838725, -1.5683074533518169, 0.6580821430903669, 0.3031004601396947, 0.3132569629517145, 0.3850696853902544, -0.8201121750638545, 0.35018887146365535, 0.5169403959427421, -0.9972165942350812, 2.494579473790366, 0.38414511765131887, -1.471781235639608, 0.8615975804281994, -1.1636407697545101, 0.9000957106748899, 1.395798640989696, -1.052745567276499, 1.11898023440231, 0.5896660423337606, 1.0408317046881417, 2.249911356203799, -0.21007522562483427, -0.8908606873828534, -1.006320049805344, -0.9345255710004682, -0.1771714984346523, 0.36110725296235346, 0.41303825790685017, 1.0724311661468748, 0.013807209493004262, 1.7889639009108045, -0.19582851848597868, 3.2667844309258673, 0.8197110719910312, -1.0682628883300491, -1.3311447281621576, 0.6997950630783896, -0.19068555117082714, 0.9543569344539495, 0.7091739115149682, -0.08694727914554737, -0.9671764961285769, -1.8832252147707556, -0.5135356749462916, 1.0341015818248296, 0.27147128782813673, -1.463644856781527, 0.12992565952428317, 0.6803649746235818, -1.1812912132579156, 0.06654030187452639, 0.18698268902197468, -1.3183396185843372, 0.4998773678843672, 0.7485038801955368, 1.3230183867695309, 1.198754740577861, -1.676891185363992, -1.21439165140177, 0.7272438393473093, 0.6134985930772476, 0.5471973311143359, 4.678583079571454, 0.7393190272901544, 1.332079783026195, 1.0842326654834926, 0.8208225842169647, -0.3609819738914707, 0.8772947618366631, -0.9920345866331508, -0.26635230966108825, -0.7382607899893919, -0.04063914623234516, 2.7582807191235217, -2.304443502621004, 0.8701787525955587, -1.8243265779659312, -0.49126352166395104, 1.3154623308348097, 0.07669333949515471, -1.4180078035458825, -0.8764507211976049, 0.8020759877004711, -0.8607449355193656, 0.18194008544825596, 0.10765518476830757, -0.6434356331009606, 2.610517116734552, 0.8152618004386498, -2.407120539965978, 0.18785500805444166, -0.7867548069611525, 1.0435265734898682, -0.9592447961617996, -0.2175888343519472, 0.6198972424677697, 1.1083557545925695, -1.3224839655866465, -0.3130664384932823, -0.3653957676191101, -0.8755581824483285, 2.245846946697509, 0.5135039584114756, -1.3226982206238778, 1.0414368461077674, 2.5107809656833115, 1.2024524909494085, -2.070118051877715, -0.6446468528198419, 1.4731346783949666, -0.8502256652677275 ]
null
Is the noise in the time series more likely to be additive or multiplicative to the signal?
[ "Additive", "Multiplicative" ]
Additive
binary
57
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Additive Composition", "Multiplicative Composition", "Gaussian White Noise" ]
Additive noise is added to the signal, while multiplicative noise is multiplied to the signal. When a trend component is added with a white noise, the general trend still remains. When a trend component is multiplied with a white noise, the noise is amplified. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
532
[ 0.884720991686923, 0.23726389823116648, 0.20972323175052904, -0.12246674138701569, -0.21235539713373014, 0.32232285282718354, -0.13684828903468205, 0.9933030529835949, 0.21187367461986828, 0.14225262734292604, 1.7396276319123865, 1.3297090314334081, 0.15472248677190215, 0.3722207023378395, 0.7755243707665527, 0.8546925209108792, 0.7692025447137272, 1.722308488800179, 1.2258615168606817, 1.1654054095989559, 0.9443458148350072, 0.7865918705702734, 1.0607809623208126, 0.9984144665605763, 0.8704368584707681, 2.0923725373843185, 2.081296551052074, 1.496270121545166, 2.3981809833825913, 2.099583974876474, 1.3329901987032273, 1.2080222832060312, 2.1454573961953525, 2.2921009743235627, 1.476877716124683, 1.9197535514224633, 2.6661061259399137, 3.084496388147353, 2.409321322786294, 2.4576560038048942, 2.268254079629056, 3.2921976316245516, 2.8924346454014125, 2.2616667734070037, 3.1292771182255343, 2.4558015142251373, 2.3936487341008026, 2.7062838001382374, 2.563528942787499, 2.603892721134015, 2.42091299809298, 2.8307326090390346, 2.9752127629825256, 2.6315244586841473, 3.6322434403428447, 2.5502157596424606, 3.2997653266190112, 3.8792075687765015, 4.175158107850553, 3.390619619496157, 4.240814108315892, 3.6180619104424516, 4.981472531043073, 3.2007258179006675, 3.4876855065245085, 4.1294693181151265, 3.486085898600778, 3.8228984202617387, 4.461174068029843, 4.393612496811114, 4.343683737554542, 4.411141629155481, 3.264601655701944, 4.6217066374722355, 4.294748739246672, 4.489166797867891, 3.94596313226154, 5.131173002322965, 5.133258763959746, 4.343887711046659, 5.073098902338466, 5.86322941527704, 5.178205347574253, 4.171678214520686, 4.95026953388901, 5.35859079910413, 6.407756374835273, 4.820309940565723, 5.409374333358278, 5.015236532140377, 6.043312065421044, 5.4876674126825415, 4.376512245525272, 5.59890163246464, 5.800694263146366, 6.111088044539875, 6.071046084263432, 6.369278605397259, 6.044235301052151, 6.209802397629977, 6.236171897156715, 6.086455235021691, 6.636598706745603, 6.8370885534978125, 6.4576304646843194, 6.297688745540014, 6.0668577874954295, 6.842319161536164, 6.230653838184838, 6.86992903776816, 6.918181250618618, 7.444817547485277, 7.66595030755524, 5.53274653037188, 7.002360229645282, 6.122312170027748, 7.8032150003269924, 7.277730267323585, 7.922904951285032, 7.541916471205203, 6.806221421677368, 7.058361593130961, 7.534117952858581, 7.9456040941111485, 7.753511741762223, 7.875708313999786, 7.672608595271203, 8.472851844578233 ]
null
Does the trend of the time series change direction?
[ "No", "Yes" ]
No
binary
12
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the overall direction of the time series changes at any point.
Pattern Recognition
Trend Recognition
533
[ 0.030093810371261603, -0.018345484883298718, 0.0450678275145372, -0.033985704076798774, 0.051063671437543215, 0.0005521045749657238, 0.006032841411579416, -0.035156551791040436, 0.004598679176852329, -0.008695598722352798, 0.004720224695092087, 0.01913849735257083, 0.049962643589787345, 0.032330967785173796, 0.03702646237486715, 0.002247338592657546, 0.009954550835463961, 0.08238312346998311, 0.01791195825056816, 0.08277605396867546, 0.03497044989038011, 0.04348076854285643, 0.0735952511223461, 0.08095484337166861, 0.04671379799688038, 0.041496352960559584, 0.05229052350483435, 0.06470108755707782, 0.08129915509723229, 0.06007297678253152, 0.0782810019327346, 0.10711918890847852, 0.07617773701729219, 0.07641625967330373, 0.030414812684282963, 0.003287002542746109, 0.08463389491577028, 0.07401311266373238, 0.06505300070577062, 0.0870333259898207, 0.08111992238220032, 0.11438830972602296, 0.08910257911671363, 0.0692954382737918, 0.1169776344020373, 0.0873426503379712, 0.1089384067859224, 0.08464322471952798, 0.08218336932085026, 0.10352513010928582, 0.1037194630215442, 0.11805010912101531, 0.10046348026514475, 0.06136424922809563, 0.10028891409462459, 0.1345658737142149, 0.10797965297207532, 0.11138633065116103, 0.1458252452703416, 0.10329562796902898, 0.08354636661905246, 0.12190872264589026, 0.11548040547229665, 0.10488923286027907, 0.12772442530713302, 0.14730390602339513, 0.1362211132607449, 0.1465937459772645, 0.18821892383805322, 0.13366426155739836, 0.15204483727227963, 0.13343175790269635, 0.12664622332010692, 0.13557939172727707, 0.14043443130710012, 0.164513429279623, 0.2188263428397339, 0.14040648123912156, 0.15033660731110748, 0.1616869390547649, 0.17580550210948803, 0.17440042914479298, 0.20326675408429207, 0.1079000419873505, 0.111003938826233, 0.16272905520145717, 0.20663226234221996, 0.1387730810063129, 0.10297540921920978, 0.19901971832083826, 0.19248690666358298, 0.15952834255396675, 0.164344511306544, 0.16682695003855696, 0.19726184220688012, 0.17998040264712561, 0.2114682920323022, 0.1256020794389367, 0.1801296567596635, 0.1751282826827867, 0.2000338910699606, 0.19470414637458092, 0.23185121289650387, 0.16414348577472015, 0.216230363033399, 0.23176490201573846, 0.2679251348144332, 0.20858797109376187, 0.2318264181748162, 0.17800609811140852, 0.16463089997691985, 0.2516924386092594, 0.23143100042213732, 0.2645914363771951, 0.1996478809885896, 0.25143216796721296, 0.2889212383032685, 0.25293639308337634, 0.2512457235575428, 0.24627524789518196, 0.20686816717976125, 0.28578210795893577, 0.23621290790746335, 0.2675684956995402, 0.21534483437884488, 0.22748484132404956, 0.2982083518047638, 0.2534719143052524 ]
null
Despite the noise, does the given two time series have similar pattern?
[ "Yes, they have similar shape", "No, they have different shape" ]
Yes, they have similar shape
binary
79
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
534
[ -0.017844235118733807, 0.547668721197986, 0.893216814081952, 1.2868951922778833, 1.7205479980131038, 1.788382985943284, 1.8632831842477386, 1.3410135648964272, 1.1289740928113774, 0.6917238355350727, 0.3717582078656071, -0.5266738598529429, -0.8084623231045028, -1.2438956713384017, -1.286567704860549, -1.9917993102095428, -1.9336326783584044, -1.8376590911863235, -1.6821583599620697, -0.5707401227998685, -0.6634986914005087, -0.03224262652667392, 0.928480248234028, 0.7885417422274278, 1.6607298987468093, 1.4599547337409946, 2.066615439768826, 1.2928436174753573, 1.1287154721353758, 0.9885499914243381, 0.8102679665153569, 0.07210063921309508, -0.533577935290965, -0.6995585145099659, -0.9519995701243982, -1.537169460609915, -1.9328298234132881, -1.8641709243292932, -1.8486797698975461, -1.2366679561730538, -1.1343564145936502, -0.1761916749178053, 0.6624699635742771, 0.9290381779793497, 1.14445827513131, 1.6838939387665761, 2.0993596221227593, 2.124743676551654, 1.4807135266591231, 1.5015145551250246, 0.9586271466594779, 0.6523535997329544, 0.023914548325433882, -1.0657959186135564, -1.1467036124343184, -1.424739805859306, -2.0055693752871475, -1.7005227090121375, -2.054436595104849, -1.6832017053287716, -0.8906580341032786, -0.8657469669219895, -0.041645833543702215, 0.039617145308190826, 1.3178882466806652, 1.270058313331347, 1.6584037114765307, 1.834516072495205, 1.916104667471554, 1.3235255343803811, 1.3111518223434797, 0.7460539211771917, 0.025699920280942756, 0.013790454139979008, -0.784623242264363, -1.1313258411228246, -1.502266104277715, -1.823799043209703, -1.4207364668790032, -1.7190734671205667, -1.7597003382313443, -1.1350552110377556, -0.4660123017173553, 0.08101901049380297, 0.29972133955973523, 1.1989356518317298, 1.0641511635535004, 1.9204693612107302, 1.5489353128329293, 1.7239506183261302, 1.7777036971102875, 1.2420759414907, 0.9241399485859244, 0.35802811663128997, -0.0562504649782839, -0.6203673949039487, -1.3671684596816251, -1.477426345378238, -2.0911294890682024, -1.816889510481704, -1.4970145482897426, -1.3384010653880936, -0.8562199179416017, -0.48263773870100946, 0.33138577974916783, 0.6254483497042894, 1.026091587402467, 1.6724115967525583, 1.4541106254670613, 1.9176747845874673, 1.5261050028895364, 1.7496613543226303, 1.0655463649391455, 0.6668309146076189, 0.18627500256365098, -0.8276799858498387, -1.0772135193008892, -1.1576582229754777, -1.4878946416012195, -1.7489106721945629, -2.0553738898656437, -1.4860602292462266, -1.1324477179702486, -0.8217931770760359, -0.06708305290568761, 0.09940809321589111, 0.6604757498101343, 0.7225781064227041 ]
[ 0.1839655020295327, 0.5390341447928549, 0.6052522008050859, 1.0336862979271941, 1.6229415490708579, 2.327095643541573, 2.4295289575263794, 2.5928643944697756, 2.7537519215836888, 2.8782718631178166, 2.7644666717807516, 2.9003031236268946, 2.846294248270982, 3.0454732748384976, 2.6577227001552597, 2.246043394050013, 2.5381781191683093, 1.5609779616777206, 1.505911657947354, 1.1463042160180903, 0.03885471970667276, -0.10967715406928481, -0.7024424333435033, -1.1794698494489924, -1.3850902094899449, -2.022955431061945, -2.3563146023152743, -2.5977911662137183, -2.887171437959226, -3.2311179800532432, -2.952512030293622, -2.9460132429613384, -3.058750243224116, -3.1029143241939288, -2.9994382803656277, -2.7644501464264764, -1.857492882177021, -1.793305017025896, -1.7554337195170715, -1.124656622840211, -0.7737766731553208, -0.11212275420975075, 0.3574456523334308, 0.9373997032875891, 1.0059936230089699, 1.6255442293402524, 1.6466319079275702, 2.090897625453316, 2.81156590709001, 2.6766486878272584, 2.864988924321051, 3.12843532144702, 3.294278763971122, 2.8961342486332793, 2.293925321116979, 2.629351622857922, 2.7936283272568687, 2.3117793254718406, 2.147204715296402, 1.2522329871248845, 0.7130209486692329, 0.6718754396055399, 0.1525673012816097, -0.31152402992474537, -0.6546992135930082, -1.2063579775255844, -1.6294086612844723, -1.9481937756710601, -2.3234827739805404, -2.529734715530931, -2.714914722712061, -2.7588803705564127, -3.2734567101841083, -3.053911903206328, -3.1583537369838135, -3.114629912398729, -2.8819426803939137, -2.3783167569916586, -2.0701958524807487, -1.7009755607972177, -1.4126229147466298, -0.921901733286633, -0.29300981796916437, -0.2779586011983947, 0.5008725947361672, 0.978601568253333, 1.553937676445642, 1.54375609749426, 2.481822118646537, 2.5445211608058522, 2.816815349603925, 2.8816384218389848, 3.2001008877348394, 3.1618456204606513, 3.381617369867909, 2.76718083582355, 2.9362716547277317, 2.7621059980158518, 2.3609840968564346, 1.980256085811824, 1.6043235818316786, 1.2891643517150289, 0.44084193874514, 0.5260476169510739, -0.24039815527990432, -0.592921279024795, -1.0050070719058422, -1.6188364074940018, -1.9404649679329238, -2.6780474060003345, -2.429306796780455, -2.60546106092984, -3.3428001383400545, -3.1962616750040302, -3.401960470320323, -3.1602804665161806, -2.892189031769968, -2.6524311753338896, -2.38823137324957, -2.0533690848761763, -2.0098076969051624, -1.799554728803209, -1.1619594088494973, -0.5551801280557401, -0.45446266568739724, 0.6006263159489985, 0.91963487625511, 1.1532533570433336 ]
The given time series is a sine wave. What is the most likely amplitude of the sine wave?
[ "17.15", "7.4", "1.06" ]
1.06
multiple-choice
21
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
535
[ 0.03367160309680633, 0.0679228701204665, 0.5540884632760981, 0.4507231839778527, 0.7133458725237315, 0.9031506875619136, 1.0118005241105217, 1.0920598765557092, 0.8919637106032599, 0.960698753079696, 1.0316619222971772, 0.9974325630154848, 0.9741933830935688, 0.6675751264231056, 0.4746815397431775, 0.3376057535919447, 0.43208520844503595, 0.16307301492584353, -0.19747102836084326, -0.23949409595045232, -0.6002425885360194, -0.6042153933954635, -0.9705921594932425, -0.9019493067777135, -0.9088701458517643, -1.0825461445770401, -0.9921338267396552, -1.077629282312553, -0.9246041091688862, -0.9043320393621764, -0.6465547417501176, -0.7025829583633141, -0.5058789799497473, -0.08833510796718713, -0.2720059142586247, 0.10356871516628141, 0.3415243941045474, 0.5670766876907986, 0.6420712875361716, 0.7120434132950216, 1.0541531257808965, 1.1122824169067451, 1.0104365099692887, 0.8752854370004937, 1.055332299719065, 0.9786307665343994, 0.7970385205696378, 0.5423428753849517, 0.5598683547316327, 0.4930197976726106, 0.323353424963541, 0.03466424537205753, -0.21713913570642507, -0.26998989548856406, -0.6341778233325077, -0.8154104944105494, -0.8252592508420085, -0.7706653840433025, -0.8445476943640747, -1.1784664355126955, -1.098795030197269, -0.784411943039906, -1.034648633649135, -0.7092058307978951, -0.649516503477141, -0.47872622269970944, -0.4728934231358238, -0.2859581634026752, -0.14316264171738596, 0.22177360771070856, 0.16743693761138378, 0.49275842168413425, 0.8333550771211155, 0.8675366948815216, 1.019218138429954, 0.8343720062681399, 0.9454442412684458, 1.1740410468293874, 1.0433094016551943, 0.8670467527322271, 0.9411211236707157, 0.7029163588193312, 0.8622652351718753, 0.5000894221663904, 0.16472921988912953, 0.15321342915741548, 0.03250928815062773, -0.3192844252671086, -0.5744359939603009, -0.6553500422142094, -0.8609089222101173, -0.938290143995698, -1.1333425847998604, -0.9553359402026347, -1.170948830718697, -0.9726877525239368, -1.0064773073840272, -0.8633614803259697, -0.8127823185497712, -0.5994923084195748, -0.4087329597716788, -0.3046959616610903, -0.2510662714903117, 0.14972653604978187, 0.3453245978441164, 0.3428371663430686, 0.5514482256046509, 0.7562743298338401, 0.6763378998965428, 1.0607792141828694, 0.9918231126497252, 1.0851128064653388, 0.9298923440315319, 1.1827239921029657, 0.750627020059109, 0.7243876708523773, 0.7495328802942407, 0.34879890584919254, 0.29128954602215223, 0.15378479282727098, -0.2537118136416062, -0.36061330079900633, -0.45548936538279683, -0.5938991226770909, -0.8645883521340043, -0.7149951145688518, -0.9372739495081134, -0.960726269909255 ]
null
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "53.55", "36.92", "12.92" ]
36.92
multiple-choice
26
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
536
[ -1.258954898259781, -1.0928081290916276, -1.2265181200027306, -1.0690058838257033, -0.903425556088734, -0.8875504426005681, -0.8124785408152869, -0.6756012295091021, -0.758397309420237, -0.71082370143137, -0.5229177192117681, -0.5268188606919694, -0.33102290450694755, -0.3376334667510723, -0.36831342767746283, -0.20350750615318133, -0.25898342444240746, -0.005388160370307121, -0.17116378704668678, 0.15939042184188829, 0.1379039963548684, 0.15799269908828467, 0.3194146619580809, 0.3628463620950701, 0.5133843170587821, 0.5810847731424639, 0.552840094537887, 0.49906643213124197, 0.6007250517049167, 0.7163437139825174, 0.9003130228173325, 0.8151346580582172, 0.8921117029630923, 1.1828732687469898, 1.056240805496616, 1.071829918421869, 1.2816001611020857, -1.2667107613119748, -1.3314247985452314, -1.0197410231069963, -1.12990391264352, -0.9822089699204936, -0.9247489903240457, -0.8262925107841823, -0.999777584573494, -0.7455476743828097, -0.5309215696771747, -0.4482282728854383, -0.6052694122244946, -0.3454480989751397, -0.44501844787473843, -0.33769624755676697, -0.2638090074498227, -0.15209774901921538, 0.005790976453471208, 0.0007452352414374502, 0.030306056420283247, 0.2082828065706304, 0.09991799505757856, 0.24109484054829622, 0.4170271585469854, 0.43901210770243104, 0.4080835395930238, 0.3720507114916297, 0.5544322072311376, 2.9555019418182984, 3.0921193255394805, 3.231264301932264, 3.1730453266387824, 2.9110040642073804, 3.1334146124426288, 3.0814524705483377, 2.985997721936052, 3.1468715915888072, 3.0641956771295247, 3.0648160581446473, 3.125773973851269, -2.129265138795432, -2.0571031023186275, -2.1260091746682774, -2.120522831767538, -1.967383708775731, -1.9572095220672563, -2.2375421104195463, -1.9919694013206286, -1.9268175852426732, -1.910939003964926, -2.014638713116772, -2.1724164714796736, 3.1763675460433505, 3.0264442264870057, 3.079072945392932, 3.1516776777130793, 3.0328935273467232, 2.9987294313368187, 3.1599467938576797, 3.300091882439829, 3.2376928950565436, 3.1840880805136065, 3.2112880055675705, 3.177141411726789, 3.1583594849495364, -1.976814901745419, -2.203512994910686, -2.0467281557609924, -2.074771506329668, -2.0587864025908273, -2.1128139071799628, -2.0146279012278607, -2.1484694866740446, -2.120062178644487, -2.132064677070494, -1.9802820219782968, -2.067849036026203, 3.067286228028921, 3.0760264925069793, 3.1137575236766377, 3.2755869538955826, 2.98971742837393, 3.1809204617765756, 3.160555695811698, 3.0250729221639197, 3.260056791024066, 3.1672975070966647, 3.0625961316856216, 2.927428129413971, 3.1362841454585086, -2.071151244180882 ]
null
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "2.89", "7.59", "6.87" ]
7.59
multiple-choice
24
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
537
[ -7.64342342776473, -7.235772590768415, -6.9662043555658935, -6.5388653802415435, -6.324527486696779, -6.007674758536582, -5.745820839023942, -5.40190886329445, -5.052188807152924, -4.940740506427578, -4.591296892492275, -4.068906623999219, -3.8129011727084827, -3.535140733276331, -3.2016536894543117, -2.8554935953444702, -2.6309824170313605, -2.341591604660443, -1.9309312897302293, -1.7351077761212879, -1.2831999059081245, -1.1810382250231428, -0.5946189839865804, -0.33702948259762755, -0.04544094052733133, 0.34047050131604545, 0.7219941642479665, 0.970129043183733, 0.9978499304289684, 1.3672249737687774, 1.7459461295529928, 2.124282409223857, 2.486684523129899, 2.6755895566478527, 3.08008593129112, 3.299116278488295, 3.6267481083046453, 3.860479095799229, 4.222067197753176, 4.4924673786828455, 4.843293830826958, 5.3594906526656905, 5.472431901001923, 6.14385531324907, 6.243194213733634, 6.525591352895244, 6.73451727938785, 7.203629362227083, 7.38927990854262, -7.405573048656524, -6.8485202594139665, -6.800889386333099, -6.363110746851852, -6.235110405112796, -5.855046294769689, -5.3612220652762295, -5.287753517738343, -4.730566639279661, -4.527790984653593, -4.341567538908355, -3.9088347705331623, -3.5615747825958284, -3.2834039144565694, -3.1893620657871207, -2.791807994500349, -2.430600823592799, -2.10004698606744, -1.7172911165221545, -1.448342909303684, -1.2864021283878058, -0.8016025905359871, -0.46531848422798733, -0.1571526970830527, 0.20819164755951935, 0.4967511073391596, 0.7725222166873258, 1.0328329544988322, 1.1869987491733107, 1.7093019813183814, 2.0003542450016467, 2.319988676885086, 2.4784012524637307, 2.8112157728851486, 3.337882029139478, 3.5418565453007367, 3.9272074473038776, 4.1751345320598725, 4.488523625276615, 4.892621708804854, 5.060434172265731, 5.43489603966178, 5.692301749977389, 6.008324972984876, 6.3341027002614565, 6.700478606651903, 6.943635684202399, 7.4303314758063115, -7.649322588260447, -7.26530370557442, -6.977344330105488, -6.475428118962485, -6.287225112866487, -5.890450819690567, -5.828945994060915, -5.340439613290078, -4.9649362434344475, -4.732425607189036, -4.320860651729831, -4.165892217366189, -3.659983311457381, -3.257782926233801, -3.210711277759479, -2.9057323569753764, -2.402598340243316, -2.0767342565018017, -1.973732156909987, -1.650219519024032, -1.323133981320285, -1.116155254657448, -0.7603300813222272, -0.4556336464688004, -0.11875400942379438, 0.2678025752281542, 0.6079378541006982, 1.052811747008665, 1.111171610533593, 1.6226845713353435, 1.816098763945347 ]
null
The time series has a trend and cyclic component added together. Which components are most likely present in the given time series?
[ "No trend and sawtooth wave", "Linear trend and sine wave", "Exponential trend and sine wave" ]
No trend and sawtooth wave
multiple-choice
27
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Sine Wave", "Sawtooth Wave", "Additive Composition" ]
For trend, check if the slope is constant or changes over time. For cyclic component, check the overall shape of the time series.
Pattern Recognition
Cycle Recognition
538
[ 5.500158347622169, 5.407775407090423, 5.695469324163792, 5.651276311194727, 5.816666905297071, 6.192872870607888, 6.1048274289994335, 6.268064890248298, 6.45575430985376, 6.540741659436703, 6.628641295008359, 6.772521438595182, 7.0987928307269454, 6.975115326354318, 7.123413044583732, 7.330794513367555, 7.45870760091715, 7.589283972031948, 7.656879897533387, 7.601132317911978, 8.001201896269695, 5.287045118567024, 5.554369138247354, 5.571103940576073, 5.762543624773268, 5.924259634317474, 6.045945048686712, 6.178427336419771, 6.420032321756666, 6.426440558856757, 6.479097399030853, 6.722347713243312, 6.8673119791614985, 6.748030082609893, 7.052956804963137, 7.185760006063799, 7.208312315351269, 7.498065280872989, 7.467914974693132, 7.617904112598097, 7.710465218677116, 7.851756239718207, 5.304391741099846, 5.392440095384496, 5.818321623820981, 5.696600916521209, 5.804583750261969, 5.810809907701787, 6.084678678147767, 6.138691807430526, 6.557628236639471, 6.616834363414656, 6.569463553817178, 6.98594810272394, 6.981307004743227, 6.973073251547763, 6.878041752265827, 7.479502514866817, 7.2338769447859415, 7.3307202506211695, 7.719943102372382, 7.9840872336599045, 8.000965208731586, 5.482749753715078, 5.608260209730928, 5.756552265296989, 5.869529502252193, 5.944181719525012, 6.048908621377821, 6.15465513204724, 6.207943919805083, 6.377698804859631, 6.358896564981328, 6.64078421757595, 6.674185003394893, 6.785111116242965, 7.0358853969344475, 7.279522144308118, 7.354579510128449, 7.228123723020458, 7.408636903580301, 7.724102769890715, 7.65420284559262, 7.852414203801306, 5.493703643532771, 5.46428992199851, 5.694087851954029, 5.672573685702171, 5.868265404653428, 6.082806296317362, 6.013954663404499, 6.339727444408265, 6.416142124574115, 6.595780833763056, 6.685349185582367, 6.921797749027843, 6.920332090149807, 6.98729501962705, 7.164891257897362, 7.329417244352331, 7.402399382335821, 7.523998478278198, 7.572166074231692, 7.698501085111831, 7.746956583541514, 5.625995699869485, 5.449077635866221, 5.626599373480317, 5.7464751005575465, 6.030234198663468, 6.0336727269943795, 6.310367835945515, 6.240670500108313, 6.458344912609637, 6.46933672491584, 6.889812276873713, 6.678963456047981, 6.951131302828195, 7.1059528537532595, 7.206381009259758, 7.268898267481395, 7.396870897250382, 7.536660048276195, 7.640004634769993, 7.873518680466891, 8.120609002801093, 5.407628438970482, 5.448823253367916 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly", "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly
multiple_choice
74
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
539
[ 0, 0.8895071565433988, 1.6351098722936757, 2.114848162260303, 2.2473045716827915, 2.0040197882779816, 1.4138324952503378, 0.5584816667770786, -0.4398580737797751, -1.4372072592035856, -2.2897374752488218, -2.8757042229083574, -3.114012132683074, -2.9765814610010044, -2.492630061561435, -1.7442178598791338, -0.8537332685839937, 0.0347702193293391, 0.7775412157586168, 1.2530515537944165, 1.3805285128051616, 1.1322721130819988, 0.5378791757573471, -0.32026999262624345, -1.319574040760447, -2.3159064510325766, -3.165593860544061, -3.7473252790939684, -3.980651196282064, -3.8382515887751976, -3.3501020394434304, -2.598902663320731, -1.7074668983244936, -0.8199932850179457, -0.08007616257790251, 0.39119149860465674, 0.5136839574783463, 0.26046133695763807, -0.33812222667760095, -1.1990473846610274, -2.1992894660094944, -3.194578909377274, -4.041401397278234, -4.618882820717548, -4.847221764860018, -4.699858686097684, -4.2075260631614535, -3.4535619015723773, -2.561201250367962, -1.6747836890147965, -0.9377425158956054, -0.4707321385438674, -0.3532290909653204, -0.6114123987036941, -1.2141714541652626, -2.0778501742665667, -3.0790039883892346, -4.073224302094094, -4.9171598329514845, -5.490376713427512, -5.713723842701329, -5.5614028952354975, -5.06490239127041, -4.308195910048977, -3.4149366858407975, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, -5.094220925458043, -4.3689026947737375, -3.919065149481535, -3.821566082622289, -4.09953404771571, -4.718841410476575, -5.59330858266666, -6.5978458275508425, -7.58752860033848, -8.419697562959366, -8.975713170106177, -9.179047399024595, -9.006953756385485, -8.493935964968754, -7.726486378854757 ]
[ 0, 0.5902164558873864, 1.1234853896481911, 1.5487164686831802, 1.8259313134268398, 1.930375369776011, 1.8550639744783894, 1.6115007445360614, 1.2284944025472377, 0.7491957303436143, 0.2266594073636081, -0.28161279064784556, -0.7195861874834677, -1.038456507604105, -1.2016695131818058, -1.1886806953206246, -0.9970683261764752, -0.6427825394866555, -0.15850482097790763, 0.40971336099239775, 1.007187059644164, 1.5762223279892933, 2.0620501799501203, 2.418459712217898, 2.612551006728645, 2.6281189663128703, 2.4673200478893302, 2.1504504656877694, 1.7138586768322703, 1.2062068551604619, 0.6834658696819784, 0.20315854617163898, -0.18155669372088767, -0.42735330390708026, -0.5051928532625858, -0.4033116980639033, -0.1284309010199287, 0.29493504618210675, 0.8269995972686605, 1.4167962932933482, 2.007420785440387, 2.5418835840731453, 2.9689715647207917, 3.248515361023777, 3.3555208806132995, 3.2827400075861597, 3.041416088646672, 2.6601275278740895, 2.1818484291732365, 1.6595286063971675, 1.1506475677244605, 0.7113026100878028, 0.39043907735135197, 0.2248162140513974, 0.23522638874284874, 0.42435654891771835, 0.5112318684439653, 0.5981071879702121, 0.6849825074964591, 0.771857827022706, 0.8892169701172555, 1.0083016126590674, 1.1273862552008793, 1.2464708977426913, 1.3842057017806282, 1.5241785251981004, 1.6641513486155726, 1.8041241720330443, 1.950323353289043, 2.09771481583327, 2.245106278377497, 2.392497740921724, 2.534535403297232, 2.6751129383539984, 2.815690473410765, 2.9562680084675312, 3.081949610014317, 3.202181479789158, 3.3224133495639987, 3.44264521933884, 3.5413088302742763, 3.6297558975489412, 3.7182029648236066, 3.806650032098272, 3.870125351632507, 3.918617622522485, 3.9671098934124625, 4.01560216430244, 4.0389428103767635, 4.043419737839347, 4.04789666530193, 4.052373592764513, 4.034298459663691, 3.9952265805210767, 3.956154701378463, 3.917082822235849, 3.8600880425728468, 3.7824129930786268, 3.7047379435844072, 3.6270628940901877, 3.5371949263714035, 3.4298327716347647, 3.3224706168981255, 3.2151084621614867, 3.101418575280421, 2.9763387705393867, 2.851258965798352, 2.726179161057318, 2.599907567710452, 2.470901871091385, 2.3418961744723172, 2.21289047785325, 2.0864521946502053, 1.9677161516952302, 1.8489801087402542, 1.730244065785278, 1.6161062075994945, 1.5207791052876805, 1.4254520029758664, 1.3301249006640523, 1.23967502146829, 1.178488480968834, 1.1173019404693783, 1.0561153999699224, 0.9986217830544267, 0.9787959866953259, 0.9589701903362249, 0.939144393977124, 0.920901700279473, 0.9454027784409728, 0.9699038566024726, 0.9944049347639724, 1.0189060129254723, 1.085377865413441, 1.1526128228891634, 1.219847780364886, 1.2870827378406087, 1.388438611372879, 1.4924191707556531, 1.596399730138427, 1.700380289521201, 1.8279665560496106, 1.958925066455968, 2.0898835768623254, 2.2208420872686827, 2.363658373381772, 2.5090524368224143, 2.6544465002630564, 2.799840563703698, 2.945548238214088, 3.0913507253734713, 3.237153212532855, 3.3829556996922383, 3.5190005347387974, 3.651142308940227, 3.783284083141656, 3.9154258573430853, 4.0301744518751095, 4.135991413603926, 4.2418083753327425, 4.347625337061559, 4.431414341298533, 4.500949961276078, 4.570485581253624, 4.6400212012311695, 4.686026576876173, 4.71305594902719, 4.740085321178207, 4.7671146933292246, 4.771964423406927, 4.754634511411315, 4.737304599415705, 4.719974687420093, 4.684051087267264, 4.625071313799485, 4.566091540331706, 4.507111766863927, 4.434516880724286, 4.340880456819038, 4.24724403291379, 4.153607609008542, 4.051794765951247, 3.9340594224399674, 3.816324078928687, 3.6985887354174065, 3.5776926613432756, 3.4488947608620104, 3.3200968603807484, 3.1912989598994828, 3.0632233989024873, 2.937537114661138, 2.811850830419793, 2.686164546178444, 2.563507860551491, 2.45478732855074, 2.3460667965499917, 2.237346264549241, 2.132260097529139, 2.0526144853735597, 1.9729688732179826, 1.8933232610624033, 1.816405767625429, 1.7749538175302877, 1.7335018674351474, 1.692049917340006, 1.6513726832150823, 1.6533048274520752, 1.6552369716890678, 1.6571691159260606, 1.6591012601630533, 1.7035703309033183, 1.7496148433659278, 1.795659355828536, 1.8417038682911457, 1.9244534259331287, 2.0108015174162297, 2.0971496088993278, 2.1834977003824285, 2.2975739088722253, 2.4162714701964756, 2.534969031520722, 2.653666592844972, 2.7892939094740026, 2.929059610733095, 3.0688253119921836, 3.208591013251276, 3.354071640408681, 3.5014572428655284, 3.6488428453223722, 3.7962284477792196, 3.9390092208610112, 4.079782760625476, 4.220556300389937, 4.3613298401544025, 4.489140834177481, 4.609750413899792, 4.7303599936221055, 4.8509695733444165, 4.952933006531029, 5.041900640616999, 5.130868274702971, 5.219835908788941, 5.2874470351595875, 5.33654918817695, 5.385651341194315, 5.4347534942116775, 5.462646782751218, 5.467760179814577, 5.472873576877936, 5.477986973941295, 5.464419936050352, 5.425945651553674, 5.387471367056995, 5.348997082560317, 5.296008982056588, 5.218831188207777, 5.141653394358964, 5.064475600510153, 4.977706831888793, 4.870690449858725, 4.763674067828656, 4.656657685798585, 4.544845402921054, 4.419924324393789, 4.2950032458665275, 4.170082167339261, 4.044276246581267, 3.915225904310583, 3.786175562039902, 3.6571252197692177, 3.529693410773563, 3.4107139422141546, 3.2917344736547496, 3.1727550050953415, 3.0562650219929566, 2.9605207510324028, 2.864776480071852, 2.769032209111298, 2.675109887734654, 2.613375342340362, 2.5516407969460713, 2.4899062515517794, 2.428171706157489, 2.345283167396186, 2.4420344236591545, 2.7122320346730433, 3.1318431856901237, 3.66146752024933, 4.250389561539336, 4.841794921086079, 5.378613795164035, 5.809390731279849, 6.093576945137473, 6.205700860564282, 6.137987922342861, 5.901160227901677, 5.523333733823415, 5.047126462132091, 4.525275134293083 ]
The given time series has sine wave pattern. How does its amplitude change from the beginning to the end?
[ "Increase", "Decrease", "Remain the same" ]
Increase
multiple-choice
17
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Base on the definition of amplitude, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
540
[ -0.04705391395294173, 0.3265336774856741, 0.9156217894752758, 1.1555509128887114, 1.5490921574704073, 1.540861038797521, 1.8530862835116086, 1.844714919858481, 1.4957217009095514, 1.2257885608040053, 0.84215293274548, 0.4362071421590784, -0.055090955566351484, -0.44029454211826846, -0.8237532850782442, -1.3927003057445804, -1.6154732156767118, -1.6576765619384966, -1.9320234797540574, -1.9047511238866344, -1.484376361227327, -1.1521330993644154, -0.885368558540899, -0.42595189708724923, 0.026486752489907645, 0.4792934899905043, 1.0595426464044646, 1.2276421525965084, 1.5812629640239473, 1.667840828144182, 1.641393595695484, 1.778496303614707, 1.4266826275651916, 1.1820933123716488, 0.6163096266911487, 0.24356198774945637, -0.07804520065621917, -0.3556749293640428, -1.2301392659298238, -1.399099065564039, -1.5885447819996072, -1.8290797521638118, -1.6975721772257737, -1.760565405760617, -1.433726098312088, -1.1759850019081641, -0.5985242778319996, -0.33480118564669453, 0.16948872357742356, 0.7568836566295006, 0.9711924411744134, 1.4180297635539212, 1.4681417169917115, 1.666323584976618, 1.8148789538583872, 1.5558646110059748, 1.3639120209815108, 1.132694241279714, 0.6153086604677025, 0.2986388553052055, -0.23396424664970267, -0.6661164813983266, -0.9904984635584673, -1.4101827563900953, -1.2882803336045674, -0.4784377098246746, 0.2236679027902424, 1.1976938775845014, 1.809381242147758, 2.3582605814818005, 2.9213813604323446, 3.3663149076748358, 3.5166546609412466, 3.7172943323802836, 3.55347086965192, 3.2555490532034606, 2.7151757137667234, 2.2824301979916823, 1.6742852289989072, 1.0072042921238864, 0.1979984070007475, -0.7008781855477977, -1.580326806922637, -2.390194159574986, -3.3863852926783267, -3.911709336624832, -4.984980315616117, -5.230346067068334, -5.8542034637127065, -6.086726037588247, -6.340954303794616, -6.380249271653435, -6.242939865967763, -5.950578279984091, -5.655356177372638, -4.980520421615767, -4.541188735656813, -3.6893993380491654, -2.791814630595172, -1.9180682450092668, -1.0958294815430394, -0.31488478023315764, 0.6443584210479121, 1.2561426230884079, 2.1809734608363085, 2.573335928597023, 2.879190541660206, 3.2264363877702094, 3.514736483902131, 3.5354443186531865, 3.5757959751552963, 2.9830449609265837, 2.6586428759984395, 1.9896784233960685, 1.3777154533802707, 0.8378824331439059, -0.2670409031146241, -0.9575077631318865, -1.852917557388341, -2.756684099481498, -3.5237467882539653, -4.447041718861104, -4.831289590970035, -5.360230331389446, -5.976495683019825, -6.026814874058329, -6.44745895257378, -6.35216783841378 ]
null
What is the most likely variance of the given time series?
[ "0.64", "1", "varies across time" ]
0.64
multiple_choice
43
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
541
[ 0.16048606142237892, -0.002842584047276472, 0.3495559727895729, -0.5700792406016567, -0.9007745975489666, -1.326740632153176, 0.5206212109918551, 0.6980089900026478, -0.003801916642671377, -0.13314367133869423, -1.149986721965434, 0.3537316863792187, -0.5822046666206367, -0.537985576054652, -0.6027547248440097, -0.16993511392042032, -0.5694945077116808, -0.20639007095656625, -0.3663834787864798, 0.4661014129727412, 0.7689871890612354, -0.04315452191817738, 0.1338673524695794, 1.304227005705179, -0.7534709896766985, -0.691152686605601, 0.5824004150925315, 1.3575584842380162, -0.13776969688494575, 1.1765389781701912, -0.0028111642345143295, -0.41554344744770433, -0.7482471152373108, 0.4059642313112658, -0.5721605991532017, 0.22382598850648078, 0.9826474530566197, -0.18581007081684045, 0.8581298722331866, -0.8167520069885877, -0.4192968767388637, -0.7636957115418102, -0.05173670912432512, 0.3625802264958845, 0.1157724965542692, 0.894993490666343, -0.5208912862530657, 0.09949376754037224, -0.3067038071332917, 0.1588897447908202, 0.2417155953482277, 0.45779740912374567, -0.6191450225440285, -0.43389842319948313, -0.5725018101696187, -0.20194237986216168, 0.08348382529321739, 0.35709483074012827, -0.47439827221187003, -0.8942304972416125, 1.3106229848371829, -0.7146459486800435, 0.6766514369957531, 0.19978252196632457, 0.23416641990904924, 0.05835830161145963, -0.3297592941086731, 0.3305566564804001, -0.22283338008007114, 0.7195987034729773, 0.30149872872187833, 0.2526297039369707, -0.4958106739185436, -0.3448803931587178, -0.696414471279504, -0.2094053956475563, -0.7066365714977059, 0.8006905648823821, 0.05313874751742117, 0.09181433070477342, -0.27702982494842565, 0.2167683083746107, 1.5956806619350798, -0.16400784713450994, -0.3292746746437049, 0.2550058068651958, -1.4825306809015568, 0.02661011016065449, -0.14718847433808108, -0.5567025016296274, 0.21856051133939922, 0.08457423576213022, -1.111953921315422, -0.40753363668314596, -1.8435722885008605, 0.1776451068213538, 0.2611722044396261, -0.44596571971842647, 0.3460349590808453, -0.9636170489083684, -0.5643217107107241, 0.33728928086272236, -0.20728214674102954, 0.06775434076282452, -0.5478509488742775, -0.253110138757554, -0.05206041421228713, -0.38645594024086755, 0.22492946546715356, -0.3087297457919098, -0.05227630600402854, -0.41495653382445663, -0.9993704685824281, 0.5774602231117136, 0.4000594243625563, 1.3607074924291833, -0.534154469780091, -0.17497710307883343, -0.05553965540738989, 0.48822719383436647, -0.25004433852925956, -0.5989947946610023, 0.715529422092164, -0.3121041956157111, 0.5857621536842244, 0.6294989253673395, -0.16396696538249592, -0.22132502391391146 ]
null
There are two time series given. Is one of them a scaled version of the other?
[ "No, they do not share similar pattern", "Yes, time series 2 is a scaled version of time series 1", "Yes, time series 1 is a scaled version of time series 2" ]
Yes, time series 1 is a scaled version of time series 2
binary
87
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Moving Average Process" ]
Scaled version refers to the same pattern but with different amplitude. You should check if the pattern is the same for both time series. If they are the same, you should check the amplitude of the cyclic component.
Similarity Analysis
Shape
542
[ 0.09190764829877686, 1.5510839097297997, 3.1598331758448777, 4.664454509173515, 5.985135205124852, 7.466902743972402, 8.539461466973735, 9.523728260287102, 10.53048956485309, 11.08465172729768, 11.683122668732807, 11.98466062712692, 12.193650886226147, 12.024532670910752, 11.660928600667988, 11.231328017016622, 10.583266630170593, 9.615405115897541, 8.511909267631793, 7.1848179049751195, 5.889009940176592, 4.54158207115241, 3.0092385222822355, 1.4968660132822988, -0.05941902435952811, -1.5916444804606487, -3.2029571533735073, -4.64368039849067, -6.101744225217464, -7.61672845713827, -8.696726236979679, -9.65311180903868, -10.63009689462031, -11.139128690863513, -11.543763956056685, -11.871858396780645, -12.106055107199175, -11.819133177570436, -11.631353013594804, -11.157989469389648, -10.472690516312506, -9.549915100015676, -8.50336140504719, -7.247050735234836, -5.922867073043422, -4.511487145398187, -2.963502677218802, -1.3319063388409886, 0.225121559575847, 1.5605786511812367, 3.003235800588849, 4.845672294128291, 6.0275740538964735, 7.447973369275652, 8.531367138520542, 9.497625730447314, 10.595257731119185, 11.299335304130674, 11.655383235796698, 11.7424445471569, 12.02938536637326, 11.998182015115587, 11.480779283631488, 11.117023705932786, 10.376621673736905, 9.53736522337403, 8.429925975863634, 7.114665608266961, 6.001812536156878, 4.435495138012588, 2.9413855725995997, 1.2930099098593546, -0.23957272505456984, -1.8619538425269577, -3.338548646843937, -4.640841363338474, -6.357343509665049, -7.682857488735983, -8.546596318332094, -9.737596171528647, -10.639697040599309, -11.143402024714536, -11.789451346985373, -11.826413912060403, -12.01516573611786, -11.998241725350722, -11.395053027789954, -11.133344146720155, -10.270444527002944, -9.40899982023491, -8.240973875057573, -7.003492354845828, -5.8220152826080165, -4.46611712540755, -2.834952954832441, -1.3894337735194788, 0.46165591581047993, 1.8514807903222972, 3.3472516843747884, 4.890112584907996, 6.141151831596819, 7.475173234429632, 8.858837503384372, 9.689532587895526, 10.499470328588819, 11.324704259883793, 11.862975546318214, 12.088028017604477, 12.18116115534344, 11.86387346929461, 11.450379437238068, 11.196669810496653, 10.278587454300927, 9.373065019152472, 8.45690469024744, 7.162729792629611, 5.8136958343814, 4.546575467900808, 2.7533489309160966, 1.3497334472489617, -0.31968101957093664, -1.87526841192456, -3.2933686538156275, -4.880352026732833, -6.27756389554863, -7.515697569385813, -8.820120691046625, -9.87741825855227 ]
[ -0.10448091940210336, -0.02324841249975848, 0.5489479176615977, 0.39612028895217655, 0.6373606128769252, 0.7717375834847201, 0.9541984609409981, 1.1107101864548228, 1.200401179221816, 1.1191078497415363, 1.2003557884020075, 1.260780554956659, 1.1986030127367666, 1.3508311546195606, 1.1821570428859356, 1.1269827676663073, 1.019272951822164, 0.9508747859599292, 0.7155999252676595, 0.41791728117093563, 0.4267845756538172, 0.15320471762814297, -0.007337682356603925, -0.06956114216207382, -0.17554194098040327, -0.462463710127481, -0.5896911826148803, -0.5939983329506504, -0.8685956212859526, -0.7432056407098575, -1.0375769023288444, -1.3392045885524815, -1.1336692592061508, -1.1927252647450817, -1.099231905812399, -1.1338358878341912, -1.1640650982098866, -1.1988461164636155, -1.0021140843864993, -0.951550800883818, -0.7926103541275386, -0.5291549274500541, -0.2627861962634904, -0.2235285458604134, -0.21057417219425376, 0.12729321623173614, 0.37466802735358956, 0.3611285061637113, 0.5674146632638664, 0.7294469815099484, 0.7821764385286645, 1.0410706394795928, 1.0603144354498382, 1.1892074898049798, 1.1105402941493694, 1.1837346537626658, 1.3035048034070942, 1.173289471236488, 1.3385066614829852, 1.0579054877982235, 1.030568556528434, 0.9915470815711014, 0.6287795621271293, 0.45154198803472334, 0.31958556293526597, 0.4335506117478545, 0.08113780500884868, 0.2184645778144083, -0.2667163812441792, -0.36059174006098227, -0.38605490774672413, -0.49013407085870186, -0.6213370873553932, -0.8269427877268034, -0.9468213574677486, -1.0705623530491657, -1.1101033761074197, -1.2775638579173523, -1.3144662990343101, -1.2186774837574492, -1.1968290700567794, -1.1631469677810498, -0.963974373964774, -0.833321239957786, -0.7967822676471654, -0.5186237341952716, -0.6280505259165435, -0.37053542955842, -0.25315762712016604, -0.19482687127885384, 0.15702340722542774, 0.32329508239500987, 0.6503233480018953, 0.7156473859921183, 0.6907610462309124, 1.1034324834522258, 1.1467179409821102, 1.169044281900881, 1.1523204109785086, 1.1197984562477377, 1.1951238505160628, 1.333320043247778, 1.380660024925621, 1.290578591639973, 1.008831114846316, 0.8461866031174499, 0.8536193386978939, 0.5273775809529628, 0.5872277481382341, 0.3798074277418109, 0.1797759443275625, -0.10577968705123617, -0.06870582232797263, -0.34470521866039705, -0.5740018016269677, -0.9007250397386897, -0.760541415238018, -0.7097894791050625, -0.8324777910916197, -1.1360481558356093, -1.2206164244821087, -1.1605034834677712, -1.3301999756767129, -1.1987006973656098, -1.1263577040972046, -1.0304408688162583, -1.090391424350267, -1.0065051627197343 ]
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly", "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with flip anomaly and time series 2 with speed up/down anomaly
multiple_choice
74
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
543
[ 0, 0.41405633266846237, 0.8165212337131548, 1.1961081623278802, 1.5421323397618087, 1.844791792337689, 2.095425173942227, 2.2867395864527102, 2.4130024057118598, 2.47019206742925, 2.4561038468696332, 2.3704078499923362, 2.2146576906938122, 1.9922496259148121, 1.7083332234863438, 1.3696759124287963, 0.9844849784539744, 0.5621916867437257, 0.11320321024961821, -0.3513711114266047, -0.8200119823262699, -1.2810931435582766, -1.72318718018247, -2.135366097876701, -2.50748876328339, -2.8304676474577115, -3.09650785623239, -3.2993121602547824, -3.43424663176653, -3.4984625313617, -3.4909712387213743, -3.4126702564125844, -3.266319602770546, -3.0564692148050407, -2.789339270661017, -2.472656579526109, -2.115451342440939, -1.7278196298370765, -1.3206578233844093, -0.9053760071559452, -0.4935978468166623, -0.09685485095005397, 0.2737169435965081, 0.6076698842258674, 0.8955195084516232, 1.1289940148535194, 1.3012518372632518, 1.4070615993007423, 1.44293971589509, 1.4072420224409126, 1.3002070214573365, 1.1239496092276122, 0.8824054474282692, 0.581227442947565, 0.22763705879696072, -0.16976563289743485, -0.6012281596244263, -1.0561021689430259, -1.5231235133750354, -1.9907085326284573, -2.4472587400048065, -2.88146589878715, -3.2826094641480363, -3.640838566927129, -3.9474311222253373, -4.19502324745103, -4.37780295540788, -4.491663027691825, -4.5343090473498435, -4.5053197492045065, -4.406158100442523, -4.240132820013184, -4.012311348996631, -3.729386561092774, -3.3995007191608493, -3.03203130830197, -2.637344378742699, -2.2265218863714846, -1.8110702027225476, -1.4026174615039981, -1.012607702400986, -0.6519998571259498, -0.3309794953221574, -0.05869091230258805, 0.15700339444747158, 0.3097295334857151, 0.3947698726445972, 0.4091871274766019, 0.3519016209996946, 0.2237196825705947, 0.027312438906912817, -0.23285444487958795, -0.5506382262085343, -0.9183806583264713, -1.327109426090629, -1.766774145851225, -2.2265107218992197, -2.6949271060799806, -3.1604029442035175, -3.6113952276158248, -4.036741910341211, -4.425955505717683, -0.7098773188475938, -0.6310772270462786, -0.6239355680486689, -0.6879397315713764, -0.8207057502200801, -1.018041005270081, -1.2740545056199744, -1.5813118392378034, -1.9310307213932285, -2.31331199614716, -2.7174000150388076, -3.1319655441983874, -3.545403758545694, -3.946139484897374, -4.32293166513676, -4.665169031115049, -4.963149214111327, -5.208333947401808, -5.393573649314509, -5.513295479534275, -5.5636499221906455, -5.542612040135917, -5.450034737110041, -5.287652626831207, -5.059036407242979, -4.769498940017618 ]
[ 0, 0.26239566159787847, 0.5210092736778649, 0.7721221172084873, 1.012141073660994, 1.237658791843, 1.4455107440547867, 1.6328282161618959, 1.7970863442643166, 1.9361463935873824, 2.048291571633598, 2.1322557759035337, 2.1872447948046894, 2.2129496067387326, 2.209551554673655, 2.17771930955255, 2.1185976733867826, 2.0337884095259553, 1.9253234211021382, 1.7956307267757974, 1.6474938035201574, 1.4840049772497936, 1.308513641768215, 1.1245701731090683, 0.9358664784263366, 0.746174174943403, 0.559281434155587, 0.3789295488311015, 0.2087502849971331, 0.05220506795314628, -0.08747297935730236, -0.20733317504773474, -0.30475668750940255, -0.37750038779313777, -0.4237344108434884, -0.44207279662160825, -0.43159669803074463, -0.39186976702721465, -0.32294546127615154, -0.2253661490019545, -0.10015402702272502, 0.05120599595362463, 0.22679116415208633, 0.42427307131019387, 0.6409566498822891, 0.8738252999934906, 1.1195914024582239, 1.1809589895938042, 1.2423265767293845, 1.3036941638649648, 1.3650617510005452, 1.4275904474842467, 1.4903368519707207, 1.5530832564571948, 1.6158296609436689, 1.6789012449461733, 1.7421229118022303, 1.8053445786582873, 1.8685662455143446, 1.9315583066395825, 1.9943437226070835, 2.0571291385745845, 2.119914554542085, 2.1822061171503924, 2.2436510740000806, 2.305096030849769, 2.366540987699458, 2.4275181084785555, 2.486740843992939, 2.5459635795073217, 2.605186315021705, 2.664247641461507, 2.72040360455886, 2.776559567656213, 2.832715530753566, 2.8888714938509183, 2.9415737992755453, 2.9938697920327924, 3.04616578479004, 3.098461777547287, 3.1473767459952238, 3.1950842057612645, 3.242791665527305, 3.290499125293345, 3.3351727499891926, 3.3776399491794447, 3.4201071483696963, 3.462574347559949, 3.5025976562643653, 3.539260615550758, 3.5759235748371507, 3.6125865341235435, 3.6475992231121617, 3.6779911552670126, 3.708383087421863, 3.7387750195767135, 3.7684687616369947, 3.7922278878934335, 3.815987014149872, 3.839746140406311, 3.8635052666627496, 3.880743165138846, 3.897618773182701, 3.914494381226556, 3.931369989270411, 3.9427043084522393, 3.952560950604194, 3.962417592756149, 3.9722742349081037, 3.9776865312521243, 3.9805062925415164, 3.9833260538309085, 3.9861458151203006, 3.985679646502187, 3.9815624446535107, 3.977445242804835, 3.973328040956159, 3.9670884541045908, 3.956250366413424, 3.945412278722257, 3.93457419103109, 3.9227267979935037, 3.9054964431083508, 3.888266088223198, 3.8710357333380445, 3.8538053784528916, 3.757396419535899, 3.6384466438248446, 3.499559637929729, 3.3436728377344695, 3.1740083409807838, 2.9940189531842236, 2.807330370344429, 2.6176804666011386, 2.42885670346528, 2.244632708708618, 2.068705086899626, 1.904631519694262, 1.7557711923933894, 1.6252285443251753, 1.5158012849533733, 1.4299335461825753, 1.3696749553260412, 1.3366463140598843, 1.3320124580701898, 1.3564627518587413, 1.4101995453221814, 1.4929347853993957, 1.603894839525141, 1.7418334501211106, 1.9050526032012292, 2.0914309616460525, 2.29845938703054, 2.523282955191602, 2.7627487619839632, 3.013458718716125, 3.271826453205946, 3.5341373636465714, 3.796610819679741, 4.0554634691183695, 4.306972590246155, 4.547538428858938, 4.773744476212839, 4.9824146785239165, 5.170666620045251, 5.335959789169877, 5.4761381193428065, 5.589466092433832, 5.67465780001947, 5.730898475942373, 5.757858139585126, 5.755697121401547, 5.725063378180391, 5.667081642997399, 5.583334591539948, 5.475836340174529, 5.3469987195323805, 5.199590888362678, 5.036692963920056, 4.861644445346414, 4.6779882936984, 4.489411605001534, 4.299683869761718, 4.11259385277966, 3.9318861502169566, 3.7611984862667787, 3.604000799397566, 3.463537138171711 ]
Both time series have a cyclic components. Which time series has a higher amplitude of the cyclic component?
[ "Time series 2 has higher amplitude", "Time series 1 has higher amplitude" ]
Time series 1 has higher amplitude
binary
83
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Amplitude refers to the height of the peak and the depth of the trough in the cyclic component. You should check the height of the peak and the depth of the trough for both time series.
Similarity Analysis
Shape
544
[ -0.1929780231805027, 0.7424084968686119, 1.7124787058410795, 2.3561677198323716, 3.1901055099382405, 3.558842620202369, 4.401801998888423, 4.94584485371266, 5.155119789448259, 5.694369933663596, 6.030467426221608, 6.108930037345548, 6.383191574610298, 6.546658472985571, 6.37828310250447, 6.310891966421975, 6.095572680066512, 5.772826618855308, 5.332500562598931, 5.030803204893974, 4.309506633111703, 3.9231696428618403, 3.4760122794525325, 2.6798134143887764, 2.022185541584358, 1.5327375796409808, 0.8484045301174283, 0.29668520437399626, -0.35443065497890164, -1.1372216111534401, -1.270059921019078, -1.6109435148082931, -2.0513484051748923, -2.8201554754080957, -2.626431079283083, -2.8376209542927056, -2.9297140957811685, -2.7485674617515454, -2.6242633918601963, -2.3172797969923526, -2.0342667998529453, -1.7409770355294247, -1.1982751005955732, -0.6557094684260878, -0.13243411896479382, 0.5765796861482112, 1.4106635226928275, 2.325044491379634, 2.9017180777431446, 3.662316676366319, 4.401205507242402, 5.290482887499218, 6.148820535514214, 6.938954808971063, 7.4288900686788155, 8.020191300079228, 8.493092566355774, 8.978731512811445, 9.469441945877909, 9.681149671602112, 9.914673725471298, 10.056409575327697, 10.036796234178428, 10.034826998030573, 9.698453722899204, 9.72854206801768, 9.602265591899757, 8.931768609135272, 8.578198721910061, 8.12236513281658, 7.613713261748406, 6.870167649527487, 6.100552314902992, 5.676659473759251, 5.028262631051088, 4.354410339542584, 3.768885267500114, 3.2207899816594567, 2.708442730363364, 2.221796760843009, 1.7464932029538587, 1.4542192050456468, 1.1109478756952367, 1.0092330938706042, 0.77422341925528, 0.8255804118937846, 0.7281143125836366, 1.0166537801463684, 1.363028655433472, 1.5420777849973055, 2.0347790459402866, 2.324059802208309, 2.9949885919232937, 3.649694699970506, 4.451233507470161, 5.197277676237486, 5.912667791920499, 6.654585589349484, 7.438184129491015, 8.32792560382036, 9.043156530384087, 9.7279519452496, 10.593089026105298, 11.313743662419055, 11.592150239925793, 12.301302823559615, 13.017158553817987, 13.115748255165007, 13.394233556665297, 13.583840535029548, 13.754735819820642, 13.80639903467295, 13.541324160550797, 13.510047612682708, 13.048400363449243, 12.937977897079637, 12.479557122165792, 12.149668050182726, 11.439768116066828, 10.997214362887672, 10.551946450169376, 9.769330047213801, 9.01440147687885, 8.59650216208937, 7.887567883618182, 7.32425959995365, 6.698832044719451, 6.4412272277239 ]
[ -0.15580727358535135, 0.5590618303930459, 0.5080981573381379, 0.8285147025978157, 1.0032453899914004, 1.2333973097550055, 1.431248033381339, 1.7618041854961644, 1.7272136450113071, 2.043878480145891, 1.8991837860333467, 2.2251480794939456, 2.33246588810932, 2.139648228398629, 2.325109127686422, 2.2244691334344484, 2.315158249195333, 1.982112997519484, 2.2407942167183417, 1.5942440370212498, 1.6607279977532072, 1.3743437347840917, 1.5741254839273127, 1.2062097700385903, 1.0613838307761128, 0.9760779823983036, 0.7955827873255702, 0.6159622511457484, 0.4474779791292156, 0.5095249877561504, 0.4745831496507119, 0.47704384109467385, 0.5981216620477295, 0.21854447914329053, 0.48855769740237054, 0.7042541774161607, 0.6921303399686538, 0.6188397097509533, 0.898456491090287, 1.259877358069133, 1.4774990067585243, 1.7554013518252845, 1.8649746152274063, 2.2351935890462915, 2.3878787568823383, 2.7846364603889158, 3.0387813313686887, 3.22059233444893, 3.717979167671961, 3.6374015810790494, 4.022257028252356, 4.159902285017123, 4.611784952691649, 4.646318995392943, 4.651663878788914, 4.789351838667871, 5.0739818652829065, 4.833353298271327, 4.7616406918116585, 4.94825131591981, 4.904094080433846, 4.867523616540492, 4.773581163553238, 4.769043429257096, 4.289506539879654, 4.19783975084521, 4.232599449975228, 3.899710386081039, 3.708404413259823, 3.888598120129412, 3.3963116863829828, 3.3918296383804054, 3.305802705110389, 3.3470218951042767, 2.9562507399734277, 3.1369760646930263, 2.9860847502502796, 3.1465547757556935, 3.0317702285434756, 3.3487420296818025, 3.200694591070431, 3.173313766288968, 3.497425914108696, 3.733143592603267, 4.074203632395257, 4.067653010297991, 4.3146762347682746, 4.793507737227442, 4.828768258449261, 5.2230378928354195, 5.501279560157257, 5.81240152567309, 5.98222906218664, 6.220073914280072, 6.5869465282601265, 6.68609425206254, 6.840279611278342, 7.275205545911943, 7.350653148816308, 7.59951137170827, 7.592367909158542, 7.4480387615564965, 7.615022181796181, 7.504582017460602, 7.4131359597997015, 7.478851318385408, 7.542381501450153, 7.370505380526676, 7.084017603036815, 7.039819861581755, 6.927414535894224, 6.619206439690588, 6.702832609511856, 6.453292230761778, 6.187256026794377, 6.041385536190609, 6.169542206715339, 5.912032702162469, 5.980391591360966, 5.953350681270374, 5.8591626140551005, 5.692315385210326, 5.513975038019324, 5.843343689005776, 6.099895987408651, 5.995930167507103, 5.9382885881286995, 6.235113135980638 ]
What type of trend does the time series exhibit in the latter half?
[ "Exponential", "No trend", "Linear" ]
Linear
multiple_choice
14
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
Focus on the pattern of growth or decline in the second half of the time series.
Pattern Recognition
Trend Recognition
545
[ 0.9442870111401592, 0.9379986170991466, 0.9636333681372138, 1.2127366147327923, 0.8986693804131377, 1.009212913533244, 1.0578146252120815, 1.1347192553404233, 0.9817988935956886, 0.9206975408600495, 1.047817872526167, 1.152240423223709, 0.9953955361934592, 0.9406554749159685, 1.0375349132723566, 0.8660760727046752, 1.0084930447246656, 1.1500892479360334, 1.1217027182164017, 1.0217665774715847, 1.2040245337577504, 1.2310212978253008, 1.1083882842880093, 0.8971520183091586, 0.8578911201996465, 1.1861880997653231, 1.0742723287817235, 1.215319076353845, 0.9198631806891925, 1.0395844089934636, 1.1605971583424444, 0.9866782125160252, 1.1631180315234946, 1.051347846399656, 1.0684218695526786, 0.9492462122092389, 1.0947455488484061, 1.2908870933955163, 1.1124152300117764, 0.9964492975172806, 1.2171883164678532, 1.003493204465464, 1.2537806520086106, 0.9561981654393893, 1.112992455523283, 1.240384194297047, 1.0031061623183124, 1.100143021592539, 1.2095986903123572, 0.8703642435547931, 1.1906551195916877, 1.0912283353938574, 1.2462744831696873, 1.0213912731559378, 0.9675292071120201, 1.0539728005499922, 1.0539583319656898, 1.0917787896317661, 1.0676507113999953, 0.9158040140525326, 1.1091873248352693, 1.1439556316765167, 1.1035486313112186, 1.153656538111392, 1.1334685214478672, 0.993892657675203, 1.1091250370778984, 1.157718603045945, 1.1297298472245076, 1.0112861974557137, 1.289994803206879, 1.0775862425420388, 1.0577004476008072, 1.1931202628834146, 1.1645810217040264, 1.26341916396848, 1.2976586973518482, 1.2895680881491722, 1.2244516011265987, 1.2870779437734488, 1.0828651909849814, 1.3554208854243421, 1.2126201347699048, 1.4572151892657033, 1.379819694938475, 1.2547294381212162, 1.2837173584440633, 1.4071007562259565, 1.0698010109796403, 1.2869081148015045, 1.4801918663735676, 1.401653150513509, 1.2405147032052728, 1.3628518509860275, 1.2408533695081478, 1.311494300950737, 1.3861430493261115, 1.410860104760581, 1.4399377582024764, 1.4974929126587577, 1.2618598597166955, 1.3907528861007301, 1.3104343727097967, 1.3627017419776042, 1.3342619198897916, 1.4667643287134116, 1.5292442002271105, 1.5417620008128305, 1.3276615694941585, 1.4329673721356382, 1.3391252866848289, 1.3429109523409504, 1.4004789368947528, 1.5081001425958498, 1.5327801769694729, 1.5534299225160564, 1.554361111828304, 1.4174584728602544, 1.627637771332757, 1.5968081721894531, 1.4823294518056653, 1.4932247997501695, 1.4720809077503745, 1.4157690385670942, 1.618674150054143, 1.6413961421117251, 1.473703016674671, 1.450240690936874 ]
null
Is the given time series stationary?
[ "Yes", "No" ]
Yes
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Try to see if the time series has a constant mean, and degree of variation over time.
Pattern Recognition
Stationarity Detection
546
[ 0.818831951661942, 2.3984464289266407, -2.1187832976486036, 2.1170280482710324, 5.7871271648682825, -1.454849749509971, -1.4898058803241017, 2.0315420666026576, 1.886613867854794, -0.524905741496511, 1.2799801370668473, 1.0391300438537612, 1.1681379415923048, 0.04205285524070071, 0.023678786769724833, 1.7108593586460923, 1.0189959204703782, 2.5543535093061736, 0.5018125497058117, 2.8930986187241645, -0.3206855889938968, -0.7530769318537902, 2.2350178958536397, 0.9714651830772636, -0.6786553520591707, 0.9701313148061841, 4.580326476927412, 0.24443454525475766, 1.6182348254843835, 0.7064898009660846, 1.9935526202760763, -1.4176453157099493, -0.3780272061116991, 2.042776306414869, 0.4394623062986307, 2.501281667353876, 1.9464267595857117, -0.9145201419469089, 0.9256178851301633, 1.2695753458583068, 1.967209859974811, 1.9070936778448684, 2.796024911362335, -0.044058221022971425, 2.672714859725761, 3.6132079645647597, -2.498976194860752, -1.292312390531258, 1.9349958749947522, 0.6723149856069796, -1.4859259760025831, 0.729048063136077, 3.4642916153706884, 2.8352739664406843, -0.5047459923790253, 1.4380013545823562, 0.3065766759987252, 2.919347663160466, -0.3786441535088972, -0.32557356940377635, 0.17511344534462664, 3.3448112874797453, 0.7138627590884776, 0.8347655724282588, -0.04400965974521817, -0.18793854833943305, 2.099546155541338, 1.7411107243216644, -0.731242104168775, -0.9154798807764712, 5.036411381023764, 1.4705622996746828, 1.6429861453610382, -1.7362898895037466, 4.460632326956397, 0.5776039546343595, 2.8271155295779833, -1.2819195753855115, -0.07652365856266387, 2.658075618541533, 3.40269200545355, -0.5787005494643515, 1.0214206190676298, 0.6776865235047109, 1.8168163537651554, -0.0686529248610051, 1.0910618240261063, -2.4303228566943225, 2.644793440000406, 1.1820341076575287, -1.8692421446199146, -0.10058696118550867, 2.5783788209279233, 1.361930422154089, 1.5972729087487347, 1.2044120570984909, 1.0745758964106167, 0.6580547012212716, 1.041492238667898, 2.535633125978247, 1.08523992599721, -0.45051378728778796, 0.5761242881633147, 1.2492852121861309, 0.19054981266115184, 0.7624014120430721, -1.1277120743337055, 0.4427213311618596, 1.2413643825527676, 2.6427587813076268, 0.6915444698429163, 1.1310218258285982, 2.1551084448455513, 1.6298876895672172, 1.158165702647715, 0.11023126210804776, 2.7596507856677133, 1.8372105955788327, -1.1451285956217188, 0.6136299164295457, 2.2783780859584555, -0.7364870441257902, -0.33044771808050133, 0.8890288844882126, 2.7885317770959093, 0.7448457587594318, 0.15861135650346173, 2.079229260912523 ]
null
Is time series 2 a lagged version of time series 1?
[ "No, time series 1 is a lagged version of time series 2", "No, they do not share similar pattern", "Yes" ]
Yes
multiple_choice
98
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 2 is a lagged version, then it should look the same to time series 1 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
547
[ -0.5422571963645905, -0.5832157720925648, -0.6338245330126179, -0.803386263460266, -0.8292591794273003, -0.735958912744944, -0.7563161083853349, -0.7118760332000513, -0.6010399448539463, -0.5638518829909571, -0.5169205961877208, -0.6523559970990249, -0.6845300788189305, -0.5123084816150221, -0.5019552776960668, -0.3127659666597767, -0.3848928154039446, -0.36155783026570104, -0.39972792176070776, -0.3406806711776794, -0.2514084274441962, -0.19131571319915613, -0.08739663193202557, -0.0887105658457746, -0.10771473360772528, -0.28308491747001485, -0.21940291132875964, -0.20222848520525835, -0.20900261066475695, -0.22803560837329634, -0.2317141439077093, -0.2552774123567704, -0.307945914034995, -0.2840482270972818, -0.235755989922806, -0.31261594572120505, -0.35258713782453094, -0.37299704390028127, -0.37251694268490887, -0.385302745652331, -0.3194991463871724, -0.4843137635269138, -0.6314406964666601, -0.6121332023538227, -0.672247835677563, -0.5840494779883675, -0.46736819937517443, -0.4440531906492055, -0.5509768545386601, -0.44578689070911537, -0.42594743264754287, -0.574261203555746, -0.7137559272870178, -0.5624487406928225, -0.42768028663175356, -0.6787516160081825, -0.8141838683050099, -0.700389741494409, -0.7022342765444052, -0.6322286299908095, -0.6384080792486757, -0.5731260153084347, -0.5725441507764677, -0.6161931927926376, -0.5105892577599914, -0.4904354094532337, -0.42536318550293156, -0.40965861186690883, -0.458170065098468, -0.29774198462744916, -0.26233583305904135, -0.29775000305398974, -0.1702435954419452, -0.3019885785673832, -0.07893145492659571, -0.09680066826682866, -0.22327818453982673, -0.03317090773544398, -0.07936935644243724, -0.055107034409217395, 0.01647871116117547, 0.13459347617333978, 0.16449435744151142, 0.09992816834512104, 0.12177148072471627, 0.07994703711879435, 0.10478459663995392, 0.2671836529512192, 0.34258307684615263, 0.36319493441458883, 0.4368553758785453, 0.5176565122046998, 0.41014443654760696, 0.41430604992386905, 0.6699042378984661, 0.7908765306199653, 0.740661573440889, 0.6804948686413811, 0.6170048919184441, 0.7034155921841742, 0.8637690248016197, 0.9218370191609035, 0.9375131082356896, 0.8932110285384439, 0.9260642072629894, 0.844261529031683, 0.6511794507138526, 0.8144439052064093, 0.7141195652719046, 0.6817193038335592, 0.747187387439795, 0.8902676508582779, 0.9159150340549317, 0.7968488595688584, 0.7667911912298553, 0.6991159645996019, 0.6953046225652055, 0.8181883687454845, 0.5650976655170155, 0.5240637688785715, 0.4757824519922158, 0.35042734751091803, 0.4088268627837724, 0.26769072028707064, 0.13803334034166564, 0.22292286266639083, 0.3725966901611244, 0.3650064516335117 ]
[ -0.2552774123567704, -0.307945914034995, -0.2840482270972818, -0.235755989922806, -0.31261594572120505, -0.35258713782453094, -0.37299704390028127, -0.37251694268490887, -0.385302745652331, -0.3194991463871724, -0.4843137635269138, -0.6314406964666601, -0.6121332023538227, -0.672247835677563, -0.5840494779883675, -0.46736819937517443, -0.4440531906492055, -0.5509768545386601, -0.44578689070911537, -0.42594743264754287, -0.574261203555746, -0.7137559272870178, -0.5624487406928225, -0.42768028663175356, -0.6787516160081825, -0.8141838683050099, -0.700389741494409, -0.7022342765444052, -0.6322286299908095, -0.6384080792486757, -0.5731260153084347, -0.5725441507764677, -0.6161931927926376, -0.5105892577599914, -0.4904354094532337, -0.42536318550293156, -0.40965861186690883, -0.458170065098468, -0.29774198462744916, -0.26233583305904135, -0.29775000305398974, -0.1702435954419452, -0.3019885785673832, -0.07893145492659571, -0.09680066826682866, -0.22327818453982673, -0.03317090773544398, -0.07936935644243724, -0.055107034409217395, 0.01647871116117547, 0.13459347617333978, 0.16449435744151142, 0.09992816834512104, 0.12177148072471627, 0.07994703711879435, 0.10478459663995392, 0.2671836529512192, 0.34258307684615263, 0.36319493441458883, 0.4368553758785453, 0.5176565122046998, 0.41014443654760696, 0.41430604992386905, 0.6699042378984661, 0.7908765306199653, 0.740661573440889, 0.6804948686413811, 0.6170048919184441, 0.7034155921841742, 0.8637690248016197, 0.9218370191609035, 0.9375131082356896, 0.8932110285384439, 0.9260642072629894, 0.844261529031683, 0.6511794507138526, 0.8144439052064093, 0.7141195652719046, 0.6817193038335592, 0.747187387439795, 0.8902676508582779, 0.9159150340549317, 0.7968488595688584, 0.7667911912298553, 0.6991159645996019, 0.6953046225652055, 0.8181883687454845, 0.5650976655170155, 0.5240637688785715, 0.4757824519922158, 0.35042734751091803, 0.4088268627837724, 0.26769072028707064, 0.13803334034166564, 0.22292286266639083, 0.3725966901611244, 0.3650064516335117, 0.2435778141990128, 0.17320263338103967, 0.273745341769916, 0.2853594225842732, 0.2752813544736187, 0.3065063593270749, 0.3027499849171161, 0.45692637437886224, 0.3822034107879308, 0.29602819080816506, 0.1580362315496502, 0.10417540366062576, -0.0047432070793929654, 0.01700863807641457, 0.01909802378570395, -0.08853388469367594, -0.02977043990366378, 0.12152338864214604, 0.15721581645849975, -0.09648428481160323, 0.101721214950214, 0.17622276600859024, 0.3713648393494294, 0.4801585810230978, 0.6088804706836031, 0.629354726196333, 0.6031921264739373, 0.6404448423536192, 0.5697473880199423, 0.6130246415875632, 0.35101700817520776 ]
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude increase over time", "Amplitude remain the same over time", "Amplitude decrease over time" ]
Amplitude remain the same over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
548
[ 0.00004454941875451166, 0.23498323808994834, 0.8224014800120499, 1.0360901881890305, 1.4296630129134844, 1.8791342929422217, 1.9261146518960806, 2.008542440920583, 2.2168840526610185, 2.2691550023816047, 2.434225542743079, 2.2971819721088593, 2.2618566757714986, 2.0580967973794286, 1.9996387780516667, 1.8097986991204986, 1.2610456647250914, 1.2571444280509998, 0.8995119124915683, 0.47935295688522483, 0.3974972994921261, -0.07528348423012499, -0.6425383043052302, -0.7983896676607543, -1.0864651784767934, -1.4981204601309823, -1.7402725711882916, -1.9661688336573964, -2.3854400196469943, -2.3215361680292963, -2.3989232261291487, -2.2487044595618175, -2.3191507345593894, -2.2881193910303765, -2.12043707005816, -1.812817097696103, -1.6925959324647388, -1.463821176218513, -1.1088639589898073, -0.6492508892221653, -0.3383624577442323, -0.019145135766669746, 0.36053979041948686, 0.6423926341305668, 1.0196350230760192, 1.2890847889723767, 1.610652115042364, 2.0211396511569135, 1.9810462293086781, 2.1734658505837303, 2.2180178017811127, 2.242710224005354, 2.3616375736530943, 2.253449422261379, 2.3721779394645064, 1.9972114684553177, 1.936595437112883, 1.6443786035517935, 1.230444263489674, 1.1368763385087852, 0.6056057046341938, 0.3694197157340388, -0.007951570591721996, -0.4684274468110491, -0.7851460777732703, -1.1281182473022549, -1.607400114442512, -1.7548089048113138, -1.8795407113412885, -2.0143471509696935, -2.36839708929496, -2.3191615442602354, -2.3772443532035314, -2.3685066127436762, -2.230440015546051, -2.10061364070508, -1.8750537245695813, -1.5467266262633528, -1.3346800793901514, -1.0712101261495095, -0.5792276962502597, -0.3002271859026159, -0.05638142256037037, 0.1963264511541017, 0.5770042520691673, 1.1110690451387053, 1.27289253159214, 1.5220812095110887, 1.796121065386403, 2.008494771865238, 2.319065244764197, 2.3228942137761854, 2.251256253733033, 2.385714297837828, 2.343280799983347, 2.1573314633803493, 2.1535367147085185, 1.7809189719212326, 1.6763150289454107, 1.3310491296939597, 1.0402143268296227, 0.4917412119787239, 0.25141302341304905, -0.12935985825180496, -0.629037605710486, -0.7277154139408648, -1.2517603484777204, -1.535437289662959, -1.8458198404086916, -1.903615914414786, -2.30945581356861, -2.2278067116064184, -2.2643758167867913, -2.338992722848413, -2.289423338966844, -2.1975477106580703, -2.2281386338125664, -1.7995725932843594, -1.7535026732834669, -1.4386856843138227, -1.1564015281337154, -0.7388313829081599, -0.4882251607446914, -0.06401507709047845, 0.17112587701763765, 0.7696086989088631, 1.06343696646423, 1.2870767189621568 ]
null
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 30 to 45", "Lagging step is between 60 to 75", "Lagging step is between 5 to 20" ]
Lagging step is between 60 to 75
multiple_choice
98
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
549
[ -0.4880481327131587, -0.6268877094267437, -0.5779694546716367, -0.40627118081017943, -0.4284055590340272, -0.36514441613559623, -0.059784639405562404, -0.19632534713317407, -0.019509836323472883, 0.47454525466695513, 0.829426922272958, 1.1481550799951235, 1.290588591510155, 1.5157782942736076, 1.4211285935048281, 1.4052114304763517, 1.366556301522768, 1.2367933451389954, 1.2654672326799714, 1.1628300602309083, 1.1750048052625528, 0.904903569551836, 0.8005521291930969, 1.057916165504327, 1.0960531951846344, 1.3571479510669844, 1.2386845157099327, 1.1901122513135547, 1.23215681821456, 1.1940719311763406, 0.9213239392852077, 1.0322119950055901, 0.8394111898073114, 0.8373723235893336, 0.4206079032730806, 0.2937305062056256, 0.2690348223963618, 0.3788388852902187, 0.1371641872317521, -0.037169396141555136, 0.30796107190130595, 0.6923975397022188, 0.7930841937779427, 1.0434079301685193, 0.9661566961566074, 1.0939581545338808, 1.2119299493421634, 1.0277344211430184, 1.0661749926956958, 1.0084003159153154, 1.0803564564375283, 0.9756830445368373, 0.6910824986517295, 0.6944580791455187, 0.8569423921004579, 1.0194555132197316, 0.6719951127637258, 0.7076830474970334, 0.8423808035722289, 0.8691870891129123, 1.0383310162584503, 0.7623982667629905, 0.5384130148600457, 0.6537019843264356, 0.5855724115835798, 0.8150302690446892, 0.8750465751203039, 0.6998891622343896, 0.5148758927548069, 0.14774426260156007, 0.2822284818421925, 0.25939329947158307, 0.4386459186211312, 0.4890658161240884, 0.5114661689707524, 0.6709753880105751, 0.6518212840698935, 0.586804291347372, 0.5867823089667527, 0.7514449768823087, 0.5672042040503443, 0.7480976853889676, 0.7604924201618948, 0.6853597168713698, 0.7212066324216507, 0.951332744259751, 1.1800060729092183, 1.2567052023281724, 1.3791598819348097, 1.3876172841573762, 1.27322168194603, 1.3602543353213559, 1.2724583669777003, 1.071651871081136, 0.9890346265488194, 0.6678112202619788, 0.425532108360461, 0.8224658656643279, 1.0427265158603842, 0.9957489549315802, 1.0978898758270994, 0.9119487835298937, 1.0413690386593815, 1.0924688937314422, 0.9545668348220572, 0.8913276781951992, 0.81451063040306, 0.9807881447466997, 0.9648698141121099, 0.6561542899224001, 0.5683409521595685, 0.41529465906243807, 0.12617582005652603, -0.022727964956169962, -0.44497384060585926, -0.6270531043508829, -0.5886913110158486, -0.4999327310567491, -0.4014478001815267, -0.21417040988191374, 0.018149878207396827, -0.18226921402550364, -0.4515715504558138, -0.4432404693591249, -0.33631345061441964, -0.499721425120931, -0.44795171739833534, -0.09142792086265136 ]
[ 0.5148758927548069, 0.14774426260156007, 0.2822284818421925, 0.25939329947158307, 0.4386459186211312, 0.4890658161240884, 0.5114661689707524, 0.6709753880105751, 0.6518212840698935, 0.586804291347372, 0.5867823089667527, 0.7514449768823087, 0.5672042040503443, 0.7480976853889676, 0.7604924201618948, 0.6853597168713698, 0.7212066324216507, 0.951332744259751, 1.1800060729092183, 1.2567052023281724, 1.3791598819348097, 1.3876172841573762, 1.27322168194603, 1.3602543353213559, 1.2724583669777003, 1.071651871081136, 0.9890346265488194, 0.6678112202619788, 0.425532108360461, 0.8224658656643279, 1.0427265158603842, 0.9957489549315802, 1.0978898758270994, 0.9119487835298937, 1.0413690386593815, 1.0924688937314422, 0.9545668348220572, 0.8913276781951992, 0.81451063040306, 0.9807881447466997, 0.9648698141121099, 0.6561542899224001, 0.5683409521595685, 0.41529465906243807, 0.12617582005652603, -0.022727964956169962, -0.44497384060585926, -0.6270531043508829, -0.5886913110158486, -0.4999327310567491, -0.4014478001815267, -0.21417040988191374, 0.018149878207396827, -0.18226921402550364, -0.4515715504558138, -0.4432404693591249, -0.33631345061441964, -0.499721425120931, -0.44795171739833534, -0.09142792086265136, -0.35282421312146944, -0.3516676673662398, -0.1484673760622844, -0.18715659607879073, -0.10639201493896586, 0.07164426279923729, 0.012626198759645234, -0.19495923566233025, -0.21468867419894772, -0.42883154158686926, -0.5365024037662576, -0.4500485950440282, -0.41461519815857506, -0.21942083406649526, -0.1740350630489475, -0.32655688678340783, -0.5215334673854091, -0.39872383135035655, -0.3517324775052766, -0.38931177076546325, -0.3230326174374343, -0.4607996520990891, -0.9391882376823458, -0.7352011042529364, -0.6082581681603941, -0.6252707020678816, -0.8010647918091182, -0.8428336585486633, -1.1811912578233155, -1.1587918113700808, -1.5374887414881497, -1.516632867477252, -1.6546199504006192, -1.6834930732031852, -1.9063409715824295, -1.6113114041694228, -1.5407907049620404, -1.6754765452736915, -1.7105857412954832, -1.3964040844080035, -1.5821983274730222, -1.7997858204200377, -2.025748375577509, -2.159019734806967, -1.8665564884619625, -1.9760778299442907, -2.0576568862779587, -2.0182096798461564, -2.0243049158496214, -1.8346557600461204, -1.6739952373453806, -1.6099724252305097, -1.6549248174623992, -1.4671653115294472, -1.6211594138587102, -1.7876798584556426, -1.867481734305307, -1.640220576442142, -1.8039385855017012, -1.9213847120838285, -1.8873521590323008, -1.8984338354156574, -1.9726601054349095, -1.8812983205394036, -1.973848335476695, -1.7672679477814395, -1.7208245972790386, -1.5219791232340452 ]
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude increase over time", "Amplitude decrease over time", "Amplitude remain the same over time" ]
Amplitude decrease over time
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
550
[ -0.0274984386289914, 1.5491062878471682, 3.1178323395154686, 4.475788980643483, 5.8097498036090505, 6.714856746504323, 7.5951513441780145, 8.170448480392203, 8.45128625086864, 8.559713787511598, 8.230711714410834, 7.460739983274622, 6.766045629433337, 5.730984269205239, 4.707993332661232, 3.067918298680734, 1.5055231948415646, 0.09607754624084514, -1.4513551837882879, -3.0108132920859436, -4.425966274607982, -5.560170050143174, -6.799717997651647, -7.579996798458289, -8.173698905504788, -8.312192037347693, -8.407465314372617, -8.27079345901859, -7.712086984445463, -6.621310859033469, -5.6623936613329615, -4.452877861508382, -4.535808195563396, -3.4852313486423863, -2.8631515379036823, -1.829272696896876, -1.1523329939062417, -0.40364629546845826, 0.3414396599161683, 0.8077783342182424, 1.2267318138936563, 1.5547521097877157, 1.6191396942877658, 1.9828500072410455, 1.7681286427599905, 1.8911420569722235, 1.390506266911454, 1.1472499626659622, 0.32342392141374743, -0.03347040801490454, -0.7056821919354799, -1.4453729502039938, -2.5578579959475873, -3.346503595037693, -4.114509096262785, -5.060407060190341, -5.938440712635518, -6.868243870382947, -7.49651722987808, -8.148990517080517, -9.08165214416402, -9.639501687572151, -10.170956600176714, -10.429203007866677, -10.47469671934574, -10.004586962250425, -9.321335403876866, -8.765943830423609, -7.862956496680064, -7.616388383881577, -7.3819631905443615, -7.139221058156802, -6.855486993473121, -6.829413427312693, -6.944072672075883, -7.287067485919127, -7.543922929672022, -7.991885221780602, -8.609402075322329, -9.18862679592081, -9.68323156440332, -10.360737381500607, -10.986852067482182, -11.608893453841315, -12.146551271566919, -12.925172273552429, -13.260057165198873, -13.632370006838181, -14.0187392214431, -14.14235257953201, -14.231470710723253, -13.919901396045114, -13.930268924981352, -13.593917839147991, -13.26206015647818, -12.791814467208507, -12.874051276753596, -12.270362595192195, -11.961056311344178, -11.766445388078948, -11.583158563121097, -11.304352420530394, -11.283661133601509, -11.255093047458862, -11.44574934959615, -11.466688285263096, -11.706406407401888, -11.92105682292328, -12.387337618910992, -12.768874516439551, -13.254931751919862, -13.332313741777837, -13.655824731228934, -13.986942761338865, -14.295289299836393, -14.374215320399477, -14.310481167222521, -14.074693289128835, -13.97496168865802, -13.913129623047263, -13.424101273285439, -13.207428067551277, -12.812737467037524, -12.299380112525597, -11.976154851662436, -11.639574255525481, -11.50499998097123, -11.240068470426245 ]
null
The given time series is a sine wave followed by a square wave. What is the most likely amplitude of the square wave?
[ "17.28", "2.42", "5.98" ]
2.42
multiple-choice
24
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
After the sine wave, the square wave follows. Begin by identifying where the square wave starts. Next, measure the distance between its peak and baseline.
Pattern Recognition
Cycle Recognition
551
[ 0.053098682936200216, 0.6389826729906898, 0.656175460941062, 0.9286548150057513, 0.9377043483947608, 1.4008689677894712, 1.528775119186639, 1.5682239522270143, 1.6319247341992227, 1.6136321273567036, 1.5164366932196616, 1.599766401398934, 1.1578457569229936, 0.9711273466305488, 0.6372371505220678, 0.45395486167955795, 0.07716732476179987, -0.2868549426882754, -0.7600944565610099, -0.8304894902298892, -1.1409996952514687, -1.3296527017122919, -1.605656915984575, -1.4520589378918147, -1.5577776178187623, -1.4867298951675727, -1.440247553475558, -1.3624661862763099, -1.3492898637554156, -0.8177065719814691, -0.8241628733658487, -0.46012809725396714, -0.04821393102277727, 0.2755982794178943, 0.5685077687355717, 0.7633949941995829, 1.0046996115738946, 1.5408064821037966, 1.457038565014381, 1.563546042354043, 1.5677977260981928, 1.6614958067314185, 1.5932314355763852, 1.4491202490319222, 1.3117497931166422, 1.224938750903677, 0.7247103001595092, 0.4947050251899767, 0.11337711887822356, -0.11129336710496132, -0.5112492683258097, -0.8035216532703149, -1.1653034256028234, -1.23966585714105, -1.3896424505245166, -1.3759469853901232, -1.585762310065153, -1.6870859809552776, -1.7258243763325434, -1.6000205062058968, -1.4399910032783931, -0.9059500834210479, -0.8072258196719277, -0.6051616754997534, -0.6428510140888906, 1.7865176435740266, 1.811198488162781, 2.0037539492389342, 1.869134082907644, 1.727381785886024, 2.103174355086456, 1.758112313676829, 1.8130448966210322, 2.003142866376807, 1.9136433908743256, 1.8251361276509979, 1.7489917350040354, 1.7754594167209161, 1.7814788157057724, 1.872831607398374, 1.8912346093415493, 1.8572629647502847, -2.96977991615298, -3.0709308542799794, -2.9365449241381585, -2.8378066710768475, -2.9821377029355043, -2.984087205403495, -2.9575584295552626, -2.854038048784608, -3.0553308347044115, -2.820773801187334, -2.9237363108170236, -2.9629904651906607, -2.8445346510941154, -3.084064742148193, -2.9136539811360764, -2.9228275783098856, -3.0594040411999264, -2.919794722465165, 1.9004589455514675, 1.8542546156444255, 1.9584101831364522, 1.8149530023776526, 1.8991605521977557, 1.858961049367887, 1.8106587453126521, 1.922416896125296, 1.8513548528785038, 1.7248277817424642, 1.6920218171416206, 1.9510341744217392, 1.750068416890736, 1.9000668769534794, 1.877623616976234, 1.835275249916329, 2.0677952733349527, 1.8900958294594634, -2.8902951864923407, -2.9373769132265664, -2.9890124770722952, -2.9677674097841416, -2.820004258194499, -2.8570480055005043, -2.7706598915916874, -2.943694325463259, -3.053552241330622, -3.0099102291965285 ]
null
Is the two time series lagged version of each other despite minor noise?
[ "Yes, they are lagged versions", "No, they are not lagged versions at all" ]
Yes, they are lagged versions
binary
102
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair", "Red Noise" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the noise. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
552
[ -0.3486003104108731, -0.4173843467309295, -0.3441853297722625, -0.3421782943175726, -0.3108548342781406, -0.4216460733938327, 0.037077983387969145, 0.09707449703752105, 0.18686681101930142, 0.26499362915566793, 0.2595571148482751, 0.37988309696481803, 0.21713918172988006, 0.3803432647094671, 0.34582123080959914, 0.4005498190302809, 0.040989412883209966, -0.10002889977640303, 0.23594689816767392, 0.40292781583963067, 0.5526027887928399, 0.6620375056907251, 0.6638984321616688, 0.8091446916638242, 0.7853978664411754, 0.9608339329155294, 1.2578423045480234, 0.8761945877286768, 1.1393695106926502, 0.5237245516907045, 0.5981503608191923, 0.8397444072612192, 0.5407262716976783, 0.6511483239344467, 0.9903775226907404, 1.0811815034200223, 0.9485755630465313, 1.0139577247163472, 0.8600850808720797, 0.6515304632615173, 0.7407774493914537, 0.5162875195154746, 0.6580108395161892, 0.6774252292455597, 0.5433158831412112, 0.49511346600850925, 0.5057509385314862, 0.6208241530819649, 0.7955274772122594, 0.7619359948142161, 0.5655001137318002, 0.3971892424845752, 0.37170979400949916, 0.4382168008123099, 0.28587389402278296, 0.3700417925571127, 0.3668967969901353, 0.23289634838441864, -0.09870358379267705, 0.3799383443065047, 0.23121517412665246, -0.030814643149674498, 0.37931150818697723, 0.1845869919300409, -0.02277590503281443, -0.04021124676534515, -0.07615278558169741, -0.234277272652569, 0.013625185288080613, -0.18084997943320652, -0.07271957275409101, -0.4384279051125856, -0.19096979217726004, -0.5026325862620278, -0.16049786520443643, -0.6208906460159453, -0.275029566304355, -0.29803045658947513, -0.36173374750216925, -0.4608188693260631, -0.3235132679762779, -0.5046530779807872, -0.660695061280339, -0.70707932806508, -0.945227620875855, -1.0307349408157345, -0.8059813502691653, -0.4015459967162099, -0.6491236903014614, -0.8312786414579793, -0.6340339177576417, -0.743594297155978, -0.6930144256402618, -0.5935343919133866, -0.4892477305573056, -0.4409201070362082, -0.005901528470353287, -0.41624843496815006, -0.09522954429727787, -0.0140687837425999, -0.09163478981752765, -0.12215529330365069, -0.302364092520116, -0.22531972900431552, -0.5127935681772748, -0.4117458455909333, -0.20321621325629927, -0.23391087303382999, -0.15295076086174023, -0.34500935519759923, -0.08123864666766628, -0.29779210175347287, -0.22276566927944422, -0.2979746904635241, -0.3317625244395192, -0.31488181661699743, -0.6574841939409358, -0.49483215283921206, -0.7298254561927211, -0.5973181589257199, -0.5599667060031133, -0.7056887155494295, -0.5249581851998824, -0.4204456122167013, -0.2891979439899555, -0.3713260347450448, -0.5490907280066641, -0.25136464074932763 ]
[ 0.5227301026458101, 0.7556790886046922, 0.6314764089002675, 0.7887206376256555, 0.9369601179703145, 1.022855416686956, 0.8791048761015725, 1.1829492268257547, 0.9484016680656643, 0.8300911277416181, 0.6954748829362499, 0.47162193695331434, 0.5591700739302425, 0.7574459347113589, 0.564134697762469, 0.40090508428899946, 0.4993288414889857, 0.3767743796998815, 0.7525050872044841, 0.7366351057453102, 0.5525842006116657, 0.5345807659880664, 0.6098558277408714, 0.4185257812740748, 0.569811165860884, 0.6013517567522616, 0.45518375131258554, 0.2701129336242916, 0.006360573099091715, 0.32009397807900875, 0.34730536960571345, 0.3713491242022785, 0.07081941879435956, 0.036095119880195245, -0.0822641589682656, -0.0193092968723673, -0.05003315323418692, -0.3224404310775567, -0.12301092492365771, -0.01718836573547422, -0.13742289584689962, -0.35608057300151325, -0.3243351028627233, -0.2936363323948552, -0.42386324404780595, -0.45242396703699417, -0.5473361770147153, -0.6141254384067958, -0.5433748652929877, -0.48136195450043584, -0.283521634562519, -0.6203683054229483, -0.5136364312058295, -0.6169521473064372, -0.824804843455166, -0.8703037061071262, -0.6371066286688702, -0.22530074642120934, -0.5585929764795613, -0.7149284196385695, -0.6443352190509415, -0.7181627510247034, -0.6174663060498478, -0.7247377907039467, -0.41983957532600275, -0.31074294009733694, -0.10656027442930427, -0.2674825023810755, 0.07594817109034455, -0.1664481102593592, 0.010763092722176432, -0.0575990313304148, -0.34307854352949774, -0.3453128055663018, -0.4942505274589577, -0.6224218023436479, -0.43653051393191133, -0.1457982734996317, -0.39159351128333575, -0.4180035298620686, -0.21981401232635828, -0.1999839938602171, -0.28565164874670423, -0.22034634652890234, -0.33251603972072946, -0.501263751681492, -0.4934277276582135, -0.6632612609508362, -0.5359829164968658, -0.7097950682133681, -0.6203085585475818, -0.603635282385041, -0.4327087307523201, -0.2806249579088986, -0.3368131800119483, -0.3874522499505092, -0.455880840880532, -0.10240782624187372, -0.1719173084006307, -0.45730359155557165, -0.30714628571976177, -0.6226462739811093, -0.5182236741746017, -0.2672754522286334, -0.23022556414992812, -0.5926460399304061, -0.2057755869763071, -0.3068137137026395, -0.3943714121812981, -0.04904500810910112, -0.2606648997613722, -0.3235743659056854, -0.33664649966570215, -0.38059936141214734, -0.1611085987448193, -0.06282276948235518, -0.1078703560299722, -0.10750883479208989, -0.2566762464168123, 0.03170561060443814, 0.3354516409667513, 0.2583301535767364, 0.40209477124299575, 0.20356389709547212, 0.47745129848196366, 0.885744046593868, 0.6929669674674889, 0.8857556802098387 ]
What is the most likely autocorrelation at lag 1 for the given time series?
[ "Negative autocorrelation", "High positive autocorrelation", "No autocorrelation" ]
Negative autocorrelation
multiple_choice
46
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Autocorrelation" ]
While it is hard to directly measure the autocorrelation for higher order lags, the autocorrelation at lag 1 can be approximated by observing the time series pattern. You can tell this by checking the sign and magnitude changes at each step compared to the previous step.
Pattern Recognition
AR/MA recognition
553
[ -3.063885076196777, -14.755001864006, 4.336127995836233, -1.6782481039351418, 5.768322018753793, -19.799194204673952, 14.946968698314945, -6.561029006112314, 1.733705185897049, 1.1713323356262972, -5.812584688945806, 13.742031268151862, -18.986482153184202, 3.7684033316035634, -2.725454024667344, -12.154896503151084, -11.327194678107032, 19.899108723025762, -25.761531794028798, 7.272709609384911, -13.93575545700401, 2.5820980514952545, -3.4867930528316435, -8.145432894594354, 11.498207738237035, -2.736224879012477, -10.560934602945371, 2.267781452872417, -7.0447975626837955, 3.985764436483618, 7.638223620649924, 5.292555253506142, 20.754629658852952, -39.29744301862414, 22.194997183383027, 0.3840940640434134, -18.31427842900308, 32.56407338490953, -24.577745976495176, 21.50352451142159, -30.000799470331977, 19.489007376222617, 1.8825576961209673, -1.9828775093090416, -2.8586882746548175, 6.344142583516215, -6.997490069839543, 9.049503553936045, -15.737016164748049, 11.818086445717388, -15.865231810981097, -5.347480958161897, 9.09756263900637, -19.615778526760653, 14.045213520367502, -1.9754883580148928, -13.397743878992387, 16.76503607268993, -16.410163427838572, 3.4628967330002176, 17.458915502460513, -13.972695359516765, 5.497227391846001, -12.19991113714082, 18.571553594079617, -20.97780513989781, 24.347425097328507, -19.502738389094414, 26.764071355614018, -31.836651559320053, 16.438688856496, -15.961004225497486, 10.788138405150232, -12.176081011090291, 36.05526886313741, -8.211745046990849, 9.559946785803112, -3.4782366881379136, 0.41826754971452207, -10.832869374952926, 6.84557309440982, 2.234719039092681, 11.268492384405945, 0.9422902977022982, -15.851575169703953, 9.78898335422603, -22.51986233204075, 29.704325439659783, -27.887304299731156, 21.8387422834746, -12.670491146729665, 37.79779211550272, -27.55548429450692, 19.661677057543017, -28.139762858070814, 37.0982047714877, -31.494928460160917, 41.76736741740573, -22.35776280443735, 13.25664921746516, -24.528081182531174, 22.34815611806101, -24.027560182164827, 19.61550657029492, -5.201909187692561, -12.374293806094286, 12.545573485557568, -2.440496879588686, 10.033503121231583, -21.6622242088595, 21.523144064827235, -5.183149432794863, 7.578857530236648, -7.220028085274685, 17.172151873954185, -20.680909603551648, 1.246398600808618, -3.00309702995621, 7.752929541004954, 4.1870239815603725, 1.955406556431024, 6.793885442103758, 5.018005947356589, -7.408174820866377, 4.447146837617204, 9.313960461404992, -19.55273861143087, 19.933519504367645 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude decrease over time", "Amplitude increase over time", "Amplitude remain the same over time" ]
Amplitude decrease over time
multiple-choice
29
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
554
[ -0.18486356916305208, 0.9443223992542332, 1.827079128702492, 2.6992964056744273, 3.744198701093985, 4.47094152522121, 5.158825218397271, 5.7433638945780165, 6.2926062092353465, 6.730320331762287, 7.170721734910709, 7.2216997159819165, 7.120001930507577, 7.022894101330593, 6.782346675563106, 6.495737560745914, 5.970269666376396, 5.526477357342634, 4.544119314336442, 4.1054533522422805, 3.250461804572067, 2.4625365541698905, 1.495490177278009, 0.38580847221991355, -0.43114891724047966, -1.477063255895887, -2.5802449771785576, -3.2547953298756993, -4.158464607263408, -4.848110930702932, -5.348362093676062, -6.057780839583285, -6.1819930149755, -5.112165649308809, -4.314785845345829, -3.6349322929397347, -2.893765130862525, -2.096687595108898, -1.247087375331212, -0.7693909774905816, -0.22593725324078637, 0.04280388801222154, 0.5725794359205463, 0.4882292326307992, 0.7183010203047905, 0.8088569906394762, 0.5272718851897666, 0.4648848966879432, -0.024283351279381082, -0.5000721104643571, -0.7810713721165445, -1.5101336311949034, -2.16303161955161, -2.864983958892841, -4.030915892897154, -4.545037483451141, -5.547930432528976, -6.407899216837466, -7.170094274261408, -8.100691010648482, -8.823421175649841, -9.660155524248717, -10.354665491568804, -11.066580297762007, -11.124051467476292, -9.92352852364249, -8.76384980347278, -7.613723756216598, -6.892990582139614, -6.593861793319048, -6.288070918016668, -6.380124227015382, -6.68373554777656, -7.283105922526313, -8.097497675784384, -9.458681689008023, -10.264418388561076, -11.517706632738944, -12.696632106388124, -13.595700813988557, -14.413317792041132, -15.157215115627858, -15.68419221955567, -15.861180036741326, -15.882979955937726, -15.110987279386705, -14.364309542506616, -13.515120194896474, -12.340677506886953, -11.407715830681965, -10.118524389745813, -9.008710310642915, -8.002570089383243, -7.069511390564997, -6.628127819991111, -6.350172450151926, -6.414362553055726, -6.005117184246652, -6.103524895248038, -5.8482867337219, -5.471043115143561, -5.460229244305552, -5.398612882889509, -5.310004792053671, -5.350806342095179, -5.237009574076056, -5.269858398684269, -5.252217731406214, -5.485712467264628, -5.387981003113253, -5.4439399825496135, -5.7056607432005615, -5.778147347744689, -5.982864695067782, -6.254359613942545, -6.482705795632068, -6.650377353250273, -6.704233059689291, -6.902488880047407, -6.916482789501582, -7.091643330471155, -7.1946396757060675, -7.323151386189804, -7.49263441222796, -7.380526404342855, -7.392542591740355, -7.468253570484214, -7.159782149806701 ]
null
The given time series is a square wave. What is the most likely period of the square wave?
[ "51.33", "37.83", "15.34" ]
51.33
multiple-choice
22
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Check the time interval between two peaks.
Pattern Recognition
Cycle Recognition
555
[ 0.11425228195041448, 1.1589633591471171, 1.1732541703649697, 1.195271489318183, 1.08153814365847, 1.138608352331896, 1.1308305749026866, 1.0197621998083313, 1.1371204541544477, 1.2293824294478441, 1.0721980359485412, 1.1208682847069709, 1.126282251433963, 1.0771449047893504, 1.1733014836023132, 1.0376047967073787, 1.2388759117024708, 1.1682319159961019, 1.011934499765588, 1.2754123283215026, 1.122421505959037, 1.0333166081093723, 1.2160668123319964, 1.1550785117776798, 0.9284153894094735, 1.053045328108492, -1.077701626110723, -1.3215680275971433, -1.097104351294138, -1.0898134225623515, -1.2239605480704596, -1.078546871206881, -1.1048649759203741, -1.2247407704213789, -1.0136553051465949, -1.021825980356097, -1.1345850685181136, -1.1254694921720598, -1.0329849660733428, -1.125677674144058, -1.2987021798848928, -1.0569177040928848, -1.1869372919067283, -1.1445956652746367, -0.9598243030377298, -1.1190092072337572, -1.10543786624549, -1.0546446322865177, -1.0550779654454743, -1.1975311365706558, -1.1116412113863148, -1.1019961070402946, 1.1328140494957601, 1.1345335539245394, 1.3643554827106232, 0.988025382774153, 1.203620521852673, 1.2239489404161832, 1.1548897572252301, 1.0405798203455698, 1.27207816285964, 0.8864130733588576, 1.0372846901110948, 1.2227795795551586, 1.0686001994906256, 1.265257812312896, 0.9544308853650374, 0.9944011704380766, 1.0524475428201798, 1.1473512875865304, 1.0834093447948752, 1.0565714345766353, 1.24765100294273, 1.2569558573717925, 1.0641733832621219, 0.9346345790999111, 0.8898629769141394, -1.0816823483548417, -1.0400157976109976, -1.0993115812750227, -1.1127021705409532, -1.1860656213022858, -1.0401133804414935, -0.9377928219429864, -1.327299127566433, -1.113361478711649, -1.2026461947742375, -1.2546579592382625, -1.218608946911319, -1.0676440742644369, -1.0651151400737608, -0.9595825837153974, -1.1047332051183312, -1.2814335228198352, -1.1294283140704746, -1.2442492670544558, -1.226290948475078, -1.0475554539922278, -1.0861932692734353, -1.0468548002893443, -1.1413606445600502, -1.0265584034903417, -1.1469516496618886, 1.217279643107102, 1.1400752537800316, 1.0849116727844157, 1.126820664250487, 1.1038252897353855, 1.2652220113641697, 1.1301551220907564, 1.1054500925934265, 1.0817622741277975, 1.1899297817573784, 1.176402693738228, 1.0782271968016146, 0.9900472083705965, 1.015414545995042, 1.0871951058786578, 1.2405041104447858, 1.080593696908186, 1.046198998836321, 0.9295394285080127, 1.256965503393107, 1.1625141744310235, 1.1852123568334632, 1.2017801650258149, 1.0891383369569811, 1.1140704232076308 ]
null
Based on the given time series, how many different regimes are there?
[ "3", "4", "1" ]
3
multiple_choice
41
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
First identify the different patterns in the time series. It might be helpful to identify their individual starting and ending points. Then, count the number of different patterns.
Pattern Recognition
Regime Switching Detection
556
[ -0.017759599475873897, 0.09166169306401789, 0.1485356519781055, 0.0762075626788137, 0.027169887186109437, -0.047034565184914834, 0.08782990000803972, 0.12078613033202121, 0.21928557958130668, 0.20013762545353392, 0.3295180900577391, 0.22549894501078693, 0.30716563473782127, 0.45734097502806403, 0.3991972313891314, 0.3850834351100379, 0.35696522437063627, 0.3799090081779159, 0.38424330183947847, 0.44127641984164295, 0.597016169579624, 0.5253332378612252, 0.4386172373375886, 0.7764839528669497, 0.6577360219607472, 0.5111176420801736, 0.6336995686926677, 0.7150455789848517, 0.9004886293170071, 0.6452906534466422, 0.8797784504933834, 0.9481955005402827, 0.771453906620851, 0.8326404545275442, 0.7828333709614502, 0.8921906608760564, 0.9349502568350534, 1.030646733362843, 1.0997725599419104, 0.9420170856629607, 0.8461666649877856, 1.0668471727680204, 2.0983254036925083, 2.120404138130259, 2.0899875214524077, 2.163042881265107, 2.3307644080261185, 2.2468046188293145, 2.2014847599797305, 2.2197919867247227, 2.2846376503885435, 2.497950699431402, 2.3494654724696997, 2.400222887309293, 2.389289203291965, 2.5836727402771995, 2.706972364540753, 2.5942500103601027, 2.596678009356907, 2.6323297702767756, 2.4315378478324443, 2.786895170967345, 2.769331796612901, 2.843437705857891, 2.775329453557622, 2.8551173440501256, 2.900795275258879, 3.0936752261965053, 3.004566444224362, 3.3029871192499556, 3.191470887346682, 3.075901524080168, 3.247159550458306, 3.252888958791409, 3.158198097256137, 3.5987416251405335, 3.57188709656523, 3.619334927927942, 3.648703013736602, 3.5618616624267125, 3.721401217167122, 3.9254869105867423, 3.809628034476983, 3.7369598204598966, 3.9674261513068854, 3.969250399209117, 3.9902718987802346, 4.04285682401711, 4.02705494341567, 3.9824607452438343, 4.069426306055005, 3.7912655916918965, 3.9869101537478597, 3.9923952111607077, 3.7990745487458826, 3.76603311901256, 3.8350153697601317, 3.836744840683055, 3.9715303338117205, 3.828023911619261, 3.797132340687143, 3.8148932213727003, 3.98120923098447, 3.863939737533637, 3.8379997000871433, 3.838213655279622, 3.9717096411092725, 3.7608758375431885, 3.960633241824416, 3.843421445149449, 3.799619279586657, 4.059040670104512, 3.6966760738581175, 3.7601608494081695, 3.665575703975363, 3.8773544274722727, 3.944316526310716, 3.9356793136129054, 3.8843713133139346, 3.73550379374663, 3.712031145304135, 3.574727668330606, 3.938721401625085, 3.775321258448645, 3.672517162673743, 3.8478079445862803, 3.6110152065384766, 3.7422432641636365 ]
null
Is the given time series a white noise process?
[ "Yes", "No" ]
Yes
binary
50
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is uncorrelated over time. Does the time series seem to have these properties?
Noise Understanding
White Noise Recognition
557
[ -0.009922563644757174, 0.4107178142255832, -0.1656893247401567, 0.2726663659107208, 0.10149425174294861, -0.10269355758549589, 0.24720988464107918, 0.30789553211795856, -0.1970094636527398, -0.1889745182514813, -0.4032944454998554, 0.12939799327512566, 0.3059044559283636, -0.0076082023166036405, -0.04988573383163397, 0.1748628507827215, 0.3023697797855779, 0.009666660241339137, 0.11177985865175492, -0.08020474642165053, 0.06521141938568484, 0.29557582715225467, -0.10580487923639535, 0.02852767574835731, 0.04979751363410979, 0.04637441230135157, -0.06474230579128862, -0.2900953479708618, -0.177951981446529, 0.11495914559241412, 0.2830842044234847, -0.08235550371697721, 0.22642974544144678, -0.33720087215111016, 0.13680680663955447, -0.3775623142196677, -0.11836948740814313, 0.23092925702060263, 0.03237146376510655, -0.5225709757009992, -0.23927980103884522, -0.1949428704122193, -0.2733289860488349, 0.09074290865571595, 0.021136977831027914, -0.4573146995072006, 0.4711190227314053, 0.08061622082655946, 0.24371629886804194, -0.1190412001598892, 0.18882689655040982, 0.05500288110676173, 0.08305233458828012, 0.24347880109497055, -0.22188824428725906, 0.01076087902390975, 0.15908215129286696, -0.45354615617145233, -0.10786981588414608, -0.09048248082474786, -0.030736005466124143, -0.018521184856233858, 0.04020780450277667, -0.02136838665878313, 0.2694817156756014, -0.30927669932154217, 0.05828321679418935, -0.3034090503649583, 0.17035533983092177, 0.06193547647225977, 0.05453432781766651, 0.13607918349014567, 0.3908788087307609, -0.10970606902922367, -0.4428834116943854, -0.5785487708468343, -0.2642902646039159, -0.10755879891302342, 0.043002407769492115, -0.09022134015412347, -0.2830121662899133, -0.21916922561344176, -0.058221627608107285, -0.16716842943364857, 0.05650984766469122, 0.3227612856750529, -0.23987371335160856, 0.00116173990097586, 0.4132916733358061, 0.06693462799293864, 0.21917670238273343, -0.09544078118758641, 0.24598027006462472, -0.10437625490824609, 0.046250780688549056, 0.25615753408570047, 0.35095895486731316, 0.047898419902737216, 0.10520020457039206, -0.24692894946146837, 0.02219311246265655, 0.058457230424521306, 0.23955377984183598, 0.18770525448025469, 0.08760526645654858, 0.11807286650536894, 0.2397930487290736, 0.09148097084466092, 0.021123582206027648, 0.07937931216992797, 0.2427880020720858, 0.5581291374549798, 0.3457318758371083, -0.0851182395941543, -0.19881188136888592, 0.37747069761028995, -0.12349164642145173, 0.002224640523454672, 0.3270204862075316, 0.14140555390261803, 0.22173963107112163, 0.22657937548905382, 0.1075624387781846, -0.4747351899346737, 0.1423433415414606, -0.002315195492802402, 0.3222966850205484, -0.5854667154209647 ]
null
Does the given time series exhibit any monotonic increasing trend?
[ "Yes", "No" ]
Yes
binary
3
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
Check if the time series values increase over time.
Pattern Recognition
Trend Recognition
558
[ 0.015018490812220134, 0.03543898503079284, -0.019618365117283418, 0.04021353805786725, 0.05689311082169264, 0.09286130883792967, 0.021623484550620166, -0.003532876147113926, -0.014858032195603235, -0.015678846116632252, 0.08124671928498696, -0.025881509205664538, 0.08624982903134884, 0.0061889153240750686, 0.016636978135758748, 0.04106029663449147, 0.022181838319371146, 0.090554365555048, 0.12884516058389886, 0.03344619909375216, 0.045567686370739435, 0.05943291895268513, 0.0906651493612731, 0.06610583416360916, 0.1306938627297373, 0.12423724730567152, 0.03436950144571258, 0.10556551691059107, 0.14856265144345232, 0.07133611840017506, 0.08247339016544085, 0.07629041921656864, 0.08026670700967074, 0.037089124795210385, 0.05379472976916144, 0.11300057420532099, 0.17341625972716912, 0.09172938959072609, 0.09369730925708568, 0.19033191515244924, 0.08141288970151259, 0.06249907183277338, 0.09885015154593381, 0.10860012643592383, 0.06848177903807971, 0.13620730500210815, 0.18228001213195744, 0.09630813645271209, 0.1542275628748583, 0.16966575491115385, 0.153689867820729, 0.16756147485329356, 0.17116579566266402, 0.13402317259223703, 0.22934295789748957, 0.22247985634219708, 0.22331317770113077, 0.2194248710194225, 0.1193246659071648, 0.22221129848903265, 0.21456510717164606, 0.13027928233445946, 0.1861280506660211, 0.20887844516244625, 0.26735584566700943, 0.2330233808813638, 0.1727797852290748, 0.2780159543660356, 0.21528695358267794, 0.20647780780253083, 0.20677545039376857, 0.15821137340354957, 0.2217243469784583, 0.24908313427675155, 0.21701295706723897, 0.25229153558758827, 0.20418982924748297, 0.23618322926512833, 0.2575682441109572, 0.2556483572188244, 0.18719561361221643, 0.23685653932526116, 0.32440566765770834, 0.2410058608327136, 0.26441629351290824, 0.2634661813105808, 0.3326108703706341, 0.324669126726015, 0.30855296812094596, 0.24067263574672118, 0.2969526113830823, 0.30841861457007697, 0.2610466263123089, 0.2573307445377944, 0.36318815686490796, 0.286332634204944, 0.3658779119591329, 0.34437586334782205, 0.3240170731570231, 0.3289382938673003, 0.25817937764794424, 0.3254176647972565, 0.3768248795156427, 0.3506248278493553, 0.33274725704093855, 0.3980076474914113, 0.3254928535593755, 0.31130387536830395, 0.3452883571657598, 0.3728617366923258, 0.2769249535183331, 0.3599352755934102, 0.3840325845750943, 0.34410096288460906, 0.4021429623249488, 0.38670714995215266, 0.44967815716669246, 0.337480540279954, 0.4036866201145001, 0.33312381275213976, 0.3124130419624752, 0.2987963915400676, 0.40458694631897174, 0.3936060228252814, 0.37029270108321233, 0.3218077404231766, 0.3681448507214954, 0.3989823325033761 ]
null
You are seeing two time series that are random walk. Are they likely to have the same variance?
[ "No, time series 1 has higher variance", "Yes, they have the same variance", "No, time series 2 has higher variance" ]
No, time series 2 has higher variance
multiple_choice
93
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Variance" ]
Random walk is a time series model where the next value is a random walk from the previous value. Variance refers to the distance of the values from the previous steps. At a high level, you should check the distance of the values from the previous steps for both time series.
Similarity Analysis
Distributional
559
[ -0.7864481372852323, -0.9456048352662366, -0.9853435365104749, -1.448859239300871, -1.2037242820160936, -0.8771410604348796, -1.136553881250949, -0.7411371443545536, -0.798169898122156, -1.061645629910465, -1.1384891448938597, -0.9856433079835301, -0.9987424338846006, -1.1393329682581461, -0.9952670331154784, -0.8287885116279419, -0.8710897415355628, -0.9578609109643115, -1.0905660718184464, -0.9741680477573065, -1.3643512164037543, -1.5498403688466054, -1.5892520448313185, -1.7809662326140983, -1.7191938447882114, -1.6794577905784556, -1.0761073202164964, -1.2612617114438598, -1.2639721509633264, -1.4967194120842802, -1.0249183097705135, -0.6111454931368473, -0.9924968424084597, -1.03249972108295, -1.0237357622084542, -1.1064765043970444, -1.224166187482234, -1.0366663782034162, -0.6018185026249281, -0.4055255788788255, -0.1953462976054373, -0.2816492441198589, -0.034210936335719234, 0.2124269910128739, 0.09698484976066574, 0.040292700340542366, -0.3428348420068216, -0.6718112725244738, -0.7773043282124394, -1.037496147898678, -0.8418459725033524, -0.880510939211267, -0.7509772833057952, -1.0478968515048086, -0.732010273372881, -0.612937107241601, -0.5145627968403211, -0.2842661770663892, -0.20673454543594078, -0.4532166818985106, -0.3007430538821922, -0.49225902753943623, -0.4409661315968854, -0.628933743766682, -0.22464745849228465, -0.06177317270364283, 0.18325821297666084, -0.0014041546960195652, 0.07129677448285626, 0.11755795883762617, 0.14439052298023658, -0.3268324152848876, 0.15092265278539999, 0.14156729731283185, 0.26361801549759134, -0.05615569351164249, 0.2998597863098414, 0.6353576889714868, 0.8431603769273158, 0.9095228800835793, 1.477571090098054, 1.716681491078803, 1.384411598681831, 1.439011539075795, 1.5809919534192962, 1.606542531445047, 1.745933800714905, 2.0964723238277796, 2.050587531785612, 1.9581870870271378, 1.6941672997813177, 1.2403320394797275, 1.164387726200256, 0.9996572385451508, 0.9494002001103574, 0.8070610250796025, 0.545736346264813, 0.4118461696527096, 0.5366225233861068, 0.4064381952949568, 0.3605500066997349, 0.870013660705981, 1.13151798360309, 1.1869373852688985, 1.2504149413900816, 1.077652304110402, 0.975520235933121, 0.9080780149709284, 0.9336179964874882, 0.9228880478674878, 0.6484262310498075, 0.7933963237395686, 0.6539106262460394, 1.1214659005467107, 1.4254024934677056, 1.021277663074002, 0.9596916582490053, 1.3508602287720621, 1.512043231655922, 1.5337077662045122, 0.9681619059097403, 0.9152449368783542, 0.9664095056157255, 0.4663534203295028, 0.6155396672446152, 0.44483619439295374, 0.5181180333489496, 0.5501809548219635 ]
[ -1.0126341151988425, -0.4544547026968524, -0.2561032883795982, 1.6590276692775783, 2.9127340654628915, 2.1988011492341566, 3.0356914025647668, 2.5162509011357015, 1.6881780482768396, 0.6472815686266733, 0.3947258247678638, 1.1040223207075517, 1.215690907333638, 1.574233626503758, -0.7013550385716745, -0.862847592555829, -1.6050152710814178, -2.7191480512629402, -3.5680558510991833, -3.5180426512931886, -3.0542187034198784, -3.696190949361426, -3.2807934616383374, -2.7050954892369816, -2.472663265333858, -3.077868995081473, -3.4285718419767788, -3.1974392657692716, -3.702110164700648, -3.246127022210647, -4.027435997352508, -3.7588062519771888, -3.119272691560189, -2.984260661173754, -3.682707509795348, -4.832417660393647, -5.613218994037586, -5.269532486003458, -5.414766780043974, -5.8382288946879966, -5.557763563700884, -6.958175870976337, -7.14303003514908, -7.923445227715952, -8.875781461290176, -9.238640879174694, -7.4953747356641385, -7.049614200968529, -7.8468623837665135, -6.992976447462738, -7.914381890387334, -6.844446124706822, -7.466060257124977, -7.388820084620452, -5.918126899211903, -6.165193484099013, -4.869297836068548, -4.920164870634947, -4.981587615138111, -5.606409764653534, -4.610437405407088, -4.959917511880902, -3.6164848793081914, -4.059164582975862, -4.380222327370703, -3.6722778163984957, -3.7487712313068537, -3.545385645288617, -4.468435622884644, -4.390724875642241, -4.129064578616402, -2.913167569020472, -3.2505327402906126, -3.012543339120297, -2.159148907578948, -2.1290920597516276, -1.3631728622277879, 0.39849920827041696, 0.4193615447922948, 1.3527270919509429, 1.7157710724128794, 2.3204044029853845, 2.8175481368984236, 3.5695963600852827, 4.274957453035729, 4.22540683301305, 3.8333563139581734, 4.133312390496432, 3.1086542398433155, 3.5448792804392317, 4.07083986387759, 3.9447170268385645, 3.975871160076399, 4.618873963948722, 5.145729124517033, 5.799259912289293, 6.347168091237494, 6.422128589892186, 6.41164022212074, 6.709447137914406, 7.734386269099604, 7.920740787549677, 8.841080979764385, 7.407675895109445, 7.634462453833528, 7.692739734001303, 6.518085915653367, 5.449631054303811, 5.774933988380546, 5.850477182434912, 6.407879312148724, 4.576726244320338, 5.330829608969049, 6.090137536551412, 5.114724028126185, 6.107580299631747, 7.370097648438389, 6.4296691277549005, 6.505574688584196, 6.645328533834501, 5.377712320381543, 5.144982839009394, 6.135094580341437, 5.528678596492552, 6.8181703807119085, 7.078054230861981, 6.520011037731135, 6.551829056673525 ]
You are given two time series following similar pattern. Both of them have an anomaly. What is the likely type of anomaly in each time series?
[ "Time series 1 with cutoff anomaly and time series 2 with flip anomaly", "Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly", "Time series 1 with flip anomaly and time series 2 with speed up/down anomaly" ]
Time series 1 with cutoff anomaly and time series 2 with speed up/down anomaly
multiple_choice
75
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You already know both time series have an anomaly. You should treat them separately and check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
560
[ 0, 1.3817052941045547, 2.2964725905666152, 2.4326573399031903, 1.7375546570629177, 0.43492782280269526, -1.0494105291218685, -2.2292144562699363, -2.7195195592440364, -2.364673789426683, -1.2901039436005133, 0.1393985676248967, 1.440999429116078, 2.1744016397144303, 2.088278742920868, 1.2038605539955811, -0.1921274160332023, -1.6428226450504158, -2.673168163432842, -2.9479061961546247, -2.383077625604409, -1.1739449726751643, 0.269947681616388, 1.4609801727359502, 1.9956281408157872, 1.6886664785998908, 0.6347711838028035, -0.8229678238081608, -2.2071509666588174, -3.064841752056992, -3.118203623557365, -2.3569023721873164, -1.0415430701586317, 0.3830015225259873, 1.435545986881539, 1.7586240763520764, 1.2373742354632142, 0.03774006134089325, -1.4487189366755553, -2.7350515352609066, -3.400864209954242, -3.2321349012844176, -2.292392108708137, -0.9015866898920635, 0.4703168534624048, 1.3596403733708982, 1.4632013684492042, 0.7391449065653037, -0.5791363327436704, -2.0606234002130472, -3.220018628755393, -3.6791451093786463, -3.2927201268632817, -2.19667303904886, -0.7629381212982105, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -3.2024011517763507, -1.8032017819447315, -0.4417967170938679, 0.4216274609858266, 0.49250181013636185, -0.26015773245004326, -1.5934457231162076, -3.0713522926558032, -4.209770569916751, -4.637500124824559, -4.219700178520778, -3.102734721145597, -1.6654950239699755, -0.39338862232222627, 0.2830967001236617, 0.13156380910049403, -0.805003535069658, -2.222536143659451, -3.657006215162614, -4.6387529153529306, -4.848681381821686, -4.224386752700211, -2.9809086698924387, -1.539213759295298, -0.3861912635686644, 0.0872757572901417, -0.28369034820220795, -1.3831270930239747, -2.8527984591159576, -4.211336425336404, -5.014333528388235, -5.002143144037619, -4.186232321502818, -2.845368091652899, -1.4329056001743476, -0.42601202130278537, -0.1669711074426159, -0.7493470386969039, -1.9868670063671416, -3.475371508082709, -4.727229030363686, -5.333511711218069, -5.09999587566864 ]
[ 0, 0.5902164558873864, 1.1234853896481911, 1.5487164686831802, 1.8259313134268398, 1.930375369776011, 1.8550639744783894, 1.6115007445360614, 1.2284944025472377, 0.7491957303436143, 0.2266594073636081, -0.28161279064784556, -0.7195861874834677, -1.038456507604105, -1.2016695131818058, -1.1886806953206246, -0.9970683261764752, -0.9102565771200294, -0.8234448280635834, -0.7366330790071376, -0.6498213299506916, -0.5337398743919706, -0.41507579767128405, -0.29641172095059737, -0.17774764422991085, -0.04185075712969928, 0.09738151262461404, 0.23661378237892736, 0.3758460521332404, 0.5205031859079571, 0.6669040259749462, 0.8133048660419352, 0.9597057061089245, 1.1013981967873974, 1.2408306797593827, 1.380263162731368, 1.5196956457033535, 1.6470051938378907, 1.766049104583259, 1.885093015328627, 2.004136926073995, 2.1068964124871252, 2.1942285495328724, 2.281560686578619, 2.3688928236243663, 2.439025677199169, 2.4865844712183587, 2.5341432652375486, 2.581702059256738, 2.6138912946398696, 2.6177059602333554, 2.621520625826841, 2.6253352914203267, 2.617470031317934, 2.578068971836669, 2.5386679123554043, 2.4992668528741393, 2.452630729509125, 2.374987189499471, 2.297343649489817, 2.219700109480163, 2.138885120287624, 2.0319056753362768, 1.924926230384929, 1.8179467854335816, 1.7104967442384174, 1.586105238265855, 1.4617137322932925, 1.3373222263207303, 1.2129307203481678, 1.085041726076045, 0.9569528753296614, 0.828864024583278, 0.7007751738368946, 0.5816788872162114, 0.46398768874016794, 0.34629649026412446, 0.22860529178808092, 0.12927283784790874, 0.03500486515901143, -0.05926310752988588, -0.1535310802187832, -0.22387928885228475, -0.28410759730850416, -0.34433590576472356, -0.40456421422094296, -0.4392096591069254, -0.45828292616754596, -0.4773561932281665, -0.4964294602887871, -0.49169866052103844, -0.46673440394917587, -0.44177014737731324, -0.41680589080545066, -0.3723648533635882, -0.30500995607466724, -0.23765505878574628, -0.17030016149682528, -0.08917842909391178, 0.014560246710560536, 0.11829892251503286, 0.22203759831950518, 0.3336947154665585, 0.46406814851425715, 0.5944415815619558, 0.7248150146096545, 0.8582471043428153, 1.0027668245607853, 1.147286544778755, 1.291806264996725, 1.4363533956823225, 1.5810759533607361, 1.7257985110391496, 1.8705210687175633, 2.0144997629057215, 2.1454608460144104, 2.2764219291231, 2.407383012231789, 2.538344095340478, 2.643705884095101, 2.7483565813398885, 2.853007278584676, 2.9576579758294637, 3.030063917555219, 3.0985614040665466, 3.1670588905778745, 3.235556377089202, 3.2697747357766622, 3.295994631305221, 3.3222145268337795, 3.3484344223623377, 3.3425070821250027, 3.3246733582706707, 3.3068396344163387, 3.289005910562006, 3.2443838880196187, 3.1852515370212013, 3.126119186022784, 3.066986835024366, 2.9883892027114123, 2.8949608798730972, 2.801532557034782, 2.7081042341964676, 2.603114125379948, 2.4859199091419906, 2.3687256929040332, 2.251531476666076, 2.1299623540630326, 2.0019767021245256, 1.8739910501860184, 1.7460053982475112, 1.6190877291516554, 1.4943950243113233, 1.369702319470991, 1.2450096146306588, 1.124461444421614, 1.0168073819543535, 0.909153319487093, 0.8014992570198325, 0.6985530657406595, 0.6199308755999396, 0.5413086854592198, 0.4626864953185001, 0.3871485568884391, 0.34656547117917863, 0.30598238546991824, 0.2653992997606578, 0.2248162140513974, 0.23522638874284874, 0.42435654891771835, 0.7765118619973264, 1.2592299665864568, 1.8266198043679953, 2.42408162575263, 2.9939227053577366, 3.4812911774807533, 3.839817682326271, 4.036384566112431, 4.054532111362544, 3.8961514584094488, 3.5812900970668085, 3.1460899341165045, 2.6390700113269547, 2.11613620538895, 1.6348311741250292, 1.2484159558253547, 1.0003919434436321, 0.9200266617737052, 1.0193435321783562, 1.29188523480316, 1.7133778594440472, 2.2442275355555314, 2.8335927570024193, 3.424613553166348, 3.9602596735899986, 4.389196286312165, 4.671063888721145, 4.780629379404733, 4.710381343279665, 4.471302618687061, 4.091740686071146, 3.614492061480778, 3.0924005720299417, 2.58292224126591, 2.1422157990485857, 1.8193666212036532, 1.6513381806394218, 1.6591702653143745, 1.845814985475307, 2.1958331420228707, 2.6769821852479483, 3.243532438566047, 3.840970505667903, 4.411606104355994, 4.900505650730367, 5.261142310328856, 5.460181394881384, 5.480908915120358, 5.324950654749893, 5.012104954684174, 4.578306406097998, 4.071929891353555, 3.5488151110777526, 3.0665233367387295, 2.678417095523634, 2.428171706157489, 2.345283167396186, 2.4420344236591545, 2.7122320346730433, 3.1318431856901237, 3.66146752024933, 4.250389561539336, 4.841794921086079, 5.378613795164035, 5.809390731279849, 6.093576945137473, 6.205700860564282, 6.137987922342861, 5.901160227901677, 5.523333733823415, 5.047126462132091, 4.525275134293083 ]
What type of noise is present in the given time series?
[ "No significant noise", "Gaussian White Noise", "Red Noise" ]
Red Noise
multiple_choice
63
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
Observe the pattern of fluctuations in the time series.
Noise Understanding
Signal to Noise Ratio Understanding
561
[ -1.833031027675459, -1.6242462209961617, -1.3901720041953887, -1.3545485769725347, -1.215817187706941, -1.4143290000071378, -1.3211484864346577, -1.0653343391007304, -1.39234781427071, -0.1994756429914506, -0.9181573035947415, -1.4023272208519202, -0.9018525915095006, -0.5152960451588378, -0.12126013918719755, 0.11357384016755068, 0.1553469762245966, -0.3769554715371197, -0.0211663501120547, -0.567223235067163, -0.13223911257928356, -0.11755267435518041, -0.5806447770919473, -0.7590978347260348, -0.4602581999396402, -0.7398822232775356, -1.297435704741303, -1.1748950073895863, -1.0170788153342836, -1.4841148386708798, -1.6510680586785966, -1.2418574573280985, -1.9691618554055674, -2.892494093589908, -3.184572574618456, -3.3224067707245517, -2.8835187732700596, -2.310114509437504, -1.9876311300642224, -2.15379448389117, -2.2288012069255037, -2.5705861843607307, -2.6762214271662654, -2.8933347966994263, -2.6474828560025587, -3.12234574904953, -2.5746599005009014, -1.8559526252039, -2.0016276077335826, -1.6433605329689893, -1.4237376881118005, -1.7268221698820478, -1.371526744677429, -1.4633817522734591, -1.5700634849850716, -1.8884641142168, -1.944211069364589, -1.7352445131478256, -0.7476377667338834, -0.14909535291359005, 0.6428983293895475, 0.43891323844603186, 0.7724297759214596, 0.8843864700630617, 2.0157477238110424, 1.5670952256454806, 1.220467617545904, 0.8199629415424279, -0.17741669540509974, -0.4836448347878876, -0.8983708825702562, -0.8868085486502255, -0.6755182634542447, 0.4360404434600592, 0.9061982202372525, 0.4575205169788079, 0.09672463645761419, 0.4184448225748129, -0.5120792892119715, 0.6642242849646137, 1.1586532182179057, 1.0373205244573618, 0.010608718789686333, 0.6124326755058354, 0.5704390356242216, 1.383469777083289, 0.5732080400487026, 0.14425581516944075, 0.3012810875765061, 0.09576819580528298, 0.02062242345742282, 0.23091825179534187, -0.26988190458349337, -0.27420320837030365, -0.3022554106266794, 0.013588111884921289, 0.5237495195974248, -0.2210214599225719, -0.8797376626696563, -0.4100240136916207, -0.0707854366726205, -0.3699125498436059, 0.04762522186303744, 0.2754194961975715, 1.0277690275253657, 0.9849652621861713, 2.1169758561046317, 2.934797551555977, 2.8740309464936593, 3.3564367351702034, 3.8253184831033735, 4.447664892144064, 3.952816963566866, 4.235615349345133, 4.77996530035306, 3.8683630557629214, 3.3340456331195107, 2.1891300401591245, 2.119721889383964, 2.672451928631262, 3.3354389476263604, 3.25436136732132, 4.2563381187891345, 3.375745598186144, 2.324499954450299, 2.3985380394470646, 2.5125411021976425, 2.647420040047225 ]
null
What is the most dominant pattern in this complex time series?
[ "Trend", "Noise", "Seasonality" ]
Trend
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
562
[ 0.3337960766548266, 0.1223006374098893, 0.07756297727108015, 0.4485189379492648, 0.6539292290375922, 0.8685780966512167, 0.6262330571485326, 0.9441910258836967, 1.0621187270124468, 1.0688296050320352, 1.2513830586761254, 1.2508458463319152, 1.314891853235333, 1.1290481730160027, 1.2686772006051474, 1.4022566694162457, 1.5528570956331944, 1.500886975325523, 1.5156407159985703, 1.4843127755348198, 1.1799540899035246, 1.3818112468269383, 1.2780937930015743, 1.3033529408590485, 1.2483702199314242, 1.2964269438101395, 1.3005349166622973, 1.157422671434018, 1.1201348680964598, 1.2185347657386238, 1.2694721755479923, 1.3253764173589953, 1.213615932310157, 1.4014322493520444, 1.2013115465801067, 1.4174086634791445, 1.4151736102498698, 1.3364510489707475, 1.466620579480857, 1.7554918048455077, 2.0142410094674963, 2.174894974778021, 2.0820726205924664, 2.210942613424477, 2.4481248767565047, 2.5710468524968535, 2.693163257405973, 2.9313540489407597, 2.8009055866508916, 3.1401015755599757, 3.306007243704864, 3.156809732690003, 3.3604427099439373, 3.4843858718904266, 3.675439097992924, 3.6878815180950717, 3.901871156189624, 3.7319291629743554, 3.855048449802781, 3.8157598721680848, 3.816606060577886, 3.9375875689582096, 3.786721603344031, 4.05071822556182, 4.178997199735039, 4.0511734538678175, 3.7872425174513107, 4.070012084669834, 3.9599982051203084, 3.7349176998577893, 4.0884762658659035, 3.868593703104928, 3.922000647561259, 3.9224286847555723, 3.914818221778877, 3.751982246827986, 3.6076905211386863, 3.8868577542390397, 3.864359744877323, 4.141773134082293, 3.8465219352643123, 4.108444181177657, 4.243327484058484, 4.057582978221902, 4.127452389549664, 4.519973221227895, 4.484900281799474, 4.496959896556337, 4.829258218287371, 4.896185497315445, 5.140669126727272, 5.267347406543786, 5.083716629891107, 5.275253463546787, 5.30095351091084, 5.733112460769332, 5.9260030883592245, 5.975423106502775, 6.122775937321073, 6.065137786668019, 6.378357485196083, 6.466247862792825, 6.457264775698309, 6.4112385618670285, 6.592022336329665, 6.811869054788249, 6.650566047331949, 6.728028849253897, 6.712703725750045, 6.508962958466429, 6.883207739869337, 6.812156982619628, 6.65061367814135, 6.608469716798339, 6.618822138388103, 6.471842752641354, 6.5964005578038005, 6.507547277877653, 6.524746964206348, 6.66335208594244, 6.257347787523414, 6.563342225952516, 6.357013939863331, 6.7419596633098875, 6.644750108423547, 6.610685391371657, 6.710702072925041, 6.893158857595737 ]
null
Is the two time series lagged version of each other despite minor noise?
[ "No, they are not lagged versions at all", "Yes, they are lagged versions" ]
Yes, they are lagged versions
binary
100
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair", "Red Noise" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the noise. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
563
[ 0.2381430343525565, 0.354156476224761, 0.24783587695365245, 0.0454330188639652, 0.27910966664734876, 0.19354160616686777, 0.14196603874035577, 0.04343842204215498, 0.09533464186463013, 0.21338062942621636, 0.37637092924897525, 0.1610950261299162, 0.314516075976353, 0.051282508443956015, 0.25484996419482336, 0.23655627118146474, 0.3655156925375844, 0.281961364594954, 0.44964923914762417, 0.3097060280730328, 0.47924044033270624, 0.17059583226603858, 0.17281217622865824, 0.2868557312632886, 0.2671022331981583, 0.5831253754975232, 0.2846175112810859, 0.1434417945034947, 0.11981326920848104, -0.2687045454328986, 0.015892691131462813, -0.05597674140173369, 0.010870632079647731, -0.009731569649237493, -0.09762179064346684, -0.26119587871126865, -0.1516211414370868, 0.023734531263276903, -0.04331841580291863, -0.24226687469689726, -0.2966718464626404, -0.17141914501660996, -0.14300174480247269, -0.1767142423871139, -0.10657609965143727, -0.10743566784554694, -0.12775077977352084, -0.3205564469467957, -0.44795724991364194, -0.5774767942771972, -0.5883465691082451, -0.17830697702948906, -0.320062799214209, -0.2622563975621604, -0.18119191568301835, -0.003784938924330697, -0.15625672106354743, 0.11162358350184065, -0.22674173242499918, 0.0716464624553855, 0.08951556903481775, 0.13676107386406752, -0.03586396146963652, -0.11948282063793224, -0.14023442306891085, 0.2226986891761866, -0.05895438938951238, -0.17788353651042996, -0.3824140642970932, -0.1483756367403301, -0.1614841481654306, -0.21479770523006103, 0.1254278350979513, -0.05796128925813741, -0.18788625942074344, -0.06402305606684713, 0.04017522405841667, -0.1384949388353036, -0.37948566223756575, -0.21038422638142232, -0.07503449968249144, -0.16289733834876918, 0.061417879354172526, 0.03498309716547322, 0.02806863502054123, -0.23318123058792234, -0.29230155692746296, -0.40982415126603267, -0.3202991652812506, -0.31183403332949367, -0.3315761940963353, -0.12078749398964764, 0.21395013892328646, 0.13225509326841065, 0.3204933672375758, 0.2694533250835137, 0.6720255807597744, 0.3065626491712087, 0.3883395593839448, 0.5099169659479982, 0.37274892309886154, 0.5387466567880268, 0.3075700852517908, 0.2396442389086369, 0.2639800112398605, 0.26851714971407953, 0.10332343262367968, 0.23435667813814365, -0.029627417860654655, -0.12308416337686247, -0.057813112298761106, -0.15960984958091592, -0.11526342594605979, 0.027527933630510315, -0.24137870330383032, -0.1638238696618688, -0.05002717412983507, -0.08928971151199822, -0.020043877340229707, 0.1414765232081621, -0.1282269813336231, -0.020248337194927545, -0.001175392821363197, -0.15108866286017333, -0.15696625094039682, -0.17554546291584164, -0.415161742875658, -0.43003972275686264 ]
[ -0.20668148344468323, -0.12624238546324257, -0.23999729491762287, -0.18660228939947193, -0.38334514698492883, -0.5423380794452682, -0.48145467635395783, -0.30944963116731095, -0.3086626119230216, -0.2752717810509039, -0.23539723522705505, -0.45127409755892, 0.032151138943387794, -0.10746434668313992, -0.13952730633266222, -0.11210698020141888, 0.00506755876792335, 0.1303326816455536, -0.04629343546080606, 0.18806943090420603, -0.18874369900849192, -0.06247865274079987, -0.2440234836393033, -0.079588300813602, -0.20086767777297387, -0.2922562136828031, 0.08426460117930502, -0.16991328751012597, -0.08510949936256465, 0.11285570189402373, -0.044780170010042156, 0.04063686181556177, 0.11039042947819315, -0.07523965504527072, -0.11066752623453914, -0.43616164547259506, -0.14122370093778658, -0.16794411621820873, -0.022261963325894946, 0.04048473919710983, 0.03527961036003682, -0.16184085674002743, -0.25785596149560774, 0.05043110923217628, -0.3924716261951721, -0.3645087367173666, -0.2707285378327142, -0.2984346127517072, -0.17006894962774116, 0.10225917119420389, 0.25642115435161805, 0.32355401560566327, 0.4243635230096315, 0.44700221534445567, 0.388417310043278, 0.2892013356139955, 0.47043720496173624, 0.4247132506518482, 0.35903530192572913, 0.009060901488483153, 0.19060113950024768, 0.25014383154221764, 0.008561503873561332, 0.23892771097226545, 0.09351212668474243, -0.009278816658307732, -0.18132632369669932, -0.1856646915634464, 0.02189288448019655, 0.009779592093690503, -0.006472048244154885, 0.0023707354513692463, -0.0073896878857003315, -0.023087446862860836, -0.14838984019412416, 0.01857354618539654, 0.23452640134954933, 0.04319168132253607, -0.055331233911191026, -0.1769830947952589, -0.15162685129308595, 0.05835268438915461, -0.26423514823892125, -0.2573457124470218, -0.34466390198740027, -0.39253536669591305, -0.4807725173605879, -0.37846578940569675, -0.27087480757781374, -0.2915029455489713, -0.1264983767430082, -0.3911262161965334, -0.5654201099549507, -0.5457155569901396, -0.42976406467401873, -0.42930479500905977, -0.4612487124717088, -0.5007253180724781, -0.40178032664763175, -0.3835843888798446, -0.273970597943055, -0.31592853137673665, -0.1886439673631143, -0.12800557928989717, -0.22349089041897538, 0.05017516256818358, -0.0782198583747005, -0.07472369805385373, -0.1401449104915165, -0.0652712945033892, 0.12444068771696047, -0.027882724000700923, 0.04633897553537671, 0.4138299466147417, 0.4037478360361585, 0.4910582405700683, 0.5219197711300434, 0.3736470083045954, 0.42807168249484867, 0.37187377492018214, 0.5468916258401373, 0.6591788125865252, 0.5983839682241565, 0.6557305872621119, 0.6938906290468311, 0.6486739700104153, 0.5735465924262942, 0.5502809130731745 ]
Which additive combination of patterns best describes the time series?
[ "SawtoothWave + SquareWave", "SineWave + SawtoothWave", "SineWave + SquareWave" ]
SawtoothWave + SquareWave
multiple-choice
16
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition" ]
Imagine the shape of the time series as addition of two different patterns.
Pattern Recognition
Cycle Recognition
564
[ -0.7959832137162081, 0.2874835588959791, 0.3477060921991094, 0.40792862550223974, 0.46815115880536995, 0.5283736921085003, 0.5885962254116306, 0.6488187587147609, 0.7090412920178912, 0.7692638253210216, 0.8294863586241519, 0.8897088919272821, 0.9499314252304125, 1.0101539585335426, 1.0703764918366732, 1.1305990251398033, 1.1908215584429338, -0.7954443868720497, -0.7352218535689193, -0.674999320265789, -0.6147767869626587, -0.5545542536595286, -0.4943317203563983, -0.43410918705326773, -0.3738866537501374, -0.3136641204470071, -0.253441587143877, -1.7851854812731627, -1.7249629479700324, -1.664740414666902, -1.6045178813637717, -1.5442953480606414, -1.484072814757511, -1.4238502814543808, 0.6828607304668631, 0.7430832637699935, 0.8033057970731238, 0.863528330376254, 0.9237508636793844, 0.9839733969825146, 1.0441959302856452, 1.1044184635887753, 1.1646409968919056, 1.224863530195036, 1.285086063498166, 1.3453085968012966, 1.4055311301044267, 1.4657536634075572, 1.5259761967106873, 1.5861987300138178, -0.4000672153011656, -0.3398446819980355, -0.279622148694905, -1.811366042824191, -1.7511435095210603, -1.6909209762179302, -1.6306984429148, -1.5704759096116696, -1.5102533763085393, -1.450030843005409, -1.3898083097022786, -1.3295857763991483, -1.269363243096018, -1.2091407097928877, -1.1489181764897574, -1.088695643186627, -1.0284731098834967, 1.0782379020377473, 1.1384604353408774, 1.1986829686440077, 1.258905501947138, 1.3191280352502681, 1.3793505685533987, 1.4395731018565288, 1.4997956351596593, 1.5600181684627898, 1.62024070176592, 1.68046323506905, 1.7406857683721806, 1.8009083016753107, 0.2691644075460251, 0.3293869408491553, 0.38960947415228564, 0.44983200745541596, -1.5364339378595675, -1.4762114045564372, -1.4159888712533069, -1.3557663379501765, -1.2955438046470462, -1.2353212713439157, -1.1750987380407856, -1.1148762047376553, -1.054653671434525, -0.9944311381313946, -0.9342086048282643, -0.8739860715251341, -0.8137635382220038, -0.7535410049188734, -0.6933184716157431, -0.6330959383126128, 1.4736150736086313, 1.5338376069117614, 1.594060140214892, 1.654282673518022, 1.7145052068211526, 1.7747277401242827, 0.2429838459949969, 0.3032063792981272, 0.36342891260125754, 0.42365144590438786, 0.4838739792075182, 0.5440965125106485, 0.6043190458137788, 0.6645415791169091, 0.7247641124200394, 0.7849866457231698, 0.8452091790263, -1.1410567662886835, -1.0808342329855531, -1.0206116996824228, -0.9603891663792924, -0.9001666330761622, -0.8399440997730317, -0.7797215664699014, -0.7194990331667711, -0.659276499863641, -0.5990539665605105, -0.5388314332573801 ]
null
What is the most likely variance of the given time series?
[ "varies across time", "0.82", "1" ]
varies across time
multiple_choice
43
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
565
[ -3.7961257358534874, -2.6273653230600122, -1.2242199998666914, 3.737645549327001, 5.107077739912359, 1.9332991552110934, -0.4807109952291979, -0.994196272429513, 2.07726841577572, 0.7658212669584841, -6.188319314914378, 2.0992458610615667, -3.2733693135054405, -5.38770370226012, -6.315031235247831, -0.6533191728721915, -3.8792593078115902, -8.700921156584808, -1.3114409081485614, -1.7186470335520063, -0.6023427603930319, -2.315478529345291, 6.931796239572266, 1.6630596427897397, -2.003765237204753, -0.18306674879648493, 5.416651301490674, 3.498489198451459, -5.27308914232095, -3.644665759338978, -2.9686166779406813, -1.594677866948699, -2.198883806580367, 0.12546556065457184, 2.7391366861452955, 3.527588516845386, -1.1930609790509803, -6.337709760845026, -3.923659418143264, -2.0863456025017744, -4.818243373343689, 4.261510649710613, 2.0147854138777115, 5.575949516325848, 0.9829011191263421, 5.5808065212973155, 4.002878941914368, 7.40178752322905, 1.8192246714133962, 3.1880153039029997, 3.75373804785771, 4.078942327183296, 3.773943111147016, 3.4817396300343884, 3.528764448509363, 0.31068683440864203, 6.432492550299837, 9.831328554155064, 4.873675538016052, 2.1364404937023087, 2.149806579099101, 5.58303271350337, 4.816124952865284, 3.817631659689876, 5.706741966009306, 0.22884802871887186, 5.872730571132482, 4.838346442974522, 2.3700432788890113, 1.6088188636551006, 4.394948712627129, 7.1107021968814, 3.7997511227700596, 2.7439869058085944, 4.77106362384632, 7.974896694615746, 5.338234026681577, 5.498623557418328, 6.71231307726763, 5.254591434735534, 2.853113387546277, 0.9143116570966875, 2.5872603113304113, 1.9341885820418976, 19.08500803448788, 22.433227818173908, 6.45271515926395, -30.146005358370463, 47.30564466039613, -8.519300610394476, 17.4652632141496, 3.5610402559242065, 7.496214014737959, 16.606589862213394, -15.628108612967358, 35.21869003143426, -38.020812595567484, -24.282138217346176, 34.93660156708822, 17.1097275611352, 66.62335689352159, 3.8254928934471373, 45.34430056174352, -45.03525189261021, -33.89121092706855, 24.897880927578623, -42.04206201269417, -3.0118679150671253, 31.73330587849541, 14.941570434227453, 2.325281152545354, -9.369750021757007, 7.2592085413995, 16.875739624189713, -14.441727432811643, 11.661420814670993, 29.64685373793018, -3.456786866947681, 3.8183351627563913, 14.505443802147216, 16.146930120444487, 24.498692217656114, -23.69216848570943, -11.225375971622828, -10.343536111793506, -20.76981059607074, -43.51267219968666, -80.50109756957055 ]
null
The given time series is a white noise process. What is the most likely noise level?
[ "6.13", "1.63", "4.59" ]
6.13
multiple_choice
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the mean.
Noise Understanding
White Noise Recognition
566
[ 6.426227504182076, -6.537681910776315, 0.7578965336692369, 3.0864726857173785, -1.9762345212122983, -8.208188577710645, -7.3778920567276485, -0.10354473734905635, -3.808318527286024, -11.63378485409029, -4.972653399012391, -7.953491054344178, 4.5788124877305325, -9.0294272810647, 8.790848535300839, 13.363716818122661, -4.554174437188468, -3.6382929936765938, 5.822287180088728, 6.78384994969191, -2.86989826166317, -2.6949902203581937, -2.714232670624032, -5.20277644992122, 5.688993845778707, 0.8026642451762008, -4.4977700388959905, 0.46452000226980106, -2.5789247324978652, 15.249691676484609, -1.5871212002252952, 4.531035986792033, 2.6337138513181944, -0.9541590584197311, 2.566872214342534, 1.4678459210251498, 15.189791904728208, -0.785732899488846, -15.87314515017047, 13.347178304235003, -3.2466762079441827, 0.5980694066992895, -3.38669425822202, -3.6561127615145894, -6.923751169123943, -12.326901609898217, -4.499396690108751, 3.032319040739793, -9.749795474796036, 3.016311432422724, 14.079986167762481, 1.8718722070769962, -8.49455504375643, 2.4702255833824474, 5.823933052906178, 7.957771911476908, 1.1213609189770177, 3.8204856450248443, 5.1892241528555525, 3.8079106758913404, 1.9469695217994143, -3.938384098641954, 5.751027829152937, -3.0715656107702243, 15.961678829669168, -3.9239488924645585, 5.107862554808645, -7.792917192329479, -2.8709341240643025, -3.607519179672567, -8.462410673233105, -3.400990696055125, 2.0684342979205304, -1.6149326458109345, 7.238382600402345, -5.686933653906793, 4.2748785770653095, -3.820341270130761, 7.156622240402925, 4.8801332909899635, 6.1633299832351325, -0.9462833318348352, 8.197219668689494, -10.213060823902062, 2.7763166326477617, 0.8882475890275348, 5.2237184853807275, -0.45756450995983927, -6.002699521096813, -6.716833133898964, -0.11576639373336677, -1.6721619585055727, 5.17484097203729, 5.803124895499351, 0.2697217410461029, 0.2579999435921612, 6.490998206558252, -1.5353997351439204, -1.2812329988427191, -8.116737764002627, 5.557786561246465, -0.5887108929092939, 7.028074943743033, -7.3672558538573965, -3.007476345909536, 5.706164837916277, 2.052786429501737, -7.4483200294075225, 5.5557050625655355, -8.05604707597321, 5.05516279964273, -5.999475789800485, 7.5687146775394964, 0.7553377407995582, 2.1268427196295847, -0.5306004971988377, 0.5051483175623106, 0.3953199631599861, 4.116845563389796, -0.5136922386369285, 9.084954173085903, -4.585670691085197, 5.225677724435532, 3.5620114290025633, 7.299858232606043, 0.6829720815040545, 1.910461043177641, 1.9801341856915164 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. Do they have the same type of anomaly?
[ "No. They have different types of anomalies", "Yes, Time series 1 and time series 2 both have cutoff anomaly" ]
Yes, Time series 1 and time series 2 both have cutoff anomaly
binary
75
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Spike Anomaly" ]
For each time series, identify the type of anomaly based on the given definitions. Then, check if they have the same type of anomaly.
Anolmaly Detection
General Anomaly Detection
567
[ 0, 0.6870848000899548, 1.3178319274701509, 1.8403779851723092, 2.2114527856735697, 2.3998158213975085, 2.388737351320617, 2.177327058526342, 1.7806047581912428, 1.2283075404530939, 0.5625280835568571, -0.1656283001600488, -0.9001023917276156, -1.584333226796257, -2.1657501049537053, -2.599947696687253, -2.854212665607832, -2.910121725494053, -2.765004797335333, -2.4321570640578094, -1.9397830817809059, -1.3287568051223588, -0.6493754228678756, 0.04263518920883669, 0.690546155850599, 1.2411309469324947, 1.6488925696955077, 1.879676889659893, 1.913385114262204, 1.7455700167615054, 1.3877891300751632, 0.8666868602798796, 0.22187841730990665, -0.4971963812608131, -1.2351995659239443, -1.9352898956541345, -2.5436371264899718, -3.0136971500536758, -3.309908475230394, -3.4105164825147556, -3.309301151863937, -3.016071049819447, -2.555884343985971, -1.9670587110370579, -1.2981281891556742, -0.6039886583276958, 0.05846192981386311, 0.6348423244636319, 1.0776068745185508, 1.3498215516741983, 1.4280972101589484, 1.3044471268577884, 0.9869212980407471, 0.4989671175503838, -0.12243278931947943, -0.8296976850771831, -1.5684275296517118, -2.281723371490161, -2.914706199445005, -3.4188753732253603, -3.7559604906798363, -3.900960780865579, -3.844130637663154, -3.591753605050486, -3.1656433449803396, -2.6014112204412587, -1.9456380803419169, -1.2521748599394253, -0.5778657990397887, 0.021966064742878766, 0.4979125905292212, 0.8104044741518137, 0.932853798587717, 0.853765616962028, 0.5776508685324666, 0.12466812487588319, -0.4709773816011853, -1.1637502994404603, -1.9004015254507787, -2.624197189669765, -3.279424396653496, -3.815815882097623, -4.192542183448047, -4.381454270720718, -4.369319111372256, -4.1588706231286565, -3.768592549259094, -3.2312505001008294, -2.5912897444759464, -1.90130541553142, -1.217865463356134, -0.5970180908641853, -0.08984046742495222, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406 ]
[ 0, 1.785614716720143, 1.8221491957455611, 1.8586836747709794, 1.8952181537963975, 1.9317526328218155, 1.9682871118472338, 2.004821590872652, 2.04135606989807, 2.077890548923488, 2.114425027948906, 2.150959506974324, 2.187493985999742, 2.2240284650251607, 2.260562944050579, 2.297097423075997, 2.333631902101415, 2.370166381126833, 2.406700860152251, 2.4432353391776696, 2.4797698182030876, 2.5163042972285057, 2.5528387762539237, 2.589373255279342, 2.62590773430476, -0.835718262059272, -0.7991837830338538, -0.7626493040084357, -0.7261148249830176, -0.6895803459575995, -0.6530458669321813, -0.6165113879067632, -0.5799769088813451, -0.5434424298559271, -0.506907950830509, -0.4703734718050907, -0.43383899277967264, -0.3973045137542546, -0.3607700347288363, -0.3242355557034182, -0.28770107667800016, -0.2511665976525821, -0.21463211862716403, -0.17809763960174574, -0.14156316057632767, -0.10502868155090961, -0.06849420252549132, -0.031959723500073256, 0.004574755525344809, 0.011936397242823174, 0.007384665799954104, 0.001713682811899705, -0.0011564828238824054, -0.0030110369558928878, -0.014785219903674275, -0.0071984420839470865, -0.004606387709597875, 0.010571222262189157, 0.003436182895684614, -0.01763040155362734, 0.00324083969394795, -0.0038508228041631656, -0.006769220003059588, 0.006116762888408679, 0.01030999522495951, 0.009312801191161986, -0.008392175232226386, -0.003092123758512146, 0.0033126343140356396, 0.009755451271223592, -0.0047917423784529, -0.0018565897666381712, -0.011063349740060282, -0.011962066240806708, 0.008125258223941981, 0.01356240028570823, -0.0007201012158033385, 0.010035328978920241, 0.0036163602504763414, -0.006451197546051243, 0.0036139560550841393, 0.015380365664659692, -0.0003582603910995153, 0.01564643655814006, -0.026197451040897445, 0.00821902504375224, 0.0008704706823817133, -0.0029900735046586788, 0.000917607765355023, 1.5024883955674877, 1.5390228745929058, 1.5755573536183238, 1.6120918326437423, 1.6486263116691604, 1.6851607906945785, 1.7216952697199965, 1.7582297487454146, 1.7947642277708327, 5.329459182185701, 5.365993661211119, 5.402528140236537, 5.439062619261955, 5.475597098287373, 5.5121315773127915, 5.5486660563382095, 5.585200535363628, 5.621735014389046, 5.658269493414464, 5.694803972439882, 5.7313384514653, 5.767872930490718, 5.804407409516136, 5.840941888541554, 5.877476367566972, 5.91401084659239, 5.950545325617808, 5.987079804643226, 6.023614283668644, 6.060148762694062, 6.0966832417194805, 6.1332177207449, 6.169752199770318, 2.708126203406286, 2.744660682431704, 2.781195161457122, 2.8177296404825403, 2.8542641195079583, 2.8907985985333764 ]
You are given two time series which both have upward trend. Which time series has a higher slope in terms of magnitude?
[ "Time series 1 has higher slope", "Time series 2 has higher slope" ]
Time series 1 has higher slope
binary
80
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Sine Wave", "Sawtooth Wave" ]
Slope refers to the steepness of the trend. You should check the direction of the trend and the steepness of the trend. If the trend is upward, you should check the magnitude of the slope.
Similarity Analysis
Shape
568
[ -0.01910476899470299, 0.2211109640739259, 0.5556142544719149, 0.7867196047024688, 1.03846188252511, 1.305897504107755, 1.3778558455413665, 1.5471404326801523, 1.8225734493542616, 1.7469910397487747, 1.7597979326534299, 1.7794984000919476, 1.7134288385340224, 1.5851703876274172, 1.4556279636874963, 1.3565238844647687, 1.3818374373591302, 1.0841029575034415, 0.9819452563358392, 0.9226510050171128, 0.6915150614642406, 0.6675639036320355, 0.35898435576270804, 0.4376889561529689, 0.4298735908003879, 0.4315440140158519, 0.3092350502815847, 0.6787841320676684, 0.5949303260359455, 0.8718876233159054, 1.0301269395223114, 1.3494250073201015, 1.7111752643876632, 1.6245064543305858, 1.9610250723193314, 2.321599558692831, 2.466327903844153, 2.919737678817569, 3.1743927475224574, 3.3723422231219717, 3.5388576343684606, 3.8189915172448208, 3.697907017257051, 3.9138430942097977, 3.888685059122957, 4.068480214043152, 3.7762819629286324, 3.9028776188188807, 3.855078556046681, 3.6173207957983573, 3.5202932436922705, 3.4419454730399552, 3.3868300064478527, 3.0393441953056004, 2.9154622547557825, 2.986633145085433, 2.7398979134821335, 2.608511325541967, 2.7088949628182686, 2.571394650789163, 2.7441758404650702, 2.634701507052208, 2.783302112596891, 3.029356971995937, 3.082875976580165, 3.383276932962816, 3.5302618218725583, 3.985668708356006, 4.210453689272034, 4.195585863690127, 4.657245824415637, 4.794816970771953, 5.155027962341148, 5.383686760805723, 5.488010160391299, 5.886794350356442, 5.955304264928665, 6.024193509896676, 6.088420278239476, 6.187133333445613, 6.216969546853412, 6.130784427597987, 5.794384277266511, 5.9851697748413, 5.721844201781494, 5.710169139265696, 5.444904220891589, 5.293952444418613, 5.412353790092892, 5.119973752631795, 4.991939027912868, 4.9819988036318845, 4.826645943833564, 5.036246934702156, 4.796256432594198, 4.8954552768789235, 5.030037432614258, 5.205441582322739, 5.119960618270891, 5.33517747941519, 5.717196926581436, 5.908559525622802, 6.192215941574571, 6.217945674278042, 6.785923928154941, 6.830495152634821, 7.193621505311818, 7.412865413466677, 7.572443722927563, 7.72540049069327, 7.8676995895485256, 8.194810906727882, 8.134058369603242, 8.238428175430208, 8.356708304846128, 8.10402494432626, 8.400323343870983, 8.004660723762393, 8.134447450225364, 8.019015377038828, 7.931620882341135, 7.725592629060101, 7.782088816341864, 7.458051148614759, 7.410295752903251, 7.119899476575713, 7.11621434521954, 7.200348659017037 ]
[ -0.023769512468964086, 0.38133520446787716, 0.808967417565079, 0.959252657774604, 1.1018936129530648, 1.5797607081406548, 1.8322390727212676, 1.7140080635389403, 1.9645672827226217, 1.9448028710936454, 1.5616523279418977, 1.5433362297687734, 1.3875699903953895, 1.149951175224473, 0.7951565570210837, 0.46383136919139145, 0.3699991311137284, -0.15001698930000398, -0.5389428342209845, -0.7788852510824525, -0.9895707877209182, -1.2592361209982819, -1.4499206358106471, -1.5964819882074663, -1.6327445365032662, -1.5925614624707602, -1.39723498173474, -1.3644210701828328, -1.0010218891649416, -0.6239826556992267, -0.4172725662153929, -0.14256223422582717, 0.12496044165315698, 0.775822224907329, 0.8537256835289342, 1.384791991358575, 1.6573947947947645, 1.8171288363824907, 2.0064401298401493, 1.9788813328807517, 2.2584276118974587, 2.2816399346773637, 2.036833347430721, 1.9913153141849074, 1.8125586885563432, 1.617728794818482, 1.2686283273390728, 0.7844981815597812, 0.5554935050345526, 0.28801616819555054, 0.01587867577558956, -0.44170815600396035, -0.43848126459482895, -1.0787189641529507, -1.1232000192079301, -1.1910995487745044, -1.2524558615732753, -1.336526686192586, -1.0811363287070486, -0.9360245090597821, -0.7555535408496169, -0.46206370928407475, -0.22986915093701915, -0.010096238759529086, 0.438012733119583, 0.8891370995032677, 1.2457755614455586, 1.5689108243662508, 1.9217943612376969, 2.0667709468191977, 2.3319354720727987, 2.5299186325599434, 2.541673995534608, 2.434749849224178, 2.403371420625174, 2.4572124522440957, 2.327297121723539, 2.0662647960659544, 1.6888696544913404, 1.2296163664747886, 1.0132929470751102, 0.8270089065557441, 0.39574914075914946, -0.004301583252279969, -0.20628597117689043, -0.638600935578584, -0.7710712919558924, -0.9395048802722332, -0.8481433705974282, -0.8193191728607772, -0.8331296587185075, -0.765822547513679, -0.47994033210653003, -0.2719274174296653, -0.003326409822167656, 0.44364504149145695, 0.6890417818958695, 0.971866387724656, 1.3529151828058876, 1.667774016362087, 2.1630407036181083, 2.42156324060935, 2.633070499076312, 2.8387310197715045, 2.990976262723266, 2.8361684849869295, 2.890945681065534, 2.58062884486195, 2.7027712664379915, 2.2117228956791495, 1.9905638457017973, 1.6920337570385484, 1.2664161676458576, 1.079556220584492, 0.758350912417799, 0.3953479320225178, -0.033111413178788324, 0.06668867253959543, -0.27850793472138985, -0.212963915109736, -0.6352133886552449, -0.46923038976934234, -0.4286245807178723, -0.4101859745234867, -0.052008211762915396, 0.010213582025726468, 0.3055289510126781, 0.32169487770690125 ]
Is the two time series lagged version of each other despite minor noise?
[ "Yes, they are lagged versions", "No, they are not lagged versions at all" ]
Yes, they are lagged versions
binary
102
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair", "Red Noise" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the noise. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
569
[ -0.03266361225815173, -0.363429693990745, 0.018030891458782783, -0.22989457268076377, -0.34898337306451643, -0.16040246119772478, -0.42862628600660846, -0.5729994255376858, -0.6120284066535197, -0.7480637578932583, -0.46385612909039237, -0.4940058884267304, -0.6936408552521831, -0.7676274073651583, -0.7299163835871718, -0.8707516804478029, -0.9587620176547537, -0.7707815754752051, -0.7656048617238874, -0.2936471472367693, -0.2624205956444837, -0.3987920998822375, -0.28001812942908, -0.20993808834739497, -0.2643805317991082, -0.4419768822484649, -0.4847209332193934, -0.40514489318321667, -0.41837863407853687, -0.3403426222984984, -0.010980843012006358, -0.18451989106124977, -0.04053555582344458, 0.11015632938316089, 0.33165563263013725, 0.1752951377682895, 0.39113565143125467, 0.32255409839603655, 0.5735282422013628, 0.42700089519660106, 0.35634966776344956, 0.20231151268034495, 0.029316828059540445, 0.357414013836376, 0.3300340569453561, 0.27887398175203076, 0.07162102946329561, 0.31530287015998437, 0.22660016880732237, 0.07236788175283722, 0.12609863285088854, 0.560001482043321, 0.5071871718530984, 0.2855064330329945, 0.20370671328915715, 0.03385857180573237, -0.15253626862745176, -0.11797266193328157, -0.11611368805505265, -0.21628989009097002, -0.17457066032704135, -0.36987619559517887, -0.4023640823652775, -0.49451666630299795, -0.7439294317344752, -0.9549619070614332, -0.9023716817361562, -0.7742737028373564, -1.1074701975756194, -0.9788756210990848, -0.5237933093080804, -0.7554607942191495, -0.8088762173043405, -0.6997085555411392, -0.5472114368604455, -0.6126477130493744, -0.6480678426869855, -0.31865719088752986, -0.7247775252052954, -0.7014604242453947, -0.7495814839402958, -0.32635065335991237, -0.6488049542650841, -0.4837821425879669, -0.4122543331734816, -0.1977863720288984, -0.25788181049480774, -0.31511323982464823, -0.17194323553497529, -0.2546014318402354, 0.0312584044934751, -0.06828134194853276, -0.049794322613084314, -0.24697294470322168, -0.2636732054632567, -0.1746757646198496, -0.5039162695815, -0.4140663880910937, -0.1460998609342889, -0.22184842911716143, 0.43753505062324605, 0.3769429420863779, 0.6250389780720631, 0.7473055921313384, 0.6800166211855017, 0.47789881366383297, 0.8089385637159697, 0.7566855898085026, 0.647204380336221, 0.6168137885979137, 0.4690141504605279, 0.5386024794576798, 0.5837843266119945, 0.4913147136221108, 0.9247117239730676, 0.5109383187571116, 0.194874768791139, 0.29195619066418527, 0.6652920584329485, 0.49713820899977185, 0.3788093240687298, 0.40432314032127753, 0.29355061175500624, 0.4208100705653133, 0.25896044196746587, 0.31862388570201605, 0.14980993236881618, 0.16219599263335222 ]
[ -0.1897077772775212, -0.3105818452603237, -0.22750425870860855, -0.06756098993157028, -0.023769270548778407, 0.3911526192581172, 0.4946550477399442, 0.2575955861501305, 0.2388352408768037, 0.3401173331585712, 0.34313024153128086, 0.4955207167079042, 0.29916433918814556, 0.3041441918924484, 0.3188719897949201, 0.24589574049179702, 0.19286393781714573, 0.3229039984123867, 0.2150822824359538, 0.3969074539211696, 0.13520051110777886, 0.07929022482658238, 0.37204222937435627, 0.427483567169777, 0.3627942721254173, 0.32149321904803685, 0.0011109715267308279, 0.1811587279845091, -0.12629845144673463, -0.17860042030983947, -0.1847743271894909, 0.10816900377648517, -0.23058196635308945, -0.3973247946765836, -0.3592612510838325, -0.49275762631678327, -0.8965261882408655, -0.9998388949715388, -0.9916677859404182, -0.887696430645984, -1.2646103425963204, -1.0233358888076143, -0.6257299645742009, -0.8285581633140647, -0.4441071754329546, -0.794625814355568, -0.7123061451889332, -0.8864115840637007, -0.4649567726863374, -0.6292783242793394, -0.8617209407622892, -0.7552109733447345, -0.6925513738153192, -0.5028951312705499, -0.5647967990643357, -0.5090037090633498, -0.5249242403283055, -0.43016722797420864, -0.380968890454942, -0.4306744001176033, -0.40195955583127463, -0.2151247250910128, 0.007806364596905548, -0.0920525435169206, -0.22369317693203136, -0.1369962865836481, -0.13078732314910288, -0.2685634185395713, -0.3966596478719356, -0.3512565267889318, -0.2733425623086278, -0.10400667792543489, 0.30865001606141784, 0.5470861764449166, 0.7041378947284639, 0.5706633149954405, 0.7016142299592544, 0.7602843204928116, 0.6865073807722485, 0.6989303583240379, 0.6436652166853627, 0.7171897000794919, 0.5535927736500986, 0.7660867587780228, 0.47926643914224276, 0.6081803160409901, 0.7396488540622023, 0.6593571606571275, 0.37110504992134336, 0.5449916511834336, 0.5708574390425223, 0.48771553920925115, 0.27579076445944367, 0.3638310181913649, 0.40274069937574447, 0.23982949938152603, 0.3560644838221101, 0.3552386690113711, 0.32934318438664684, 0.09060965968227375, 0.3698124603031108, 0.488556220281643, 0.4408715182221221, 0.4435026086236339, 0.2402539068028684, 0.3660491846771426, 0.3583301576098984, 0.3850177916389197, 0.36199564043178645, 0.5237665488992859, 0.3256800337652131, 0.3007041576855972, 0.3105963283997005, 0.51096296228098, 0.6628410231915447, 0.5677189577211896, 0.736163989580195, 1.0670156428517252, 0.7963816276322021, 0.5971978794802298, 0.750049809915223, 0.6778373605146731, 0.5302029742094048, 0.7964741177568895, 0.8103849308988602, 0.6138555849943224, 0.5468065039888929, 0.3740880695359429 ]
The given time series is a random walk process. What is the most likely noise level?
[ "1.89", "4.34", "9.34" ]
4.34
multiple_choice
54
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the past value.
Noise Understanding
Red Noise Recognition
570
[ -15.537532136639394, -14.995827868192203, -14.828742708250594, -11.850566409939256, -10.530650809252126, -9.874161275407383, -9.165887687202867, -8.28167686754667, -8.397027555597072, -8.208834779210472, -8.02615889418304, -8.467377247696191, -6.474319116330602, -7.118252559917754, -6.228593666083353, -5.441455292127408, -4.578403598984319, -4.359096075682833, -4.809677187905956, -4.171434577701945, -3.8150163986109358, -1.5995585612141265, -0.9796691334912575, -0.5840754558504945, -0.1420358818767416, -0.5807088088708618, 0.03480115124555371, 0.9232334654620722, 0.08721108511396061, -0.2457872853830952, -0.610431124270872, 0.06577095959120409, 0.9941744930382238, -1.0233755713515906, -1.112779199657544, 0.5459250460145787, 1.2903702460280366, 1.9203641349362135, 0.9052406685001292, 1.8903826790671365, 1.9656294593469337, 2.865456617504866, 4.9971444899976625, 3.9885869182647546, 5.40399969333432, 5.39318486341743, 6.51671443134436, 6.148461381411003, 5.639660112127854, 6.439270633059373, 4.973214256112777, 4.4489447125475445, 3.9382672753587324, 3.382913458588529, 4.3623879674646515, 4.919852035013169, 4.8487967681710336, 4.4785412935736915, 4.495013954629467, 3.4144787264427294, 2.472367970878762, 1.9641511030782848, 0.7625721735550212, 1.0042338426556416, 1.6739515388397148, 1.7816472283474616, 0.85384034296646, 0.5515441385159577, 1.6886536327206338, 2.6344583856902695, 1.5936895305179741, 2.3416581481053798, 1.6084574702557475, 2.758469889059703, 3.961494946560967, 2.0151357696965864, 1.0764480423389364, 1.7620488492043789, -0.16291854862299834, 1.2996579811216078, 1.6189162621620212, 0.670459428330334, 1.368068227400876, 2.356925159426042, 2.8793898567622467, 3.4373623463979297, 4.2050916794202315, 3.6201345064195642, 3.4609290144558513, 2.7680073964823886, 3.993953706874794, 4.117482523833031, 2.2794811612615367, 0.8635343894176809, 0.8018828184235052, 0.3589437662798334, -0.00570153414000743, -0.8609192636123905, -1.376675907068076, -1.3337680956222386, -0.5116109369692304, -0.26517959178773615, 0.18596671549450175, 0.38758927846648644, -1.0185670775299642, 0.3658541083052615, 1.6293400530310689, 2.185675525033261, 1.014294443494313, -0.21556223907087507, -0.7560607861532461, 1.0940433383583286, 1.3727883118996589, 1.2642069164504124, 1.2123336111374639, 0.9313685418531172, 1.141612913763623, 1.0814938936718912, 0.5271804049689222, -0.475165093275826, -0.3277591795687268, -0.9810008995278122, -0.11217128209235971, 0.48491383761409756, 0.2788664848344756, -0.3548492044277339, 0.17700519347284122, 1.0989493926603875 ]
null
Two time series are given. Both of them have a noise component. Do they have the same type of noise?
[ "Yes, they both have Gaussian white noise", "No, they have different noise" ]
Yes, they both have Gaussian white noise
binary
88
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Additive Composition" ]
When a white noise is added to a time series, it is expected the random fluctuations have similar amplitude or distribution. Random walk, on the other hand, can result in very different noise patterns.
Similarity Analysis
Shape
571
[ -1.6413801156020968, 1.4308993929965184, 0.42352416495399026, 0.5783567613697542, 2.733698578373762, 1.5356868219033388, 0.8158084059135327, -0.1902524804238106, 1.6823124263798062, 2.129276667293001, 0.6382873607468321, 1.4905587487146512, 0.7268857332651951, 0.7626943621314156, -1.7150712597935467, 0.35230748971471426, 1.3264567123449382, -0.5027239789175415, -0.051314594917151894, -1.0889939540644438, -0.19116460925972634, -0.9690711611402585, -1.8686906319888497, 0.2558930008851408, -0.26054139364045337, -1.8691967423307458, -0.8009298153550491, -0.7542460177691975, -0.6010339696754444, -2.8495492714608552, -0.023738535586721232, -1.4421808118315196, -1.0445746516698549, 2.158808658804787, 0.04577816024751924, -0.41125872307582095, -1.9982750456676373, 1.8221256917565447, -0.7013179052997885, -0.16858639982298296, 0.6677911295097121, 2.547927969816673, 2.0009820200614983, 1.1269094977791418, 1.6090021097968035, 0.6747355082695843, 1.348451611580298, 1.1771956864612894, 1.9324264881193942, 1.7598478363395058, 1.0903379562795446, 0.018652816701699493, 0.8952912064830348, -0.17093366338732247, -1.3907910893853448, -0.9322088027331139, -0.6475416503888913, -0.001614146728480037, -1.2459905001335452, -2.3883525050250327, -1.2014348727471758, -1.183550149958973, -1.108564633209417, -0.33057644025998645, -0.14762417622728696, -1.639591762774686, -1.5069625664747994, -1.7479983408106894, 0.19664655970209366, 1.1683235799615226, -0.3649452612858309, -0.05906779203968851, 1.875545758572707, 1.1276633230610433, 1.2518099482470555, -0.20792744775966354, 1.7977298269290363, 0.2901310022435034, 0.1465625894270015, 0.9542177241630034, 0.6940422985486969, 0.9961960290233765, -0.32412835052719213, 1.939048670871716, 1.9399836880640022, -1.3289293295452582, 1.3832311600581715, -0.6323257686279526, 0.8029151185196718, -0.3530432015779288, -0.47726584000446204, -0.8964179832518802, 0.31825345215010825, -2.2874638401283622, -0.5605606062312382, -0.15027069944085936, -0.5784776388834555, 1.0280279898082612, -1.7860480406933905, -0.22006803087938587, -1.1661232538663757, 0.32457700617167695, -0.736281483018609, -0.9129564065306528, 1.001277425425624, -0.5663340377495198, -1.2550865429168203, -0.13183222220380447, 1.219123551662857, 2.188035082915341, 1.0776029010026231, 2.424273269573937, -0.14783024300406433, 0.8326845766143646, 1.0122154392696407, 1.1695191884429859, 1.3104404801056544, 1.8203482382368739, 0.5516411489179027, 0.9706553122149644, 0.5951156122893938, -0.49749228800458756, 0.08920464731642062, -0.1727953071844347, -0.4252926978648184, -0.45121641500644194, -0.6146371451406955, -1.3078883320679084 ]
[ 1.2727147339712648, -0.6804077859424204, 0.23975907697599352, 4.178136373284089, 0.7478342618355616, 0.7561283062557966, 3.093281494841681, 0.4466066513890472, 2.363501265150236, 4.727103106960282, 0.9269226933003454, 0.2924485589232848, 0.4967915534694931, 2.5448129261402768, 2.3630783985299213, 0.2734637170172376, 0.9890234315604085, 1.2049345520619994, 1.1174933426275993, -1.3768663362067226, -3.8524211185139867, -2.7370154038722516, -2.6398917190729803, -2.6901665241164663, -2.7506482447733984, -1.4841912175302692, -1.2762551899292405, -2.57912200958062, -1.0799959449075343, -1.514273468724931, -1.4342209153395316, -0.16560322831077123, -0.5351353131388699, 1.9368136701231586, -1.0687099454653295, 0.3320635235494097, 1.1680776401435944, 2.135309125764842, 3.3046852330754164, 2.28066415119716, 1.0690848493873653, 3.431361322887821, 3.349146996573368, 0.5652880587403506, 2.3270184139120875, 0.48135301434444244, 1.0737474996588297, 0.44058685472581816, 1.709817645535283, 0.5424704602723036, -1.350020963522799, 0.32786018359746993, -2.4541226752885654, -1.1219793623461145, -2.646169254098983, -2.5126556202506363, -1.8810711277442436, -2.0173107806930184, -1.264800956681726, -2.654381266625999, -2.1444375324610494, -2.680107317932954, -1.7720080879795377, -1.1565555643210899, -1.27955804576298, -2.5281395295038984, 0.08973741177963471, 0.6140919880757701, 0.051734933292106655, -0.09616490952400247, 3.0781009047001957, 2.4506097543399323, 2.017257390931772, 1.3164847714145023, 1.7515091992479839, 3.904081481840101, 2.6746777031281534, 1.8316070398889193, 2.6522287446734394, 1.0121881969670388, 2.946429239667836, 2.365907420257928, 0.07797547557578288, -0.5720701353247043, -3.051498123456089, -2.3894780609814354, -2.6895680609654313, -1.6090302380386168, -2.4024626807567033, -3.6796357273253015, -2.7904081689360223, -2.0894935158023245, -2.0601726563516367, -4.388701256769256, -2.4296758922511903, -3.4151784246216637, -0.7881778839259345, -0.5036493924022449, -1.7378522290405412, -1.1279921710137066, -0.33244659674096955, -1.6377929775111708, 1.4152476132403713, 1.2322794133208377, 2.8475441986758927, 1.0843495714472269, 1.7912947197001634, 1.0457132737582318, 1.598880397541858, 1.3794191915249114, 3.4243903646535014, 1.5106913528389452, 2.0350017912861462, 1.1638886788392466, -0.14599421690558012, 0.49398137065355685, 0.7766111800416083, -1.5213467684708653, 0.015597432849072446, -2.094906178139112, -2.135496463311515, -1.4703086381649113, -2.941649300803821, -2.4367296218970758, -2.896973542941283, -2.4689345945167913, -4.902532759565851, -4.185162267976809 ]
Which of the following time series is more likely to be an AR(1) process?
[ "Time Series 1", "Time Series 2" ]
Time Series 2
multiple_choice
49
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Stationarity" ]
AR(1) process is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. The other option is likely not stationary.
Pattern Recognition
AR/MA recognition
572
[ -0.18693513797319336, -0.3209549954028296, -0.0026488250642562813, -0.04899353867535161, 0.0309671735006984, -0.17510155849490122, -0.39624967497300645, -0.21926838984445912, -0.30968833479652397, -0.49702571705753895, -0.6345974843193072, -0.45507693886719097, -0.5893067036448496, -0.6027174561603168, -0.5847806809382965, -1.0233860055825024, -1.3565670850299871, -1.2627319521749798, -1.4224757214320796, -1.1584282241223467, -0.9156246518661904, -0.7313279826229231, -0.2870035059001138, -0.29224781038857506, -0.1245570426428596, -0.24824092488010507, 0.34554079076182803, 0.8285791696226728, 0.8457723619823927, 0.9514933120498394, 1.2870264440880579, 1.2666496846798387, 1.1259024192142801, 1.3467770214353392, 1.3796953571372548, 1.4373158400755452, 1.254597740770751, 0.8631679177277372, 0.9333451046299385, 1.1615372009001086, 1.1225745673867, 1.476330838822621, 1.3244103347532807, 1.0896128458017722, 1.088115383624676, 1.0829884415467552, 1.27928710248438, 1.1105811969193706, 1.4481926170396278, 1.9272815211557055, 1.932419706042318, 2.242061839420286, 2.0068408282102297, 2.275258327773695, 2.5370735277187264, 2.755455009760687, 2.766164412387091, 2.0825817268729274, 1.9453540001317347, 1.8118618001583955, 1.5951262264288828, 1.6383936108075772, 1.5537958965641097, 1.3733599053259309, 1.1375947704320093, 0.9829344466814535, 1.262285479877458, 1.1204984407153669, 1.0132256711390282, 0.9197129055243302, 1.0141896301459892, 1.1363691782827874, 0.4314268500054079, 0.6871840772622633, 1.0409258222159523, 0.8071957336621318, 0.591867484585622, 0.49987722808388535, 0.33565051788059974, 0.4029416698759114, -0.042556852932392975, -0.2922914046287828, 0.08574469498635273, -0.11916964774360639, 0.18898827066113877, 0.28732657961457275, -0.12574355482387345, 0.03874525321542088, 0.025331578031906554, -0.06789045653382675, 0.004369281949989867, 0.13089222177044224, 0.31245375297479683, 0.6052133647728946, 0.7160256294865466, 0.4054055052466995, 0.30788865289434075, 1.0175977468297361, 1.2031518815688262, 1.7773045510618388, 2.1213752660148453, 2.1928896010577628, 2.27848617583655, 2.284230126715565, 1.8880438194512168, 1.906693980376846, 2.2071135239921977, 2.079829280805779, 2.191543367946014, 2.4071260660554197, 2.2065918606656076, 2.114353655484548, 1.8882488493943825, 1.70839084382229, 1.4185683502251303, 1.2202152861888944, 1.5699613290569527, 1.3680576249785736, 1.4123211295707812, 1.307899999512271, 1.6008044594509576, 1.9249651748559482, 2.143496138666106, 2.2302096257083734, 2.190005971831091, 1.9228007252798536, 2.3963639758627293, 2.231270430408503 ]
[ 11.662020360937255, -4.386602932959569, 9.941464979863664, 8.63627853137492, 18.143266206955143, -2.8791380435715976, -13.146553977154309, -6.369552952160543, 1.451580130127263, 0.727285283863291, -3.8616504343591753, -19.478139633208347, 2.75701599797023, 19.999146390619025, 6.642427020291938, 6.75559789256433, 6.400012850807451, 4.610467983904744, 9.777706467071424, 4.931507458563801, -2.6336209506763795, -8.223251195155179, -3.31206167232227, 2.8100887972744326, -2.8798207315022903, 2.855404758164076, 4.677041812820583, 8.799498493983878, 13.707899537788192, 2.1508641385673943, -12.862679237619869, -4.737308891953887, -0.03310521512939507, -18.360998083283846, 12.050545392696437, 2.6288336643743064, 4.07641171224028, 14.062905796486685, -4.895137721774798, 5.25090553666282, -0.5735506773530746, -1.8982237378945013, -7.911746251833243, 15.86485751168195, -2.1685146495875145, 6.777791003998269, -18.072294774319534, 9.992655819465913, 11.521377141517178, 2.126478817124748, -2.056776779666769, 3.794322378168987, 23.267338846619793, -15.30563310437287, 6.289710565303989, -8.487201965008627, -1.0479041594981748, -2.583591606736448, -4.541541738651201, -0.5588054643924135, -11.397591999217145, 9.152045161357956, -17.02623059585021, 3.695022068698399, -2.8958563184758717, -11.998834569922124, 0.8239502489947397, -15.487115842165306, -1.151573367020184, -14.343926414817563, 3.178328201696555, -8.9257405161341, -5.402514221906503, 2.3992424572409705, -7.485496872698262, -1.3281896839528513, -15.271123980843821, 4.781643637877174, 18.12730241929543, 29.734818921029156, 3.8851633587673073, 8.270557743848597, -16.979200954690032, 13.329423167586878, 9.095227363999749, -3.9298117131123558, 11.978826831578855, -1.3468780832955296, -4.714939638475118, 4.281855290427401, -10.205359469260447, 9.195711697073436, -9.64032694956109, -11.46458059318797, -10.24335594340214, 6.570664780821008, -5.510687137114976, -14.031026557383186, -7.459902655096299, -1.0664139723144985, -11.916366233875305, -12.708447713730965, 19.84211856962275, -6.621442181176595, -3.8925679058477276, -4.061626798577631, -4.619730757562181, 5.751494323934803, 10.056578937113976, -2.053886421604523, -12.570171508083941, 11.48738512768064, 0.1953276008012379, 17.322750908651813, -20.72358388478645, -0.11832617564544234, 19.174230721197535, -1.6152182822618286, -2.4164560615725432, 2.713471309746133, -5.31661105787496, -3.6523804263148243, -3.743388984545513, -6.648546242718284, 11.623710877733766, 5.773151410737728, 3.083597462106793, 8.394069815111848 ]
The given time series has square wave pattern. How does its period change from the beginning to the end?
[ "Increase", "Remain the same", "Decrease" ]
Decrease
multiple-choice
18
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Base on the definition of period, check if the time interval between two peaks remains the same.
Pattern Recognition
Cycle Recognition
573
[ 0.06952675002522368, 1.8696716419705137, 1.685217139042872, 1.7455265028512588, 1.6959285550692924, 1.7516823422916692, 1.8267868078336043, 1.5915399796012366, 1.8678806865732354, 1.643025317200932, 1.7262064976575837, 1.8813377221239194, 1.7897445014256472, 1.7908965244536728, 1.6388809250977958, 1.6525349360449226, 1.8510691692941987, 1.6980291750788679, 1.7074523422973218, 1.853338654732778, 1.651952175090354, 1.7838670429159327, 1.761234262244076, -1.757212102213631, -1.8087870928150571, -1.8149290477736397, -1.8647799460067933, -1.7086770270231761, -1.8237584487789804, -1.6600690675105816, -1.779399033786372, -1.8627885785694107, -1.780724917842149, -1.7980292495409542, -1.6560331884545016, -1.79384354855246, -1.7845645677473394, -1.6157888590780634, -1.706116797480972, -1.5906729280269571, -1.6310390292209163, -1.8456597884635924, -1.657948444187296, -1.6044132004198477, -1.6036622163949648, -1.6581339312696382, 1.8536958291182244, 1.7266774252597519, 1.6732053211923494, 1.7217217977375612, 1.5904646294840306, 1.8912230611694774, 1.7286142336855357, 1.886076602533803, 1.6337935719051468, 1.865206021727528, 1.7074554638093749, 1.6285065887963894, 1.9196553348432825, 1.8676746965613842, 1.7781227716458852, 1.760337318140803, 1.8008945315092186, 1.7764063874190479, 1.6777159342101597, 4.483210214920923, 4.7204872251032866, 4.791631116162217, 4.6806822924224845, 4.572237835915678, 4.490640538629222, 4.4445968525097195, 4.4511872008563955, 4.46908867603074, 4.739531846041993, 4.705043671537676, 4.599043280892955, -1.1065897002860852, -0.921222789973699, -1.0343900854958632, -1.2258293265092148, -0.9818183189046766, -1.094719686728208, -1.0913337255538063, -1.0355691820016033, -1.060360679939044, -1.0139540645552034, -1.018761437646523, -1.1981092919295657, -0.8585005837565193, 4.426077769604548, 4.429175603386369, 4.491560116720386, 4.5135819571624864, 4.6703134235826, 4.551357787104906, 4.58106199031037, 4.5518690606577445, 4.547561600149293, 4.555388392208117, 4.331142027642522, 4.499423593415463, 4.640641552956532, -0.616295281564134, -1.1309592758987537, -0.9682203866123673, -1.0676330404322367, -0.8057631922551176, -1.1459066587239508, -0.9480344336132146, -1.1512494925952217, -1.042385049450886, -1.0139597157197835, -0.9035592144708418, -1.1182450652606555, 4.590753746784155, 4.526293214238211, 4.551694780528014, 4.62024871336793, 4.396159772598887, 4.605474939214275, 4.4675249565904736, 4.634002787397098, 4.557871205353204, 4.50346260374771, 4.465412844990334, 4.6067449413349495, 4.650510610447509 ]
null
Is time series 1 a lagged version of time series 2?
[ "Yes", "No, they do not share similar pattern", "No, time series 2 is a lagged version of time series 1" ]
Yes
multiple_choice
99
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 1 is a lagged version, then it should look the same to time series 2 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
574
[ 4.315058375670306, -1.0734882258774845, 1.2958109974678913, 2.3313967585651647, 2.805379137380694, 0.4895088396269065, 0.6235362960991426, -1.2046585830796257, -0.10715728398710489, -1.1821815267707567, 3.4517153395404283, 3.0431247581610537, -0.8056477770866491, 1.4157859467932, -1.0652708941452014, 2.3190715239543107, -0.2822431558796109, 0.8968838227330999, 1.9072912467191774, 1.0621566138797602, -0.36504349493545707, -0.13763643786404756, -0.43787600305503305, -1.0711048400076315, 2.9467636525525442, 1.4092961534512336, -1.1651911893845028, -0.3082492318085246, 0.07329172051140831, 0.7835977828922094, 1.4355404185653313, 0.5233328841955103, 5.156052352294003, 3.0897098684280437, 1.155176422431468, 5.236973760634245, 2.017187067016029, 0.29637891528009264, -1.0993781446469892, 2.072209232799264, 1.1383807211414487, -2.2418699295417053, 2.029969975614912, 0.39789402980953836, 3.0520742037445068, 1.3979429878208285, 3.823573239265066, 1.5228343971317522, -2.6274339615037405, -1.6496551330430766, -1.9771588941624, 1.2071402104189548, -1.144563351851673, 0.3198566725181402, 2.6956781941905836, 4.521263271874664, 2.5961186803251675, 4.3551699809067586, 2.0933806240984385, -0.37042698253145445, 1.94314612759389, -2.0964364068858514, -0.5988147669704607, 3.1255997434499045, 0.5437826155805381, 0.9228630710742252, 0.00041591958898612447, 0.7536618893452331, -2.5632442957565473, 0.6000947647855324, 4.220073015409137, 2.0805142387557147, 1.3616419744190444, 0.6239055003966667, 0.6445956391644956, 0.8276233892179049, 0.08998674305497167, 0.2007758960129266, 3.0504537323836862, 0.824776291674064, -0.6856632757846961, 0.26376802212494954, -1.4056872364564459, -0.5030611662473725, 1.5770104650324561, 0.7685589903581166, 3.2116069647885364, 2.520309907946438, -0.0414545538523991, -0.45465123831492593, -0.2155315361108385, 1.314886675378276, 0.9420211829468584, 2.988093369044757, 1.1819364738149052, 3.8868214025642205, 0.9389417718801694, 0.10420079844391597, 2.3612228636153336, 0.3890276197692303, 1.253875450234132, 0.29823215622780935, -1.3550922725904258, 1.044366683769585, 0.9101156220731323, -0.3461192966327773, 2.814104062032099, 1.4442243281877407, 2.7287715549233673, 1.5249624788387273, -1.5229581319191003, -0.13067683012429726, 1.3834814012495873, 0.6154789670562535, 2.7330555469533158, 0.8603982953862328, -0.13757097288702402, 1.2795911658344843, 1.1315990732013348, 2.182323410630009, 0.26889714435480405, 2.0203905581114388, -0.47980404024993584, -1.0853163684674356, 0.9008039018355338, 4.786831551397844, 5.547238993209149, 1.5785399635349735 ]
[ 0.8608840829259313, 3.143056936909364, 3.5010297660916714, -0.8408281234804657, -0.5537529551073257, 4.315058375670306, -1.0734882258774845, 1.2958109974678913, 2.3313967585651647, 2.805379137380694, 0.4895088396269065, 0.6235362960991426, -1.2046585830796257, -0.10715728398710489, -1.1821815267707567, 3.4517153395404283, 3.0431247581610537, -0.8056477770866491, 1.4157859467932, -1.0652708941452014, 2.3190715239543107, -0.2822431558796109, 0.8968838227330999, 1.9072912467191774, 1.0621566138797602, -0.36504349493545707, -0.13763643786404756, -0.43787600305503305, -1.0711048400076315, 2.9467636525525442, 1.4092961534512336, -1.1651911893845028, -0.3082492318085246, 0.07329172051140831, 0.7835977828922094, 1.4355404185653313, 0.5233328841955103, 5.156052352294003, 3.0897098684280437, 1.155176422431468, 5.236973760634245, 2.017187067016029, 0.29637891528009264, -1.0993781446469892, 2.072209232799264, 1.1383807211414487, -2.2418699295417053, 2.029969975614912, 0.39789402980953836, 3.0520742037445068, 1.3979429878208285, 3.823573239265066, 1.5228343971317522, -2.6274339615037405, -1.6496551330430766, -1.9771588941624, 1.2071402104189548, -1.144563351851673, 0.3198566725181402, 2.6956781941905836, 4.521263271874664, 2.5961186803251675, 4.3551699809067586, 2.0933806240984385, -0.37042698253145445, 1.94314612759389, -2.0964364068858514, -0.5988147669704607, 3.1255997434499045, 0.5437826155805381, 0.9228630710742252, 0.00041591958898612447, 0.7536618893452331, -2.5632442957565473, 0.6000947647855324, 4.220073015409137, 2.0805142387557147, 1.3616419744190444, 0.6239055003966667, 0.6445956391644956, 0.8276233892179049, 0.08998674305497167, 0.2007758960129266, 3.0504537323836862, 0.824776291674064, -0.6856632757846961, 0.26376802212494954, -1.4056872364564459, -0.5030611662473725, 1.5770104650324561, 0.7685589903581166, 3.2116069647885364, 2.520309907946438, -0.0414545538523991, -0.45465123831492593, -0.2155315361108385, 1.314886675378276, 0.9420211829468584, 2.988093369044757, 1.1819364738149052, 3.8868214025642205, 0.9389417718801694, 0.10420079844391597, 2.3612228636153336, 0.3890276197692303, 1.253875450234132, 0.29823215622780935, -1.3550922725904258, 1.044366683769585, 0.9101156220731323, -0.3461192966327773, 2.814104062032099, 1.4442243281877407, 2.7287715549233673, 1.5249624788387273, -1.5229581319191003, -0.13067683012429726, 1.3834814012495873, 0.6154789670562535, 2.7330555469533158, 0.8603982953862328, -0.13757097288702402, 1.2795911658344843, 1.1315990732013348, 2.182323410630009, 0.26889714435480405, 2.0203905581114388, -0.47980404024993584 ]
You are seeing two time series that are random walk. Are they likely to have the same variance?
[ "Yes, they have the same variance", "No, time series 2 has higher variance", "No, time series 1 has higher variance" ]
No, time series 2 has higher variance
multiple_choice
95
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Variance" ]
Random walk is a time series model where the next value is a random walk from the previous value. Variance refers to the distance of the values from the previous steps. At a high level, you should check the distance of the values from the previous steps for both time series.
Similarity Analysis
Distributional
575
[ 0.8423758088585832, 0.5201306630415292, 0.4154082792218202, 0.047125755580842865, -0.34978581807961845, -0.25718900254715193, -0.41504073764728294, -0.5473079024773095, -0.7197768515887104, 0.021651859431741267, 0.18702089504360062, 0.38162552964381347, 0.17050161059169666, 0.3079310771497452, 0.24592903002888722, 0.03261762222925829, 0.5578551468408188, 0.7138101819500031, 0.8560283521750638, 0.5914525206548134, 0.24561014205427098, 0.22994048962279348, 0.07378869490850898, 0.24059365394632187, 0.4255373551198846, 0.44337205926051715, 0.6687351592703784, 0.7213665294032733, 0.4840298767066966, 0.4300452281129055, 0.46700153160967667, 0.7199217919420624, 0.7811696025008914, 0.625579618098503, 0.8886409871793597, 0.9923101330662251, 1.4131537701128882, 1.436916978905311, 1.1544814419034175, 1.4749399370470877, 1.3178961948797325, 1.3983319052241956, 1.448897354918073, 1.461320942684506, 1.4150837235669396, 0.9652511787810131, 0.6924063646659655, 0.997931547579877, 1.1146819656332383, 1.6345300433270822, 1.3519921025853552, 1.3436453042535732, 1.6603503002727131, 1.5062924159456879, 1.37414057253598, 1.2942723484199972, 1.1730166249807412, 1.317810152646869, 0.833108814860696, 1.2803770410691382, 1.0190876123867656, 0.44264109674847407, 0.43985319568809156, 0.337097490064059, 0.28863859244584433, 0.3737444337642512, 0.5493166448470651, 1.008544539037907, 0.8206385305830697, 1.0314562857512375, 1.2244798130092123, 0.5054678940388483, 0.27861240899977185, -0.07179633025385755, 0.05015234266623155, 0.1421328718011736, 0.2395865533691983, 0.1563823433310862, 0.1006328707185877, 0.09285113304754973, -0.016360769278023955, 0.19524418241813202, -0.0959952449822072, -0.30886124917371266, -0.2758294222742937, -0.37600623693877916, -0.6778963867453661, -0.5330680292618887, -0.6888858421234308, -0.9188796886531218, -0.9663583958836123, -1.209565200206476, -1.2188718180948348, -1.3168077303553682, -1.4563689272416434, -1.5942293660179818, -1.3231512595643298, -1.2226237060121878, -1.6879900188370454, -1.4475776213062976, -1.3069336148274215, -1.1823651291837698, -0.9406118790910404, -0.936519621266004, -0.7676882129791005, -0.8941509050980812, -0.6633785383950545, -0.6039923301203387, -0.9789003984493438, -0.6967218169904162, -0.7318189402207158, -0.8048212395869988, -0.9253471830998204, -1.0259145448976543, -0.9633912842700953, -1.232281639433598, -1.6593709093868216, -1.9491950434002876, -1.845263970487611, -1.889355189383379, -1.5862638994641547, -1.6039378173724665, -1.3745451099334929, -1.563179111161789, -1.681656139661348, -1.6790629783762487, -1.7190806914698593, -1.7845253532096779 ]
[ -6.95930729296487, -10.984505423452362, -9.382570808217851, -8.064346893205167, -9.622750271693352, -8.660894305026922, -9.083443626191826, -6.2752530044991826, -9.606629960411837, -9.928344670013963, -10.45269597593093, -10.04367782487813, -6.14141221578688, -6.455487671395219, -4.568929987405841, -4.944184778216431, -2.2255041760757526, -0.31428051681306146, -1.160452949014744, -2.189373309768725, -0.9531472910115558, -2.616998398071744, -2.133047631499471, -3.0362930920295406, -2.1018067406114356, -2.510575130484205, -4.268801159993126, -1.4628060815311676, -0.8546549714482766, -0.9906898577003305, 0.07551749539337195, -4.167053866357438, 1.139208396262953, 1.2018821599908156, -3.781940420324708, -0.7429280639947932, -2.650445719424725, -0.0008155461208058313, 0.3078026032255788, -3.6789419291080057, -3.0156880729833087, -2.5391581751787036, 0.3847944871675215, 1.710389433373283, -1.4360515763860782, 1.1083662929163869, 0.057198736809199485, 4.424362244033306, 3.5236978121237423, 2.9873015351095016, 0.9007277585035807, -0.36504161727907997, -2.301886296570119, 0.6847137074002579, -2.695529110639727, -0.652977414827207, 1.4507063739210455, 4.947826987068603, 5.058922496022653, 2.45249923661198, 2.016464473461532, 3.5262000384138754, 3.741300286894413, 4.672296249080188, 8.138289406584814, 9.6157962757052, 10.119571244168977, 5.437369665195789, 3.447441919283759, 2.4201106120939255, -2.599101530661339, -5.415153953269364, -6.096662917406835, -6.365044717094329, -5.08096596346959, -5.602133437131771, -4.972443331549161, -6.033067426175496, -5.926410248365698, -4.7815449815214315, -1.0430419394465877, -2.3495434884960105, -1.9835148715870188, 0.22290180386715766, -3.431732534794249, 1.6400626714957431, 4.63321730299958, 0.2883351398551062, 1.2311462385546474, -0.2018074024971086, -1.21053775108221, -0.32073468508432457, 2.345869412239142, 1.1631778229885528, 0.014567034271069196, 0.9593707775313902, 2.4113716777338463, -0.145389393528465, 4.2304248229837444, 2.5972704259350285, 5.046247403051386, 6.19297055842274, 7.732219005811432, 6.148220397420353, 1.7719560335713838, 1.7176249718520753, 1.6737566340914354, -0.7583323540596494, 1.5720105222745104, 1.441194955142382, -0.6127629929369521, 0.8725324502510912, 2.4252258257431127, 0.6066641410039887, 3.737823160253322, 9.432650070726408, 6.6654365618040226, 6.199100594713519, 7.054652872892398, 12.843451387561313, 10.980642578122794, 8.59535987235451, 6.192726312702427, 9.293501824750889, 7.496561020525378, 5.338361905981398, 5.924708723560319, 6.707176902840345 ]
The given time series is a square wave. What is the most likely period of the square wave?
[ "55.76", "12.36", "33.18" ]
33.18
multiple-choice
23
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Check the time interval between two peaks.
Pattern Recognition
Cycle Recognition
576
[ -0.09242207172751843, 2.1175951410301432, 1.9933580359900194, 2.0301222574548845, 2.0169211640269387, 2.1294767438661295, 2.221918016626923, 1.9035883305590007, 1.9217992517476796, 2.0492046538026156, 1.935414628716953, 2.1104132405871723, 2.1264666094555786, 1.962397232322499, 1.9407011368829974, 1.9895769613818728, 2.0274566849434468, -1.9855711445576256, -2.242336569452062, -2.1138004154321566, -2.057464798434203, -2.0967537967218335, -2.3035258527824403, -2.205892110082614, -2.1475907161055816, -2.0285832836324666, -2.060675082895276, -2.0802117718000024, -1.9374033674678608, -1.9374414970547686, -2.0020629981989573, -2.0050428352752787, -2.102720918640486, -2.0907540966127978, 1.846289925234623, 1.9919797203693117, 2.0956289925182645, 2.152487853224601, 1.9925768777565984, 2.0662217467481137, 1.7314559392610251, 1.9737620315073023, 1.9714186255338184, 2.166171694969683, 2.0563482096392867, 2.0664804058352058, 2.061287694647044, 2.0215991367803667, 2.1702913966320576, 1.7865269087506375, -2.002433822675603, -1.9040745783831885, -2.2061942088664095, -1.9332630781699145, -2.0931711876736765, -2.0060732706629407, -2.0950908016416876, -1.9211396958922426, -2.0458910516695012, -1.9324751779114235, -1.9735218799207106, -2.0964341119530285, -1.9668689445075922, -2.083411769348418, -2.0106420541631476, -2.047714299696125, -1.9270636769082674, 2.0710870906208867, 2.0139827086866706, 1.9484836858315788, 1.890155714564073, 2.0306205054762145, 1.953825774231969, 1.8292552477897623, 1.8840520094475197, 2.1796423941013163, 1.9510572250482003, 2.125271141298185, 1.9813898908273166, 2.141012627063226, 2.1337712652945826, 1.9344853208570791, 1.8182572968663844, -2.2073869112501767, -2.0979210139427154, -1.8280914209913908, -2.0581110710393986, -2.0025304685397995, -1.8867211769268057, -2.006022727235976, -2.0094657596950674, -1.95478854415263, -1.9881578879961461, -2.0270015740474934, -2.089199797866889, -2.009205974460599, -1.9076148838388307, -1.8388544048472726, -1.9878271993902539, -1.9415387500375476, 2.044027934263426, 2.0083219271067847, 2.068480571408413, 2.1359881469783932, 1.9284186799452303, 1.871915193315854, 1.9637540385834982, 2.038221057877115, 2.1040420253092678, 1.918104081061596, 1.7681972112846638, 1.9661099978800431, 1.9976634409813212, 1.900827515206001, 1.9414457706654136, 2.1037832045558447, 2.0248668705067545, -1.9824926516862131, -2.0526230867081994, -2.092465904642977, -2.053344686489559, -1.9671668441291756, -2.1661868846812666, -1.8520378375639437, -1.9595690139789046, -2.070642873976216, -1.9357141517584948, -1.894819956839834 ]
null
Does any part of the given time series, composed of several concatenated patterns, appear to be stationary?
[ "No", "Yes" ]
Yes
binary
32
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
You can try to identify different parts in the time series first, and see if any part is stationary.
Pattern Recognition
Stationarity Detection
577
[ -1.7585869464537192, 0.9231493844780776, 0.4188059031484371, -0.313525744697983, 0.6920846726470782, -1.0090235329818256, -3.948025216136268, 1.6624258116694954, 1.1602770303111154, -0.06751303119094333, -1.573374899082401, -0.33268505372525553, -2.8876453691294284, 0.14529755933555216, -3.1484114483946253, 0.20396365557277338, -1.2110747527118124, -0.37217560949827394, -1.8130178870948517, 2.560186678905114, 0.6179963896204053, -1.2499574919016683, -0.21439633359340854, 2.6049236751325506, -1.8283578125667668, -1.9535113835833098, -1.9203976739584354, -1.119266468123669, 2.5445339837556906, -0.9648225278718426, -0.6899860896790516, 0.6273394904574499, -0.027759676830207972, 1.598664302505181, 1.3796159512705612, 0.5332060873115526, -0.382010464361013, 1.533406101299423, -1.2525121626402154, -1.411101642096141, -0.7693823799346253, 2.0683125282047294, -1.6068067753421367, -0.8009238635006024, 0.4829806474882523, 0.07663204594254136, -0.6918821619553733, 0.8145582182632705, -0.8629544298294295, 1.8304669054508287, 0.40367914177852304, 1.6744487617933583, -1.3852868758427723, -0.2426372982770331, -2.9178288789418536, 2.3936897716552026, 3.8911233284990114, -0.5057936717754579, 0.6931670031565659, 0.13036754002018114, -2.2096963072293283, 1.916262043937968, -0.4556797659710529, -3.455273697707832, -3.5212809002613694, -3.3938202680360385, -3.3985704467716475, -3.436254732176885, -3.2728286130908066, -3.345159888198682, -3.4039986754210667, -3.447436047317084, -3.099824637728069, -3.202832005812165, -3.179129977748578, -3.1639193931554144, -3.0097943587252773, -3.0893951437668496, -2.920910619123804, -3.033191178890847, -3.287300468884469, -2.865199710766547, -2.9324187362981857, -2.9866940504231447, -2.933733870266994, -2.9108943949208896, -2.9763308744605146, -2.7365138988283806, -2.84088037757407, -2.8551655715255357, -2.3105244189512217, -2.827772435881261, -2.693304850100599, -2.8866346878046665, -2.5032123394600987, -2.628944989872042, -2.491066408058159, -2.639143533556793, -2.6784419034929337, -2.5635312671826127, -2.3264426774307143, -2.3753295713168803, -2.566751578838681, -2.6191213029634417, -2.3813445956719828, -2.212043546961118, -2.3691904751732182, -2.157765771715056, -2.2247578188432655, -2.034236035541104, -2.2494422150009146, -2.159633356207268, -2.191206345838493, -1.9992099592686163, -2.0107213216809985, -2.2117047071940124, -1.9447016889158926, -2.134877927772355, -2.049158197790711, -1.8555241556439899, -2.027597540005356, -1.9113509523187413, -1.7703287766167501, -1.7768048192356949, -1.7547109936387317, -1.683261847644289, -1.6037972865708119, -1.8306104567046095 ]
null
Is the two time series lagged version of each other despite amplitude difference?
[ "Yes, they are lagged versions", "No, they are not lagged versions" ]
Yes, they are lagged versions
binary
104
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
578
[ 0, 0.22870539055950936, 0.4521573240025153, 0.6652230172884834, 0.8630082635955388, 1.0409698542690486, 1.1950199381975857, 1.321619921438382, 1.417861750179157, 1.4815347099331797, 1.511176206562505, 1.5061053626683534, 1.4664386576256847, 1.3930872520039326, 1.2877360578330515, 1.152805035479498, 0.9913936061588646, 0.8072094569526619, 0.604483373707378, 0.38787205813922615, 0.16235116147576423, -0.06689900830426442, -0.2946124802810468, -0.515558582116896, -0.7246620907564483, -0.9171198123927677, -1.0885109138094495, -1.2348984707423112, -1.3529199006529402, -1.4398642026359925, -1.4937342302277357, -1.5132925666837473, -1.4980899489517208, -1.4484755874290074, -1.3655891444558115, -1.2513345558013507, -1.1083362964742445, -0.9398790954494919, -0.7498324840896267, -0.542561911413897, -0.3228284679344329, -0.09567952144416954, 0.1336672231023842, 0.3599435764232091, 0.5779518773886679, 0.7826843854406517, 0.9694383104578831, 1.133923837783978, 1.2723626670387855, 1.3815748012359224, 1.4590515926246612, 1.5030133673630799, 1.5124503053599756, 1.4871456362587046, 1.4276806187416515, 1.3354211887786396, 1.2124865835145338, 1.0617006615182485, 0.8865270375871517, 0.6909895220871212, 0.4795796923694124, 0.25715371938701653, 0.028820819445691096, -0.20017410660114068, -0.42457095088745594, -0.6392152253810625, -0.839176462598898, -1.0198614704779423, -1.1771198398906935, -1.3073392812540328, -1.4075286003103011, -1.4753864070926677, -1.509353979801532, -1.5086510692869242, -1.4732938216931741, -1.4040944075753239, -1.3026423660066129, -1.171268092210603, -1.0129893074220733, -0.8314417405860398, -0.6307956141648826, -0.4156598524089983, -0.19097621246650584, 0.03809422981593673, 0.2662896319332338, 0.48836825141367063, 0.6992288508046514, 0.8940278752002281, 1.0682907106942996, 1.2180144681069107, 1.3397599309991017, 1.4307305558925285, 1.488836710026151, 1.512743671082323, 1.5019022863087306, 1.4565615867835329, 1.3777630670688168, 1.2673167616511007, 1.127759667702899, 0.9622974692116613, 0.7747309010968866, 0.5693684447619626, 0.3509273604999529, 0.12442533007972349, -0.10493480147307085, -0.33188453737134754, -0.5512107486100396, -0.7578754216886829, -0.947131383858702, -1.1146313476387246, -1.2565277698004078, -1.3695612310227157, -1.4511353060976244, -1.4993762048876305, -1.5131758140577773, -1.4922171508958417, -1.4369816445359198, -1.34873807733273, -1.2295134404077936, -1.0820463728276621, -0.9097242539353977, -0.7165053938504445, -0.5068281094532091, -0.28550877441634037, -0.05763118511570691, 0.17157021626839666, 0.396830579046331, 0.6129755798101167 ]
[ -0.45614893978775123, 0.6372540454030546, 1.7160190424307713, 2.7553663745383035, 3.7314218049837122, 4.621764938101488, 5.405944225034988, 6.065946744245812, 6.58661196574831, 6.955979994734032, 7.1655662952865375, 7.210556583669601, 7.089917414409542, 6.806419918963857, 6.366576151689092, 5.78048950526738, 5.06162263161084, 4.226488199196543, 3.294269590263428, 2.2863802506129067, 1.2259718139300169, 0.13740229921234953, -0.9543234029692648, -2.0241279031166393, -3.0474373507804375, -4.000745906036814, -4.862155678321894, -5.611879730006605, -6.2326965905121305, -6.710345840589546, -7.0338556800295375, -7.195794954436893, -7.192443851910831, -7.02387934865803, -6.693973440817451, -6.210304203112559, -5.5839817173505075, -4.829392869262357, -3.9638708758060552, -3.007297134026463, -1.9816445371681113, -0.9104727482579339, 0.18161297506812904, 1.2695269734777401, 2.328279413879936, 3.3335503161944957, 4.262248193321528, 5.093040472120827, 5.806843511412291, 6.387260961081988, 6.820960393004622, 7.09797955241442, 7.211955195004598, 7.160269253272637, 6.944108974610266, 6.568439649741352, 6.041890557946795, 5.376556748961581, 4.587721214695561, 3.693503832608151, 2.7144451446521787, 1.6730345325564129, 0.5931936274548064, -0.5002731798435041, -1.5822485059378788, -2.6278789314889908, -3.6131458945079613, -4.51541740662813, -5.313967919209106, -5.990454397734142, -6.529337668875728, -6.918239361713924, -7.14822624401987, -7.214015422283277, -7.114095691954524, -6.850762250436215, -6.430063975452556, -5.861664479834015, -5.158620134346387, -4.337080157471061, -3.4159156611981754, -2.4162861738038064, -1.3611535967611181, -0.27475476039646607, 0.8179553060959983, 1.8918766019640645, 2.9223407122633076, 3.885677451519243, 4.759758577646968, 5.524506086795184, 6.1623534133729985, 6.658648941304112, 7.001992557689037, 7.184497518098675, 7.201971608345521, 7.054013441372027, 6.744021677276802, 6.27911695469089, 5.669978326772544, 4.930597958953203, 4.077959723128622, 3.1316490711188387, 2.113403148764913, 1.0466114847266643, -0.04422127663424136, -1.1340382570383778, -2.1978059111138037, -3.2110890572544246, -4.150612163816199, -4.994793997675563, -5.724243354052173, -6.322204480477676, -6.774941963338422, -7.072056235989184, -7.2067224610868035, -7.17584729991784, -6.980139967664191, -6.624095942437948, -6.115893702295699, -5.467206862225574, -4.692936026397878, -3.810866515143876, -2.8412598288147746, -1.8063882327648682, -0.7300231542335694, 0.3631108571394517, 1.4479040624131585, 2.4994383144016123 ]
The given time series is a random walk process. What is the most likely noise level?
[ "8.62", "3.41", "1.62" ]
1.62
multiple_choice
55
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the past value.
Noise Understanding
Red Noise Recognition
579
[ 2.8573320392710038, 2.429913237732357, 2.02085465667512, 1.8043313350359158, 1.6261590702957847, 1.7494771987849458, 1.88223322084384, 1.9616291587167787, 2.2048562210343423, 1.8724084946705264, 2.643277863610894, 2.534729218887974, 2.327195693509029, 2.26306676054027, 2.397993944234279, 2.6365172019208933, 2.547153813578897, 2.249232541471084, 2.1225749395980356, 2.859462035509373, 2.640933885182226, 2.785659554801182, 2.47841827934966, 2.3513439372143097, 2.1851035739654603, 2.4028778681131993, 1.4795914973602982, 1.7311472708168825, 1.30557279633071, 1.3815340995929222, 1.1236825399030612, 0.8848921852792169, 0.8916361714811518, 0.558514003646628, 0.3469604324627861, 0.09565321531087043, -0.468013445042363, -0.2578973092391403, -0.6005614656853759, -0.6543155480696403, -0.37237250451187764, -0.6365103998274461, -0.8762359768046535, -0.5752342782266542, -0.35652493195937945, -0.8629516878201108, -0.7729926314387503, -1.3166624748919717, -1.402459950538006, -1.4180407995718602, -1.5586723922071244, -1.7745438018121888, -2.2204388332853724, -2.08783663251403, -1.8650209785665668, -2.1918322196452276, -2.3517104411550642, -2.247899154477175, -1.8889166033622768, -2.378075386039933, -2.4430792956598757, -2.386367441535424, -2.4550687090277776, -3.116375244600755, -2.901674698584148, -2.436847674886448, -2.440727385335144, -2.9458006582955503, -2.7003901057771516, -2.240025287590311, -2.04231576903278, -1.7120173521274156, -1.897968679620677, -1.8016682391469905, -2.1446532524376525, -2.0466751664299867, -2.039829025123846, -1.4768842553489077, -1.1180091714321656, -1.5804288394857402, -1.4291323223471175, -1.2786636910593019, -1.1627704737980142, -1.3482307372134645, -0.37211581004755223, -0.885978020081003, -1.0406793648220611, -0.9427469454905185, -0.6229194151629712, -0.5833151613043128, -0.5670400632962993, -0.43796194354952545, -0.4083925549930258, -0.4608605730264063, -0.42938587450912247, -0.3052105904392593, -0.15841794763525452, 0.35840027676009856, 0.48266780201572423, 0.5683997043194634, 0.6849221504778125, 0.6416144319997281, 0.6817056767843277, 0.9243420365012327, 1.0640087861380778, 1.5352071730713788, 1.074804124137951, 1.0022199693991258, 1.0486146929436948, 0.7440301555823229, 0.7998691655416774, 1.0601103119392787, 0.8727567702184083, 0.4573614708997677, 0.14804930982611847, 0.5645135276899081, -0.35294723915005394, 0.14477821724438955, 0.34579568409986866, 0.662707447758031, 0.5059259330080227, -0.051456879397571466, -0.09425843267422532, 0.41155926830039913, 0.6049209068511181, 0.5697517408845816, 0.7825541036881294, 0.4219726282390539 ]
null
You are given two time series following similar pattern. Both of them have an anomaly. Do they have the same type of anomaly?
[ "Yes, Time series 1 and time series 2 both have cutoff anomaly", "No. They have different types of anomalies" ]
Yes, Time series 1 and time series 2 both have cutoff anomaly
binary
75
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Spike Anomaly" ]
For each time series, identify the type of anomaly based on the given definitions. Then, check if they have the same type of anomaly.
Anolmaly Detection
General Anomaly Detection
580
[ 0, 0.6239896681543609, 1.214762158084928, 1.740829450703308, 2.1740718317869376, 2.491201696652832, 2.674975813707123, 2.7150929410708162, 2.608730069796508, 2.3606893789070673, 1.9831482523395387, 1.4950253709551844, 0.9209958784388641, 0.2902068877808807, -0.36523980584350024, -1.0119588216378972, -1.6170191083022123, -2.1496582084957523, -2.5828836346006785, -2.894877994294006, -3.0701347204699814, -3.100265283760935, -2.9844358672629614, -2.7294107718518927, -2.3492002925749946, -1.8643313963253971, -1.3007791665275599, -0.6886146397327282, -0.060439422574853074, 0.5503114230643866, 1.1111098813800995, 1.5920282666223393, 1.9672971438462374, 2.216646787043956, 2.3263623434835363, 2.289997776438534, 2.108711421183103, 1.7912056864919983, 1.353274040554553, 0.8169788634817545, 0.20950296425747694, -0.4382654522352234, -1.0933407069132515, -1.722356754669811, -2.2933040929498545, -2.777196053913439, -3.149577739395876, -3.3917990492872767, -3.491985534347438, -3.4456565345751873, -3.2559584252150517, -2.9335008285070794, -2.495804317369055, -1.9663883614431843, -1.373546993544361, -0.7488759306278732, -0.1256278217203013, 0.46301875769010026, 0.9856864552781436, 1.414432526724116, 1.7262034280118774, 1.9040348946760999, 1.9379350364672765, 1.8254044769068705, 1.57156646125861, 1.1889001599929998, 0.6965910509457485, 0.1195321967880183, -0.5129715925199358, -1.1687292559497557, -1.8143392248074628, -2.4169281805307956, -2.9458623138070283, -3.3743420034125764, -3.6807969018988627, -3.850008805304245, -3.8739038545935314, -3.7519728298507737, -3.4912976583186826, -3.106182756377601, -2.617410396389314, -2.0511588611571745, -1.4376397027397616, -0.8095250447074605, -0.20024679646573817, 0.3577436839636241, 0.8346648834098513, 1.2049554451184699, 1.448604795129256, 1.5521948161515338, 1.5095983433827362, 1.3222981212518448, 0.9993096174206932, 0.5567117120507687, 0.016809692855584535, -0.5930258727878852, -1.2417839447961452, -1.8964273264085962, -2.5236124541769227, -3.091425136231498, -3.5710418829352664, -3.9382303474114377, -4.174610768754867, -4.268612752022912, -4.216077578702006, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117 ]
[ 0, 1.785614716720143, 1.8221491957455611, 1.8586836747709794, 1.8952181537963975, 1.9317526328218155, 1.9682871118472338, 2.004821590872652, 2.04135606989807, 2.077890548923488, 2.114425027948906, 2.150959506974324, 2.187493985999742, 2.2240284650251607, 2.260562944050579, 2.297097423075997, 2.333631902101415, 2.370166381126833, 2.406700860152251, 2.4432353391776696, 2.4797698182030876, 2.5163042972285057, 2.5528387762539237, 2.589373255279342, 2.62590773430476, -0.835718262059272, -0.7991837830338538, -0.7626493040084357, -0.7261148249830176, -0.6895803459575995, -0.6530458669321813, -0.6165113879067632, -0.5799769088813451, -0.5434424298559271, -0.506907950830509, -0.4703734718050907, -0.43383899277967264, -0.3973045137542546, -0.3607700347288363, -0.3242355557034182, -0.28770107667800016, -0.2511665976525821, -0.21463211862716403, -0.17809763960174574, -0.14156316057632767, -0.10502868155090961, -0.06849420252549132, -0.031959723500073256, 0.004574755525344809, 3.539269709940213, 3.575804188965631, 3.6123386679910494, 3.6488731470164675, 3.6854076260418855, 3.7219421050673036, 3.7584765840927217, 3.7950110631181397, 3.831545542143558, 3.868080021168976, 3.904614500194394, 3.9411489792198124, 3.9776834582452305, 4.014217937270649, 4.050752416296067, 4.087286895321485, 4.123821374346903, 4.160355853372321, 4.196890332397739, 4.233424811423157, 4.2699592904485755, 4.3064937694739935, 4.343028248499412, 4.37956272752483, 0.9179367311607978, 0.9544712101862158, 0.9910056892116339, 1.0275401682370524, 1.0640746472624705, 1.1006091262878885, 1.1371436053133066, 1.1736780843387247, 1.2102125633641427, 1.2467470423895608, 1.2832815214149789, 1.319816000440397, 1.3563504794658154, 1.3928849584912335, 1.4294194375166516, 1.4659539165420696, 1.5024883955674877, 1.5390228745929058, 1.5755573536183238, 1.6120918326437423, 1.6486263116691604, 1.6851607906945785, 1.7216952697199965, 1.7582297487454146, 0.009474398210466388, -0.006017066122293969, 0.01852278184508938, -0.00013497224737933915, -0.010577109289559, 0.00822544912103189, -0.012208436499710222, 0.0020886359500475542, -0.019596701238797757, -0.013281860488984306, 0.0019686123586912354, 0.007384665799954104, 0.001713682811899705, -0.0011564828238824054, -0.0030110369558928878, -0.014785219903674275, -0.0071984420839470865, -0.004606387709597875, 0.010571222262189157, 0.003436182895684614, 6.023614283668644, 6.060148762694062, 6.0966832417194805, 6.1332177207449, 6.169752199770318, 2.708126203406286, 2.744660682431704, 2.781195161457122, 2.8177296404825403, 2.8542641195079583, 2.8907985985333764 ]
What is the most dominant pattern in this complex time series?
[ "Seasonality", "Noise", "Trend" ]
Seasonality
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
581
[ -0.1238923140043849, 1.8902147975779182, 3.8370463182572903, 5.215528364144166, 6.391060485527543, 7.463092033911942, 8.309674914274002, 8.249068584397433, 8.285989416958046, 7.313237350491801, 6.41713685472366, 5.027151406249179, 3.427602456024314, 1.7870400146170597, -0.17301074432030425, -2.2335559203053346, -4.034773777306614, -5.319627787926394, -6.663853629981283, -7.67262210201153, -8.238827675373377, -8.2171946074059, -7.905716868946234, -7.241765872217823, -5.963440886741984, -4.395726709877208, -2.9006561055911884, -1.0927604408387182, 0.5650334272665675, 2.2613172106853106, 4.217650441903106, 5.777701800085541, 7.143462247952032, 8.054204645789998, 8.439051126125285, 8.280208864652812, 7.995665518067578, 7.324657394852908, 5.954063961164877, 4.63204622725759, 2.6624910273433193, 0.9049089740398104, -1.0126786096810203, -2.602675738204539, -4.498674652666962, -5.761100574672465, -6.940017670371318, -7.949900006275836, -7.910590248858804, -7.876010908684837, -7.431555342521111, -6.816012923172932, -5.168750740573411, -4.122022255700506, -2.1802578409898907, -0.5551127392727188, 1.4210984430369997, 3.3373977117346976, 5.1654753505680695, 6.159978606254579, 7.436133161232394, 8.403676929655301, 8.252583769266844, 8.427709909448202, 7.594556529674944, 6.572025180553916, 5.631985392061089, 3.876961108761919, 2.3251229043967507, 0.24011288753789206, -1.591296740752373, -3.273008437838514, -4.953934204328394, -6.414373168574229, -7.1693718867562035, -7.97842787968054, -8.004859838105117, -8.225590011261787, -7.394366029662136, -6.249576740470099, -5.078633615146286, -3.3936121872898184, -1.4651648785297229, 0.48167937205414674, 2.399767670229387, 3.7793165193054032, 5.730020708521846, 6.620580479981321, 7.894847972979406, 8.354945144006377, 8.255881439795818, 8.13937223919428, 7.605882346359986, 6.02935603638288, 4.9989651271596935, 3.2671237812731384, 1.5464275674943575, -0.653552686166915, -1.9388773544137627, -4.092384713407242, -5.5610952758995635, -6.501587520080263, -7.6784460844446984, -7.95438527586349, -8.002291879293919, -7.743036626785888, -6.969001993842302, -5.71199952353496, -4.248904113834042, -2.708068425881501, -0.5911412053492705, 1.00491605682817, 2.8303242773523216, 4.946381579821798, 6.032858808326409, 7.142934385025341, 7.838329202695171, 8.61947375957156, 8.44223889788104, 8.056217383099865, 7.068695987643476, 5.993769449204731, 4.502063727827289, 2.986997908890001, 0.809039867156519, -0.7507234171354696, -2.8868954671900484, -4.37568500505225 ]
null
What is the most likely variance of the given time series?
[ "0.78", "1", "varies across time" ]
1
multiple_choice
43
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
582
[ 0.7801500245320956, 0.7027554370594895, 1.0179389225505184, 1.369262425478723, 1.4531996078385732, 0.838938703306455, 0.18545874552040742, 0.4830688827380375, 0.7438550263721049, 0.38169397791371995, 1.5751097061837585, 0.4153789078796677, 1.3141504030205429, 0.16514836587276083, 1.3351589761137217, 0.9373941736665881, 1.763764199241857, 0.44218808556567246, 0.7263827490419402, 0.8236948290146987, 0.9331322949829086, 0.8368633350136634, 0.846986108088738, 0.8392659802030298, -0.02432060816455861, 1.5084088856394804, 2.4427824409454413, 1.1618224524081973, 0.44528443994683153, 0.4963637331123977, 1.3206934551383407, 1.2073148188713603, 0.8729088736271795, 1.392230183605289, -0.015940234541105935, 1.393507864634147, 1.1358321171139336, 0.519452494941733, 0.30123970348237994, 1.0790407083110192, 1.7224717566173293, 0.9052819156636279, 0.5934620892116225, 1.1159250154030593, 1.9311933008483957, 1.236884035318968, 1.291412078544929, 1.63358758083527, 1.2589443638123579, 0.6326584347755961, 0.15133865971078697, 0.5632726462478925, 0.4722143473427226, 1.3547100767833562, 1.4247087833243033, 1.1137997527198513, 0.39214692134760454, 1.9202708334388228, 0.8193468501656876, 1.3296723218545519, 1.05307431878478, 1.1332239500087593, 1.3134647423251047, 0.6818434165526038, 1.6830356917157228, 0.2410629759063141, 0.5120189620404842, 1.6779934576820716, 1.3272630314725102, 2.3029383052244365, 1.0674003088355415, 1.8839222911307496, 0.10545103283390755, 0.32791594430885407, 1.4829194319405237, 0.1654562084374782, 0.9374400015461641, 1.620212256579634, 1.2876774827099964, 1.0431238224450743, 0.8135070659058654, 1.139658551973012, 1.3276548416482696, 0.7090687542836069, 1.225869430737434, 1.5797025095298451, 0.9297340183299053, 1.0755206845557186, 1.2838350780545502, 1.3180993978340594, 1.4821459322987869, 0.5362187511994715, 0.7794322888753655, 0.7984417325137083, 0.5929127621269461, 0.14614987800470536, -0.5813944100779398, 1.6440598663531225, 0.269875686283489, 1.8305656581222958, 1.4175049736777003, 0.8454454025111584, 1.3569902364178492, 1.2618356276216638, 0.4988718718141526, 1.042760444360218, 0.560820451773931, 1.3782945750854583, 0.6941110632480365, 1.0038979654968372, 0.9828046979439589, 1.1139853110870426, 1.8849652343634316, 0.9336995150958222, 1.663635720063984, 1.2951632187401163, 1.7648587971370784, 0.8869326644153278, 1.404711940776725, 1.02750330183377, -0.4370654736252777, 0.5132031988565121, 1.3498076494492721, 1.3172460505225116, 0.41211954488592994, 1.170286891462381, 1.3122283392731224, 1.0437607813435046 ]
null
What is the direction of the linear trend of the given time series, if any?
[ "Downward", "No Trend", "Upward" ]
No Trend
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
583
[ 4.9341484771453965, 5.04406328497919, 4.841197532641907, 4.983587030256921, 4.924519308014621, 4.946577937463434, 4.9530054127636385, 5.077432406744443, 4.92654868915672, 5.027051107585051, 5.039312703214511, 4.865018233290814, 4.950853360114409, 5.055455639138932, 4.916011668367186, 5.041199409582905, 4.980617177472146, 4.978463634638527, 4.984968932204254, 4.998572442972999, 4.93390201751099, 4.968534384710743, 4.9999685891963015, 4.990318783342913, 4.998903899062648, 4.94570575564369, 5.013005233188262, 4.987807597395362, 4.902764515587244, 4.955036892121679, 4.936897580333494, 4.936256282384113, 4.957771310494509, 5.0120673512231715, 4.950283501454866, 4.992718477275428, 4.984554020234218, 4.942698650879607, 4.9643302119419435, 5.024589728860984, 4.98896981448157, 5.008847101956567, 5.0448967094979595, 5.003173623191756, 4.885827948269755, 4.994987047229617, 4.9507159370231175, 5.0716875574160944, 5.001396836809209, 4.951745770692327, 5.009728035079683, 4.986029957882016, 4.895927035192459, 5.02450063749164, 4.961305202483174, 5.052275405086217, 4.975308674037218, 5.0532057110740265, 5.00267353445238, 5.030033228314308, 4.957007179169726, 4.999092230820718, 4.895514692413664, 4.975178850044916, 4.907555156826633, 4.924569713916827, 4.937131723853136, 5.0144061190022935, 4.974166446784968, 4.983072741245979, 4.972810102454377, 5.035343372002557, 4.981708552931567, 4.993903039512003, 4.9530999986382005, 5.038765109261804, 5.042500243020349, 4.979669576657425, 4.952400503524034, 4.901007225056488, 4.938238008758608, 4.873553455011668, 4.936143479784168, 4.999289693624041, 4.978996525342331, 5.097240914675667, 4.9630229855383, 4.959133672487073, 5.034449146658114, 4.885516732524724, 4.907692861594232, 5.014576507735675, 4.971772131765114, 4.972914300133928, 4.934822950085548, 4.9934513709779775, 4.941255465883304, 4.985130916669883, 4.923797260437853, 4.972421083447857, 5.082376194623702, 4.96033899553966, 4.9749436588768114, 4.971418504805819, 4.990201497188809, 5.004828227098155, 4.994321519589013, 4.995421341287137, 4.972498974443109, 4.986503142261551, 4.970848997396342, 4.891224423015473, 5.112551478697603, 5.017781180476904, 4.932722345764655, 4.99296767812597, 4.914449105460211, 4.95688851674502, 4.907681836594907, 4.978957425739312, 4.9027318780245235, 5.0008565169678825, 5.015492094794208, 4.940311104379853, 4.9895221588820835, 4.937671714935954, 5.006999117354071, 4.947203644824551 ]
null
Which of the given time series has the highest variance?
[ "Time Series 1", "Time Series 2" ]
Time Series 1
multiple_choice
44
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
584
[ -0.7682351345357926, 0.9940407703101242, -0.33027917202980234, -0.07714862422504219, -0.8742579334772664, 1.0805327648198944, 0.0860140028041342, -0.9495980759288958, 1.1459483539346487, -0.4702037997265771, -0.2734350465987402, -0.7252381754280942, -0.8363713383652628, 0.26997121356638526, -0.4826787602001922, -1.0567553327227857, 0.6866897082220783, 0.3486620670594277, 1.2388904116275745, -0.2582691061320208, 0.027751625174848395, 0.1466101707367198, 0.09669752668511442, 0.1740343354235359, -0.22236894476525687, -1.24891048610885, 0.19957247440308712, 0.39851509831186993, -0.23311615625037516, 1.7228133768606548, -0.33064989436608355, -0.4334160969740624, 0.3075152157027934, 0.1628575017738654, -1.0906903750566195, 0.5520868948320975, -0.3162346616743619, 0.8582064272603199, 0.2770195527767947, -0.16287081154604177, 0.8834553435372113, -0.3803161217269774, -0.9254273988381404, -0.9444271188066952, 0.16817417213769237, 1.261444563093092, -0.09881532414373118, 0.5265817168895992, 0.21579585894553127, -0.2861930612335847, -1.1486506905166787, 0.11533031025603376, 0.5574332987303211, 0.31541133380779507, -0.23536228843059476, -0.3664115906056655, -0.4391871391371116, -0.45651963644707355, 0.031196188592801034, -0.10855953685428918, 0.35048357878418235, -0.6722803428378398, -0.018233852494643488, -0.024257843707503828, -0.35234211356521516, 0.2130360903160745, -0.6184723420298104, 0.8264205951160366, 0.2938375376635107, 0.3773414559391409, -0.049719605195014435, -0.22779129290207614, -0.50033130773996, -0.5769292255759232, -1.059536284276473, 0.06434026716199215, 0.48419672277602194, -0.8466046904350957, 0.9166214501033517, -1.0898002588081819, 0.5920429273490997, -0.5859081211542811, 0.7477052708731715, 0.5287027419385177, 1.8361623905510325, -0.4319197724549011, -1.5499029082326807, -1.3103157051554446, -0.14282069703310715, 0.11388718482779957, -0.497187994019094, 0.25232486439802926, 0.619110629379819, 0.4047167287802488, -0.02746370676597503, -0.5861674409313335, 0.5765993804074336, 0.9575564219256651, -0.4166008939648292, -0.811583887783722, 0.8000205578727058, 0.22275800784003036, 0.20899902725391847, 1.1912944444229314, -1.2427485344323712, -0.1468758672440124, 0.2617234141483436, 1.3962170122156998, -0.034098787180463726, -0.33498924158374255, 0.15017219735446266, 0.5064965026055651, 0.8262848093907776, 1.0191889651093902, -1.3255860158624946, -0.5317059071868346, 0.5983809896068266, 0.18066181899660225, 0.3016977557002808, -0.43333337887729784, 0.16676914260995274, -0.16063205007703324, 0.3288497795403551, 0.35242216661166975, 0.2249450834645166, 0.19056873638592078, -0.11753854540996603, 1.1012822467110077 ]
[ 4.0798452225749315, 0.20216251292895615, 3.1344384289814817, 7.3955045348748465, -3.294569041585321, -2.54577221508073, 0.3136236067015169, 1.1429047096371656, -1.948371542432743, 2.5736450427185518, -0.2979101582046196, 3.98586814739334, -2.435366648060028, -3.134536662554918, -0.7122577737865955, -0.5502157897598844, -3.266760144733279, 0.3869901097388016, -2.3889509639973503, 6.92871041667646, -0.21724197976229842, 1.3433947875369159, -4.544687294553239, 2.0064610213498604, -2.9386088831148336, 3.333023356779258, -5.617602061982501, -0.11581617715831619, 3.7668445226263803, 0.6405000999646523, -0.5104253953357011, 4.875779036334915, -2.99468514019685, -4.269419612564114, -3.8064708645842003, -3.667853009438494, 1.5157291563117965, -1.098402651697977, 3.586931594567084, 1.6795164410633974, 1.3318320119547187, -6.332632897358263, 2.0878112151472283, 4.556857573332817, 0.3773380027363713, -3.5255592008362457, -5.661246410514343, 3.632372625544547, 0.3724351760693201, -4.958244750438978, 1.393076718674178, -0.0792595761130287, 5.79617354706224, -2.9364597669818844, 1.359530035636698, 4.326486296434863, 1.6830311610594635, -0.5727838114698784, -1.230318179236023, -1.1381518979805647, -1.8499252806558613, -2.5554499916811224, 4.146577369037726, 3.824921873727078, 2.654662300116796, 0.8080879925435063, 0.6852939271295239, -5.707308182435097, 2.5402864791547324, 0.046330053752111945, -4.365368423882133, 3.823576075565197, -0.5896529077782839, 2.734188548623266, 1.601782067980191, -3.3044796284666997, 2.7220833745693964, -2.435620968450456, -6.069417484326544, 2.7099028726282253, 0.7309052471127578, 0.4096870194829714, 2.7582370977999133, -4.18230811709807, -3.4713755104899837, -4.056900691169492, -1.7219125682252827, 1.2169696644015409, 7.434042537932153, -0.8848069652342987, 0.5961325890885112, -5.20397084809437, -2.002356098090831, -7.501289429240635, 8.31155628582409, -6.899528696723853, -1.8876130866966645, -0.5240755315466041, 6.449777971761987, 0.8163335144958843, -5.122894157112535, -1.100860718600806, 0.222352821455962, -2.354199531296057, -2.707200012759894, -2.9723885262305694, -2.8673431222057904, -3.396222328199175, -3.2686318776666012, -1.256142613633219, 2.675018249776378, -4.702575171248986, -3.0215287744135306, 0.1398560434490147, 1.842536643602169, 5.337136887089724, 2.505442284616092, 0.496432443655947, -0.17609466166902563, -0.5242475308096983, -4.3206215347237515, 1.3639713380537377, -1.6654651429352243, 0.4780409938842019, -3.482738812495073, -0.4143348036220069, -3.4589996973085873, 1.8675662014259666 ]
What is the type of the trend of the given time series?
[ "No Trend", "Exponential", "Linear" ]
Linear
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
585
[ -0.2456240642138235, -0.16767047474065871, -0.10959909748741263, -0.1042119395523133, -0.08785037049866737, -0.0557302055700164, 0.036517098017069524, 0.1160084121876633, 0.14416868314182557, -0.09662701334057952, -0.09650177187486139, 0.17668945924737683, 0.09338600977105793, 0.02333629940439226, 0.07352291188812114, 0.011125512695883992, 0.08196357783568559, -0.025475741923774897, 0.05172257297110268, -0.1714614473881438, -0.06681169233687058, -0.06446238587758313, -0.02534386547230548, -0.09391248248216322, -0.04341117892410233, -0.16599660159006777, 0.09492214575641271, 0.0163890769566359, -0.18705812691306606, -0.0764093566422234, 0.07216842037766083, -0.03766113422942814, -0.05606104682735801, 0.023339171426815165, 0.07701795415017257, -0.1462415336771936, 0.1050223350787435, -0.06412194901309073, 0.03543835777955193, 0.0342265899062847, -0.026722648078392974, -0.08829522834417053, 0.005672225172808354, 0.24742856021284318, -0.12790485796551782, 0.25785160258003104, 0.012911650477550093, 0.05108166672776944, -0.08929468180877792, -0.04856096953942213, -0.013758955632929386, -0.0811511135277706, 0.02526438935606255, 0.0012985463432911293, 0.2867448618077051, -0.09233668416023677, 0.06849128495418315, 0.08777113015270667, -0.07730943446294009, 0.14506134778299543, 0.00933743175742268, -0.25349633477206407, 0.1446385542573226, -0.07822287644921369, -0.06851680242292006, 0.15114889951493393, 0.021735818031864397, 0.1820937188943879, 0.21992373971526213, -0.012803026590085795, 0.16938313772026894, -0.024744668308992177, 0.3527707797400368, -0.014885913180721896, 0.20268429052130202, 0.18070911602726064, 0.11521724290349569, -0.008093936885115213, 0.05830397525876646, -0.19295506203261237, 0.10763635600515056, 0.12440143043317547, 0.09816554680775699, -0.29226120991462023, -0.07612407908094143, -0.009927773105334978, 0.12205978586613671, 0.12275951916077882, 0.06585237459705062, 0.16832349936404717, -0.040011242725393484, 0.16715653987551093, 0.1510781508536989, 0.13982578106923405, 0.07031579244526315, 0.32489355141069626, 0.15737118381309534, -0.02577154893211077, 0.1285021247509689, 0.1930142846513987, 0.025108431192070374, 0.23742954058930704, 0.1493183264914249, -0.1929442077991045, 0.14092583088421143, 0.05300831121826728, 0.17283291403753148, 0.22510628229087257, 0.13172699358112108, 0.31793206338073743, 0.0866082233801439, 0.1888343501420809, 0.2125198516898043, 0.09983476831512397, 0.2112070320515516, 0.039161817852999645, 0.06183687636770652, -0.04928995897842747, 0.14747382644294288, 0.15902897186760295, 0.2676158030813979, 0.21970915064094337, 0.08514670708426599, -0.02641653137297144, 0.1775452096910344, 0.2639445379137062, 0.22013940415125066, 0.2626181894946221 ]
null
What is the most likely autocorrelation at lag 1 for the given time series?
[ "Negative autocorrelation", "No autocorrelation", "High positive autocorrelation" ]
High positive autocorrelation
multiple_choice
46
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Autocorrelation" ]
While it is hard to directly measure the autocorrelation for higher order lags, the autocorrelation at lag 1 can be approximated by observing the time series pattern. You can tell this by checking the sign and magnitude changes at each step compared to the previous step.
Pattern Recognition
AR/MA recognition
586
[ 15.709434715233787, 20.324300768343925, 35.15226515717766, 28.23551121372707, 26.849974567443507, 11.676097139120058, 30.694088951055626, 21.18982194875339, 13.869698277394416, 7.628259711833107, -0.3463508169768934, -7.5714511420580095, -11.294203742541661, -22.69332227454278, -26.007837022266607, -1.3166385033370958, 6.303240633744009, 14.301634274272388, 23.21339529358706, 36.91206187849355, 11.815423988356404, -2.8464919621802824, -10.314430178691078, -12.94884210784884, -13.364767592131562, -15.161589601765659, -9.936182550091987, -7.595992132621431, -13.305141657879641, -32.39960109617941, -35.84836793073051, -34.17108087771017, -29.80765907024533, -35.142801849301634, -33.02230614440551, -37.72771880038027, -31.44036855578755, -35.88320812825619, -37.195613066309605, -42.84333176293907, -35.8096723660491, -37.312215592363266, -20.781929807136322, -12.567041178780066, -10.752151624860485, -16.576576273326275, -9.45605796549799, -0.65783747891202, 0.9006141388866868, 16.757509865778655, 18.002381073371083, 23.537977034377207, 20.16603578286155, 22.889473158859005, 10.34376620039545, 3.6910293281884226, 6.446458997374536, 8.578162013473445, 11.938647840211232, 20.554847194956277, 2.194166037810902, -7.9891926458542395, -4.09562770594086, -10.520138482787296, 25.361571626663782, 25.446453493032386, 19.57385430512434, 10.504390713260882, 3.6018897386782616, 3.182918404094383, 3.666154049488084, -1.6340682073446624, -4.038777031074748, 10.211824127486166, 22.014508928499275, 20.13194694214819, 2.6929602813511746, 7.539399791471375, 21.574344249287357, 30.957286419053673, 32.11008766333961, 39.91229968352991, 32.46368247161415, 32.25197567562837, 18.993824877250894, 18.11771446335784, 27.789514010391514, 16.337377093444303, 4.455467380112578, 4.539263294327031, 1.36478859822163, 7.583308089281508, 1.5340512119547833, 18.411637125590968, 1.832548720862217, 14.003386838887119, 3.554217188028665, -15.1164535954173, -9.714411312845167, -10.317608910414968, -19.350180807362282, -32.293913563042466, -25.91873872314854, -10.97662206228066, -2.931762718960086, -1.7783436867754143, 3.3658007827570193, 2.4204993024270456, -12.360842988362075, -24.097614242924095, -21.309776684186065, -18.6543542110096, -6.413656583740028, 2.442116970755449, 8.005023734193852, 3.6011918565832746, -10.925568215834776, -4.619743202007581, 1.5558985710156188, -22.640595767964367, -26.455858480198124, -28.07523055809746, -21.276682435243604, -25.054950275851823, -20.425305908927864, -18.445594130672216, -16.347970019915053, -20.242318952939506 ]
null
Is the noise in the time series more likely to be additive or multiplicative to the signal?
[ "Multiplicative", "Additive" ]
Multiplicative
binary
60
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Additive Composition", "Multiplicative Composition", "Gaussian White Noise" ]
Additive noise is added to the signal, while multiplicative noise is multiplied to the signal. When a cyclic component is added with a white noise, the cyclic pattern still remains. When a cyclic component is multiplied with a white noise, the noise is amplified. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
587
[ 0, -0.3394656665177353, 0.2145308048179694, 0.99530123051692, -0.48889489596735075, 1.7176868341328286, -0.09092899749759949, 1.3384247186043008, 0.241229001735813, 0.22303973058417106, 1.1726404828714905, 0.40065908560047603, 0.13589600244057476, -0.37907452233534766, -0.027646807407659967, -0.07313268630833893, -0.48353391485692715, -0.06205432584708215, 0.3624033137559898, 1.3102047952111806, 0.6085977312001845, -0.1051246902549519, 0.6756072236215274, 0.70992965292938, 0.03307200349198567, -0.761706715710882, -0.2593779748480191, -0.060892490670394664, -0.006913027490736309, 0.07797265489658851, -0.03442898249695944, -0.19251696742676375, 0.4435621786026231, -0.15861876703296654, -0.9173809062422857, 1.1571749809159269, -1.481115974064927, 1.1284810169090005, 0.3330858647385681, -0.5229699099136952, 0.00957774603142954, -0.09891166848828785, 0.04441754901390915, -0.09720919787383496, -0.13639709882307757, -0.33833161123832944, 0.0675844511279662, -1.2238633631201903, -0.9379554227298592, 0.38184318634422676, -0.6445455439415153, -0.5426831236294595, 0.17352994534875713, 0.187076481279152, -0.49886363834724656, 0.0036462091568820196, -0.019064493689785526, 0.14741744606641727, 0.7055529842829389, -0.2306801972437076, -0.12721977920463035, 0.05071738804170695, 0.07360494081465901, 0.3006422164403582, -0.3908158963685581, -0.9576923330780355, 1.1891657746320894, 0.34657107323984476, -0.17846723304031886, 0.11606554028089902, 0.16775886701382817, 0.06856009684752518, -0.055156123875048466, 0.5872827973389876, 0.06662409719301621, -0.4165672771054421, 0.8414108302494809, 0.14915001891501803, -0.6393662058689931, -0.4491614785438423, 0.7960956002245289, -0.21644418203762733, -0.24686489306066484, -0.03053502464403558, -0.11952623753592574, -0.040521571057871894, 0.10057040927507566, -0.4740476368112772, -0.8799494727335393, 0.5198078418681957, 0.015388061461170803, -0.36805982923166136, -0.8530309607296049, 0.6351266017764816, -1.0510658878818566, 0.5874202901507932, 0.20612513246619854, -0.4371394147626952, 0.016106183858495684, -0.133884051832203, -0.26913611257029657, 0.3236897237007483, -0.3843254041052632, 0.9275074716822076, 1.016838947284417, 0.053259550058661884, -0.4424268678426833, -0.6272089074389477, -0.5825106232594657, -0.2987713846319905, 0.7618139028499961, 0.01930327951355912, -0.1413710813196535, 0.014243552029754995, 0.03799032652559237, 0.1233911209059659, 0.16327427252799379, -1.2659394101463206, 0.8480022344408682, -0.08709714626250804, 0.5680059289478433, -1.7933949684105341, 1.1867414463138128, -0.7121385189449958, 1.2369300079759775, 0.7069256782265868, -0.2172083680621005, -0.011270725477644154 ]
null
Is the given time series likely to be a random walk process?
[ "No", "Yes" ]
Yes
binary
54
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
Random walk is a non-stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is correlated over time. Does the time series seem to have these properties?
Noise Understanding
Red Noise Recognition
588
[ -0.11116572485305354, -0.24127075560924188, 0.20566104262498364, -0.283342967518547, -0.4449671874494988, -0.3898718142544967, -0.5302339454910685, -0.8488291295458943, -0.8869226183198679, -1.0097859827848727, -1.090567813891151, -0.84729411687386, -0.8750246470310946, -0.5291240915792323, -0.23712362882023497, -0.09469037718925169, -0.6787101394396241, -0.7242597721565545, -0.4958002204554366, -0.6462611456366615, -0.22079867889585586, -0.029041230421220712, -0.21470066886704692, -0.10695396603313899, -0.26901182679979224, -0.6372427368913022, -0.7028916249170639, -0.5266713970440288, -1.0017116330830542, -0.9561013967393406, -0.7296846765558707, -1.1469987190605389, -0.8271247214841593, -0.6139334454822923, -0.659689145987958, -0.8035338216741834, -0.5260979126738771, -0.29296539718083436, -0.2771524923627864, 0.29775097231602643, 0.12996274395515275, 0.4196529873527741, 0.3240093823879598, 0.6217057421742234, 0.14018051781106133, 0.2781299807271401, 0.10526899543168368, 0.04114419522926918, 0.17427182347344986, 0.0319115578571601, 0.027530875435377265, 0.02007055728327479, -0.28551588037482306, 0.12454787190910536, -0.10149135095123678, -0.09010811381586108, 0.019419865584547003, 0.12286564605413935, 0.3614716444377657, 0.002467172657601456, 0.5597437201060704, 0.796310889759, 0.6120700578780951, 0.6131133309640848, 0.6904867574213724, 0.437870336528996, 0.7536636486862276, 0.6017318658053743, 0.41435159299069846, 0.6666171287214421, 0.6534199177234594, 0.7528743063873596, 0.5414590600182353, 0.7856321415658776, 0.7869469283621482, 0.9256833317410138, 0.16965002658878753, 0.365846103248485, 0.006007735761129042, 0.20261611321641892, 0.4209624593158402, 0.2965298772965604, 0.19970911917870063, 0.07363350055443627, 0.3750827639921877, 0.39111794099563024, 0.8272827585019745, 0.8262648673531774, 0.854416571335907, 0.885693190908943, 1.0046303967333932, 0.6740348307411292, 0.9311208549946799, 0.6219807249612841, 0.8382038280613786, 0.7877783061194737, 0.5829843011188435, 0.5761260664862838, 0.4090566563571851, -0.19547156339947247, 0.23244285593205644, 0.31397239652762626, 0.22482699567659195, 0.3966887467884077, 0.3857898549914879, 0.15774376986695776, 0.4252867343705077, 0.1483768493136675, -0.26415062354354046, -0.16917868642329423, -0.2343786019327449, -0.5904723294605273, -0.8402563645148146, -0.9616757640350623, -0.971140353307103, -1.147956313217226, -0.7774382766910098, -0.38813056641519506, -0.23829180785693244, -0.5917053069546617, -0.38178773618142603, 0.07135443497384696, 0.03476341873687024, 0.2959473204519206, 0.10516479435402873, -0.27650750061833773, -0.3795970429141342, 0.2213060766670362 ]
null
Covariance stationarity in a time series means constant mean, constant variance and that autocovariance depends only on time lag, not absolute time. Is the given time series covariance-stationary?
[ "Yes", "No" ]
No
binary
36
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "AutoRegressive Process", "Linear Trend" ]
Check if the covariance between any two points depends only on the time distance between them.
Pattern Recognition
Stationarity Detection
589
[ -11.433277532292069, -3.523464956118815, -5.298348969254985, -12.08365259810191, 7.106272196736329, -5.595604537406052, -1.5451120977758088, 10.167161555907608, 2.353665511630479, -6.138781607759213, -0.06786099220666622, 4.44179571586571, 11.133087781081713, 24.216880067816078, 7.594562490096457, 5.742322736506821, -9.799750796473441, 1.677795595385134, 2.612394389180462, -0.42748638302232, -6.4728918462200795, -6.522181766654177, -1.0937140929813622, -9.894176692993423, -8.092575224695118, -3.874824976972993, -17.377761693914525, -19.09530959587712, -16.186640163451788, 7.6440862232549325, -4.400727640763978, -2.7176239041222985, -11.657618185643598, -13.584245118337176, -21.306925988254186, -4.093061627445934, -15.15861291893229, 1.5215801906196909, 5.640358029560191, 1.9780504018319969, 10.452790086426322, 36.33815976044977, 22.978071474228223, 0.3689009414549953, 14.972850658887179, 9.31354969842091, 25.81200132619593, 7.6658443384223105, 16.78132650902848, 8.349829231022202, 30.8326058710981, 12.583379368231368, 36.246282013676094, 22.7299489159831, 19.80451542039241, 27.01542065272202, 5.633548763464706, 12.573633726824264, 3.229145480674147, 3.3512772854242723, 2.560364082161684, 6.989115428570888, 8.857281607238553, -1.205815258940102, 0.5904306835771125, -23.155229706295813, -1.5989351449797102, 16.206461309538945, 10.032751645312045, -10.875869488943684, 1.8647655490866104, -6.705059596759985, -1.5574254711911641, 6.208730231765793, 8.431898000071307, 15.212742605409382, 8.977759467537911, 6.230382123253912, 10.737819010129165, 4.729271339681133, -4.524061093679472, 2.1616185612882686, -9.89980274218707, -5.837638259702041, -16.62000075695196, -13.73680599657398, -12.200697332665873, -15.864873498580888, 3.142065680370051, 11.81190796922209, 18.954162425739916, 7.74192503606447, -0.4320940062150514, 8.031306258037354, 5.363400000712286, 3.8873834902361315, -23.452522175709632, -4.001424400052342, 4.265606980110374, 1.9767707288736394, 9.474719148811074, 10.601117603979597, -1.3179928513103556, -2.886608853562982, -11.554200925216092, 8.69274978615641, 14.367093607215205, -1.0961157594544033, 5.80781663804309, 5.919698837683296, -4.055266469588228, -0.5983165155745158, 8.222477393188726, 13.720674574624123, 30.186938968389438, 16.088497731612012, 5.845869975470009, 8.604825165045694, 2.419870636181322, -4.36085206013709, -11.621391217469192, -39.92259010701113, -12.648178064039952, -22.7501173174322, -20.150867425491505, -7.036935910265227, -6.633330196220737, 18.327979551117416 ]
null
The given time series is a white noise process. What is the most likely noise level?
[ "1.21", "8.26", "3.43" ]
3.43
multiple_choice
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the mean.
Noise Understanding
White Noise Recognition
590
[ 3.585253340248742, -6.531175981032802, 7.231122927598746, 0.5585535849247553, 0.36769476837590537, -4.742793217422429, -1.7347602093034795, 4.590424387997407, 0.011446083575574861, 1.297045238398336, -1.4835863965275873, 6.717916513066389, -0.2929675184324313, 3.9538573111601107, -0.58462847670015, 1.115272155800206, 1.1645063758319387, 2.967676711996291, 2.564042201838411, -1.5581696012423771, 3.8823511702085614, -3.554392696687954, -4.154273372452594, -0.900741669237513, 1.430903991043338, -3.48797118773082, -0.10301034263878073, -4.922930325686536, -0.9462670421857009, 3.3924251657577122, -2.817157728152599, -4.113714823361506, 1.3722450626361773, -2.571922778138764, 8.39398817507315, 0.5436680484905749, 3.4721540890144817, -4.682921846464928, 1.6698194273504416, -3.3345549463373296, -0.7369316517890321, -2.620610426606733, 3.3938590131102844, 1.0904410118808952, 0.3203803375968616, 4.5558774784972975, 0.0519908393500357, 3.725595890769564, 6.261121351670436, 0.45596991524781944, 0.886149454921122, 3.464877197886672, 5.058376038940699, 0.4090713874592203, -2.138251588319601, 2.875146861402512, 1.9650842019406056, 3.0184225536651934, 2.500877831880796, 0.6458346686607704, 1.0085445125206156, 2.4257148488495384, -5.005211483377762, 4.755841211655478, 1.5087842500230813, -3.015655713439236, 0.5682696729817943, 4.5994051717532205, 0.8978759285054446, -2.4302796660977366, -4.460795860063875, 8.454693853283146, -5.748840837775496, 1.068404334102153, -2.2156125042478583, 3.7155399840364822, -4.315725791904029, 5.440440876366558, -0.35647508079687584, -0.6869051022622503, -1.312862744050576, -2.068736583196118, -1.1805648164501432, 2.6690256710821196, -6.034736199293963, -2.464510339910591, 5.066749212467434, -0.2062960018271941, -2.069245371520135, -4.399457472095269, -3.978773669496285, 3.4674200392462393, -2.7670885022976175, 2.7191140893404357, -3.4164217879763683, -0.25379942392489485, -0.20946521471118257, -2.634915653259956, 0.31800566774047906, -7.201793691668187, -0.4392126749129629, 1.5769212209410097, -3.017074893077297, 0.6667681683996067, 0.42827380462719333, 0.651896583493746, -4.6605907772572825, 0.30671498916192447, -6.102221391810105, -2.168541288461003, -0.12338014332697457, 0.9436132872417162, -4.1916119532685245, -1.0013632015646343, 2.797255797211415, -3.2311115759834568, -7.511391200445475, 1.8753581581311316, -3.1380570693740553, -2.175603102979461, 0.4648308616978375, 0.21404159424060398, 3.4748212091677173, -0.8410475862599521, 0.1919066321579025, -5.723100952246217, 2.0695327983116334, -2.2880358104136884 ]
null
Is the given time series a white noise process?
[ "No", "Yes" ]
Yes
binary
50
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is uncorrelated over time. Does the time series seem to have these properties?
Noise Understanding
White Noise Recognition
591
[ 0.49649575114620237, 1.3178755161247904, -0.5142559487663118, -0.9096491266722916, 1.0912534918720296, 1.1965562279083406, -0.9108682578399983, -1.4383282050837645, 0.25002226213601286, -0.061411430733781344, 0.32481790657421394, 1.1280644270115627, 1.4123085480580795, -0.024495375217614555, -1.1779709600896675, -0.9298436360135135, -0.7329250852566078, 0.017181882663666825, -0.6228453174729114, -0.3657989117895766, 0.07064242301761758, -0.8266377439813952, 0.34378510609038615, 2.1479657885568644, -0.2508577310657252, -0.9399127112855474, 0.3763955844638732, -1.055740503776924, -0.06333060586930882, -0.8485556197223899, -1.2480400024649416, -1.0174034852021545, -0.9797507330924771, -1.28165879935017, 1.7124930914486274, 0.4421095225428425, 1.3617946023034018, -1.582016216227345, -0.3024307132409678, 0.5289449113330198, 2.095706285347943, -0.79668467412572, -1.5515322910418163, 0.1866231035892839, -0.9541809304295041, 2.1364514770094316, 0.6595596847104055, -0.428553433397699, -0.398722162922893, -0.15938018592195213, -2.2964268137482575, 0.05542402033133729, -0.7487035274451257, 0.7090711841683472, -1.197603990184179, 0.8423131642327272, 0.5563699641558392, 0.1365288265971225, 1.7363730535829796, -2.184136607554419, 0.5948292219265056, 0.07584934899739791, -0.03798999911798398, -1.323264173492943, -1.841979597212159, 0.8040343300734419, 0.9696742568947795, 2.0608688673417492, 2.3077646978009665, -1.8971035518328367, -0.24710648000375526, 0.29861670755591807, 1.1307144637735118, 1.6807222833791433, -1.3945971895409122, -0.6275927961209089, 1.8691038123969634, -1.9880253238838568, -1.0700242539130973, 0.47058270949338427, 2.449673500832605, -2.0224049945215556, 0.05478829868709632, 0.784406165208715, 1.5516897886064864, 0.4927253982409826, -2.052394362724326, -1.598870013715032, 1.74580640392041, 0.5908177500673281, -1.3635985379399918, 0.6261995158262813, 0.3615002818694534, -3.2178383343864563, -2.483314424262434, 0.312798819642241, 2.3144983430955963, 0.35646024422211725, -2.9188474043131785, -1.8444221124853437, 0.7277655180869527, 0.9710983096200644, -0.2318623433453616, -0.5484393813877212, 0.9991995818350011, 1.1980309209871849, 0.8737580750014833, -1.1388331580786155, 1.0562478927615053, -0.4138591029414205, -0.4697845803758458, -0.9637917463260418, 0.012235059520087676, 0.7682701407315513, -2.5589678124254323, -0.843267963226656, -0.5250142456798285, 1.0896654046973042, -1.1025950676289944, -0.22040871792699993, 0.8163412009804105, 0.003815691448396545, 1.8305098831753364, -0.18047997586031767, 2.2272102563885214, 2.4932435927935286, 0.548270279023081, 0.5749408040940898 ]
null
The time series has three cyclic pattern composed additively. Which cycle pattern is most dominant in the given time series?
[ "SquareWave", "SineWave", "SawtoothWave" ]
SquareWave
multiple-choice
20
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition", "Amplitude" ]
The cyclic patterns have different period and amplitude. The dominant pattern is the one that has the highest amplitude. Identify the pattern with the highest peak.
Pattern Recognition
Cycle Recognition
592
[ -0.21445463581400018, 4.9765028940242395, 4.979671618925066, 4.864252709275764, 5.114789648704004, 5.045366928956171, 4.962490540760762, 4.895835522226523, 5.163813809705373, 5.368227538539111, 5.039797948228321, 5.174499446465697, 5.282535653576745, 5.056389264689715, 5.145030847974004, 5.114481205901291, 5.304257931069033, -4.915488692241749, -5.031012450461595, -5.131900558643429, -5.094619944502142, -5.117649926902139, -5.1580529104261865, -5.0775243702158726, -5.017886125988079, -5.0352161764608905, -5.094523569543624, -5.097791251564921, -5.121534074607139, -5.252815599221678, -5.116378730267378, -5.1993896205958805, -5.283496780101621, -5.118303201402117, 5.035175677724656, 5.115372844870869, 5.1753082582213805, 4.995315583937384, 5.101319848394312, 4.9149062840140525, 5.255187288074247, 4.974200972633769, 5.069002356094957, 5.266887832738959, 5.124308783977513, 5.044806849957583, 5.254615026390295, 5.272972755174997, 5.162914170870698, 5.197583265886835, -5.025283717729969, -5.441232503065409, -5.582613574487708, -5.383577428346354, -5.158739526284844, -5.398251862681579, -5.338609117061267, -5.370559275639936, -5.163499425876205, -5.077734192681409, -5.054409680614384, -5.272894472167243, -5.0752291115421855, -4.960590289900326, -5.033555684803579, -5.019171242318541, -5.098708513927301, 5.240811282551079, 5.3536002547245705, 5.27175619434948, 5.120877765016478, 5.204707432789807, 5.3737442005987495, 5.285783102784705, 5.263811509423833, 5.193345422132357, 5.362857992012416, 5.404085117194396, 5.356807033630411, 5.366409670637747, 5.177192987939605, 5.153452997841693, 5.177984037985639, -5.069380381205438, -4.939744633030573, -4.975369946041787, -5.046483986615387, -5.250849153002095, -5.282739237001414, -5.094699893132357, -5.033945446584476, -5.131405387106625, -4.9315443574031415, -5.228857082000035, -5.236927703372002, -5.175838494504042, -5.170761872273209, -5.036823656286487, -5.118365370389866, -5.215594263186594, 5.302777046661464, 4.591895141300486, 4.68194202671995, 4.649615612467619, 4.856891335410674, 4.880349651768224, 5.080014150684373, 5.007204861378415, 5.08803046199316, 5.001113374986673, 4.903036936964575, 5.0418567541068064, 5.116191292186956, 5.154575049960132, 5.063303420013296, 5.184653888357413, -5.1906266349340395, -5.1792733334833825, -5.165840787502706, -5.0329616394497885, -5.136340812246434, -5.04623541104902, -4.900816496255496, -5.083555939811667, -5.022812040906437, -4.959144967297584, -4.9376935243539055, -5.0104614097421845 ]
null
The time series shows a structural break. What is the most likely cause of this break?
[ "Change in variance in underlying distribution", "Sudden shift in trend direction", "Abrupt frequency change" ]
Change in variance in underlying distribution
multiple_choice
71
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Gaussian White Noise", "Sine Wave" ]
You know the time series shows a structural break. Can you first identify the place where the break happens? Then, you should check the type of break based on the given options.
Anolmaly Detection
General Anomaly Detection
593
[ -1.5393394820956543, -0.47837749730340406, 0.8531457821363291, -0.027177695293590362, -0.29471826633504505, 1.1816681682575714, 1.8920462964090718, 0.5901626629093115, -0.5467928435700843, -0.36708030117231577, -1.1311049419407821, 0.08850581431332273, -1.4305905764945002, 0.4844712462496139, 1.76065763343691, 0.6299608311143352, -0.41185640418834113, 0.4625889430064006, 1.4226373674279844, 1.3787091899476243, -0.8811811250477526, 0.44798008609386764, -0.13879447430774017, 0.708093805913187, 0.33676783838957985, -2.080336100179412, -0.3055144726551108, 0.17431084036817074, -1.2592033857103855, 0.5100688449221444, -1.3379057605248856, -0.7009353789380359, 1.1775137773516628, -0.7758527358332254, 0.5038753419530541, -1.539431046658319, 1.8271489631530302, -0.2673621996451772, 0.08368043391004103, 0.1571732059433602, 0.533372098543986, -1.3336609732380569, -0.004684792433672829, -0.5783213859910703, -1.483232111868499, 0.8665769486646313, -0.30916637219795035, 0.2129043500275263, 0.15788308091171815, -0.29396082917725336, 1.7338412381115338, -0.041492794356767636, -1.3676985133565027, -0.3514876449588656, 0.4387107309644245, 0.4675557339221615, -0.9549434543887123, 0.8159760918627469, -1.5475893905776459, 1.0044158591650019, -1.158231947216605, -0.19861663683881875, 0.9345658283523861, 0.10499968045864469, 12.780546000692018, 9.706925185140262, 20.068495432988612, 16.59099772629693, -6.937326068457512, 9.928552464188586, -23.58780545326465, -0.7937118014523972, 12.808268930119912, 2.182378424820192, 7.037059042034426, -3.205088218254456, 17.628690055584137, -1.1430910683520836, -7.119006753813867, 13.864168189998571, -21.703745281060833, 7.881273563648015, -16.074857420791975, 19.939027007000686, -3.946266444813603, 2.2000262345215376, 6.50828689060358, -29.844615695970152, -9.992384011974874, 16.30132454643676, 13.573122274522424, 4.497793045198286, -20.839311636475642, 9.192289638505, 11.177297908451846, 0.8347290112608975, 19.089189936113723, -10.502184151302151, -7.808230477489918, -38.45734428786461, 14.38115662040642, 4.9762854362635345, -25.997645262767247, -27.189286521441637, -13.438639370904076, 12.422945394572569, -4.556736807314164, -12.385672971433502, -15.510393674247478, -16.205649734250084, -29.906599878627713, -18.634353286333234, -16.510877223990104, 10.699634377732332, -2.467100293925225, -12.708466601135111, 35.95298659123705, -10.198993650005688, 18.218987560791167, 25.265369350153076, -24.26152548064638, 1.2529397792370207, -7.927366758422779, -9.190589531775261, 8.724709908815726, -9.562244299637662, -7.592673920949795, -2.504222817685974 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "No, they have different underlying distribution", "Yes, they have the same underlying distribution" ]
Yes, they have the same underlying distribution
binary
92
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Moving Average Process" ]
The difference between AR(1) and MA(1) is that AR(1) is a linear combination of past values and white noise, while MA(1) is a linear combination of past white noise values. You should check if the time series exhibit any dependency on the previous values. This could give you a clue about whether the time series is AR(1) or not. Check this for both time series.
Similarity Analysis
Distributional
594
[ 11.420743925329683, 8.714834075297341, 14.363053787969882, 9.631088868996533, 3.1658832839286095, 13.585689155891545, 5.5631681417864165, 13.345243977946623, 21.73554980193439, 23.056609162168122, 5.952932134008172, 5.033894799431513, 2.0071158689590374, -3.354299858185903, -1.255924013084447, 6.687324264507923, 0.7643328102943538, -1.1023604945012588, -3.29247773392088, 9.004728268306414, 4.632776436539267, -8.63783542838604, -22.644616732613972, -14.488397720431479, -19.197535575204203, -8.670783407438579, -20.248826611022178, -21.58818295492382, -30.57623485914054, -20.114880731823202, -9.603429179212059, -4.296491767003646, -14.296556617641343, -18.89488273521974, -12.772766302060251, -27.09562712289184, -24.087851142192502, -4.101227380395191, -5.080537396119901, -18.949876307215437, -21.233993522533705, -23.29411807480272, 2.7677933385234326, 18.871025475957705, 22.406174721781944, 14.494180470011575, 23.60164098580649, 7.546716398140607, 16.803126270955076, 22.7222363909645, 16.664331766278796, 24.72332854653076, 15.30645154258611, -0.4056947469134471, 9.455094332468455, 6.7116461745801725, 11.387122972650815, 27.318564293714715, 14.632310711008806, 10.272053520407292, 23.91398786210297, 25.81850759823521, 13.656978636542206, 1.3754058738389805, -4.180481701962272, -10.7285324095986, -6.209344732783572, -4.183130714250863, -0.5541270286471822, -8.851429638515569, -7.789482786065006, -26.788583968414173, -19.980804001117676, -4.2302367513354895, -17.631648494530197, -9.271036489149544, -13.526972708925268, -2.796566630206522, -0.6507787920424302, 3.526418092970464, 3.469373461930776, 16.05881683338815, 16.321158243661543, 6.002689454904724, 5.789302087133815, 0.942631240046556, 2.3781040572331373, -2.295213877881617, -8.60427845776844, -4.890700638730295, -3.3546642248187, 7.955827070603515, 2.215102865154684, -18.036456182829323, -18.067872930896588, -30.71860593388304, -20.418165006140672, -33.07351128840041, -36.34251965486135, -32.69736030663771, -10.718382197698723, -19.303606915308155, -15.318835700780662, -6.455302791051939, 9.676363299365422, 15.519038156706435, 23.354300041689797, 27.32651062186725, 9.76997878353241, 11.412904069996397, 17.616932777719345, 4.528543325435278, -2.1747641068920034, -9.771734236784164, -0.09115752974700264, -0.7657372270889213, -3.8210487250221035, -15.87353814654756, -13.372773049175974, -16.37410198918827, -10.665885938708993, -19.962380737421704, -14.190841994875358, -15.742181300888495, -25.08671429806226, -33.342211817231274, -38.44397333401196, -32.819169241614986 ]
[ 10.795032671262613, 11.711555314294566, 1.7840116416436498, 12.011238394266675, 5.186735455331811, 8.65088596486277, 5.279154436952048, 7.9795358665920535, 4.240348031824505, 7.328627191205268, 5.7890130541609786, 12.76961614983567, 2.0288424877565543, -16.075839368700542, -22.594245689301403, -7.386212399060785, -7.454558118126024, -5.043023539035196, -14.570784971692028, -11.001090725850837, -19.028999021407635, -23.981011967653657, -23.20964640236173, -14.116744543467927, -5.7749198283492404, 1.1705131166989773, -14.94443065708456, -12.022189529570262, -11.585569957483571, -24.590280126801417, -19.51238643421915, -18.114181321742937, -9.376088336215476, -6.6883999065743565, -10.843925228092017, 0.5824843220961604, -21.746347550074315, -18.03972932435555, -32.0642927794038, -34.773366935584235, -22.570556518373895, -30.798420019107148, -38.87591420232506, -7.281281527703808, -19.41791573636469, 0.9708764417879792, -0.9453204923622216, -6.00454760827953, 0.864225819258424, 14.057321410851733, -0.2148222924018981, -5.274355731206823, 4.2492127618770645, 6.279313333771652, 16.04262897343115, 17.985222723062712, 32.47041826994165, 27.762220604289826, 24.42788796674148, 22.75952409355117, 16.782730757575358, 21.907056194069533, 19.896057193885888, 23.79864584656015, 28.483915213489723, 27.071678986395053, 26.674506431458013, 11.236307269201074, 3.4855099371626466, 11.222242479637433, 23.21410580189508, -0.833017613567538, -6.345045563368179, -4.839830426548042, -12.664608962045213, -18.356883611453, -9.936308151224353, 7.864713170734852, -14.026465026633527, -12.925933511123784, -5.707943390995148, 3.2357850092062987, 5.779901438055424, 22.23794664980549, 18.079423253102334, 27.58346650640284, 15.603096501662584, 13.062306667218566, -1.677305424213655, 7.666800066119018, 4.92901142648345, 7.5214197663857405, 2.8834495002578553, 8.171044616796443, 10.511175431994676, -1.537573954116322, -10.597733489123163, -8.75587409471205, -0.4089597017030666, 18.301787769776023, 17.67133878247811, 24.21238505086789, 3.241398693052627, 22.722677448781926, 24.23500407031747, 18.89195814466618, 13.46660604115369, -0.298713145667028, -8.451838473735332, 12.342885542345876, -0.015735948983424564, -10.09526633785019, -15.098417931035943, -24.060541874441483, -19.095367751098085, -4.387189074226081, -9.6146745221012, -21.424982415289172, -14.2213728020848, -11.93484161846597, 0.47937220604347, -4.161585228187929, -5.930835978817095, -6.239972428486365, -4.1019368372542715, -7.207166243379316, -11.31217407516354, -27.553516108949246 ]
You are given two Autoregressive processes AR(1). Which of the following time series has higher standard deviation for their random component?
[ "Time series 1", "Time series 2" ]
Time series 1
multiple_choice
62
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Variance" ]
The standard deviation of the noise component is related to the average distance between the data points and their past values. You should check the degree of variation of the time series over time. Which time series has a higher change in average?
Noise Understanding
Signal to Noise Ratio Understanding
595
[ 5.850176803281439, 18.4029305770909, 19.686160926961172, 4.9541895458234855, -6.185814071332048, -10.941679143302892, -4.806902481075653, -0.2625238355328414, -8.641042115054965, -18.584928548187563, -12.052108787691708, -11.460287688054986, 12.403928724033385, 10.289179544857499, 26.373871912888745, 9.395261549267598, -8.215920156202994, -17.773587450217743, -2.3275721456395324, 15.698958180423713, 4.737372004812632, -0.8157626937454703, -12.342419257121373, -27.990333876880968, -15.208150123738477, -9.936317069369151, -7.844173828756567, -20.275904434639052, 0.17884327057536353, -4.89049276403444, 1.4238700369372057, -13.406518022897481, -12.630466314518358, -7.190628489228851, -2.4817506108500047, -0.43891505631375294, 4.594092875436723, -7.629930259980233, -4.130218153587582, -2.1665976880672897, 0.5834486914967765, 1.190211126389239, -11.779958838022583, -22.6019645915078, -40.224253532051755, -24.004057727188428, -10.926671084398755, -0.30583395529780155, 2.8232324603762766, -19.07260620888009, -25.52518988495673, -18.715997732034268, -13.61761815770946, -13.12157665768778, -6.808089297067758, -5.329954360801751, -3.056258833127784, -8.835660394822389, 2.7515815453579915, -2.1064508505174473, -14.99165151062022, -19.703311336683463, -19.247310982966574, -5.457820902684794, -4.788936706495766, -5.6926315548531035, -17.040739491508756, -5.777765694911242, -11.14173409616285, -9.913665866343639, 6.870898075743735, 10.584351771088034, -7.8150590602813175, -23.947149611749776, -19.800824190592284, -27.96806550122188, -15.888984924647525, -12.28855729006823, -8.176998141815956, -13.609030329876296, 6.526612288966019, 33.64722711127741, 24.131934451454782, 22.835940045313837, 19.242925466894196, 12.797471739104665, 1.9172727139557662, -9.315861703640158, -18.808662018167368, -10.99452935904244, -13.992368269270305, -36.97682311682155, -25.13287628747402, -20.488913854620776, -2.9244010696851603, 1.391703115161965, -13.673373470973402, -33.235465184078535, -33.7830959906422, -33.27755099945029, -17.190448789558566, -13.841068354542589, 0.26403029735101846, -13.03710631914553, -0.7770412115119445, 6.58825856509964, -14.911734262232251, 1.2967910028219212, 1.9720177199210642, 5.498059214621908, -4.2505137525867, 9.352059127150364, -4.376875990668407, 4.819419391204734, 12.061610272050501, -0.09238606408182015, 19.759827142960283, 18.12314651654342, 21.03744331594498, 1.5587466993984265, 22.424297389604387, 5.693868509432612, 14.803959135205393, 1.8954501288473615, -4.673527925398937, 4.148718098535322, 13.59450161557983, -1.837241198677157 ]
[ 2.717358230378789, 1.2359331754581389, 2.587394133957621, 0.6130576789180588, -0.13432643964316826, 0.3715414723774541, -0.5563331068006432, -0.1812473997611736, 0.09607815899435629, -0.11021174272723555, 0.7442311444087711, 0.3670241228693777, 0.5251603671093078, 1.5666001711753488, 2.0439663469661196, 2.421190368387104, 0.7877726924929032, 1.1550107294956442, 0.0455097926270106, -1.2450071456764178, -1.0677120628261025, -1.7584648369124722, -0.6161541506900003, 0.32161213914332387, -1.6453365251167829, -2.1445717596703164, -3.175444079654252, -3.0029845403162923, -1.9472119623842097, -1.8000576680857563, -2.0298053751357408, -0.3236677732954534, -2.5637913912326513, -0.8141612194678964, -1.1956172687298028, -1.0346028250966317, -1.3550455977974138, 0.45885162730118734, -0.8638971949643096, -0.6793813862495119, -0.016066457139612855, -1.6238559335968579, -2.21898291732364, -1.9233648673571413, -2.4253569285700878, -2.7558773140752204, -2.5545645143366142, -1.3940702798231182, -1.457974000736639, -0.08795300611636492, -1.0681201875524464, -2.10641841051541, 0.24121067730880608, -0.4649895858184662, -1.6829036757269324, -3.0883768823533764, -1.395598052073762, -1.457782956319069, -1.4199361001216535, -1.2951505916839623, -0.023177588677388394, -0.19807190491783117, 2.1855962548983614, 1.8822375779729184, 2.567574829336656, 2.8592997213737315, 2.2509924568409474, 1.2138229794522948, 1.3030223121283895, 1.5525165809099848, 0.6694272166014608, 0.7018806392318244, 1.7977094896450556, 3.5081153307857234, 3.6608615849780004, 4.791448954362683, 3.2037849522836908, 3.264910213886247, 3.9504476796902703, 2.2640248107802203, 1.3256297365791672, 2.798408551098584, 1.2636279850919272, -0.330227644582169, 1.263799457973776, 2.2078027913594593, 2.198362477071337, 1.7129792270112423, 0.9318588760040118, 1.0274359746122608, 2.4017557370913583, 2.1599707158151626, 3.894935839899096, 2.218006686279047, 1.7547245946949683, 1.0307210080920592, -0.2605647366886854, -0.36153552236060377, 0.1281008837719566, 0.6267108869695953, 2.6718208885202324, 2.6019241805397457, 3.2316761481114127, 2.6514351647881065, 3.7992037322830807, 5.4378122714145345, 4.881334948107578, 2.9124089430344817, 1.781122131650417, 1.7068320085254958, 1.8219636420710426, 2.1559960480412066, 2.1849945196630065, 1.754980531986344, 0.767785984386947, 1.0153670487737871, 2.667280996499686, 3.153753402627504, 3.057706671738201, 3.475732261213312, 2.4095217800697974, 1.4193522779725178, 0.3876967180120324, 0.184870751640188, -0.2741092953969301, 0.9889873043345951, 0.3158664257854873, -0.5500285755965266 ]
You are given two Autoregressive processes AR(1). Which of the following time series has higher standard deviation for their random component?
[ "Time series 1", "Time series 2" ]
Time series 2
multiple_choice
61
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Variance" ]
The standard deviation of the noise component is related to the average distance between the data points and their past values. You should check the degree of variation of the time series over time. Which time series has a higher change in average?
Noise Understanding
Signal to Noise Ratio Understanding
596
[ 1.8732678102732074, 1.1478131446863782, -0.09228133001110295, 1.4023677735548223, 1.035530476462766, 2.5682516264010613, 0.8235193156355709, 0.40588123144660077, -1.9259793975720148, -0.7845394750417995, 0.2105490848011855, -0.4366611654393876, -1.0036984077235456, -1.1913887940208743, -1.1929937372547883, -1.5138939335484862, -0.13019696939480507, -0.5730076990689722, -2.354726132999783, -2.138641059362597, -2.223327689113166, -3.0864687214362867, -2.2800751739888665, -3.7501116565593615, -2.6192142295969387, -2.12842558227384, -2.2660893634643537, -2.958787678604717, -3.830403141813751, -2.182620068329254, -2.0455708779205644, -3.3151668352814774, -2.6639205639966543, -2.4043250034159325, -0.5104867380736904, -0.820338368202592, 0.3231313112565265, 0.039729632760098665, -1.149844069729211, -0.44832943036881, 0.8589488396952203, 1.5940482877141533, 1.5892008020911226, 2.2686472651921696, 1.985243040580216, 1.6701171724439035, -0.1365168164088253, 0.10309673095636707, 1.5904302581917888, -0.36367335607774853, -1.6031101278033797, -1.609571099378735, -2.6433794954240466, -1.4304233837706732, -2.8718811138849007, -1.6169084683311397, -0.2891852277260927, 0.4255542908604981, 0.3608784944885275, 0.8229738145337355, -0.4969221211595529, -0.1378258242099466, -0.7286551690604453, 0.3078475850536152, 0.956507178933069, -0.0451781183536053, 0.3155162445925926, 0.6455288722326815, 0.04234954730755802, 0.05633506570984416, 0.5566079698894921, -0.011421538267986808, -0.8949949932409662, -0.48815263344853344, 1.0928679785075321, 0.7217175048652069, 0.2251974734216889, -0.6124518167901194, 0.6601136285826354, 1.4032803581627382, 0.9764050533325854, -0.00625300309105159, -0.8016381586297855, -1.4967395593436144, -1.690657728926888, -1.9132951893713688, -2.268722630181701, -0.6998508995775519, 1.0253838778783395, -0.26901444091376636, -0.7865620594780047, -1.5771559610950325, -0.9432400416220039, -1.0943903939345967, -1.906135528255006, 0.12770358190960707, 0.5898640151132228, -0.5075560290136404, 1.1006614153748993, -0.26632305762381436, 0.4013930898095392, 2.738955760388571, 2.059971741238266, 1.3596889129808423, 1.255347653803525, 3.229768219222518, 4.060037843548055, 2.8046425245234983, 2.5482468852107525, 2.9615097072761998, 1.9402227832747299, 0.4205853373068118, 1.4208167679018355, 1.6464144971806838, 1.6359964011347947, 2.415663365817502, 0.7872465658133596, 0.3980857429567809, 2.9566561350292515, 2.932974994915019, 2.974393385848019, 2.485357133870046, 0.14715827363336165, -0.7002689730960397, 0.35323862719646837, -0.25923584335255456, -0.37732012625146616, -0.010461632841261337 ]
[ -5.605964279146985, -4.6104887993106916, -7.396217998999539, -3.638900438221106, -17.229195902909538, -19.130518474757423, -8.415095516202882, 22.725981315870268, 19.37389893717795, 22.207542633980616, 22.64188526459278, 21.048095120817408, 23.658762424392776, 9.338450760288524, 3.8990993083434944, 5.618245588447191, -5.1691291801448065, 0.19797763479288388, -19.006010851600877, -7.083044089709965, -7.170535158271649, 1.2046801215797736, 10.932868898194172, 22.843365017896307, 20.961535327759428, -0.5631890997421252, -18.063937201449292, -27.097923232386393, -14.475899986410619, -25.667090629152714, -22.87577461070063, -22.522584506861627, -14.409481645699492, -4.375157992014288, -2.5509512712509936, 5.976798720506846, -6.224954472058663, 5.228056086509126, 5.496817608988426, 11.993671625190336, 4.423049378127048, -16.969256996906786, -6.9193128294936, -6.969730953484627, 6.442550746057691, 9.372647655665986, 37.017256159757785, 42.32265426631176, 31.372667814498943, 9.249335133704264, -1.31457082881672, -10.427646314175183, -13.552323220664002, -12.095197319141178, -6.498483425696264, 8.542555989249022, -1.8739577167520416, -15.38425602886117, -3.9974718569615515, 10.124741123299197, 3.1951285548493935, 12.967373470558005, 18.076557389095846, -2.6225507151448895, -8.464524173747174, -11.539170921523711, 10.654695105023555, 13.60981714428247, 5.853852566694763, -2.2883432476717402, -17.52990214188262, -3.3625687276500518, 1.266200271594824, 7.207422555154116, -7.089833167302483, 1.6860922681612251, -1.0318739655302915, -8.096779347188644, -1.3464226827189458, -13.078027988179562, -8.672039844109563, -9.592138499769305, 3.051542666997137, 11.36014851464622, 9.996779881890015, 10.806673830011519, 14.631387924199151, 11.614104699208955, 1.1142888366343513, -3.937692967863447, -15.355921558046791, -3.0306529131342135, 1.5545104127758589, -2.9871507543380655, -9.638331975990672, -5.347446925828199, -18.407766360755126, -25.41298431494652, -20.526252512487762, 7.99003221544476, 10.915966706933848, 10.58576534299351, -3.239205440242543, -11.921697995793037, 4.025763776984041, -1.3983114162361217, -0.4121059684246514, 5.588408478269697, 0.27026407634245597, -4.8607420418464, -21.13639202976678, -29.067178010419, -17.38553217676499, -18.293813838912747, -7.950080022743089, -22.20795592524521, -9.653106550348141, -8.119032732080404, -21.201858699074172, -5.669580454716325, -18.602266157266918, -4.108800151017697, -3.610189905617235, -11.82481254805053, 9.024193984391314, 11.271651360520664, 21.164646660129165, 21.257638608401578 ]
Is the given time series stationary?
[ "No", "Yes" ]
Yes
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Try to see if the time series has a constant mean, and degree of variation over time.
Pattern Recognition
Stationarity Detection
597
[ -0.22405257264329886, 0.2717594659196916, -1.1702875249609865, 0.5549242098227016, 0.48585065899289304, 0.8182262705344128, -0.6745099557670002, 0.15076101313468276, 0.45918375223583247, 0.3223528990308573, -0.6033217247389361, -1.5072292531305285, 0.3126900634134463, -0.06167248204193912, -0.4538448533714639, 0.4809721935522913, 0.06543453867557239, -1.0001790352960167, -1.4712045812107755, -0.5867837467736767, 1.6145819447816325, 0.5328888868791314, 0.015545483568861082, -0.04493276697328866, -0.13410577668700063, 0.6041380746320779, -0.17809538262350205, 0.39279104635863626, -0.2672488236478791, 1.229774662435224, 0.2834414087046451, 0.8731004228184515, -0.35563006232330785, 0.6719101095799108, -0.07636947766841426, -0.06649622057988232, 1.008557805432321, -0.7662830217751122, 0.10490950563332518, 0.2929114850579181, 0.38273879080729184, -0.329210958311152, 1.2752952924888648, -0.6774245653954697, 1.1943059602680015, 0.8081744338867641, 1.1662405162116638, -0.8901000877337523, -0.7123143594939688, 0.941262365715671, -1.2959484395245144, -1.165510543653246, -0.3470313444820842, 0.03901919290640307, 1.0415229671039878, -0.11832312382949504, -0.45951753629875713, 0.16639083461953658, 0.28371926144129467, 0.3692623446280779, -0.1311276880761437, -1.194857426935451, -0.5409300079104057, 0.9850669069474105, 0.26100341699799356, -0.32265431005111334, 0.6832211470720192, -0.5620156877757341, -0.17295963606910336, -0.1915098816587954, -0.3086645248279376, 0.07932590483268992, -0.3843384622512843, -0.7808472387561561, 0.04719473689543874, -0.8350033674370039, 0.0856041230662909, 0.7689368811295337, -0.29065330741535145, -0.8588800620937007, 0.025601516084702694, -0.5583102647535776, 0.3362274177891957, -0.19014722671235543, 1.2366644334309438, 0.9062427763293082, 0.018461427700226074, 0.516776702182534, -0.22793238975469643, -0.09940853565566488, -0.26071978489166275, 0.4323670388314983, 0.7536712218323609, 0.6274897462950734, 0.5327511219111912, 0.7226449094033005, 0.4483298270050549, -0.6886645495966536, 1.1725938657043107, 1.1173546649964166, 0.03298311525383066, -0.237877647594077, 0.43030357893453924, 0.29495806890782195, -0.22505510704258203, -0.768956815380203, 0.22147685826981106, 0.28133795311986887, 0.3303622131091688, 0.10121313745529453, -0.05751583993552131, 0.5880916603148687, 0.009130321240213284, -0.15871678815068066, -0.23024236423538796, -1.2134034238557347, -0.19594177693311968, 0.6115870200087121, 0.4213307367079583, 1.0686605504073932, -0.09347243333203567, 0.2603435977371711, 0.712658325435187, 1.5574418043289646, 0.179891493342331, -0.6927572799952081, 0.527178886935268, 1.3852505581850918 ]
null
Given that following time series exhibit piecewise linear trend, how many pieces are there?
[ "1", "2", "4" ]
4
multiple_choice
5
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Piecewise Linear Trend" ]
Check if the time series values increase or decrease linearly over time with different slopes. The slope change could be both positive and negative.
Pattern Recognition
Trend Recognition
598
[ 0.15696285869394933, 0.048629435598918, 0.10032890233559202, 0.1259924548433032, -0.048948277724981934, 0.026990593182421765, 0.17753747886395116, 0.026435982731781882, 0.30616555682957414, 0.3380805989521126, 0.3115226134247772, 0.19457271267490578, 0.47258056365124934, 0.5661682895499335, 0.40503546413639485, 0.46926187505062095, 0.4662627584988015, 0.5270063677327769, 0.4898941289839572, 0.5262741364759163, 0.648182876323733, 0.8200540882773404, 0.47336510446122215, 0.6308715352747992, 0.5510872910055875, 0.8562163852001038, 0.6661206542242055, 0.6084549275913158, 0.8444742626684523, 0.9829672300716059, 0.9027764612670709, 0.8847770179528861, 0.9052113225022939, 1.1942372773241858, 1.1537892648571515, 1.4184804622668714, 1.5728521386414855, 1.689790603580204, 1.9621955891846308, 2.2942612055414924, 2.428605291599456, 2.6248321075879395, 2.763504599559387, 2.9896453974838506, 3.0457099657931175, 3.2832739922521412, 3.5218813853586677, 3.7188885283669255, 3.9116117087878597, 4.05421537591097, 4.218762544816512, 4.760737994050911, 4.724095573856657, 4.863187574975615, 4.987007958376649, 5.153662906319838, 5.374160710458465, 5.6049796350067655, 5.576109177058726, 5.795669752744501, 6.07737645420501, 6.350234617593698, 6.494049340017593, 6.854244758159662, 6.558192956850137, 6.624310015870102, 6.844465664210273, 6.698580349859403, 6.766964602952728, 6.8766169662802845, 6.595123757443881, 6.647584692735584, 6.623285363702426, 6.4480806806279105, 6.605512227981365, 6.717670054375754, 6.6766347170996365, 6.677496007137938, 6.571048719415912, 6.536001821160022, 6.721549039231173, 6.5379036846862695, 6.610055530482082, 6.58999272195124, 6.712842882789922, 6.656824344212171, 6.423169173658948, 6.426951646328881, 6.596609872094024, 6.525297052829918, 6.4792255664531835, 6.619317460528732, 6.529512537618901, 6.509024265379678, 6.574773318046964, 6.452291481757827, 6.6466542797994395, 6.181176980524299, 6.0958540110772255, 5.943723749904417, 5.432790278706641, 5.306365671644021, 5.225099290113239, 4.996782367193203, 4.634087713976692, 4.347949526243247, 4.287189579439425, 4.080130269059927, 3.6154883855459428, 3.381742717095961, 3.294839111786376, 3.1054288685263214, 2.7827652582558433, 2.6507809103724997, 2.2820172292859433, 1.9117408916577243, 1.8509995059272548, 1.6698921894072418, 1.4061643403617026, 1.088067371580816, 0.7925421619542993, 0.6928775407008076, 0.6042313598979883, 0.41026488826979857, 0.1735958443376932, -0.25658708599559116, -0.5201874032483558, -0.5849739477919135 ]
null
The given time series is a sine wave. What is the most likely amplitude of the sine wave?
[ "8.8", "8.63", "1.75" ]
8.8
multiple-choice
21
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
599
[ -0.04161547971129505, 2.0058949710347247, 4.344217198554679, 6.052971549522197, 7.4428111781343995, 8.370332349554868, 8.788853351192007, 8.681173865983371, 7.888120054994133, 6.529966799171334, 5.07025968816492, 3.0886345932508386, 0.8911031469682914, -1.2458148166291891, -3.4876591915162445, -5.293725512211055, -6.83272596396878, -8.037923750225522, -8.775995457017679, -8.762980638166646, -8.11525551718423, -7.351339642595146, -5.742745571003309, -3.875140133964591, -1.8190780465418888, 0.5737957174080607, 2.712147263131971, 4.620314904051489, 6.46896176664482, 7.699810548333514, 8.440542508258194, 8.726807350218296, 8.547698926081644, 7.760245276253279, 6.289738733495453, 4.659658333299728, 2.7357349791581296, 0.25921101664198587, -1.7964192580885636, -3.8488694308458173, -5.789994326813326, -7.1355966866711045, -8.054325820215116, -8.725612944240098, -8.708943131478911, -7.958173068996988, -6.8268664416969544, -5.576270549933573, -3.3975385620074485, -1.2923844170902912, 1.0111975054564546, 3.1144939510677245, 5.087298819518193, 6.645629854776771, 8.011103816450879, 8.801328577334187, 8.697063730515579, 8.226629573446042, 7.417903561387495, 5.98843961235963, 4.300721698218966, 1.9855347038073734, -0.15532821591043428, -2.51979800980455, -4.223642899789738, -6.113352903839299, -7.569532480985815, -8.559172168017806, -8.914937124197797, -8.55326176925408, -7.9586932067362275, -6.589021449625117, -4.724637652173792, -2.9780495316245448, -0.8656024637749602, 1.491773909116144, 3.4610850520082734, 5.656617429198435, 7.1752540580673125, 8.118943332039354, 8.625931900143296, 8.696113367363992, 8.1734088793991, 7.181126322121091, 5.729824705834403, 3.6455895197573245, 1.7339879448183704, -0.5260842188857047, -2.8217947163738306, -4.885673672638003, -6.465928658169157, -7.869891344516288, -8.451526073294128, -8.909315750722016, -8.422722489774777, -7.624077049180289, -6.323638986663821, -4.528677495224499, -2.3723117782695304, -0.40286277625405464, 1.8899558675222128, 3.9473283439206512, 5.852776937145102, 7.247838270873933, 8.131367856364815, 8.663314500269001, 8.832584990376706, 8.039187612940635, 6.869015388291163, 5.214941454789267, 3.298217968539395, 1.109361938611198, -1.0196811858503665, -3.2184436858445333, -5.295372949260942, -6.77150280593066, -8.226792447917553, -8.613282555277635, -8.915982614061868, -8.34396223291013, -7.480237961057712, -5.9162699701614825, -4.036202462514021, -1.8594569912970473, 0.04891610934149551, 2.5004077896904175, 4.462147631691501, 6.165670360399188 ]
null
Is the given time series likely to have a non-stationary anomaly?
[ "Yes, due to trend reversal", "No, the anomaly is stationary", "Yes, due to cutoff" ]
Yes, due to cutoff
binary
69
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Linear Trend", "Sine Wave", "Cutoff Anomaly", "Spike Anomaly" ]
Non-stationary anomaly refers to the anomaly that changes over time. You should check if the time series has a constant mean and variance over time. If not, you should check the type of anomaly based on the given definitions. For example, spikes anomaly are stationary.
Anolmaly Detection
General Anomaly Detection
600
[ 0, 1.1186659880485073, 1.9464941275418859, 2.272534172172664, 2.0236674815751052, 1.2846913153311204, 0.2750266453171599, -0.7115525945201533, -1.3876135969920478, -1.5510169840852517, -1.1404406334155939, -0.25222369404762923, 0.8860959377592788, 1.978281932877102, 2.74076999106389, 2.980557538408263, 2.6482178482012335, 1.8514766187556038, 0.8256217815467535, -0.13112559976839844, -0.7395269597745164, -0.8160277320032399, -0.323176282609166, 0.6200888411065192, 1.771109058016669, 2.8301594308355407, 3.522777381905091, 3.6751523212806454, 3.2618680961573245, 2.41288432261908, 1.3778389612163005, 0.45747753707093386, -0.07895591189602524, -0.0676750298540425, 0.5046598731675134, 1.4972776632209506, 2.6539635243292334, 3.6734362749542777, 4.292104554356449, 4.356470335023575, 3.865291899149449, 2.9699249147994644, 1.932747924654909, 1.0550919715408738, 0.5944707161234524, 0.6938463526122038, 1.3423606244645743, 2.3783173800748765, 3.533597417364192, 4.507305707747513, 5.048421513652148, 5.0247489908507665, 4.45922886204478, 3.5236370384861786, 2.491401057927356, 1.6624947622291624, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 5.175469814276433, 4.199947673427429, 3.550230075168918, 3.421220367512922, 3.864793385991625, 4.7755464271010615, 5.919751357853423, 6.999555269904504, 7.734794984743733, 7.93995252795761, 7.575113373568762, 6.756930201989204, 5.726580636676004, 4.7835203572509615, 4.20322834365194, 4.161538061753404, 4.686339368557196, 5.649917701146225, 6.804034827880472, 7.848115149493838, 8.511808075479424, 8.629248167840263, 8.184615209021155, 7.316479713518704, 6.2797402541255725, 5.375607692325889, 4.868868307511439, 4.9151520632209404, 5.518184028553041, 6.528761172830599, 7.685735588479262, 8.687746833539876, 9.275999889351748, 9.305351209418575, 8.78417687951528, 7.872071866901503, 6.836012330940811, 5.977022371136368, 5.547488456296409 ]
null