ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
2e95af84-26d7-4b74-b1e2-81c690cb5511
cpp
tensorflow/tensorflow
clustering_bridge_passes
tensorflow/compiler/mlir/tf2xla/internal/clustering_bridge_passes.cc
tensorflow/compiler/mlir/tf2xla/internal/clustering_bridge_passes_test.cc
#include "tensorflow/compiler/mlir/tf2xla/internal/clustering_bridge_passes.h" #include <string> #include "absl/log/log.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/Passes.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/sparsecore/sparsecore_passes.h" #include "tensorflow/compiler/mlir/tf2xla/internal/passes/clustering_passes.h" namespace tensorflow { namespace tf2xla { namespace internal { using mlir::OpPassManager; using mlir::func::FuncOp; void AddReplicatedBridgeClusteringPipelinePasses(OpPassManager& pm, llvm::StringRef module_name) { const llvm::SmallVector<std::string, 4> ops_to_preserve = { "tf.TPUReplicateMetadata", "tf.TPUCompilationResult", "tf.TPUReplicatedOutput"}; bool strict_clusters = tensorflow::GetMlirCommonFlags()->tf_mlir_enable_strict_clusters; pm.addNestedPass<FuncOp>( mlir::tf_executor::CreateTFExecutorGraphPruningPass(ops_to_preserve)); pm.addNestedPass<FuncOp>( mlir::CreateExecutorDialectToFunctionalConversionPass()); pm.addPass(mlir::TF::CreateGuaranteeAllFuncsOneUsePass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); pm.addNestedPass<FuncOp>(mlir::TFTPU::CreateTPUPartitionedOpConversionPass()); pm.addNestedPass<FuncOp>( mlir::TFTPU::CreateTPUReorderReplicateAndPartitionedInputsPass()); pm.addNestedPass<FuncOp>(mlir::TF::CreateDecomposeReduceDatasetPass()); pm.addPass(mlir::TFDevice::CreateEmbeddingPipeliningPass()); pm.addPass(mlir::TFDevice::CreateEmbeddingSequencingPass()); pm.addPass(tensorflow::tf2xla::internal::CreateTPUClusterFormationPass( strict_clusters)); pm.addPass(mlir::TF::CreateGuaranteeAllFuncsOneUsePass()); pm.addPass(mlir::TFTPU::CreateTPUClusterCleanupAttributesPass()); pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateDeviceAttributeToLaunchPass()); pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); pm.addPass(mlir::TFDevice::CreateDecomposeResourceOpsInClusterPass()); { OpPassManager& func_pm = pm.nest<FuncOp>(); func_pm.addPass(mlir::TFTPU::CreateTPUHostComputationExpansionPass()); func_pm.addPass(mlir::TFTPU::CreateTPUUpdateEmbeddingEnqueueOpInputsPass()); } pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateLaunchToDeviceAttributePass()); pm.addPass(mlir::TF::CreateTFFunctionalControlFlowToRegions()); pm.addPass(mlir::createInlinerPass()); pm.addNestedPass<FuncOp>( mlir::TF::CreateDropWhileShapeInvariantInDeviceClusterPass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); pm.addPass(mlir::TFTPU::CreateTPUClusterCleanupAttributesPass()); pm.addPass(mlir::TFDevice::CreateResourceOpLiftingPass()); pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); pm.addNestedPass<FuncOp>(mlir::createCSEPass()); if (tensorflow::GetMlirCommonFlags() ->tf_mlir_enable_merge_control_flow_pass) { pm.addPass(mlir::TFDevice::CreateMergeControlFlowPass()); } pm.addPass( tensorflow::tf2xla::internal::CreateMarkOpsForOutsideCompilationPass()); pm.addPass(tensorflow::tf2xla::internal:: CreateExtractHeadTailOutsideCompilationPass()); pm.addPass( tensorflow::tf2xla::internal::CreateExtractOutsideCompilationPass()); pm.addNestedPass<FuncOp>( mlir::TFDevice::CreateVerifyNoOutsideCompilationMarkersPass()); pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateClusterConstantSinkingPass()); pm.addPass(mlir::TF::CreateResourceDeviceInferencePass()); pm.addNestedPass<FuncOp>( tensorflow::tf2xla::internal::CreateHoistBroadcastReadPass()); pm.addNestedPass<FuncOp>( tensorflow::tf2xla::internal::CreateXlaBroadcastPass()); pm.addPass(mlir::TFDevice::CreateClusterOutliningPass()); pm.addPass(mlir::TFTPU::CreateTPUResourceReadForWritePass()); pm.addPass(mlir::TFDevice::CreateMarkInputOutputAliasesPass()); pm.addPass( tensorflow::tf2xla::internal::CreateTPUShardingIdentificationPass()); pm.addNestedPass<FuncOp>( mlir::TFTPU::CreateTPUResourceReadsWritesPartitioningPass()); pm.addPass(mlir::TFDevice::CreateAnnotateParameterReplicationPass()); pm.addNestedPass<FuncOp>(mlir::TF::CreateRewriteTPUEmbeddingOpsPass()); pm.addPass(mlir::TFTPU::CreateTPUAnnotateDynamicShapeInputsPass()); pm.addNestedPass<FuncOp>( mlir::TF::CreateHoistReplicateInvariantResourceWritesPass()); pm.addNestedPass<FuncOp>( tensorflow::tf2xla::internal::CreateVerifyClusteringPass()); } void NoCanonicalization(OpPassManager& pm) {} void AddNonReplicatedBridgeClusteringPipelinePasses(OpPassManager& pm) { VLOG(2) << "Create TF XLA Bridge pipeline"; pm.addPass(mlir::TFDevice::CreateXlaValidateInputsPass()); pm.addNestedPass<FuncOp>( mlir::TF::CreateCanonicalizeCompileAndReplicateAttributesPass()); const llvm::SmallVector<std::string, 4> ops_to_preserve = {}; pm.addNestedPass<FuncOp>( mlir::tf_executor::CreateTFExecutorGraphPruningPass(ops_to_preserve)); pm.addNestedPass<FuncOp>( mlir::CreateExecutorDialectToFunctionalConversionPass()); pm.addPass(mlir::TF::CreateGuaranteeAllFuncsOneUsePass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); pm.addPass(tensorflow::tf2xla::internal::CreateXlaClusterFormationPass()); pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); pm.addPass(mlir::TFDevice::CreateDecomposeResourceOpsInClusterPass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); pm.addPass(mlir::createInlinerPass({}, NoCanonicalization)); pm.addPass(mlir::TFDevice::CreateResourceOpLiftingPass()); pm.addPass(mlir::TFDevice::CreateClusterOutliningPass()); pm.addNestedPass<FuncOp>( tensorflow::tf2xla::internal::CreateVerifyClusteringPass()); } }; }; };
#include "tensorflow/compiler/mlir/tf2xla/internal/clustering_bridge_passes.h" #include <gtest/gtest.h> #include "mlir/Pass/PassManager.h" namespace tensorflow { namespace tf2xla { namespace internal { using mlir::OpPassManager; TEST(ClusteringBridgePassesTest, AddsBridgePasses) { OpPassManager pass_manager; AddReplicatedBridgeClusteringPipelinePasses(pass_manager); EXPECT_EQ(pass_manager.size(), 45); } TEST(ClusteringBridgePassesTest, AddsNonTPUBridgePasses) { OpPassManager pass_manager; AddNonReplicatedBridgeClusteringPipelinePasses(pass_manager); EXPECT_EQ(pass_manager.size(), 15); } }; }; };
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/clustering_bridge_passes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/internal/clustering_bridge_passes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9cc88025-8857-47e4-adbf-2c50ad2316a5
cpp
google/quiche
hpack_entry
quiche/http2/hpack/hpack_entry.cc
quiche/http2/hpack/hpack_entry_test.cc
#include "quiche/http2/hpack/hpack_entry.h" #include <cstddef> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace spdy { HpackEntry::HpackEntry(std::string name, std::string value) : name_(std::move(name)), value_(std::move(value)) {} size_t HpackEntry::Size(absl::string_view name, absl::string_view value) { return name.size() + value.size() + kHpackEntrySizeOverhead; } size_t HpackEntry::Size() const { return Size(name(), value()); } std::string HpackEntry::GetDebugString() const { return absl::StrCat("{ name: \"", name_, "\", value: \"", value_, "\" }"); } }
#include "quiche/http2/hpack/hpack_entry.h" #include "absl/hash/hash.h" #include "quiche/common/platform/api/quiche_test.h" namespace spdy { namespace { TEST(HpackLookupEntryTest, EntryNamesDiffer) { HpackLookupEntry entry1{"header", "value"}; HpackLookupEntry entry2{"HEADER", "value"}; EXPECT_FALSE(entry1 == entry2); EXPECT_NE(absl::Hash<HpackLookupEntry>()(entry1), absl::Hash<HpackLookupEntry>()(entry2)); } TEST(HpackLookupEntryTest, EntryValuesDiffer) { HpackLookupEntry entry1{"header", "value"}; HpackLookupEntry entry2{"header", "VALUE"}; EXPECT_FALSE(entry1 == entry2); EXPECT_NE(absl::Hash<HpackLookupEntry>()(entry1), absl::Hash<HpackLookupEntry>()(entry2)); } TEST(HpackLookupEntryTest, EntriesEqual) { HpackLookupEntry entry1{"name", "value"}; HpackLookupEntry entry2{"name", "value"}; EXPECT_TRUE(entry1 == entry2); EXPECT_EQ(absl::Hash<HpackLookupEntry>()(entry1), absl::Hash<HpackLookupEntry>()(entry2)); } TEST(HpackEntryTest, BasicEntry) { HpackEntry entry("header-name", "header value"); EXPECT_EQ("header-name", entry.name()); EXPECT_EQ("header value", entry.value()); EXPECT_EQ(55u, entry.Size()); EXPECT_EQ(55u, HpackEntry::Size("header-name", "header value")); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/hpack_entry.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/hpack_entry_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
d1d92fbe-e80a-43c3-9c83-84c759e94301
cpp
tensorflow/tensorflow
dot_dimension_sorter
third_party/xla/xla/service/gpu/transforms/dot_dimension_sorter.cc
third_party/xla/xla/service/gpu/transforms/dot_dimension_sorter_test.cc
#include "xla/service/gpu/transforms/dot_dimension_sorter.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/permutation_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace gpu { namespace { absl::Status SortDotDimensions(HloDotInstruction* dot) { const DotDimensionNumbers& dims = dot->dot_dimension_numbers(); DotDimensionNumbers new_dims(dims); new_dims.clear_lhs_contracting_dimensions(); new_dims.clear_rhs_contracting_dimensions(); const bool sort_by_lhs = DistinctNumbersAreConsecutiveIfSorted(dims.lhs_contracting_dimensions()); const absl::Span<const int64_t>& sort_key = sort_by_lhs ? dims.lhs_contracting_dimensions() : dims.rhs_contracting_dimensions(); std::vector<int64_t> permutation; for (const int64_t a : sort_key) { permutation.push_back(a - *absl::c_min_element(sort_key)); } const std::vector<int64_t> sorted_lhs = Permute(dims.lhs_contracting_dimensions(), permutation); *new_dims.mutable_lhs_contracting_dimensions() = {sorted_lhs.begin(), sorted_lhs.end()}; const std::vector<int64_t> sorted_rhs = Permute(dims.rhs_contracting_dimensions(), permutation); *new_dims.mutable_rhs_contracting_dimensions() = {sorted_rhs.begin(), sorted_rhs.end()}; std::unique_ptr<HloInstruction> new_dot = HloInstruction::CreateDot( dot->shape(), dot->mutable_operand(0), dot->mutable_operand(1), new_dims, dot->precision_config(), {dot->sparsity().begin(), dot->sparsity().end()}, absl::MakeSpan(dot->operands()).subspan(HloDotInstruction::kOperands)); dot->SetupDerivedInstruction(new_dot.get()); VLOG(3) << "Sorted dot() dimensions:\n" << "\t before: " << dot->ToString() << "\n" << "\t after: " << new_dot->ToString(); return dot->parent()->ReplaceWithNewInstruction(dot, std::move(new_dot)); } } absl::StatusOr<bool> DotDimensionSorter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloInstruction*> dots_to_process; for (const HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instr : computation->instructions()) { if (instr->opcode() != HloOpcode::kDot) { continue; } if ((instr->operand(0)->shape().has_layout() && !LayoutUtil::IsMonotonicWithDim0Major( instr->operand(0)->shape().layout())) || (instr->operand(1)->shape().has_layout() && !LayoutUtil::IsMonotonicWithDim0Major( instr->operand(1)->shape().layout()))) { continue; } const DotDimensionNumbers& dims = instr->dot_dimension_numbers(); if (dims.lhs_contracting_dimensions_size() == 0) { continue; } const bool cons_lhs = DistinctNumbersAreConsecutiveIfSorted( dims.lhs_contracting_dimensions()); const bool cons_rhs = DistinctNumbersAreConsecutiveIfSorted( dims.rhs_contracting_dimensions()); const bool sorted_lhs = absl::c_is_sorted(dims.lhs_contracting_dimensions()); const bool sorted_rhs = absl::c_is_sorted(dims.rhs_contracting_dimensions()); if ((cons_lhs && !sorted_lhs && !cons_rhs) || (cons_rhs && !sorted_rhs && !cons_lhs) || (cons_lhs && !sorted_lhs && cons_rhs && !sorted_rhs)) { dots_to_process.push_back(instr); } } } if (dots_to_process.empty()) { return false; } for (HloInstruction* dot : dots_to_process) { TF_RETURN_IF_ERROR(SortDotDimensions(Cast<HloDotInstruction>(dot))); } return true; } } }
#include "xla/service/gpu/transforms/dot_dimension_sorter.h" #include <memory> #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class WithoutDotDimensionSorterTest : public GpuCodegenTest { public: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = GpuCodegenTest::GetDebugOptionsForTest(); debug_options.add_xla_disable_hlo_passes("dot_dimension_sorter"); return debug_options; } }; TEST_F(WithoutDotDimensionSorterTest, UnsortedDimsCreateTransposes) { const char* hlo_text = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK: transpose )"); } TEST_F(WithoutDotDimensionSorterTest, SortedDimsDoNotCreateTransposes) { const char* hlo_text = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} } )"; MatchOptimizedHlo(hlo_text, R"( ; CHECK-NOT: transpose )"); } TEST_F(WithoutDotDimensionSorterTest, DimOrderCanBeChanged) { const char* hlo_text_ref = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; const char* hlo_text_modified = R"( HloModule m ENTRY e { p0 = f16[1,14,9,32] parameter(0) p1 = f16[12,9,32] parameter(1) ROOT _ = f16[1,14,12] dot(p0, p1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} } )"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_ref, hlo_text_modified, ErrorSpec{1e-5, 1e-3}, true)); } using DotDimensionSorterTest = GpuCodegenTest; TEST_F(DotDimensionSorterTest, SortContractingDims) { const char* module_string = R"( HloModule m ENTRY e { p0 = f16[1,144,96,32] parameter(0) p1 = f16[122,96,32] parameter(1) ROOT _ = f16[1,144,122] dot(p0, p1), lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); const auto& dims = module->entry_computation()->root_instruction()->dot_dimension_numbers(); EXPECT_EQ(dims.lhs_contracting_dimensions(0), 3); EXPECT_EQ(dims.lhs_contracting_dimensions(1), 2); EXPECT_EQ(dims.rhs_contracting_dimensions(0), 2); EXPECT_EQ(dims.rhs_contracting_dimensions(1), 1); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionSorter().Run(module.get())); EXPECT_TRUE(modified); const auto& dims2 = module->entry_computation()->root_instruction()->dot_dimension_numbers(); EXPECT_EQ(dims2.lhs_contracting_dimensions(0), 2); EXPECT_EQ(dims2.lhs_contracting_dimensions(1), 3); EXPECT_EQ(dims2.rhs_contracting_dimensions(0), 1); EXPECT_EQ(dims2.rhs_contracting_dimensions(1), 2); } TEST_F(DotDimensionSorterTest, NothingToReorder) { const char* module_string = R"( HloModule m ENTRY e { p0 = f16[1,144,96,32] parameter(0) p1 = f16[122,96,32] parameter(1) ROOT _ = f16[1,144,122] dot(p0, p1), lhs_contracting_dims={2,3}, rhs_contracting_dims={1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionSorter().Run(module.get())); EXPECT_FALSE(modified); } TEST_F(DotDimensionSorterTest, SparseDotSortContractingDims) { const char* module_string = R"( HloModule m ENTRY e { p0 = f16[1,144,96,16] parameter(0) p1 = f16[122,96,32] parameter(1) meta = u16[1,144,96,2] parameter(2) ROOT _ = f16[1,144,122] dot(p0, p1, meta), sparsity=L.3@2:4, lhs_contracting_dims={3,2}, rhs_contracting_dims={2,1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotDimensionSorter().Run(module.get())); EXPECT_TRUE(modified); HloDotInstruction* dot = DynCast<HloDotInstruction>( module->entry_computation()->root_instruction()); EXPECT_TRUE(dot != nullptr && dot->sparse_operands() == 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/dot_dimension_sorter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/dot_dimension_sorter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
37814792-efdc-4cb3-a712-b3397f948e72
cpp
tensorflow/tensorflow
auto_sharding_memory
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory.cc
third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory_test.cc
#include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <optional> #include <utility> #include <vector> #include "absl/container/btree_map.h" #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "tsl/platform/protobuf.h" namespace xla { namespace spmd { namespace { using PrimIdx = int64_t; using LiveIdx = int64_t; using GroupIdx = int64_t; using PrimPair = std::pair<PrimIdx, PrimIdx>; using Interval = std::pair<LiveIdx, LiveIdx>; using ActivePrim = std::pair<Interval, PrimIdx>; bool IsValid(const Interval& interval) { return interval.first <= interval.second; } int64_t length(const Interval& interval) { return interval.second - interval.first + 1; } } std::pair<int64_t, int64_t> MemoryTermReducer::Reduce( int64_t num_lives, int64_t num_primitives, const std::function< tsl::protobuf::RepeatedField<int64_t>(int64_t)>& live, int64_t max_iterations) { LOG(INFO) << "Memory Term Reducer beginning to reduce number of terms ..."; reduced_live_.clear(); reduced_intervals_.clear(); reduced_groups_.clear(); int64_t num_terms = 0; reduced_intervals_.reserve(num_primitives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { reduced_intervals_.push_back({std::numeric_limits<LiveIdx>::max(), 0}); } for (LiveIdx live_idx = 0; live_idx < num_lives; ++live_idx) { for (const PrimIdx prim_idx : live(live_idx)) { Interval& interval = reduced_intervals_[prim_idx]; interval.first = std::min(interval.first, live_idx); interval.second = std::max(interval.second, live_idx); ++num_terms; } } Reduce(num_lives, num_primitives, max_iterations); int64_t num_reduced_terms = 0; reduced_live_.resize(num_lives); for (PrimIdx prim_idx = 0; prim_idx < reduced_intervals_.size(); ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; for (LiveIdx live_idx = interval.first; live_idx <= interval.second; ++live_idx) { reduced_live_[live_idx].push_back(prim_idx); ++num_reduced_terms; } } for (const auto& group : reduced_groups_) num_reduced_terms += group.size(); LOG(INFO) << "Memory Term Reducer finished reducing the number of terms."; return {num_terms, num_reduced_terms}; } std::pair<int64_t, int64_t> MemoryTermReducer::Reduce( int64_t num_lives, int64_t num_primitives, const std::function<std::pair<int64_t, int64_t>(int64_t)>& intervals, int64_t max_iterations) { LOG(INFO) << "Memory Term Reducer beginning to reduce number of terms ..."; reduced_live_.clear(); reduced_intervals_.clear(); reduced_groups_.clear(); int64_t num_terms = 0; reduced_intervals_.reserve(num_primitives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { reduced_intervals_.push_back(intervals(prim_idx)); const Interval& interval = reduced_intervals_.back(); if (IsValid(interval)) num_terms += length(interval); } Reduce(num_lives, num_primitives, max_iterations); int64_t num_reduced_terms = 0; for (PrimIdx prim_idx = 0; prim_idx < reduced_intervals_.size(); ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; if (IsValid(interval)) num_reduced_terms += length(interval); } for (const auto& group : reduced_groups_) num_reduced_terms += group.size(); LOG(INFO) << "Memory Term Reducer finished reducing the number of terms."; return {num_terms, num_reduced_terms}; } void MemoryTermReducer::Reduce(int64_t num_lives, int64_t num_primitives, int64_t max_iterations) { std::vector<absl::btree_set<PrimIdx>> enter(num_lives), evict(num_lives); for (PrimIdx prim_idx = 0; prim_idx < num_primitives; ++prim_idx) { const Interval& interval = reduced_intervals_[prim_idx]; if (!IsValid(interval)) continue; enter[interval.first].insert(prim_idx); evict[interval.second].insert(prim_idx); } auto Splits = [this](PrimIdx large_idx, PrimIdx small_idx) -> bool { const Interval& large = reduced_intervals_[large_idx]; const Interval& small = reduced_intervals_[small_idx]; return large.first < small.first && large.second > small.second; }; auto CalcOverlap = [this, Splits]( int64_t prim0_idx, int64_t prim1_idx) -> std::optional<Interval> { if (prim0_idx == prim1_idx) return std::nullopt; const Interval& interval0 = reduced_intervals_[prim0_idx]; const Interval& interval1 = reduced_intervals_[prim1_idx]; if (!IsValid(interval0) || !IsValid(interval1)) return std::nullopt; if (Splits(prim0_idx, prim1_idx)) return std::nullopt; if (Splits(prim1_idx, prim0_idx)) return std::nullopt; return Interval(std::max(interval0.first, interval1.first), std::min(interval0.second, interval1.second)); }; auto MergeIntoGroup = [num_primitives, this]( PrimIdx prim_idx, absl::btree_set<PrimIdx>& reduced_group) { if (prim_idx < num_primitives) { reduced_group.insert(prim_idx); } else { const auto& group = reduced_groups_[prim_idx - num_primitives]; reduced_group.insert(group.begin(), group.end()); } }; auto CalcNumTerms = [num_primitives, this]( PrimIdx prim_idx, std::optional<Interval> overlap = std::nullopt) { int64_t num_terms = length(reduced_intervals_[prim_idx]); if (overlap) num_terms -= length(*overlap); if (prim_idx >= num_primitives && num_terms > 0) { num_terms += reduced_groups_[prim_idx - num_primitives].size(); } return num_terms; }; auto UpdatePrimitive = [this, &enter, &evict]( PrimIdx prim_idx, const Interval& overlap) mutable { Interval& interval = reduced_intervals_[prim_idx]; enter[interval.first].erase(prim_idx); evict[interval.second].erase(prim_idx); if (auto& t = interval.first; t == overlap.first) t = overlap.second + 1; if (auto& t = interval.second; t == overlap.second) t = overlap.first - 1; if (!IsValid(interval)) return; enter[interval.first].insert(prim_idx); evict[interval.second].insert(prim_idx); }; auto SweepAndMerge = [&num_lives, &enter, &evict, &CalcOverlap, &CalcNumTerms, &MergeIntoGroup, &UpdatePrimitive, this]() -> bool { absl::btree_set<ActivePrim> actives; absl::btree_multimap<int64_t, PrimPair> overlaps; for (LiveIdx live_idx = 0; live_idx < num_lives; ++live_idx) { for (const PrimIdx prim_idx : enter[live_idx]) { actives.insert({reduced_intervals_[prim_idx], prim_idx}); } for (const PrimIdx prim_idx : evict[live_idx]) { auto active = actives.find({reduced_intervals_[prim_idx], prim_idx}); if (++active == actives.end()) continue; std::optional<Interval> overlap = CalcOverlap(prim_idx, active->second); if (!overlap) continue; overlaps.insert({-length(*overlap), {prim_idx, active->second}}); } for (const PrimIdx prim_idx : evict[live_idx]) { actives.erase({reduced_intervals_[prim_idx], prim_idx}); } } bool changed = false; for (const auto& [_, prim_pair] : overlaps) { const PrimIdx prim0_idx = prim_pair.first, prim1_idx = prim_pair.second; const std::optional<Interval> overlap = CalcOverlap(prim0_idx, prim1_idx); if (!overlap) continue; absl::btree_set<PrimIdx> reduced_group; MergeIntoGroup(prim0_idx, reduced_group); MergeIntoGroup(prim1_idx, reduced_group); if (CalcNumTerms(prim0_idx) + CalcNumTerms(prim1_idx) <= CalcNumTerms(prim0_idx, overlap) + CalcNumTerms(prim1_idx, overlap) + length(*overlap) + reduced_group.size()) { continue; } enter[overlap->first].insert(reduced_intervals_.size()); evict[overlap->second].insert(reduced_intervals_.size()); reduced_intervals_.push_back({overlap->first, overlap->second}); reduced_groups_.push_back(reduced_group); UpdatePrimitive(prim0_idx, *overlap); UpdatePrimitive(prim1_idx, *overlap); changed = true; } return changed; }; for (int64_t iteration = 0; iteration < max_iterations; ++iteration) { if (!SweepAndMerge()) break; } for (GroupIdx group_idx = reduced_groups_.size() - 1; group_idx >= 0; --group_idx) { if (IsValid(reduced_intervals_[num_primitives + group_idx])) continue; reduced_intervals_.erase(reduced_intervals_.begin() + num_primitives + group_idx); reduced_groups_.erase(reduced_groups_.begin() + group_idx); } } const std::vector<std::vector<int64_t>>& MemoryTermReducer::GetReducedLive() const { return reduced_live_; } const std::vector<std::pair<int64_t, int64_t>>& MemoryTermReducer::GetReducedIntervals() const { return reduced_intervals_; } const std::vector<absl::btree_set<int64_t>>& MemoryTermReducer::GetReducedGroups() const { return reduced_groups_; } absl::flat_hash_set<int64_t> MemoryTermReducer::GetReducedTimes( int64_t num_primitives) { return GetReducedTimes(num_primitives, reduced_intervals_, reduced_groups_); } absl::flat_hash_set<int64_t> MemoryTermReducer::GetReducedTimes( int64_t num_primitives, const std::vector<std::pair<int64_t, int64_t>>& reduced_intervals, const std::vector<absl::btree_set<int64_t>>& reduced_groups) { std::vector<std::pair<int64_t, int64_t>> intervals; for (int64_t reduced_interval_idx = 0; reduced_interval_idx < reduced_intervals.size(); ++reduced_interval_idx) { const Interval& reduced_interval = reduced_intervals[reduced_interval_idx]; if (reduced_interval_idx < num_primitives) { intervals.push_back(reduced_interval); continue; } const GroupIdx group_idx = reduced_interval_idx - num_primitives; for (const PrimIdx prim_idx : reduced_groups[group_idx]) { Interval& interval = intervals[prim_idx]; if (!IsValid(interval)) { interval.first = reduced_interval.first; interval.second = reduced_interval.second; continue; } interval.first = std::min(interval.first, reduced_interval.first); interval.second = std::max(interval.second, reduced_interval.second); } } absl::btree_set<std::pair<int64_t, bool>> times; for (const Interval& interval : intervals) { if (!IsValid(interval)) continue; times.insert({interval.first, false}); times.insert({interval.second, true}); } int64_t last_entering_time = -1; absl::flat_hash_set<int64_t> reduced_times; for (const auto& time : times) { if ( time.second) { reduced_times.insert(last_entering_time); } else { last_entering_time = time.first; } } reduced_times.insert(last_entering_time); return reduced_times; } } }
#include "xla/hlo/experimental/auto_sharding/auto_sharding_memory.h" #include <cstdint> #include <functional> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" namespace xla { namespace spmd { namespace { std::function<tsl::protobuf::RepeatedField<int64_t>(int64_t)> Convert(const std::vector<std::vector<int64_t>>& live) { return [live](int64_t live_idx) { return ::proto2::RepeatedField<int64_t>(live[live_idx].begin(), live[live_idx].end()); }; } std::function<std::pair<int64_t, int64_t>(int64_t)> Convert( const std::vector<std::pair<int64_t, int64_t>>& intervals) { return [intervals](int64_t prim_idx) { return intervals[prim_idx]; }; } TEST(AutoShardingMemoryTest, WithoutOverlap) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0 }, {0 }, { 1}, { 1}, { 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, {0 }, {0 }, { 1}, { 1}, { 1}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 2}, {3, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {6, 6}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, PartialOverlap) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, { 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 2}, { 2}, { 2}, { 2}, { 1 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {5, 5}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, PartialOverlapReversed) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{ 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 1 }, { 2}, { 2}, { 2}, { 2}, {0 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, 5}, {0, 0}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, DoesNotSplitPrimitive) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 5}, {1, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {10, 10}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OnePrimitiveVanishes) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 2}, { 2}, { 2}, { 2}, { 2}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {6, 0}, {1, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {11, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, BothPrimitivesVanish) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{2}, {2}, {2}, {2}, {2}, {2}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, -1}, {6, -1}, {0, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {12, 8}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OneGroupingPreventsAnother) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2}, { 1, 2}, { 1, 2}, { 1, 2}, { 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 3}, { 3}, { 3}, { 3}, { 2, 3}, {1, 2 }, {1, 2 }, {1, 2 }, { 2 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, -1}, {5, 7}, {4, 8}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {18, 15}; const absl::flat_hash_set<int64_t> expected_reduced_times = {4}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, TwoGroups) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 2}, {0, 2}, {0, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{3}, {3}, {3}, {4}, {4}, {4}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, 2}, {3, -1}, {6, 2}, {0, 2}, {3, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {0, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {12, 10}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, TwoGroupsMutuallyExclusive) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1 }, {0, 1 }, {0, 1 }, { 2, 3}, { 2, 3}, { 2, 3}, { 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 4}, { 4}, { 4}, { 5}, { 5}, { 5}, { 3 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {4, 0}, {7, 3}, {7, 7}, {1, 3}, {4, 6}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {14, 12}; const absl::flat_hash_set<int64_t> expected_reduced_times = {1, 4}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergingPrimitivesWouldNotReduceTerms) { const int num_primitives = 2; const std::vector<std::vector<int64_t>> live = {{0, 1}, {0, 1}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0, 1}, {0, 1}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 1}, {0, 1}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {4, 4}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, AllPrimitivesVanish) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{3}, {3}, {3}, {3}, {3}, {3}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{6, -1}, {6, -1}, {6, -1}, {0, 5}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {18, 9}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergingGroupsWouldNotReduceTerms) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, { 2, 3}, { 2, 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{4 }, {4 }, {4 }, {4, 5}, {4, 5}, {4, 5}, {4, 5}, { 5}, { 5}}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{7, -1}, {7, -1}, {9, 2}, {9, 2}, {0, 6}, {3, 8}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {26, 17}; const absl::flat_hash_set<int64_t> expected_reduced_times = {3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, ExampleFromDocumentation) { const int num_primitives = 4; const std::vector<std::vector<int64_t>> live = {{0 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1 }, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}, { 2, 3}, { 2, 3}, { 2, 3}, { 3}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{0 }, { 4}, { 4}, { 4}, { 4}, { 6}, { 6}, { 6}, { 6}, { 6}, { 5}, { 5}, { 5}, { 3 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 4}, {10, 12}, {5, 9}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}, {0, 1, 2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 22}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, MergesWithRightmost) { const int num_primitives = 3; const std::vector<std::vector<int64_t>> live = {{0, 2}, {0, 2}, {0, 2}, { 1, 2}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(live.size(), num_primitives, Convert(live)); const std::vector<std::vector<int64_t>> expected_reduced_live = {{ 3}, { 3}, { 3}, {1, 2 }}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{3, -1}, {3, 3}, {3, 3}, {0, 2}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 2}}; const std::pair<int64_t, int64_t> expected_num_terms = {8, 7}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0, 3}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, ExampleFromDocumentationUsingIntervals) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 9}, {1, 9}, {5, 12}, {5, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals)); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 4}, {10, 12}, {5, 9}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}, {0, 1, 2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 22}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, InvalidIntervals) { const int num_primitives = 3; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 4}, {9223372036854775807, 0}, {9223372036854775807, 0}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(5, num_primitives, Convert(intervals)); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 4}, {9223372036854775807, 0}, {9223372036854775807, 0}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {}; const std::pair<int64_t, int64_t> expected_num_terms = {5, 5}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, OneIterationOnly) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 9}, {1, 9}, {5, 12}, {5, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 0}, {10, 0}, {13, 4}, {13, 13}, {1, 9}, {5, 12}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {36, 23}; const absl::flat_hash_set<int64_t> expected_reduced_times = {5}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsBottomLeft) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 13}, {0, 10}, {0, 7}, {0, 4}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{11, 13}, {11, -1}, {5, 7}, {5, -1}, {0, 10}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsTopLeft) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 4}, {0, 7}, {0, 10}, {0, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{5, -1}, {5, 7}, {11, -1}, {11, 13}, {0, 10}, {0, 4}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{2, 3}, {0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {0}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsTopRight) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{9, 13}, {6, 13}, {3, 13}, {0, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{14, 8}, {6, 8}, {14, 2}, {0, 2}, {3, 13}, {9, 13}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{2, 3}, {0, 1}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {9}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } TEST(AutoShardingMemoryTest, StairsBottomRight) { const int num_primitives = 4; const std::vector<std::pair<int64_t, int64_t>> intervals = {{0, 13}, {3, 13}, {6, 13}, {9, 13}}; MemoryTermReducer reducer; const auto num_terms = reducer.Reduce(14, num_primitives, Convert(intervals), 1); const std::vector<std::vector<int64_t>> expected_reduced_live = {}; const std::vector<std::pair<int64_t, int64_t>> expected_reduced_intervals = {{0, 2}, {14, 2}, {6, 8}, {14, 8}, {3, 13}, {9, 13}}; const std::vector<absl::btree_set<int64_t>> expected_reduced_groups = {{0, 1}, {2, 3}}; const std::pair<int64_t, int64_t> expected_num_terms = {38, 26}; const absl::flat_hash_set<int64_t> expected_reduced_times = {9}; EXPECT_EQ(num_terms, expected_num_terms); EXPECT_EQ(reducer.GetReducedLive(), expected_reduced_live); EXPECT_EQ(reducer.GetReducedIntervals(), expected_reduced_intervals); EXPECT_EQ(reducer.GetReducedGroups(), expected_reduced_groups); EXPECT_EQ(reducer.GetReducedTimes(num_primitives), expected_reduced_times); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/experimental/auto_sharding/auto_sharding_memory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
87bfd4b9-ec7b-4c54-b090-bb8a279883ad
cpp
tensorflow/tensorflow
sort_json
third_party/xla/xla/sort_json.cc
third_party/xla/xla/sort_json_test.cc
#include "xla/sort_json.h" #include <algorithm> #include <cctype> #include <cstddef> #include <memory> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace { void SkipWhitespace(absl::string_view json, size_t& index) { while (index < json.size() && std::isspace(json[index])) { ++index; } } absl::Status CheckNotEndOfString(absl::string_view json, int index, absl::string_view expected) { return index < json.size() ? absl::OkStatus() : absl::InvalidArgumentError(absl::StrCat( "Prematurely reached end of JSON while looking for ", expected, ".")); } absl::Status Consume(absl::string_view json, size_t& index, char c, bool optional = false) { SkipWhitespace(json, index); TF_RETURN_IF_ERROR(CheckNotEndOfString(json, index, std::string(1, c))); if (json[index] == c) { ++index; SkipWhitespace(json, index); } else if (!optional) { return absl::InvalidArgumentError( absl::StrCat("Expected '", std::string(1, c), "', but found '", std::string(1, json[index]), "'.")); } return absl::OkStatus(); } struct JsonArray; struct JsonObject; using JsonValue = std::variant<absl::string_view, std::unique_ptr<JsonObject>, std::unique_ptr<JsonArray>>; struct JsonField { absl::string_view name; JsonValue value; }; template <typename T> struct JsonSequence { std::vector<T> elements; }; struct JsonArray : public JsonSequence<JsonValue> {}; struct JsonObject : public JsonSequence<JsonField> {}; template <typename T, char begin, char end, const char* name, typename ElemFn> absl::StatusOr<std::unique_ptr<T>> ParseSequence(absl::string_view outer_json, size_t& index, ElemFn elem_fn) { TF_RETURN_IF_ERROR(Consume(outer_json, index, begin)); TF_RETURN_IF_ERROR(CheckNotEndOfString(outer_json, index, name)); auto seq = std::make_unique<T>(); while (outer_json[index] != end) { TF_ASSIGN_OR_RETURN(auto elem, elem_fn(outer_json, index)); seq->elements.emplace_back(std::move(elem)); TF_RETURN_IF_ERROR(Consume(outer_json, index, ',', true)); TF_RETURN_IF_ERROR(CheckNotEndOfString(outer_json, index, name)); } TF_RETURN_IF_ERROR(Consume(outer_json, index, end)); return seq; } absl::Status EnsureValidLiteralStart(char c) { if (c != '"' && c != '+' && c != '-' && c != 'f' && c != 't' && c != 'n' && (c < '0' || c > '9')) { return absl::InvalidArgumentError(absl::StrCat( "Invalid first character of literal: '", std::string(1, c), "'.")); } return absl::OkStatus(); } bool HandleEscape(absl::string_view outer_json, size_t& index, bool& is_escaped) { if (is_escaped) { is_escaped = false; ++index; return true; } if (outer_json[index] == '\\') { is_escaped = true; ++index; return true; } return false; } bool LiteralIsFinished(absl::string_view outer_json, size_t& index, bool is_string_literal) { char c = outer_json[index]; if (is_string_literal) { index += (c == '"' ? 1 : 0); return c == '"'; } return std::isspace(c) || c == ',' || c == '{' || c == '}' || c == '[' || c == ']' || c == ':'; } absl::StatusOr<absl::string_view> ParseLiteral(absl::string_view outer_json, size_t& index) { SkipWhitespace(outer_json, index); TF_RETURN_IF_ERROR(CheckNotEndOfString(outer_json, index, "literal")); auto c = outer_json[index]; TF_RETURN_IF_ERROR(EnsureValidLiteralStart(c)); bool is_string_literal = c == '"'; size_t start_index = index; bool is_escaped = false; ++index; while (index < outer_json.size()) { if (HandleEscape(outer_json, index, is_escaped)) { continue; } if (LiteralIsFinished(outer_json, index, is_string_literal)) { break; } ++index; } return outer_json.substr(start_index, index - start_index); } absl::StatusOr<JsonField> ParseField(absl::string_view outer_json, size_t& index); absl::StatusOr<JsonValue> ParseValue(absl::string_view outer_json, size_t& index) { JsonValue value; SkipWhitespace(outer_json, index); TF_RETURN_IF_ERROR(CheckNotEndOfString(outer_json, index, "value")); auto c = outer_json[index]; if (c == '{') { constexpr static char kObject[] = "object"; auto seq = ParseSequence<JsonObject, '{', '}', kObject>(outer_json, index, ParseField); TF_ASSIGN_OR_RETURN(value, std::move(seq)); } else if (c == '[') { constexpr static char kArray[] = "array"; auto seq = ParseSequence<JsonArray, '[', ']', kArray>(outer_json, index, ParseValue); TF_ASSIGN_OR_RETURN(value, std::move(seq)); } else { TF_ASSIGN_OR_RETURN(value, ParseLiteral(outer_json, index)); } return value; } absl::StatusOr<JsonField> ParseField(absl::string_view outer_json, size_t& index) { JsonField field; TF_ASSIGN_OR_RETURN(field.name, ParseLiteral(outer_json, index)); TF_RETURN_IF_ERROR(Consume(outer_json, index, ':')); TF_ASSIGN_OR_RETURN(field.value, ParseValue(outer_json, index)); return field; } template <typename T> std::vector<std::string> SerializedElements(const JsonSequence<T>& seq) { std::vector<std::string> result; for (const auto& field : seq.elements) { result.push_back(""); Serialize(field, result.back()); } return result; } template <typename ElemT, char begin_brace, char end_brace> void Serialize(const JsonSequence<ElemT>& object, std::string& result) { auto elems = SerializedElements(object); if constexpr (std::is_same_v<ElemT, JsonField>) { std::sort(elems.begin(), elems.end()); } result += begin_brace; bool has_preceeding = false; for (const auto& elem : elems) { if (has_preceeding) { result += ','; } result += elem; has_preceeding = true; } result += end_brace; } void Serialize(const JsonValue& value, std::string& result) { if (auto* lit = std::get_if<absl::string_view>(&value)) { absl::StrAppend(&result, *lit); } else if (auto* object = std::get_if<std::unique_ptr<JsonObject>>(&value)) { Serialize<JsonField, '{', '}'>(**object, result); } else if (auto* array = std::get_if<std::unique_ptr<JsonArray>>(&value)) { Serialize<JsonValue, '[', ']'>(**array, result); } } void Serialize(const JsonField& field, std::string& result) { absl::StrAppend(&result, field.name, ":"); Serialize(field.value, result); } } namespace xla { absl::StatusOr<std::string> SortJson(absl::string_view json) { size_t index = 0; TF_ASSIGN_OR_RETURN(auto value, ParseValue(json, index)); SkipWhitespace(json, index); if (index < json.size()) { return absl::InvalidArgumentError("Found trailing characters in JSON."); } std::string result; Serialize(value, result); return result; } }
#include "xla/sort_json.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::tsl::testing::IsOkAndHolds; TEST(SortJsonTest, SortsJson) { EXPECT_THAT(SortJson(R"({"a": 1, "c": 3,"b": 2, "b": 1,})"), IsOkAndHolds(R"({"a":1,"b":1,"b":2,"c":3})")); EXPECT_THAT(SortJson(R"({"a": 1 , "c": 1,"b": 1 })"), IsOkAndHolds(R"({"a":1,"b":1,"c":1})")); EXPECT_THAT(SortJson(R"({"a": 1,"c": 3,"b": 2,"b": [3,2,1],})"), IsOkAndHolds(R"({"a":1,"b":2,"b":[3,2,1],"c":3})")); EXPECT_THAT(SortJson(R"({"aa": 1, "a": {"c": "c", "b": "b"}})"), IsOkAndHolds(R"({"a":{"b":"b","c":"c"},"aa":1})")); EXPECT_THAT( SortJson( R"({"x": true, "x": false, "x": null, "x": 0, "x": -0.5,"x": "a"})"), IsOkAndHolds(R"({"x":"a","x":-0.5,"x":0,"x":false,"x":null,"x":true})")); EXPECT_THAT(SortJson(R"({"a": "a}", "a": "a"})"), IsOkAndHolds(R"({"a":"a","a":"a}"})")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/sort_json.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/sort_json_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8367ff2e-15a0-4c35-9cf2-3c250ad2a825
cpp
google/tensorstore
coordinator_server
tensorstore/kvstore/ocdbt/distributed/coordinator_server.cc
tensorstore/kvstore/ocdbt/distributed/coordinator_server_test.cc
#include "tensorstore/kvstore/ocdbt/distributed/coordinator_server.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/absl_log.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/compare.h" #include "grpcpp/security/server_credentials.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/server_callback.h" #include "tensorstore/internal/container/heterogeneous_container.h" #include "tensorstore/internal/container/intrusive_red_black_tree.h" #include "tensorstore/internal/grpc/peer_address.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.grpc.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security_registry.h" #include "tensorstore/proto/encode_time.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace ocdbt { namespace { ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); struct LeaseNode; using LeaseTree = internal::intrusive_red_black_tree::Tree<LeaseNode>; struct LeaseNode : public LeaseTree::NodeBase { std::string key; std::string owner; absl::Time expiration_time; uint64_t lease_id; }; } namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( CoordinatorServer::Spec, jb::Object( jb::Member("security", jb::Projection<&CoordinatorServer::Spec::security>( internal_ocdbt::RpcSecurityMethodJsonBinder)), jb::Member("bind_addresses", jb::Projection<&CoordinatorServer::Spec::bind_addresses>( jb::DefaultInitializedValue())))); CoordinatorServer::CoordinatorServer() = default; CoordinatorServer::~CoordinatorServer() = default; CoordinatorServer::CoordinatorServer(CoordinatorServer&&) = default; CoordinatorServer& CoordinatorServer::operator=(CoordinatorServer&&) = default; class CoordinatorServer::Impl : public internal_ocdbt::grpc_gen::Coordinator::CallbackService { public: std::vector<int> listening_ports_; std::unique_ptr<grpc::Server> server_; internal_ocdbt::RpcSecurityMethod::Ptr security_; Clock clock_; grpc::ServerUnaryReactor* RequestLease( grpc::CallbackServerContext* context, const internal_ocdbt::grpc_gen::LeaseRequest* request, internal_ocdbt::grpc_gen::LeaseResponse* response) override; void PurgeExpiredLeases() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mutex_); absl::Mutex mutex_; LeaseTree leases_by_expiration_time_ ABSL_GUARDED_BY(mutex_); using LeaseSet = internal::HeterogeneousHashSet<std::unique_ptr<LeaseNode>, std::string_view, &LeaseNode::key>; LeaseSet leases_by_key_ ABSL_GUARDED_BY(mutex_); }; span<const int> CoordinatorServer::ports() const { return impl_->listening_ports_; } int CoordinatorServer::port() const { return impl_->listening_ports_.front(); } void CoordinatorServer::Impl::PurgeExpiredLeases() { auto now = clock_(); for (LeaseTree::iterator it = leases_by_expiration_time_.begin(), next; it != leases_by_expiration_time_.end() && it->expiration_time < now; it = next) { next = std::next(it); LeaseNode& node = *it; leases_by_expiration_time_.Remove(node); leases_by_key_.erase(node.key); } } grpc::ServerUnaryReactor* CoordinatorServer::Impl::RequestLease( grpc::CallbackServerContext* context, const internal_ocdbt::grpc_gen::LeaseRequest* request, internal_ocdbt::grpc_gen::LeaseResponse* response) { auto* reactor = context->DefaultReactor(); if (auto status = security_->ValidateServerRequest(context); !status.ok()) { reactor->Finish(internal::AbslStatusToGrpcStatus(status)); return reactor; } auto peer_address = internal::GetGrpcPeerAddressAndPort(context); if (!peer_address.ok()) { reactor->Finish(grpc::Status(grpc::StatusCode::INTERNAL, std::string(peer_address.status().message()))); ABSL_LOG_IF(INFO, ocdbt_logging) << "Coordinator: internal error: request=" << *request; return reactor; } TENSORSTORE_ASSIGN_OR_RETURN( auto lease_duration, internal::ProtoToAbslDuration(request->lease_duration()), (reactor->Finish(grpc::Status( grpc::StatusCode::INVALID_ARGUMENT, tensorstore::StrCat("Invalid lease duration: ", _.message()))), reactor)); { absl::MutexLock lock(&mutex_); PurgeExpiredLeases(); LeaseNode* node; bool assign_new_lease = false; bool renew_lease = false; if (auto it = leases_by_key_.find(request->key()); it != leases_by_key_.end()) { node = it->get(); if (request->has_renew_lease_id() && request->renew_lease_id() == node->lease_id) { leases_by_expiration_time_.Remove(*node); renew_lease = true; } else if (request->has_uncooperative_lease_id() && request->uncooperative_lease_id() == node->lease_id) { leases_by_expiration_time_.Remove(*node); assign_new_lease = true; } } else { auto new_node = std::make_unique<LeaseNode>(); new_node->key = request->key(); node = new_node.get(); leases_by_key_.insert(std::move(new_node)); assign_new_lease = true; } if (assign_new_lease || renew_lease) { auto cur_time = clock_(); node->expiration_time = cur_time + lease_duration; if (assign_new_lease) { node->lease_id = static_cast<uint64_t>( absl::ToInt64Nanoseconds(cur_time - absl::UnixEpoch())); node->owner = tensorstore::StrCat(peer_address->first, ":", request->cooperator_port()); } response->set_is_owner(true); leases_by_expiration_time_.FindOrInsert( [&](LeaseNode& other) { return node->expiration_time > other.expiration_time ? absl::weak_ordering::greater : absl::weak_ordering::less; }, [&] { return node; }); } response->set_owner(node->owner); internal::AbslTimeToProto(node->expiration_time, response->mutable_expiration_time()); response->set_lease_id(node->lease_id); } ABSL_LOG_IF(INFO, ocdbt_logging) << "Coordinator: request=" << *request << ", response=" << *response; reactor->Finish(grpc::Status()); return reactor; } Result<CoordinatorServer> CoordinatorServer::Start(Options options) { auto impl = std::make_unique<Impl>(); if (options.clock) { impl->clock_ = std::move(options.clock); } else { impl->clock_ = [] { return absl::Now(); }; } impl->security_ = options.spec.security; if (!impl->security_) { impl->security_ = internal_ocdbt::GetInsecureRpcSecurityMethod(); } grpc::ServerBuilder builder; builder.RegisterService(impl.get()); auto creds = impl->security_->GetServerCredentials(); if (options.spec.bind_addresses.empty()) { options.spec.bind_addresses.push_back("[::]:0"); } impl->listening_ports_.resize(options.spec.bind_addresses.size()); for (size_t i = 0; i < options.spec.bind_addresses.size(); ++i) { builder.AddListeningPort(options.spec.bind_addresses[i], creds, &impl->listening_ports_[i]); } impl->server_ = builder.BuildAndStart(); CoordinatorServer server; server.impl_ = std::move(impl); return server; } } }
#include "tensorstore/kvstore/ocdbt/distributed/coordinator_server.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/create_channel.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/ocdbt/distributed/btree_node_identifier.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.grpc.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/lease_cache_for_cooperator.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_ocdbt::BtreeNodeIdentifier; using ::tensorstore::internal_ocdbt_cooperator::LeaseCacheForCooperator; using ::tensorstore::ocdbt::CoordinatorServer; class CoordinatorServerTest : public ::testing::Test { protected: absl::Time cur_time; CoordinatorServer server_; LeaseCacheForCooperator lease_cache; void SetUp() override { auto security = ::tensorstore::internal_ocdbt::GetInsecureRpcSecurityMethod(); CoordinatorServer::Options options; options.spec.security = security; options.spec.bind_addresses.push_back("localhost:0"); options.clock = [this] { return cur_time; }; TENSORSTORE_CHECK_OK_AND_ASSIGN( server_, CoordinatorServer::Start(std::move(options))); std::string address = tensorstore::StrCat("localhost:", server_.port()); auto channel = ::grpc::CreateChannel(address, security->GetClientCredentials()); if (!channel->WaitForConnected( absl::ToChronoTime(absl::Now() + absl::Milliseconds(100)))) { ABSL_LOG(WARNING) << "Failed to connect to coordinator after 100ms: " << address; } LeaseCacheForCooperator::Options lease_cache_options; lease_cache_options.clock = {}; lease_cache_options.cooperator_port = 42; lease_cache_options.coordinator_stub = tensorstore::internal_ocdbt::grpc_gen::Coordinator::NewStub( std::move(channel)); lease_cache_options.security = security; lease_cache = LeaseCacheForCooperator(std::move(lease_cache_options)); } }; TEST_F(CoordinatorServerTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto lease_info, lease_cache .GetLease("key", BtreeNodeIdentifier{1, KeyRange{"abc", "def"}}) .result()); EXPECT_FALSE(lease_info->peer_stub); EXPECT_THAT(lease_info->peer_address, ::testing::MatchesRegex(".*:42")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/distributed/coordinator_server.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/distributed/coordinator_server_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7eeb4c59-1ba3-41fa-9a55-c2db5b2366a6
cpp
tensorflow/tensorflow
gpu_hlo_cost_analysis
third_party/xla/xla/service/gpu/model/gpu_hlo_cost_analysis.cc
third_party/xla/xla/service/gpu/model/gpu_hlo_cost_analysis_test.cc
#include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include <algorithm> #include <cmath> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/map_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/model/hlo_op_profile.pb.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { static constexpr absl::string_view kIRSizeKey = HloCostAnalysis::kReserved0Key; static constexpr absl::string_view kBasicBlockSplitCountKey = HloCostAnalysis::kReserved1Key; static constexpr absl::string_view kCollAlgoScaleRatioKey = "Collective algorithm's scaling ratio"; static constexpr absl::string_view kCollNumDevicesKey = "Number of devices of a collective group"; absl::Status GpuHloCostAnalysis::Preprocess(const HloInstruction* hlo) { TF_RETURN_IF_ERROR(HloCostAnalysis::Preprocess(hlo)); current_properties_[kIRSizeKey] = 1; current_properties_[kBasicBlockSplitCountKey] = ElementalIrEmitter::OpInvalidatesCache(hlo); return absl::OkStatus(); } float GpuHloCostAnalysis::ScalingRatio(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kCollAlgoScaleRatioKey, hlo_properties_); } int64_t GpuHloCostAnalysis::NumOfDevices(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kCollNumDevicesKey, hlo_properties_); } int64_t GpuHloCostAnalysis::FusionParameterReadBytes( const HloInstruction* hlo) const { CHECK(hlo->IsFused() && (hlo->opcode() == HloOpcode::kParameter || hlo->opcode() == HloOpcode::kGetTupleElement)); float utilization = hlo_properties_.at(hlo)[kUtilizationKey]; if (!options_.count_multiple_input_accesses) { utilization = fmin(utilization, 1.0); } return std::llround(GetShapeSize(hlo->shape()) * utilization); } absl::Status GpuHloCostAnalysis::FusionCalculateUtilizations( const HloInstruction* fusion) { const HloInstruction* root = fusion->fused_expression_root(); std::vector<HloInstruction*> instructions = fusion->fused_instructions_computation()->MakeInstructionPostOrder(); absl::c_reverse(instructions); absl::flat_hash_map<const HloInstruction*, int64_t> root_ir_sizes; for (const HloInstruction* instr : instructions) { hlo_properties_[instr][kUtilizationKey] = 0; hlo_properties_[instr][kIRSizeKey] = 0; elementwise_use_roots_[instr].clear(); root_utilizations_[instr] = 0; } root_utilizations_[root] = 1.0; root_ir_sizes[root] = 1; elementwise_use_roots_[root].insert(root); current_properties_[kFlopsKey] = 0; current_properties_[kBasicBlockSplitCountKey] = 0; current_properties_[kIRSizeKey] = 0; for (const HloInstruction* instr : instructions) { VLOG(8) << instr->name() << ":"; VLOG(9) << "Elementwise use roots:"; Properties& instr_props = hlo_properties_[instr]; for (const HloInstruction* r : elementwise_use_roots_[instr]) { VLOG(9) << "\t" << r->name() << ": " << root_utilizations_[r]; instr_props[kUtilizationKey] += root_utilizations_[r]; instr_props[kIRSizeKey] += root_ir_sizes[r]; } float cur_instr_utilization = instr_props[kUtilizationKey]; VLOG(8) << "Total utilization: " << cur_instr_utilization; float cur_instr_times_emitted = instr_props[kIRSizeKey]; VLOG(8) << "Times emitted: " << cur_instr_times_emitted; current_properties_[kFlopsKey] += cur_instr_utilization * instr_props[kFlopsKey]; current_properties_[kIRSizeKey] += cur_instr_times_emitted; current_properties_[kBasicBlockSplitCountKey] += cur_instr_times_emitted * ElementalIrEmitter::OpInvalidatesCache(instr); for (int operand_idx = 0; operand_idx < instr->operand_count(); ++operand_idx) { const HloInstruction* operand = instr->operand(operand_idx); if ((instr->IsElementwise()) || instr->opcode() == HloOpcode::kTuple || instr->opcode() == HloOpcode::kGetTupleElement) { for (const HloInstruction* r : elementwise_use_roots_[instr]) { elementwise_use_roots_[operand].insert(r); } } else { elementwise_use_roots_[operand].insert(operand); float cur_operand_utilization = cur_instr_utilization * operand_utilization(*instr, operand_idx); int64_t operand_elements = ShapeUtil::ElementsInRecursive(operand->shape()); if (operand_elements == 0) { cur_operand_utilization = 0; } else { cur_operand_utilization = ceil(cur_operand_utilization * operand_elements) / operand_elements; } root_utilizations_[operand] += cur_operand_utilization; root_ir_sizes[operand] += cur_instr_times_emitted; } } } return absl::OkStatus(); } float GpuHloCostAnalysis::CommonElementwiseUtilization( const HloInstruction* a, const HloInstruction* b) const { float ret = 0; for (auto r : elementwise_use_roots_.at(a)) { if (elementwise_use_roots_.at(b).count(r)) { ret += root_utilizations_.at(r); } } return ret; } bool GpuHloCostAnalysis::ProducerConsumerMergedTooLarge( const HloInstruction& producer, const HloInstruction& consumer) { int64_t producer_replication = 1; if (consumer.opcode() == HloOpcode::kFusion) { producer_replication = IrSize(*consumer.fused_parameter(consumer.operand_index(&producer))); } VLOG(5) << producer.name() << " would be emitted by " << consumer.name() << " x" << producer_replication; int64_t n_splits = producer_replication * IrBasicBlockSplitCount(producer) + IrBasicBlockSplitCount(consumer); VLOG(5) << "Basic block split counts: " << IrBasicBlockSplitCount(producer) << ", " << IrBasicBlockSplitCount(consumer) << " -> " << n_splits; int64_t merged_ir_size = (IrSize(producer) * producer_replication + IrSize(consumer)); if (producer.GetModule() ->config() .debug_options() .xla_gpu_mlir_emitter_level() < 4) { if (n_splits > kMaxBasicBlockSplitsPerFusion) { return true; } merged_ir_size *= (1 << n_splits); } VLOG(5) << "IR sizes: " << IrSize(producer) << ", " << IrSize(consumer) << " -> " << merged_ir_size; return merged_ir_size > kMaxIRSize; } absl::Status GpuHloCostAnalysis::HandleCustomCall( const HloInstruction* custom_call) { if (IsCublasGemm(*custom_call)) { TF_ASSIGN_OR_RETURN(auto gpu_config, custom_call->backend_config<gpu::GpuBackendConfig>()); const gpu::GemmBackendConfig& gemm_config = gpu_config.gemm_backend_config(); const Shape& output_shape = custom_call->shape().IsTuple() ? custom_call->shape().tuple_shapes(0) : custom_call->shape(); current_properties_[kFlopsKey] = GetDotFlops(custom_call->operand(0)->shape(), output_shape, gemm_config.dot_dimension_numbers()); return absl::OkStatus(); } if (IsCustomCallToDnnConvolution(*custom_call)) { current_properties_[kFlopsKey] = GetConvolutionFlops(custom_call); if (custom_call->shape().IsTuple()) { float output_size = options_.shape_size(custom_call->shape().tuple_shapes(0)); current_properties_[kBytesAccessedKey] -= current_properties_.output_bytes_accessed(); current_properties_[kBytesAccessedKey] += output_size; current_properties_.set_output_bytes_accessed(output_size); } return absl::OkStatus(); } return HloCostAnalysis::HandleCustomCall(custom_call); } int64_t GpuHloCostAnalysis::GetConvolutionFlops( const HloInstruction* convolution) { auto lhs = convolution->operand(0); auto rhs = convolution->operand(1); const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); const Shape& result_shape = [&]() -> const Shape& { const Shape& shape = convolution->shape(); if (IsCustomCallToDnnConvolution(*convolution) && convolution->shape().IsTuple()) { return shape.tuple_shapes(0); } return shape; }(); return HloCostAnalysis::GetConvolutionFlops(convolution, lhs_shape, rhs_shape, result_shape); } int64_t GpuHloCostAnalysis::GetFlopsPerElementwiseOpElement( const PrimitiveType type, const HloOpcode opcode) { constexpr int64_t kDefaultFlopsPerElement = 3; return FindOrDefault(hlo_elementwise_op_profile_, std::make_pair(opcode, type), kDefaultFlopsPerElement); } int64_t GpuHloCostAnalysis::GetFlopsForElementwiseOp(const HloOpcode op_code, const Shape& shape) { int64_t flop_per_element = GetFlopsPerElementwiseOpElement(shape.element_type(), op_code); return flop_per_element * ShapeUtil::ElementsInRecursive(shape); } int64_t GpuHloCostAnalysis::GetFlopsForElementwiseOp( const HloInstruction* instr) { return GetFlopsForElementwiseOp(instr->opcode(), instr->shape()); } absl::Status GpuHloCostAnalysis::HandleAllReduce( const HloInstruction* allreduce) { const HloModuleConfig& config = allreduce->GetModule()->config(); TF_ASSIGN_OR_RETURN( CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode( allreduce->channel_id().has_value(), Cast<HloAllReduceInstruction>(allreduce)->use_global_device_ids())); int64_t num_devices = config.num_partitions(); int64_t num_replicas = config.replica_count(); TF_ASSIGN_OR_RETURN( std::vector<int64_t> participant_counts, GetPariticipantCountsForReplicaGroups( num_replicas, num_devices, allreduce->replica_groups(), group_mode)); int64_t num_ranks = 1; for (auto count : participant_counts) { num_ranks = std::max(num_ranks, count); } VLOG(5) << "Computing cost for " << num_ranks << " ranks in " << allreduce->ToString(); int64_t output_bytes_accessed = 0; ShapeUtil::ForEachSubshape( allreduce->shape(), [&](const Shape& subshape, const ShapeIndex&) { if (subshape.IsArray()) { output_bytes_accessed += GetShapeSize(subshape); } }); int64_t bytes_accessed = output_bytes_accessed; for (const HloInstruction* operand : allreduce->operands()) { bytes_accessed += GetShapeSize(operand->shape()); } current_properties_.set_output_bytes_accessed(output_bytes_accessed); current_properties_[kBytesAccessedKey] = bytes_accessed; current_properties_[kCollNumDevicesKey] = num_ranks; current_properties_[kFlopsKey] = GetFlopsForElementwiseOp( allreduce->to_apply()->root_instruction()->opcode(), allreduce->shape()); int num_intra_steps = 2 * (num_ranks - 1); float scaling_ratio = (1.0 * num_ranks) / num_intra_steps; current_properties_[kCollAlgoScaleRatioKey] = scaling_ratio; return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleConcatenate(const HloInstruction* hlo) { int64_t flop_per_element = 6; int64_t dim = Cast<HloConcatenateInstruction>(hlo)->concatenate_dimension(); if (dim > 0 && hlo->operand(0)->shape().dimensions()[dim] & 31) { flop_per_element = 400; } current_properties_[kFlopsKey] = flop_per_element * ShapeUtil::ElementsInRecursive(hlo->shape()); return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleReduce(const HloInstruction* hlo) { TF_RETURN_IF_ERROR(HloCostAnalysis::HandleReduce(hlo)); const HloReduceInstruction* reduce = DynCast<HloReduceInstruction>(hlo); auto output_shape = reduce->shape().IsArray() ? reduce->shape() : reduce->shape().tuple_shapes(0); int64_t output_bytes_accessed = 0; ShapeUtil::ForEachLeafShape( reduce->shape(), [&](const Shape& sub_shape, const ShapeIndex& index) { output_bytes_accessed += GetShapeSize(sub_shape); }); current_properties_.set_output_bytes_accessed(output_bytes_accessed); int64_t bytes_accessed = output_bytes_accessed; for (int64_t input_operand_id = 0; input_operand_id < reduce->input_count(); ++input_operand_id) { bytes_accessed += current_properties_.operand_bytes_accessed(input_operand_id); } int64_t output_shape_size = ShapeUtil::ElementsIn(output_shape); for (int64_t init_operand_id = reduce->input_count(); init_operand_id < reduce->operand_count(); ++init_operand_id) { auto init_operand = reduce->operand(init_operand_id); int64_t operand_bytes_accessed = output_shape_size * GetShapeSize(init_operand->shape()); current_properties_.set_operand_bytes_accessed(init_operand_id, operand_bytes_accessed); current_properties_.set_operand_utilization(init_operand_id, output_shape_size); bytes_accessed += operand_bytes_accessed; } current_properties_[kBytesAccessedKey] = bytes_accessed; return absl::OkStatus(); } absl::Status GpuHloCostAnalysis::HandleElementwiseOp( const HloInstruction* hlo) { current_properties_[kFlopsKey] = GetFlopsForElementwiseOp(hlo); return absl::OkStatus(); } std::unique_ptr<HloCostAnalysis> GpuHloCostAnalysis::CreateNestedCostAnalysis() { return std::make_unique<GpuHloCostAnalysis>(options_, hlo_elementwise_op_profile_); } bool GpuHloCostAnalysis::KeyToCopyFromSubcomputation( absl::string_view key) const { return !absl::StartsWith(key, kBytesAccessedKey) && !absl::StartsWith(key, kUtilizationKey) && !absl::StartsWith(key, kIRSizeKey) && !absl::StartsWith(key, kBasicBlockSplitCountKey); } float GpuHloCostAnalysis::IrBasicBlockSplitCount( const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kBasicBlockSplitCountKey, hlo_properties_); } float GpuHloCostAnalysis::IrSize(const HloInstruction& hlo) const { return GetPropertyForHlo(hlo, kIRSizeKey, hlo_properties_); } } }
#include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include <cstdint> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/model/hlo_op_profiles.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { class GpuHloCostAnalysisTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: HloCostAnalysis::Options options_{ShapeSizeBytesFunction(), {}, {}, true}; GpuHloCostAnalysis analysis_{options_}; GpuHloCostAnalysisTest() : HloTestBase() {} }; TEST_F(GpuHloCostAnalysisTest, ConvCustomCall) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = s8[128,12,24,24,4]{4,3,2,1,0} parameter(0) p1 = s8[16,12,5,5,4]{4,3,2,1,0} parameter(1) p2 = f32[16]{0} parameter(2) conv1 = (s8[128,4,24,24,4]{4,3,2,1,0}, u8[0]{0}) custom-call(p0, p1, p2), window={size=5x5 pad=2_2x2_2}, dim_labels=bf01_oi01->bf01, custom_call_target="__cudnn$convBiasActivationForward" ROOT tuple = tuple(conv1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloComputation* comp = module->entry_computation(); const HloInstruction* conv1 = comp->GetInstructionWithName("conv1"); int op0_size = sizeof(int8_t) * 128 * 12 * 24 * 24 * 4; int op1_size = sizeof(int8_t) * 16 * 12 * 5 * 5 * 4; int op2_size = sizeof(float) * 16; int out_size = sizeof(int8_t) * 128 * 4 * 24 * 24 * 4; EXPECT_EQ(analysis_.operand_bytes_accessed(*conv1, 0), op0_size); EXPECT_EQ(analysis_.operand_bytes_accessed(*conv1, 1), op1_size); EXPECT_EQ(analysis_.operand_bytes_accessed(*conv1, 2), op2_size); EXPECT_EQ(analysis_.output_bytes_accessed(*conv1), out_size); EXPECT_EQ(analysis_.bytes_accessed(*conv1), op0_size + op1_size + op2_size + out_size); EXPECT_EQ(analysis_.flop_count(*conv1), 159694848); } TEST_F(GpuHloCostAnalysisTest, ReduceWindowWithOverlapsRepeatedReads) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true add { a0 = f32[] parameter(0) a1 = f32[] parameter(1) ROOT _ = f32[] add(a0, a1) } ENTRY entry { p0 = f32[8,8] parameter(0) c0 = f32[] constant(0) ROOT _ = f32[3,4] reduce-window(p0, c0), window={size=4x5 stride=2x1}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); int n_output_elements = 3 * 4; ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.flop_count(), 3 * n_output_elements * (4 * 5 - 1)); EXPECT_EQ(analysis_.bytes_accessed(), sizeof(float) * (8 * 8 + 1 + n_output_elements)); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), sizeof(float) * n_output_elements * 4 * 5); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 1), sizeof(float) * 1); EXPECT_EQ(analysis_.output_bytes_accessed(*root), sizeof(float) * n_output_elements); } TEST_F(GpuHloCostAnalysisTest, BroadcastWithRepeats) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[] parameter(0) c1 = s8[] constant(0) a1 = s8[] add(p1, c1) b1 = s8[10000] broadcast(a1), dimensions={} b2 = s8[10000] broadcast(c1), dimensions={} ROOT r1 = s8[10000] add(b1, b2) } ENTRY e { p0 = s8[] parameter(0) ROOT r0 = s8[10000] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 10000); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 10000); EXPECT_EQ(analysis_.bytes_accessed(*root), 2 * 10000); EXPECT_EQ(analysis_.bytes_accessed(), 2 * 10000); } TEST_F(GpuHloCostAnalysisTest, WithoutRepeats) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[] parameter(0) a1 = s8[] add(p1, p1) b1 = s8[10000] broadcast(a1), dimensions={} a2 = s8[10000] add(b1, b1) slice1 = s8[8000] slice(a2), slice={[0:8000]} slice2 = s8[8000] slice(a2), slice={[2000:10000]} c = s8[10000] constant({...}) slicec1 = s8[8000] slice(c), slice={[0:8000]} slicec2 = s8[8000] slice(c), slice={[2000:10000]} a3 = s8[8000] add(slice1, slice2) a4 = s8[8000] add(slicec1, slicec2) ROOT a5 = s8[8000] add(a3, a4) } ENTRY e { p0 = s8[] parameter(0) ROOT r0 = s8[8000] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); options_.count_multiple_input_accesses = false; GpuHloCostAnalysis analysis{options_}; ASSERT_IS_OK(module->entry_computation()->Accept(&analysis)); EXPECT_EQ(analysis.output_bytes_accessed(*root), 8000); EXPECT_EQ(analysis.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis.bytes_accessed(*root), 1 + 8000 + 10000); EXPECT_EQ(analysis.bytes_accessed(), 1 + 8000 + 10000); } TEST_F(GpuHloCostAnalysisTest, BroadcastFlops) { absl::string_view hlo_string = R"( HloModule m f { i0 = f32[1024] iota(), iota_dimension=0 m0 = f32[1024] add(i0, i0) s0 = f32[1024] multiply(m0, m0) b0 = f32[1024,1024] broadcast(s0), dimensions={0} ROOT r0 = f32[1024,1024] negate(b0) } ENTRY e { ROOT r = f32[1024,1024] fusion(), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); auto n_elements = 1024 * 1024; EXPECT_EQ(analysis_.output_bytes_accessed(*root), n_elements * 4); EXPECT_EQ(analysis_.bytes_accessed(*root), n_elements * 4); EXPECT_EQ(analysis_.bytes_accessed(), n_elements * 4); EXPECT_EQ(analysis_.flop_count(), n_elements * 3 * 3); EXPECT_EQ(analysis_.IrSize(*root), 5); } TEST_F(GpuHloCostAnalysisTest, Slice) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[100000000] parameter(0) i1 = s8[100000000] iota(), iota_dimension=0 a1 = s8[100000000] add(p1, i1) ROOT r1 = s8[1] slice(a1), slice={[0:1]} } ENTRY e { p0 = s8[100000000] parameter(0) ROOT r0 = s8[1] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis_.bytes_accessed(*root), 2); EXPECT_EQ(analysis_.bytes_accessed(), 2); EXPECT_EQ(analysis_.IrSize(*root), 4); } TEST_F(GpuHloCostAnalysisTest, TwoSlices) { absl::string_view hlo_string = R"( HloModule m f { p1 = s8[100] parameter(0) i1 = s8[100] iota(), iota_dimension=0 a1 = s8[100] add(p1, i1) slice1 = s8[1] slice(a1), slice={[0:1]} slice2 = s8[1] slice(a1), slice={[3:4]} ROOT r = s8[1] add(slice1, slice2) } ENTRY e { p0 = s8[100] parameter(0) ROOT r0 = s8[1] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); const HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 2); EXPECT_EQ(analysis_.bytes_accessed(*root), 3); EXPECT_EQ(analysis_.bytes_accessed(), 3); EXPECT_EQ(analysis_.IrSize(*root), 9); } TEST_F(GpuHloCostAnalysisTest, MultipleTrivialUsers) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[] parameter(0) m0 = s8[] multiply(p0, p0) n0 = s8[] negate(p0) ROOT a0 = s8[] add(m0, n0) } ENTRY e { param0 = s8[] parameter(0) ROOT r0 = s8[] fusion(param0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 1); EXPECT_EQ(analysis_.bytes_accessed(*root), 1 + 1); EXPECT_EQ(analysis_.bytes_accessed(), 1 + 1); EXPECT_EQ(analysis_.IrSize(*root), 4); } TEST_F(GpuHloCostAnalysisTest, MixedUsers) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[10] parameter(0) n0 = s8[10] negate(p0) m0 = s8[10] multiply(n0, n0) a0 = s8[10] add(n0, n0) s0 = s8[5] slice(a0), slice={[0:5]} s1 = s8[2] slice(n0), slice={[4:6]} n1 = s8[2] negate(s1) ROOT c0 = s8[17] concatenate(s0, m0, n1), dimensions={0} } ENTRY e { param0 = s8[10] parameter(0) ROOT r0 = s8[17] fusion(param0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 17); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 17); EXPECT_EQ(analysis_.bytes_accessed(*root), 17 + 17); EXPECT_EQ(analysis_.bytes_accessed(), 17 + 17); EXPECT_EQ(analysis_.IrSize(*root->fused_parameter(0)), 3); EXPECT_EQ(analysis_.IrSize(*root->fused_parameter(0)), analysis_.IrSize(*root->fused_parameter(0)->users()[0])); EXPECT_EQ(analysis_.IrSize(*root), 12); } TEST_F(GpuHloCostAnalysisTest, FractionalUseRoundingUp) { absl::string_view hlo_string = R"( HloModule m add_s8 { lhs = s8[] parameter(0) rhs = s8[] parameter(1) ROOT add = s8[] add(lhs, rhs) } f { p0 = s8[] parameter(0) b0 = s8[10] broadcast(p0), dimensions={} c0 = s8[] constant(0) r0 = s8[] reduce(b0, c0), dimensions={0}, to_apply=add_s8 bitcast0 = s8[1] bitcast(r0) i0 = s8[5] iota(), iota_dimension=0 cat0 = s8[6] concatenate(bitcast0, i0), dimensions={0} p1 = s32[] parameter(1) ROOT s0 = s8[2] dynamic-slice(cat0, p1), dynamic_slice_sizes={2} } ENTRY e { p0 = s8[] parameter(0) p1 = s32[] parameter(1) ROOT r = s8[2] fusion(p0, p1), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 2); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 10); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 1), 4); EXPECT_EQ(analysis_.bytes_accessed(*root), 2 + 10 + 4); EXPECT_EQ(analysis_.bytes_accessed(), 2 + 10 + 4); } TEST_F(GpuHloCostAnalysisTest, LargeConstant) { absl::string_view hlo_string = R"( HloModule m f { p0 = s8[1000] parameter(0) c0 = s8[1000] constant({...}) ROOT a0 = s8[1000] add(p0, c0) } ENTRY e { p0 = s8[1000] parameter(0) ROOT r = s8[1000] fusion(p0), kind=kInput, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloInstruction* root = module->entry_computation()->root_instruction(); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); EXPECT_EQ(analysis_.output_bytes_accessed(*root), 1000); EXPECT_EQ(analysis_.operand_bytes_accessed(*root, 0), 1000); EXPECT_EQ(analysis_.bytes_accessed(*root), 3000); EXPECT_EQ(analysis_.bytes_accessed(), 3000); EXPECT_EQ(analysis_.IrSize(*root), 3); } TEST_F(GpuHloCostAnalysisTest, DynUpdateSliceUsingOperandData) { const char* hlo_fusion_module_str = R"( HloModule m f { to_update = s8[3,1,1,1] parameter(0) update = s8[1,1,1,1] constant(0) a = s32[] constant(0) dus = s8[3,1,1,1] dynamic-update-slice(to_update, update, a, a, a, a) ROOT _ = s8[3,1,1,1] negate(dus) } ENTRY _ { to_update = s8[3,1,1,1] parameter(0) ROOT _ = s8[3,1,1,1] fusion(to_update), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); ASSERT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_EQ(analysis_.operand_bytes_accessed(*fusion, 0), 3 - 1); EXPECT_EQ(analysis_.output_bytes_accessed(*fusion), 3); } TEST_F(GpuHloCostAnalysisTest, DynUpdateSliceNotUsingOperandData) { const char* hlo_fusion_module_str = R"( HloModule m f { to_update = s8[3,1,1,1] parameter(0) update = s8[1,1,1,1] constant(0) a = s32[] constant(0) ROOT dus = s8[3,1,1,1] dynamic-update-slice(to_update, update, a, a, a, a) } ENTRY _ { to_update = s8[3,1,1,1] parameter(0) ROOT _ = s8[3,1,1,1] fusion(to_update), kind=kLoop, calls=f } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); ASSERT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_EQ(analysis_.operand_bytes_accessed(*fusion, 0), 0); EXPECT_EQ(analysis_.output_bytes_accessed(*fusion), 1); } TEST_F(GpuHloCostAnalysisTest, CommonElementwiseUseTwoParameters) { const char* hlo_fusion_module_str = R"( HloModule m add { p0 = s8[] parameter(0) p1 = s8[] parameter(1) ROOT _ = s8[] add(p0, p1) } f { p0 = s8[10] parameter(0) p1 = s8[10] parameter(1) a = s8[10] add(p0, p1) c0 = s8[] constant(0) r0 = s8[] reduce(a, c0), dimensions={0}, to_apply=add c1 = s8[] constant(100) r1 = s8[] reduce(a, c1), dimensions={0}, to_apply=add ROOT _ = s8[] add(r0, r1) } ENTRY _ { p0 = s8[10] parameter(0) p1 = s8[10] parameter(1) ROOT _ = s8[] fusion(p0, p1), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(analysis_.CommonElementwiseUtilization(fusion->fused_parameter(0), fusion->fused_parameter(1)), 2.f); } TEST_F(GpuHloCostAnalysisTest, CommonElementwiseUseParameterAndRoot) { const char* hlo_fusion_module_str = R"( HloModule m f { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) p1b = s8[10] broadcast(p1) a = s8[10] add(p0, p1b) ROOT _ = s8[10] negate(a) } ENTRY _ { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) ROOT _ = s8[10] fusion(p0, p1), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(0), fusion->fused_expression_root()), 1.f); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(1), fusion->fused_expression_root()), 0.f); } TEST_F(GpuHloCostAnalysisTest, CommonElementwiseUseParameterAndRootMultiOutputFusion) { const char* hlo_fusion_module_str = R"( HloModule m f { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) p1b = s8[10] broadcast(p1) a = s8[10] add(p0, p1b) neg = s8[10] negate(a) ROOT _ = (s8[10], s8[10]) tuple(a, neg) } ENTRY _ { p0 = s8[10] parameter(0) p1 = s8[] parameter(1) ROOT _ = (s8[10], s8[10]) fusion(p0, p1), kind=kLoop, calls=f })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_fusion_module_str)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); HloInstruction* fusion = module->entry_computation()->root_instruction(); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(0), fusion->fused_expression_root()), 1.f); EXPECT_EQ(analysis_.CommonElementwiseUtilization( fusion->fused_parameter(1), fusion->fused_expression_root()), 0.f); } TEST_F(GpuHloCostAnalysisTest, Reduce) { absl::string_view hlo_string = R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add.0 = f32[] add(param_0, param_1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(param_0.3, constant), dimensions={1}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); const HloInstruction* reduce = module->entry_computation()->root_instruction(); int64_t input_bytes_accessed = 4 * 32 * 40; int64_t init_bytes_accessed = 4 * 32; int64_t output_bytes_accessed = 4 * 32; EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 0), input_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 1), init_bytes_accessed); EXPECT_EQ(analysis_.output_bytes_accessed(*reduce), output_bytes_accessed); EXPECT_EQ(analysis_.bytes_accessed(*reduce), input_bytes_accessed + init_bytes_accessed + output_bytes_accessed); EXPECT_EQ(analysis_.flop_count(*reduce), 32 * 39 * 3); } TEST_F(GpuHloCostAnalysisTest, VariadicReduce) { absl::string_view hlo_string = R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) param_2 = f32[] parameter(2) param_3 = f32[] parameter(3) add.0 = f32[] add(param_0, param_2) add.1 = f32[] add(param_1, param_3) ROOT t = (f32[], f32[]) tuple(add.0, add.1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) param_1.3 = f32[32,40]{1,0} parameter(1) param_2.2 = f32[] parameter(2) constant = f32[] constant(0) ROOT reduce = (f32[32]{0}, f32[32]{0}) reduce(param_0.3, param_1.3, param_2.2, constant), dimensions={1}, to_apply=add } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_)); const HloInstruction* reduce = module->entry_computation()->root_instruction(); int64_t input_bytes_accessed = 4 * 32 * 40; int64_t init_bytes_accessed = 4 * 32; int64_t output_bytes_accessed = 2 * 4 * 32; EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 0), input_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 1), input_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 2), init_bytes_accessed); EXPECT_EQ(analysis_.operand_bytes_accessed(*reduce, 3), init_bytes_accessed); EXPECT_EQ(analysis_.output_bytes_accessed(*reduce), output_bytes_accessed); EXPECT_EQ(analysis_.bytes_accessed(*reduce), 2 * input_bytes_accessed + 2 * init_bytes_accessed + output_bytes_accessed); EXPECT_EQ(analysis_.flop_count(*reduce), 32 * 39 * 6); } TEST_F(GpuHloCostAnalysisTest, CustomOpProfileIsUsed) { absl::string_view hlo_string = R"( HloModule m ENTRY entry_computation { param_0 = f32[10] parameter(0) param_1 = f32[10] parameter(1) param_2 = f32[10] parameter(2) param_3 = f32[10] parameter(3) tanh = f32[10] tanh(param_0) mul = f32[10] multiply(tanh, param_1) ROOT clamp = f32[10] clamp(mul, param_2, param_3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloOpProfiles::HloOpProfile hlo_op_profile; const int kF32ClampFlopsPerElement = 7; const int kF32MultiplyFlopsPerElement = 11; const int kF32TanhFlopsPerElement = 13; const int kNumElements = 10; hlo_op_profile[{HloOpcode::kClamp, PrimitiveType::F32}] = kF32ClampFlopsPerElement; hlo_op_profile[{HloOpcode::kMultiply, PrimitiveType::F32}] = kF32MultiplyFlopsPerElement; hlo_op_profile[{HloOpcode::kTanh, PrimitiveType::F32}] = kF32TanhFlopsPerElement; GpuHloCostAnalysis analysis(options_, hlo_op_profile); ASSERT_IS_OK(module->entry_computation()->Accept(&analysis)); const HloInstruction* clamp = module->entry_computation()->root_instruction(); const HloInstruction* mul = clamp->operand(0); const HloInstruction* tanh = mul->operand(0); EXPECT_EQ(analysis.flop_count(*clamp), kF32ClampFlopsPerElement * kNumElements); EXPECT_EQ(analysis.flop_count(*mul), kF32MultiplyFlopsPerElement * kNumElements); EXPECT_EQ(analysis.flop_count(*tanh), kF32TanhFlopsPerElement * kNumElements); }; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/gpu_hlo_cost_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/gpu_hlo_cost_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
91deb376-7ef7-42c4-bc88-4a85799d766c
cpp
google/cel-cpp
reference
common/reference.cc
common/reference_test.cc
#include "common/reference.h" #include "absl/base/no_destructor.h" namespace cel { const VariableReference& VariableReference::default_instance() { static const absl::NoDestructor<VariableReference> instance; return *instance; } const FunctionReference& FunctionReference::default_instance() { static const absl::NoDestructor<FunctionReference> instance; return *instance; } }
#include "common/reference.h" #include <cstdint> #include <string> #include <vector> #include "common/constant.h" #include "internal/testing.h" namespace cel { namespace { using ::testing::_; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::VariantWith; TEST(VariableReference, Value) { VariableReference variable_reference; EXPECT_FALSE(variable_reference.has_value()); EXPECT_EQ(variable_reference.value(), Constant{}); Constant value; value.set_bool_value(true); variable_reference.set_value(value); EXPECT_TRUE(variable_reference.has_value()); EXPECT_EQ(variable_reference.value(), value); EXPECT_EQ(variable_reference.release_value(), value); EXPECT_EQ(variable_reference.value(), Constant{}); } TEST(VariableReference, Equality) { VariableReference variable_reference; EXPECT_EQ(variable_reference, VariableReference{}); variable_reference.mutable_value().set_bool_value(true); EXPECT_NE(variable_reference, VariableReference{}); } TEST(FunctionReference, Overloads) { FunctionReference function_reference; EXPECT_THAT(function_reference.overloads(), IsEmpty()); function_reference.mutable_overloads().reserve(2); function_reference.mutable_overloads().push_back("foo"); function_reference.mutable_overloads().push_back("bar"); EXPECT_THAT(function_reference.release_overloads(), ElementsAre("foo", "bar")); EXPECT_THAT(function_reference.overloads(), IsEmpty()); } TEST(FunctionReference, Equality) { FunctionReference function_reference; EXPECT_EQ(function_reference, FunctionReference{}); function_reference.mutable_overloads().push_back("foo"); EXPECT_NE(function_reference, FunctionReference{}); } TEST(Reference, Name) { Reference reference; EXPECT_THAT(reference.name(), IsEmpty()); reference.set_name("foo"); EXPECT_EQ(reference.name(), "foo"); EXPECT_EQ(reference.release_name(), "foo"); EXPECT_THAT(reference.name(), IsEmpty()); } TEST(Reference, Variable) { Reference reference; EXPECT_THAT(reference.kind(), VariantWith<VariableReference>(_)); EXPECT_TRUE(reference.has_variable()); EXPECT_THAT(reference.release_variable(), Eq(VariableReference{})); EXPECT_TRUE(reference.has_variable()); } TEST(Reference, Function) { Reference reference; EXPECT_FALSE(reference.has_function()); EXPECT_THAT(reference.function(), Eq(FunctionReference{})); reference.mutable_function(); EXPECT_TRUE(reference.has_function()); EXPECT_THAT(reference.variable(), Eq(VariableReference{})); EXPECT_THAT(reference.kind(), VariantWith<FunctionReference>(_)); EXPECT_THAT(reference.release_function(), Eq(FunctionReference{})); EXPECT_FALSE(reference.has_function()); } TEST(Reference, Equality) { EXPECT_EQ(MakeVariableReference("foo"), MakeVariableReference("foo")); EXPECT_NE(MakeVariableReference("foo"), MakeConstantVariableReference("foo", Constant(int64_t{1}))); EXPECT_EQ( MakeFunctionReference("foo", std::vector<std::string>{"bar", "baz"}), MakeFunctionReference("foo", std::vector<std::string>{"bar", "baz"})); EXPECT_NE( MakeFunctionReference("foo", std::vector<std::string>{"bar", "baz"}), MakeFunctionReference("foo", std::vector<std::string>{"bar"})); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/reference.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/reference_test.cc
4552db5798fb0853b131b783d8875794334fae7f
32138b08-241d-42a6-8f88-50a041a5c0d0
cpp
tensorflow/tensorflow
xplane_to_tf_data_stats
tensorflow/core/profiler/convert/xplane_to_tf_data_stats.cc
tensorflow/core/profiler/convert/xplane_to_tf_data_stats_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_tf_data_stats.h" #include <algorithm> #include <optional> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/group_events.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/profiler/protobuf/tf_data_stats.pb.h" #include "tensorflow/core/profiler/utils/html_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { const int64_t kSlowCallThresholdPs = 50 * 1000000; namespace { bool IsRootIteratorEvent(const XEventVisitor& iterator_event) { std::vector<absl::string_view> split_result = absl::StrSplit(iterator_event.Name(), "::"); return split_result.size() == 2; } bool IsAsyncIterator(absl::string_view iterator_event_name) { static auto* kAsyncIterators = new absl::flat_hash_set<absl::string_view>( {"Prefetch", "ParallelInterleave", "ParallelMap", "ParseExample", "MapAndBatch", "DataService", "LegacyParallelInterleave", "ParallelBatch"}); return kAsyncIterators->contains(iterator_event_name); } void SetIteratorMetadata(int64_t id, const XEventVisitor& event, IteratorMetadata* metadata) { metadata->set_id(id); auto parent_id_stat = event.GetStat(StatType::kParentId); if (parent_id_stat.has_value()) { metadata->set_parent_id(parent_id_stat->IntValue()); } metadata->set_name(tsl::profiler::IteratorName(event.Name())); metadata->set_long_name(event.Name().data(), event.Name().size()); metadata->set_is_async(IsAsyncIterator(metadata->name())); } std::optional<int64_t> FindDeviceInputPipeline(const XEventVisitor& event) { if (event.Type() == HostEventType::kDeviceInputPipelineSecondIterator) { auto parent_id_stat = event.GetStat(StatType::kParentId); if (parent_id_stat.has_value()) return parent_id_stat->IntValue(); } return std::nullopt; } void ProcessEventForest( const tsl::profiler::EventForest& event_forest, absl::flat_hash_set<int64_t>* device_input_pipeline_ids, absl::flat_hash_map<int64_t, std::vector<const tsl::profiler::EventNode*>>* root_iterator_event_map, TfDataStats* tf_data_stats) { const tsl::profiler::EventNodeMap& event_node_map = event_forest.GetEventNodeMap(); auto* iterator_event_list = gtl::FindOrNull(event_node_map, HostEventType::kIterator); if (!iterator_event_list) return; for (const tsl::profiler::EventNode& iterator_event : *iterator_event_list) { const XEventVisitor& iterator_event_visitor = iterator_event.GetEventVisitor(); auto iterator_id_stat = iterator_event_visitor.GetStat(StatType::kStepId); if (!iterator_id_stat.has_value()) continue; int64_t iterator_id = iterator_id_stat->IntValue(); auto result = tf_data_stats->mutable_iterator_metadata()->insert( {iterator_id, IteratorMetadata()}); IteratorMetadata& metadata = result.first->second; if (result.second) { SetIteratorMetadata(iterator_id, iterator_event_visitor, &metadata); } if (IsRootIteratorEvent(iterator_event_visitor)) { (*root_iterator_event_map)[iterator_id].push_back(&iterator_event); } } auto* device_input_pipeline_second_iterator_events = gtl::FindOrNull( event_node_map, HostEventType::kDeviceInputPipelineSecondIterator); if (!device_input_pipeline_second_iterator_events) return; for (const tsl::profiler::EventNode& iterator_event : *device_input_pipeline_second_iterator_events) { const XEventVisitor& iterator_event_visitor = iterator_event.GetEventVisitor(); auto iterator_id_stat = iterator_event_visitor.GetStat(StatType::kStepId); if (!iterator_id_stat.has_value()) continue; int64_t iterator_id = iterator_id_stat->IntValue(); auto result = tf_data_stats->mutable_iterator_metadata()->insert( {iterator_id, IteratorMetadata()}); IteratorMetadata& metadata = result.first->second; if (result.second) { SetIteratorMetadata(iterator_id, iterator_event_visitor, &metadata); std::optional<int64_t> device_input_pipeline_id = FindDeviceInputPipeline(iterator_event_visitor); if (device_input_pipeline_id.has_value()) { device_input_pipeline_ids->insert(*device_input_pipeline_id); } } } } void SetInputPipelineMetadata(int64_t id, int64_t name_id, bool is_device_input_pipeline, InputPipelineMetadata* metadata) { constexpr absl::string_view kHostInputPipelinePrefix = "Host:"; constexpr absl::string_view kDeviceInputPipelinePrefix = "Device:"; metadata->set_id(id); if (is_device_input_pipeline) { metadata->set_type(InputPipelineMetadata::DEVICE); metadata->set_name(absl::StrCat(kDeviceInputPipelinePrefix, name_id)); } else { metadata->set_type(InputPipelineMetadata::HOST); metadata->set_name(absl::StrCat(kHostInputPipelinePrefix, name_id)); } } void ProcessIteratorEvent(const tsl::profiler::EventNode& iterator_event, InputPipelineStat* input_pipeline_stat, bool is_blocking, int level = 0) { if (level > 100) return; const XEventVisitor& visitor = iterator_event.GetEventVisitor(); auto iterator_id_stat = visitor.GetStat(StatType::kStepId); if (!iterator_id_stat.has_value()) return; int64_t iterator_id = iterator_id_stat->IntValue(); auto result = input_pipeline_stat->mutable_iterator_stats()->insert( {iterator_id, IteratorStat()}); IteratorStat& iterator_stat = result.first->second; if (result.second) { iterator_stat.set_id(iterator_id); iterator_stat.set_start_time_ps(visitor.TimestampPs()); } iterator_stat.set_duration_ps(iterator_stat.duration_ps() + visitor.DurationPs()); int64_t self_time_ps = visitor.DurationPs(); tsl::profiler::Timespan self_time_span = visitor.GetTimespan(); for (const tsl::profiler::EventNode* child : iterator_event.GetChildren()) { const XEventVisitor& child_visitor = child->GetEventVisitor(); if (tsl::profiler::ParseTfOpFullname(child_visitor.Name()).category == tsl::profiler::Category::kTfData) { int64_t overlap_duration_ps = self_time_span.OverlappedDurationPs(child_visitor.GetTimespan()); ProcessIteratorEvent(*child, input_pipeline_stat, is_blocking && overlap_duration_ps, level + 1); self_time_ps -= overlap_duration_ps; } } iterator_stat.set_self_time_ps(iterator_stat.self_time_ps() + self_time_ps); iterator_stat.set_is_blocking(iterator_stat.is_blocking() || is_blocking); iterator_stat.set_num_calls(iterator_stat.num_calls() + 1); } void SetBottleneckIteratorId(InputPipelineStat* input_pipeline_stat) { int64_t bottleneck_iterator_id = 0; int64_t max_self_time = 0; for (const auto& pair : input_pipeline_stat->iterator_stats()) { const auto& id = pair.first; const auto& iterator_stat = pair.second; if (iterator_stat.is_blocking() && iterator_stat.self_time_ps() > max_self_time) { bottleneck_iterator_id = id; max_self_time = iterator_stat.self_time_ps(); } } input_pipeline_stat->set_bottleneck_iterator_id(bottleneck_iterator_id); input_pipeline_stat->set_bottleneck_iterator_latency_ps(max_self_time); } void ProcessInputPipelines( const absl::flat_hash_set<int64_t>& device_input_pipeline_ids, absl::flat_hash_map<int64_t, std::vector<const tsl::profiler::EventNode*>>* root_iterator_event_map, TfDataStats* tf_data_stats) { auto* input_pipelines = tf_data_stats->mutable_input_pipelines(); int64_t num_host_input_pipelines = 0; int64_t num_device_input_pipelines = 0; for (auto& id_and_events : *root_iterator_event_map) { auto& root_iterator_id = id_and_events.first; auto& root_iterator_events = id_and_events.second; absl::c_sort(root_iterator_events, [](const tsl::profiler::EventNode* lhs, const tsl::profiler::EventNode* rhs) { return lhs->GetEventVisitor().DurationPs() > rhs->GetEventVisitor().DurationPs(); }); auto result = input_pipelines->insert({root_iterator_id, InputPipelineStats()}); InputPipelineStats& input_pipeline_stats = result.first->second; InputPipelineMetadata* metadata = input_pipeline_stats.mutable_metadata(); if (result.second) { bool is_device_input_pipeline = device_input_pipeline_ids.contains(root_iterator_id); int64_t name_id = is_device_input_pipeline ? num_device_input_pipelines++ : num_host_input_pipelines++; SetInputPipelineMetadata(root_iterator_id, name_id, is_device_input_pipeline, metadata); } int64_t sum_latency_ps = 0; int64_t min_latency_ps = INT64_MAX; int64_t max_latency_ps = 0; int64_t num_slow_calls = 0; for (const tsl::profiler::EventNode* root_iterator_event : root_iterator_events) { InputPipelineStat* stat = input_pipeline_stats.add_stats(); ProcessIteratorEvent(*root_iterator_event, stat, true); SetBottleneckIteratorId(stat); int64_t latency_ps = root_iterator_event->GetEventVisitor().DurationPs(); sum_latency_ps += latency_ps; min_latency_ps = std::min(min_latency_ps, latency_ps); max_latency_ps = std::max(max_latency_ps, latency_ps); if (latency_ps > kSlowCallThresholdPs) num_slow_calls++; } input_pipeline_stats.set_avg_latency_ps(sum_latency_ps / root_iterator_events.size()); input_pipeline_stats.set_min_latency_ps(min_latency_ps); input_pipeline_stats.set_max_latency_ps(max_latency_ps); input_pipeline_stats.set_num_slow_calls(num_slow_calls); } } void SetBottleneckAnalysis(CombinedTfDataStats* combined_tf_data_stats) { struct InputPipeline { InputPipeline(absl::string_view host_name, absl::string_view input_pipeline_name, int64_t max_latency_ps, absl::string_view iterator_name, absl::string_view iterator_long_name, int64_t iterator_latency_ps) : host_name(host_name), input_pipeline_name(input_pipeline_name), max_latency_ps(max_latency_ps), iterator_name(iterator_name), iterator_long_name(iterator_long_name), iterator_latency_ps(iterator_latency_ps) {} absl::string_view host_name; absl::string_view input_pipeline_name; int64_t max_latency_ps; absl::string_view iterator_name; absl::string_view iterator_long_name; int64_t iterator_latency_ps; bool operator<(const InputPipeline& rhs) const { return max_latency_ps > rhs.max_latency_ps; } }; std::vector<InputPipeline> slow_input_pipelines; for (const auto& host_name_and_tf_data_stats : combined_tf_data_stats->tf_data_stats()) { absl::string_view host_name = host_name_and_tf_data_stats.first; const TfDataStats& tf_data_stats = host_name_and_tf_data_stats.second; for (const auto& id_and_stats : tf_data_stats.input_pipelines()) { const InputPipelineStats& input_pipeline_stats = id_and_stats.second; if (input_pipeline_stats.metadata().type() == InputPipelineMetadata::DEVICE) { continue; } const InputPipelineStat& input_pipeline_stat = input_pipeline_stats.stats(0); const IteratorMetadata& metadata = tf_data_stats.iterator_metadata().at( input_pipeline_stat.bottleneck_iterator_id()); slow_input_pipelines.emplace_back( host_name, input_pipeline_stats.metadata().name(), input_pipeline_stats.max_latency_ps(), metadata.name(), metadata.long_name(), input_pipeline_stat.bottleneck_iterator_latency_ps()); } } std::sort(slow_input_pipelines.begin(), slow_input_pipelines.end()); for (const auto& input_pipeline : slow_input_pipelines) { TfDataBottleneckAnalysis* bottleneck_analysis = combined_tf_data_stats->add_bottleneck_analysis(); bottleneck_analysis->set_host(input_pipeline.host_name.data(), input_pipeline.host_name.size()); bottleneck_analysis->set_input_pipeline( input_pipeline.input_pipeline_name.data(), input_pipeline.input_pipeline_name.size()); bottleneck_analysis->set_max_latency_ps(input_pipeline.max_latency_ps); bottleneck_analysis->set_iterator_name(input_pipeline.iterator_name.data(), input_pipeline.iterator_name.size()); bottleneck_analysis->set_iterator_long_name( input_pipeline.iterator_long_name.data(), input_pipeline.iterator_long_name.size()); bottleneck_analysis->set_iterator_latency_ps( input_pipeline.iterator_latency_ps); } } std::string GetSuggestion(BottleneckType type) { constexpr absl::string_view kPlaybookLink = "https: constexpr absl::string_view kPlaybookSourceDatasetLink = "https: "data_performance_analysis#source_datasets"; constexpr absl::string_view kPlaybookCpuUtilizationLink = "https: "data_performance_analysis#3_are_you_reaching_high_cpu_utilization"; constexpr absl::string_view kPlaybookTransformationLink = "https: "data_performance_analysis#transformation_datasets"; constexpr absl::string_view kTfGuideParallelDataExtractionLink = "https: "data_performance#parallelizing_data_extraction"; constexpr absl::string_view kTfGuideParallelTransformationLink = "https: "data_performance#parallelizing_data_transformation"; constexpr absl::string_view kTfGuideCacheLink = "https: constexpr absl::string_view kTfDataServiceLink = "https: "service?version=nightly"; switch (type) { case BottleneckType::kSlowSource: return absl::StrFormat( "1. Check the locality of a host and input data. Ideally, they " "should be in the same cell (or very close, like the same " "region).<br/>" "2. Parallelize reading from this dataset source. See %s and %s for " "more details.<br/>", AnchorElement(kPlaybookSourceDatasetLink, "here"), AnchorElement(kTfGuideParallelDataExtractionLink, "here")); case BottleneckType::kSlowDataService: return absl::StrFormat( "1. Fetching data from tf.data service took a while. Profile the " "tf.data service worker to analyze the issue further.<br/>" "2. See %s for more details on tf.data service.<br/>" "3. See %s for other suggestions.", AnchorElement(kTfDataServiceLink, "this"), AnchorElement(kPlaybookLink, "this")); case BottleneckType::kSlowRemoteSource: return absl::StrFormat( "1. The remote data source is slow. Profile its host to analyze the " "issue further.<br/>" "2. See %s for other suggestions.", AnchorElement(kPlaybookLink, "this")); case BottleneckType::kSlowTransformationWithParallelVersion: return absl::StrFormat( "1. Parallelize this transformation by setting " "<code>num_parallel_calls=tf.data.experimental.AUTOTUNE</code>. See " "%s for more details.<br/>" "2. Consider adding <code>cache</code> after this transformation if " "your data fits into memory and it is appropriate (e.g., there is no " "randomness in upstream transformations like <code>shuffle</code>). " "See %s for more details.<br/>" "3. Find more resources %s.", AnchorElement(kTfGuideParallelTransformationLink, "this"), AnchorElement(kTfGuideCacheLink, "this"), AnchorElement(kPlaybookTransformationLink, "here")); case BottleneckType::kSlowTransformationWithoutParallelVersion: return absl::StrFormat( "1. This transformation is inherently sequential. Add outer " "parallelism by running multiple copies of the input pipeline over " "sharded inputs and combining the results. See %s for more " "details.<br/>" "2. Consider adding <code>cache</code> after this transformation if " "your data fits into memory and it is appropriate (e.g., there is no " "randomness in upstream transformations like <code>shuffle</code>). " "See %s for more details.<br/>" "3. Find more resources %s.", AnchorElement(kPlaybookTransformationLink, "this"), AnchorElement(kTfGuideCacheLink, "this"), AnchorElement(kPlaybookCpuUtilizationLink, "here")); default: return absl::StrFormat("See %s for suggestions.", AnchorElement(kPlaybookLink, "this")); } } void SetSuggestion(CombinedTfDataStats* combined_tf_data_stats) { for (TfDataBottleneckAnalysis& bottleneck_analysis : *combined_tf_data_stats->mutable_bottleneck_analysis()) { bottleneck_analysis.set_suggestion( GetSuggestion(GetBottleneckType(bottleneck_analysis.iterator_name()))); } } void SetSummary(CombinedTfDataStats* combined_tf_data_stats) { int64_t max_latency_ps = 0; if (combined_tf_data_stats->bottleneck_analysis_size()) { max_latency_ps = combined_tf_data_stats->bottleneck_analysis().at(0).max_latency_ps(); } if (max_latency_ps > kSlowCallThresholdPs) { combined_tf_data_stats->set_is_input_bound(true); combined_tf_data_stats->set_summary( "Your profile has a tf.data input pipeline slower than 50 us. For each " "slow input pipeline, below shows a bottleneck in the input pipeline " "and a suggestion on how to fix it."); } else if (max_latency_ps > 0) { combined_tf_data_stats->set_is_input_bound(false); combined_tf_data_stats->set_summary( "Your profile does not have any tf.data input pipeline slower than 50 " "us. Your job could be still input bound if this profile didn't " "capture all workers."); } else { combined_tf_data_stats->set_is_input_bound(false); combined_tf_data_stats->set_summary( "No tf.data activity captured in your profile. If your job uses " "tf.data, try to capture a longer profile."); } } } BottleneckType GetBottleneckType(absl::string_view bottleneck_iterator_name) { static auto* kBottleneckTypeMap = new absl::flat_hash_map<absl::string_view, BottleneckType>( { {"TFRecord", BottleneckType::kSlowSource}, {"SSTable", BottleneckType::kSlowSource}, {"RecordIO", BottleneckType::kSlowSource}, {"Spanner", BottleneckType::kSlowSource}, {"TFColumn", BottleneckType::kSlowSource}, {"SleepwalkRemoteDataset", BottleneckType::kSlowSource}, {"TextLine", BottleneckType::kSlowSource}, {"StitchedTimelineDataset", BottleneckType::kSlowSource}, {"DateKeyDataset", BottleneckType::kSlowSource}, {"CapacitorProto", BottleneckType::kSlowSource}, {"LMDB", BottleneckType::kSlowSource}, {"ExternalDataset", BottleneckType::kSlowSource}, {"PearModel", BottleneckType::kSlowSource}, {"FixedLengthRecordV2", BottleneckType::kSlowSource}, {"FromTensor", BottleneckType::kSlowSource}, {"TensorSlice", BottleneckType::kSlowSource}, {"Generator", BottleneckType::kSlowSource}, {"SyntheticDatasetOp", BottleneckType::kSlowSource}, {"DataService", BottleneckType::kSlowDataService}, {"GuzzlerDataGuzzlerRemoteDataset", BottleneckType::kSlowRemoteSource}, {"ReverbDataset", BottleneckType::kSlowRemoteSource}, {"DatasetSampleGame", BottleneckType::kSlowRemoteSource}, {"Courier", BottleneckType::kSlowRemoteSource}, {"ReverbEpisodeDataset", BottleneckType::kSlowRemoteSource}, {"Map", BottleneckType::kSlowTransformationWithParallelVersion}, {"Interleave", BottleneckType::kSlowTransformationWithParallelVersion}, {"Filter", BottleneckType::kSlowTransformationWithoutParallelVersion}, {"Batch", BottleneckType::kSlowTransformationWithoutParallelVersion}, {"Unbatch", BottleneckType::kSlowTransformationWithoutParallelVersion}}); if (auto type = gtl::FindOrNull(*kBottleneckTypeMap, bottleneck_iterator_name)) { return *type; } return BottleneckType::kOther; } void CombinedTfDataStatsBuilder::Add(absl::string_view host_name, XPlane* host_plane) { TfDataStats& tf_data_stats = (*combined_tf_data_stats_ ->mutable_tf_data_stats())[std::string(host_name)]; tsl::profiler::EventForest event_forest; event_forest.AddPlanes(tsl::profiler::CreateTfXPlaneVisitor, {host_plane}); event_forest.ConnectEvents(); event_forest.ConnectTfDataEvents(); absl::flat_hash_set<int64_t> device_input_pipeline_ids; absl::flat_hash_map<int64_t, std::vector<const tsl::profiler::EventNode*>> root_iterator_event_map; ProcessEventForest(event_forest, &device_input_pipeline_ids, &root_iterator_event_map, &tf_data_stats); ProcessInputPipelines(device_input_pipeline_ids, &root_iterator_event_map, &tf_data_stats); } void CombinedTfDataStatsBuilder::Finalize() { SetBottleneckAnalysis(combined_tf_data_stats_); if (generate_suggestion_) SetSuggestion(combined_tf_data_stats_); SetSummary(combined_tf_data_stats_); } } }
#include "tensorflow/core/profiler/convert/xplane_to_tf_data_stats.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/protobuf/tf_data_stats.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { using ::testing::EqualsProto; TEST(XPlaneToTfDataStatsTest, HostInputPipeline) { constexpr int64_t kPrefetchIteratorId = 123; constexpr int64_t kRangeIteratorId = 456; constexpr int64_t kFirstElementId = 100; constexpr int64_t kSecondElementId = 200; XPlane host_plane; XPlaneBuilder host_plane_builder(&host_plane); host_plane_builder.ReserveLines(2); auto consumer_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 0, 100000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kPrefetchConsume, 80000000, 20000000, {{StatType::kElementId, kFirstElementId}}); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 200000000, 20000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kPrefetchConsume, 210000000, 10000000, {{StatType::kElementId, kSecondElementId}}); auto producer_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kPrefetchProduce, 0, 80000000, {{StatType::kElementId, kFirstElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::Prefetch::Range", 0, 80000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kPrefetchProduce, 100000000, 80000000, {{StatType::kElementId, kSecondElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::Prefetch::Range", 100000000, 80000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kPrefetchIteratorId}}); CombinedTfDataStats combined_tf_data_stats; CombinedTfDataStatsBuilder builder(&combined_tf_data_stats); builder.Add("host1", &host_plane); builder.Finalize(); EXPECT_THAT( combined_tf_data_stats, EqualsProto(R"pb( bottleneck_analysis: { host: "host1" input_pipeline: "Host:0" max_latency_ps: 100000000 iterator_name: "Range" iterator_long_name: "Iterator::Prefetch::Range" iterator_latency_ps: 80000000 suggestion: "See <a href=\"https: } tf_data_stats: { key: "host1" value: { iterator_metadata: { key: 123, value: { id: 123 name: "Prefetch" long_name: "Iterator::Prefetch" is_async: true } } iterator_metadata: { key: 456, value: { id: 456 parent_id: 123 name: "Range" long_name: "Iterator::Prefetch::Range" is_async: false } } input_pipelines { key: 123, value: { metadata { id: 123 type: HOST name: "Host:0" } avg_latency_ps: 60000000 min_latency_ps: 20000000 max_latency_ps: 100000000 num_slow_calls: 1 stats { bottleneck_iterator_id: 456 bottleneck_iterator_latency_ps: 80000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 0 duration_ps: 100000000 self_time_ps: 20000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 0 duration_ps: 80000000 self_time_ps: 80000000 is_blocking: true num_calls: 1 } } } stats { bottleneck_iterator_id: 123 bottleneck_iterator_latency_ps: 20000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 200000000 duration_ps: 20000000 self_time_ps: 20000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 100000000 duration_ps: 80000000 self_time_ps: 80000000 is_blocking: false num_calls: 1 } } } } } } } is_input_bound: true summary: "Your profile has a tf.data input pipeline slower than 50 us. For each slow input pipeline, below shows a bottleneck in the input pipeline and a suggestion on how to fix it." )pb")); } TEST(XPlaneToTfDataStatsTest, DeviceInputPipeline) { constexpr int64_t kPrefetchIteratorId = 123; constexpr int64_t kRangeIteratorId = 456; constexpr int64_t kElementId = 100; XPlane host_plane; XPlaneBuilder host_plane_builder(&host_plane); host_plane_builder.ReserveLines(2); auto consumer_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 0, 30000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::Prefetch", 100000000, 100000000, {{StatType::kStepId, kPrefetchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kPrefetchConsume, 180000000, 20000000, {{StatType::kElementId, kElementId}}); auto producer_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kPrefetchProduce, 100000000, 80000000, {{StatType::kElementId, kElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::Prefetch::Generator", 100000000, 80000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kPrefetchIteratorId}}); CombinedTfDataStats combined_tf_data_stats; CombinedTfDataStatsBuilder builder(&combined_tf_data_stats); builder.Add("host1", &host_plane); builder.Finalize(); EXPECT_THAT( combined_tf_data_stats, EqualsProto(R"pb( tf_data_stats: { key: "host1" value: { iterator_metadata: { key: 123, value: { id: 123 name: "Prefetch" long_name: "Iterator::Prefetch" is_async: true } } iterator_metadata: { key: 456, value: { id: 456 parent_id: 123 name: "Generator" long_name: "Iterator::Prefetch::Generator" is_async: false } } input_pipelines { key: 123, value: { metadata { id: 123 type: DEVICE name: "Device:0" } avg_latency_ps: 65000000 min_latency_ps: 30000000 max_latency_ps: 100000000 num_slow_calls: 1 stats { bottleneck_iterator_id: 456 bottleneck_iterator_latency_ps: 80000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 100000000 duration_ps: 100000000 self_time_ps: 20000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 100000000 duration_ps: 80000000 self_time_ps: 80000000 is_blocking: true num_calls: 1 } } } stats { bottleneck_iterator_id: 123 bottleneck_iterator_latency_ps: 30000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 0 duration_ps: 30000000 self_time_ps: 30000000 is_blocking: true num_calls: 1 } } } } } } } summary: "No tf.data activity captured in your profile. If your job uses tf.data, try to capture a longer profile." )pb")); } TEST(XPlaneToTfDataStatsTest, MapAndBatch) { constexpr int64_t kMapAndBatchIteratorId = 123; constexpr int64_t kRangeIteratorId = 456; constexpr int64_t kElementId = 100; XPlane host_plane; XPlaneBuilder host_plane_builder(&host_plane); host_plane_builder.ReserveLines(2); XLineBuilder consumer_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &consumer_thread, "Iterator::MapAndBatch", 0, 100000000, {{StatType::kStepId, kMapAndBatchIteratorId}}); CreateXEvent(&host_plane_builder, &consumer_thread, HostEventType::kMapAndBatchConsume, 80000000, 20000000, {{StatType::kElementId, kElementId}}); XLineBuilder producer_thread = host_plane_builder.GetOrCreateLine(1); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kMapAndBatchProduce, 0, 30000000, {{StatType::kElementId, kElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::MapAndBatch::Range", 0, 30000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kMapAndBatchIteratorId}}); CreateXEvent(&host_plane_builder, &producer_thread, HostEventType::kMapAndBatchProduce, 40000000, 30000000, {{StatType::kElementId, kElementId}}); CreateXEvent(&host_plane_builder, &producer_thread, "Iterator::MapAndBatch::Range", 40000000, 30000000, {{StatType::kStepId, kRangeIteratorId}, {StatType::kParentId, kMapAndBatchIteratorId}}); CombinedTfDataStats combined_tf_data_stats; CombinedTfDataStatsBuilder builder(&combined_tf_data_stats); builder.Add("host1", &host_plane); builder.Finalize(); EXPECT_THAT( combined_tf_data_stats, EqualsProto(R"pb( bottleneck_analysis: { host: "host1" input_pipeline: "Host:0" max_latency_ps: 100000000 iterator_name: "Range" iterator_long_name: "Iterator::MapAndBatch::Range" iterator_latency_ps: 60000000 suggestion: "See <a href=\"https: } tf_data_stats: { key: "host1" value: { iterator_metadata: { key: 123, value: { id: 123 name: "MapAndBatch" long_name: "Iterator::MapAndBatch" is_async: true } } iterator_metadata: { key: 456, value: { id: 456 parent_id: 123 name: "Range" long_name: "Iterator::MapAndBatch::Range" is_async: false } } input_pipelines { key: 123, value: { metadata { id: 123 type: HOST name: "Host:0" } avg_latency_ps: 100000000 min_latency_ps: 100000000 max_latency_ps: 100000000 num_slow_calls: 1 stats { bottleneck_iterator_id: 456 bottleneck_iterator_latency_ps: 60000000 iterator_stats { key: 123, value: { id: 123 start_time_ps: 0 duration_ps: 100000000 self_time_ps: 40000000 is_blocking: true num_calls: 1 } } iterator_stats { key: 456, value: { id: 456 start_time_ps: 0 duration_ps: 60000000 self_time_ps: 60000000 is_blocking: true num_calls: 2 } } } } } } } is_input_bound: true summary: "Your profile has a tf.data input pipeline slower than 50 us. For each slow input pipeline, below shows a bottleneck in the input pipeline and a suggestion on how to fix it." )pb")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tf_data_stats.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_tf_data_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5a78cd31-7e4a-41ac-97e8-3fcb5cc4806a
cpp
google/cel-cpp
comprehension_step
eval/eval/comprehension_step.cc
eval/eval/comprehension_step_test.cc
#include "eval/eval/comprehension_step.h" #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "base/attribute.h" #include "base/kind.h" #include "common/casting.h" #include "common/value.h" #include "common/value_kind.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/comprehension_slots.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "eval/internal/errors.h" #include "eval/public/cel_attribute.h" #include "internal/status_macros.h" #include "runtime/internal/mutable_list_impl.h" namespace google::api::expr::runtime { namespace { using ::cel::BoolValue; using ::cel::Cast; using ::cel::InstanceOf; using ::cel::IntValue; using ::cel::ListValue; using ::cel::MapValue; using ::cel::UnknownValue; using ::cel::Value; using ::cel::runtime_internal::CreateNoMatchingOverloadError; using ::cel::runtime_internal::MutableListValue; class ComprehensionFinish : public ExpressionStepBase { public: ComprehensionFinish(size_t accu_slot, int64_t expr_id); absl::Status Evaluate(ExecutionFrame* frame) const override; private: size_t accu_slot_; }; ComprehensionFinish::ComprehensionFinish(size_t accu_slot, int64_t expr_id) : ExpressionStepBase(expr_id), accu_slot_(accu_slot) {} absl::Status ComprehensionFinish::Evaluate(ExecutionFrame* frame) const { if (!frame->value_stack().HasEnough(3)) { return absl::Status(absl::StatusCode::kInternal, "Value stack underflow"); } Value result = frame->value_stack().Peek(); frame->value_stack().Pop(3); if (frame->enable_comprehension_list_append() && MutableListValue::Is(result)) { MutableListValue& list_value = MutableListValue::Cast(result); CEL_ASSIGN_OR_RETURN(result, std::move(list_value).Build()); } frame->value_stack().Push(std::move(result)); frame->comprehension_slots().ClearSlot(accu_slot_); return absl::OkStatus(); } class ComprehensionInitStep : public ExpressionStepBase { public: explicit ComprehensionInitStep(int64_t expr_id) : ExpressionStepBase(expr_id, false) {} absl::Status Evaluate(ExecutionFrame* frame) const override; private: absl::Status ProjectKeys(ExecutionFrame* frame) const; }; absl::StatusOr<Value> ProjectKeysImpl(ExecutionFrameBase& frame, const MapValue& range, const AttributeTrail& trail) { if (frame.unknown_processing_enabled()) { if (frame.attribute_utility().CheckForUnknownPartial(trail)) { return frame.attribute_utility().CreateUnknownSet(trail.attribute()); } } return range.ListKeys(frame.value_manager()); } absl::Status ComprehensionInitStep::ProjectKeys(ExecutionFrame* frame) const { const auto& map_value = Cast<MapValue>(frame->value_stack().Peek()); CEL_ASSIGN_OR_RETURN( Value keys, ProjectKeysImpl(*frame, map_value, frame->value_stack().PeekAttribute())); frame->value_stack().PopAndPush(std::move(keys)); return absl::OkStatus(); } absl::Status ComprehensionInitStep::Evaluate(ExecutionFrame* frame) const { if (!frame->value_stack().HasEnough(1)) { return absl::Status(absl::StatusCode::kInternal, "Value stack underflow"); } if (frame->value_stack().Peek()->Is<cel::MapValue>()) { CEL_RETURN_IF_ERROR(ProjectKeys(frame)); } const auto& range = frame->value_stack().Peek(); if (!range->Is<cel::ListValue>() && !range->Is<cel::ErrorValue>() && !range->Is<cel::UnknownValue>()) { frame->value_stack().PopAndPush(frame->value_factory().CreateErrorValue( CreateNoMatchingOverloadError("<iter_range>"))); } frame->value_stack().Push(frame->value_factory().CreateIntValue(-1)); return absl::OkStatus(); } class ComprehensionDirectStep : public DirectExpressionStep { public: explicit ComprehensionDirectStep( size_t iter_slot, size_t accu_slot, std::unique_ptr<DirectExpressionStep> range, std::unique_ptr<DirectExpressionStep> accu_init, std::unique_ptr<DirectExpressionStep> loop_step, std::unique_ptr<DirectExpressionStep> condition_step, std::unique_ptr<DirectExpressionStep> result_step, bool shortcircuiting, int64_t expr_id) : DirectExpressionStep(expr_id), iter_slot_(iter_slot), accu_slot_(accu_slot), range_(std::move(range)), accu_init_(std::move(accu_init)), loop_step_(std::move(loop_step)), condition_(std::move(condition_step)), result_step_(std::move(result_step)), shortcircuiting_(shortcircuiting) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& trail) const override; private: size_t iter_slot_; size_t accu_slot_; std::unique_ptr<DirectExpressionStep> range_; std::unique_ptr<DirectExpressionStep> accu_init_; std::unique_ptr<DirectExpressionStep> loop_step_; std::unique_ptr<DirectExpressionStep> condition_; std::unique_ptr<DirectExpressionStep> result_step_; bool shortcircuiting_; }; absl::Status ComprehensionDirectStep::Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& trail) const { cel::Value range; AttributeTrail range_attr; CEL_RETURN_IF_ERROR(range_->Evaluate(frame, range, range_attr)); if (InstanceOf<MapValue>(range)) { const auto& map_value = Cast<MapValue>(range); CEL_ASSIGN_OR_RETURN(range, ProjectKeysImpl(frame, map_value, range_attr)); } switch (range.kind()) { case cel::ValueKind::kError: case cel::ValueKind::kUnknown: result = range; return absl::OkStatus(); break; default: if (!InstanceOf<ListValue>(range)) { result = frame.value_manager().CreateErrorValue( CreateNoMatchingOverloadError("<iter_range>")); return absl::OkStatus(); } } const auto& range_list = Cast<ListValue>(range); Value accu_init; AttributeTrail accu_init_attr; CEL_RETURN_IF_ERROR(accu_init_->Evaluate(frame, accu_init, accu_init_attr)); frame.comprehension_slots().Set(accu_slot_, std::move(accu_init), accu_init_attr); ComprehensionSlots::Slot* accu_slot = frame.comprehension_slots().Get(accu_slot_); ABSL_DCHECK(accu_slot != nullptr); frame.comprehension_slots().Set(iter_slot_); ComprehensionSlots::Slot* iter_slot = frame.comprehension_slots().Get(iter_slot_); ABSL_DCHECK(iter_slot != nullptr); Value condition; AttributeTrail condition_attr; bool should_skip_result = false; CEL_RETURN_IF_ERROR(range_list.ForEach( frame.value_manager(), [&](size_t index, const Value& v) -> absl::StatusOr<bool> { CEL_RETURN_IF_ERROR(frame.IncrementIterations()); CEL_RETURN_IF_ERROR( condition_->Evaluate(frame, condition, condition_attr)); if (condition.kind() == cel::ValueKind::kError || condition.kind() == cel::ValueKind::kUnknown) { result = std::move(condition); should_skip_result = true; return false; } if (condition.kind() != cel::ValueKind::kBool) { result = frame.value_manager().CreateErrorValue( CreateNoMatchingOverloadError("<loop_condition>")); should_skip_result = true; return false; } if (shortcircuiting_ && !Cast<BoolValue>(condition).NativeValue()) { return false; } iter_slot->value = v; if (frame.unknown_processing_enabled()) { iter_slot->attribute = range_attr.Step(CelAttributeQualifier::OfInt(index)); if (frame.attribute_utility().CheckForUnknownExact( iter_slot->attribute)) { iter_slot->value = frame.attribute_utility().CreateUnknownSet( iter_slot->attribute.attribute()); } } CEL_RETURN_IF_ERROR(loop_step_->Evaluate(frame, accu_slot->value, accu_slot->attribute)); return true; })); frame.comprehension_slots().ClearSlot(iter_slot_); if (should_skip_result) { frame.comprehension_slots().ClearSlot(accu_slot_); return absl::OkStatus(); } CEL_RETURN_IF_ERROR(result_step_->Evaluate(frame, result, trail)); if (frame.options().enable_comprehension_list_append && MutableListValue::Is(result)) { MutableListValue& list_value = MutableListValue::Cast(result); CEL_ASSIGN_OR_RETURN(result, std::move(list_value).Build()); } frame.comprehension_slots().ClearSlot(accu_slot_); return absl::OkStatus(); } } ComprehensionNextStep::ComprehensionNextStep(size_t iter_slot, size_t accu_slot, int64_t expr_id) : ExpressionStepBase(expr_id, false), iter_slot_(iter_slot), accu_slot_(accu_slot) {} void ComprehensionNextStep::set_jump_offset(int offset) { jump_offset_ = offset; } void ComprehensionNextStep::set_error_jump_offset(int offset) { error_jump_offset_ = offset; } absl::Status ComprehensionNextStep::Evaluate(ExecutionFrame* frame) const { enum { POS_ITER_RANGE, POS_CURRENT_INDEX, POS_LOOP_STEP_ACCU, }; constexpr int kStackSize = 3; if (!frame->value_stack().HasEnough(kStackSize)) { return absl::Status(absl::StatusCode::kInternal, "Value stack underflow"); } absl::Span<const Value> state = frame->value_stack().GetSpan(kStackSize); const cel::Value& iter_range = state[POS_ITER_RANGE]; if (!iter_range->Is<cel::ListValue>()) { if (iter_range->Is<cel::ErrorValue>() || iter_range->Is<cel::UnknownValue>()) { frame->value_stack().PopAndPush(kStackSize, std::move(iter_range)); } else { frame->value_stack().PopAndPush( kStackSize, frame->value_factory().CreateErrorValue( CreateNoMatchingOverloadError("<iter_range>"))); } return frame->JumpTo(error_jump_offset_); } const ListValue& iter_range_list = Cast<ListValue>(iter_range); const auto& current_index_value = state[POS_CURRENT_INDEX]; if (!InstanceOf<IntValue>(current_index_value)) { return absl::InternalError(absl::StrCat( "ComprehensionNextStep: want int, got ", cel::KindToString(ValueKindToKind(current_index_value->kind())))); } CEL_RETURN_IF_ERROR(frame->IncrementIterations()); int64_t next_index = Cast<IntValue>(current_index_value).NativeValue() + 1; frame->comprehension_slots().Set(accu_slot_, state[POS_LOOP_STEP_ACCU]); CEL_ASSIGN_OR_RETURN(auto iter_range_list_size, iter_range_list.Size()); if (next_index >= static_cast<int64_t>(iter_range_list_size)) { frame->comprehension_slots().ClearSlot(iter_slot_); frame->value_stack().Pop(1); return frame->JumpTo(jump_offset_); } AttributeTrail iter_trail; if (frame->enable_unknowns()) { iter_trail = frame->value_stack().GetAttributeSpan(kStackSize)[POS_ITER_RANGE].Step( cel::AttributeQualifier::OfInt(next_index)); } Value current_value; if (frame->enable_unknowns() && frame->attribute_utility().CheckForUnknown( iter_trail, false)) { current_value = frame->attribute_utility().CreateUnknownSet(iter_trail.attribute()); } else { CEL_ASSIGN_OR_RETURN(current_value, iter_range_list.Get(frame->value_factory(), static_cast<size_t>(next_index))); } frame->value_stack().PopAndPush( 2, frame->value_factory().CreateIntValue(next_index)); frame->comprehension_slots().Set(iter_slot_, std::move(current_value), std::move(iter_trail)); return absl::OkStatus(); } ComprehensionCondStep::ComprehensionCondStep(size_t iter_slot, size_t accu_slot, bool shortcircuiting, int64_t expr_id) : ExpressionStepBase(expr_id, false), iter_slot_(iter_slot), accu_slot_(accu_slot), shortcircuiting_(shortcircuiting) {} void ComprehensionCondStep::set_jump_offset(int offset) { jump_offset_ = offset; } void ComprehensionCondStep::set_error_jump_offset(int offset) { error_jump_offset_ = offset; } absl::Status ComprehensionCondStep::Evaluate(ExecutionFrame* frame) const { if (!frame->value_stack().HasEnough(3)) { return absl::Status(absl::StatusCode::kInternal, "Value stack underflow"); } auto& loop_condition_value = frame->value_stack().Peek(); if (!loop_condition_value->Is<cel::BoolValue>()) { if (loop_condition_value->Is<cel::ErrorValue>() || loop_condition_value->Is<cel::UnknownValue>()) { frame->value_stack().PopAndPush(3, std::move(loop_condition_value)); } else { frame->value_stack().PopAndPush( 3, frame->value_factory().CreateErrorValue( CreateNoMatchingOverloadError("<loop_condition>"))); } frame->comprehension_slots().ClearSlot(iter_slot_); frame->comprehension_slots().ClearSlot(accu_slot_); return frame->JumpTo(error_jump_offset_); } bool loop_condition = loop_condition_value.GetBool().NativeValue(); frame->value_stack().Pop(1); if (!loop_condition && shortcircuiting_) { return frame->JumpTo(jump_offset_); } return absl::OkStatus(); } std::unique_ptr<DirectExpressionStep> CreateDirectComprehensionStep( size_t iter_slot, size_t accu_slot, std::unique_ptr<DirectExpressionStep> range, std::unique_ptr<DirectExpressionStep> accu_init, std::unique_ptr<DirectExpressionStep> loop_step, std::unique_ptr<DirectExpressionStep> condition_step, std::unique_ptr<DirectExpressionStep> result_step, bool shortcircuiting, int64_t expr_id) { return std::make_unique<ComprehensionDirectStep>( iter_slot, accu_slot, std::move(range), std::move(accu_init), std::move(loop_step), std::move(condition_step), std::move(result_step), shortcircuiting, expr_id); } std::unique_ptr<ExpressionStep> CreateComprehensionFinishStep(size_t accu_slot, int64_t expr_id) { return std::make_unique<ComprehensionFinish>(accu_slot, expr_id); } std::unique_ptr<ExpressionStep> CreateComprehensionInitStep(int64_t expr_id) { return std::make_unique<ComprehensionInitStep>(expr_id); } }
#include "eval/eval/comprehension_step.h" #include <memory> #include <string> #include <utility> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/struct.pb.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "base/ast_internal/expr.h" #include "base/type_provider.h" #include "common/value.h" #include "common/value_testing.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/cel_expression_flat_impl.h" #include "eval/eval/comprehension_slots.h" #include "eval/eval/const_value_step.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "eval/eval/ident_step.h" #include "eval/public/activation.h" #include "eval/public/cel_attribute.h" #include "eval/public/cel_value.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "extensions/protobuf/memory_manager.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/managed_value_factory.h" #include "runtime/runtime_options.h" #include "google/protobuf/arena.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using ::cel::BoolValue; using ::cel::IntValue; using ::cel::TypeProvider; using ::cel::Value; using ::cel::ast_internal::Expr; using ::cel::ast_internal::Ident; using ::cel::extensions::ProtoMemoryManagerRef; using ::cel::test::BoolValueIs; using ::google::protobuf::ListValue; using ::google::protobuf::Struct; using ::google::protobuf::Arena; using ::testing::_; using ::testing::Eq; using ::testing::Return; using ::testing::SizeIs; Ident CreateIdent(const std::string& var) { Ident expr; expr.set_name(var); return expr; } class ListKeysStepTest : public testing::Test { public: ListKeysStepTest() = default; std::unique_ptr<CelExpressionFlatImpl> MakeExpression( ExecutionPath&& path, bool unknown_attributes = false) { cel::RuntimeOptions options; if (unknown_attributes) { options.unknown_processing = cel::UnknownProcessingOptions::kAttributeAndFunction; } return std::make_unique<CelExpressionFlatImpl>( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); } private: Expr dummy_expr_; }; class GetListKeysResultStep : public ExpressionStepBase { public: GetListKeysResultStep() : ExpressionStepBase(-1, false) {} absl::Status Evaluate(ExecutionFrame* frame) const override { frame->value_stack().Pop(1); return absl::OkStatus(); } }; MATCHER_P(CelStringValue, val, "") { const CelValue& to_match = arg; absl::string_view value = val; return to_match.IsString() && to_match.StringOrDie().value() == value; } TEST_F(ListKeysStepTest, ListPassedThrough) { ExecutionPath path; Ident ident = CreateIdent("var"); auto result = CreateIdentStep(ident, 0); ASSERT_OK(result); path.push_back(*std::move(result)); result = CreateComprehensionInitStep(1); ASSERT_OK(result); path.push_back(*std::move(result)); path.push_back(std::make_unique<GetListKeysResultStep>()); auto expression = MakeExpression(std::move(path)); Activation activation; Arena arena; ListValue value; value.add_values()->set_number_value(1.0); value.add_values()->set_number_value(2.0); value.add_values()->set_number_value(3.0); activation.InsertValue("var", CelProtoWrapper::CreateMessage(&value, &arena)); auto eval_result = expression->Evaluate(activation, &arena); ASSERT_OK(eval_result); ASSERT_TRUE(eval_result->IsList()); EXPECT_THAT(*eval_result->ListOrDie(), SizeIs(3)); } TEST_F(ListKeysStepTest, MapToKeyList) { ExecutionPath path; Ident ident = CreateIdent("var"); auto result = CreateIdentStep(ident, 0); ASSERT_OK(result); path.push_back(*std::move(result)); result = CreateComprehensionInitStep(1); ASSERT_OK(result); path.push_back(*std::move(result)); path.push_back(std::make_unique<GetListKeysResultStep>()); auto expression = MakeExpression(std::move(path)); Activation activation; Arena arena; Struct value; (*value.mutable_fields())["key1"].set_number_value(1.0); (*value.mutable_fields())["key2"].set_number_value(2.0); (*value.mutable_fields())["key3"].set_number_value(3.0); activation.InsertValue("var", CelProtoWrapper::CreateMessage(&value, &arena)); auto eval_result = expression->Evaluate(activation, &arena); ASSERT_OK(eval_result); ASSERT_TRUE(eval_result->IsList()); EXPECT_THAT(*eval_result->ListOrDie(), SizeIs(3)); std::vector<CelValue> keys; keys.reserve(eval_result->ListOrDie()->size()); for (int i = 0; i < eval_result->ListOrDie()->size(); i++) { keys.push_back(eval_result->ListOrDie()->operator[](i)); } EXPECT_THAT(keys, testing::UnorderedElementsAre(CelStringValue("key1"), CelStringValue("key2"), CelStringValue("key3"))); } TEST_F(ListKeysStepTest, MapPartiallyUnknown) { ExecutionPath path; Ident ident = CreateIdent("var"); auto result = CreateIdentStep(ident, 0); ASSERT_OK(result); path.push_back(*std::move(result)); result = CreateComprehensionInitStep(1); ASSERT_OK(result); path.push_back(*std::move(result)); path.push_back(std::make_unique<GetListKeysResultStep>()); auto expression = MakeExpression(std::move(path), true); Activation activation; Arena arena; Struct value; (*value.mutable_fields())["key1"].set_number_value(1.0); (*value.mutable_fields())["key2"].set_number_value(2.0); (*value.mutable_fields())["key3"].set_number_value(3.0); activation.InsertValue("var", CelProtoWrapper::CreateMessage(&value, &arena)); activation.set_unknown_attribute_patterns({CelAttributePattern( "var", {CreateCelAttributeQualifierPattern(CelValue::CreateStringView("key2")), CreateCelAttributeQualifierPattern(CelValue::CreateStringView("foo")), CelAttributeQualifierPattern::CreateWildcard()})}); auto eval_result = expression->Evaluate(activation, &arena); ASSERT_OK(eval_result); ASSERT_TRUE(eval_result->IsUnknownSet()); const auto& attrs = eval_result->UnknownSetOrDie()->unknown_attributes(); EXPECT_THAT(attrs, SizeIs(1)); EXPECT_THAT(attrs.begin()->variable_name(), Eq("var")); EXPECT_THAT(attrs.begin()->qualifier_path(), SizeIs(0)); } TEST_F(ListKeysStepTest, ErrorPassedThrough) { ExecutionPath path; Ident ident = CreateIdent("var"); auto result = CreateIdentStep(ident, 0); ASSERT_OK(result); path.push_back(*std::move(result)); result = CreateComprehensionInitStep(1); ASSERT_OK(result); path.push_back(*std::move(result)); path.push_back(std::make_unique<GetListKeysResultStep>()); auto expression = MakeExpression(std::move(path)); Activation activation; Arena arena; auto eval_result = expression->Evaluate(activation, &arena); ASSERT_OK(eval_result); ASSERT_TRUE(eval_result->IsError()); EXPECT_THAT(eval_result->ErrorOrDie()->message(), testing::HasSubstr("\"var\"")); EXPECT_EQ(eval_result->ErrorOrDie()->code(), absl::StatusCode::kUnknown); } TEST_F(ListKeysStepTest, UnknownSetPassedThrough) { ExecutionPath path; Ident ident = CreateIdent("var"); auto result = CreateIdentStep(ident, 0); ASSERT_OK(result); path.push_back(*std::move(result)); result = CreateComprehensionInitStep(1); ASSERT_OK(result); path.push_back(*std::move(result)); path.push_back(std::make_unique<GetListKeysResultStep>()); auto expression = MakeExpression(std::move(path), true); Activation activation; Arena arena; activation.set_unknown_attribute_patterns({CelAttributePattern("var", {})}); auto eval_result = expression->Evaluate(activation, &arena); ASSERT_OK(eval_result); ASSERT_TRUE(eval_result->IsUnknownSet()); EXPECT_THAT(eval_result->UnknownSetOrDie()->unknown_attributes(), SizeIs(1)); } class MockDirectStep : public DirectExpressionStep { public: MockDirectStep() : DirectExpressionStep(-1) {} MOCK_METHOD(absl::Status, Evaluate, (ExecutionFrameBase&, Value&, AttributeTrail&), (const, override)); }; class DirectComprehensionTest : public testing::Test { public: DirectComprehensionTest() : value_manager_(TypeProvider::Builtin(), ProtoMemoryManagerRef(&arena_)), slots_(2) {} absl::StatusOr<cel::ListValue> MakeList() { CEL_ASSIGN_OR_RETURN(auto builder, value_manager_.get().NewListValueBuilder( value_manager_.get().GetDynListType())); CEL_RETURN_IF_ERROR(builder->Add(IntValue(1))); CEL_RETURN_IF_ERROR(builder->Add(IntValue(2))); return std::move(*builder).Build(); } protected: google::protobuf::Arena arena_; cel::ManagedValueFactory value_manager_; ComprehensionSlots slots_; cel::Activation empty_activation_; }; TEST_F(DirectComprehensionTest, PropagateRangeNonOkStatus) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto range_step = std::make_unique<MockDirectStep>(); MockDirectStep* mock = range_step.get(); ON_CALL(*mock, Evaluate(_, _, _)) .WillByDefault(Return(absl::InternalError("test range error"))); auto compre_step = CreateDirectComprehensionStep( 0, 1, std::move(range_step), CreateConstValueDirectStep(BoolValue(false)), CreateConstValueDirectStep(BoolValue(false)), CreateConstValueDirectStep(BoolValue(true)), CreateDirectSlotIdentStep("__result__", 1, -1), true, -1); Value result; AttributeTrail trail; EXPECT_THAT(compre_step->Evaluate(frame, result, trail), StatusIs(absl::StatusCode::kInternal, "test range error")); } TEST_F(DirectComprehensionTest, PropagateAccuInitNonOkStatus) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto accu_init = std::make_unique<MockDirectStep>(); MockDirectStep* mock = accu_init.get(); ON_CALL(*mock, Evaluate(_, _, _)) .WillByDefault(Return(absl::InternalError("test accu init error"))); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), std::move(accu_init), CreateConstValueDirectStep(BoolValue(false)), CreateConstValueDirectStep(BoolValue(true)), CreateDirectSlotIdentStep("__result__", 1, -1), true, -1); Value result; AttributeTrail trail; EXPECT_THAT(compre_step->Evaluate(frame, result, trail), StatusIs(absl::StatusCode::kInternal, "test accu init error")); } TEST_F(DirectComprehensionTest, PropagateLoopNonOkStatus) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto loop_step = std::make_unique<MockDirectStep>(); MockDirectStep* mock = loop_step.get(); ON_CALL(*mock, Evaluate(_, _, _)) .WillByDefault(Return(absl::InternalError("test loop error"))); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), CreateConstValueDirectStep(BoolValue(false)), std::move(loop_step), CreateConstValueDirectStep(BoolValue(true)), CreateDirectSlotIdentStep("__result__", 1, -1), true, -1); Value result; AttributeTrail trail; EXPECT_THAT(compre_step->Evaluate(frame, result, trail), StatusIs(absl::StatusCode::kInternal, "test loop error")); } TEST_F(DirectComprehensionTest, PropagateConditionNonOkStatus) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto condition = std::make_unique<MockDirectStep>(); MockDirectStep* mock = condition.get(); ON_CALL(*mock, Evaluate(_, _, _)) .WillByDefault(Return(absl::InternalError("test condition error"))); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), CreateConstValueDirectStep(BoolValue(false)), CreateConstValueDirectStep(BoolValue(false)), std::move(condition), CreateDirectSlotIdentStep("__result__", 1, -1), true, -1); Value result; AttributeTrail trail; EXPECT_THAT(compre_step->Evaluate(frame, result, trail), StatusIs(absl::StatusCode::kInternal, "test condition error")); } TEST_F(DirectComprehensionTest, PropagateResultNonOkStatus) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto result_step = std::make_unique<MockDirectStep>(); MockDirectStep* mock = result_step.get(); ON_CALL(*mock, Evaluate(_, _, _)) .WillByDefault(Return(absl::InternalError("test result error"))); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), CreateConstValueDirectStep(BoolValue(false)), CreateConstValueDirectStep(BoolValue(false)), CreateConstValueDirectStep(BoolValue(true)), std::move(result_step), true, -1); Value result; AttributeTrail trail; EXPECT_THAT(compre_step->Evaluate(frame, result, trail), StatusIs(absl::StatusCode::kInternal, "test result error")); } TEST_F(DirectComprehensionTest, Shortcircuit) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto loop_step = std::make_unique<MockDirectStep>(); MockDirectStep* mock = loop_step.get(); EXPECT_CALL(*mock, Evaluate(_, _, _)) .Times(0) .WillRepeatedly([](ExecutionFrameBase&, Value& result, AttributeTrail&) { result = BoolValue(false); return absl::OkStatus(); }); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), CreateConstValueDirectStep(BoolValue(false)), std::move(loop_step), CreateConstValueDirectStep(BoolValue(false)), CreateDirectSlotIdentStep("__result__", 1, -1), true, -1); Value result; AttributeTrail trail; ASSERT_OK(compre_step->Evaluate(frame, result, trail)); EXPECT_THAT(result, BoolValueIs(false)); } TEST_F(DirectComprehensionTest, IterationLimit) { cel::RuntimeOptions options; options.comprehension_max_iterations = 2; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto loop_step = std::make_unique<MockDirectStep>(); MockDirectStep* mock = loop_step.get(); EXPECT_CALL(*mock, Evaluate(_, _, _)) .Times(1) .WillRepeatedly([](ExecutionFrameBase&, Value& result, AttributeTrail&) { result = BoolValue(false); return absl::OkStatus(); }); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), CreateConstValueDirectStep(BoolValue(false)), std::move(loop_step), CreateConstValueDirectStep(BoolValue(true)), CreateDirectSlotIdentStep("__result__", 1, -1), true, -1); Value result; AttributeTrail trail; EXPECT_THAT(compre_step->Evaluate(frame, result, trail), StatusIs(absl::StatusCode::kInternal)); } TEST_F(DirectComprehensionTest, Exhaustive) { cel::RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, nullptr, options, value_manager_.get(), slots_); auto loop_step = std::make_unique<MockDirectStep>(); MockDirectStep* mock = loop_step.get(); EXPECT_CALL(*mock, Evaluate(_, _, _)) .Times(2) .WillRepeatedly([](ExecutionFrameBase&, Value& result, AttributeTrail&) { result = BoolValue(false); return absl::OkStatus(); }); ASSERT_OK_AND_ASSIGN(auto list, MakeList()); auto compre_step = CreateDirectComprehensionStep( 0, 1, CreateConstValueDirectStep(std::move(list)), CreateConstValueDirectStep(BoolValue(false)), std::move(loop_step), CreateConstValueDirectStep(BoolValue(false)), CreateDirectSlotIdentStep("__result__", 1, -1), false, -1); Value result; AttributeTrail trail; ASSERT_OK(compre_step->Evaluate(frame, result, trail)); EXPECT_THAT(result, BoolValueIs(false)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/comprehension_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/comprehension_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
ee620caa-1725-45c5-9079-95411bac2806
cpp
tensorflow/tensorflow
debug_io_utils
tensorflow/core/debug/debug_io_utils.cc
tensorflow/core/debug/debug_io_utils_test.cc
#include "tensorflow/core/debug/debug_io_utils.h" #include <stddef.h> #include <string.h> #include <cmath> #include <cstdint> #include <cstdlib> #include <cstring> #include <limits> #include <utility> #include <vector> #ifndef PLATFORM_WINDOWS #include "grpcpp/create_channel.h" #else #endif #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "tensorflow/core/debug/debug_callback_registry.h" #include "tensorflow/core/debug/debugger_event_metadata.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/lib/core/bits.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/util/event.pb.h" #define GRPC_OSS_WINDOWS_UNIMPLEMENTED_ERROR \ return errors::Unimplemented( \ kGrpcURLScheme, " debug URL scheme is not implemented on Windows yet.") namespace tensorflow { namespace { constexpr absl::string_view kDumpSubDirName = "node-io-dump"; Event PrepareChunkEventProto(const DebugNodeKey& debug_node_key, const uint64 wall_time_us, const size_t num_chunks, const size_t chunk_index, const DataType& tensor_dtype, const TensorShapeProto& tensor_shape) { Event event; event.set_wall_time(static_cast<double>(wall_time_us)); Summary::Value* value = event.mutable_summary()->add_value(); value->set_node_name(debug_node_key.debug_node_name); value->set_tag(debug_node_key.node_name); third_party::tensorflow::core::debug::DebuggerEventMetadata metadata; metadata.set_device(debug_node_key.device_name); metadata.set_output_slot(debug_node_key.output_slot); metadata.set_num_chunks(num_chunks); metadata.set_chunk_index(chunk_index); string json_output; tensorflow::protobuf::util::JsonPrintOptions json_options; json_options.always_print_primitive_fields = true; auto status = tensorflow::protobuf::util::MessageToJsonString( metadata, &json_output, json_options); if (status.ok()) { SummaryMetadata::PluginData* plugin_data = value->mutable_metadata()->mutable_plugin_data(); plugin_data->set_plugin_name(DebugIO::kDebuggerPluginName); plugin_data->set_content(json_output); } else { LOG(WARNING) << "Failed to convert DebuggerEventMetadata proto to JSON. " << "The debug_node_name is " << debug_node_key.debug_node_name << "."; } value->mutable_tensor()->set_dtype(tensor_dtype); *value->mutable_tensor()->mutable_tensor_shape() = tensor_shape; return event; } const size_t StringValMaxBytesInProto(const string& str) { #if defined(PLATFORM_GOOGLE) return str.size() + DebugGrpcIO::kGrpcMaxVarintLengthSize; #else return str.size(); #endif } Status WrapStringTensorAsEvents(const DebugNodeKey& debug_node_key, const uint64 wall_time_us, const size_t chunk_size_limit, TensorProto* tensor_proto, std::vector<Event>* events) { const protobuf::RepeatedPtrField<string>& strs = tensor_proto->string_val(); const size_t num_strs = strs.size(); const size_t chunk_size_ub = chunk_size_limit > 0 ? chunk_size_limit : std::numeric_limits<size_t>::max(); std::vector<size_t> cutoffs; size_t chunk_size = 0; for (size_t i = 0; i < num_strs; ++i) { if (StringValMaxBytesInProto(strs[i]) > chunk_size_ub) { return errors::FailedPrecondition( "string value at index ", i, " from debug node ", debug_node_key.debug_node_name, " does not fit gRPC message size limit (", chunk_size_ub, ")"); } if (chunk_size + StringValMaxBytesInProto(strs[i]) > chunk_size_ub) { cutoffs.push_back(i); chunk_size = 0; } chunk_size += StringValMaxBytesInProto(strs[i]); } cutoffs.push_back(num_strs); const size_t num_chunks = cutoffs.size(); for (size_t i = 0; i < num_chunks; ++i) { Event event = PrepareChunkEventProto(debug_node_key, wall_time_us, num_chunks, i, tensor_proto->dtype(), tensor_proto->tensor_shape()); Summary::Value* value = event.mutable_summary()->mutable_value(0); if (cutoffs.size() == 1) { value->mutable_tensor()->mutable_string_val()->Swap( tensor_proto->mutable_string_val()); } else { const size_t begin = (i == 0) ? 0 : cutoffs[i - 1]; const size_t end = cutoffs[i]; for (size_t j = begin; j < end; ++j) { value->mutable_tensor()->add_string_val(strs[j]); } } events->push_back(std::move(event)); } return absl::OkStatus(); } Status WrapTensorAsEvents(const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const size_t chunk_size_limit, std::vector<Event>* events) { TensorProto tensor_proto; if (tensor.dtype() == DT_STRING) { tensor.AsProtoField(&tensor_proto); TF_RETURN_IF_ERROR(WrapStringTensorAsEvents( debug_node_key, wall_time_us, chunk_size_limit, &tensor_proto, events)); } else { tensor.AsProtoTensorContent(&tensor_proto); const size_t total_length = tensor_proto.tensor_content().size(); const size_t chunk_size_ub = chunk_size_limit > 0 ? chunk_size_limit : total_length; const size_t num_chunks = (total_length == 0) ? 1 : (total_length + chunk_size_ub - 1) / chunk_size_ub; for (size_t i = 0; i < num_chunks; ++i) { const size_t pos = i * chunk_size_ub; const size_t len = (i == num_chunks - 1) ? (total_length - pos) : chunk_size_ub; Event event = PrepareChunkEventProto(debug_node_key, wall_time_us, num_chunks, i, tensor_proto.dtype(), tensor_proto.tensor_shape()); event.mutable_summary() ->mutable_value(0) ->mutable_tensor() ->set_tensor_content(tensor_proto.tensor_content().substr(pos, len)); events->push_back(std::move(event)); } } return absl::OkStatus(); } string AppendTimestampToFilePath(const string& in, const uint64 timestamp) { string out = strings::StrCat(in, "_", timestamp); uint64 i = 1; while (Env::Default()->FileExists(out).ok()) { out = strings::StrCat(in, "_", timestamp, "-", i); ++i; } return out; } #ifndef PLATFORM_WINDOWS Status PublishEncodedGraphDefInChunks(const string& encoded_graph_def, const string& device_name, const int64_t wall_time, const string& debug_url) { const uint64 hash = ::tensorflow::Hash64(encoded_graph_def); const size_t total_length = encoded_graph_def.size(); const size_t num_chunks = static_cast<size_t>(std::ceil(static_cast<float>(total_length) / DebugGrpcIO::kGrpcMessageSizeLimitBytes)); for (size_t i = 0; i < num_chunks; ++i) { const size_t pos = i * DebugGrpcIO::kGrpcMessageSizeLimitBytes; const size_t len = (i == num_chunks - 1) ? (total_length - pos) : DebugGrpcIO::kGrpcMessageSizeLimitBytes; Event event; event.set_wall_time(static_cast<double>(wall_time)); event.set_graph_def(strings::StrCat(hash, ",", device_name, ",", wall_time, "|", i, "|", num_chunks, "|", encoded_graph_def.substr(pos, len))); const Status s = DebugGrpcIO::SendEventProtoThroughGrpcStream( event, debug_url, num_chunks - 1 == i); if (!s.ok()) { return errors::FailedPrecondition( "Failed to send chunk ", i, " of ", num_chunks, " of encoded GraphDef of size ", encoded_graph_def.size(), " bytes, ", "due to: ", s.message()); } } return absl::OkStatus(); } #endif } const char* const DebugIO::kDebuggerPluginName = "debugger"; const char* const DebugIO::kCoreMetadataTag = "core_metadata_"; const char* const DebugIO::kGraphTag = "graph_"; const char* const DebugIO::kHashTag = "hash"; Status ReadEventFromFile(const string& dump_file_path, Event* event) { Env* env(Env::Default()); string content; uint64 file_size = 0; Status s = env->GetFileSize(dump_file_path, &file_size); if (!s.ok()) { return s; } content.resize(file_size); std::unique_ptr<RandomAccessFile> file; s = env->NewRandomAccessFile(dump_file_path, &file); if (!s.ok()) { return s; } StringPiece result; s = file->Read(0, file_size, &result, &(content)[0]); if (!s.ok()) { return s; } event->ParseFromString(content); return absl::OkStatus(); } const char* const DebugIO::kFileURLScheme = "file: const char* const DebugIO::kGrpcURLScheme = "grpc: const char* const DebugIO::kMemoryURLScheme = "memcbk: Status DebugIO::PublishDebugMetadata( const int64_t global_step, const int64_t session_run_index, const int64_t executor_step_index, const std::vector<string>& input_names, const std::vector<string>& output_names, const std::vector<string>& target_nodes, const std::unordered_set<string>& debug_urls) { std::ostringstream oss; oss << "{"; oss << "\"global_step\":" << global_step << ","; oss << "\"session_run_index\":" << session_run_index << ","; oss << "\"executor_step_index\":" << executor_step_index << ","; oss << "\"input_names\":["; for (size_t i = 0; i < input_names.size(); ++i) { oss << "\"" << input_names[i] << "\""; if (i < input_names.size() - 1) { oss << ","; } } oss << "],"; oss << "\"output_names\":["; for (size_t i = 0; i < output_names.size(); ++i) { oss << "\"" << output_names[i] << "\""; if (i < output_names.size() - 1) { oss << ","; } } oss << "],"; oss << "\"target_nodes\":["; for (size_t i = 0; i < target_nodes.size(); ++i) { oss << "\"" << target_nodes[i] << "\""; if (i < target_nodes.size() - 1) { oss << ","; } } oss << "]"; oss << "}"; const string json_metadata = oss.str(); Event event; event.set_wall_time(static_cast<double>(Env::Default()->NowMicros())); LogMessage* log_message = event.mutable_log_message(); log_message->set_message(json_metadata); Status status; for (const string& url : debug_urls) { if (absl::StartsWith(absl::AsciiStrToLower(url), kGrpcURLScheme)) { #ifndef PLATFORM_WINDOWS Event grpc_event; const string address = url.substr(strlen(DebugIO::kFileURLScheme)); const string path = address.find('/') == string::npos ? "" : address.substr(address.find('/')); grpc_event.set_wall_time(event.wall_time()); LogMessage* log_message_grpc = grpc_event.mutable_log_message(); log_message_grpc->set_message( strings::StrCat(json_metadata.substr(0, json_metadata.size() - 1), ",\"grpc_path\":\"", path, "\"}")); status.Update( DebugGrpcIO::SendEventProtoThroughGrpcStream(grpc_event, url, true)); #else GRPC_OSS_WINDOWS_UNIMPLEMENTED_ERROR; #endif } else if (absl::StartsWith(absl::AsciiStrToLower(url), kFileURLScheme)) { const string dump_root_dir = url.substr(strlen(kFileURLScheme)); const string core_metadata_path = AppendTimestampToFilePath( io::JoinPath(dump_root_dir, strings::StrCat( DebugNodeKey::kMetadataFilePrefix, DebugIO::kCoreMetadataTag, "sessionrun", strings::Printf("%.14lld", static_cast<long long>( session_run_index)))), Env::Default()->NowMicros()); status.Update(DebugFileIO::DumpEventProtoToFile( event, string(io::Dirname(core_metadata_path)), string(io::Basename(core_metadata_path)))); } } return status; } Status DebugIO::PublishDebugTensor(const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const absl::Span<const string> debug_urls, const bool gated_grpc, const int64_t step_id) { int32_t num_failed_urls = 0; std::vector<Status> fail_statuses; for (const string& url : debug_urls) { if (absl::StartsWith(absl::AsciiStrToLower(url), kFileURLScheme)) { const string dump_root_dir = url.substr(strlen(kFileURLScheme)); const int64_t tensorBytes = tensor.IsInitialized() ? tensor.TotalBytes() : 0; if (!DebugFileIO::requestDiskByteUsage(tensorBytes)) { return errors::ResourceExhausted( "TensorFlow Debugger has exhausted file-system byte-size " "allowance (", DebugFileIO::global_disk_bytes_limit_, "), therefore it cannot ", "dump an additional ", tensorBytes, " byte(s) of tensor data ", "for the debug tensor ", debug_node_key.node_name, ":", debug_node_key.output_slot, ". You may use the environment ", "variable TFDBG_DISK_BYTES_LIMIT to set a higher limit."); } Status s = debug_node_key.io_of_node.empty() ? DebugFileIO::DumpTensorToDir(debug_node_key, tensor, wall_time_us, dump_root_dir, nullptr) : DebugFileIO::DumpTensorToDirForNodeDumping( debug_node_key, tensor, wall_time_us, dump_root_dir, nullptr, step_id); if (!s.ok()) { num_failed_urls++; fail_statuses.push_back(s); } } else if (absl::StartsWith(absl::AsciiStrToLower(url), kGrpcURLScheme)) { #ifndef PLATFORM_WINDOWS Status s = DebugGrpcIO::SendTensorThroughGrpcStream( debug_node_key, tensor, wall_time_us, url, gated_grpc); if (!s.ok()) { num_failed_urls++; fail_statuses.push_back(s); } #else GRPC_OSS_WINDOWS_UNIMPLEMENTED_ERROR; #endif } else if (absl::StartsWith(absl::AsciiStrToLower(url), kMemoryURLScheme)) { const string dump_root_dir = url.substr(strlen(kMemoryURLScheme)); auto* callback_registry = DebugCallbackRegistry::singleton(); auto* callback = callback_registry->GetCallback(dump_root_dir); CHECK(callback) << "No callback registered for: " << dump_root_dir; (*callback)(debug_node_key, tensor); } else { return Status(absl::StatusCode::kUnavailable, strings::StrCat("Invalid debug target URL: ", url)); } } if (num_failed_urls == 0) { return absl::OkStatus(); } else { string error_message = strings::StrCat( "Publishing to ", num_failed_urls, " of ", debug_urls.size(), " debug target URLs failed, due to the following errors:"); for (Status& status : fail_statuses) { error_message = strings::StrCat(error_message, " ", status.message(), ";"); } return Status(absl::StatusCode::kInternal, error_message); } } Status DebugIO::PublishDebugTensor(const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const absl::Span<const string> debug_urls) { return PublishDebugTensor(debug_node_key, tensor, wall_time_us, debug_urls, false); } Status DebugIO::PublishGraph(const Graph& graph, const string& device_name, const std::unordered_set<string>& debug_urls) { GraphDef graph_def; graph.ToGraphDef(&graph_def); string buf; graph_def.SerializeToString(&buf); const int64_t now_micros = Env::Default()->NowMicros(); Event event; event.set_wall_time(static_cast<double>(now_micros)); event.set_graph_def(buf); Status status = absl::OkStatus(); for (const string& debug_url : debug_urls) { if (absl::StartsWith(debug_url, kFileURLScheme)) { const string dump_root_dir = io::JoinPath(debug_url.substr(strlen(kFileURLScheme)), DebugNodeKey::DeviceNameToDevicePath(device_name)); const uint64 graph_hash = ::tensorflow::Hash64(buf); const string file_name = strings::StrCat(DebugNodeKey::kMetadataFilePrefix, DebugIO::kGraphTag, DebugIO::kHashTag, graph_hash, "_", now_micros); status.Update( DebugFileIO::DumpEventProtoToFile(event, dump_root_dir, file_name)); } else if (absl::StartsWith(debug_url, kGrpcURLScheme)) { #ifndef PLATFORM_WINDOWS status.Update(PublishEncodedGraphDefInChunks(buf, device_name, now_micros, debug_url)); #else GRPC_OSS_WINDOWS_UNIMPLEMENTED_ERROR; #endif } } return status; } bool DebugIO::IsCopyNodeGateOpen( const std::vector<DebugWatchAndURLSpec>& specs) { #ifndef PLATFORM_WINDOWS for (const DebugWatchAndURLSpec& spec : specs) { if (!spec.gated_grpc || spec.url.compare(0, strlen(DebugIO::kGrpcURLScheme), DebugIO::kGrpcURLScheme)) { return true; } else { if (DebugGrpcIO::IsReadGateOpen(spec.url, spec.watch_key)) { return true; } } } return false; #else return true; #endif } bool DebugIO::IsDebugNodeGateOpen(const string& watch_key, const std::vector<string>& debug_urls) { #ifndef PLATFORM_WINDOWS for (const string& debug_url : debug_urls) { if (debug_url.compare(0, strlen(DebugIO::kGrpcURLScheme), DebugIO::kGrpcURLScheme)) { return true; } else { if (DebugGrpcIO::IsReadGateOpen(debug_url, watch_key)) { return true; } } } return false; #else return true; #endif } bool DebugIO::IsDebugURLGateOpen(const string& watch_key, const string& debug_url) { #ifndef PLATFORM_WINDOWS if (debug_url != kGrpcURLScheme) { return true; } else { return DebugGrpcIO::IsReadGateOpen(debug_url, watch_key); } #else return true; #endif } Status DebugIO::CloseDebugURL(const string& debug_url) { if (absl::StartsWith(debug_url, DebugIO::kGrpcURLScheme)) { #ifndef PLATFORM_WINDOWS return DebugGrpcIO::CloseGrpcStream(debug_url); #else GRPC_OSS_WINDOWS_UNIMPLEMENTED_ERROR; #endif } else { return absl::OkStatus(); } } Status DebugFileIO::DumpTensorToDir(const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const string& dump_root_dir, string* dump_file_path) { const string file_path = GetDumpFilePath(dump_root_dir, debug_node_key, wall_time_us); if (dump_file_path != nullptr) { *dump_file_path = file_path; } return DumpTensorToEventFile(debug_node_key, tensor, wall_time_us, file_path); } Status DebugFileIO::DumpTensorToDirForNodeDumping( const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const string& dump_root_dir, string* dump_file_path, const int64_t step_id) { const string file_path = GetDumpFilePathForNodeDumping( dump_root_dir, debug_node_key, wall_time_us, step_id); if (dump_file_path != nullptr) { *dump_file_path = file_path; } return DumpTensorToEventFile(debug_node_key, tensor, wall_time_us, file_path); } string DebugFileIO::GetDumpFilePath(const string& dump_root_dir, const DebugNodeKey& debug_node_key, const uint64 wall_time_us) { return AppendTimestampToFilePath( io::JoinPath(dump_root_dir, debug_node_key.device_path, strings::StrCat(debug_node_key.node_name, "_", debug_node_key.output_slot, "_", debug_node_key.debug_op)), wall_time_us); } string DebugFileIO::GetDumpFilePathForNodeDumping( const string& dump_root_dir, const DebugNodeKey& debug_node_key, const uint64 wall_time_us, const int64_t step_id) { return AppendTimestampToFilePath( io::JoinPath( dump_root_dir, kDumpSubDirName, strings::StrCat("step-", step_id), strings::StrCat( absl::StrReplaceAll(debug_node_key.io_of_node, {{"/", "-"}}), ":", debug_node_key.is_input ? "in" : "out", ":", debug_node_key.io_index)), wall_time_us); } Status DebugFileIO::DumpEventProtoToFile(const Event& event_proto, const string& dir_name, const string& file_name) { Env* env(Env::Default()); Status s = RecursiveCreateDir(env, dir_name); if (!s.ok()) { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create directory ", dir_name, ", due to: ", s.message())); } const string file_path = io::JoinPath(dir_name, file_name); string event_str; event_proto.SerializeToString(&event_str); std::unique_ptr<WritableFile> f = nullptr; TF_CHECK_OK(env->NewWritableFile(file_path, &f)); f->Append(event_str).IgnoreError(); TF_CHECK_OK(f->Close()); return absl::OkStatus(); } Status DebugFileIO::DumpTensorToEventFile(const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const string& file_path) { std::vector<Event> events; TF_RETURN_IF_ERROR( WrapTensorAsEvents(debug_node_key, tensor, wall_time_us, 0, &events)); return DumpEventProtoToFile(events[0], string(io::Dirname(file_path)), string(io::Basename(file_path))); } Status DebugFileIO::RecursiveCreateDir(Env* env, const string& dir) { if (env->FileExists(dir).ok() && env->IsDirectory(dir).ok()) { return absl::OkStatus(); } string parent_dir(io::Dirname(dir)); if (!env->FileExists(parent_dir).ok()) { Status s = RecursiveCreateDir(env, parent_dir); if (!s.ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create directory ", parent_dir)); } } else if (env->FileExists(parent_dir).ok() && !env->IsDirectory(parent_dir).ok()) { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create directory ", parent_dir, " because the path exists as a file ")); } env->CreateDir(dir).IgnoreError(); if (env->FileExists(dir).ok() && env->IsDirectory(dir).ok()) { return absl::OkStatus(); } else { return Status(absl::StatusCode::kAborted, strings::StrCat("Failed to create directory ", parent_dir)); } } const uint64 DebugFileIO::kDefaultGlobalDiskBytesLimit = 107374182400L; uint64 DebugFileIO::global_disk_bytes_limit_ = 0; uint64 DebugFileIO::disk_bytes_used_ = 0; mutex DebugFileIO::bytes_mu_(LINKER_INITIALIZED); bool DebugFileIO::requestDiskByteUsage(uint64 bytes) { mutex_lock l(bytes_mu_); if (global_disk_bytes_limit_ == 0) { const char* env_tfdbg_disk_bytes_limit = getenv("TFDBG_DISK_BYTES_LIMIT"); if (env_tfdbg_disk_bytes_limit == nullptr || strlen(env_tfdbg_disk_bytes_limit) == 0) { global_disk_bytes_limit_ = kDefaultGlobalDiskBytesLimit; } else { strings::safe_strtou64(string(env_tfdbg_disk_bytes_limit), &global_disk_bytes_limit_); } } if (bytes == 0) { return true; } if (disk_bytes_used_ + bytes < global_disk_bytes_limit_) { disk_bytes_used_ += bytes; return true; } else { return false; } } void DebugFileIO::resetDiskByteUsage() { mutex_lock l(bytes_mu_); disk_bytes_used_ = 0; } #ifndef PLATFORM_WINDOWS DebugGrpcChannel::DebugGrpcChannel(const string& server_stream_addr) : server_stream_addr_(server_stream_addr), url_(strings::StrCat(DebugIO::kGrpcURLScheme, server_stream_addr)) {} Status DebugGrpcChannel::Connect(const int64_t timeout_micros) { ::grpc::ChannelArguments args; args.SetInt(GRPC_ARG_MAX_MESSAGE_LENGTH, std::numeric_limits<int32>::max()); args.SetInt(GRPC_ARG_MAX_RECONNECT_BACKOFF_MS, 1000); channel_ = ::grpc::CreateCustomChannel( server_stream_addr_, ::grpc::InsecureChannelCredentials(), args); if (!channel_->WaitForConnected( gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_micros(timeout_micros, GPR_TIMESPAN)))) { return errors::FailedPrecondition( "Failed to connect to gRPC channel at ", server_stream_addr_, " within a timeout of ", timeout_micros / 1e6, " s."); } stub_ = grpc::EventListener::NewStub(channel_); reader_writer_ = stub_->SendEvents(&ctx_); return absl::OkStatus(); } bool DebugGrpcChannel::WriteEvent(const Event& event) { mutex_lock l(mu_); return reader_writer_->Write(event); } bool DebugGrpcChannel::ReadEventReply(EventReply* event_reply) { mutex_lock l(mu_); return reader_writer_->Read(event_reply); } void DebugGrpcChannel::ReceiveAndProcessEventReplies(const size_t max_replies) { EventReply event_reply; size_t num_replies = 0; while ((max_replies == 0 || ++num_replies <= max_replies) && ReadEventReply(&event_reply)) { for (const EventReply::DebugOpStateChange& debug_op_state_change : event_reply.debug_op_state_changes()) { string watch_key = strings::StrCat(debug_op_state_change.node_name(), ":", debug_op_state_change.output_slot(), ":", debug_op_state_change.debug_op()); DebugGrpcIO::SetDebugNodeKeyGrpcState(url_, watch_key, debug_op_state_change.state()); } } } Status DebugGrpcChannel::ReceiveServerRepliesAndClose() { reader_writer_->WritesDone(); ReceiveAndProcessEventReplies(0); if (reader_writer_->Finish().ok()) { return absl::OkStatus(); } else { return Status(absl::StatusCode::kFailedPrecondition, "Failed to close debug GRPC stream."); } } mutex DebugGrpcIO::streams_mu_(LINKER_INITIALIZED); int64_t DebugGrpcIO::channel_connection_timeout_micros_ = 900 * 1000 * 1000; const size_t DebugGrpcIO::kGrpcMessageSizeLimitBytes = 4000 * 1024; const size_t DebugGrpcIO::kGrpcMaxVarintLengthSize = 6; std::unordered_map<string, std::unique_ptr<DebugGrpcChannel>>* DebugGrpcIO::GetStreamChannels() { static std::unordered_map<string, std::unique_ptr<DebugGrpcChannel>>* stream_channels = new std::unordered_map<string, std::unique_ptr<DebugGrpcChannel>>(); return stream_channels; } Status DebugGrpcIO::SendTensorThroughGrpcStream( const DebugNodeKey& debug_node_key, const Tensor& tensor, const uint64 wall_time_us, const string& grpc_stream_url, const bool gated) { if (gated && !IsReadGateOpen(grpc_stream_url, debug_node_key.debug_node_name)) { return absl::OkStatus(); } else { std::vector<Event> events; TF_RETURN_IF_ERROR(WrapTensorAsEvents(debug_node_key, tensor, wall_time_us, kGrpcMessageSizeLimitBytes, &events)); for (const Event& event : events) { TF_RETURN_IF_ERROR( SendEventProtoThroughGrpcStream(event, grpc_stream_url)); } if (IsWriteGateOpen(grpc_stream_url, debug_node_key.debug_node_name)) { DebugGrpcChannel* debug_grpc_channel = nullptr; TF_RETURN_IF_ERROR( GetOrCreateDebugGrpcChannel(grpc_stream_url, &debug_grpc_channel)); debug_grpc_channel->ReceiveAndProcessEventReplies(1); } return absl::OkStatus(); } } Status DebugGrpcIO::ReceiveEventReplyProtoThroughGrpcStream( EventReply* event_reply, const string& grpc_stream_url) { DebugGrpcChannel* debug_grpc_channel = nullptr; TF_RETURN_IF_ERROR( GetOrCreateDebugGrpcChannel(grpc_stream_url, &debug_grpc_channel)); if (debug_grpc_channel->ReadEventReply(event_reply)) { return absl::OkStatus(); } else { return errors::Cancelled(strings::StrCat( "Reading EventReply from stream URL ", grpc_stream_url, " failed.")); } } Status DebugGrpcIO::GetOrCreateDebugGrpcChannel( const string& grpc_stream_url, DebugGrpcChannel** debug_grpc_channel) { const string addr_with_path = absl::StartsWith(grpc_stream_url, DebugIO::kGrpcURLScheme) ? grpc_stream_url.substr(strlen(DebugIO::kGrpcURLScheme)) : grpc_stream_url; const string server_stream_addr = addr_with_path.substr(0, addr_with_path.find('/')); { mutex_lock l(streams_mu_); std::unordered_map<string, std::unique_ptr<DebugGrpcChannel>>* stream_channels = GetStreamChannels(); if (stream_channels->find(grpc_stream_url) == stream_channels->end()) { std::unique_ptr<DebugGrpcChannel> channel( new DebugGrpcChannel(server_stream_addr)); TF_RETURN_IF_ERROR(channel->Connect(channel_connection_timeout_micros_)); stream_channels->insert( std::make_pair(grpc_stream_url, std::move(channel))); } *debug_grpc_channel = (*stream_channels)[grpc_stream_url].get(); } return absl::OkStatus(); } Status DebugGrpcIO::SendEventProtoThroughGrpcStream( const Event& event_proto, const string& grpc_stream_url, const bool receive_reply) { DebugGrpcChannel* debug_grpc_channel; TF_RETURN_IF_ERROR( GetOrCreateDebugGrpcChannel(grpc_stream_url, &debug_grpc_channel)); bool write_ok = debug_grpc_channel->WriteEvent(event_proto); if (!write_ok) { return errors::Cancelled(strings::StrCat("Write event to stream URL ", grpc_stream_url, " failed.")); } if (receive_reply) { debug_grpc_channel->ReceiveAndProcessEventReplies(1); } return absl::OkStatus(); } bool DebugGrpcIO::IsReadGateOpen(const string& grpc_debug_url, const string& watch_key) { const DebugNodeName2State* enabled_node_to_state = GetEnabledDebugOpStatesAtUrl(grpc_debug_url); return enabled_node_to_state->find(watch_key) != enabled_node_to_state->end(); } bool DebugGrpcIO::IsWriteGateOpen(const string& grpc_debug_url, const string& watch_key) { const DebugNodeName2State* enabled_node_to_state = GetEnabledDebugOpStatesAtUrl(grpc_debug_url); auto it = enabled_node_to_state->find(watch_key); if (it == enabled_node_to_state->end()) { return false; } else { return it->second == EventReply::DebugOpStateChange::READ_WRITE; } } Status DebugGrpcIO::CloseGrpcStream(const string& grpc_stream_url) { mutex_lock l(streams_mu_); std::unordered_map<string, std::unique_ptr<DebugGrpcChannel>>* stream_channels = GetStreamChannels(); if (stream_channels->find(grpc_stream_url) != stream_channels->end()) { Status s = (*stream_channels)[grpc_stream_url]->ReceiveServerRepliesAndClose(); (*stream_channels).erase(grpc_stream_url); return s; } else { return absl::OkStatus(); } } std::unordered_map<string, DebugGrpcIO::DebugNodeName2State>* DebugGrpcIO::GetEnabledDebugOpStates() { static std::unordered_map<string, DebugNodeName2State>* enabled_debug_op_states = new std::unordered_map<string, DebugNodeName2State>(); return enabled_debug_op_states; } DebugGrpcIO::DebugNodeName2State* DebugGrpcIO::GetEnabledDebugOpStatesAtUrl( const string& grpc_debug_url) { static mutex* debug_ops_state_mu = new mutex(); std::unordered_map<string, DebugNodeName2State>* states = GetEnabledDebugOpStates(); mutex_lock l(*debug_ops_state_mu); if (states->find(grpc_debug_url) == states->end()) { DebugNodeName2State url_enabled_debug_op_states; (*states)[grpc_debug_url] = url_enabled_debug_op_states; } return &(*states)[grpc_debug_url]; } void DebugGrpcIO::SetDebugNodeKeyGrpcState( const string& grpc_debug_url, const string& watch_key, const EventReply::DebugOpStateChange::State new_state) { DebugNodeName2State* states = GetEnabledDebugOpStatesAtUrl(grpc_debug_url); if (new_state == EventReply::DebugOpStateChange::DISABLED) { if (states->find(watch_key) == states->end()) { LOG(ERROR) << "Attempt to disable a watch key that is not currently " << "enabled at " << grpc_debug_url << ": " << watch_key; } else { states->erase(watch_key); } } else if (new_state != EventReply::DebugOpStateChange::STATE_UNSPECIFIED) { (*states)[watch_key] = new_state; } } void DebugGrpcIO::ClearEnabledWatchKeys() { GetEnabledDebugOpStates()->clear(); } #endif }
#include "tensorflow/core/debug/debug_io_utils.h" #include <cstdlib> #include <memory> #include <unordered_set> #include "tensorflow/core/debug/debug_callback_registry.h" #include "tensorflow/core/debug/debug_node_key.h" #include "tensorflow/core/debug/debugger_event_metadata.pb.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/util/event.pb.h" namespace tensorflow { namespace { class DebugIOUtilsTest : public ::testing::Test { public: void Initialize() { env_ = Env::Default(); tensor_a_ = std::make_unique<Tensor>(DT_FLOAT, TensorShape({2, 2})); tensor_a_->flat<float>()(0) = 5.0; tensor_a_->flat<float>()(1) = 3.0; tensor_a_->flat<float>()(2) = -1.0; tensor_a_->flat<float>()(3) = 0.0; tensor_b_.reset(new Tensor(DT_STRING, TensorShape{2})); tensor_b_->flat<tstring>()(0) = "corge"; tensor_b_->flat<tstring>()(1) = "garply"; } Env* env_; std::unique_ptr<Tensor> tensor_a_; std::unique_ptr<Tensor> tensor_b_; }; TEST_F(DebugIOUtilsTest, ConstructDebugNodeKey) { DebugNodeKey debug_node_key("/job:worker/replica:1/task:0/device:GPU:2", "hidden_1/MatMul", 0, "DebugIdentity"); EXPECT_EQ("/job:worker/replica:1/task:0/device:GPU:2", debug_node_key.device_name); EXPECT_EQ("hidden_1/MatMul", debug_node_key.node_name); EXPECT_EQ(0, debug_node_key.output_slot); EXPECT_EQ("DebugIdentity", debug_node_key.debug_op); EXPECT_EQ("hidden_1/MatMul:0:DebugIdentity", debug_node_key.debug_node_name); EXPECT_EQ("_tfdbg_device_,job_worker,replica_1,task_0,device_GPU_2", debug_node_key.device_path); } TEST_F(DebugIOUtilsTest, EqualityOfDebugNodeKeys) { const DebugNodeKey debug_node_key_1("/job:worker/replica:1/task:0/gpu:2", "hidden_1/MatMul", 0, "DebugIdentity"); const DebugNodeKey debug_node_key_2("/job:worker/replica:1/task:0/gpu:2", "hidden_1/MatMul", 0, "DebugIdentity"); const DebugNodeKey debug_node_key_3("/job:worker/replica:1/task:0/gpu:2", "hidden_1/BiasAdd", 0, "DebugIdentity"); const DebugNodeKey debug_node_key_4("/job:worker/replica:1/task:0/gpu:2", "hidden_1/MatMul", 0, "DebugNumericSummary"); EXPECT_EQ(debug_node_key_1, debug_node_key_2); EXPECT_NE(debug_node_key_1, debug_node_key_3); EXPECT_NE(debug_node_key_1, debug_node_key_4); EXPECT_NE(debug_node_key_3, debug_node_key_4); } TEST_F(DebugIOUtilsTest, DebugNodeKeysIsHashable) { const DebugNodeKey debug_node_key_1("/job:worker/replica:1/task:0/gpu:2", "hidden_1/MatMul", 0, "DebugIdentity"); const DebugNodeKey debug_node_key_2("/job:worker/replica:1/task:0/gpu:2", "hidden_1/MatMul", 0, "DebugIdentity"); const DebugNodeKey debug_node_key_3("/job:worker/replica:1/task:0/gpu:2", "hidden_1/BiasAdd", 0, "DebugIdentity"); std::unordered_set<DebugNodeKey> keys; keys.insert(debug_node_key_1); ASSERT_EQ(1, keys.size()); keys.insert(debug_node_key_3); ASSERT_EQ(2, keys.size()); keys.erase(debug_node_key_2); ASSERT_EQ(1, keys.size()); } TEST_F(DebugIOUtilsTest, DumpFloatTensorToFileSunnyDay) { Initialize(); const string test_dir = strings::StrCat(testing::TmpDir(), "/DumpFloatTensorToFileSunnyDay"); if (!env_->FileExists(test_dir).ok()) { ASSERT_TRUE(env_->RecursivelyCreateDir(test_dir).ok()); } const uint64 wall_time = env_->NowMicros(); const DebugNodeKey kDebugNodeKey("/job:localhost/replica:0/task:0/cpu:0", "foo/bar/qux/tensor_a", 0, "DebugIdentity"); string dump_file_path; TF_ASSERT_OK(DebugFileIO::DumpTensorToDir( kDebugNodeKey, *tensor_a_, wall_time, test_dir, &dump_file_path)); Event event; TF_ASSERT_OK(ReadEventFromFile(dump_file_path, &event)); ASSERT_GE(wall_time, event.wall_time()); ASSERT_EQ(1, event.summary().value().size()); ASSERT_EQ(kDebugNodeKey.debug_node_name, event.summary().value(0).node_name()); Tensor a_prime(DT_FLOAT); ASSERT_TRUE(a_prime.FromProto(event.summary().value(0).tensor())); ASSERT_EQ(tensor_a_->shape(), a_prime.shape()); for (int i = 0; i < a_prime.flat<float>().size(); ++i) { ASSERT_EQ(tensor_a_->flat<float>()(i), a_prime.flat<float>()(i)); } int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; ASSERT_TRUE( env_->DeleteRecursively(test_dir, &undeleted_files, &undeleted_dirs) .ok()); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } TEST_F(DebugIOUtilsTest, DumpStringTensorToFileSunnyDay) { Initialize(); const string test_dir = strings::StrCat(testing::TmpDir(), "/DumpStringTensorToFileSunnyDay"); if (!env_->FileExists(test_dir).ok()) { ASSERT_TRUE(env_->RecursivelyCreateDir(test_dir).ok()); } const DebugNodeKey kDebugNodeKey("/job:localhost/replica:0/task:0/cpu:0", "quux/grault/tensor_b", 1, "DebugIdentity"); const uint64 wall_time = env_->NowMicros(); string dump_file_name; Status s = DebugFileIO::DumpTensorToDir(kDebugNodeKey, *tensor_b_, wall_time, test_dir, &dump_file_name); ASSERT_TRUE(s.ok()); Event event; TF_ASSERT_OK(ReadEventFromFile(dump_file_name, &event)); ASSERT_GE(wall_time, event.wall_time()); ASSERT_EQ(1, event.summary().value().size()); ASSERT_EQ(kDebugNodeKey.node_name, event.summary().value(0).tag()); ASSERT_EQ(kDebugNodeKey.debug_node_name, event.summary().value(0).node_name()); third_party::tensorflow::core::debug::DebuggerEventMetadata metadata; auto status = tensorflow::protobuf::util::JsonStringToMessage( event.summary().value(0).metadata().plugin_data().content(), &metadata); ASSERT_TRUE(status.ok()); ASSERT_EQ(kDebugNodeKey.device_name, metadata.device()); ASSERT_EQ(kDebugNodeKey.output_slot, metadata.output_slot()); Tensor b_prime(DT_STRING); ASSERT_TRUE(b_prime.FromProto(event.summary().value(0).tensor())); ASSERT_EQ(tensor_b_->shape(), b_prime.shape()); for (int i = 0; i < b_prime.flat<tstring>().size(); ++i) { ASSERT_EQ(tensor_b_->flat<tstring>()(i), b_prime.flat<tstring>()(i)); } int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; ASSERT_TRUE( env_->DeleteRecursively(test_dir, &undeleted_files, &undeleted_dirs) .ok()); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } TEST_F(DebugIOUtilsTest, DumpTensorToFileCannotCreateDirectory) { Initialize(); const string test_dir = strings::StrCat( testing::TmpDir(), "/DumpTensorToFileCannotCreateDirectory"); if (!env_->FileExists(test_dir).ok()) { ASSERT_TRUE(env_->RecursivelyCreateDir(test_dir).ok()); } const string kDeviceName = "/job:localhost/replica:0/task:0/cpu:0"; const DebugNodeKey kDebugNodeKey(kDeviceName, "baz/tensor_a", 0, "DebugIdentity"); const string txt_file_dir = io::JoinPath(test_dir, DebugNodeKey::DeviceNameToDevicePath(kDeviceName)); const string txt_file_name = io::JoinPath(txt_file_dir, "baz"); if (!env_->FileExists(txt_file_dir).ok()) { ASSERT_TRUE(env_->RecursivelyCreateDir(txt_file_dir).ok()); } ASSERT_EQ(error::Code::NOT_FOUND, env_->FileExists(txt_file_name).code()); std::unique_ptr<WritableFile> file; ASSERT_TRUE(env_->NewWritableFile(txt_file_name, &file).ok()); TF_EXPECT_OK(file->Append("text in baz")); TF_EXPECT_OK(file->Flush()); TF_ASSERT_OK(file->Close()); ASSERT_TRUE(env_->FileExists(txt_file_name).ok()); ASSERT_FALSE(env_->IsDirectory(txt_file_name).ok()); const uint64 wall_time = env_->NowMicros(); string dump_file_name; Status s = DebugFileIO::DumpTensorToDir(kDebugNodeKey, *tensor_a_, wall_time, test_dir, &dump_file_name); ASSERT_FALSE(s.ok()); int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; ASSERT_TRUE( env_->DeleteRecursively(test_dir, &undeleted_files, &undeleted_dirs) .ok()); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } TEST_F(DebugIOUtilsTest, PublishTensorToMultipleFileURLs) { Initialize(); const int kNumDumpRoots = 3; const DebugNodeKey kDebugNodeKey("/job:localhost/replica:0/task:0/cpu:0", "foo/bar/qux/tensor_a", 0, "DebugIdentity"); const uint64 wall_time = env_->NowMicros(); std::vector<string> dump_roots; std::vector<string> dump_file_paths; std::vector<string> urls; for (int i = 0; i < kNumDumpRoots; ++i) { string dump_root = strings::StrCat(testing::TmpDir(), "/PublicTensorToMultipleFileUrls_", i); dump_roots.push_back(dump_root); dump_file_paths.push_back( DebugFileIO::GetDumpFilePath(dump_root, kDebugNodeKey, wall_time)); urls.push_back(strings::StrCat("file: } for (int i = 1; i < kNumDumpRoots; ++i) { ASSERT_NE(dump_roots[0], dump_roots[i]); } Status s = DebugIO::PublishDebugTensor(kDebugNodeKey, *tensor_a_, wall_time, urls); ASSERT_TRUE(s.ok()); for (int i = 0; i < kNumDumpRoots; ++i) { Event event; TF_ASSERT_OK(ReadEventFromFile(dump_file_paths[i], &event)); ASSERT_GE(wall_time, event.wall_time()); ASSERT_EQ(1, event.summary().value().size()); ASSERT_EQ(kDebugNodeKey.node_name, event.summary().value(0).tag()); ASSERT_EQ(kDebugNodeKey.debug_node_name, event.summary().value(0).node_name()); third_party::tensorflow::core::debug::DebuggerEventMetadata metadata; auto status = tensorflow::protobuf::util::JsonStringToMessage( event.summary().value(0).metadata().plugin_data().content(), &metadata); ASSERT_TRUE(status.ok()); ASSERT_EQ(kDebugNodeKey.device_name, metadata.device()); ASSERT_EQ(kDebugNodeKey.output_slot, metadata.output_slot()); Tensor a_prime(DT_FLOAT); ASSERT_TRUE(a_prime.FromProto(event.summary().value(0).tensor())); ASSERT_EQ(tensor_a_->shape(), a_prime.shape()); for (int i = 0; i < a_prime.flat<float>().size(); ++i) { ASSERT_EQ(tensor_a_->flat<float>()(i), a_prime.flat<float>()(i)); } } for (int i = 0; i < kNumDumpRoots; ++i) { int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; ASSERT_TRUE(env_->DeleteRecursively(dump_roots[i], &undeleted_files, &undeleted_dirs) .ok()); ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } } TEST_F(DebugIOUtilsTest, PublishTensorToMemoryCallback) { Initialize(); const DebugNodeKey kDebugNodeKey("/job:localhost/replica:0/task:0/cpu:0", "foo/bar/qux/tensor_a", 0, "DebugIdentity"); const uint64 wall_time = env_->NowMicros(); bool called = false; std::vector<string> urls = {"memcbk: ; auto* callback_registry = DebugCallbackRegistry::singleton(); callback_registry->RegisterCallback( "test_callback", [this, &kDebugNodeKey, &called](const DebugNodeKey& key, const Tensor& tensor) { called = true; ASSERT_EQ(kDebugNodeKey.device_name, key.device_name); ASSERT_EQ(kDebugNodeKey.node_name, key.node_name); ASSERT_EQ(tensor_a_->shape(), tensor.shape()); for (int i = 0; i < tensor.flat<float>().size(); ++i) { ASSERT_EQ(tensor_a_->flat<float>()(i), tensor.flat<float>()(i)); } }); Status s = DebugIO::PublishDebugTensor(kDebugNodeKey, *tensor_a_, wall_time, urls); ASSERT_TRUE(s.ok()); ASSERT_TRUE(called); callback_registry->UnregisterCallback("test_callback"); } TEST_F(DebugIOUtilsTest, PublishTensorConcurrentlyToPartiallyOverlappingPaths) { Initialize(); const int kConcurrentPubs = 3; const DebugNodeKey kDebugNodeKey("/job:localhost/replica:0/task:0/cpu:0", "tensor_a", 0, "DebugIdentity"); thread::ThreadPool* tp = new thread::ThreadPool(Env::Default(), "test", kConcurrentPubs); const uint64 wall_time = env_->NowMicros(); const string dump_root_base = strings::StrCat(testing::TmpDir(), "/PublishTensorConcurrentlyToPartiallyOverlappingPaths"); if (!env_->FileExists(dump_root_base).ok()) { ASSERT_TRUE(env_->RecursivelyCreateDir(dump_root_base).ok()); } mutex mu; std::vector<string> dump_roots TF_GUARDED_BY(mu); std::vector<string> dump_file_paths TF_GUARDED_BY(mu); int dump_count TF_GUARDED_BY(mu) = 0; int done_count TF_GUARDED_BY(mu) = 0; Notification all_done; auto fn = [this, &dump_count, &done_count, &mu, &dump_root_base, &dump_roots, &dump_file_paths, &wall_time, &kDebugNodeKey, &kConcurrentPubs, &all_done]() { string dump_root; string debug_url; { mutex_lock l(mu); dump_root = strings::StrCat(dump_root_base, "grumpy/", "dump_", dump_count++); dump_roots.push_back(dump_root); dump_file_paths.push_back( DebugFileIO::GetDumpFilePath(dump_root, kDebugNodeKey, wall_time)); debug_url = strings::StrCat("file: } std::vector<string> urls; urls.push_back(debug_url); Status s = DebugIO::PublishDebugTensor(kDebugNodeKey, *tensor_a_, wall_time, urls); ASSERT_TRUE(s.ok()); { mutex_lock l(mu); done_count++; if (done_count == kConcurrentPubs) { all_done.Notify(); } } }; for (int i = 0; i < kConcurrentPubs; ++i) { tp->Schedule(fn); } all_done.WaitForNotification(); delete tp; { mutex_lock l(mu); for (int i = 1; i < kConcurrentPubs; ++i) { ASSERT_NE(dump_roots[0], dump_roots[i]); } for (int i = 0; i < kConcurrentPubs; ++i) { Event event; TF_ASSERT_OK(ReadEventFromFile(dump_file_paths[i], &event)); ASSERT_GE(wall_time, event.wall_time()); ASSERT_EQ(1, event.summary().value().size()); ASSERT_EQ(kDebugNodeKey.node_name, event.summary().value(0).tag()); ASSERT_EQ(kDebugNodeKey.debug_node_name, event.summary().value(0).node_name()); third_party::tensorflow::core::debug::DebuggerEventMetadata metadata; auto status = tensorflow::protobuf::util::JsonStringToMessage( event.summary().value(0).metadata().plugin_data().content(), &metadata); ASSERT_TRUE(status.ok()); ASSERT_EQ(kDebugNodeKey.device_name, metadata.device()); ASSERT_EQ(kDebugNodeKey.output_slot, metadata.output_slot()); Tensor a_prime(DT_FLOAT); ASSERT_TRUE(a_prime.FromProto(event.summary().value(0).tensor())); ASSERT_EQ(tensor_a_->shape(), a_prime.shape()); for (int i = 0; i < a_prime.flat<float>().size(); ++i) { ASSERT_EQ(tensor_a_->flat<float>()(i), a_prime.flat<float>()(i)); } } int64_t undeleted_files = 0; int64_t undeleted_dirs = 0; auto delete_files = env_->DeleteRecursively( dump_root_base, &undeleted_files, &undeleted_dirs); ASSERT_TRUE(delete_files.ok()) << delete_files; ASSERT_EQ(0, undeleted_files); ASSERT_EQ(0, undeleted_dirs); } } class DiskUsageLimitTest : public ::testing::Test { public: void Initialize() { setenv("TFDBG_DISK_BYTES_LIMIT", "", 1); DebugFileIO::resetDiskByteUsage(); DebugFileIO::global_disk_bytes_limit_ = 0; } }; TEST_F(DiskUsageLimitTest, RequestWithZeroByteIsOkay) { Initialize(); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(0L)); } TEST_F(DiskUsageLimitTest, ExceedingLimitAfterOneCall) { Initialize(); ASSERT_FALSE(DebugFileIO::requestDiskByteUsage(100L * 1024L * 1024L * 1024L)); } TEST_F(DiskUsageLimitTest, ExceedingLimitAfterTwoCalls) { Initialize(); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(50L * 1024L * 1024L * 1024L)); ASSERT_FALSE(DebugFileIO::requestDiskByteUsage(50L * 1024L * 1024L * 1024L)); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(1024L)); } TEST_F(DiskUsageLimitTest, ResetDiskByteUsageWorks) { Initialize(); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(50L * 1024L * 1024L * 1024L)); ASSERT_FALSE(DebugFileIO::requestDiskByteUsage(50L * 1024L * 1024L * 1024L)); DebugFileIO::resetDiskByteUsage(); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(50L * 1024L * 1024L * 1024L)); } TEST_F(DiskUsageLimitTest, CustomEnvVarIsObeyed) { Initialize(); setenv("TFDBG_DISK_BYTES_LIMIT", "1024", 1); ASSERT_FALSE(DebugFileIO::requestDiskByteUsage(1024L)); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(1000L)); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(23L)); ASSERT_FALSE(DebugFileIO::requestDiskByteUsage(1L)); DebugFileIO::resetDiskByteUsage(); ASSERT_TRUE(DebugFileIO::requestDiskByteUsage(1023L)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/debug/debug_io_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/debug/debug_io_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bef8cc3a-91b3-489e-bded-4866f414d7d9
cpp
google/arolla
status_macros_backport
arolla/util/status_macros_backport.h
arolla/util/status_macros_backport_test.cc
#ifndef AROLLA_UTIL_STATUS_MACROS_BACKPORT_H_ #define AROLLA_UTIL_STATUS_MACROS_BACKPORT_H_ #include <sstream> #include <string> #include <utility> #include "absl/base/optimization.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace arolla { namespace status_macros_backport_internal { inline absl::string_view GetStatusMessage(const absl::Status& status) { return status.message(); } template <typename T> inline absl::string_view GetStatusMessage(const absl::StatusOr<T>& status_or) { return status_or.status().message(); } class StatusBuilder { public: explicit StatusBuilder(const ::absl::Status& status) : status_(status) {} explicit StatusBuilder(::absl::Status&& status) : status_(std::move(status)) {} operator ::absl::Status() const { const auto& stream_msg = stream_.str(); if (stream_msg.empty()) { return status_; } ::absl::Status result; if (status_.message().empty()) { result = absl::Status(status_.code(), stream_msg); } else { result = absl::Status(status_.code(), absl::StrCat(status_.message(), "; ", stream_msg)); } status_.ForEachPayload([&](auto type_url, auto payload) { result.SetPayload(std::move(type_url), std::move(payload)); }); return result; } template <typename Adaptor> auto With(Adaptor&& adaptor) { return std::forward<Adaptor>(adaptor)(std::move(*this)); } template <typename T> StatusBuilder& operator<<(const T& extra_msg) & { stream_ << extra_msg; return *this; } template <typename T> StatusBuilder&& operator<<(const T& extra_msg) && { stream_ << extra_msg; return std::move(*this); } private: ::absl::Status status_; std::ostringstream stream_; }; } #define RETURN_IF_ERROR(expr) \ RETURN_IF_ERROR_IMPL(AROLLA_STATUS_IMPL_CONCAT(status, __COUNTER__), expr) #define RETURN_IF_ERROR_IMPL(_status, expr) \ if (auto _status = (expr); _status.ok()) { \ } else \ return ::arolla::status_macros_backport_internal::StatusBuilder(_status) #define ASSIGN_OR_RETURN(...) \ AROLLA_STATUS_IMPL_GET_VARIADIC( \ (__VA_ARGS__, ASSIGN_OR_RETURN_IMPL_3, ASSIGN_OR_RETURN_IMPL_2)) \ (__VA_ARGS__) #define ASSIGN_OR_RETURN_IMPL_2(lhs, rexpr) \ ASSIGN_OR_RETURN_IMPL_3(lhs, rexpr, _) #define ASSIGN_OR_RETURN_IMPL_3(lhs, rexpr, error_expression) \ ASSIGN_OR_RETURN_IMPL(AROLLA_STATUS_IMPL_CONCAT(statusor, __COUNTER__), lhs, \ rexpr, error_expression) #define ASSIGN_OR_RETURN_IMPL(_statusor, lhs, rexpr, error_expression) \ auto _statusor = (rexpr); \ if (ABSL_PREDICT_FALSE(!_statusor.ok())) { \ ::arolla::status_macros_backport_internal::StatusBuilder _( \ std::move(_statusor).status()); \ (void)_; \ return (error_expression); \ } \ AROLLA_STATUS_IMPL_UNPARENTHESIZE_IF_PARENTHESIZED(lhs) = \ (*std::move(_statusor)) #define EXPECT_OK(value) \ EXPECT_TRUE((value).ok()) \ << ::arolla::status_macros_backport_internal::GetStatusMessage(value) #define ASSERT_OK(value) \ ASSERT_TRUE((value).ok()) \ << ::arolla::status_macros_backport_internal::GetStatusMessage(value) #define ASSERT_OK_AND_ASSIGN(lhs, rexpr) \ ASSERT_OK_AND_ASSIGN_IMPL(AROLLA_STATUS_IMPL_CONCAT(statusor, __COUNTER__), \ lhs, rexpr) #define ASSERT_OK_AND_ASSIGN_IMPL(_statusor, lhs, rexpr) \ auto _statusor = (rexpr); \ ASSERT_OK(_statusor); \ AROLLA_STATUS_IMPL_UNPARENTHESIZE_IF_PARENTHESIZED(lhs) = \ (*std::move(_statusor)); #define AROLLA_STATUS_IMPL_CONCAT_INNER(a, b) a##b #define AROLLA_STATUS_IMPL_CONCAT(a, b) AROLLA_STATUS_IMPL_CONCAT_INNER(a, b) #define AROLLA_STATUS_IMPL_GET_VARIADIC_INNER(_1, _2, _3, NAME, ...) NAME #define AROLLA_STATUS_IMPL_GET_VARIADIC(args) \ AROLLA_STATUS_IMPL_GET_VARIADIC_INNER args #define AROLLA_STATUS_IMPL_EAT(...) #define AROLLA_STATUS_IMPL_REM(...) __VA_ARGS__ #define AROLLA_STATUS_IMPL_EMPTY() #define AROLLA_STATUS_IMPL_IS_EMPTY_INNER(...) \ AROLLA_STATUS_IMPL_IS_EMPTY_INNER_HELPER((__VA_ARGS__, 0, 1)) #define AROLLA_STATUS_IMPL_IS_EMPTY_INNER_HELPER(args) \ AROLLA_STATUS_IMPL_IS_EMPTY_INNER_I args #define AROLLA_STATUS_IMPL_IS_EMPTY_INNER_I(e0, e1, is_empty, ...) is_empty #define AROLLA_STATUS_IMPL_IS_EMPTY(...) \ AROLLA_STATUS_IMPL_IS_EMPTY_I(__VA_ARGS__) #define AROLLA_STATUS_IMPL_IS_EMPTY_I(...) \ AROLLA_STATUS_IMPL_IS_EMPTY_INNER(_, ##__VA_ARGS__) #define AROLLA_STATUS_IMPL_IF_1(_Then, _Else) _Then #define AROLLA_STATUS_IMPL_IF_0(_Then, _Else) _Else #define AROLLA_STATUS_IMPL_IF(_Cond, _Then, _Else) \ AROLLA_STATUS_IMPL_CONCAT(AROLLA_STATUS_IMPL_IF_, _Cond)(_Then, _Else) #define AROLLA_STATUS_IMPL_IS_PARENTHESIZED(...) \ AROLLA_STATUS_IMPL_IS_EMPTY(AROLLA_STATUS_IMPL_EAT __VA_ARGS__) #define AROLLA_STATUS_IMPL_UNPARENTHESIZE_IF_PARENTHESIZED(...) \ AROLLA_STATUS_IMPL_IF(AROLLA_STATUS_IMPL_IS_PARENTHESIZED(__VA_ARGS__), \ AROLLA_STATUS_IMPL_REM, AROLLA_STATUS_IMPL_EMPTY()) \ __VA_ARGS__ } #endif
#include "arolla/util/status_macros_backport.h" #include <tuple> #include "gtest/gtest-spi.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "arolla/util/status_macros_backport.h" namespace { #define INTERNAL_ASSERT_EQ(lhs, rhs) \ [](auto lhs_, auto rhs_) { \ if (lhs_ != rhs_) { \ LOG(FATAL) << "assertion " #lhs " == " #rhs " failed: " << lhs_ \ << " != " << rhs_; \ } \ }(lhs, rhs) template <typename T> absl::StatusOr<T> ReturnStatusOrValue(T v) { return v; } absl::StatusOr<int> ReturnStatusOrError(absl::string_view msg) { return absl::Status(absl::StatusCode::kUnknown, msg); } absl::Status ReturnError(absl::string_view msg) { return absl::Status(absl::StatusCode::kUnknown, msg); } absl::Status ReturnOk() { return absl::Status(); } TEST(ExternalStatusTest, ReturnIfError) { auto func = []() -> absl::StatusOr<int> { RETURN_IF_ERROR(ReturnOk()) << "UNEXPECTED"; RETURN_IF_ERROR(ReturnError("EXPECTED")) << "ALSO " << "EXPECTED"; return 5; }; ASSERT_EQ(func().status().message(), "EXPECTED; ALSO EXPECTED"); } TEST(ExternalStatusTest, ReturnIfErrorAnnotateEmpty) { auto err = [] { return absl::InvalidArgumentError(""); }; auto func = [&]() -> absl::Status { RETURN_IF_ERROR(err()) << "suffix"; return absl::OkStatus(); }; ASSERT_EQ(func().message(), "suffix"); } TEST(ExternalStatusTest, ReturnIfErrorPayload) { auto err = [] { auto status = absl::InvalidArgumentError("message"); status.SetPayload("url", absl::Cord("payload")); return status; }; auto func = [&]() -> absl::Status { RETURN_IF_ERROR(err()) << "suffix"; return absl::OkStatus(); }; ASSERT_EQ(func().message(), "message; suffix"); ASSERT_EQ(func().GetPayload("url"), "payload"); } TEST(ExternalStatusTest, AssignOrReturn) { auto func = []() -> absl::StatusOr<int> { ASSIGN_OR_RETURN(int value1, ReturnStatusOrValue(1)); INTERNAL_ASSERT_EQ(1, value1); ASSIGN_OR_RETURN(const int value2, ReturnStatusOrValue(2)); INTERNAL_ASSERT_EQ(2, value2); ASSIGN_OR_RETURN(const int& value3, ReturnStatusOrValue(3)); INTERNAL_ASSERT_EQ(3, value3); ASSIGN_OR_RETURN((const auto& [tuple1, tuple2]), ReturnStatusOrValue(std::make_tuple(1, 2))); INTERNAL_ASSERT_EQ(1, tuple1); INTERNAL_ASSERT_EQ(2, tuple2); ASSIGN_OR_RETURN(int value4, ReturnStatusOrError("EXPECTED")); return value4; }; ASSERT_EQ(func().status().message(), "EXPECTED"); } TEST(ExternalStatusTest, AssignOrReturn3) { auto func1 = []() -> absl::StatusOr<int> { ASSIGN_OR_RETURN(int value1, ReturnStatusOrValue(1), _ << "NOT EXPECTED"); INTERNAL_ASSERT_EQ(1, value1); ASSIGN_OR_RETURN((const auto& [tuple1, tuple2]), ReturnStatusOrValue(std::make_tuple(1, 2)), _ << "NOT EXPECTED"); INTERNAL_ASSERT_EQ(1, tuple1); INTERNAL_ASSERT_EQ(2, tuple2); ASSIGN_OR_RETURN(int value2, ReturnStatusOrError("EXPECTED"), _ << "ALSO " << "EXPECTED"); return value2; }; ASSERT_EQ(func1().status().message(), "EXPECTED; ALSO EXPECTED"); auto func2 = []() -> void { ASSIGN_OR_RETURN(int value, absl::StatusOr<int>(5), (void)_); INTERNAL_ASSERT_EQ(value, 5); }; func2(); } TEST(ExternalStatusTest, AssignOrReturnAnnotateEmpty) { auto err = [] { return absl::StatusOr<int>(absl::InvalidArgumentError("")); }; auto func = [&]() -> absl::StatusOr<int> { ASSIGN_OR_RETURN(auto result, err(), _ << "suffix"); return result; }; ASSERT_EQ(func().status().message(), "suffix"); } TEST(ExternalStatusTest, AssignOrReturn3Payload) { auto err = [] { auto status = absl::InvalidArgumentError("message"); status.SetPayload("url", absl::Cord("payload")); return absl::StatusOr<int>(status); }; auto func = [&]() -> absl::StatusOr<int> { ASSIGN_OR_RETURN(auto result, err(), _ << "suffix"); return result; }; ASSERT_EQ(func().status().message(), "message; suffix"); ASSERT_EQ(func().status().GetPayload("url"), "payload"); } TEST(ExternalStatusTest, AssertOkAndAssign) { ASSERT_OK_AND_ASSIGN(auto value, ReturnStatusOrValue(1)); ASSERT_EQ(1, value); ASSERT_OK_AND_ASSIGN((const auto& [tuple1, tuple2]), ReturnStatusOrValue(std::make_tuple(1, 2))); ASSERT_EQ(1, tuple1); ASSERT_EQ(2, tuple2); EXPECT_FATAL_FAILURE( []() { ASSERT_OK_AND_ASSIGN(auto x, ReturnStatusOrError("Expected error")); (void)x; }(), "Expected error"); } TEST(ExternalStatusTest, AssertOk) { ASSERT_OK(ReturnOk()); ASSERT_OK(ReturnStatusOrValue(1)); EXPECT_FATAL_FAILURE(ASSERT_OK(ReturnStatusOrError("Expected error")), "Expected error"); } TEST(ExternalStatusTest, ExpectOk) { EXPECT_OK(ReturnOk()); EXPECT_OK(ReturnStatusOrValue(1)); EXPECT_NONFATAL_FAILURE(EXPECT_OK(ReturnStatusOrError("Expected error")), "Expected error"); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/status_macros_backport.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/status_macros_backport_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
0b41c07f-45b3-4650-abe4-781be34d4dd6
cpp
tensorflow/tensorflow
tf_mlir_translate_registration
tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate_registration.cc
tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate_registration_test.cc
#include <memory> #include <utility> #include "absl/container/flat_hash_set.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Tools/mlir-translate/Translation.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate.h" #include "tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate_cl.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "xla/client/client_library.h" #include "xla/client/compile_only_client.h" #include "xla/stream_executor/host/host_platform_id.h" #include "xla/stream_executor/platform_manager.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tsl/platform/protobuf.h" namespace mlir { using tsl::Status; using tsl::StatusOr; static constexpr char kMlirToGraphCompilationCheckName[] = "mlir-to-graph-compilation-check"; static constexpr char kArbitraryDeviceName[] = "XLA_CPU_JIT"; namespace { inline absl::string_view StringRefToView(llvm::StringRef ref) { return {ref.data(), ref.size()}; } } static OwningOpRef<mlir::ModuleOp> GraphdefToMlirTranslateFunction( llvm::StringRef input, MLIRContext* context) { tensorflow::GraphdefToMlirOptions options{ debug_info_file, xla_compile_device_type, prune_unused_nodes, convert_legacy_fed_inputs, graph_as_function, upgrade_legacy, enable_shape_inference, unconditionally_use_set_output_shapes, enable_soft_placement, set_original_tf_func_name}; auto module_or = tensorflow::GraphdefToMlirTranslateFunction( input, input_arrays, input_dtypes, input_shapes, output_arrays, control_output_arrays, options, context); if (!module_or.status().ok()) return nullptr; return std::move(module_or).value(); } static TranslateToMLIRRegistration GraphdefToMlirTranslate( "graphdef-to-mlir", "graphdef-to-mlir", GraphdefToMlirTranslateFunction); static OwningOpRef<mlir::ModuleOp> GraphdefToSplattedMlirTranslateFunction( llvm::StringRef input, MLIRContext* context) { tensorflow::GraphdefToMlirOptions options{ debug_info_file, xla_compile_device_type, prune_unused_nodes, convert_legacy_fed_inputs, graph_as_function, upgrade_legacy, enable_shape_inference, unconditionally_use_set_output_shapes}; auto module_or = tensorflow::GraphdefToSplattedMlirTranslateFunction( input, input_arrays, input_dtypes, input_shapes, output_arrays, control_output_arrays, options, context); if (!module_or.status().ok()) return nullptr; return std::move(module_or).value(); } static TranslateToMLIRRegistration GraphdefToSplattedMlirTranslate( "graphdef-to-splatted-mlir", "graphdef-to-splatted-mlir", GraphdefToSplattedMlirTranslateFunction); static Status CompileGraph(tensorflow::Graph* graph, xla::CompileOnlyClient* client) { if (!graph || !client) { return Status(absl::StatusCode::kInvalidArgument, "Invalid graph or client"); } tensorflow::FunctionDefLibrary flib; auto flib_def = std::make_unique<tensorflow::FunctionLibraryDefinition>( tensorflow::OpRegistry::Global(), flib); tensorflow::XlaCompiler::Options options; options.device_type = tensorflow::DeviceType(kArbitraryDeviceName); options.client = client; options.flib_def = flib_def.get(); tensorflow::XlaCompiler compiler(options); std::unique_ptr<tensorflow::Graph> graph_copy( new tensorflow::Graph(tensorflow::OpRegistry::Global())); tensorflow::CopyGraph(*graph, graph_copy.get()); tensorflow::XlaCompiler::CompileOptions compile_options; tensorflow::XlaCompiler::CompilationResult result; return compiler.CompileGraph(compile_options, kMlirToGraphCompilationCheckName, std::move(graph_copy), {}, &result); } static LogicalResult MlirToGraphTranslateFunction(ModuleOp module, llvm::raw_ostream& output) { if (!module) return failure(); tensorflow::GraphExportConfig confs; confs.export_entry_func_to_flib = export_entry_func_to_flib; confs.export_original_tf_func_name = export_original_tf_func_name; std::unique_ptr<tensorflow::FunctionLibraryDefinition> flib_def; auto graph = std::make_unique<tensorflow::Graph>(tensorflow::OpRegistry::Global()); absl::flat_hash_set<tensorflow::Node*> control_ret_nodes; auto status = tensorflow::tf2xla::v2::ConvertTfExecutorToGraph( module, confs, &graph, flib_def.get(), &control_ret_nodes); if (!status.ok()) { LOG(ERROR) << "Export to Graph failed: " << status; return mlir::failure(); } auto platform = stream_executor::PlatformManager::PlatformWithId( stream_executor::host::kHostPlatformId); auto client = xla::ClientLibrary::GetOrCreateCompileOnlyClient(platform.value()); tensorflow::XlaOpRegistry::RegisterCompilationKernels(); if (!CompileGraph(graph.get(), client.value()).ok()) { return mlir::failure(); } auto graphdef = std::make_unique<tensorflow::GraphDef>(); graph->ToGraphDef(graphdef.get()); output << tsl::LegacyUnredactedDebugString(*graphdef); return success(); } static TranslateFromMLIRRegistration mlir_to_graph_translate( "mlir-to-graph", "convert mlir to graph", MlirToGraphTranslateFunction, [](DialectRegistry& registry) { mlir::RegisterAllTensorFlowDialects(registry); }); static LogicalResult MlirToGraphdefTranslateFunction( ModuleOp module, llvm::raw_ostream& output) { if (!module) return failure(); tensorflow::GraphExportConfig confs; confs.export_entry_func_to_flib = export_entry_func_to_flib; confs.export_original_tf_func_name = export_original_tf_func_name; tensorflow::FunctionLibraryDefinition flib_def( tensorflow::OpRegistry::Global(), tensorflow::FunctionDefLibrary()); auto graph = std::make_unique<tensorflow::Graph>(tensorflow::OpRegistry::Global()); absl::flat_hash_set<tensorflow::Node*> control_ret_nodes; auto status = tensorflow::tf2xla::v2::ConvertTfExecutorToGraph( module, confs, &graph, &flib_def, &control_ret_nodes); if (!status.ok()) { LOG(ERROR) << "Export to Graph failed: " << status; return mlir::failure(); } tensorflow::GraphDef graphdef; graph->ToGraphDef(&graphdef); output << tsl::LegacyUnredactedDebugString(graphdef); return success(); } static TranslateFromMLIRRegistration mlir_to_graphdef_translate( "mlir-to-graphdef", "mlir-to-graphdef", MlirToGraphdefTranslateFunction, [](DialectRegistry& registry) { mlir::RegisterAllTensorFlowDialects(registry); }); }
#include <memory> #include <string> #include <utility> #include <vector> #include "absl/strings/match.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Tools/mlir-translate/Translation.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace { class MlirTranslationTest : public ::testing::Test { private: static constexpr char kMlirToGraphFlag[] = "-mlir-to-graph"; public: MlirTranslationTest() : translation_(RegisterTranslation()) { std::vector<const char*> argv = {""}; argv.push_back(kMlirToGraphFlag); llvm::cl::ParseCommandLineOptions(argv.size(), &argv[0], "TF MLIR translation test\n"); } LogicalResult Translate(StringRef source, std::string& sink) { auto source_manager = std::make_shared<llvm::SourceMgr>(); auto source_buffer = llvm::MemoryBuffer::getMemBuffer(source); source_manager->AddNewSourceBuffer(std::move(source_buffer), llvm::SMLoc()); mlir::MLIRContext context; llvm::raw_string_ostream os(sink); return (**translation_)(source_manager, os, &context); } private: llvm::cl::opt<const mlir::Translation*, false, mlir::TranslationParser>* RegisterTranslation() { static const auto requested_translation = new llvm::cl::opt<const mlir::Translation*, false, mlir::TranslationParser>( llvm::cl::desc("Translation to perform")); return requested_translation; } llvm::cl::opt<const mlir::Translation*, false, mlir::TranslationParser>* translation_; }; TEST_F(MlirTranslationTest, TranslatesMlirToGraph) { static constexpr char kMlirSource[] = R"( func.func @main() -> (tensor<1x2xf16>, tensor<2xf16>) { %graph:2 = tf_executor.graph { %0:2 = tf_executor.island wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_HALF", value = dense<1.0> : tensor<1x2xf16>} : () -> tensor<1x2xf16> loc("const1") %1:2 = tf_executor.island wraps "tf.Const"() {device = "", dtype = "tfdtype$DT_HALF", value = dense<[1.0, 2.0]> : tensor<2xf16>} : () -> tensor<2xf16> loc("const2") tf_executor.fetch %0#0, %1#0 : tensor<1x2xf16>, tensor<2xf16> } func.return %graph#0, %graph#1 : tensor<1x2xf16>, tensor<2xf16> })"; std::string result; auto status = Translate(kMlirSource, result); ASSERT_TRUE(status.succeeded()); EXPECT_TRUE(absl::StrContains(result, "node {")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate_registration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/translate/tf_mlir_translate_registration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3bd1293f-ecb9-4fcb-98fd-11ab2bc9252d
cpp
tensorflow/tensorflow
schedule_postprocessing
third_party/xla/xla/service/gpu/transforms/schedule_postprocessing.cc
third_party/xla/xla/service/gpu/transforms/schedule_postprocessing_test.cc
#include "xla/service/gpu/transforms/schedule_postprocessing.h" #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using CustomCallInComputation = absl::flat_hash_map<const HloComputation*, bool>; bool MayInvokeCustomCall( const HloInstruction* hlo, const CustomCallInComputation& custom_call_in_computation) { if (hlo->opcode() == HloOpcode::kCustomCall) { return true; } return absl::c_any_of( hlo->called_computations(), [&](const HloComputation* callee) { return custom_call_in_computation.find(callee)->second; }); } absl::StatusOr<bool> IsRelevantAsynchronousStart(const HloInstruction* hlo) { if (!hlo_query::IsAsyncCollectiveStartOp(hlo, false)) { return false; } TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, hlo->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); return !collective_backend_config.is_sync(); } absl::StatusOr<bool> IsRelevantAsynchronousDone(const HloInstruction* hlo) { return hlo_query::IsAsyncCollectiveDoneOp(hlo, false); } absl::StatusOr<bool> ProcessComputation( const HloSchedule& schedule, HloComputation* computation, CustomCallInComputation& custom_call_in_computation) { bool changed = false; bool has_custom_call = false; absl::flat_hash_set<HloInstruction*> async_starts; const HloInstructionSequence& sequence = schedule.sequence(computation); const std::vector<HloInstruction*>& all_instructions = sequence.instructions(); for (HloInstruction* hlo : all_instructions) { if (MayInvokeCustomCall(hlo, custom_call_in_computation)) { async_starts.clear(); has_custom_call = true; continue; } TF_ASSIGN_OR_RETURN(bool is_async_start, IsRelevantAsynchronousStart(hlo)); if (is_async_start) { async_starts.insert(hlo); continue; } TF_ASSIGN_OR_RETURN(bool is_async_done, IsRelevantAsynchronousDone(hlo)); if (is_async_done) { HloInstruction* async_start = hlo->mutable_operand(0); if (async_starts.contains(async_start)) { changed = true; TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, async_start->backend_config<GpuBackendConfig>()); CollectiveBackendConfig& collective_backend_config = *gpu_config.mutable_collective_backend_config(); collective_backend_config.set_no_parallel_custom_call(true); TF_RETURN_IF_ERROR(async_start->set_backend_config(gpu_config)); async_starts.erase(async_start); } } } custom_call_in_computation[computation] = has_custom_call; return changed; } } absl::StatusOr<bool> SchedulePostprocessing::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { if (!module->has_schedule()) return false; HloSchedule& schedule = module->schedule(); bool changed = false; CustomCallInComputation custom_call_in_computation; std::vector<HloComputation*> all_computations = module->MakeComputationPostOrder(execution_threads); for (auto iter = all_computations.begin(); iter != all_computations.end(); ++iter) { HloComputation* computation = *iter; if (computation->IsFusionComputation()) { custom_call_in_computation[computation] = false; continue; } TF_ASSIGN_OR_RETURN( bool result, ProcessComputation(schedule, computation, custom_call_in_computation)); changed |= result; } return changed; } } }
#include "xla/service/gpu/transforms/schedule_postprocessing.h" #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using SchedulePostprocessingTest = HloTestBase; TEST_F(SchedulePostprocessingTest, SynchronousOpsNotChanged) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY entry { pf32 = f32[1] parameter(0) all-gather-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":true,"no_parallel_custom_call":false}} ROOT all-gather-done = f32[2] all-gather-done(all-gather-start) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); SchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(SchedulePostprocessingTest, P2POpsNotChanged) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY main { f0 = f32[] constant(0.0) init = f32[1, 1024, 1024] broadcast(f0), dimensions={} after-all = token[] after-all() recv = (f32[1, 1024, 1024], u32[], token[]) recv(after-all), channel_id=2, frontend_attributes={ _xla_send_recv_source_target_pairs="{{0,1}, {1,2}}" } recv-done = (f32[1, 1024, 1024], token[]) recv-done(recv), channel_id=2 ROOT recv-data = f32[1, 1024, 1024] get-tuple-element(recv-done), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); SchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); } TEST_F(SchedulePostprocessingTest, AsynchronousOpsChanged) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY entry { pf32 = f32[1] parameter(0) pf32.2 = f32[1] custom-call(pf32), custom_call_target="my_custom_call" all-gather-start = (f32[1], f32[2]) all-gather-start(pf32.2), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":false}} ROOT all-gather-done = f32[2] all-gather-done(all-gather-start) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); SchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_TRUE(changed); HloInstruction* start = FindInstruction(module.get(), "all-gather-start"); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, start->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); EXPECT_TRUE(collective_backend_config.no_parallel_custom_call()); } TEST_F(SchedulePostprocessingTest, AsynchronousOpsWithParallelCustomcall) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true ENTRY entry { pf32 = f32[1] parameter(0) all-gather-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":false}} pf32.2 = f32[1] custom-call(pf32), custom_call_target="my_custom_call" all-gather-done = f32[2] all-gather-done(all-gather-start) ROOT out = (f32[1], f32[2]) tuple(f32[1] pf32.2, f32[2] all-gather-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); SchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); HloInstruction* start = FindInstruction(module.get(), "all-gather-start"); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, start->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); EXPECT_FALSE(collective_backend_config.no_parallel_custom_call()); } TEST_F(SchedulePostprocessingTest, AsynchronousOpsWithParallelNestedCustomcall) { constexpr absl::string_view kHloString = R"( HloModule module, is_scheduled=true foo { v = f32[1] parameter(0) ROOT ret = f32[1] custom-call(v), custom_call_target="my_custom_call" } ENTRY entry { pf32 = f32[1] parameter(0) all-gather-start = (f32[1], f32[2]) all-gather-start(pf32), dimensions={0}, backend_config={"collective_backend_config":{"is_sync":false}} pf32.2 = f32[1] call(f32[1] pf32), to_apply=foo all-gather-done = f32[2] all-gather-done(all-gather-start) ROOT out = (f32[1], f32[2]) tuple(f32[1] pf32.2, f32[2] all-gather-done) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((kHloString))); SchedulePostprocessing pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_FALSE(changed); HloInstruction* start = FindInstruction(module.get(), "all-gather-start"); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, start->backend_config<GpuBackendConfig>()); const CollectiveBackendConfig& collective_backend_config = gpu_config.collective_backend_config(); EXPECT_FALSE(collective_backend_config.no_parallel_custom_call()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/schedule_postprocessing.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/schedule_postprocessing_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2e2c616a-8376-4f45-a80a-b75bf4ec95f6
cpp
tensorflow/tensorflow
conv_weights_converter
tensorflow/lite/delegates/gpu/common/tasks/conv_weights_converter.cc
tensorflow/lite/delegates/gpu/cl/kernels/conv_weights_converter_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/conv_weights_converter.h" #include <cstring> #include <memory> #include <string> #include <utility> #include "tensorflow/lite/delegates/gpu/common/task/util.h" namespace tflite { namespace gpu { ConverterToConvWeights::ConverterToConvWeights( const OperationDef& definition, const WeightsDescription& weights_desc, Layout input_layout) : GPUOperation(definition), weights_desc_(weights_desc), input_layout_(input_layout) { code_ = GetConverterToConvWeightsCode(); } std::string ConverterToConvWeights::GetConverterToConvWeightsCode() { AddSrcTensor("src_tensor", definition_.src_tensors[0]); args_.AddFloat("mask_x"); args_.AddFloat("mask_y"); args_.AddFloat("mask_z"); args_.AddFloat("mask_w"); args_.AddInt("out_ch"); args_.AddInt("out_ch_x4_groups"); args_.AddInt("in_ch"); args_.AddInt("in_ch_x4_groups"); args_.AddInt("kernel_width"); args_.AddInt("kernel_height"); args_.AddInt("kernel_spatial_size"); if (weights_desc_.layout == WeightsLayout::kOICustomSpatialI4O4 || weights_desc_.layout == WeightsLayout::kOICustomSpatialO4I4) { std::vector<int32_t> remap(weights_desc_.spatial_remap.size()); for (int i = 0; i < remap.size(); ++i) { remap[i] = weights_desc_.spatial_remap[i]; } BufferDescriptor desc; desc.element_type = DataType::INT32; desc.element_size = 1; desc.memory_type = MemoryType::GLOBAL; desc.size = remap.size() * sizeof(int32_t); desc.data.resize(desc.size); std::memcpy(desc.data.data(), remap.data(), desc.size); args_.AddObject("spatial_remap", std::make_unique<BufferDescriptor>(std::move(desc))); } std::string c; c += "MAIN_FUNCTION($0) {\n"; c += " int O = GLOBAL_ID_0;\n"; c += " int I = GLOBAL_ID_1;\n"; c += " int spatial_linear = GLOBAL_ID_2;\n"; c += " if (O >= args.out_ch_x4_groups) return;\n"; c += " if (I >= args.in_ch_x4_groups) return;\n"; c += " if (spatial_linear >= args.kernel_spatial_size) return;\n"; if (weights_desc_.layout == WeightsLayout::kOICustomSpatialI4O4 || weights_desc_.layout == WeightsLayout::kOICustomSpatialO4I4) { c += " int linear_remap = args.spatial_remap.Read(spatial_linear);\n"; c += " int W = linear_remap % args.kernel_width;\n"; c += " int H = linear_remap / args.kernel_width;\n"; } else { c += " int W = spatial_linear % args.kernel_width;\n"; c += " int H = spatial_linear / args.kernel_width;\n"; } c += " FLT4 v0 = INIT_FLT4(0.0f);\n"; c += " FLT4 v1 = INIT_FLT4(0.0f);\n"; c += " FLT4 v2 = INIT_FLT4(0.0f);\n"; c += " FLT4 v3 = INIT_FLT4(0.0f);\n"; if (input_layout_ == Layout::OHWI) { c += " if (O * 4 < args.out_ch) {\n"; c += " v0 = args.src_tensor.Read(W, H, I, O * 4);\n"; c += " }\n"; c += " if (O * 4 + 1 < args.out_ch) {\n"; c += " v1 = args.src_tensor.Read(W, H, I, O * 4 + 1);\n"; c += " }\n"; c += " if (O * 4 + 2 < args.out_ch) {\n"; c += " v2 = args.src_tensor.Read(W, H, I, O * 4 + 2);\n"; c += " }\n"; c += " if (O * 4 + 3 < args.out_ch) {\n"; c += " v3 = args.src_tensor.Read(W, H, I, O * 4 + 3);\n"; c += " }\n"; c += " if (I == args.src_tensor.Slices() - 1) {\n"; c += " FLT4 mask = INIT_FLT4v4(args.mask_x, args.mask_y, args.mask_z, " "args.mask_w);\n"; c += " v0 *= mask;\n"; c += " v1 *= mask;\n"; c += " v2 *= mask;\n"; c += " v3 *= mask;\n"; c += " }\n"; } else if (input_layout_ == Layout::HWIO) { c += " if (I * 4 < args.in_ch && O < args.src_tensor.Slices()) {\n"; c += " v0 = args.src_tensor.Read(I * 4, W, O, H);\n"; c += " }\n"; c += " if (I * 4 + 1 < args.in_ch && O < args.src_tensor.Slices()) {\n"; c += " v1 = args.src_tensor.Read(I * 4 + 1, W, O, H);\n"; c += " }\n"; c += " if (I * 4 + 2 < args.in_ch && O < args.src_tensor.Slices()) {\n"; c += " v2 = args.src_tensor.Read(I * 4 + 2, W, O, H);\n"; c += " }\n"; c += " if (I * 4 + 3 < args.in_ch && O < args.src_tensor.Slices()) {\n"; c += " v3 = args.src_tensor.Read(I * 4 + 3, W, O, H);\n"; c += " }\n"; c += " if (O == args.src_tensor.Slices() - 1) {\n"; c += " FLT4 mask = INIT_FLT4v4(args.mask_x, args.mask_y, args.mask_z, " "args.mask_w);\n"; c += " v0 *= mask;\n"; c += " v1 *= mask;\n"; c += " v2 *= mask;\n"; c += " v3 *= mask;\n"; c += " }\n"; } const bool need_transpose = (input_layout_ == Layout::HWIO && weights_desc_.IsO4I4()) || (input_layout_ == Layout::OHWI && weights_desc_.IsI4O4()); if (need_transpose) { c += " FLT4 r0 = INIT_FLT4v4(v0.x, v1.x, v2.x, v3.x);\n"; c += " FLT4 r1 = INIT_FLT4v4(v0.y, v1.y, v2.y, v3.y);\n"; c += " FLT4 r2 = INIT_FLT4v4(v0.z, v1.z, v2.z, v3.z);\n"; c += " FLT4 r3 = INIT_FLT4v4(v0.w, v1.w, v2.w, v3.w);\n"; } else { c += " FLT4 r0 = v0;\n"; c += " FLT4 r1 = v1;\n"; c += " FLT4 r2 = v2;\n"; c += " FLT4 r3 = v3;\n"; } if (weights_desc_.layout == WeightsLayout::k2DX4I4YIsSpatialIAndXIsOOGroupO4 || weights_desc_.layout == WeightsLayout::k2DX4O4YIsSpatialIAndXIsOOGroupI4) { AddDstTensor("dst_tensor0", definition_.dst_tensors[0]); AddDstTensor("dst_tensor1", definition_.dst_tensors[1]); AddDstTensor("dst_tensor2", definition_.dst_tensors[2]); AddDstTensor("dst_tensor3", definition_.dst_tensors[3]); c += " int yc = spatial_linear * args.in_ch_x4_groups + I;\n"; c += " args.dst_tensor0.Write2D(r0, O, yc);\n"; c += " args.dst_tensor1.Write2D(r1, O, yc);\n"; c += " args.dst_tensor2.Write2D(r2, O, yc);\n"; c += " args.dst_tensor3.Write2D(r3, O, yc);\n"; c += "}\n"; } else { AddDstTensor("dst_tensor", definition_.dst_tensors[0]); c += " int OUTPUT_GROUP_SIZE = " + std::to_string(weights_desc_.GetOutputGroupSize()) + ";\n"; c += " int d_index = (O * 4) / (OUTPUT_GROUP_SIZE * 4);\n"; c += " int k_index = ((O * 4) % (OUTPUT_GROUP_SIZE * 4)) / 4;\n"; std::string index; if (weights_desc_.layout == WeightsLayout::kOICustomSpatialI4O4 || weights_desc_.layout == WeightsLayout::kOICustomSpatialO4I4) { index = "(d_index * args.in_ch_x4_groups + I) * args.kernel_spatial_size + " "spatial_linear"; } else if (weights_desc_.layout == WeightsLayout::kOSpatialIOGroupI4O4 || weights_desc_.layout == WeightsLayout::kOSpatialIOGroupO4I4) { index = "(d_index * args.kernel_spatial_size + spatial_linear) * " "args.in_ch_x4_groups + I"; } c += " int dst_offset = (" + index + ") * OUTPUT_GROUP_SIZE + k_index;\n"; c += " args.dst_tensor.WriteLinear(r0, dst_offset * 4 + 0);\n"; c += " args.dst_tensor.WriteLinear(r1, dst_offset * 4 + 1);\n"; c += " args.dst_tensor.WriteLinear(r2, dst_offset * 4 + 2);\n"; c += " args.dst_tensor.WriteLinear(r3, dst_offset * 4 + 3);\n"; c += "}\n"; } return c; } OHWI ConverterToConvWeights::GetWeightsSize() const { int output_channels = 0; int input_channels = 0; int kernel_width = 0; int kernel_height = 0; if (input_layout_ == Layout::HWIO) { output_channels = src_[0]->Channels(); input_channels = src_[0]->Width(); kernel_width = src_[0]->Height(); kernel_height = src_[0]->Batch(); } else if (input_layout_ == Layout::OHWI) { output_channels = src_[0]->Batch(); input_channels = src_[0]->Channels(); kernel_width = src_[0]->Width(); kernel_height = src_[0]->Height(); } return OHWI(output_channels, kernel_height, kernel_width, input_channels); } absl::Status ConverterToConvWeights::BindArguments(ArgumentsBinder* args) { const auto& weights_shape = GetWeightsSize(); const int output_channels_x4_groups = DivideRoundUp( AlignByN(weights_shape.o, 4 * weights_desc_.GetOutputGroupSize()), 4); RETURN_IF_ERROR(args->SetInt("out_ch", weights_shape.o)); RETURN_IF_ERROR(args->SetInt("out_ch_x4_groups", output_channels_x4_groups)); RETURN_IF_ERROR(args->SetInt("in_ch", weights_shape.i)); RETURN_IF_ERROR( args->SetInt("in_ch_x4_groups", DivideRoundUp(weights_shape.i, 4))); RETURN_IF_ERROR(args->SetInt("kernel_width", weights_shape.w)); RETURN_IF_ERROR(args->SetInt("kernel_height", weights_shape.h)); RETURN_IF_ERROR( args->SetInt("kernel_spatial_size", weights_shape.w * weights_shape.h)); float4 mask = GetMaskForLastPlane(src_[0]->Channels()); RETURN_IF_ERROR(args->SetFloat("mask_x", mask.x)); RETURN_IF_ERROR(args->SetFloat("mask_y", mask.y)); RETURN_IF_ERROR(args->SetFloat("mask_z", mask.z)); return args->SetFloat("mask_w", mask.w); } int3 ConverterToConvWeights::GetGridSize() const { const auto& weights_shape = GetWeightsSize(); const int out_group_size = weights_desc_.GetOutputGroupSize(); const int grid_x = DivideRoundUp(AlignByN(weights_shape.o, 4 * out_group_size), 4); const int grid_y = DivideRoundUp(weights_shape.i, 4); const int grid_z = weights_shape.w * weights_shape.h; return int3(grid_x, grid_y, grid_z); } ConverterToConvWeights CreateConverterToConvWeights( const OperationDef& definition, const WeightsDescription& weights_desc, Layout input_layout) { return ConverterToConvWeights(definition, weights_desc, input_layout); } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/conv_weights_converter_test_util.h" namespace tflite { namespace gpu { namespace cl { TEST_F(OpenCLOperationTest, ConverterToConvWeights1x1OutX4) { const auto status = ConverterToConvWeights1x1OutX4Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConverterToConvWeights1x1OutX4Unaligned) { const auto status = ConverterToConvWeights1x1OutX4UnalignedTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConverterToConvWeights1x1OutX2) { const auto status = ConverterToConvWeights1x1OutX2Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConverterToConvWeightsOutX2) { const auto status = ConverterToConvWeightsOutX2Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConverterToConvTransposedWeights4x4) { const auto status = ConverterToConvTransposedWeights4x4Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConverterToConvWeights4xTextures) { const auto status = ConverterToConvWeights4xTexturesTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/conv_weights_converter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/conv_weights_converter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
da2a6451-f55a-441f-80f9-ef5b7e5838ea
cpp
google/cel-cpp
compiler_constant_step
eval/eval/compiler_constant_step.cc
eval/eval/compiler_constant_step_test.cc
#include "eval/eval/compiler_constant_step.h" #include "absl/status/status.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/evaluator_core.h" namespace google::api::expr::runtime { using ::cel::Value; absl::Status DirectCompilerConstantStep::Evaluate( ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const { result = value_; return absl::OkStatus(); } absl::Status CompilerConstantStep::Evaluate(ExecutionFrame* frame) const { frame->value_stack().Push(value_); return absl::OkStatus(); } }
#include "eval/eval/compiler_constant_step.h" #include <memory> #include "base/type_provider.h" #include "common/native_type.h" #include "common/type_factory.h" #include "common/type_manager.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/eval/evaluator_core.h" #include "extensions/protobuf/memory_manager.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/runtime_options.h" namespace google::api::expr::runtime { namespace { using ::cel::extensions::ProtoMemoryManagerRef; class CompilerConstantStepTest : public testing::Test { public: CompilerConstantStepTest() : value_factory_(ProtoMemoryManagerRef(&arena_), cel::TypeProvider::Builtin()), state_(2, 0, cel::TypeProvider::Builtin(), ProtoMemoryManagerRef(&arena_)) {} protected: google::protobuf::Arena arena_; cel::common_internal::LegacyValueManager value_factory_; FlatExpressionEvaluatorState state_; cel::Activation empty_activation_; cel::RuntimeOptions options_; }; TEST_F(CompilerConstantStepTest, Evaluate) { ExecutionPath path; path.push_back(std::make_unique<CompilerConstantStep>( value_factory_.CreateIntValue(42), -1, false)); ExecutionFrame frame(path, empty_activation_, options_, state_); ASSERT_OK_AND_ASSIGN(cel::Value result, frame.Evaluate()); EXPECT_EQ(result.GetInt().NativeValue(), 42); } TEST_F(CompilerConstantStepTest, TypeId) { CompilerConstantStep step(value_factory_.CreateIntValue(42), -1, false); ExpressionStep& abstract_step = step; EXPECT_EQ(abstract_step.GetNativeTypeId(), cel::NativeTypeId::For<CompilerConstantStep>()); } TEST_F(CompilerConstantStepTest, Value) { CompilerConstantStep step(value_factory_.CreateIntValue(42), -1, false); EXPECT_EQ(step.value().GetInt().NativeValue(), 42); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/compiler_constant_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/compiler_constant_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
ec3a6617-a451-44bc-8bdd-d99c7dc86203
cpp
google/quiche
quic_spdy_session
quiche/quic/core/http/quic_spdy_session.cc
quiche/quic/core/http/quic_spdy_session_test.cc
#include "quiche/quic/core/http/quic_spdy_session.h" #include <algorithm> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <ostream> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/http2/core/http2_frame_decoder_adapter.h" #include "quiche/quic/core/http/http_constants.h" #include "quiche/quic/core/http/http_decoder.h" #include "quiche/quic/core/http/http_frames.h" #include "quiche/quic/core/http/quic_headers_stream.h" #include "quiche/quic/core/http/quic_spdy_stream.h" #include "quiche/quic/core/http/web_transport_http3.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_exported_stats.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_stack_trace.h" #include "quiche/common/platform/api/quiche_mem_slice.h" using http2::Http2DecoderAdapter; using quiche::HttpHeaderBlock; using spdy::Http2WeightToSpdy3Priority; using spdy::Spdy3PriorityToHttp2Weight; using spdy::SpdyErrorCode; using spdy::SpdyFramer; using spdy::SpdyFramerDebugVisitorInterface; using spdy::SpdyFramerVisitorInterface; using spdy::SpdyFrameType; using spdy::SpdyHeadersHandlerInterface; using spdy::SpdyHeadersIR; using spdy::SpdyPingId; using spdy::SpdyPriority; using spdy::SpdyPriorityIR; using spdy::SpdySerializedFrame; using spdy::SpdySettingsId; using spdy::SpdyStreamId; namespace quic { ABSL_CONST_INIT const size_t kMaxUnassociatedWebTransportStreams = 24; namespace { constexpr uint64_t kHpackEncoderDynamicTableSizeLimit = 16384; constexpr QuicStreamCount kDefaultMaxWebTransportSessions = 16; #define ENDPOINT \ (perspective() == Perspective::IS_SERVER ? "Server: " : "Client: ") class AlpsFrameDecoder : public HttpDecoder::Visitor { public: explicit AlpsFrameDecoder(QuicSpdySession* session) : session_(session) {} ~AlpsFrameDecoder() override = default; void OnError(HttpDecoder* ) override {} bool OnMaxPushIdFrame() override { error_detail_ = "MAX_PUSH_ID frame forbidden"; return false; } bool OnGoAwayFrame(const GoAwayFrame& ) override { error_detail_ = "GOAWAY frame forbidden"; return false; } bool OnSettingsFrameStart(QuicByteCount ) override { return true; } bool OnSettingsFrame(const SettingsFrame& frame) override { if (settings_frame_received_via_alps_) { error_detail_ = "multiple SETTINGS frames"; return false; } settings_frame_received_via_alps_ = true; error_detail_ = session_->OnSettingsFrameViaAlps(frame); return !error_detail_; } bool OnDataFrameStart(QuicByteCount , QuicByteCount ) override { error_detail_ = "DATA frame forbidden"; return false; } bool OnDataFramePayload(absl::string_view ) override { QUICHE_NOTREACHED(); return false; } bool OnDataFrameEnd() override { QUICHE_NOTREACHED(); return false; } bool OnHeadersFrameStart(QuicByteCount , QuicByteCount ) override { error_detail_ = "HEADERS frame forbidden"; return false; } bool OnHeadersFramePayload(absl::string_view ) override { QUICHE_NOTREACHED(); return false; } bool OnHeadersFrameEnd() override { QUICHE_NOTREACHED(); return false; } bool OnPriorityUpdateFrameStart(QuicByteCount ) override { error_detail_ = "PRIORITY_UPDATE frame forbidden"; return false; } bool OnPriorityUpdateFrame(const PriorityUpdateFrame& ) override { QUICHE_NOTREACHED(); return false; } bool OnAcceptChFrameStart(QuicByteCount ) override { return true; } bool OnAcceptChFrame(const AcceptChFrame& frame) override { session_->OnAcceptChFrameReceivedViaAlps(frame); return true; } bool OnOriginFrameStart(QuicByteCount ) override { QUICHE_NOTREACHED(); return true; } bool OnOriginFrame(const OriginFrame& ) override { return true; } void OnWebTransportStreamFrameType( QuicByteCount , WebTransportSessionId ) override { QUICHE_NOTREACHED(); } bool OnMetadataFrameStart(QuicByteCount , QuicByteCount ) override { error_detail_ = "METADATA frame forbidden"; return false; } bool OnMetadataFramePayload(absl::string_view ) override { QUICHE_NOTREACHED(); return false; } bool OnMetadataFrameEnd() override { QUICHE_NOTREACHED(); return false; } bool OnUnknownFrameStart(uint64_t , QuicByteCount , QuicByteCount ) override { return true; } bool OnUnknownFramePayload(absl::string_view ) override { return true; } bool OnUnknownFrameEnd() override { return true; } const std::optional<std::string>& error_detail() const { return error_detail_; } private: QuicSpdySession* const session_; std::optional<std::string> error_detail_; bool settings_frame_received_via_alps_ = false; }; uint64_t GetDefaultQpackMaximumDynamicTableCapacity(Perspective perspective) { if (perspective == Perspective::IS_SERVER && GetQuicFlag(quic_server_disable_qpack_dynamic_table)) { return 0; } return kDefaultQpackMaxDynamicTableCapacity; } class SizeLimitingHeaderList : public spdy::SpdyHeadersHandlerInterface { public: ~SizeLimitingHeaderList() override = default; void OnHeaderBlockStart() override { QUIC_BUG_IF(quic_bug_12518_1, current_header_list_size_ != 0) << "OnHeaderBlockStart called more than once!"; } void OnHeader(absl::string_view name, absl::string_view value) override { if (current_header_list_size_ < max_header_list_size_) { current_header_list_size_ += name.size(); current_header_list_size_ += value.size(); current_header_list_size_ += kQpackEntrySizeOverhead; header_list_.OnHeader(name, value); } } void OnHeaderBlockEnd(size_t uncompressed_header_bytes, size_t compressed_header_bytes) override { header_list_.OnHeaderBlockEnd(uncompressed_header_bytes, compressed_header_bytes); if (current_header_list_size_ > max_header_list_size_) { Clear(); } } void set_max_header_list_size(size_t max_header_list_size) { max_header_list_size_ = max_header_list_size; } void Clear() { header_list_.Clear(); current_header_list_size_ = 0; } const QuicHeaderList& header_list() const { return header_list_; } private: QuicHeaderList header_list_; size_t max_header_list_size_ = std::numeric_limits<size_t>::max(); size_t current_header_list_size_ = 0; }; } class QuicSpdySession::SpdyFramerVisitor : public SpdyFramerVisitorInterface, public SpdyFramerDebugVisitorInterface { public: explicit SpdyFramerVisitor(QuicSpdySession* session) : session_(session) {} SpdyFramerVisitor(const SpdyFramerVisitor&) = delete; SpdyFramerVisitor& operator=(const SpdyFramerVisitor&) = delete; SpdyHeadersHandlerInterface* OnHeaderFrameStart( SpdyStreamId ) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); return &header_list_; } void OnHeaderFrameEnd(SpdyStreamId ) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); LogHeaderCompressionRatioHistogram( false, false, header_list_.header_list().compressed_header_bytes(), header_list_.header_list().uncompressed_header_bytes()); if (session_->IsConnected() && !expecting_pushed_headers_) { session_->OnHeaderList(header_list_.header_list()); } expecting_pushed_headers_ = false; header_list_.Clear(); } void OnStreamFrameData(SpdyStreamId , const char* , size_t ) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); CloseConnection("SPDY DATA frame received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnStreamEnd(SpdyStreamId ) override { } void OnStreamPadding(SpdyStreamId , size_t ) override { CloseConnection("SPDY frame padding received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnError(Http2DecoderAdapter::SpdyFramerError error, std::string detailed_error) override { QuicErrorCode code; switch (error) { case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_INDEX_VARINT_ERROR: code = QUIC_HPACK_INDEX_VARINT_ERROR; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_NAME_LENGTH_VARINT_ERROR: code = QUIC_HPACK_NAME_LENGTH_VARINT_ERROR; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_VALUE_LENGTH_VARINT_ERROR: code = QUIC_HPACK_VALUE_LENGTH_VARINT_ERROR; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_NAME_TOO_LONG: code = QUIC_HPACK_NAME_TOO_LONG; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_VALUE_TOO_LONG: code = QUIC_HPACK_VALUE_TOO_LONG; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_NAME_HUFFMAN_ERROR: code = QUIC_HPACK_NAME_HUFFMAN_ERROR; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_VALUE_HUFFMAN_ERROR: code = QUIC_HPACK_VALUE_HUFFMAN_ERROR; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_MISSING_DYNAMIC_TABLE_SIZE_UPDATE: code = QUIC_HPACK_MISSING_DYNAMIC_TABLE_SIZE_UPDATE; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_INVALID_INDEX: code = QUIC_HPACK_INVALID_INDEX; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_INVALID_NAME_INDEX: code = QUIC_HPACK_INVALID_NAME_INDEX; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_DYNAMIC_TABLE_SIZE_UPDATE_NOT_ALLOWED: code = QUIC_HPACK_DYNAMIC_TABLE_SIZE_UPDATE_NOT_ALLOWED; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_INITIAL_DYNAMIC_TABLE_SIZE_UPDATE_IS_ABOVE_LOW_WATER_MARK: code = QUIC_HPACK_INITIAL_TABLE_SIZE_UPDATE_IS_ABOVE_LOW_WATER_MARK; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_DYNAMIC_TABLE_SIZE_UPDATE_IS_ABOVE_ACKNOWLEDGED_SETTING: code = QUIC_HPACK_TABLE_SIZE_UPDATE_IS_ABOVE_ACKNOWLEDGED_SETTING; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_TRUNCATED_BLOCK: code = QUIC_HPACK_TRUNCATED_BLOCK; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_HPACK_FRAGMENT_TOO_LONG: code = QUIC_HPACK_FRAGMENT_TOO_LONG; break; case Http2DecoderAdapter::SpdyFramerError:: SPDY_HPACK_COMPRESSED_HEADER_SIZE_EXCEEDS_LIMIT: code = QUIC_HPACK_COMPRESSED_HEADER_SIZE_EXCEEDS_LIMIT; break; case Http2DecoderAdapter::SpdyFramerError::SPDY_DECOMPRESS_FAILURE: code = QUIC_HEADERS_STREAM_DATA_DECOMPRESS_FAILURE; break; default: code = QUIC_INVALID_HEADERS_STREAM_DATA; } CloseConnection( absl::StrCat("SPDY framing error: ", detailed_error, Http2DecoderAdapter::SpdyFramerErrorToString(error)), code); } void OnDataFrameHeader(SpdyStreamId , size_t , bool ) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); CloseConnection("SPDY DATA frame received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnRstStream(SpdyStreamId , SpdyErrorCode ) override { CloseConnection("SPDY RST_STREAM frame received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnSetting(SpdySettingsId id, uint32_t value) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); session_->OnSetting(id, value); } void OnSettingsEnd() override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); } void OnPing(SpdyPingId , bool ) override { CloseConnection("SPDY PING frame received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnGoAway(SpdyStreamId , SpdyErrorCode ) override { CloseConnection("SPDY GOAWAY frame received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnHeaders(SpdyStreamId stream_id, size_t , bool has_priority, int weight, SpdyStreamId , bool , bool fin, bool ) override { if (!session_->IsConnected()) { return; } if (VersionUsesHttp3(session_->transport_version())) { CloseConnection("HEADERS frame not allowed on headers stream.", QUIC_INVALID_HEADERS_STREAM_DATA); return; } QUIC_BUG_IF(quic_bug_12477_1, session_->destruction_indicator() != 123456789) << "QuicSpdyStream use after free. " << session_->destruction_indicator() << QuicStackTrace(); SpdyPriority priority = has_priority ? Http2WeightToSpdy3Priority(weight) : 0; session_->OnHeaders(stream_id, has_priority, spdy::SpdyStreamPrecedence(priority), fin); } void OnWindowUpdate(SpdyStreamId , int ) override { CloseConnection("SPDY WINDOW_UPDATE frame received.", QUIC_INVALID_HEADERS_STREAM_DATA); } void OnPushPromise(SpdyStreamId , SpdyStreamId promised_stream_id, bool ) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); if (session_->perspective() != Perspective::IS_CLIENT) { CloseConnection("PUSH_PROMISE not supported.", QUIC_INVALID_HEADERS_STREAM_DATA); return; } session_->MaybeSendRstStreamFrame( promised_stream_id, QuicResetStreamError::FromInternal(QUIC_REFUSED_STREAM), 0); QUICHE_DCHECK(!expecting_pushed_headers_); expecting_pushed_headers_ = true; } void OnContinuation(SpdyStreamId , size_t , bool ) override {} void OnPriority(SpdyStreamId stream_id, SpdyStreamId , int weight, bool ) override { QUICHE_DCHECK(!VersionUsesHttp3(session_->transport_version())); if (!session_->IsConnected()) { return; } SpdyPriority priority = Http2WeightToSpdy3Priority(weight); session_->OnPriority(stream_id, spdy::SpdyStreamPrecedence(priority)); } void OnPriorityUpdate(SpdyStreamId , absl::string_view ) override {} bool OnUnknownFrame(SpdyStreamId , uint8_t ) override { CloseConnection("Unknown frame type received.", QUIC_INVALID_HEADERS_STREAM_DATA); return false; } void OnUnknownFrameStart(SpdyStreamId , size_t , uint8_t , uint8_t ) override {} void OnUnknownFramePayload(SpdyStreamId , absl::string_view ) override {} void OnSendCompressedFrame(SpdyStreamId , SpdyFrameType , size_t payload_len, size_t frame_len) override { if (payload_len == 0) { QUIC_BUG(quic_bug_10360_1) << "Zero payload length."; return; } int compression_pct = 100 - (100 * frame_len) / payload_len; QUIC_DVLOG(1) << "Net.QuicHpackCompressionPercentage: " << compression_pct; } void OnReceiveCompressedFrame(SpdyStreamId , SpdyFrameType , size_t frame_len) override { if (session_->IsConnected()) { session_->OnCompressedFrameSize(frame_len); } } void set_max_header_list_size(size_t max_header_list_size) { header_list_.set_max_header_list_size(max_header_list_size); } private: void CloseConnection(const std::string& details, QuicErrorCode code) { if (session_->IsConnected()) { session_->CloseConnectionWithDetails(code, details); } } QuicSpdySession* session_; SizeLimitingHeaderList header_list_; bool expecting_pushed_headers_ = false; }; Http3DebugVisitor::Http3DebugVisitor() {} Http3DebugVisitor::~Http3DebugVisitor() {} QuicSpdySession::QuicSpdySession( QuicConnection* connection, QuicSession::Visitor* visitor, const QuicConfig& config, const ParsedQuicVersionVector& supported_versions) : QuicSession(connection, visitor, config, supported_versions, VersionUsesHttp3(connection->transport_version()) ? static_cast<QuicStreamCount>( kHttp3StaticUnidirectionalStreamCount) : 0u, std::make_unique<DatagramObserver>(this)), send_control_stream_(nullptr), receive_control_stream_(nullptr), qpack_encoder_receive_stream_(nullptr), qpack_decoder_receive_stream_(nullptr), qpack_encoder_send_stream_(nullptr), qpack_decoder_send_stream_(nullptr), qpack_maximum_dynamic_table_capacity_( GetDefaultQpackMaximumDynamicTableCapacity(perspective())), qpack_maximum_blocked_streams_(kDefaultMaximumBlockedStreams), max_inbound_header_list_size_(kDefaultMaxUncompressedHeaderSize), max_outbound_header_list_size_(std::numeric_limits<size_t>::max()), stream_id_( QuicUtils::GetInvalidStreamId(connection->transport_version())), frame_len_(0), fin_(false), spdy_framer_(SpdyFramer::ENABLE_COMPRESSION), spdy_framer_visitor_(new SpdyFramerVisitor(this)), debug_visitor_(nullptr), destruction_indicator_(123456789), allow_extended_connect_(perspective() == Perspective::IS_SERVER && VersionUsesHttp3(transport_version())), force_buffer_requests_until_settings_(false) { h2_deframer_.set_visitor(spdy_framer_visitor_.get()); h2_deframer_.set_debug_visitor(spdy_framer_visitor_.get()); spdy_framer_.set_debug_visitor(spdy_framer_visitor_.get()); } QuicSpdySession::~QuicSpdySession() { QUIC_BUG_IF(quic_bug_12477_2, destruction_indicator_ != 123456789) << "QuicSpdySession use after free. " << destruction_indicator_ << QuicStackTrace(); destruction_indicator_ = 987654321; } void QuicSpdySession::Initialize() { QuicSession::Initialize(); FillSettingsFrame(); if (!VersionUsesHttp3(transport_version())) { if (perspective() == Perspective::IS_SERVER) { set_largest_peer_created_stream_id( QuicUtils::GetHeadersStreamId(transport_version())); } else { QuicStreamId headers_stream_id = GetNextOutgoingBidirectionalStreamId(); QUICHE_DCHECK_EQ(headers_stream_id, QuicUtils::GetHeadersStreamId(transport_version())); } auto headers_stream = std::make_unique<QuicHeadersStream>((this)); QUICHE_DCHECK_EQ(QuicUtils::GetHeadersStreamId(transport_version()), headers_stream->id()); headers_stream_ = headers_stream.get(); ActivateStream(std::move(headers_stream)); } else { qpack_encoder_ = std::make_unique<QpackEncoder>(this, huffman_encoding_, cookie_crumbling_); qpack_decoder_ = std::make_unique<QpackDecoder>(qpack_maximum_dynamic_table_capacity_, qpack_maximum_blocked_streams_, this); MaybeInitializeHttp3UnidirectionalStreams(); } spdy_framer_visitor_->set_max_header_list_size(max_inbound_header_list_size_); h2_deframer_.GetHpackDecoder().set_max_decode_buffer_size_bytes( 2 * max_inbound_header_list_size_); } void QuicSpdySession::FillSettingsFrame() { settings_.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = qpack_maximum_dynamic_table_capacity_; settings_.values[SETTINGS_QPACK_BLOCKED_STREAMS] = qpack_maximum_blocked_streams_; settings_.values[SETTINGS_MAX_FIELD_SECTION_SIZE] = max_inbound_header_list_size_; if (version().UsesHttp3()) { switch (LocalHttpDatagramSupport()) { case HttpDatagramSupport::kNone: break; case HttpDatagramSupport::kDraft04: settings_.values[SETTINGS_H3_DATAGRAM_DRAFT04] = 1; break; case HttpDatagramSupport::kRfc: settings_.values[SETTINGS_H3_DATAGRAM] = 1; break; case HttpDatagramSupport::kRfcAndDraft04: settings_.values[SETTINGS_H3_DATAGRAM] = 1; settings_.values[SETTINGS_H3_DATAGRAM_DRAFT04] = 1; break; } } if (WillNegotiateWebTransport()) { WebTransportHttp3VersionSet versions = LocallySupportedWebTransportVersions(); if (versions.IsSet(WebTransportHttp3Version::kDraft02)) { settings_.values[SETTINGS_WEBTRANS_DRAFT00] = 1; } if (versions.IsSet(WebTransportHttp3Version::kDraft07)) { QUICHE_BUG_IF( WT_enabled_extended_connect_disabled, perspective() == Perspective::IS_SERVER && !allow_extended_connect()) << "WebTransport enabled, but extended CONNECT is not"; settings_.values[SETTINGS_WEBTRANS_MAX_SESSIONS_DRAFT07] = kDefaultMaxWebTransportSessions; } } if (allow_extended_connect()) { settings_.values[SETTINGS_ENABLE_CONNECT_PROTOCOL] = 1; } } void QuicSpdySession::OnDecoderStreamError(QuicErrorCode error_code, absl::string_view error_message) { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); CloseConnectionWithDetails( error_code, absl::StrCat("Decoder stream error: ", error_message)); } void QuicSpdySession::OnEncoderStreamError(QuicErrorCode error_code, absl::string_view error_message) { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); CloseConnectionWithDetails( error_code, absl::StrCat("Encoder stream error: ", error_message)); } void QuicSpdySession::OnStreamHeadersPriority( QuicStreamId stream_id, const spdy::SpdyStreamPrecedence& precedence) { QuicSpdyStream* stream = GetOrCreateSpdyDataStream(stream_id); if (!stream) { return; } stream->OnStreamHeadersPriority(precedence); } void QuicSpdySession::OnStreamHeaderList(QuicStreamId stream_id, bool fin, size_t frame_len, const QuicHeaderList& header_list) { if (IsStaticStream(stream_id)) { connection()->CloseConnection( QUIC_INVALID_HEADERS_STREAM_DATA, "stream is static", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } QuicSpdyStream* stream = GetOrCreateSpdyDataStream(stream_id); if (stream == nullptr) { size_t final_byte_offset = 0; for (const auto& header : header_list) { const std::string& header_key = header.first; const std::string& header_value = header.second; if (header_key == kFinalOffsetHeaderKey) { if (!absl::SimpleAtoi(header_value, &final_byte_offset)) { connection()->CloseConnection( QUIC_INVALID_HEADERS_STREAM_DATA, "Trailers are malformed (no final offset)", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } QUIC_DVLOG(1) << ENDPOINT << "Received final byte offset in trailers for stream " << stream_id << ", which no longer exists."; OnFinalByteOffsetReceived(stream_id, final_byte_offset); } } return; } stream->OnStreamHeaderList(fin, frame_len, header_list); } void QuicSpdySession::OnPriorityFrame( QuicStreamId stream_id, const spdy::SpdyStreamPrecedence& precedence) { QuicSpdyStream* stream = GetOrCreateSpdyDataStream(stream_id); if (!stream) { return; } stream->OnPriorityFrame(precedence); } bool QuicSpdySession::OnPriorityUpdateForRequestStream( QuicStreamId stream_id, HttpStreamPriority priority) { if (perspective() == Perspective::IS_CLIENT || !QuicUtils::IsBidirectionalStreamId(stream_id, version()) || !QuicUtils::IsClientInitiatedStreamId(transport_version(), stream_id)) { return true; } QuicStreamCount advertised_max_incoming_bidirectional_streams = GetAdvertisedMaxIncomingBidirectionalStreams(); if (advertised_max_incoming_bidirectional_streams == 0 || stream_id > QuicUtils::GetFirstBidirectionalStreamId( transport_version(), Perspective::IS_CLIENT) + QuicUtils::StreamIdDelta(transport_version()) * (advertised_max_incoming_bidirectional_streams - 1)) { connection()->CloseConnection( QUIC_INVALID_STREAM_ID, "PRIORITY_UPDATE frame received for invalid stream.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } if (MaybeSetStreamPriority(stream_id, QuicStreamPriority(priority))) { return true; } if (IsClosedStream(stream_id)) { return true; } buffered_stream_priorities_[stream_id] = priority; if (buffered_stream_priorities_.size() > 10 * max_open_incoming_bidirectional_streams()) { std::string error_message = absl::StrCat("Too many stream priority values buffered: ", buffered_stream_priorities_.size(), ", which should not exceed the incoming stream limit of ", max_open_incoming_bidirectional_streams()); QUIC_BUG(quic_bug_10360_2) << error_message; connection()->CloseConnection( QUIC_INTERNAL_ERROR, error_message, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return false; } return true; } size_t QuicSpdySession::ProcessHeaderData(const struct iovec& iov) { QUIC_BUG_IF(quic_bug_12477_4, destruction_indicator_ != 123456789) << "QuicSpdyStream use after free. " << destruction_indicator_ << QuicStackTrace(); return h2_deframer_.ProcessInput(static_cast<char*>(iov.iov_base), iov.iov_len); } size_t QuicSpdySession::WriteHeadersOnHeadersStream( QuicStreamId id, HttpHeaderBlock headers, bool fin, const spdy::SpdyStreamPrecedence& precedence, quiche::QuicheReferenceCountedPointer<QuicAckListenerInterface> ack_listener) { QUICHE_DCHECK(!VersionUsesHttp3(transport_version())); return WriteHeadersOnHeadersStreamImpl( id, std::move(headers), fin, 0, Spdy3PriorityToHttp2Weight(precedence.spdy3_priority()), false, std::move(ack_listener)); } size_t QuicSpdySession::WritePriority(QuicStreamId stream_id, QuicStreamId parent_stream_id, int weight, bool exclusive) { QUICHE_DCHECK(!VersionUsesHttp3(transport_version())); SpdyPriorityIR priority_frame(stream_id, parent_stream_id, weight, exclusive); SpdySerializedFrame frame(spdy_framer_.SerializeFrame(priority_frame)); headers_stream()->WriteOrBufferData( absl::string_view(frame.data(), frame.size()), false, nullptr); return frame.size(); } void QuicSpdySession::WriteHttp3PriorityUpdate(QuicStreamId stream_id, HttpStreamPriority priority) { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); send_control_stream_->WritePriorityUpdate(stream_id, priority); } void QuicSpdySession::OnHttp3GoAway(uint64_t id) { QUIC_BUG_IF(quic_bug_12477_5, !version().UsesHttp3()) << "HTTP/3 GOAWAY received on version " << version(); if (last_received_http3_goaway_id_.has_value() && id > *last_received_http3_goaway_id_) { CloseConnectionWithDetails( QUIC_HTTP_GOAWAY_ID_LARGER_THAN_PREVIOUS, absl::StrCat("GOAWAY received with ID ", id, " greater than previously received ID ", *last_received_http3_goaway_id_)); return; } last_received_http3_goaway_id_ = id; if (perspective() == Perspective::IS_SERVER) { return; } QuicStreamId stream_id = static_cast<QuicStreamId>(id); if (!QuicUtils::IsBidirectionalStreamId(stream_id, version()) || IsIncomingStream(stream_id)) { CloseConnectionWithDetails(QUIC_HTTP_GOAWAY_INVALID_STREAM_ID, "GOAWAY with invalid stream ID"); return; } if (SupportsWebTransport()) { PerformActionOnActiveStreams([](QuicStream* stream) { if (!QuicUtils::IsBidirectionalStreamId(stream->id(), stream->version()) || !QuicUtils::IsClientInitiatedStreamId( stream->version().transport_version, stream->id())) { return true; } QuicSpdyStream* spdy_stream = static_cast<QuicSpdyStream*>(stream); WebTransportHttp3* web_transport = spdy_stream->web_transport(); if (web_transport == nullptr) { return true; } web_transport->OnGoAwayReceived(); return true; }); } } bool QuicSpdySession::OnStreamsBlockedFrame( const QuicStreamsBlockedFrame& frame) { if (!QuicSession::OnStreamsBlockedFrame(frame)) { return false; } if (perspective() == Perspective::IS_SERVER && frame.stream_count >= QuicUtils::GetMaxStreamCount()) { QUICHE_DCHECK_EQ(frame.stream_count, QuicUtils::GetMaxStreamCount()); SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "stream count too large"); } return true; } void QuicSpdySession::SendHttp3GoAway(QuicErrorCode error_code, const std::string& reason) { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); if (!IsEncryptionEstablished()) { QUIC_CODE_COUNT(quic_h3_goaway_before_encryption_established); connection()->CloseConnection( error_code, reason, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return; } ietf_streamid_manager().StopIncreasingIncomingMaxStreams(); QuicStreamId stream_id = QuicUtils::GetMaxClientInitiatedBidirectionalStreamId( transport_version()); if (last_sent_http3_goaway_id_.has_value() && *last_sent_http3_goaway_id_ <= stream_id) { return; } send_control_stream_->SendGoAway(stream_id); last_sent_http3_goaway_id_ = stream_id; } void QuicSpdySession::SendInitialData() { if (!VersionUsesHttp3(transport_version())) { return; } QuicConnection::ScopedPacketFlusher flusher(connection()); send_control_stream_->MaybeSendSettingsFrame(); SendInitialDataAfterSettings(); } bool QuicSpdySession::CheckStreamWriteBlocked(QuicStream* stream) const { if (qpack_decoder_send_stream_ != nullptr && stream->id() == qpack_decoder_send_stream_->id()) { return true; } return QuicSession::CheckStreamWriteBlocked(stream); } QpackEncoder* QuicSpdySession::qpack_encoder() { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); return qpack_encoder_.get(); } QpackDecoder* QuicSpdySession::qpack_decoder() { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); return qpack_decoder_.get(); } void QuicSpdySession::OnStreamCreated(QuicSpdyStream* stream) { auto it = buffered_stream_priorities_.find(stream->id()); if (it == buffered_stream_priorities_.end()) { return; } stream->SetPriority(QuicStreamPriority(it->second)); buffered_stream_priorities_.erase(it); } QuicSpdyStream* QuicSpdySession::GetOrCreateSpdyDataStream( const QuicStreamId stream_id) { QuicStream* stream = GetOrCreateStream(stream_id); if (stream && stream->is_static()) { QUIC_BUG(quic_bug_10360_5) << "GetOrCreateSpdyDataStream returns static stream " << stream_id << " in version " << transport_version() << "\n" << QuicStackTrace(); connection()->CloseConnection( QUIC_INVALID_STREAM_ID, absl::StrCat("stream ", stream_id, " is static"), ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return nullptr; } return static_cast<QuicSpdyStream*>(stream); } void QuicSpdySession::OnNewEncryptionKeyAvailable( EncryptionLevel level, std::unique_ptr<QuicEncrypter> encrypter) { QuicSession::OnNewEncryptionKeyAvailable(level, std::move(encrypter)); if (IsEncryptionEstablished()) { SendInitialData(); } } bool QuicSpdySession::ShouldNegotiateWebTransport() const { return LocallySupportedWebTransportVersions().Any(); } WebTransportHttp3VersionSet QuicSpdySession::LocallySupportedWebTransportVersions() const { return WebTransportHttp3VersionSet(); } bool QuicSpdySession::WillNegotiateWebTransport() { return LocalHttpDatagramSupport() != HttpDatagramSupport::kNone && version().UsesHttp3() && ShouldNegotiateWebTransport(); } bool QuicSpdySession::ShouldKeepConnectionAlive() const { QUICHE_DCHECK(VersionUsesHttp3(transport_version()) || 0u == pending_streams_size()); return GetNumActiveStreams() + pending_streams_size() > 0; } bool QuicSpdySession::UsesPendingStreamForFrame(QuicFrameType type, QuicStreamId stream_id) const { return VersionUsesHttp3(transport_version()) && (type == STREAM_FRAME || type == RST_STREAM_FRAME) && QuicUtils::GetStreamType(stream_id, perspective(), IsIncomingStream(stream_id), version()) == READ_UNIDIRECTIONAL; } size_t QuicSpdySession::WriteHeadersOnHeadersStreamImpl( QuicStreamId id, quiche::HttpHeaderBlock headers, bool fin, QuicStreamId parent_stream_id, int weight, bool exclusive, quiche::QuicheReferenceCountedPointer<QuicAckListenerInterface> ack_listener) { QUICHE_DCHECK(!VersionUsesHttp3(transport_version())); const QuicByteCount uncompressed_size = headers.TotalBytesUsed(); SpdyHeadersIR headers_frame(id, std::move(headers)); headers_frame.set_fin(fin); if (perspective() == Perspective::IS_CLIENT) { headers_frame.set_has_priority(true); headers_frame.set_parent_stream_id(parent_stream_id); headers_frame.set_weight(weight); headers_frame.set_exclusive(exclusive); } SpdySerializedFrame frame(spdy_framer_.SerializeFrame(headers_frame)); headers_stream()->WriteOrBufferData( absl::string_view(frame.data(), frame.size()), false, std::move(ack_listener)); QuicByteCount compressed_size = frame.size(); compressed_size -= spdy::kFrameHeaderSize; if (perspective() == Perspective::IS_CLIENT) { compressed_size -= 5; } LogHeaderCompressionRatioHistogram( false, true, compressed_size, uncompressed_size); return frame.size(); } bool QuicSpdySession::ResumeApplicationState(ApplicationState* cached_state) { QUICHE_DCHECK_EQ(perspective(), Perspective::IS_CLIENT); QUICHE_DCHECK(VersionUsesHttp3(transport_version())); SettingsFrame out; if (!HttpDecoder::DecodeSettings( reinterpret_cast<char*>(cached_state->data()), cached_state->size(), &out)) { return false; } if (debug_visitor_ != nullptr) { debug_visitor_->OnSettingsFrameResumed(out); } QUICHE_DCHECK(streams_waiting_for_settings_.empty()); for (const auto& setting : out.values) { OnSetting(setting.first, setting.second); } return true; } std::optional<std::string> QuicSpdySession::OnAlpsData(const uint8_t* alps_data, size_t alps_length) { AlpsFrameDecoder alps_frame_decoder(this); HttpDecoder decoder(&alps_frame_decoder); decoder.ProcessInput(reinterpret_cast<const char*>(alps_data), alps_length); if (alps_frame_decoder.error_detail()) { return alps_frame_decoder.error_detail(); } if (decoder.error() != QUIC_NO_ERROR) { return decoder.error_detail(); } if (!decoder.AtFrameBoundary()) { return "incomplete HTTP/3 frame"; } return std::nullopt; } void QuicSpdySession::OnAcceptChFrameReceivedViaAlps( const AcceptChFrame& frame) { if (debug_visitor_) { debug_visitor_->OnAcceptChFrameReceivedViaAlps(frame); } } bool QuicSpdySession::OnSettingsFrame(const SettingsFrame& frame) { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); if (debug_visitor_ != nullptr) { debug_visitor_->OnSettingsFrameReceived(frame); } for (const auto& setting : frame.values) { if (!OnSetting(setting.first, setting.second)) { return false; } } if (!ValidateWebTransportSettingsConsistency()) { return false; } QUICHE_DCHECK(!settings_received_); settings_received_ = true; for (QuicStreamId stream_id : streams_waiting_for_settings_) { QUICHE_RELOADABLE_FLAG_COUNT_N(quic_block_until_settings_received_copt, 4, 4); QUICHE_DCHECK(ShouldBufferRequestsUntilSettings()); QuicSpdyStream* stream = GetOrCreateSpdyDataStream(stream_id); if (stream == nullptr) { continue; } stream->OnDataAvailable(); } streams_waiting_for_settings_.clear(); return true; } bool QuicSpdySession::ValidateWebTransportSettingsConsistency() { std::optional<WebTransportHttp3Version> version = NegotiatedWebTransportVersion(); if (!version.has_value() || *version == WebTransportHttp3Version::kDraft02) { return true; } if (!allow_extended_connect_) { CloseConnectionWithDetails( QUIC_HTTP_INVALID_SETTING_VALUE, "Negotiated use of WebTransport over HTTP/3 (draft-07 or later), but " "failed to negotiate extended CONNECT"); return false; } if (http_datagram_support_ == HttpDatagramSupport::kDraft04) { CloseConnectionWithDetails( QUIC_HTTP_INVALID_SETTING_VALUE, "WebTransport over HTTP/3 version draft-07 and beyond requires the " "RFC version of HTTP datagrams"); return false; } if (http_datagram_support_ != HttpDatagramSupport::kRfc) { CloseConnectionWithDetails( QUIC_HTTP_INVALID_SETTING_VALUE, "WebTransport over HTTP/3 requires HTTP datagrams support"); return false; } return true; } std::optional<std::string> QuicSpdySession::OnSettingsFrameViaAlps( const SettingsFrame& frame) { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); if (debug_visitor_ != nullptr) { debug_visitor_->OnSettingsFrameReceivedViaAlps(frame); } for (const auto& setting : frame.values) { if (!OnSetting(setting.first, setting.second)) { return "error parsing setting"; } } return std::nullopt; } bool QuicSpdySession::VerifySettingIsZeroOrOne(uint64_t id, uint64_t value) { if (value == 0 || value == 1) { return true; } std::string error_details = absl::StrCat( "Received ", H3SettingsToString(static_cast<Http3AndQpackSettingsIdentifiers>(id)), " with invalid value ", value); QUIC_PEER_BUG(bad received setting) << ENDPOINT << error_details; CloseConnectionWithDetails(QUIC_HTTP_INVALID_SETTING_VALUE, error_details); return false; } bool QuicSpdySession::OnSetting(uint64_t id, uint64_t value) { if (VersionUsesHttp3(transport_version())) { switch (id) { case SETTINGS_QPACK_MAX_TABLE_CAPACITY: { QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_QPACK_MAX_TABLE_CAPACITY received with value " << value; if (!qpack_encoder_->SetMaximumDynamicTableCapacity(value)) { CloseConnectionWithDetails( was_zero_rtt_rejected() ? QUIC_HTTP_ZERO_RTT_REJECTION_SETTINGS_MISMATCH : QUIC_HTTP_ZERO_RTT_RESUMPTION_SETTINGS_MISMATCH, absl::StrCat(was_zero_rtt_rejected() ? "Server rejected 0-RTT, aborting because " : "", "Server sent an SETTINGS_QPACK_MAX_TABLE_CAPACITY: ", value, " while current value is: ", qpack_encoder_->MaximumDynamicTableCapacity())); return false; } qpack_encoder_->SetDynamicTableCapacity( std::min(value, qpack_maximum_dynamic_table_capacity_)); break; } case SETTINGS_MAX_FIELD_SECTION_SIZE: QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_MAX_FIELD_SECTION_SIZE received with value " << value; if (max_outbound_header_list_size_ != std::numeric_limits<size_t>::max() && max_outbound_header_list_size_ > value) { CloseConnectionWithDetails( was_zero_rtt_rejected() ? QUIC_HTTP_ZERO_RTT_REJECTION_SETTINGS_MISMATCH : QUIC_HTTP_ZERO_RTT_RESUMPTION_SETTINGS_MISMATCH, absl::StrCat(was_zero_rtt_rejected() ? "Server rejected 0-RTT, aborting because " : "", "Server sent an SETTINGS_MAX_FIELD_SECTION_SIZE: ", value, " which reduces current value: ", max_outbound_header_list_size_)); return false; } max_outbound_header_list_size_ = value; break; case SETTINGS_QPACK_BLOCKED_STREAMS: { QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_QPACK_BLOCKED_STREAMS received with value " << value; if (!qpack_encoder_->SetMaximumBlockedStreams(value)) { CloseConnectionWithDetails( was_zero_rtt_rejected() ? QUIC_HTTP_ZERO_RTT_REJECTION_SETTINGS_MISMATCH : QUIC_HTTP_ZERO_RTT_RESUMPTION_SETTINGS_MISMATCH, absl::StrCat(was_zero_rtt_rejected() ? "Server rejected 0-RTT, aborting because " : "", "Server sent an SETTINGS_QPACK_BLOCKED_STREAMS: ", value, " which reduces current value: ", qpack_encoder_->maximum_blocked_streams())); return false; } break; } case SETTINGS_ENABLE_CONNECT_PROTOCOL: { QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_ENABLE_CONNECT_PROTOCOL received with value " << value; if (!VerifySettingIsZeroOrOne(id, value)) { return false; } if (perspective() == Perspective::IS_CLIENT) { allow_extended_connect_ = value != 0; } break; } case spdy::SETTINGS_ENABLE_PUSH: ABSL_FALLTHROUGH_INTENDED; case spdy::SETTINGS_MAX_CONCURRENT_STREAMS: ABSL_FALLTHROUGH_INTENDED; case spdy::SETTINGS_INITIAL_WINDOW_SIZE: ABSL_FALLTHROUGH_INTENDED; case spdy::SETTINGS_MAX_FRAME_SIZE: CloseConnectionWithDetails( QUIC_HTTP_RECEIVE_SPDY_SETTING, absl::StrCat("received HTTP/2 specific setting in HTTP/3 session: ", id)); return false; case SETTINGS_H3_DATAGRAM_DRAFT04: { HttpDatagramSupport local_http_datagram_support = LocalHttpDatagramSupport(); if (local_http_datagram_support != HttpDatagramSupport::kDraft04 && local_http_datagram_support != HttpDatagramSupport::kRfcAndDraft04) { break; } QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_H3_DATAGRAM_DRAFT04 received with value " << value; if (!version().UsesHttp3()) { break; } if (!VerifySettingIsZeroOrOne(id, value)) { return false; } if (value && http_datagram_support_ != HttpDatagramSupport::kRfc) { http_datagram_support_ = HttpDatagramSupport::kDraft04; } break; } case SETTINGS_H3_DATAGRAM: { HttpDatagramSupport local_http_datagram_support = LocalHttpDatagramSupport(); if (local_http_datagram_support != HttpDatagramSupport::kRfc && local_http_datagram_support != HttpDatagramSupport::kRfcAndDraft04) { break; } QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_H3_DATAGRAM received with value " << value; if (!version().UsesHttp3()) { break; } if (!VerifySettingIsZeroOrOne(id, value)) { return false; } if (value) { http_datagram_support_ = HttpDatagramSupport::kRfc; } break; } case SETTINGS_WEBTRANS_DRAFT00: if (!WillNegotiateWebTransport()) { break; } QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_ENABLE_WEBTRANSPORT(02) received with value " << value; if (!VerifySettingIsZeroOrOne(id, value)) { return false; } if (value == 1) { peer_web_transport_versions_.Set(WebTransportHttp3Version::kDraft02); if (perspective() == Perspective::IS_CLIENT) { allow_extended_connect_ = true; } } break; case SETTINGS_WEBTRANS_MAX_SESSIONS_DRAFT07: if (!WillNegotiateWebTransport()) { break; } QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_WEBTRANS_MAX_SESSIONS_DRAFT07 received with value " << value; if (value > 0) { peer_web_transport_versions_.Set(WebTransportHttp3Version::kDraft07); if (perspective() == Perspective::IS_CLIENT) { max_webtransport_sessions_[WebTransportHttp3Version::kDraft07] = value; } } break; default: QUIC_DVLOG(1) << ENDPOINT << "Unknown setting identifier " << id << " received with value " << value; break; } return true; } switch (id) { case spdy::SETTINGS_HEADER_TABLE_SIZE: QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_HEADER_TABLE_SIZE received with value " << value; spdy_framer_.UpdateHeaderEncoderTableSize( std::min<uint64_t>(value, kHpackEncoderDynamicTableSizeLimit)); break; case spdy::SETTINGS_ENABLE_PUSH: if (perspective() == Perspective::IS_SERVER) { if (value > 1) { QUIC_DLOG(ERROR) << ENDPOINT << "Invalid value " << value << " received for SETTINGS_ENABLE_PUSH."; if (IsConnected()) { CloseConnectionWithDetails( QUIC_INVALID_HEADERS_STREAM_DATA, absl::StrCat("Invalid value for SETTINGS_ENABLE_PUSH: ", value)); } return true; } QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_ENABLE_PUSH received with value " << value << ", ignoring."; break; } else { QUIC_DLOG(ERROR) << ENDPOINT << "Invalid SETTINGS_ENABLE_PUSH received by client with value " << value; if (IsConnected()) { CloseConnectionWithDetails( QUIC_INVALID_HEADERS_STREAM_DATA, absl::StrCat("Unsupported field of HTTP/2 SETTINGS frame: ", id)); } } break; case spdy::SETTINGS_MAX_HEADER_LIST_SIZE: QUIC_DVLOG(1) << ENDPOINT << "SETTINGS_MAX_HEADER_LIST_SIZE received with value " << value; max_outbound_header_list_size_ = value; break; default: QUIC_DLOG(ERROR) << ENDPOINT << "Unknown setting identifier " << id << " received with value " << value; if (IsConnected()) { CloseConnectionWithDetails( QUIC_INVALID_HEADERS_STREAM_DATA, absl::StrCat("Unsupported field of HTTP/2 SETTINGS frame: ", id)); } } return true; } bool QuicSpdySession::ShouldReleaseHeadersStreamSequencerBuffer() { return false; } void QuicSpdySession::OnHeaders(SpdyStreamId stream_id, bool has_priority, const spdy::SpdyStreamPrecedence& precedence, bool fin) { if (has_priority) { if (perspective() == Perspective::IS_CLIENT) { CloseConnectionWithDetails(QUIC_INVALID_HEADERS_STREAM_DATA, "Server must not send priorities."); return; } OnStreamHeadersPriority(stream_id, precedence); } else { if (perspective() == Perspective::IS_SERVER) { CloseConnectionWithDetails(QUIC_INVALID_HEADERS_STREAM_DATA, "Client must send priorities."); return; } } QUICHE_DCHECK_EQ(QuicUtils::GetInvalidStreamId(transport_version()), stream_id_); stream_id_ = stream_id; fin_ = fin; } void QuicSpdySession::OnPriority(SpdyStreamId stream_id, const spdy::SpdyStreamPrecedence& precedence) { if (perspective() == Perspective::IS_CLIENT) { CloseConnectionWithDetails(QUIC_INVALID_HEADERS_STREAM_DATA, "Server must not send PRIORITY frames."); return; } OnPriorityFrame(stream_id, precedence); } void QuicSpdySession::OnHeaderList(const QuicHeaderList& header_list) { QUIC_DVLOG(1) << ENDPOINT << "Received header list for stream " << stream_id_ << ": " << header_list.DebugString(); QUICHE_DCHECK(!VersionUsesHttp3(transport_version())); OnStreamHeaderList(stream_id_, fin_, frame_len_, header_list); stream_id_ = QuicUtils::GetInvalidStreamId(transport_version()); fin_ = false; frame_len_ = 0; } void QuicSpdySession::OnCompressedFrameSize(size_t frame_len) { frame_len_ += frame_len; } void QuicSpdySession::CloseConnectionWithDetails(QuicErrorCode error, const std::string& details) { connection()->CloseConnection( error, details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); } bool QuicSpdySession::HasActiveRequestStreams() const { return GetNumActiveStreams() + num_draining_streams() > 0; } QuicStream* QuicSpdySession::ProcessReadUnidirectionalPendingStream( PendingStream* pending) { struct iovec iov; if (!pending->sequencer()->GetReadableRegion(&iov)) { return nullptr; } QuicDataReader reader(static_cast<char*>(iov.iov_base), iov.iov_len); uint8_t stream_type_length = reader.PeekVarInt62Length(); uint64_t stream_type = 0; if (!reader.ReadVarInt62(&stream_type)) { if (pending->sequencer()->NumBytesBuffered() == pending->sequencer()->close_offset()) { pending->MarkConsumed(pending->sequencer()->close_offset()); } return nullptr; } pending->MarkConsumed(stream_type_length); switch (stream_type) { case kControlStream: { if (receive_control_stream_) { CloseConnectionOnDuplicateHttp3UnidirectionalStreams("Control"); return nullptr; } auto receive_stream = std::make_unique<QuicReceiveControlStream>(pending, this); receive_control_stream_ = receive_stream.get(); ActivateStream(std::move(receive_stream)); QUIC_DVLOG(1) << ENDPOINT << "Receive Control stream is created"; if (debug_visitor_ != nullptr) { debug_visitor_->OnPeerControlStreamCreated( receive_control_stream_->id()); } return receive_control_stream_; } case kServerPushStream: { CloseConnectionWithDetails(QUIC_HTTP_RECEIVE_SERVER_PUSH, "Received server push stream"); return nullptr; } case kQpackEncoderStream: { if (qpack_encoder_receive_stream_) { CloseConnectionOnDuplicateHttp3UnidirectionalStreams("QPACK encoder"); return nullptr; } auto encoder_receive = std::make_unique<QpackReceiveStream>( pending, this, qpack_decoder_->encoder_stream_receiver()); qpack_encoder_receive_stream_ = encoder_receive.get(); ActivateStream(std::move(encoder_receive)); QUIC_DVLOG(1) << ENDPOINT << "Receive QPACK Encoder stream is created"; if (debug_visitor_ != nullptr) { debug_visitor_->OnPeerQpackEncoderStreamCreated( qpack_encoder_receive_stream_->id()); } return qpack_encoder_receive_stream_; } case kQpackDecoderStream: { if (qpack_decoder_receive_stream_) { CloseConnectionOnDuplicateHttp3UnidirectionalStreams("QPACK decoder"); return nullptr; } auto decoder_receive = std::make_unique<QpackReceiveStream>( pending, this, qpack_encoder_->decoder_stream_receiver()); qpack_decoder_receive_stream_ = decoder_receive.get(); ActivateStream(std::move(decoder_receive)); QUIC_DVLOG(1) << ENDPOINT << "Receive QPACK Decoder stream is created"; if (debug_visitor_ != nullptr) { debug_visitor_->OnPeerQpackDecoderStreamCreated( qpack_decoder_receive_stream_->id()); } return qpack_decoder_receive_stream_; } case kWebTransportUnidirectionalStream: { if (!WillNegotiateWebTransport()) { break; } QUIC_DVLOG(1) << ENDPOINT << "Created an incoming WebTransport stream " << pending->id(); auto stream_owned = std::make_unique<WebTransportHttp3UnidirectionalStream>(pending, this); WebTransportHttp3UnidirectionalStream* stream = stream_owned.get(); ActivateStream(std::move(stream_owned)); return stream; } default: break; } MaybeSendStopSendingFrame( pending->id(), QuicResetStreamError::FromInternal(QUIC_STREAM_STREAM_CREATION_ERROR)); pending->StopReading(); return nullptr; } void QuicSpdySession::MaybeInitializeHttp3UnidirectionalStreams() { QUICHE_DCHECK(VersionUsesHttp3(transport_version())); if (!send_control_stream_ && CanOpenNextOutgoingUnidirectionalStream()) { auto send_control = std::make_unique<QuicSendControlStream>( GetNextOutgoingUnidirectionalStreamId(), this, settings_); send_control_stream_ = send_control.get(); ActivateStream(std::move(send_control)); if (debug_visitor_) { debug_visitor_->OnControlStreamCreated(send_control_stream_->id()); } } if (!qpack_decoder_send_stream_ && CanOpenNextOutgoingUnidirectionalStream()) { auto decoder_send = std::make_unique<QpackSendStream>( GetNextOutgoingUnidirectionalStreamId(), this, kQpackDecoderStream); qpack_decoder_send_stream_ = decoder_send.get(); ActivateStream(std::move(decoder_send)); qpack_decoder_->set_qpack_stream_sender_delegate( qpack_decoder_send_stream_); if (debug_visitor_) { debug_visitor_->OnQpackDecoderStreamCreated( qpack_decoder_send_stream_->id()); } } if (!qpack_encoder_send_stream_ && CanOpenNextOutgoingUnidirectionalStream()) { auto encoder_send = std::make_unique<QpackSendStream>( GetNextOutgoingUnidirectionalStreamId(), this, kQpackEncoderStream); qpack_encoder_send_stream_ = encoder_send.get(); ActivateStream(std::move(encoder_send)); qpack_encoder_->set_qpack_stream_sender_delegate( qpack_encoder_send_stream_); if (debug_visitor_) { debug_visitor_->OnQpackEncoderStreamCreated( qpack_encoder_send_stream_->id()); } } } void QuicSpdySession::BeforeConnectionCloseSent() { if (!VersionUsesHttp3(transport_version()) || !IsEncryptionEstablished()) { return; } QUICHE_DCHECK_EQ(perspective(), Perspective::IS_SERVER); QuicStreamId stream_id = GetLargestPeerCreatedStreamId( false); if (stream_id == QuicUtils::GetInvalidStreamId(transport_version())) { stream_id = 0; } else { stream_id += QuicUtils::StreamIdDelta(transport_version()); } if (last_sent_http3_goaway_id_.has_value() && *last_sent_http3_goaway_id_ <= stream_id) { return; } send_control_stream_->SendGoAway(stream_id); last_sent_http3_goaway_id_ = stream_id; } void QuicSpdySession::MaybeBundleOpportunistically() { if (qpack_decoder_ != nullptr) { qpack_decoder_->FlushDecoderStream(); } } void QuicSpdySession::OnCanCreateNewOutgoingStream(bool unidirectional) { if (unidirectional && VersionUsesHttp3(transport_version())) { MaybeInitializeHttp3UnidirectionalStreams(); } } bool QuicSpdySession::goaway_received() const { return VersionUsesHttp3(transport_version()) ? last_received_http3_goaway_id_.has_value() : transport_goaway_received(); } bool QuicSpdySession::goaway_sent() const { return VersionUsesHttp3(transport_version()) ? last_sent_http3_goaway_id_.has_value() : transport_goaway_sent(); } void QuicSpdySession::CloseConnectionOnDuplicateHttp3UnidirectionalStreams( absl::string_view type) { QUIC_PEER_BUG(quic_peer_bug_10360_9) << absl::StrCat( "Received a duplicate ", type, " stream: Closing connection."); CloseConnectionWithDetails(QUIC_HTTP_DUPLICATE_UNIDIRECTIONAL_STREAM, absl::StrCat(type, " stream is received twice.")); } void QuicSpdySession::LogHeaderCompressionRatioHistogram( bool using_qpack, bool is_sent, QuicByteCount compressed, QuicByteCount uncompressed) { if (compressed <= 0 || uncompressed <= 0) { return; } int ratio = 100 * (compressed) / (uncompressed); if (ratio < 1) { ratio = 1; } else if (ratio > 200) { ratio = 200; } if (using_qpack) { if (is_sent) { QUIC_HISTOGRAM_COUNTS("QuicSession.HeaderCompressionRatioQpackSent", ratio, 1, 200, 200, "Header compression ratio as percentage for sent " "headers using QPACK."); } else { QUIC_HISTOGRAM_COUNTS("QuicSession.HeaderCompressionRatioQpackReceived", ratio, 1, 200, 200, "Header compression ratio as percentage for " "received headers using QPACK."); } } else { if (is_sent) { QUIC_HISTOGRAM_COUNTS("QuicSession.HeaderCompressionRatioHpackSent", ratio, 1, 200, 200, "Header compression ratio as percentage for sent " "headers using HPACK."); } else { QUIC_HISTOGRAM_COUNTS("QuicSession.HeaderCompressionRatioHpackReceived", ratio, 1, 200, 200, "Header compression ratio as percentage for " "received headers using HPACK."); } } } MessageStatus QuicSpdySession::SendHttp3Datagram(QuicStreamId stream_id, absl::string_view payload) { if (!SupportsH3Datagram()) { if (LocalHttpDatagramSupport() == HttpDatagramSupport::kNone) { QUIC_BUG(http datagram disabled locally) << "Cannot send HTTP Datagram when disabled locally"; return MESSAGE_STATUS_UNSUPPORTED; } else if (!settings_received_) { QUIC_DLOG(INFO) << "Refusing to send HTTP Datagram before SETTINGS received"; return MESSAGE_STATUS_SETTINGS_NOT_RECEIVED; } else { QUIC_DLOG(INFO) << "Refusing to send HTTP Datagram without peer support"; return MESSAGE_STATUS_UNSUPPORTED; } } uint64_t stream_id_to_write = stream_id / kHttpDatagramStreamIdDivisor; size_t slice_length = QuicDataWriter::GetVarInt62Len(stream_id_to_write) + payload.length(); quiche::QuicheBuffer buffer( connection()->helper()->GetStreamSendBufferAllocator(), slice_length); QuicDataWriter writer(slice_length, buffer.data()); if (!writer.WriteVarInt62(stream_id_to_write)) { QUIC_BUG(h3 datagram stream ID write fail) << "Failed to write HTTP/3 datagram stream ID"; return MESSAGE_STATUS_INTERNAL_ERROR; } if (!writer.WriteBytes(payload.data(), payload.length())) { QUIC_BUG(h3 datagram payload write fail) << "Failed to write HTTP/3 datagram payload"; return MESSAGE_STATUS_INTERNAL_ERROR; } quiche::QuicheMemSlice slice(std::move(buffer)); return datagram_queue()->SendOrQueueDatagram(std::move(slice)); } void QuicSpdySession::SetMaxDatagramTimeInQueueForStreamId( QuicStreamId , QuicTime::Delta max_time_in_queue) { datagram_queue()->SetMaxTimeInQueue(max_time_in_queue); } void QuicSpdySession::OnMessageReceived(absl::string_view message) { QuicSession::OnMessageReceived(message); if (!SupportsH3Datagram()) { QUIC_DLOG(INFO) << "Ignoring unexpected received HTTP/3 datagram"; return; } QuicDataReader reader(message); uint64_t stream_id64; if (!reader.ReadVarInt62(&stream_id64)) { QUIC_DLOG(ERROR) << "Failed to parse stream ID in received HTTP/3 datagram"; return; } if (stream_id64 > std::numeric_limits<QuicStreamId>::max() / kHttpDatagramStreamIdDivisor) { CloseConnectionWithDetails( QUIC_HTTP_FRAME_ERROR, absl::StrCat("Received HTTP Datagram with invalid quarter stream ID ", stream_id64)); return; } stream_id64 *= kHttpDatagramStreamIdDivisor; QuicStreamId stream_id = static_cast<QuicStreamId>(stream_id64); QuicSpdyStream* stream = static_cast<QuicSpdyStream*>(GetActiveStream(stream_id)); if (stream == nullptr) { QUIC_DLOG(INFO) << "Received HTTP/3 datagram for unknown stream ID " << stream_id; return; } stream->OnDatagramReceived(&reader); } bool QuicSpdySession::SupportsWebTransport() { return WillNegotiateWebTransport() && SupportsH3Datagram() && NegotiatedWebTransportVersion().has_value() && allow_extended_connect_; } std::optional<WebTransportHttp3Version> QuicSpdySession::SupportedWebTransportVersion() { if (!SupportsWebTransport()) { return std::nullopt; } return NegotiatedWebTransportVersion(); } bool QuicSpdySession::SupportsH3Datagram() const { return http_datagram_support_ != HttpDatagramSupport::kNone; } WebTransportHttp3* QuicSpdySession::GetWebTransportSession( WebTransportSessionId id) { if (!SupportsWebTransport()) { return nullptr; } if (!IsValidWebTransportSessionId(id, version())) { return nullptr; } QuicSpdyStream* connect_stream = GetOrCreateSpdyDataStream(id); if (connect_stream == nullptr) { return nullptr; } return connect_stream->web_transport(); } bool QuicSpdySession::ShouldProcessIncomingRequests() { if (!ShouldBufferRequestsUntilSettings()) { return true; } QUICHE_RELOADABLE_FLAG_COUNT_N(quic_block_until_settings_received_copt, 2, 4); return settings_received_; } void QuicSpdySession::OnStreamWaitingForClientSettings(QuicStreamId id) { QUICHE_DCHECK(ShouldBufferRequestsUntilSettings()); QUICHE_DCHECK(QuicUtils::IsBidirectionalStreamId(id, version())); QUICHE_RELOADABLE_FLAG_COUNT_N(quic_block_until_settings_received_copt, 3, 4); streams_waiting_for_settings_.insert(id); } void QuicSpdySession::AssociateIncomingWebTransportStreamWithSession( WebTransportSessionId session_id, QuicStreamId stream_id) { if (QuicUtils::IsOutgoingStreamId(version(), stream_id, perspective())) { QUIC_BUG(AssociateIncomingWebTransportStreamWithSession got outgoing stream) << ENDPOINT << "AssociateIncomingWebTransportStreamWithSession() got an outgoing " "stream ID: " << stream_id; return; } WebTransportHttp3* session = GetWebTransportSession(session_id); if (session != nullptr) { QUIC_DVLOG(1) << ENDPOINT << "Successfully associated incoming WebTransport stream " << stream_id << " with session ID " << session_id; session->AssociateStream(stream_id); return; } while (buffered_streams_.size() >= kMaxUnassociatedWebTransportStreams) { QUIC_DVLOG(1) << ENDPOINT << "Removing stream " << buffered_streams_.front().stream_id << " from buffered streams as the queue is full."; ResetStream(buffered_streams_.front().stream_id, QUIC_STREAM_WEBTRANSPORT_BUFFERED_STREAMS_LIMIT_EXCEEDED); buffered_streams_.pop_front(); } QUIC_DVLOG(1) << ENDPOINT << "Received a WebTransport stream " << stream_id << " for session ID " << session_id << " but cannot associate it; buffering instead."; buffered_streams_.push_back( BufferedWebTransportStream{session_id, stream_id}); } void QuicSpdySession::ProcessBufferedWebTransportStreamsForSession( WebTransportHttp3* session) { const WebTransportSessionId session_id = session->id(); QUIC_DVLOG(1) << "Processing buffered WebTransport streams for " << session_id; auto it = buffered_streams_.begin(); while (it != buffered_streams_.end()) { if (it->session_id == session_id) { QUIC_DVLOG(1) << "Unbuffered and associated WebTransport stream " << it->stream_id << " with session " << it->session_id; session->AssociateStream(it->stream_id); it = buffered_streams_.erase(it); } else { it++; } } } WebTransportHttp3UnidirectionalStream* QuicSpdySession::CreateOutgoingUnidirectionalWebTransportStream( WebTransportHttp3* session) { if (!CanOpenNextOutgoingUnidirectionalStream()) { return nullptr; } QuicStreamId stream_id = GetNextOutgoingUnidirectionalStreamId(); auto stream_owned = std::make_unique<WebTransportHttp3UnidirectionalStream>( stream_id, this, session->id()); WebTransportHttp3UnidirectionalStream* stream = stream_owned.get(); ActivateStream(std::move(stream_owned)); stream->WritePreamble(); session->AssociateStream(stream_id); return stream; } QuicSpdyStream* QuicSpdySession::CreateOutgoingBidirectionalWebTransportStream( WebTransportHttp3* session) { QuicSpdyStream* stream = CreateOutgoingBidirectionalStream(); if (stream == nullptr) { return nullptr; } QuicStreamId stream_id = stream->id(); stream->ConvertToWebTransportDataStream(session->id()); if (stream->web_transport_stream() == nullptr) { return nullptr; } session->AssociateStream(stream_id); return stream; } void QuicSpdySession::OnDatagramProcessed( std::optional<MessageStatus> ) { } void QuicSpdySession::DatagramObserver::OnDatagramProcessed( std::optional<MessageStatus> status) { session_->OnDatagramProcessed(status); } HttpDatagramSupport QuicSpdySession::LocalHttpDatagramSupport() { return HttpDatagramSupport::kRfc; } std::string HttpDatagramSupportToString( HttpDatagramSupport http_datagram_support) { switch (http_datagram_support) { case HttpDatagramSupport::kNone: return "None"; case HttpDatagramSupport::kDraft04: return "Draft04"; case HttpDatagramSupport::kRfc: return "Rfc"; case HttpDatagramSupport::kRfcAndDraft04: return "RfcAndDraft04"; } return absl::StrCat("Unknown(", static_cast<int>(http_datagram_support), ")"); } std::ostream& operator<<(std::ostream& os, const HttpDatagramSupport& http_datagram_support) { os << HttpDatagramSupportToString(http_datagram_support); return os; } void QuicSpdySession::set_allow_extended_connect(bool allow_extended_connect) { QUIC_BUG_IF(extended connect wrong version, !VersionUsesHttp3(transport_version())) << "Try to enable/disable extended CONNECT in Google QUIC"; QUIC_BUG_IF(extended connect on client, perspective() == Perspective::IS_CLIENT) << "Enabling/disabling extended CONNECT on the client side has no effect"; if (ShouldNegotiateWebTransport()) { QUIC_BUG_IF(disable extended connect, !allow_extended_connect) << "Disabling extended CONNECT with web transport enabled has no " "effect."; return; } allow_extended_connect_ = allow_extended_connect; } void QuicSpdySession::OnConfigNegotiated() { QuicSession::OnConfigNegotiated(); if (GetQuicReloadableFlag(quic_block_until_settings_received_copt) && perspective() == Perspective::IS_SERVER && config()->HasClientSentConnectionOption(kBSUS, Perspective::IS_SERVER)) { QUICHE_RELOADABLE_FLAG_COUNT_N(quic_block_until_settings_received_copt, 1, 4); force_buffer_requests_until_settings_ = true; } } #undef ENDPOINT }
#include "quiche/quic/core/http/quic_spdy_session.h" #include <cstdint> #include <limits> #include <memory> #include <optional> #include <set> #include <string> #include <utility> #include "absl/base/macros.h" #include "absl/memory/memory.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/http2/core/spdy_framer.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/frames/quic_stream_frame.h" #include "quiche/quic/core/frames/quic_streams_blocked_frame.h" #include "quiche/quic/core/http/http_constants.h" #include "quiche/quic/core/http/http_encoder.h" #include "quiche/quic/core/http/quic_header_list.h" #include "quiche/quic/core/http/web_transport_http3.h" #include "quiche/quic/core/qpack/qpack_header_table.h" #include "quiche/quic/core/quic_config.h" #include "quiche/quic/core/quic_crypto_stream.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/core/quic_stream.h" #include "quiche/quic/core/quic_stream_priority.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/qpack/qpack_encoder_peer.h" #include "quiche/quic/test_tools/qpack/qpack_test_utils.h" #include "quiche/quic/test_tools/quic_config_peer.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_flow_controller_peer.h" #include "quiche/quic/test_tools/quic_session_peer.h" #include "quiche/quic/test_tools/quic_spdy_session_peer.h" #include "quiche/quic/test_tools/quic_stream_peer.h" #include "quiche/quic/test_tools/quic_stream_send_buffer_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/platform/api/quiche_mem_slice.h" #include "quiche/common/quiche_endian.h" #include "quiche/common/test_tools/quiche_test_utils.h" using quiche::HttpHeaderBlock; using spdy::kV3HighestPriority; using spdy::Spdy3PriorityToHttp2Weight; using spdy::SpdyFramer; using spdy::SpdyPriority; using spdy::SpdyPriorityIR; using spdy::SpdySerializedFrame; using ::testing::_; using ::testing::AnyNumber; using ::testing::AtLeast; using ::testing::ElementsAre; using ::testing::InSequence; using ::testing::Invoke; using ::testing::Return; using ::testing::StrictMock; namespace quic { namespace test { namespace { bool VerifyAndClearStopSendingFrame(const QuicFrame& frame) { EXPECT_EQ(STOP_SENDING_FRAME, frame.type); return ClearControlFrame(frame); } class TestCryptoStream : public QuicCryptoStream, public QuicCryptoHandshaker { public: explicit TestCryptoStream(QuicSession* session) : QuicCryptoStream(session), QuicCryptoHandshaker(this, session), encryption_established_(false), one_rtt_keys_available_(false), params_(new QuicCryptoNegotiatedParameters) { params_->cipher_suite = 1; } void EstablishZeroRttEncryption() { encryption_established_ = true; session()->connection()->SetEncrypter( ENCRYPTION_ZERO_RTT, std::make_unique<TaggingEncrypter>(ENCRYPTION_ZERO_RTT)); } void OnHandshakeMessage(const CryptoHandshakeMessage& ) override { encryption_established_ = true; one_rtt_keys_available_ = true; QuicErrorCode error; std::string error_details; session()->config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session()->config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); if (session()->version().UsesTls()) { if (session()->perspective() == Perspective::IS_CLIENT) { session()->config()->SetOriginalConnectionIdToSend( session()->connection()->connection_id()); session()->config()->SetInitialSourceConnectionIdToSend( session()->connection()->connection_id()); } else { session()->config()->SetInitialSourceConnectionIdToSend( session()->connection()->client_connection_id()); } TransportParameters transport_parameters; EXPECT_TRUE( session()->config()->FillTransportParameters(&transport_parameters)); error = session()->config()->ProcessTransportParameters( transport_parameters, false, &error_details); } else { CryptoHandshakeMessage msg; session()->config()->ToHandshakeMessage(&msg, transport_version()); error = session()->config()->ProcessPeerHello(msg, CLIENT, &error_details); } EXPECT_THAT(error, IsQuicNoError()); session()->OnNewEncryptionKeyAvailable( ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingEncrypter>(ENCRYPTION_FORWARD_SECURE)); session()->OnConfigNegotiated(); if (session()->connection()->version().handshake_protocol == PROTOCOL_TLS1_3) { session()->OnTlsHandshakeComplete(); } else { session()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); } session()->DiscardOldEncryptionKey(ENCRYPTION_INITIAL); } ssl_early_data_reason_t EarlyDataReason() const override { return ssl_early_data_unknown; } bool encryption_established() const override { return encryption_established_; } bool one_rtt_keys_available() const override { return one_rtt_keys_available_; } HandshakeState GetHandshakeState() const override { return one_rtt_keys_available() ? HANDSHAKE_COMPLETE : HANDSHAKE_START; } void SetServerApplicationStateForResumption( std::unique_ptr<ApplicationState> ) override {} std::unique_ptr<QuicDecrypter> AdvanceKeysAndCreateCurrentOneRttDecrypter() override { return nullptr; } std::unique_ptr<QuicEncrypter> CreateCurrentOneRttEncrypter() override { return nullptr; } const QuicCryptoNegotiatedParameters& crypto_negotiated_params() const override { return *params_; } CryptoMessageParser* crypto_message_parser() override { return QuicCryptoHandshaker::crypto_message_parser(); } void OnPacketDecrypted(EncryptionLevel ) override {} void OnOneRttPacketAcknowledged() override {} void OnHandshakePacketSent() override {} void OnHandshakeDoneReceived() override {} void OnNewTokenReceived(absl::string_view ) override {} std::string GetAddressToken( const CachedNetworkParameters* ) const override { return ""; } bool ValidateAddressToken(absl::string_view ) const override { return true; } const CachedNetworkParameters* PreviousCachedNetworkParams() const override { return nullptr; } void SetPreviousCachedNetworkParams( CachedNetworkParameters ) override {} MOCK_METHOD(void, OnCanWrite, (), (override)); bool HasPendingCryptoRetransmission() const override { return false; } MOCK_METHOD(bool, HasPendingRetransmission, (), (const, override)); void OnConnectionClosed(const QuicConnectionCloseFrame& , ConnectionCloseSource ) override {} SSL* GetSsl() const override { return nullptr; } bool IsCryptoFrameExpectedForEncryptionLevel( EncryptionLevel level) const override { return level != ENCRYPTION_ZERO_RTT; } EncryptionLevel GetEncryptionLevelToSendCryptoDataOfSpace( PacketNumberSpace space) const override { switch (space) { case INITIAL_DATA: return ENCRYPTION_INITIAL; case HANDSHAKE_DATA: return ENCRYPTION_HANDSHAKE; case APPLICATION_DATA: return ENCRYPTION_FORWARD_SECURE; default: QUICHE_DCHECK(false); return NUM_ENCRYPTION_LEVELS; } } bool ExportKeyingMaterial(absl::string_view , absl::string_view , size_t , std::string* ) override { return false; } private: using QuicCryptoStream::session; bool encryption_established_; bool one_rtt_keys_available_; quiche::QuicheReferenceCountedPointer<QuicCryptoNegotiatedParameters> params_; }; class TestHeadersStream : public QuicHeadersStream { public: explicit TestHeadersStream(QuicSpdySession* session) : QuicHeadersStream(session) {} MOCK_METHOD(void, OnCanWrite, (), (override)); }; class TestStream : public QuicSpdyStream { public: TestStream(QuicStreamId id, QuicSpdySession* session, StreamType type) : QuicSpdyStream(id, session, type) {} TestStream(PendingStream* pending, QuicSpdySession* session) : QuicSpdyStream(pending, session) {} using QuicStream::CloseWriteSide; void OnBodyAvailable() override {} MOCK_METHOD(void, OnCanWrite, (), (override)); MOCK_METHOD(bool, RetransmitStreamData, (QuicStreamOffset, QuicByteCount, bool, TransmissionType), (override)); MOCK_METHOD(bool, HasPendingRetransmission, (), (const, override)); protected: bool ValidateReceivedHeaders(const QuicHeaderList& ) override { return true; } }; class TestSession : public QuicSpdySession { public: explicit TestSession(QuicConnection* connection) : QuicSpdySession(connection, nullptr, DefaultQuicConfig(), CurrentSupportedVersions()), crypto_stream_(this), writev_consumes_all_data_(false) { this->connection()->SetEncrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<TaggingEncrypter>(ENCRYPTION_FORWARD_SECURE)); if (this->connection()->version().SupportsAntiAmplificationLimit()) { QuicConnectionPeer::SetAddressValidated(this->connection()); } } ~TestSession() override { DeleteConnection(); } TestCryptoStream* GetMutableCryptoStream() override { return &crypto_stream_; } const TestCryptoStream* GetCryptoStream() const override { return &crypto_stream_; } TestStream* CreateOutgoingBidirectionalStream() override { TestStream* stream = new TestStream(GetNextOutgoingBidirectionalStreamId(), this, BIDIRECTIONAL); ActivateStream(absl::WrapUnique(stream)); return stream; } TestStream* CreateOutgoingUnidirectionalStream() override { TestStream* stream = new TestStream(GetNextOutgoingUnidirectionalStreamId(), this, WRITE_UNIDIRECTIONAL); ActivateStream(absl::WrapUnique(stream)); return stream; } TestStream* CreateIncomingStream(QuicStreamId id) override { if (!VersionHasIetfQuicFrames(connection()->transport_version()) && stream_id_manager().num_open_incoming_streams() + 1 > max_open_incoming_bidirectional_streams()) { connection()->CloseConnection( QUIC_TOO_MANY_OPEN_STREAMS, "Too many streams!", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return nullptr; } else { TestStream* stream = new TestStream( id, this, DetermineStreamType(id, connection()->version(), perspective(), true, BIDIRECTIONAL)); ActivateStream(absl::WrapUnique(stream)); return stream; } } TestStream* CreateIncomingStream(PendingStream* pending) override { TestStream* stream = new TestStream(pending, this); ActivateStream(absl::WrapUnique(stream)); return stream; } bool ShouldCreateIncomingStream(QuicStreamId ) override { return true; } bool ShouldCreateOutgoingBidirectionalStream() override { return true; } bool ShouldCreateOutgoingUnidirectionalStream() override { return true; } bool IsClosedStream(QuicStreamId id) { return QuicSession::IsClosedStream(id); } QuicStream* GetOrCreateStream(QuicStreamId stream_id) { return QuicSpdySession::GetOrCreateStream(stream_id); } QuicConsumedData WritevData(QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state, TransmissionType type, EncryptionLevel level) override { bool fin = state != NO_FIN; QuicConsumedData consumed(write_length, fin); if (!writev_consumes_all_data_) { consumed = QuicSession::WritevData(id, write_length, offset, state, type, level); } QuicSessionPeer::GetWriteBlockedStreams(this)->UpdateBytesForStream( id, consumed.bytes_consumed); return consumed; } void set_writev_consumes_all_data(bool val) { writev_consumes_all_data_ = val; } QuicConsumedData SendStreamData(QuicStream* stream) { if (!QuicUtils::IsCryptoStreamId(connection()->transport_version(), stream->id()) && connection()->encryption_level() != ENCRYPTION_FORWARD_SECURE) { this->connection()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); } QuicStreamPeer::SendBuffer(stream).SaveStreamData("not empty"); QuicConsumedData consumed = WritevData(stream->id(), 9, 0, FIN, NOT_RETRANSMISSION, GetEncryptionLevelToSendApplicationData()); QuicStreamPeer::SendBuffer(stream).OnStreamDataConsumed( consumed.bytes_consumed); return consumed; } QuicConsumedData SendLargeFakeData(QuicStream* stream, int bytes) { QUICHE_DCHECK(writev_consumes_all_data_); return WritevData(stream->id(), bytes, 0, FIN, NOT_RETRANSMISSION, GetEncryptionLevelToSendApplicationData()); } WebTransportHttp3VersionSet LocallySupportedWebTransportVersions() const override { return locally_supported_web_transport_versions_; } void set_supports_webtransport(bool value) { locally_supported_web_transport_versions_ = value ? kDefaultSupportedWebTransportVersions : WebTransportHttp3VersionSet(); } void set_locally_supported_web_transport_versions( WebTransportHttp3VersionSet versions) { locally_supported_web_transport_versions_ = std::move(versions); } HttpDatagramSupport LocalHttpDatagramSupport() override { return local_http_datagram_support_; } void set_local_http_datagram_support(HttpDatagramSupport value) { local_http_datagram_support_ = value; } MOCK_METHOD(void, OnAcceptChFrame, (const AcceptChFrame&), (override)); using QuicSession::closed_streams; using QuicSession::pending_streams_size; using QuicSession::ShouldKeepConnectionAlive; using QuicSpdySession::settings; using QuicSpdySession::UsesPendingStreamForFrame; private: StrictMock<TestCryptoStream> crypto_stream_; bool writev_consumes_all_data_; WebTransportHttp3VersionSet locally_supported_web_transport_versions_; HttpDatagramSupport local_http_datagram_support_ = HttpDatagramSupport::kNone; }; class QuicSpdySessionTestBase : public QuicTestWithParam<ParsedQuicVersion> { public: bool ClearMaxStreamsControlFrame(const QuicFrame& frame) { if (frame.type == MAX_STREAMS_FRAME) { DeleteFrame(&const_cast<QuicFrame&>(frame)); return true; } return false; } protected: explicit QuicSpdySessionTestBase(Perspective perspective, bool allow_extended_connect) : connection_(new StrictMock<MockQuicConnection>( &helper_, &alarm_factory_, perspective, SupportedVersions(GetParam()))), allow_extended_connect_(allow_extended_connect) {} void Initialize() { session_.emplace(connection_); if (qpack_maximum_dynamic_table_capacity_.has_value()) { session_->set_qpack_maximum_dynamic_table_capacity( *qpack_maximum_dynamic_table_capacity_); } if (connection_->perspective() == Perspective::IS_SERVER && VersionUsesHttp3(transport_version())) { session_->set_allow_extended_connect(allow_extended_connect_); } session_->Initialize(); session_->config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session_->config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); if (VersionUsesHttp3(transport_version())) { QuicConfigPeer::SetReceivedMaxUnidirectionalStreams( session_->config(), kHttp3StaticUnidirectionalStreamCount); } QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow( session_->config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesUnidirectional( session_->config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesIncomingBidirectional( session_->config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesOutgoingBidirectional( session_->config(), kMinimumFlowControlSendWindow); session_->OnConfigNegotiated(); connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); TestCryptoStream* crypto_stream = session_->GetMutableCryptoStream(); EXPECT_CALL(*crypto_stream, HasPendingRetransmission()) .Times(testing::AnyNumber()); writer_ = static_cast<MockPacketWriter*>( QuicConnectionPeer::GetWriter(session_->connection())); } void CheckClosedStreams() { QuicStreamId first_stream_id = QuicUtils::GetFirstBidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); if (!QuicVersionUsesCryptoFrames(transport_version())) { first_stream_id = QuicUtils::GetCryptoStreamId(transport_version()); } for (QuicStreamId i = first_stream_id; i < 100; i++) { if (closed_streams_.find(i) == closed_streams_.end()) { EXPECT_FALSE(session_->IsClosedStream(i)) << " stream id: " << i; } else { EXPECT_TRUE(session_->IsClosedStream(i)) << " stream id: " << i; } } } void CloseStream(QuicStreamId id) { if (!VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); } else { EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(2) .WillRepeatedly(Invoke(&ClearControlFrame)); } EXPECT_CALL(*connection_, OnStreamReset(id, _)); session_->set_writev_consumes_all_data(true); session_->ResetStream(id, QUIC_STREAM_CANCELLED); closed_streams_.insert(id); } ParsedQuicVersion version() const { return connection_->version(); } QuicTransportVersion transport_version() const { return connection_->transport_version(); } QuicStreamId GetNthClientInitiatedBidirectionalId(int n) { return GetNthClientInitiatedBidirectionalStreamId(transport_version(), n); } QuicStreamId GetNthServerInitiatedBidirectionalId(int n) { return GetNthServerInitiatedBidirectionalStreamId(transport_version(), n); } QuicStreamId IdDelta() { return QuicUtils::StreamIdDelta(transport_version()); } QuicStreamId StreamCountToId(QuicStreamCount stream_count, Perspective perspective, bool bidirectional) { QuicStreamId id = ((stream_count - 1) * QuicUtils::StreamIdDelta(transport_version())); if (!bidirectional) { id |= 0x2; } if (perspective == Perspective::IS_SERVER) { id |= 0x1; } return id; } void CompleteHandshake() { if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); } if (connection_->version().UsesTls() && connection_->perspective() == Perspective::IS_SERVER) { EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); } CryptoHandshakeMessage message; session_->GetMutableCryptoStream()->OnHandshakeMessage(message); testing::Mock::VerifyAndClearExpectations(writer_); testing::Mock::VerifyAndClearExpectations(connection_); } void ReceiveWebTransportSettings(WebTransportHttp3VersionSet versions = kDefaultSupportedWebTransportVersions) { SettingsFrame settings; settings.values[SETTINGS_H3_DATAGRAM] = 1; if (versions.IsSet(WebTransportHttp3Version::kDraft02)) { settings.values[SETTINGS_WEBTRANS_DRAFT00] = 1; } if (versions.IsSet(WebTransportHttp3Version::kDraft07)) { settings.values[SETTINGS_WEBTRANS_MAX_SESSIONS_DRAFT07] = 16; } settings.values[SETTINGS_ENABLE_CONNECT_PROTOCOL] = 1; std::string data = std::string(1, kControlStream) + HttpEncoder::SerializeSettingsFrame(settings); QuicStreamId control_stream_id = session_->perspective() == Perspective::IS_SERVER ? GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3) : GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); QuicStreamFrame frame(control_stream_id, false, 0, data); session_->OnStreamFrame(frame); } void ReceiveWebTransportSession(WebTransportSessionId session_id) { QuicStreamFrame frame(session_id, false, 0, absl::string_view()); session_->OnStreamFrame(frame); QuicSpdyStream* stream = static_cast<QuicSpdyStream*>(session_->GetOrCreateStream(session_id)); QuicHeaderList headers; headers.OnHeader(":method", "CONNECT"); headers.OnHeader(":protocol", "webtransport"); stream->OnStreamHeaderList(true, 0, headers); WebTransportHttp3* web_transport = session_->GetWebTransportSession(session_id); ASSERT_TRUE(web_transport != nullptr); quiche::HttpHeaderBlock header_block; web_transport->HeadersReceived(header_block); } void ReceiveWebTransportUnidirectionalStream(WebTransportSessionId session_id, QuicStreamId stream_id) { char buffer[256]; QuicDataWriter data_writer(sizeof(buffer), buffer); ASSERT_TRUE(data_writer.WriteVarInt62(kWebTransportUnidirectionalStream)); ASSERT_TRUE(data_writer.WriteVarInt62(session_id)); ASSERT_TRUE(data_writer.WriteStringPiece("test data")); std::string data(buffer, data_writer.length()); QuicStreamFrame frame(stream_id, false, 0, data); session_->OnStreamFrame(frame); } void TestHttpDatagramSetting(HttpDatagramSupport local_support, HttpDatagramSupport remote_support, HttpDatagramSupport expected_support, bool expected_datagram_supported); MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; StrictMock<MockQuicConnection>* connection_; bool allow_extended_connect_; std::optional<TestSession> session_; std::set<QuicStreamId> closed_streams_; std::optional<uint64_t> qpack_maximum_dynamic_table_capacity_; MockPacketWriter* writer_; }; class QuicSpdySessionTestServer : public QuicSpdySessionTestBase { protected: QuicSpdySessionTestServer() : QuicSpdySessionTestBase(Perspective::IS_SERVER, true) {} }; INSTANTIATE_TEST_SUITE_P(Tests, QuicSpdySessionTestServer, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicSpdySessionTestServer, UsesPendingStreamsForFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } EXPECT_TRUE(session_->UsesPendingStreamForFrame( STREAM_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT))); EXPECT_TRUE(session_->UsesPendingStreamForFrame( RST_STREAM_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT))); EXPECT_FALSE(session_->UsesPendingStreamForFrame( RST_STREAM_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_SERVER))); EXPECT_FALSE(session_->UsesPendingStreamForFrame( STOP_SENDING_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT))); EXPECT_FALSE(session_->UsesPendingStreamForFrame( RST_STREAM_FRAME, QuicUtils::GetFirstBidirectionalStreamId( transport_version(), Perspective::IS_CLIENT))); } TEST_P(QuicSpdySessionTestServer, PeerAddress) { Initialize(); EXPECT_EQ(QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort), session_->peer_address()); } TEST_P(QuicSpdySessionTestServer, SelfAddress) { Initialize(); EXPECT_TRUE(session_->self_address().IsInitialized()); } TEST_P(QuicSpdySessionTestServer, OneRttKeysAvailable) { Initialize(); EXPECT_FALSE(session_->OneRttKeysAvailable()); CompleteHandshake(); EXPECT_TRUE(session_->OneRttKeysAvailable()); } TEST_P(QuicSpdySessionTestServer, IsClosedStreamDefault) { Initialize(); QuicStreamId first_stream_id = QuicUtils::GetFirstBidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); if (!QuicVersionUsesCryptoFrames(transport_version())) { first_stream_id = QuicUtils::GetCryptoStreamId(transport_version()); } for (QuicStreamId i = first_stream_id; i < 100; i++) { EXPECT_FALSE(session_->IsClosedStream(i)) << "stream id: " << i; } } TEST_P(QuicSpdySessionTestServer, AvailableStreams) { Initialize(); ASSERT_TRUE(session_->GetOrCreateStream( GetNthClientInitiatedBidirectionalId(2)) != nullptr); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &*session_, GetNthClientInitiatedBidirectionalId(0))); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &*session_, GetNthClientInitiatedBidirectionalId(1))); ASSERT_TRUE(session_->GetOrCreateStream( GetNthClientInitiatedBidirectionalId(1)) != nullptr); ASSERT_TRUE(session_->GetOrCreateStream( GetNthClientInitiatedBidirectionalId(0)) != nullptr); } TEST_P(QuicSpdySessionTestServer, IsClosedStreamLocallyCreated) { Initialize(); CompleteHandshake(); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); EXPECT_EQ(GetNthServerInitiatedBidirectionalId(0), stream2->id()); QuicSpdyStream* stream4 = session_->CreateOutgoingBidirectionalStream(); EXPECT_EQ(GetNthServerInitiatedBidirectionalId(1), stream4->id()); CheckClosedStreams(); CloseStream(GetNthServerInitiatedBidirectionalId(0)); CheckClosedStreams(); CloseStream(GetNthServerInitiatedBidirectionalId(1)); CheckClosedStreams(); } TEST_P(QuicSpdySessionTestServer, IsClosedStreamPeerCreated) { Initialize(); CompleteHandshake(); QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0); QuicStreamId stream_id2 = GetNthClientInitiatedBidirectionalId(1); session_->GetOrCreateStream(stream_id1); session_->GetOrCreateStream(stream_id2); CheckClosedStreams(); CloseStream(stream_id1); CheckClosedStreams(); CloseStream(stream_id2); QuicStream* stream3 = session_->GetOrCreateStream(stream_id2 + 4); CheckClosedStreams(); CloseStream(stream3->id()); CheckClosedStreams(); } TEST_P(QuicSpdySessionTestServer, MaximumAvailableOpenedStreams) { Initialize(); if (VersionHasIetfQuicFrames(transport_version())) { QuicStreamId stream_id = StreamCountToId( QuicSessionPeer::ietf_streamid_manager(&*session_) ->max_incoming_bidirectional_streams(), Perspective::IS_CLIENT, true); EXPECT_NE(nullptr, session_->GetOrCreateStream(stream_id)); stream_id = StreamCountToId(QuicSessionPeer::ietf_streamid_manager(&*session_) ->max_incoming_unidirectional_streams(), Perspective::IS_CLIENT, false); EXPECT_NE(nullptr, session_->GetOrCreateStream(stream_id)); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(2); stream_id = StreamCountToId(QuicSessionPeer::ietf_streamid_manager(&*session_) ->max_incoming_bidirectional_streams() + 1, Perspective::IS_CLIENT, true); EXPECT_EQ(nullptr, session_->GetOrCreateStream(stream_id)); stream_id = StreamCountToId(QuicSessionPeer::ietf_streamid_manager(&*session_) ->max_incoming_unidirectional_streams() + 1, Perspective::IS_CLIENT, false); EXPECT_EQ(nullptr, session_->GetOrCreateStream(stream_id)); } else { QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); session_->GetOrCreateStream(stream_id); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); EXPECT_NE( nullptr, session_->GetOrCreateStream( stream_id + IdDelta() * (session_->max_open_incoming_bidirectional_streams() - 1))); } } TEST_P(QuicSpdySessionTestServer, TooManyAvailableStreams) { Initialize(); QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0); QuicStreamId stream_id2; EXPECT_NE(nullptr, session_->GetOrCreateStream(stream_id1)); stream_id2 = GetNthClientInitiatedBidirectionalId( 2 * session_->MaxAvailableBidirectionalStreams() + 4); if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_STREAM_ID, _, _)); } else { EXPECT_CALL(*connection_, CloseConnection(QUIC_TOO_MANY_AVAILABLE_STREAMS, _, _)); } EXPECT_EQ(nullptr, session_->GetOrCreateStream(stream_id2)); } TEST_P(QuicSpdySessionTestServer, ManyAvailableStreams) { Initialize(); if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&*session_, 200); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&*session_, 200); } QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); session_->GetOrCreateStream(stream_id); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); EXPECT_NE(nullptr, session_->GetOrCreateStream( GetNthClientInitiatedBidirectionalId(198))); } TEST_P(QuicSpdySessionTestServer, DebugDFatalIfMarkingClosedStreamWriteBlocked) { Initialize(); CompleteHandshake(); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillRepeatedly(Return(WriteResult(WRITE_STATUS_OK, 0))); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); QuicStreamId closed_stream_id = stream2->id(); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(closed_stream_id, _)); stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD); std::string msg = absl::StrCat("Marking unknown stream ", closed_stream_id, " blocked."); EXPECT_QUIC_BUG(session_->MarkConnectionLevelWriteBlocked(closed_stream_id), msg); } TEST_P(QuicSpdySessionTestServer, TooLargeStreamBlocked) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams( static_cast<QuicSession*>(&*session_), QuicUtils::GetMaxStreamCount()); QuicStreamsBlockedFrame frame; frame.stream_count = QuicUtils::GetMaxStreamCount(); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(debug_visitor, OnGoAwayFrameSent(_)); session_->OnStreamsBlockedFrame(frame); } TEST_P(QuicSpdySessionTestServer, OnCanWriteBundlesStreams) { Initialize(); CompleteHandshake(); MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; QuicConnectionPeer::SetSendAlgorithm(session_->connection(), send_algorithm); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream2->id()); session_->MarkConnectionLevelWriteBlocked(stream6->id()); session_->MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true)); EXPECT_CALL(*send_algorithm, GetCongestionWindow()) .WillRepeatedly(Return(kMaxOutgoingPacketSize * 10)); EXPECT_CALL(*send_algorithm, InRecovery()).WillRepeatedly(Return(false)); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_->SendStreamData(stream2); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_->SendStreamData(stream4); })); EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() { session_->SendStreamData(stream6); })); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _)); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_->OnCanWrite(); EXPECT_FALSE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, OnCanWriteCongestionControlBlocks) { Initialize(); CompleteHandshake(); session_->set_writev_consumes_all_data(true); InSequence s; MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; QuicConnectionPeer::SetSendAlgorithm(session_->connection(), send_algorithm); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream2->id()); session_->MarkConnectionLevelWriteBlocked(stream6->id()); session_->MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_->SendStreamData(stream2); })); EXPECT_CALL(*send_algorithm, GetCongestionWindow()).Times(AnyNumber()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() { session_->SendStreamData(stream6); })); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(false)); session_->OnCanWrite(); EXPECT_TRUE(session_->WillingAndAbleToWrite()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(false)); session_->OnCanWrite(); EXPECT_TRUE(session_->WillingAndAbleToWrite()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_->SendStreamData(stream4); })); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_->OnCanWrite(); EXPECT_FALSE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, OnCanWriteWriterBlocks) { Initialize(); CompleteHandshake(); MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; QuicConnectionPeer::SetSendAlgorithm(session_->connection(), send_algorithm); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true)); EXPECT_CALL(*writer_, IsWriteBlocked()).WillRepeatedly(Return(true)); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)).Times(0); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream2->id()); EXPECT_CALL(*stream2, OnCanWrite()).Times(0); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)).Times(0); session_->OnCanWrite(); EXPECT_TRUE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, BufferedHandshake) { Initialize(); if (QuicVersionUsesCryptoFrames(transport_version())) { return; } session_->set_writev_consumes_all_data(true); EXPECT_FALSE(session_->HasPendingHandshake()); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream2->id()); EXPECT_FALSE(session_->HasPendingHandshake()); TestStream* stream3 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream3->id()); EXPECT_FALSE(session_->HasPendingHandshake()); session_->MarkConnectionLevelWriteBlocked( QuicUtils::GetCryptoStreamId(transport_version())); EXPECT_TRUE(session_->HasPendingHandshake()); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_TRUE(session_->HasPendingHandshake()); InSequence s; TestCryptoStream* crypto_stream = session_->GetMutableCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_->SendStreamData(stream2); })); EXPECT_CALL(*stream3, OnCanWrite()).WillOnce(Invoke([this, stream3]() { session_->SendStreamData(stream3); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_->SendStreamData(stream4); session_->MarkConnectionLevelWriteBlocked(stream4->id()); })); session_->OnCanWrite(); EXPECT_TRUE(session_->WillingAndAbleToWrite()); EXPECT_FALSE(session_->HasPendingHandshake()); } TEST_P(QuicSpdySessionTestServer, OnCanWriteWithClosedStream) { Initialize(); CompleteHandshake(); session_->set_writev_consumes_all_data(true); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream2->id()); session_->MarkConnectionLevelWriteBlocked(stream6->id()); session_->MarkConnectionLevelWriteBlocked(stream4->id()); CloseStream(stream6->id()); InSequence s; EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_->SendStreamData(stream2); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_->SendStreamData(stream4); })); session_->OnCanWrite(); EXPECT_FALSE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, OnCanWriteLimitsNumWritesIfFlowControlBlocked) { Initialize(); CompleteHandshake(); MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; QuicConnectionPeer::SetSendAlgorithm(session_->connection(), send_algorithm); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true)); QuicFlowControllerPeer::SetSendWindowOffset(session_->flow_controller(), 0); EXPECT_TRUE(session_->flow_controller()->IsBlocked()); EXPECT_TRUE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); if (!QuicVersionUsesCryptoFrames(transport_version())) { session_->MarkConnectionLevelWriteBlocked( QuicUtils::GetCryptoStreamId(transport_version())); } TestStream* stream = session_->CreateOutgoingBidirectionalStream(); session_->MarkConnectionLevelWriteBlocked(stream->id()); EXPECT_CALL(*stream, OnCanWrite()).Times(0); if (!QuicVersionUsesCryptoFrames(transport_version())) { TestCryptoStream* crypto_stream = session_->GetMutableCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); } if (!VersionUsesHttp3(transport_version())) { TestHeadersStream* headers_stream; QuicSpdySessionPeer::SetHeadersStream(&*session_, nullptr); headers_stream = new TestHeadersStream(&*session_); QuicSpdySessionPeer::SetHeadersStream(&*session_, headers_stream); session_->MarkConnectionLevelWriteBlocked( QuicUtils::GetHeadersStreamId(transport_version())); EXPECT_CALL(*headers_stream, OnCanWrite()); } EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_->OnCanWrite(); EXPECT_FALSE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, SendGoAway) { Initialize(); CompleteHandshake(); if (VersionHasIetfQuicFrames(transport_version())) { return; } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallySendControlFrame)); session_->SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_->goaway_sent()); const QuicStreamId kTestStreamId = 5u; EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0); EXPECT_CALL(*connection_, OnStreamReset(kTestStreamId, QUIC_STREAM_PEER_GOING_AWAY)) .Times(0); EXPECT_TRUE(session_->GetOrCreateStream(kTestStreamId)); } TEST_P(QuicSpdySessionTestServer, SendGoAwayWithoutEncryption) { Initialize(); if (VersionHasIetfQuicFrames(transport_version())) { return; } EXPECT_CALL( *connection_, CloseConnection(QUIC_PEER_GOING_AWAY, "Going Away.", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0); session_->SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_FALSE(session_->goaway_sent()); } TEST_P(QuicSpdySessionTestServer, SendHttp3GoAway) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(debug_visitor, OnGoAwayFrameSent( 0xfffffffc)); session_->SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "Goaway"); EXPECT_TRUE(session_->goaway_sent()); const QuicStreamId kTestStreamId = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 0); EXPECT_CALL(*connection_, OnStreamReset(kTestStreamId, _)).Times(0); EXPECT_TRUE(session_->GetOrCreateStream(kTestStreamId)); session_->SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "Goaway"); } TEST_P(QuicSpdySessionTestServer, SendHttp3GoAwayAndNoMoreMaxStreams) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(debug_visitor, OnGoAwayFrameSent( 0xfffffffc)); session_->SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "Goaway"); EXPECT_TRUE(session_->goaway_sent()); EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0); const QuicStreamCount max_streams = QuicSessionPeer::ietf_streamid_manager(&*session_) ->max_incoming_bidirectional_streams(); for (QuicStreamCount i = 0; i < max_streams; ++i) { QuicStreamId stream_id = StreamCountToId( i + 1, Perspective::IS_CLIENT, true); EXPECT_NE(nullptr, session_->GetOrCreateStream(stream_id)); CloseStream(stream_id); QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream_id, QUIC_STREAM_CANCELLED, 0); session_->OnRstStream(rst_frame); } EXPECT_EQ(max_streams, QuicSessionPeer::ietf_streamid_manager(&*session_) ->max_incoming_bidirectional_streams()); } TEST_P(QuicSpdySessionTestServer, SendHttp3GoAwayWithoutEncryption) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } EXPECT_CALL( *connection_, CloseConnection(QUIC_PEER_GOING_AWAY, "Goaway", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_->SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "Goaway"); EXPECT_FALSE(session_->goaway_sent()); } TEST_P(QuicSpdySessionTestServer, SendHttp3GoAwayAfterStreamIsCreated) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); const QuicStreamId kTestStreamId = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 0); EXPECT_TRUE(session_->GetOrCreateStream(kTestStreamId)); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(debug_visitor, OnGoAwayFrameSent( 0xfffffffc)); session_->SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "Goaway"); EXPECT_TRUE(session_->goaway_sent()); session_->SendHttp3GoAway(QUIC_PEER_GOING_AWAY, "Goaway"); } TEST_P(QuicSpdySessionTestServer, DoNotSendGoAwayTwice) { Initialize(); CompleteHandshake(); if (VersionHasIetfQuicFrames(transport_version())) { return; } EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); session_->SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_->goaway_sent()); session_->SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); } TEST_P(QuicSpdySessionTestServer, InvalidGoAway) { Initialize(); if (VersionHasIetfQuicFrames(transport_version())) { return; } QuicGoAwayFrame go_away(kInvalidControlFrameId, QUIC_PEER_GOING_AWAY, session_->next_outgoing_bidirectional_stream_id(), ""); session_->OnGoAway(go_away); } TEST_P(QuicSpdySessionTestServer, Http3GoAwayLargerIdThanBefore) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } EXPECT_FALSE(session_->goaway_received()); session_->OnHttp3GoAway( 0); EXPECT_TRUE(session_->goaway_received()); EXPECT_CALL( *connection_, CloseConnection( QUIC_HTTP_GOAWAY_ID_LARGER_THAN_PREVIOUS, "GOAWAY received with ID 1 greater than previously received ID 0", _)); session_->OnHttp3GoAway( 1); } TEST_P(QuicSpdySessionTestServer, ServerReplyToConnecitivityProbe) { Initialize(); if (VersionHasIetfQuicFrames(transport_version()) || GetQuicReloadableFlag(quic_ignore_gquic_probing)) { return; } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); QuicSocketAddress old_peer_address = QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort); EXPECT_EQ(old_peer_address, session_->peer_address()); QuicSocketAddress new_peer_address = QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort + 1); EXPECT_CALL(*connection_, SendConnectivityProbingPacket(nullptr, new_peer_address)); session_->OnPacketReceived(session_->self_address(), new_peer_address, true); EXPECT_EQ(old_peer_address, session_->peer_address()); } TEST_P(QuicSpdySessionTestServer, IncreasedTimeoutAfterCryptoHandshake) { Initialize(); EXPECT_EQ(kInitialIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); CompleteHandshake(); EXPECT_EQ(kMaximumIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); } TEST_P(QuicSpdySessionTestServer, RstStreamBeforeHeadersDecompressed) { Initialize(); CompleteHandshake(); QuicStreamFrame data1(GetNthClientInitiatedBidirectionalId(0), false, 0, absl::string_view("HT")); session_->OnStreamFrame(data1); EXPECT_EQ(1u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); if (!VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*connection_, OnStreamReset(GetNthClientInitiatedBidirectionalId(0), _)); } EXPECT_CALL(*connection_, SendControlFrame(_)); QuicRstStreamFrame rst1(kInvalidControlFrameId, GetNthClientInitiatedBidirectionalId(0), QUIC_ERROR_PROCESSING_STREAM, 0); session_->OnRstStream(rst1); if (VersionHasIetfQuicFrames(transport_version())) { QuicStopSendingFrame stop_sending(kInvalidControlFrameId, GetNthClientInitiatedBidirectionalId(0), QUIC_ERROR_PROCESSING_STREAM); EXPECT_CALL(*connection_, OnStreamReset(GetNthClientInitiatedBidirectionalId(0), QUIC_ERROR_PROCESSING_STREAM)); session_->OnStopSendingFrame(stop_sending); } EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); EXPECT_TRUE(connection_->connected()); } TEST_P(QuicSpdySessionTestServer, OnStreamFrameFinStaticStreamId) { Initialize(); QuicStreamId id; if (VersionUsesHttp3(transport_version())) { CompleteHandshake(); id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); } else { id = QuicUtils::GetHeadersStreamId(transport_version()); } QuicStreamFrame data1(id, true, 0, absl::string_view("HT")); EXPECT_CALL(*connection_, CloseConnection( QUIC_INVALID_STREAM_ID, "Attempt to close a static stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_->OnStreamFrame(data1); } TEST_P(QuicSpdySessionTestServer, OnRstStreamStaticStreamId) { Initialize(); QuicStreamId id; QuicErrorCode expected_error; std::string error_message; if (VersionUsesHttp3(transport_version())) { CompleteHandshake(); id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); expected_error = QUIC_HTTP_CLOSED_CRITICAL_STREAM; error_message = "RESET_STREAM received for receive control stream"; } else { id = QuicUtils::GetHeadersStreamId(transport_version()); expected_error = QUIC_INVALID_STREAM_ID; error_message = "Attempt to reset headers stream"; } QuicRstStreamFrame rst1(kInvalidControlFrameId, id, QUIC_ERROR_PROCESSING_STREAM, 0); EXPECT_CALL( *connection_, CloseConnection(expected_error, error_message, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_->OnRstStream(rst1); } TEST_P(QuicSpdySessionTestServer, OnStreamFrameInvalidStreamId) { Initialize(); QuicStreamFrame data1(QuicUtils::GetInvalidStreamId(transport_version()), true, 0, absl::string_view("HT")); EXPECT_CALL(*connection_, CloseConnection( QUIC_INVALID_STREAM_ID, "Received data for an invalid stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_->OnStreamFrame(data1); } TEST_P(QuicSpdySessionTestServer, OnRstStreamInvalidStreamId) { Initialize(); QuicRstStreamFrame rst1(kInvalidControlFrameId, QuicUtils::GetInvalidStreamId(transport_version()), QUIC_ERROR_PROCESSING_STREAM, 0); EXPECT_CALL(*connection_, CloseConnection( QUIC_INVALID_STREAM_ID, "Received data for an invalid stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_->OnRstStream(rst1); } TEST_P(QuicSpdySessionTestServer, HandshakeUnblocksFlowControlBlockedStream) { Initialize(); if (connection_->version().handshake_protocol == PROTOCOL_TLS1_3) { return; } session_->GetMutableCryptoStream()->EstablishZeroRttEncryption(); session_->set_writev_consumes_all_data(true); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); std::string body(kMinimumFlowControlSendWindow, '.'); EXPECT_FALSE(stream2->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); EXPECT_CALL(*connection_, SendControlFrame(_)).Times(AtLeast(1)); stream2->WriteOrBufferBody(body, false); EXPECT_TRUE(stream2->IsFlowControlBlocked()); EXPECT_TRUE(session_->IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_->IsStreamFlowControlBlocked()); CompleteHandshake(); EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked(&*session_, stream2->id())); EXPECT_FALSE(stream2->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); } #if !defined(OS_IOS) TEST_P(QuicSpdySessionTestServer, HandshakeUnblocksFlowControlBlockedHeadersStream) { Initialize(); if (QuicVersionUsesCryptoFrames(transport_version())) { return; } if (VersionUsesHttp3(transport_version())) { return; } session_->GetMutableCryptoStream()->EstablishZeroRttEncryption(); session_->set_writev_consumes_all_data(true); TestCryptoStream* crypto_stream = session_->GetMutableCryptoStream(); EXPECT_FALSE(crypto_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); QuicHeadersStream* headers_stream = QuicSpdySessionPeer::GetHeadersStream(&*session_); EXPECT_FALSE(headers_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); QuicStreamId stream_id = 5; EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); HttpHeaderBlock headers; SimpleRandom random; while (!headers_stream->IsFlowControlBlocked() && stream_id < 2000) { EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); headers["header"] = absl::StrCat(random.RandUint64(), random.RandUint64(), random.RandUint64()); session_->WriteHeadersOnHeadersStream(stream_id, headers.Clone(), true, spdy::SpdyStreamPrecedence(0), nullptr); stream_id += IdDelta(); } session_->WriteHeadersOnHeadersStream(stream_id, std::move(headers), true, spdy::SpdyStreamPrecedence(0), nullptr); EXPECT_TRUE(headers_stream->HasBufferedData()); EXPECT_TRUE(headers_stream->IsFlowControlBlocked()); EXPECT_FALSE(crypto_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_->IsStreamFlowControlBlocked()); EXPECT_FALSE(session_->HasDataToWrite()); CompleteHandshake(); EXPECT_FALSE(headers_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); EXPECT_TRUE(headers_stream->HasBufferedData()); EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked( &*session_, QuicUtils::GetHeadersStreamId(transport_version()))); } #endif TEST_P(QuicSpdySessionTestServer, ConnectionFlowControlAccountingRstOutOfOrder) { Initialize(); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); CompleteHandshake(); TestStream* stream = session_->CreateOutgoingBidirectionalStream(); const QuicStreamOffset kByteOffset = 1 + kInitialSessionFlowControlWindowForTest / 2; if (!VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); EXPECT_CALL(*connection_, SendControlFrame(_)); } QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_->OnRstStream(rst_frame); if (VersionHasIetfQuicFrames(transport_version())) { QuicStopSendingFrame stop_sending(kInvalidControlFrameId, stream->id(), QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), QUIC_STREAM_CANCELLED)); EXPECT_CALL(*connection_, SendControlFrame(_)); session_->OnStopSendingFrame(stop_sending); } EXPECT_EQ(kByteOffset, session_->flow_controller()->bytes_consumed()); } TEST_P(QuicSpdySessionTestServer, InvalidStreamFlowControlWindowInHandshake) { Initialize(); if (GetParam().handshake_protocol == PROTOCOL_TLS1_3) { return; } const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_->config(), kInvalidWindow); EXPECT_CALL(*connection_, CloseConnection(QUIC_FLOW_CONTROL_INVALID_WINDOW, _, _)); session_->OnConfigNegotiated(); } TEST_P(QuicSpdySessionTestServer, TooLowUnidirectionalStreamLimitHttp3) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } session_->GetMutableCryptoStream()->EstablishZeroRttEncryption(); QuicConfigPeer::SetReceivedMaxUnidirectionalStreams(session_->config(), 2u); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); EXPECT_CALL( *connection_, CloseConnection( _, "new unidirectional limit 2 decreases the current limit: 3", _)); session_->OnConfigNegotiated(); } TEST_P(QuicSpdySessionTestServer, CustomFlowControlWindow) { Initialize(); QuicTagVector copt; copt.push_back(kIFW7); QuicConfigPeer::SetReceivedConnectionOptions(session_->config(), copt); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_->OnConfigNegotiated(); EXPECT_EQ(192 * 1024u, QuicFlowControllerPeer::ReceiveWindowSize( session_->flow_controller())); } TEST_P(QuicSpdySessionTestServer, WindowUpdateUnblocksHeadersStream) { Initialize(); if (VersionUsesHttp3(transport_version())) { return; } QuicHeadersStream* headers_stream = QuicSpdySessionPeer::GetHeadersStream(&*session_); QuicStreamPeer::SetSendWindowOffset(headers_stream, 0); EXPECT_TRUE(headers_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_->IsStreamFlowControlBlocked()); QuicWindowUpdateFrame window_update_frame(kInvalidControlFrameId, headers_stream->id(), 2 * kMinimumFlowControlSendWindow); session_->OnWindowUpdateFrame(window_update_frame); EXPECT_FALSE(headers_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_->IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_->IsStreamFlowControlBlocked()); } TEST_P(QuicSpdySessionTestServer, TooManyUnfinishedStreamsCauseServerRejectStream) { Initialize(); CompleteHandshake(); const QuicStreamId kMaxStreams = 5; if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&*session_, kMaxStreams); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&*session_, kMaxStreams); } const QuicStreamId kFirstStreamId = GetNthClientInitiatedBidirectionalId(0); const QuicStreamId kFinalStreamId = GetNthClientInitiatedBidirectionalId(kMaxStreams); const QuicStreamId kNextId = QuicUtils::StreamIdDelta(transport_version()); for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += kNextId) { QuicStreamFrame data1(i, false, 0, absl::string_view("HT")); session_->OnStreamFrame(data1); CloseStream(i); } if (!VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1); EXPECT_CALL(*connection_, OnStreamReset(kFinalStreamId, QUIC_REFUSED_STREAM)) .Times(1); } else { EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, testing::MatchesRegex( "Stream id \\d+ would exceed stream count limit 5"), _)); } QuicStreamFrame data1(kFinalStreamId, false, 0, absl::string_view("HT")); session_->OnStreamFrame(data1); } TEST_P(QuicSpdySessionTestServer, DrainingStreamsDoNotCountAsOpened) { Initialize(); CompleteHandshake(); if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::set_is_configured(&*session_, true); EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1); } else { EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0); } EXPECT_CALL(*connection_, OnStreamReset(_, QUIC_REFUSED_STREAM)).Times(0); const QuicStreamId kMaxStreams = 5; if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&*session_, kMaxStreams); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&*session_, kMaxStreams); } const QuicStreamId kFirstStreamId = GetNthClientInitiatedBidirectionalId(0); const QuicStreamId kFinalStreamId = GetNthClientInitiatedBidirectionalId(kMaxStreams + 1); for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += IdDelta()) { QuicStreamFrame data1(i, true, 0, absl::string_view("HT")); session_->OnStreamFrame(data1); EXPECT_EQ(1u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); session_->StreamDraining(i, false); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); } } class QuicSpdySessionTestClient : public QuicSpdySessionTestBase { protected: QuicSpdySessionTestClient() : QuicSpdySessionTestBase(Perspective::IS_CLIENT, false) {} }; INSTANTIATE_TEST_SUITE_P(Tests, QuicSpdySessionTestClient, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicSpdySessionTestClient, UsesPendingStreamsForFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } EXPECT_TRUE(session_->UsesPendingStreamForFrame( STREAM_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_SERVER))); EXPECT_TRUE(session_->UsesPendingStreamForFrame( RST_STREAM_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_SERVER))); EXPECT_FALSE(session_->UsesPendingStreamForFrame( RST_STREAM_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT))); EXPECT_FALSE(session_->UsesPendingStreamForFrame( STOP_SENDING_FRAME, QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_SERVER))); EXPECT_FALSE(session_->UsesPendingStreamForFrame( RST_STREAM_FRAME, QuicUtils::GetFirstBidirectionalStreamId( transport_version(), Perspective::IS_SERVER))); } TEST_P(QuicSpdySessionTestClient, BadStreamFramePendingStream) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); QuicStreamId stream_id1 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); QuicStreamFrame data1(stream_id1, false, 0, 0); session_->OnStreamFrame(data1); } TEST_P(QuicSpdySessionTestClient, PendingStreamKeepsConnectionAlive) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_SERVER); QuicStreamFrame frame(stream_id, false, 1, "test"); EXPECT_FALSE(session_->ShouldKeepConnectionAlive()); session_->OnStreamFrame(frame); EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&*session_, stream_id)); EXPECT_TRUE(session_->ShouldKeepConnectionAlive()); } TEST_P(QuicSpdySessionTestClient, AvailableStreamsClient) { Initialize(); ASSERT_TRUE(session_->GetOrCreateStream( GetNthServerInitiatedBidirectionalId(2)) != nullptr); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &*session_, GetNthServerInitiatedBidirectionalId(0))); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &*session_, GetNthServerInitiatedBidirectionalId(1))); ASSERT_TRUE(session_->GetOrCreateStream( GetNthServerInitiatedBidirectionalId(0)) != nullptr); ASSERT_TRUE(session_->GetOrCreateStream( GetNthServerInitiatedBidirectionalId(1)) != nullptr); EXPECT_FALSE(QuicSessionPeer::IsStreamAvailable( &*session_, GetNthClientInitiatedBidirectionalId(0))); } TEST_P(QuicSpdySessionTestClient, TooLargeHeadersMustNotCauseWriteAfterReset) { Initialize(); if (VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); TestStream* stream = session_->CreateOutgoingBidirectionalStream(); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); stream->WriteHeaders(HttpHeaderBlock(), true, nullptr); QuicHeaderList headers; EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), QUIC_HEADERS_TOO_LARGE)); stream->OnStreamHeaderList( true, headers.uncompressed_header_bytes(), headers); } TEST_P(QuicSpdySessionTestClient, RecordFinAfterReadSideClosed) { Initialize(); CompleteHandshake(); TestStream* stream = session_->CreateOutgoingBidirectionalStream(); QuicStreamId stream_id = stream->id(); QuicStreamPeer::CloseReadSide(stream); QuicStreamFrame frame(stream_id, true, 0, absl::string_view()); session_->OnStreamFrame(frame); EXPECT_TRUE(stream->fin_received()); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_TRUE(QuicStreamPeer::read_side_closed(stream)); EXPECT_TRUE(connection_->connected()); EXPECT_TRUE(QuicSessionPeer::IsStreamClosed(&*session_, stream_id)); EXPECT_FALSE(QuicSessionPeer::IsStreamCreated(&*session_, stream_id)); EXPECT_EQ( 0u, QuicSessionPeer::GetLocallyClosedStreamsHighestOffset(&*session_).size()); } TEST_P(QuicSpdySessionTestClient, WritePriority) { Initialize(); if (VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); TestHeadersStream* headers_stream; QuicSpdySessionPeer::SetHeadersStream(&*session_, nullptr); headers_stream = new TestHeadersStream(&*session_); QuicSpdySessionPeer::SetHeadersStream(&*session_, headers_stream); EXPECT_CALL(*writer_, IsWriteBlocked()).WillRepeatedly(Return(true)); const QuicStreamId id = 4; const QuicStreamId parent_stream_id = 9; const SpdyPriority priority = kV3HighestPriority; const bool exclusive = true; session_->WritePriority(id, parent_stream_id, Spdy3PriorityToHttp2Weight(priority), exclusive); QuicStreamSendBuffer& send_buffer = QuicStreamPeer::SendBuffer(headers_stream); ASSERT_EQ(1u, send_buffer.size()); SpdyPriorityIR priority_frame( id, parent_stream_id, Spdy3PriorityToHttp2Weight(priority), exclusive); SpdyFramer spdy_framer(SpdyFramer::ENABLE_COMPRESSION); SpdySerializedFrame frame = spdy_framer.SerializeFrame(priority_frame); const quiche::QuicheMemSlice& slice = QuicStreamSendBufferPeer::CurrentWriteSlice(&send_buffer)->slice; EXPECT_EQ(absl::string_view(frame.data(), frame.size()), absl::string_view(slice.data(), slice.length())); } TEST_P(QuicSpdySessionTestClient, Http3ServerPush) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); std::string frame_type1; ASSERT_TRUE(absl::HexStringToBytes("01", &frame_type1)); QuicStreamId stream_id1 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_RECEIVE_SERVER_PUSH, _, _)) .Times(1); session_->OnStreamFrame(QuicStreamFrame(stream_id1, false, 0, frame_type1)); } TEST_P(QuicSpdySessionTestClient, Http3ServerPushOutofOrderFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); std::string frame_type; ASSERT_TRUE(absl::HexStringToBytes("01", &frame_type)); std::string push_id; ASSERT_TRUE(absl::HexStringToBytes("4000", &push_id)); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); QuicStreamFrame data1(stream_id, false, 0, frame_type); QuicStreamFrame data2(stream_id, false, frame_type.size(), push_id); session_->OnStreamFrame(data2); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_RECEIVE_SERVER_PUSH, _, _)) .Times(1); session_->OnStreamFrame(data1); } TEST_P(QuicSpdySessionTestClient, ServerDisableQpackDynamicTable) { SetQuicFlag(quic_server_disable_qpack_dynamic_table, true); Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(stream_id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); EXPECT_EQ(stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); const uint64_t capacity = 512; SettingsFrame settings; settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = capacity; std::string data = HttpEncoder::SerializeSettingsFrame(settings); QuicStreamFrame frame(stream_id, false, 1, data); session_->OnStreamFrame(frame); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(capacity, qpack_encoder->MaximumDynamicTableCapacity()); QpackEncoderHeaderTable* encoder_header_table = QpackEncoderPeer::header_table(qpack_encoder); EXPECT_EQ(capacity, encoder_header_table->dynamic_table_capacity()); EXPECT_EQ(capacity, encoder_header_table->maximum_dynamic_table_capacity()); SettingsFrame outgoing_settings = session_->settings(); EXPECT_EQ(kDefaultQpackMaxDynamicTableCapacity, outgoing_settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY]); } TEST_P(QuicSpdySessionTestClient, DisableQpackDynamicTable) { SetQuicFlag(quic_server_disable_qpack_dynamic_table, false); qpack_maximum_dynamic_table_capacity_ = 0; Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(stream_id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); EXPECT_EQ(stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); const uint64_t capacity = 512; SettingsFrame settings; settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = capacity; std::string data = HttpEncoder::SerializeSettingsFrame(settings); QuicStreamFrame frame(stream_id, false, 1, data); session_->OnStreamFrame(frame); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(capacity, qpack_encoder->MaximumDynamicTableCapacity()); QpackEncoderHeaderTable* encoder_header_table = QpackEncoderPeer::header_table(qpack_encoder); EXPECT_EQ(0, encoder_header_table->dynamic_table_capacity()); EXPECT_EQ(capacity, encoder_header_table->maximum_dynamic_table_capacity()); SettingsFrame outgoing_settings = session_->settings(); EXPECT_EQ(0, outgoing_settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY]); } TEST_P(QuicSpdySessionTestServer, OnStreamFrameLost) { Initialize(); CompleteHandshake(); InSequence s; MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; QuicConnectionPeer::SetSendAlgorithm(session_->connection(), send_algorithm); TestCryptoStream* crypto_stream = session_->GetMutableCryptoStream(); TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); QuicStreamFrame frame2(stream2->id(), false, 0, 9); QuicStreamFrame frame3(stream4->id(), false, 0, 9); EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(true)); if (!QuicVersionUsesCryptoFrames(transport_version())) { EXPECT_CALL(*crypto_stream, HasPendingRetransmission()) .WillOnce(Return(true)); } EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(true)); session_->OnFrameLost(QuicFrame(frame3)); if (!QuicVersionUsesCryptoFrames(transport_version())) { QuicStreamFrame frame1(QuicUtils::GetCryptoStreamId(transport_version()), false, 0, 1300); session_->OnFrameLost(QuicFrame(frame1)); } else { QuicCryptoFrame crypto_frame(ENCRYPTION_INITIAL, 0, 1300); session_->OnFrameLost(QuicFrame(&crypto_frame)); } session_->OnFrameLost(QuicFrame(frame2)); EXPECT_TRUE(session_->WillingAndAbleToWrite()); session_->MarkConnectionLevelWriteBlocked(stream2->id()); session_->MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_CALL(*send_algorithm, CanSend(_)).Times(0); if (!QuicVersionUsesCryptoFrames(transport_version())) { EXPECT_CALL(*crypto_stream, OnCanWrite()); EXPECT_CALL(*crypto_stream, HasPendingRetransmission()) .WillOnce(Return(false)); } EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(false)); session_->OnCanWrite(); EXPECT_TRUE(session_->WillingAndAbleToWrite()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_->OnCanWrite(); EXPECT_FALSE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, DonotRetransmitDataOfClosedStreams) { Initialize(); CompleteHandshake(); NoopQpackStreamSenderDelegate qpack_stream_sender_delegate; if (VersionUsesHttp3(transport_version())) { session_->qpack_decoder()->set_qpack_stream_sender_delegate( &qpack_stream_sender_delegate); } InSequence s; TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_->CreateOutgoingBidirectionalStream(); QuicStreamFrame frame1(stream2->id(), false, 0, 9); QuicStreamFrame frame2(stream4->id(), false, 0, 9); QuicStreamFrame frame3(stream6->id(), false, 0, 9); EXPECT_CALL(*stream6, HasPendingRetransmission()).WillOnce(Return(true)); EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(true)); EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(true)); session_->OnFrameLost(QuicFrame(frame3)); session_->OnFrameLost(QuicFrame(frame2)); session_->OnFrameLost(QuicFrame(frame1)); session_->MarkConnectionLevelWriteBlocked(stream2->id()); session_->MarkConnectionLevelWriteBlocked(stream4->id()); session_->MarkConnectionLevelWriteBlocked(stream6->id()); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream4->id(), _)); stream4->Reset(QUIC_STREAM_CANCELLED); EXPECT_CALL(*stream6, OnCanWrite()); EXPECT_CALL(*stream6, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream6, OnCanWrite()); session_->OnCanWrite(); } TEST_P(QuicSpdySessionTestServer, RetransmitFrames) { Initialize(); CompleteHandshake(); MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; QuicConnectionPeer::SetSendAlgorithm(session_->connection(), send_algorithm); InSequence s; TestStream* stream2 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_->CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_->CreateOutgoingBidirectionalStream(); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); session_->SendWindowUpdate(stream2->id(), 9); QuicStreamFrame frame1(stream2->id(), false, 0, 9); QuicStreamFrame frame2(stream4->id(), false, 0, 9); QuicStreamFrame frame3(stream6->id(), false, 0, 9); QuicWindowUpdateFrame window_update(1, stream2->id(), 9); QuicFrames frames; frames.push_back(QuicFrame(frame1)); frames.push_back(QuicFrame(window_update)); frames.push_back(QuicFrame(frame2)); frames.push_back(QuicFrame(frame3)); EXPECT_FALSE(session_->WillingAndAbleToWrite()); EXPECT_CALL(*stream2, RetransmitStreamData(_, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*stream4, RetransmitStreamData(_, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*stream6, RetransmitStreamData(_, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_->RetransmitFrames(frames, PTO_RETRANSMISSION); } TEST_P(QuicSpdySessionTestServer, OnPriorityFrame) { Initialize(); QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); TestStream* stream = session_->CreateIncomingStream(stream_id); session_->OnPriorityFrame(stream_id, spdy::SpdyStreamPrecedence(kV3HighestPriority)); EXPECT_EQ((QuicStreamPriority(HttpStreamPriority{ kV3HighestPriority, HttpStreamPriority::kDefaultIncremental})), stream->priority()); } TEST_P(QuicSpdySessionTestServer, OnPriorityUpdateFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); EXPECT_CALL(debug_visitor, OnSettingsFrameSent(_)); CompleteHandshake(); QuicStreamId receive_control_stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; absl::string_view stream_type(type, 1); QuicStreamOffset offset = 0; QuicStreamFrame data1(receive_control_stream_id, false, offset, stream_type); offset += stream_type.length(); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(receive_control_stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(receive_control_stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); std::string serialized_settings = HttpEncoder::SerializeSettingsFrame({}); QuicStreamFrame data2(receive_control_stream_id, false, offset, serialized_settings); offset += serialized_settings.length(); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(_)); session_->OnStreamFrame(data2); const QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0); PriorityUpdateFrame priority_update1{stream_id1, "u=2"}; std::string serialized_priority_update1 = HttpEncoder::SerializePriorityUpdateFrame(priority_update1); QuicStreamFrame data3(receive_control_stream_id, false, offset, serialized_priority_update1); offset += serialized_priority_update1.size(); TestStream* stream1 = session_->CreateIncomingStream(stream_id1); EXPECT_EQ(QuicStreamPriority( HttpStreamPriority{HttpStreamPriority::kDefaultUrgency, HttpStreamPriority::kDefaultIncremental}), stream1->priority()); EXPECT_CALL(debug_visitor, OnPriorityUpdateFrameReceived(priority_update1)); session_->OnStreamFrame(data3); EXPECT_EQ(QuicStreamPriority(HttpStreamPriority{ 2u, HttpStreamPriority::kDefaultIncremental}), stream1->priority()); const QuicStreamId stream_id2 = GetNthClientInitiatedBidirectionalId(1); PriorityUpdateFrame priority_update2{stream_id2, "u=5, i"}; std::string serialized_priority_update2 = HttpEncoder::SerializePriorityUpdateFrame(priority_update2); QuicStreamFrame stream_frame3(receive_control_stream_id, false, offset, serialized_priority_update2); EXPECT_CALL(debug_visitor, OnPriorityUpdateFrameReceived(priority_update2)); session_->OnStreamFrame(stream_frame3); TestStream* stream2 = session_->CreateIncomingStream(stream_id2); EXPECT_EQ(QuicStreamPriority(HttpStreamPriority{5u, true}), stream2->priority()); } TEST_P(QuicSpdySessionTestServer, OnInvalidPriorityUpdateFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId receive_control_stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; absl::string_view stream_type(type, 1); QuicStreamOffset offset = 0; QuicStreamFrame data1(receive_control_stream_id, false, offset, stream_type); offset += stream_type.length(); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(receive_control_stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(receive_control_stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); std::string serialized_settings = HttpEncoder::SerializeSettingsFrame({}); QuicStreamFrame data2(receive_control_stream_id, false, offset, serialized_settings); offset += serialized_settings.length(); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(_)); session_->OnStreamFrame(data2); const QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); PriorityUpdateFrame priority_update{stream_id, "00"}; EXPECT_CALL(debug_visitor, OnPriorityUpdateFrameReceived(priority_update)); EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_PRIORITY_UPDATE, "Invalid PRIORITY_UPDATE frame payload.", _)); std::string serialized_priority_update = HttpEncoder::SerializePriorityUpdateFrame(priority_update); QuicStreamFrame data3(receive_control_stream_id, false, offset, serialized_priority_update); session_->OnStreamFrame(data3); } TEST_P(QuicSpdySessionTestServer, OnPriorityUpdateFrameOutOfBoundsUrgency) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId receive_control_stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; absl::string_view stream_type(type, 1); QuicStreamOffset offset = 0; QuicStreamFrame data1(receive_control_stream_id, false, offset, stream_type); offset += stream_type.length(); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(receive_control_stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(receive_control_stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); std::string serialized_settings = HttpEncoder::SerializeSettingsFrame({}); QuicStreamFrame data2(receive_control_stream_id, false, offset, serialized_settings); offset += serialized_settings.length(); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(_)); session_->OnStreamFrame(data2); const QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); PriorityUpdateFrame priority_update{stream_id, "u=9"}; EXPECT_CALL(debug_visitor, OnPriorityUpdateFrameReceived(priority_update)); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); std::string serialized_priority_update = HttpEncoder::SerializePriorityUpdateFrame(priority_update); QuicStreamFrame data3(receive_control_stream_id, false, offset, serialized_priority_update); session_->OnStreamFrame(data3); } TEST_P(QuicSpdySessionTestServer, SimplePendingStreamType) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); char input[] = {0x04, 'a', 'b', 'c'}; absl::string_view payload(input, ABSL_ARRAYSIZE(input)); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); for (bool fin : {true, false}) { QuicStreamFrame frame(stream_id, fin, 0, payload); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke([stream_id](const QuicFrame& frame) { EXPECT_EQ(STOP_SENDING_FRAME, frame.type); const QuicStopSendingFrame& stop_sending = frame.stop_sending_frame; EXPECT_EQ(stream_id, stop_sending.stream_id); EXPECT_EQ(QUIC_STREAM_STREAM_CREATION_ERROR, stop_sending.error_code); EXPECT_EQ( static_cast<uint64_t>(QuicHttp3ErrorCode::STREAM_CREATION_ERROR), stop_sending.ietf_error_code); return ClearControlFrame(frame); })); session_->OnStreamFrame(frame); PendingStream* pending = QuicSessionPeer::GetPendingStream(&*session_, stream_id); if (fin) { EXPECT_FALSE(pending); } else { ASSERT_TRUE(pending); EXPECT_TRUE(pending->sequencer()->ignore_read_data()); } stream_id += QuicUtils::StreamIdDelta(transport_version()); } } TEST_P(QuicSpdySessionTestServer, SimplePendingStreamTypeOutOfOrderDelivery) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); char input[] = {0x04, 'a', 'b', 'c'}; absl::string_view payload(input, ABSL_ARRAYSIZE(input)); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); for (bool fin : {true, false}) { QuicStreamFrame frame1(stream_id, false, 0, payload.substr(0, 1)); QuicStreamFrame frame2(stream_id, fin, 1, payload.substr(1)); session_->OnStreamFrame(frame2); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&VerifyAndClearStopSendingFrame)); session_->OnStreamFrame(frame1); PendingStream* pending = QuicSessionPeer::GetPendingStream(&*session_, stream_id); if (fin) { EXPECT_FALSE(pending); } else { ASSERT_TRUE(pending); EXPECT_TRUE(pending->sequencer()->ignore_read_data()); } stream_id += QuicUtils::StreamIdDelta(transport_version()); } } TEST_P(QuicSpdySessionTestServer, MultipleBytesPendingStreamTypeOutOfOrderDelivery) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); char input[] = {0x41, 0x00, 'a', 'b', 'c'}; absl::string_view payload(input, ABSL_ARRAYSIZE(input)); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); for (bool fin : {true, false}) { QuicStreamFrame frame1(stream_id, false, 0, payload.substr(0, 1)); QuicStreamFrame frame2(stream_id, false, 1, payload.substr(1, 1)); QuicStreamFrame frame3(stream_id, fin, 2, payload.substr(2)); session_->OnStreamFrame(frame3); session_->OnStreamFrame(frame1); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&VerifyAndClearStopSendingFrame)); session_->OnStreamFrame(frame2); PendingStream* pending = QuicSessionPeer::GetPendingStream(&*session_, stream_id); if (fin) { EXPECT_FALSE(pending); } else { ASSERT_TRUE(pending); EXPECT_TRUE(pending->sequencer()->ignore_read_data()); } stream_id += QuicUtils::StreamIdDelta(transport_version()); } } TEST_P(QuicSpdySessionTestServer, ReceiveControlStream) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(stream_id, false, 0, absl::string_view(type, 1)); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); SettingsFrame settings; settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = 512; settings.values[SETTINGS_MAX_FIELD_SECTION_SIZE] = 5; settings.values[SETTINGS_QPACK_BLOCKED_STREAMS] = 42; std::string data = HttpEncoder::SerializeSettingsFrame(settings); QuicStreamFrame frame(stream_id, false, 1, data); QpackEncoder* qpack_encoder = session_->qpack_encoder(); QpackEncoderHeaderTable* header_table = QpackEncoderPeer::header_table(qpack_encoder); EXPECT_NE(512u, header_table->maximum_dynamic_table_capacity()); EXPECT_NE(5u, session_->max_outbound_header_list_size()); EXPECT_NE(42u, QpackEncoderPeer::maximum_blocked_streams(qpack_encoder)); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(settings)); session_->OnStreamFrame(frame); EXPECT_EQ(512u, header_table->maximum_dynamic_table_capacity()); EXPECT_EQ(5u, session_->max_outbound_header_list_size()); EXPECT_EQ(42u, QpackEncoderPeer::maximum_blocked_streams(qpack_encoder)); } TEST_P(QuicSpdySessionTestServer, ServerDisableQpackDynamicTable) { SetQuicFlag(quic_server_disable_qpack_dynamic_table, true); Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(stream_id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); EXPECT_EQ(stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); const uint64_t capacity = 512; SettingsFrame settings; settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = capacity; std::string data = HttpEncoder::SerializeSettingsFrame(settings); QuicStreamFrame frame(stream_id, false, 1, data); session_->OnStreamFrame(frame); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(capacity, qpack_encoder->MaximumDynamicTableCapacity()); QpackEncoderHeaderTable* encoder_header_table = QpackEncoderPeer::header_table(qpack_encoder); EXPECT_EQ(capacity, encoder_header_table->maximum_dynamic_table_capacity()); EXPECT_EQ(0, encoder_header_table->dynamic_table_capacity()); SettingsFrame outgoing_settings = session_->settings(); EXPECT_EQ(0, outgoing_settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY]); } TEST_P(QuicSpdySessionTestServer, DisableQpackDynamicTable) { SetQuicFlag(quic_server_disable_qpack_dynamic_table, false); qpack_maximum_dynamic_table_capacity_ = 0; Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; QuicStreamFrame data1(stream_id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); EXPECT_EQ(stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); const uint64_t capacity = 512; SettingsFrame settings; settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = capacity; std::string data = HttpEncoder::SerializeSettingsFrame(settings); QuicStreamFrame frame(stream_id, false, 1, data); session_->OnStreamFrame(frame); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(capacity, qpack_encoder->MaximumDynamicTableCapacity()); QpackEncoderHeaderTable* encoder_header_table = QpackEncoderPeer::header_table(qpack_encoder); EXPECT_EQ(capacity, encoder_header_table->maximum_dynamic_table_capacity()); EXPECT_EQ(0, encoder_header_table->dynamic_table_capacity()); SettingsFrame outgoing_settings = session_->settings(); EXPECT_EQ(0, outgoing_settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY]); } TEST_P(QuicSpdySessionTestServer, ReceiveControlStreamOutOfOrderDelivery) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; SettingsFrame settings; settings.values[10] = 2; settings.values[SETTINGS_MAX_FIELD_SECTION_SIZE] = 5; std::string data = HttpEncoder::SerializeSettingsFrame(settings); QuicStreamFrame data1(stream_id, false, 1, data); QuicStreamFrame data2(stream_id, false, 0, absl::string_view(type, 1)); session_->OnStreamFrame(data1); EXPECT_NE(5u, session_->max_outbound_header_list_size()); session_->OnStreamFrame(data2); EXPECT_EQ(5u, session_->max_outbound_header_list_size()); } TEST_P(QuicSpdySessionTestServer, StreamClosedWhileHeaderDecodingBlocked) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); session_->qpack_decoder()->OnSetDynamicTableCapacity(1024); QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); TestStream* stream = session_->CreateIncomingStream(stream_id); std::string headers_frame_payload; ASSERT_TRUE(absl::HexStringToBytes("020080", &headers_frame_payload)); std::string headers_frame_header = HttpEncoder::SerializeHeadersFrameHeader(headers_frame_payload.length()); std::string headers_frame = absl::StrCat(headers_frame_header, headers_frame_payload); stream->OnStreamFrame(QuicStreamFrame(stream_id, false, 0, headers_frame)); EXPECT_FALSE(stream->headers_decompressed()); CloseStream(stream_id); session_->CleanUpClosedStreams(); session_->qpack_decoder()->OnInsertWithoutNameReference("foo", "bar"); } TEST_P(QuicSpdySessionTestServer, SessionDestroyedWhileHeaderDecodingBlocked) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } session_->qpack_decoder()->OnSetDynamicTableCapacity(1024); QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); TestStream* stream = session_->CreateIncomingStream(stream_id); std::string headers_frame_payload; ASSERT_TRUE(absl::HexStringToBytes("020080", &headers_frame_payload)); std::string headers_frame_header = HttpEncoder::SerializeHeadersFrameHeader(headers_frame_payload.length()); std::string headers_frame = absl::StrCat(headers_frame_header, headers_frame_payload); stream->OnStreamFrame(QuicStreamFrame(stream_id, false, 0, headers_frame)); EXPECT_FALSE(stream->headers_decompressed()); } TEST_P(QuicSpdySessionTestClient, ResetAfterInvalidIncomingStreamType) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); const QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); ASSERT_TRUE(session_->UsesPendingStreamForFrame(STREAM_FRAME, stream_id)); std::string payload; ASSERT_TRUE(absl::HexStringToBytes("3f01", &payload)); QuicStreamFrame frame(stream_id, false, 0, payload); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&VerifyAndClearStopSendingFrame)); session_->OnStreamFrame(frame); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&*session_)); PendingStream* pending = QuicSessionPeer::GetPendingStream(&*session_, stream_id); ASSERT_TRUE(pending); EXPECT_TRUE(pending->sequencer()->ignore_read_data()); session_->OnStreamFrame(frame); QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream_id, QUIC_STREAM_CANCELLED, payload.size()); session_->OnRstStream(rst_frame); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&*session_, stream_id)); } TEST_P(QuicSpdySessionTestClient, FinAfterInvalidIncomingStreamType) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); const QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); ASSERT_TRUE(session_->UsesPendingStreamForFrame(STREAM_FRAME, stream_id)); std::string payload; ASSERT_TRUE(absl::HexStringToBytes("3f01", &payload)); QuicStreamFrame frame(stream_id, false, 0, payload); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&VerifyAndClearStopSendingFrame)); session_->OnStreamFrame(frame); PendingStream* pending = QuicSessionPeer::GetPendingStream(&*session_, stream_id); EXPECT_TRUE(pending); EXPECT_TRUE(pending->sequencer()->ignore_read_data()); session_->OnStreamFrame(frame); session_->OnStreamFrame(QuicStreamFrame(stream_id, true, payload.size(), "")); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&*session_, stream_id)); } TEST_P(QuicSpdySessionTestClient, ResetInMiddleOfStreamType) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); const QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); ASSERT_TRUE(session_->UsesPendingStreamForFrame(STREAM_FRAME, stream_id)); std::string payload; ASSERT_TRUE(absl::HexStringToBytes("40", &payload)); QuicStreamFrame frame(stream_id, false, 0, payload); session_->OnStreamFrame(frame); EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&*session_, stream_id)); QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream_id, QUIC_STREAM_CANCELLED, payload.size()); session_->OnRstStream(rst_frame); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&*session_, stream_id)); } TEST_P(QuicSpdySessionTestClient, FinInMiddleOfStreamType) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); const QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); ASSERT_TRUE(session_->UsesPendingStreamForFrame(STREAM_FRAME, stream_id)); std::string payload; ASSERT_TRUE(absl::HexStringToBytes("40", &payload)); QuicStreamFrame frame(stream_id, true, 0, payload); session_->OnStreamFrame(frame); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&*session_, stream_id)); } TEST_P(QuicSpdySessionTestClient, DuplicateHttp3UnidirectionalStreams) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId id1 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); char type1[] = {kControlStream}; QuicStreamFrame data1(id1, false, 0, absl::string_view(type1, 1)); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(id1)); session_->OnStreamFrame(data1); QuicStreamId id2 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 1); QuicStreamFrame data2(id2, false, 0, absl::string_view(type1, 1)); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(id2)).Times(0); EXPECT_QUIC_PEER_BUG( { EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_DUPLICATE_UNIDIRECTIONAL_STREAM, "Control stream is received twice.", _)); session_->OnStreamFrame(data2); }, "Received a duplicate Control stream: Closing connection."); QuicStreamId id3 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 2); char type2[]{kQpackEncoderStream}; QuicStreamFrame data3(id3, false, 0, absl::string_view(type2, 1)); EXPECT_CALL(debug_visitor, OnPeerQpackEncoderStreamCreated(id3)); session_->OnStreamFrame(data3); QuicStreamId id4 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); QuicStreamFrame data4(id4, false, 0, absl::string_view(type2, 1)); EXPECT_CALL(debug_visitor, OnPeerQpackEncoderStreamCreated(id4)).Times(0); EXPECT_QUIC_PEER_BUG( { EXPECT_CALL( *connection_, CloseConnection(QUIC_HTTP_DUPLICATE_UNIDIRECTIONAL_STREAM, "QPACK encoder stream is received twice.", _)); session_->OnStreamFrame(data4); }, "Received a duplicate QPACK encoder stream: Closing connection."); QuicStreamId id5 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 4); char type3[]{kQpackDecoderStream}; QuicStreamFrame data5(id5, false, 0, absl::string_view(type3, 1)); EXPECT_CALL(debug_visitor, OnPeerQpackDecoderStreamCreated(id5)); session_->OnStreamFrame(data5); QuicStreamId id6 = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 5); QuicStreamFrame data6(id6, false, 0, absl::string_view(type3, 1)); EXPECT_CALL(debug_visitor, OnPeerQpackDecoderStreamCreated(id6)).Times(0); EXPECT_QUIC_PEER_BUG( { EXPECT_CALL( *connection_, CloseConnection(QUIC_HTTP_DUPLICATE_UNIDIRECTIONAL_STREAM, "QPACK decoder stream is received twice.", _)); session_->OnStreamFrame(data6); }, "Received a duplicate QPACK decoder stream: Closing connection."); } TEST_P(QuicSpdySessionTestClient, EncoderStreamError) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); std::string data; ASSERT_TRUE( absl::HexStringToBytes("02" "00", &data)); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); QuicStreamFrame frame(stream_id, false, 0, data); EXPECT_CALL(*connection_, CloseConnection( QUIC_QPACK_ENCODER_STREAM_DUPLICATE_INVALID_RELATIVE_INDEX, "Encoder stream error: Invalid relative index.", _)); session_->OnStreamFrame(frame); } TEST_P(QuicSpdySessionTestClient, DecoderStreamError) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); std::string data; ASSERT_TRUE(absl::HexStringToBytes( "03" "00", &data)); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); QuicStreamFrame frame(stream_id, false, 0, data); EXPECT_CALL( *connection_, CloseConnection(QUIC_QPACK_DECODER_STREAM_INVALID_ZERO_INCREMENT, "Decoder stream error: Invalid increment value 0.", _)); session_->OnStreamFrame(frame); } TEST_P(QuicSpdySessionTestClient, InvalidHttp3GoAway) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_GOAWAY_INVALID_STREAM_ID, "GOAWAY with invalid stream ID", _)); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); session_->OnHttp3GoAway(stream_id); } TEST_P(QuicSpdySessionTestClient, Http3GoAwayLargerIdThanBefore) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } EXPECT_FALSE(session_->goaway_received()); QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 0); session_->OnHttp3GoAway(stream_id1); EXPECT_TRUE(session_->goaway_received()); EXPECT_CALL( *connection_, CloseConnection( QUIC_HTTP_GOAWAY_ID_LARGER_THAN_PREVIOUS, "GOAWAY received with ID 4 greater than previously received ID 0", _)); QuicStreamId stream_id2 = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 1); session_->OnHttp3GoAway(stream_id2); } TEST_P(QuicSpdySessionTestClient, CloseConnectionOnCancelPush) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId receive_control_stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; absl::string_view stream_type(type, 1); QuicStreamOffset offset = 0; QuicStreamFrame data1(receive_control_stream_id, false, offset, stream_type); offset += stream_type.length(); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(receive_control_stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(receive_control_stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); std::string serialized_settings = HttpEncoder::SerializeSettingsFrame({}); QuicStreamFrame data2(receive_control_stream_id, false, offset, serialized_settings); offset += serialized_settings.length(); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(_)); session_->OnStreamFrame(data2); std::string cancel_push_frame; ASSERT_TRUE( absl::HexStringToBytes("03" "01" "00", &cancel_push_frame)); QuicStreamFrame data3(receive_control_stream_id, false, offset, cancel_push_frame); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_FRAME_ERROR, "CANCEL_PUSH frame received.", _)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallyCloseConnection)); EXPECT_CALL(*connection_, SendConnectionClosePacket(QUIC_HTTP_FRAME_ERROR, _, "CANCEL_PUSH frame received.")); session_->OnStreamFrame(data3); } TEST_P(QuicSpdySessionTestServer, OnSetting) { Initialize(); CompleteHandshake(); if (VersionUsesHttp3(transport_version())) { EXPECT_EQ(std::numeric_limits<size_t>::max(), session_->max_outbound_header_list_size()); session_->OnSetting(SETTINGS_MAX_FIELD_SECTION_SIZE, 5); EXPECT_EQ(5u, session_->max_outbound_header_list_size()); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillRepeatedly(Return(WriteResult(WRITE_STATUS_OK, 0))); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(0u, QpackEncoderPeer::maximum_blocked_streams(qpack_encoder)); session_->OnSetting(SETTINGS_QPACK_BLOCKED_STREAMS, 12); EXPECT_EQ(12u, QpackEncoderPeer::maximum_blocked_streams(qpack_encoder)); QpackEncoderHeaderTable* header_table = QpackEncoderPeer::header_table(qpack_encoder); EXPECT_EQ(0u, header_table->maximum_dynamic_table_capacity()); session_->OnSetting(SETTINGS_QPACK_MAX_TABLE_CAPACITY, 37); EXPECT_EQ(37u, header_table->maximum_dynamic_table_capacity()); return; } EXPECT_EQ(std::numeric_limits<size_t>::max(), session_->max_outbound_header_list_size()); session_->OnSetting(SETTINGS_MAX_FIELD_SECTION_SIZE, 5); EXPECT_EQ(5u, session_->max_outbound_header_list_size()); spdy::HpackEncoder* hpack_encoder = QuicSpdySessionPeer::GetSpdyFramer(&*session_)->GetHpackEncoder(); EXPECT_EQ(4096u, hpack_encoder->CurrentHeaderTableSizeSetting()); session_->OnSetting(spdy::SETTINGS_HEADER_TABLE_SIZE, 59); EXPECT_EQ(59u, hpack_encoder->CurrentHeaderTableSizeSetting()); } TEST_P(QuicSpdySessionTestServer, FineGrainedHpackErrorCodes) { Initialize(); if (VersionUsesHttp3(transport_version())) { return; } QuicStreamId request_stream_id = 5; session_->CreateIncomingStream(request_stream_id); std::string headers_frame; ASSERT_TRUE( absl::HexStringToBytes("000006" "01" "24" "00000005" "00000000" "10" "fe", &headers_frame)); QuicStreamId headers_stream_id = QuicUtils::GetHeadersStreamId(transport_version()); QuicStreamFrame data(headers_stream_id, false, 0, headers_frame); EXPECT_CALL( *connection_, CloseConnection(QUIC_HPACK_INVALID_INDEX, "SPDY framing error: HPACK_INVALID_INDEX", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_->OnStreamFrame(data); } TEST_P(QuicSpdySessionTestServer, PeerClosesCriticalReceiveStream) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); struct { char type; const char* error_details; } kTestData[] = { {kControlStream, "RESET_STREAM received for receive control stream"}, {kQpackEncoderStream, "RESET_STREAM received for QPACK receive stream"}, {kQpackDecoderStream, "RESET_STREAM received for QPACK receive stream"}, }; for (size_t i = 0; i < ABSL_ARRAYSIZE(kTestData); ++i) { QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), i + 1); const QuicByteCount data_length = 1; QuicStreamFrame data(stream_id, false, 0, absl::string_view(&kTestData[i].type, data_length)); session_->OnStreamFrame(data); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_CLOSED_CRITICAL_STREAM, kTestData[i].error_details, _)); QuicRstStreamFrame rst(kInvalidControlFrameId, stream_id, QUIC_STREAM_CANCELLED, data_length); session_->OnRstStream(rst); } } TEST_P(QuicSpdySessionTestServer, H3ControlStreamsLimitedByConnectionFlowControl) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } QuicFlowControllerPeer::SetSendWindowOffset(session_->flow_controller(), 0); EXPECT_TRUE(session_->IsConnectionFlowControlBlocked()); QuicSendControlStream* send_control_stream = QuicSpdySessionPeer::GetSendControlStream(&*session_); session_->MarkConnectionLevelWriteBlocked(send_control_stream->id()); EXPECT_FALSE(session_->WillingAndAbleToWrite()); } TEST_P(QuicSpdySessionTestServer, PeerClosesCriticalSendStream) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } QuicSendControlStream* control_stream = QuicSpdySessionPeer::GetSendControlStream(&*session_); ASSERT_TRUE(control_stream); QuicStopSendingFrame stop_sending_control_stream( kInvalidControlFrameId, control_stream->id(), QUIC_STREAM_CANCELLED); EXPECT_CALL( *connection_, CloseConnection(QUIC_HTTP_CLOSED_CRITICAL_STREAM, "STOP_SENDING received for send control stream", _)); session_->OnStopSendingFrame(stop_sending_control_stream); QpackSendStream* decoder_stream = QuicSpdySessionPeer::GetQpackDecoderSendStream(&*session_); ASSERT_TRUE(decoder_stream); QuicStopSendingFrame stop_sending_decoder_stream( kInvalidControlFrameId, decoder_stream->id(), QUIC_STREAM_CANCELLED); EXPECT_CALL( *connection_, CloseConnection(QUIC_HTTP_CLOSED_CRITICAL_STREAM, "STOP_SENDING received for QPACK send stream", _)); session_->OnStopSendingFrame(stop_sending_decoder_stream); QpackSendStream* encoder_stream = QuicSpdySessionPeer::GetQpackEncoderSendStream(&*session_); ASSERT_TRUE(encoder_stream); QuicStopSendingFrame stop_sending_encoder_stream( kInvalidControlFrameId, encoder_stream->id(), QUIC_STREAM_CANCELLED); EXPECT_CALL( *connection_, CloseConnection(QUIC_HTTP_CLOSED_CRITICAL_STREAM, "STOP_SENDING received for QPACK send stream", _)); session_->OnStopSendingFrame(stop_sending_encoder_stream); } TEST_P(QuicSpdySessionTestServer, CloseConnectionOnCancelPush) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId receive_control_stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; absl::string_view stream_type(type, 1); QuicStreamOffset offset = 0; QuicStreamFrame data1(receive_control_stream_id, false, offset, stream_type); offset += stream_type.length(); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(receive_control_stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(receive_control_stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); std::string serialized_settings = HttpEncoder::SerializeSettingsFrame({}); QuicStreamFrame data2(receive_control_stream_id, false, offset, serialized_settings); offset += serialized_settings.length(); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(_)); session_->OnStreamFrame(data2); std::string cancel_push_frame; ASSERT_TRUE( absl::HexStringToBytes("03" "01" "00", &cancel_push_frame)); QuicStreamFrame data3(receive_control_stream_id, false, offset, cancel_push_frame); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_FRAME_ERROR, "CANCEL_PUSH frame received.", _)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallyCloseConnection)); EXPECT_CALL(*connection_, SendConnectionClosePacket(QUIC_HTTP_FRAME_ERROR, _, "CANCEL_PUSH frame received.")); session_->OnStreamFrame(data3); } TEST_P(QuicSpdySessionTestServer, Http3GoAwayWhenClosingConnection) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); EXPECT_CALL(debug_visitor, OnSettingsFrameSent(_)); CompleteHandshake(); QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); const QuicByteCount headers_payload_length = 10; std::string headers_frame_header = HttpEncoder::SerializeHeadersFrameHeader(headers_payload_length); EXPECT_CALL(debug_visitor, OnHeadersFrameReceived(stream_id, headers_payload_length)); session_->OnStreamFrame( QuicStreamFrame(stream_id, false, 0, headers_frame_header)); EXPECT_EQ(stream_id, QuicSessionPeer::GetLargestPeerCreatedStreamId( &*session_, false)); EXPECT_CALL(debug_visitor, OnGoAwayFrameSent(stream_id + QuicUtils::StreamIdDelta(transport_version()))); EXPECT_CALL(*writer_, WritePacket(_, _, _, _, _, _)) .WillRepeatedly(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*connection_, CloseConnection(QUIC_NO_ERROR, _, _)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallyCloseConnection)); EXPECT_CALL(*connection_, SendConnectionClosePacket(QUIC_NO_ERROR, _, _)) .WillOnce(Invoke(connection_, &MockQuicConnection::ReallySendConnectionClosePacket)); connection_->CloseConnection( QUIC_NO_ERROR, "closing connection", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); } TEST_P(QuicSpdySessionTestClient, DoNotSendInitialMaxPushIdIfNotSet) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); InSequence s; EXPECT_CALL(debug_visitor, OnSettingsFrameSent(_)); CompleteHandshake(); } TEST_P(QuicSpdySessionTestClient, ReceiveSpdySettingInHttp3) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } SettingsFrame frame; frame.values[SETTINGS_MAX_FIELD_SECTION_SIZE] = 5; frame.values[spdy::SETTINGS_INITIAL_WINDOW_SIZE] = 100; CompleteHandshake(); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_RECEIVE_SPDY_SETTING, _, _)); session_->OnSettingsFrame(frame); } TEST_P(QuicSpdySessionTestClient, ReceiveAcceptChFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); QuicStreamId receive_control_stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); char type[] = {kControlStream}; absl::string_view stream_type(type, 1); QuicStreamOffset offset = 0; QuicStreamFrame data1(receive_control_stream_id, false, offset, stream_type); offset += stream_type.length(); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(receive_control_stream_id)); session_->OnStreamFrame(data1); EXPECT_EQ(receive_control_stream_id, QuicSpdySessionPeer::GetReceiveControlStream(&*session_)->id()); std::string serialized_settings = HttpEncoder::SerializeSettingsFrame({}); QuicStreamFrame data2(receive_control_stream_id, false, offset, serialized_settings); offset += serialized_settings.length(); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(_)); session_->OnStreamFrame(data2); AcceptChFrame accept_ch; accept_ch.entries.push_back({"foo", "bar"}); std::string accept_ch_frame = HttpEncoder::SerializeAcceptChFrame(accept_ch); QuicStreamFrame data3(receive_control_stream_id, false, offset, accept_ch_frame); EXPECT_CALL(debug_visitor, OnAcceptChFrameReceived(accept_ch)); EXPECT_CALL(*session_, OnAcceptChFrame(accept_ch)); session_->OnStreamFrame(data3); } TEST_P(QuicSpdySessionTestClient, AcceptChViaAlps) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); std::string serialized_accept_ch_frame; ASSERT_TRUE( absl::HexStringToBytes("4089" "08" "03" "666f6f" "03" "626172", &serialized_accept_ch_frame)); AcceptChFrame expected_accept_ch_frame{{{"foo", "bar"}}}; EXPECT_CALL(debug_visitor, OnAcceptChFrameReceivedViaAlps(expected_accept_ch_frame)); auto error = session_->OnAlpsData( reinterpret_cast<const uint8_t*>(serialized_accept_ch_frame.data()), serialized_accept_ch_frame.size()); EXPECT_FALSE(error); } TEST_P(QuicSpdySessionTestClient, AlpsForbiddenFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } std::string forbidden_frame; ASSERT_TRUE( absl::HexStringToBytes("00" "03" "66666f", &forbidden_frame)); auto error = session_->OnAlpsData( reinterpret_cast<const uint8_t*>(forbidden_frame.data()), forbidden_frame.size()); ASSERT_TRUE(error); EXPECT_EQ("DATA frame forbidden", error.value()); } TEST_P(QuicSpdySessionTestClient, AlpsIncompleteFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } std::string incomplete_frame; ASSERT_TRUE( absl::HexStringToBytes("04" "03", &incomplete_frame)); auto error = session_->OnAlpsData( reinterpret_cast<const uint8_t*>(incomplete_frame.data()), incomplete_frame.size()); ASSERT_TRUE(error); EXPECT_EQ("incomplete HTTP/3 frame", error.value()); } TEST_P(QuicSpdySessionTestClient, SettingsViaAlpsThenOnControlStream) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(0u, qpack_encoder->MaximumDynamicTableCapacity()); EXPECT_EQ(0u, qpack_encoder->maximum_blocked_streams()); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); std::string serialized_settings_frame1; ASSERT_TRUE( absl::HexStringToBytes("04" "05" "01" "4400" "07" "20", &serialized_settings_frame1)); SettingsFrame expected_settings_frame1{ {{SETTINGS_QPACK_MAX_TABLE_CAPACITY, 1024}, {SETTINGS_QPACK_BLOCKED_STREAMS, 32}}}; EXPECT_CALL(debug_visitor, OnSettingsFrameReceivedViaAlps(expected_settings_frame1)); auto error = session_->OnAlpsData( reinterpret_cast<const uint8_t*>(serialized_settings_frame1.data()), serialized_settings_frame1.size()); EXPECT_FALSE(error); EXPECT_EQ(1024u, qpack_encoder->MaximumDynamicTableCapacity()); EXPECT_EQ(32u, qpack_encoder->maximum_blocked_streams()); const QuicStreamId control_stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(control_stream_id)); std::string stream_type; ASSERT_TRUE(absl::HexStringToBytes("00", &stream_type)); session_->OnStreamFrame(QuicStreamFrame(control_stream_id, false, 0, stream_type)); SettingsFrame expected_settings_frame2{ {{SETTINGS_QPACK_MAX_TABLE_CAPACITY, 1024}, {SETTINGS_QPACK_BLOCKED_STREAMS, 48}}}; EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(expected_settings_frame2)); std::string serialized_settings_frame2; ASSERT_TRUE( absl::HexStringToBytes("04" "05" "01" "4400" "07" "30", &serialized_settings_frame2)); session_->OnStreamFrame(QuicStreamFrame(control_stream_id, false, stream_type.length(), serialized_settings_frame2)); EXPECT_EQ(1024u, qpack_encoder->MaximumDynamicTableCapacity()); EXPECT_EQ(48u, qpack_encoder->maximum_blocked_streams()); } TEST_P(QuicSpdySessionTestClient, SettingsViaAlpsConflictsSettingsViaControlStream) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } CompleteHandshake(); QpackEncoder* qpack_encoder = session_->qpack_encoder(); EXPECT_EQ(0u, qpack_encoder->MaximumDynamicTableCapacity()); std::string serialized_settings_frame1; ASSERT_TRUE( absl::HexStringToBytes("04" "03" "01" "4400", &serialized_settings_frame1)); auto error = session_->OnAlpsData( reinterpret_cast<const uint8_t*>(serialized_settings_frame1.data()), serialized_settings_frame1.size()); EXPECT_FALSE(error); EXPECT_EQ(1024u, qpack_encoder->MaximumDynamicTableCapacity()); const QuicStreamId control_stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 0); std::string stream_type; ASSERT_TRUE(absl::HexStringToBytes("00", &stream_type)); session_->OnStreamFrame(QuicStreamFrame(control_stream_id, false, 0, stream_type)); EXPECT_CALL( *connection_, CloseConnection(QUIC_HTTP_ZERO_RTT_RESUMPTION_SETTINGS_MISMATCH, "Server sent an SETTINGS_QPACK_MAX_TABLE_CAPACITY: " "32 while current value is: 1024", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); std::string serialized_settings_frame2; ASSERT_TRUE( absl::HexStringToBytes("04" "02" "01" "20", &serialized_settings_frame2)); session_->OnStreamFrame(QuicStreamFrame(control_stream_id, false, stream_type.length(), serialized_settings_frame2)); } TEST_P(QuicSpdySessionTestClient, AlpsTwoSettingsFrame) { Initialize(); if (!VersionUsesHttp3(transport_version())) { return; } std::string banned_frame; ASSERT_TRUE( absl::HexStringToBytes("04" "00" "04" "00", &banned_frame)); auto error = session_->OnAlpsData( reinterpret_cast<const uint8_t*>(banned_frame.data()), banned_frame.size()); ASSERT_TRUE(error); EXPECT_EQ("multiple SETTINGS frames", error.value()); } void QuicSpdySessionTestBase::TestHttpDatagramSetting( HttpDatagramSupport local_support, HttpDatagramSupport remote_support, HttpDatagramSupport expected_support, bool expected_datagram_supported) { if (!version().UsesHttp3()) { return; } CompleteHandshake(); session_->set_local_http_datagram_support(local_support); EXPECT_FALSE(session_->SupportsH3Datagram()); EXPECT_EQ(session_->http_datagram_support(), HttpDatagramSupport::kNone); SettingsFrame settings; switch (remote_support) { case HttpDatagramSupport::kNone: break; case HttpDatagramSupport::kDraft04: settings.values[SETTINGS_H3_DATAGRAM_DRAFT04] = 1; break; case HttpDatagramSupport::kRfc: settings.values[SETTINGS_H3_DATAGRAM] = 1; break; case HttpDatagramSupport::kRfcAndDraft04: settings.values[SETTINGS_H3_DATAGRAM] = 1; settings.values[SETTINGS_H3_DATAGRAM_DRAFT04] = 1; break; } std::string data = std::string(1, kControlStream) + HttpEncoder::SerializeSettingsFrame(settings); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); QuicStreamFrame frame(stream_id, false, 0, data); StrictMock<MockHttp3DebugVisitor> debug_visitor; session_->set_debug_visitor(&debug_visitor); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(stream_id)); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(settings)); session_->OnStreamFrame(frame); EXPECT_EQ(session_->http_datagram_support(), expected_support); EXPECT_EQ(session_->SupportsH3Datagram(), expected_datagram_supported); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal04Remote04) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kDraft04, HttpDatagramSupport::kDraft04, HttpDatagramSupport::kDraft04, true); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal04Remote09) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kDraft04, HttpDatagramSupport::kRfc, HttpDatagramSupport::kNone, false); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal04Remote04And09) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kDraft04, HttpDatagramSupport::kRfcAndDraft04, HttpDatagramSupport::kDraft04, true); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal09Remote04) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kRfc, HttpDatagramSupport::kDraft04, HttpDatagramSupport::kNone, false); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal09Remote09) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kRfc, HttpDatagramSupport::kRfc, HttpDatagramSupport::kRfc, true); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal09Remote04And09) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kRfc, HttpDatagramSupport::kRfcAndDraft04, HttpDatagramSupport::kRfc, true); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal04And09Remote04) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kRfcAndDraft04, HttpDatagramSupport::kDraft04, HttpDatagramSupport::kDraft04, true); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal04And09Remote09) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kRfcAndDraft04, HttpDatagramSupport::kRfc, HttpDatagramSupport::kRfc, true); } TEST_P(QuicSpdySessionTestClient, HttpDatagramSettingLocal04And09Remote04And09) { Initialize(); TestHttpDatagramSetting( HttpDatagramSupport::kRfcAndDraft04, HttpDatagramSupport::kRfcAndDraft04, HttpDatagramSupport::kRfc, true); } TEST_P(QuicSpdySessionTestClient, WebTransportSettingDraft02OnlyBothSides) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_locally_supported_web_transport_versions( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft02})); EXPECT_FALSE(session_->SupportsWebTransport()); CompleteHandshake(); ReceiveWebTransportSettings( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft02})); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); EXPECT_TRUE(session_->SupportsWebTransport()); EXPECT_EQ(session_->SupportedWebTransportVersion(), WebTransportHttp3Version::kDraft02); } TEST_P(QuicSpdySessionTestClient, WebTransportSettingDraft07OnlyBothSides) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_locally_supported_web_transport_versions( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft07})); EXPECT_FALSE(session_->SupportsWebTransport()); CompleteHandshake(); ReceiveWebTransportSettings( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft07})); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); EXPECT_TRUE(session_->SupportsWebTransport()); EXPECT_EQ(session_->SupportedWebTransportVersion(), WebTransportHttp3Version::kDraft07); } TEST_P(QuicSpdySessionTestClient, WebTransportSettingBothDraftsBothSides) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_locally_supported_web_transport_versions( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft02, WebTransportHttp3Version::kDraft07})); EXPECT_FALSE(session_->SupportsWebTransport()); CompleteHandshake(); ReceiveWebTransportSettings( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft02, WebTransportHttp3Version::kDraft07})); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); EXPECT_TRUE(session_->SupportsWebTransport()); EXPECT_EQ(session_->SupportedWebTransportVersion(), WebTransportHttp3Version::kDraft07); } TEST_P(QuicSpdySessionTestClient, WebTransportSettingVersionMismatch) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_locally_supported_web_transport_versions( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft07})); EXPECT_FALSE(session_->SupportsWebTransport()); CompleteHandshake(); ReceiveWebTransportSettings( WebTransportHttp3VersionSet({WebTransportHttp3Version::kDraft02})); EXPECT_FALSE(session_->SupportsWebTransport()); EXPECT_EQ(session_->SupportedWebTransportVersion(), std::nullopt); } TEST_P(QuicSpdySessionTestClient, WebTransportSettingSetToZero) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_supports_webtransport(true); EXPECT_FALSE(session_->SupportsWebTransport()); StrictMock<MockHttp3DebugVisitor> debug_visitor; EXPECT_CALL(debug_visitor, OnSettingsFrameSent(_)); session_->set_debug_visitor(&debug_visitor); CompleteHandshake(); SettingsFrame server_settings; server_settings.values[SETTINGS_H3_DATAGRAM_DRAFT04] = 1; server_settings.values[SETTINGS_WEBTRANS_DRAFT00] = 0; std::string data = std::string(1, kControlStream) + HttpEncoder::SerializeSettingsFrame(server_settings); QuicStreamId stream_id = GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); QuicStreamFrame frame(stream_id, false, 0, data); EXPECT_CALL(debug_visitor, OnPeerControlStreamCreated(stream_id)); EXPECT_CALL(debug_visitor, OnSettingsFrameReceived(server_settings)); session_->OnStreamFrame(frame); EXPECT_FALSE(session_->SupportsWebTransport()); } TEST_P(QuicSpdySessionTestServer, WebTransportSetting) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_supports_webtransport(true); EXPECT_FALSE(session_->SupportsWebTransport()); EXPECT_FALSE(session_->ShouldProcessIncomingRequests()); CompleteHandshake(); ReceiveWebTransportSettings(); EXPECT_TRUE(session_->SupportsWebTransport()); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); } TEST_P(QuicSpdySessionTestServer, BufferingIncomingStreams) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_supports_webtransport(true); CompleteHandshake(); QuicStreamId session_id = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 1); QuicStreamId data_stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 4); ReceiveWebTransportUnidirectionalStream(session_id, data_stream_id); ReceiveWebTransportSettings(); ReceiveWebTransportSession(session_id); WebTransportHttp3* web_transport = session_->GetWebTransportSession(session_id); ASSERT_TRUE(web_transport != nullptr); EXPECT_EQ(web_transport->NumberOfAssociatedStreams(), 1u); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(session_id, _)); EXPECT_CALL( *connection_, OnStreamReset(data_stream_id, QUIC_STREAM_WEBTRANSPORT_SESSION_GONE)); session_->ResetStream(session_id, QUIC_STREAM_INTERNAL_ERROR); } TEST_P(QuicSpdySessionTestServer, BufferingIncomingStreamsLimit) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_supports_webtransport(true); CompleteHandshake(); QuicStreamId session_id = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 1); const int streams_to_send = kMaxUnassociatedWebTransportStreams + 4; EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset( _, QUIC_STREAM_WEBTRANSPORT_BUFFERED_STREAMS_LIMIT_EXCEEDED)) .Times(4); for (int i = 0; i < streams_to_send; i++) { QuicStreamId data_stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 4 + i); ReceiveWebTransportUnidirectionalStream(session_id, data_stream_id); } ReceiveWebTransportSettings(); ReceiveWebTransportSession(session_id); WebTransportHttp3* web_transport = session_->GetWebTransportSession(session_id); ASSERT_TRUE(web_transport != nullptr); EXPECT_EQ(web_transport->NumberOfAssociatedStreams(), kMaxUnassociatedWebTransportStreams); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(_, _)) .Times(kMaxUnassociatedWebTransportStreams + 1); session_->ResetStream(session_id, QUIC_STREAM_INTERNAL_ERROR); } TEST_P(QuicSpdySessionTestServer, BufferingIncomingStreamsWithFin) { Initialize(); if (!version().UsesHttp3()) { return; } CompleteHandshake(); const UberQuicStreamIdManager& stream_id_manager = *QuicSessionPeer::ietf_streamid_manager(&*session_); const QuicStreamId initial_advertized_max_streams = stream_id_manager.advertised_max_incoming_unidirectional_streams(); const size_t num_streams_to_open = session_->max_open_incoming_unidirectional_streams(); EXPECT_CALL(*connection_, SendControlFrame(_)).Times(testing::AnyNumber()); for (size_t i = 0; i < num_streams_to_open; i++) { const QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 4 + i); QuicStreamFrame frame(stream_id, true, 0, ""); session_->OnStreamFrame(frame); } EXPECT_LT(initial_advertized_max_streams, stream_id_manager.advertised_max_incoming_unidirectional_streams()); EXPECT_EQ(0, session_->pending_streams_size()); } TEST_P(QuicSpdySessionTestServer, ResetOutgoingWebTransportStreams) { Initialize(); if (!version().UsesHttp3()) { return; } session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_supports_webtransport(true); CompleteHandshake(); QuicStreamId session_id = GetNthClientInitiatedBidirectionalStreamId(transport_version(), 1); ReceiveWebTransportSettings(); ReceiveWebTransportSession(session_id); WebTransportHttp3* web_transport = session_->GetWebTransportSession(session_id); ASSERT_TRUE(web_transport != nullptr); session_->set_writev_consumes_all_data(true); EXPECT_TRUE(web_transport->CanOpenNextOutgoingUnidirectionalStream()); EXPECT_EQ(web_transport->NumberOfAssociatedStreams(), 0u); WebTransportStream* stream = web_transport->OpenOutgoingUnidirectionalStream(); EXPECT_EQ(web_transport->NumberOfAssociatedStreams(), 1u); ASSERT_TRUE(stream != nullptr); QuicStreamId stream_id = stream->GetStreamId(); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(session_id, _)); EXPECT_CALL(*connection_, OnStreamReset(stream_id, QUIC_STREAM_WEBTRANSPORT_SESSION_GONE)); session_->ResetStream(session_id, QUIC_STREAM_INTERNAL_ERROR); EXPECT_EQ(web_transport->NumberOfAssociatedStreams(), 0u); } TEST_P(QuicSpdySessionTestClient, WebTransportWithoutExtendedConnect) { Initialize(); if (!version().UsesHttp3()) { return; } SetQuicReloadableFlag(quic_act_upon_invalid_header, true); session_->set_local_http_datagram_support( HttpDatagramSupport::kRfcAndDraft04); session_->set_supports_webtransport(true); EXPECT_FALSE(session_->SupportsWebTransport()); CompleteHandshake(); SettingsFrame settings; settings.values[SETTINGS_H3_DATAGRAM_DRAFT04] = 1; settings.values[SETTINGS_WEBTRANS_DRAFT00] = 1; std::string data = std::string(1, kControlStream) + HttpEncoder::SerializeSettingsFrame(settings); QuicStreamId control_stream_id = session_->perspective() == Perspective::IS_SERVER ? GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3) : GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); QuicStreamFrame frame(control_stream_id, false, 0, data); session_->OnStreamFrame(frame); EXPECT_TRUE(session_->SupportsWebTransport()); } TEST_P(QuicSpdySessionTestClient, LimitEncoderDynamicTableSize) { Initialize(); if (version().UsesHttp3()) { return; } CompleteHandshake(); QuicSpdySessionPeer::SetHeadersStream(&*session_, nullptr); TestHeadersStream* headers_stream = new StrictMock<TestHeadersStream>(&*session_); QuicSpdySessionPeer::SetHeadersStream(&*session_, headers_stream); session_->MarkConnectionLevelWriteBlocked(headers_stream->id()); session_->OnSetting(spdy::SETTINGS_HEADER_TABLE_SIZE, 1024 * 1024 * 1024); TestStream* stream = session_->CreateOutgoingBidirectionalStream(); EXPECT_CALL(*writer_, IsWriteBlocked()).WillRepeatedly(Return(true)); HttpHeaderBlock headers; headers[":method"] = "GET"; stream->WriteHeaders(std::move(headers), true, nullptr); EXPECT_TRUE(headers_stream->HasBufferedData()); QuicStreamSendBuffer& send_buffer = QuicStreamPeer::SendBuffer(headers_stream); ASSERT_EQ(1u, send_buffer.size()); const quiche::QuicheMemSlice& slice = QuicStreamSendBufferPeer::CurrentWriteSlice(&send_buffer)->slice; absl::string_view stream_data(slice.data(), slice.length()); std::string expected_stream_data_1; ASSERT_TRUE( absl::HexStringToBytes("000009" "01" "25", &expected_stream_data_1)); EXPECT_EQ(expected_stream_data_1, stream_data.substr(0, 5)); stream_data.remove_prefix(5); stream_data.remove_prefix(4); std::string expected_stream_data_2; ASSERT_TRUE( absl::HexStringToBytes("00000000" "92", &expected_stream_data_2)); EXPECT_EQ(expected_stream_data_2, stream_data.substr(0, 5)); stream_data.remove_prefix(5); std::string expected_stream_data_3; ASSERT_TRUE(absl::HexStringToBytes( "3fe17f" "82", &expected_stream_data_3)); EXPECT_EQ(expected_stream_data_3, stream_data); } class QuicSpdySessionTestServerNoExtendedConnect : public QuicSpdySessionTestBase { public: QuicSpdySessionTestServerNoExtendedConnect() : QuicSpdySessionTestBase(Perspective::IS_SERVER, false) {} }; INSTANTIATE_TEST_SUITE_P(Tests, QuicSpdySessionTestServerNoExtendedConnect, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicSpdySessionTestServerNoExtendedConnect, WebTransportSettingNoEffect) { Initialize(); if (!version().UsesHttp3()) { return; } EXPECT_FALSE(session_->SupportsWebTransport()); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); CompleteHandshake(); ReceiveWebTransportSettings(); EXPECT_FALSE(session_->allow_extended_connect()); EXPECT_FALSE(session_->SupportsWebTransport()); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); } TEST_P(QuicSpdySessionTestServerNoExtendedConnect, BadExtendedConnectSetting) { Initialize(); if (!version().UsesHttp3()) { return; } SetQuicReloadableFlag(quic_act_upon_invalid_header, true); EXPECT_FALSE(session_->SupportsWebTransport()); EXPECT_TRUE(session_->ShouldProcessIncomingRequests()); CompleteHandshake(); SettingsFrame settings; settings.values[SETTINGS_ENABLE_CONNECT_PROTOCOL] = 2; std::string data = std::string(1, kControlStream) + HttpEncoder::SerializeSettingsFrame(settings); QuicStreamId control_stream_id = session_->perspective() == Perspective::IS_SERVER ? GetNthClientInitiatedUnidirectionalStreamId(transport_version(), 3) : GetNthServerInitiatedUnidirectionalStreamId(transport_version(), 3); QuicStreamFrame frame(control_stream_id, false, 0, data); EXPECT_QUIC_PEER_BUG( { EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_INVALID_SETTING_VALUE, _, _)); session_->OnStreamFrame(frame); }, "Received SETTINGS_ENABLE_CONNECT_PROTOCOL with invalid value"); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/quic_spdy_session.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/quic_spdy_session_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
f9a2563e-0ca3-4912-9e82-14717a0a6efa
cpp
tensorflow/tensorflow
graph_utils
tensorflow/core/grappler/optimizers/data/graph_utils.cc
tensorflow/core/grappler/optimizers/data/graph_utils_test.cc
#include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include <cstddef> #include "tensorflow/core/framework/dataset_metadata.pb.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/strcat.h" namespace tensorflow { namespace grappler { namespace graph_utils { namespace { constexpr char kConstOpName[] = "Const"; constexpr char kRetValOp[] = "_Retval"; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kToutputTypes[] = "Toutput_types"; template <typename Predicate, typename Collection> std::vector<int> GetElementIndicesWithPredicate(const Predicate& predicate, const Collection& collection) { std::vector<int> indices = {}; unsigned idx = 0; for (auto&& element : collection) { if (predicate(element)) { indices.push_back(idx); } idx++; } return indices; } std::vector<int> CreateNameIndex(const GraphDef& graph) { std::map<string, int> names; for (int i = 0; i < graph.node_size(); ++i) { names[graph.node(i).name()] = i; } std::vector<int> index(graph.node_size()); int i = 0; for (const auto& pair : names) { index[i++] = pair.second; } return index; } std::vector<int> CreateInputIndex(const NodeDef& node) { std::map<string, int> inputs; for (int i = 0; i < node.input_size(); ++i) { inputs[node.input(i)] = i; } std::vector<int> index(node.input_size()); int i = 0; for (const auto& pair : inputs) { index[i++] = pair.second; } return index; } NodeDef* AddScalarConstNodeHelper( DataType dtype, const std::function<void(TensorProto*)>& add_value, MutableGraphView* graph) { NodeDef node; node.set_op(kConstOpName); SetUniqueGraphNodeName(kConstOpName, graph->graph(), &node); (*node.mutable_attr())["dtype"].set_type(dtype); std::unique_ptr<tensorflow::TensorProto> tensor = std::make_unique<tensorflow::TensorProto>(); std::unique_ptr<tensorflow::TensorShapeProto> tensor_shape = std::make_unique<tensorflow::TensorShapeProto>(); tensor->set_allocated_tensor_shape(tensor_shape.release()); tensor->set_dtype(dtype); add_value(tensor.get()); (*node.mutable_attr())["value"].set_allocated_tensor(tensor.release()); return graph->AddNode(std::move(node)); } } NodeDef* AddScalarPlaceholder(DataType dtype, MutableGraphView* graph) { NodeDef node; node.set_op("Placeholder"); SetUniqueGraphNodeName(node.op(), graph->graph(), &node); (*node.mutable_attr())["dtype"].set_type(dtype); TensorShapeProto* shape = (*node.mutable_attr())["shape"].mutable_shape(); shape->set_unknown_rank(false); return graph->AddNode(std::move(node)); } NodeDef* AddNode(StringPiece name, StringPiece op, const std::vector<string>& inputs, const std::vector<std::pair<string, AttrValue>>& attributes, MutableGraphView* graph) { NodeDef node; if (!name.empty()) { node.set_name(string(name)); } else { SetUniqueGraphNodeName(op, graph->graph(), &node); } node.set_op(string(op)); for (const string& input : inputs) { node.add_input(input); } for (const auto& attr : attributes) { (*node.mutable_attr())[attr.first] = attr.second; } return graph->AddNode(std::move(node)); } template <> NodeDef* AddScalarConstNode(bool v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_BOOL, [v](TensorProto* proto) { proto->add_bool_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(double v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_DOUBLE, [v](TensorProto* proto) { proto->add_double_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(float v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_FLOAT, [v](TensorProto* proto) { proto->add_float_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(int v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_INT32, [v](TensorProto* proto) { proto->add_int_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(int64_t v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_INT64, [v](TensorProto* proto) { proto->add_int64_val(v); }, graph); } template <> NodeDef* AddScalarConstNode(StringPiece v, MutableGraphView* graph) { return AddScalarConstNodeHelper( DT_STRING, [v](TensorProto* proto) { proto->add_string_val(v.data(), v.size()); }, graph); } Status GetScalarConstNodeValueHelper( const NodeDef& node, DataType dtype, const std::function<void(const Tensor&)>& get_value) { if (node.op() != kConstOpName) return errors::InvalidArgument("Node ", node.name(), " is not a Const node. Op: ", node.op()); Tensor tensor; TF_RETURN_IF_ERROR(GetNodeAttr(node, "value", &tensor)); if (!TensorShapeUtils::IsScalar(tensor.shape())) { return errors::InvalidArgument( "Node ", node.name(), " should be a scalar but has shape: ", tensor.shape()); } if (tensor.dtype() != dtype) { return errors::InvalidArgument( "Node ", node.name(), " should have type ", DataTypeString(dtype), " but has type: ", DataTypeString(tensor.dtype())); } get_value(tensor); return absl::OkStatus(); } template <> Status GetScalarConstNodeValue(const NodeDef& node, int64_t* value) { return GetScalarConstNodeValueHelper( node, DT_INT64, [value](const Tensor& tensor) { *value = tensor.scalar<int64_t>()(); }); } template <> Status GetScalarConstNodeValue(const NodeDef& node, bool* value) { return GetScalarConstNodeValueHelper( node, DT_BOOL, [value](const Tensor& tensor) { *value = tensor.scalar<bool>()(); }); } bool Compare(const GraphDef& g1, const GraphDef& g2) { if (g1.node_size() != g2.node_size()) { return false; } std::vector<int> name_index1 = CreateNameIndex(g1); std::vector<int> name_index2 = CreateNameIndex(g2); for (int i = 0; i < g1.node_size(); ++i) { int idx1 = name_index1[i]; int idx2 = name_index2[i]; if (g1.node(idx1).op() != g2.node(idx2).op()) { return false; } if (g1.node(idx1).name() != g2.node(idx2).name()) { return false; } if (g1.node(idx1).input_size() != g2.node(idx2).input_size()) { return false; } std::vector<int> input_index1 = CreateInputIndex(g1.node(idx1)); std::vector<int> input_index2 = CreateInputIndex(g2.node(idx2)); for (int j = 0; j < g1.node(idx1).input_size(); ++j) { if (!IsSameInput(g1.node(idx1).input(input_index1[j]), g2.node(idx2).input(input_index2[j]))) { return false; } } } return true; } bool ContainsGraphFunctionWithName(StringPiece name, const FunctionDefLibrary& library) { return FindGraphFunctionWithName(name, library) != -1; } bool ContainsGraphNodeWithName(StringPiece name, const GraphDef& graph) { return FindGraphNodeWithName(name, graph) != -1; } bool ContainsNodeWithOp(StringPiece op, const GraphDef& graph) { return FindGraphNodeWithOp(op, graph) != -1; } int FindGraphFunctionWithName(StringPiece name, const FunctionDefLibrary& library) { return GetFirstElementIndexWithPredicate( [&name](const FunctionDef& function) { return function.signature().name() == name; }, library.function()); } int FindGraphNodeWithName(StringPiece name, const GraphDef& graph) { return GetFirstElementIndexWithPredicate( [&name](const NodeDef& node) { return node.name() == name; }, graph.node()); } int FindGraphNodeWithOp(StringPiece op, const GraphDef& graph) { return GetFirstElementIndexWithPredicate( [&op](const NodeDef& node) { return node.op() == op; }, graph.node()); } std::vector<int> FindAllGraphNodesWithOp(const string& op, const GraphDef& graph) { return GetElementIndicesWithPredicate( [&op](const NodeDef& node) { return node.op() == op; }, graph.node()); } NodeDef* GetInputNode(const NodeDef& node, const MutableGraphView& graph) { if (node.input_size() == 0) return nullptr; MutableGraphView::InputPort input_port = graph.GetInputPort(node.name(), 0); return graph.GetRegularFanin(input_port).node; } NodeDef* GetInputNode(const NodeDef& node, const MutableGraphView& graph, int64_t i) { if (node.input_size() <= i) return nullptr; MutableGraphView::InputPort input_port = graph.GetInputPort(node.name(), i); return graph.GetRegularFanin(input_port).node; } Status GetDatasetOutputTypesAttr(const NodeDef& node, DataTypeVector* output_types) { for (const string& attr_name : {"output_types", "Toutput_types"}) { if (node.attr().contains(attr_name)) { return GetNodeAttr(node, attr_name, output_types); } } return errors::InvalidArgument("Could not find output_types attr for node: ", node.name(), " with op: ", node.op()); } void SetUniqueGraphNodeName(StringPiece prefix, GraphDef* graph, NodeDef* node) { string name = string(prefix); int id = graph->node_size(); while (ContainsGraphNodeWithName(name, *graph)) { if (name.rfind("_generated") != string::npos && (name.rfind("_generated") == (name.size() - strlen("_generated")))) { name.insert(name.rfind("_generated"), strings::StrCat("/_", id)); } else { name = strings::StrCat(prefix, "/_", id); } ++id; } node->set_name(std::move(name)); } void SetUniqueGraphFunctionName(StringPiece prefix, const FunctionDefLibrary* library, FunctionDef* function) { string name = string(prefix); int id = library->function_size(); while (ContainsGraphFunctionWithName(name, *library)) { name = strings::StrCat(prefix, "/_", id); ++id; } function->mutable_signature()->set_name(std::move(name)); } void CopyAttribute(const string& attribute_name, const NodeDef& from, NodeDef* to_node) { (*to_node->mutable_attr())[attribute_name] = from.attr().at(attribute_name); } void ConcatAttributeList(const string& attribute_name, const NodeDef& first, const NodeDef& second, NodeDef* to_node) { CopyAttribute(attribute_name, first, to_node); (*to_node->mutable_attr()) .at(attribute_name) .mutable_list() ->MergeFrom(second.attr().at(attribute_name).list()); } Status EnsureNodeNamesUnique(Graph* g) { std::unordered_map<string, int> name_map; for (auto node : g->op_nodes()) { const string& prefix = node->name(); if (auto entry = gtl::FindOrNull(name_map, prefix)) { string unique_name; do { unique_name = strings::StrCat(prefix, "_", ++(*entry)); } while (name_map.find(unique_name) != name_map.end()); name_map.insert({unique_name, 0}); node->set_name(std::move(unique_name)); } else { name_map.insert({node->name(), 0}); } } return absl::OkStatus(); } Status GetFetchNode(const MutableGraphView& graph, const GrapplerItem& item, NodeDef** fetch_node) { if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } *fetch_node = graph.GetNode(item.fetch.at(0)); return absl::OkStatus(); } bool IsItemDerivedFromFunctionDef(const GrapplerItem& item, const MutableGraphView& graph_view) { for (const auto& fetch_name : item.fetch) { auto fetch = graph_view.GetNode(fetch_name); if (fetch != nullptr && fetch->op() != kRetValOp) { return false; } } return true; } void MaybeSetFusedMetadata(const NodeDef& node1, const NodeDef& node2, NodeDef* fused_node) { data::Metadata metadata1; if (node1.attr().contains("metadata")) { metadata1.ParseFromString(node1.attr().at("metadata").s()); } data::Metadata metadata2; if (node2.attr().contains("metadata")) { metadata2.ParseFromString(node2.attr().at("metadata").s()); } data::Metadata fused_metadata; auto normalize_name = [](const string& name) { return name.empty() ? "?" : name; }; *fused_metadata.mutable_name() = strings::StrCat("fused(", normalize_name(metadata1.name()), ",", normalize_name(metadata2.name()), ")"); fused_metadata.SerializeToString( (*fused_node->mutable_attr())["metadata"].mutable_s()); } bool CopyShapesAndTypesAttrs(const NodeDef& from, NodeDef* to_node) { auto* attr = gtl::FindOrNull(from.attr(), kOutputTypes); attr = (attr == nullptr ? gtl::FindOrNull(from.attr(), kToutputTypes) : attr); if (attr == nullptr) return false; (*to_node->mutable_attr())[kOutputTypes] = *attr; attr = gtl::FindOrNull(from.attr(), kOutputShapes); if (attr == nullptr) return false; (*to_node->mutable_attr())[kOutputShapes] = *attr; return true; } namespace { const auto* kSloppyAttrOps = new absl::flat_hash_set<string>{ "ParallelInterleaveDatasetV2", "ParallelMapDataset", "ParseExampleDataset", }; const auto* kReplicateOnSplitAttrOps = new absl::flat_hash_set<string>{ "TensorSliceDataset", "RangeDataset", }; const auto* kDeterministicAttrOps = new absl::flat_hash_set<string>{ "LegacyParallelInterleaveDatasetV2", "ParallelInterleaveDatasetV3", "ParallelInterleaveDatasetV4", "ParallelMapDatasetV2", "ParallelBatchDataset", }; } bool HasSloppyAttr(const string& op) { return kSloppyAttrOps->contains(op); } bool HasReplicateOnSplitAttr(const string& op) { return kReplicateOnSplitAttrOps->contains(op); } bool HasDeterministicAttr(const string& op) { return kDeterministicAttrOps->contains(op); } Status SetMetadataName(const std::string& name, NodeDef* node) { data::Metadata metadata; if (node->attr().contains("metadata")) { metadata.ParseFromString(node->attr().at("metadata").s()); } if (!metadata.name().empty()) { return errors::InvalidArgument("Node ", node->name(), " already has a metadata name \"", metadata.name(), "\"."); } *metadata.mutable_name() = name; metadata.SerializeToString((*node->mutable_attr())["metadata"].mutable_s()); return absl::OkStatus(); } } } }
#include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/framework/dataset_metadata.pb.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace graph_utils { namespace { using test::function::NDef; constexpr char kOutputShapes[] = "output_shapes"; constexpr char kOutputTypes[] = "output_types"; constexpr char kToutputTypes[] = "Toutput_types"; TEST(GraphUtilsTest, GetFirstElementIndexWithPredicate) { std::vector<int> vec({1, 2, 3, 4, 5, 6}); auto result = GetFirstElementIndexWithPredicate( [](int elem) { return elem % 3 == 0; }, vec); EXPECT_EQ(result, 2); result = GetFirstElementIndexWithPredicate( [](int elem) { return elem % 7 == 0; }, vec); EXPECT_EQ(result, -1); } TEST(GraphUtilsTest, AddScalarConstNodeBool) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* bool_node = AddScalarConstNode<bool>(true, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(bool_node->name(), *graph.graph())); EXPECT_EQ(bool_node->attr().at("value").tensor().bool_val(0), true); } TEST(GraphUtilsTest, AddScalarConstNodeDouble) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* double_node = AddScalarConstNode<double>(3.14, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(double_node->name(), *graph.graph())); EXPECT_FLOAT_EQ(double_node->attr().at("value").tensor().double_val(0), 3.14); } TEST(GraphUtilsTest, AddScalarConstNodeFloat) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* float_node = AddScalarConstNode<float>(3.14, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(float_node->name(), *graph.graph())); EXPECT_FLOAT_EQ(float_node->attr().at("value").tensor().float_val(0), 3.14); } TEST(GraphUtilsTest, AddScalarConstNodeInt) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int_node = AddScalarConstNode<int>(42, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(int_node->name(), *graph.graph())); EXPECT_EQ(int_node->attr().at("value").tensor().int_val(0), 42); } TEST(GraphUtilsTest, AddScalarConstNodeInt64) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int64_node = AddScalarConstNode<int64_t>(42, &graph); EXPECT_TRUE(ContainsGraphNodeWithName(int64_node->name(), *graph.graph())); EXPECT_EQ(int64_node->attr().at("value").tensor().int64_val(0), 42); } TEST(GraphUtilsTest, AddScalarConstNodeString) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* string_node = AddScalarConstNode<StringPiece>("hello", &graph); EXPECT_TRUE(ContainsGraphNodeWithName(string_node->name(), *graph.graph())); EXPECT_EQ(string_node->attr().at("value").tensor().string_val(0), "hello"); } TEST(GraphUtilsTest, GetScalarConstNodeInt64) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int64_node = AddScalarConstNode<int64_t>(128, &graph); int64_t result; EXPECT_TRUE(GetScalarConstNodeValue<int64_t>(*int64_node, &result).ok()); EXPECT_EQ(result, 128); } TEST(GraphUtilsTest, GetScalarConstNodeBool) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* bool_node = AddScalarConstNode<bool>(true, &graph); bool result; EXPECT_TRUE(GetScalarConstNodeValue<bool>(*bool_node, &result).ok()); EXPECT_EQ(result, true); } TEST(GraphUtilsTest, GetScalarConstNodeErrorWithNonConst) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* non_const = AddScalarPlaceholder(DT_INT64, &graph); int64_t result; Status s = GetScalarConstNodeValue<int64_t>(*non_const, &result); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Node Placeholder is not a Const node. Op: Placeholder"); } TEST(GraphUtilsTest, GetScalarConstNodeErrorWithType) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* int64_node = AddScalarConstNode<int64_t>(128, &graph); bool result; Status s = GetScalarConstNodeValue<bool>(*int64_node, &result); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Node Const should have type bool but has type: int64"); } TEST(GraphUtilsTest, GetScalarConstNodeErrorWithVector) { NodeDef node; node.set_name("Const"); node.set_op("Const"); (*node.mutable_attr())["dtype"].set_type(DT_INT64); auto tensor = (*node.mutable_attr())["value"].mutable_tensor(); tensor->set_dtype(DT_INT64); tensor->mutable_tensor_shape()->mutable_dim()->Add()->set_size(1); tensor->add_int64_val(128); int64_t result; Status s = GetScalarConstNodeValue<int64_t>(node, &result); EXPECT_FALSE(s.ok()); EXPECT_EQ(s.message(), "Node Const should be a scalar but has shape: [1]"); } TEST(GraphUtilsTest, Compare) { GraphDef graph_def_a; MutableGraphView graph_a(&graph_def_a); GraphDef graph_def_b; MutableGraphView graph_b(&graph_def_b); EXPECT_TRUE(Compare(graph_def_a, graph_def_b)); AddNode("A", "OpA", {}, {}, &graph_a); AddNode("B", "OpB", {"A"}, {}, &graph_a); EXPECT_FALSE(Compare(graph_def_a, graph_def_b)); graph_def_b.mutable_node()->CopyFrom(graph_def_a.node()); EXPECT_TRUE(Compare(graph_def_a, graph_def_b)); } TEST(GraphUtilsTest, ContainsGraphNodeWithName) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_TRUE(!ContainsGraphNodeWithName("A", *graph.graph())); AddNode("A", "OpA", {}, {}, &graph); EXPECT_TRUE(ContainsGraphNodeWithName("A", *graph.graph())); EXPECT_TRUE(graph.DeleteNodes({"A"}).ok()); EXPECT_TRUE(!ContainsGraphNodeWithName("A", *graph.graph())); } TEST(GraphUtilsTest, ContainsGraphFunctionWithName) { FunctionDefLibrary library; EXPECT_FALSE(ContainsGraphFunctionWithName("new_function", library)); FunctionDef* new_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, new_function); EXPECT_TRUE( ContainsGraphFunctionWithName(new_function->signature().name(), library)); } TEST(GraphUtilsTest, ContainsNodeWithOp) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_TRUE(!ContainsNodeWithOp("OpA", *graph.graph())); AddNode("A", "OpA", {}, {}, &graph); EXPECT_TRUE(ContainsNodeWithOp("OpA", *graph.graph())); EXPECT_TRUE(graph.DeleteNodes({"A"}).ok()); EXPECT_TRUE(!ContainsNodeWithOp("OpA", *graph.graph())); } TEST(GraphUtilsTest, FindGraphNodeWithName) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_EQ(FindGraphNodeWithName("A", *graph.graph()), -1); AddNode("A", "OpA", {}, {}, &graph); EXPECT_NE(FindGraphNodeWithName("A", *graph.graph()), -1); EXPECT_TRUE(graph.DeleteNodes({"A"}).ok()); EXPECT_EQ(FindGraphNodeWithName("A", *graph.graph()), -1); } TEST(GraphUtilsTest, FindGraphFunctionWithName) { FunctionDefLibrary library; EXPECT_EQ(FindGraphFunctionWithName("new_function", library), -1); FunctionDef* new_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, new_function); EXPECT_NE( FindGraphFunctionWithName(new_function->signature().name(), library), -1); } TEST(GraphUtilsTest, FindGraphNodeWithOp) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_EQ(FindGraphNodeWithOp("OpA", *graph.graph()), -1); AddNode("A", "OpA", {}, {}, &graph); AddNode("B", "OpB", {"A"}, {}, &graph); AddNode("A2", "OpA", {"A"}, {}, &graph); EXPECT_EQ(FindGraphNodeWithOp("OpA", *graph.graph()), 0); EXPECT_TRUE(graph.DeleteNodes({"B"}).ok()); EXPECT_EQ(FindGraphNodeWithOp("OpB", *graph.graph()), -1); EXPECT_EQ(FindGraphNodeWithName("A2", *graph.graph()), 1); } TEST(GraphUtilsTest, FindAllGraphNodesWithOp) { GraphDef graph_def; MutableGraphView graph(&graph_def); EXPECT_EQ(FindGraphNodeWithOp("OpA", *graph.graph()), -1); AddNode("A", "OpA", {}, {}, &graph); AddNode("B", "OpB", {"A"}, {}, &graph); AddNode("A2", "OpA", {"B"}, {}, &graph); std::vector<int> result_indices = FindAllGraphNodesWithOp("OpA", *graph.graph()); EXPECT_EQ(result_indices.size(), 2); EXPECT_EQ(result_indices.at(0), 0); EXPECT_EQ(result_indices.at(1), 2); EXPECT_TRUE(graph.DeleteNodes({"A2"}).ok()); std::vector<int> result_indices_new = FindAllGraphNodesWithOp("OpA", *graph.graph()); EXPECT_EQ(result_indices_new.size(), 1); EXPECT_EQ(result_indices_new.at(0), 0); } TEST(GraphUtilsTest, SetUniqueGraphNodeName) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* node1 = AddNode("", "A", {}, {}, &graph); NodeDef* node2 = AddNode("", "A", {}, {}, &graph); EXPECT_NE(node1->name(), node2->name()); EXPECT_TRUE(graph.DeleteNodes({node1->name()}).ok()); NodeDef* node3 = AddNode("", "A", {}, {}, &graph); EXPECT_NE(node2->name(), node3->name()); } TEST(GraphUtilsTest, SetUniqueGraphFunctionName) { FunctionDefLibrary library; FunctionDef* new_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, new_function); FunctionDef* other_function = library.add_function(); SetUniqueGraphFunctionName("new_function", &library, other_function); EXPECT_NE(new_function->signature().name(), other_function->signature().name()); } TEST(GraphUtilsTest, GetInputNode) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* node1 = AddNode("", "A", {}, {}, &graph); NodeDef* node2 = AddNode("", "A", {node1->name()}, {}, &graph); EXPECT_EQ(GetInputNode(*node2, graph), node1); EXPECT_EQ(GetInputNode(*node1, graph), nullptr); } TEST(GraphUtilsTest, GetIthInputNode) { GraphDef graph_def; MutableGraphView graph(&graph_def); NodeDef* node1 = AddNode("", "A", {}, {}, &graph); NodeDef* node2 = AddNode("", "A", {}, {}, &graph); NodeDef* node3 = AddNode("", "A", {node1->name(), node2->name()}, {}, &graph); EXPECT_EQ(GetInputNode(*node3, graph), node1); EXPECT_EQ(GetInputNode(*node3, graph, 1), node2); EXPECT_EQ(GetInputNode(*node3, graph, 0), node1); EXPECT_EQ(GetInputNode(*node3, graph, 2), nullptr); EXPECT_EQ(GetInputNode(*node1, graph), nullptr); } TEST(GraphUtilsTest, EnsureNodeNamesUnique) { Graph g(OpRegistry::Global()); Node *const_0, *const_1, *const_2; Tensor tensor(DT_INT32, {}); tensor.scalar<int32>()() = 5; for (auto node : {&const_0, &const_1}) { TF_EXPECT_OK(NodeBuilder("Const", "Const") .Attr("value", tensor) .Attr("dtype", DT_INT32) .Finalize(&g, node)); } TF_EXPECT_OK(NodeBuilder("Const_1", "Const") .Attr("value", tensor) .Attr("dtype", DT_INT32) .Finalize(&g, &const_2)); TF_EXPECT_OK(EnsureNodeNamesUnique(&g)); EXPECT_NE(const_0->name(), const_1->name()); EXPECT_NE(const_1->name(), const_2->name()); EXPECT_NE(const_0->name(), const_2->name()); } TEST(GraphUtilsTest, TestGetFetchNode) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef* node1 = AddNode("node1", "Identity", {}, {}, &graph); NodeDef* node2 = AddNode("node2", "Identity", {node1->name()}, {}, &graph); NodeDef* node3 = AddNode("node3", "Identity", {node2->name()}, {}, &graph); item.fetch.push_back(node3->name()); NodeDef* sink_node; TF_EXPECT_OK(GetFetchNode(graph, item, &sink_node)); EXPECT_EQ(sink_node->name(), node3->name()); } TEST(GraphUtilsTest, TestFindSinkNodeMultipleFetches) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef* node1 = AddNode("node1", "Identity", {}, {}, &graph); NodeDef* node2 = AddNode("node2", "Identity", {node1->name()}, {}, &graph); NodeDef* node3 = AddNode("node3", "Identity", {node2->name()}, {}, &graph); item.fetch.push_back(node2->name()); item.fetch.push_back(node3->name()); NodeDef* sink_node; Status s = GetFetchNode(graph, item, &sink_node); EXPECT_FALSE(s.ok()); } TEST(GraphUtilsTest, TestFindSinkNodeNoFetches) { GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef* node1 = AddNode("node1", "Identity", {}, {}, &graph); NodeDef* node2 = AddNode("node2", "Identity", {node1->name()}, {}, &graph); AddNode("node3", "Identity", {node2->name()}, {}, &graph); NodeDef* sink_node; Status s = GetFetchNode(graph, item, &sink_node); EXPECT_FALSE(s.ok()); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsNoShapes) { NodeDef from = NDef("range", "RangeDataset", {}, {{kOutputTypes, absl::Span<const DataType>{}}}); NodeDef to_node; EXPECT_FALSE(CopyShapesAndTypesAttrs(from, &to_node)); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsNoTypes) { NodeDef from = NDef("range", "RangeDataset", {}, {{kOutputShapes, absl::Span<const TensorShape>{}}}); NodeDef to_node; EXPECT_FALSE(CopyShapesAndTypesAttrs(from, &to_node)); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsOutputTypes) { NodeDef from = NDef("range", "RangeDataset", {}, {{kOutputShapes, 666}, {kOutputTypes, 888}}); NodeDef to_node; EXPECT_TRUE(CopyShapesAndTypesAttrs(from, &to_node)); EXPECT_EQ(to_node.attr().at(kOutputShapes).i(), 666); EXPECT_EQ(to_node.attr().at(kOutputTypes).i(), 888); } TEST(GraphUtilsTest, TestCopyShapesAndTypesAttrsToutputTypes) { NodeDef from = NDef("tensor", "TensorDataset", {}, {{kOutputShapes, 666}, {kToutputTypes, 888}}); NodeDef to_node; EXPECT_TRUE(CopyShapesAndTypesAttrs(from, &to_node)); EXPECT_EQ(to_node.attr().at(kOutputShapes).i(), 666); EXPECT_EQ(to_node.attr().at(kOutputTypes).i(), 888); } TEST(GraphUtilsTest, TestSetMetadataName) { NodeDef node = NDef("range", "RangeDataset", {}, {{kOutputShapes, 666}, {kOutputTypes, 888}}); EXPECT_TRUE(SetMetadataName("metadata_name", &node).ok()); EXPECT_TRUE(node.attr().contains("metadata")); data::Metadata metadata; metadata.ParseFromString(node.attr().at("metadata").s()); EXPECT_EQ("metadata_name", metadata.name()); EXPECT_FALSE(SetMetadataName("new_metadata_name", &node).ok()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/graph_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/graph_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
241e305d-2df4-4bfa-a29d-7db00655992a
cpp
tensorflow/tensorflow
quantization_util
tensorflow/compiler/mlir/lite/kernels/internal/quantization_util.cc
tensorflow/lite/delegates/xnnpack/quantization_util_test.cc
#include "tensorflow/compiler/mlir/lite/kernels/internal/quantization_util.h" #include <algorithm> #include <cmath> #include <limits> #include "tensorflow/compiler/mlir/lite/kernels/internal/compatibility_macros.h" #include "tensorflow/compiler/mlir/lite/kernels/internal/cppmath.h" namespace tflite_migration { namespace { constexpr uint64_t kSignMask = 0x8000000000000000LL; constexpr uint64_t kExponentMask = 0x7ff0000000000000LL; constexpr int32_t kExponentShift = 52; constexpr int32_t kExponentBias = 1023; constexpr uint32_t kExponentIsBadNum = 0x7ff; constexpr uint64_t kFractionMask = 0x000fffffffc00000LL; constexpr uint32_t kFractionShift = 22; constexpr uint32_t kFractionRoundingMask = 0x003fffff; constexpr uint32_t kFractionRoundingThreshold = 0x00200000; } void QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier, int* shift) { #if TFLITE_SINGLE_ROUNDING #endif if (double_multiplier == 0.) { *quantized_multiplier = 0; *shift = 0; return; } #ifdef TFLITE_EMULATE_FLOAT int64_t q_fixed = IntegerFrExp(double_multiplier, shift); #else const double q = std::frexp(double_multiplier, shift); auto q_fixed = static_cast<int64_t>(TfLiteRound(q * (1LL << 31))); #endif TFLITE_DCHECK(q_fixed <= (1LL << 31)); if (q_fixed == (1LL << 31)) { q_fixed /= 2; ++*shift; } TFLITE_DCHECK_LE(q_fixed, std::numeric_limits<int32_t>::max()); if (*shift < -31) { *shift = 0; q_fixed = 0; } #if TFLITE_SINGLE_ROUNDING if (*shift > 30) { *shift = 30; q_fixed = (1LL << 31) - 1; } #endif *quantized_multiplier = static_cast<int32_t>(q_fixed); } void QuantizeMultiplierGreaterThanOne(double double_multiplier, int32_t* quantized_multiplier, int* left_shift) { TFLITE_DCHECK_GT(double_multiplier, 1.); QuantizeMultiplier(double_multiplier, quantized_multiplier, left_shift); TFLITE_DCHECK_GE(*left_shift, 0); } int64_t IntegerFrExp(double input, int* shift) { TFLITE_DCHECK_EQ(8, sizeof(double)); union { double double_value; uint64_t double_as_uint; } cast_union; cast_union.double_value = input; const uint64_t u = cast_union.double_as_uint; if ((u & ~kSignMask) == 0) { *shift = 0; return 0; } const uint32_t exponent_part = ((u & kExponentMask) >> kExponentShift); if (exponent_part == kExponentIsBadNum) { *shift = std::numeric_limits<int>::max(); if (u & kFractionMask) { return 0; } else { if (u & kSignMask) { return std::numeric_limits<int64_t>::min(); } else { return std::numeric_limits<int64_t>::max(); } } } *shift = (exponent_part - kExponentBias) + 1; int64_t fraction = 0x40000000 + ((u & kFractionMask) >> kFractionShift); if ((u & kFractionRoundingMask) > kFractionRoundingThreshold) { fraction += 1; } if (u & kSignMask) { fraction *= -1; } return fraction; } double DoubleFromFractionAndShift(int64_t fraction, int shift) { union { double double_value; uint64_t double_as_uint; } result; if (shift == std::numeric_limits<int>::max()) { if (fraction == 0) { return std::numeric_limits<double>::quiet_NaN(); } else if (fraction > 0) { return std::numeric_limits<double>::infinity(); } else { return -std::numeric_limits<double>::infinity(); } } if (fraction == 0) { result.double_as_uint = 0; return result.double_value; } bool is_negative = (fraction < 0); int64_t encoded_fraction = is_negative ? -fraction : fraction; int64_t encoded_shift = (shift - 1); while (encoded_fraction < 0x40000000) { encoded_fraction *= 2; encoded_shift -= 1; } while (encoded_fraction > 0x80000000) { encoded_fraction /= 2; encoded_shift += 1; } encoded_fraction -= 0x40000000; if (encoded_shift < -1022) { encoded_shift = -1023; } else if (encoded_shift > 1022) { encoded_shift = 1023; } encoded_shift += kExponentBias; uint64_t encoded_sign = is_negative ? kSignMask : 0; result.double_as_uint = encoded_sign | (encoded_shift << kExponentShift) | (encoded_fraction << kFractionShift); return result.double_value; } double IntegerDoubleMultiply(double a, double b) { int a_shift; const int64_t a_fraction = IntegerFrExp(a, &a_shift); int b_shift; const int64_t b_fraction = IntegerFrExp(b, &b_shift); if (a_shift == std::numeric_limits<int>::max() || (b_shift == std::numeric_limits<int>::max())) { return std::numeric_limits<double>::quiet_NaN(); } const int result_shift = a_shift + b_shift + 1; const int64_t result_fraction = (a_fraction * b_fraction) >> 32; return DoubleFromFractionAndShift(result_fraction, result_shift); } int IntegerDoubleCompare(double a, double b) { int a_shift; const int64_t a_fraction = IntegerFrExp(a, &a_shift); int b_shift; const int64_t b_fraction = IntegerFrExp(b, &b_shift); if (a_shift == std::numeric_limits<int>::max() || (b_shift == std::numeric_limits<int>::max())) { return 1; } if ((a_fraction == 0) && (b_fraction < 0)) { return 1; } else if ((a_fraction < 0) && (b_fraction == 0)) { return -1; } else if (a_shift < b_shift) { return -1; } else if (a_shift > b_shift) { return 1; } else if (a_fraction < b_fraction) { return -1; } else if (a_fraction > b_fraction) { return 1; } else { return 0; } } void PreprocessSoftmaxScaling(double beta, double input_scale, int input_integer_bits, int32_t* quantized_multiplier, int* left_shift) { #if TFLITE_SINGLE_ROUNDING const double max_real_multiplier = (1LL << 30) - 1.0; #else const double max_real_multiplier = (1LL << 31) - 1.0; #endif #ifdef TFLITE_EMULATE_FLOAT const double input_beta = IntegerDoubleMultiply(beta, input_scale); int shift; int64_t fraction = IntegerFrExp(input_beta, &shift); shift += (31 - input_integer_bits); double input_beta_real_multiplier = DoubleFromFractionAndShift(fraction, shift); if (IntegerDoubleCompare(input_beta_real_multiplier, max_real_multiplier) > 0) { input_beta_real_multiplier = max_real_multiplier; } #else const double input_beta_real_multiplier = std::min<double>(beta * input_scale * (1 << (31 - input_integer_bits)), max_real_multiplier); #endif QuantizeMultiplierGreaterThanOne(input_beta_real_multiplier, quantized_multiplier, left_shift); } int CalculateInputRadius(int input_integer_bits, int input_left_shift, int total_signed_bits) { #ifdef TFLITE_EMULATE_FLOAT int64_t result = (1 << input_integer_bits) - 1; result <<= (total_signed_bits - input_integer_bits); result >>= input_left_shift; return result; #else const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) * (1LL << (total_signed_bits - input_integer_bits)) / (1LL << input_left_shift); return static_cast<int>(std::floor(max_input_rescaled)); #endif } }
#include "tensorflow/lite/delegates/xnnpack/quantization_util.h" #include <stdint.h> #include <limits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/internal/runtime_shape.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace xnnpack { namespace { template <typename T> inline double ScaleFromMinMax(const float min, const float max) { return (max - min) / ((std::numeric_limits<T>::max() * 1.0) - std::numeric_limits<T>::min()); } template <typename T> inline int32_t ZeroPointFromMinMax(const float min, const float max) { return static_cast<int32_t>(std::numeric_limits<T>::min()) + static_cast<int32_t>(-min / ScaleFromMinMax<T>(min, max) + 0.5f); } TEST(Dequantize, Int8) { std::vector<int8_t> quantized_data = {-3, -2, -1, 1, 2, 3}; std::vector<float> dequantized_data(quantized_data.size()); RuntimeShape tensor_shape(1, quantized_data.size()); const float min = -12.8f; const float max = 12.7f; const double scale = ScaleFromMinMax<int8_t>(min, max); const int32_t zero_point = ZeroPointFromMinMax<int8_t>(min, max); DequantizeInt8(quantized_data.data(), dequantized_data.data(), tensor_shape, zero_point, scale); EXPECT_THAT(dequantized_data, Pointwise(FloatNear(1e-6), {-0.3, -0.2, -0.1, 0.1, 0.2, 0.3})); } TEST(Dequantize, PerChannelInt8) { const std::vector<float> scales = {0.5, 0.25}; const std::vector<int> zero_points = {-1, -1}; const int quantized_dimension = 0; const RuntimeShape shape({2, 5}); const std::vector<int8_t> input = {-128, -127, -126, -125, -124, 123, 124, 125, 126, 127}; std::vector<float> output(10, -1); PerChannelDequantizeInt8(input.data(), output.data(), shape, zero_points.data(), scales.data(), quantized_dimension); EXPECT_THAT(output, Pointwise(FloatNear(1e-6), {-63.5, -63., -62.5, -62., -61.5, 31., 31.25, 31.5, 31.75, 32.})); } TEST(Dequantize, Float16) { std::vector<uint16_t> quantized_data = { UINT16_C(0x3000), UINT16_C(0x3400), UINT16_C(0x3800), UINT16_C(0x3C00), UINT16_C(0x4000), UINT16_C(0x4400) }; std::vector<float> dequantized_data(quantized_data.size()); DequantizeFloat16(quantized_data.data(), dequantized_data.data(), quantized_data.size()); EXPECT_THAT(dequantized_data, Pointwise(FloatNear(1e-6), {0.125, 0.25, 0.5, 1., 2., 4.})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/kernels/internal/quantization_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/quantization_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2d30b848-631b-4668-8f6c-fe02c615407f
cpp
tensorflow/tensorflow
literal_comparison
third_party/xla/xla/literal_comparison.cc
third_party/xla/xla/literal_comparison_test.cc
#include "xla/literal_comparison.h" #include <complex> #ifndef _WIN32 #include <unistd.h> #endif #include <array> #include <cmath> #include <cstdint> #include <limits> #include <optional> #include <set> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/error_spec.h" #include "xla/fp_util.h" #include "xla/index_util.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" using absl::StrAppend; using absl::StrAppendFormat; using absl::StrCat; namespace xla { namespace literal_comparison { namespace { template <typename FloatT, typename UnsignedT> bool CompareFloatsBitwiseEqual(FloatT lhs, FloatT rhs, absl::Span<const int64_t> multi_index) { auto ulhs = Eigen::numext::bit_cast<UnsignedT>(lhs); auto urhs = Eigen::numext::bit_cast<UnsignedT>(rhs); return ulhs == urhs; } template <typename NativeT> bool CompareEqual(NativeT lhs, NativeT rhs, absl::Span<const int64_t> multi_index) { if constexpr (is_specialized_floating_point_v<NativeT>) { using BitT = UnsignedIntegerTypeForSizeType<sizeof(NativeT)>; return CompareFloatsBitwiseEqual<NativeT, BitT>(lhs, rhs, multi_index); } if constexpr (is_complex_v<NativeT>) { using ComponentT = typename NativeT::value_type; return CompareEqual<ComponentT>(lhs.real(), rhs.real(), multi_index) && CompareEqual<ComponentT>(lhs.imag(), rhs.imag(), multi_index); } return lhs == rhs; } template <typename NativeT, typename UnsignedT> absl::Status MakeBitwiseErrorStatus(NativeT lhs, NativeT rhs, absl::Span<const int64_t> multi_index) { auto ulhs = Eigen::numext::bit_cast<UnsignedT>(lhs); auto urhs = Eigen::numext::bit_cast<UnsignedT>(rhs); auto lhs_double = static_cast<double>(lhs); auto rhs_double = static_cast<double>(rhs); return InvalidArgument( "floating values are not bitwise-equal; and equality testing " "was requested: %s=%s=%a vs %s=%s=%a at array index %s", StrCat(absl::Hex(ulhs)), RoundTripFpToString(lhs), lhs_double, StrCat(absl::Hex(urhs)), RoundTripFpToString(rhs), rhs_double, LiteralUtil::MultiIndexAsString(multi_index)); } template <typename NativeT> absl::Status MakeErrorStatus(NativeT lhs, NativeT rhs, absl::Span<const int64_t> multi_index) { if constexpr (is_specialized_integral_v<NativeT>) { return InvalidArgument( "first mismatch at array index %s:\n expected value: %s\n actual " "value: %s", LiteralUtil::MultiIndexAsString(multi_index), StrCat(lhs), StrCat(rhs)); } if constexpr (is_specialized_floating_point_v<NativeT>) { using BitT = UnsignedIntegerTypeForSizeType<sizeof(NativeT)>; return MakeBitwiseErrorStatus<NativeT, BitT>(lhs, rhs, multi_index); } if constexpr (is_complex_v<NativeT>) { using ComponentT = typename NativeT::value_type; if (!CompareEqual<ComponentT>(lhs.real(), rhs.real(), multi_index)) { return MakeErrorStatus(lhs.real(), rhs.real(), multi_index); } return MakeErrorStatus(lhs.imag(), rhs.imag(), multi_index); } } template <typename NativeT> absl::Status Equal(LiteralSlice expected, LiteralSlice actual, absl::Span<int64_t> multi_index, int64_t dimension, Literal* mismatched = nullptr) { if (dimension == expected.shape().dimensions_size()) { NativeT expected_value = expected.Get<NativeT>(multi_index); NativeT actual_value = actual.Get<NativeT>(multi_index); bool result = CompareEqual<NativeT>(expected_value, actual_value, multi_index); if (mismatched) { mismatched->Set<bool>(multi_index, !result); } return result ? absl::OkStatus() : MakeErrorStatus<NativeT>(expected_value, actual_value, multi_index); } absl::Status result; int64_t upper_bound = expected.shape().dimensions(dimension); if (expected.shape().is_dynamic_dimension(dimension)) { upper_bound = expected.GetDynamicSize(dimension); } for (int64_t i = 0; i < upper_bound; ++i) { multi_index[dimension] = i; if (mismatched != nullptr) { result.Update(Equal<NativeT>(expected, actual, multi_index, dimension + 1, mismatched)); } else { TF_RETURN_IF_ERROR(Equal<NativeT>(expected, actual, multi_index, dimension + 1, mismatched)); } } return result; } int64_t RecursiveElementCount(const Shape& shape) { if (shape.IsTuple()) { const int64_t tuple_elements = ShapeUtil::TupleElementCount(shape); int64_t total = 0; for (int64_t i = 0; i < tuple_elements; ++i) { total += RecursiveElementCount(ShapeUtil::GetTupleElementShape(shape, i)); } return total; } else if (shape.IsArray()) { return ShapeUtil::ElementsIn(shape); } else { return 0; } } template <typename NativeT> bool IsInf(NativeT val) { return Eigen::numext::isinf(val); } template <typename NativeT> bool IsNan(NativeT value) { return Eigen::numext::isnan(value); } template <typename NativeT> std::string FpValueToString(NativeT value) { if constexpr (is_specialized_floating_point_v<NativeT>) { constexpr int kPrecisionDigits = std::numeric_limits<NativeT>::max_digits10; const int kExponentDigts = std::ceil(std::log10(std::numeric_limits<NativeT>::max_exponent10)); constexpr int kExtraChars = 4; const int kTotalChars = kPrecisionDigits * kExponentDigts + kExtraChars; return absl::StrFormat("%*.*g", kTotalChars, kPrecisionDigits, static_cast<double>(value)); } if constexpr (is_complex_v<NativeT>) { return absl::StrCat(FpValueToString(value.real()), " + ", FpValueToString(value.imag())); } } template <typename NativeT> double FpAbsoluteValue(NativeT value) { return static_cast<double>(Eigen::numext::abs(value)); } template <typename NativeT> class NearComparator { public: static absl::Status Compare(const LiteralSlice& expected, const LiteralSlice& actual, const ShapeIndex& shape_index, ErrorSpec error, bool detailed_message, const MiscompareCallback& miscompare_callback) { NearComparator<NativeT> comparator(expected, actual, shape_index, error, detailed_message, miscompare_callback); return comparator.Run(); } private: struct Mismatch { NativeT actual; NativeT expected; double rel_error; double abs_error; int64_t linear_index; int float_distance = -1; bool operator<(const Mismatch& other) const { return rel_error < other.rel_error; } std::string ToString(const Shape& shape) const { auto s = absl::StrFormat( "actual %s, expected %s, index %s, rel error %8.3g, abs error " "%8.3g", FpValueToString(actual), FpValueToString(expected), LiteralUtil::MultiIndexAsString( IndexUtil::LinearIndexToMultidimensionalIndex(shape, linear_index)), rel_error, abs_error); if (float_distance >= 0) { StrAppendFormat(&s, ", float distance %d", float_distance); } return s; } }; NearComparator(const LiteralSlice& expected, const LiteralSlice& actual, const ShapeIndex& shape_index, ErrorSpec error, bool detailed_message, const MiscompareCallback& miscompare_callback) : expected_(expected), actual_(actual), shape_index_(shape_index), error_(error), detailed_message_(detailed_message), miscompare_callback_(miscompare_callback), abs_value_buckets_(kAbsValueBucketBounds.size() - 1, {0, 0}), abs_error_buckets_(kErrorBucketBounds.size(), 0), rel_error_buckets_(kErrorBucketBounds.size(), 0) {} absl::Status Run() { TF_RETURN_IF_ERROR(EqualShapes(expected_.shape(), actual_.shape())); if (!expected_.shape().IsArray()) { return InvalidArgument("Expected array shape; got %s.", ShapeUtil::HumanString(expected_.shape())); } mismatches_ = Literal(ShapeUtil::ChangeElementType(actual_.shape(), PRED)); mismatches_.PopulateWithValue(false); CompareLiterals(); if (num_mismatches_ == 0) { return absl::OkStatus(); } else if (!VLOG_IS_ON(1) && miscompare_callback_ != nullptr) { miscompare_callback_( expected_, actual_, mismatches_, shape_index_, ErrorBuckets(abs_error_buckets_, rel_error_buckets_)); } return InvalidArgument("%s", ErrorMessage()); } void UpdateAbsValueBucket(NativeT value, bool is_mismatch) { const double abs_value = FpAbsoluteValue(value); for (int i = 0; i < abs_value_buckets_.size(); ++i) { if (i == abs_value_buckets_.size() - 1 || (abs_value >= kAbsValueBucketBounds[i] && abs_value < kAbsValueBucketBounds[i + 1])) { abs_value_buckets_[i].first++; if (is_mismatch) { abs_value_buckets_[i].second++; } return; } } } void UpdateErrorBucket(double error, absl::Span<int64_t> error_buckets) { CHECK_EQ(error_buckets.size(), kErrorBucketBounds.size()); for (int i = 0; i < error_buckets.size(); ++i) { if (error >= kErrorBucketBounds[i]) { error_buckets[i]++; } } } template <typename T> int CalculateFloatDistance(T expected, T actual) { if (error_.low_precision_fp_error_spec.type == PrimitiveType::PRIMITIVE_TYPE_INVALID) return -1; return primitive_util::FloatingPointTypeSwitch<int>( [&](const auto kType) -> int { using NarrowNativeT = primitive_util::NativeTypeOf<kType>; if constexpr (std::is_same_v<NarrowNativeT, tsl::float8_e3m4>) { return CalculateDistanceInFloats(NarrowNativeT(half(expected)), NarrowNativeT(half(actual))); } else { return CalculateDistanceInFloats(NarrowNativeT(expected), NarrowNativeT(actual)); } }, error_.low_precision_fp_error_spec.type); } template <typename T> void CompareValues(T expected, T actual, int64_t linear_index) { double abs_error; double rel_error; int float_distance = -1; if (CompareEqual<T>(expected, actual, {linear_index})) { abs_error = 0; rel_error = 0; } else if (IsNan(expected) || IsNan(actual)) { if (error_.all_nans_are_equivalent && IsNan(expected) && IsNan(actual)) { abs_error = 0; rel_error = 0; } else if ((!error_.relaxed_nans && IsNan(expected) != IsNan(actual)) || (error_.relaxed_nans && !IsNan(expected) && IsNan(actual))) { num_nan_mismatches_++; abs_error = std::numeric_limits<double>::infinity(); rel_error = std::numeric_limits<double>::infinity(); } else { abs_error = 0; rel_error = 0; } } else if (IsInf(actual) && !IsInf(expected) && error_.fewer_infs_ok) { T actual_finite = actual > T{0} ? std::numeric_limits<T>::max() : std::numeric_limits<T>::lowest(); abs_error = FpAbsoluteValue(actual_finite - expected); if (expected != T{0}) { rel_error = abs_error / FpAbsoluteValue(expected); } else { rel_error = std::numeric_limits<double>::infinity(); } } else if (IsInf(expected) || IsInf(actual)) { CHECK(!CompareEqual(expected, actual, {linear_index})); abs_error = std::numeric_limits<double>::infinity(); rel_error = std::numeric_limits<double>::infinity(); } else { float_distance = CalculateFloatDistance<T>(expected, actual); abs_error = FpAbsoluteValue(actual - expected); if (expected != T{0}) { rel_error = abs_error / FpAbsoluteValue(expected); } else { rel_error = std::numeric_limits<double>::infinity(); } } bool is_within_n_floats = false; bool should_use_float_error_spec = error_.low_precision_fp_error_spec.type != PrimitiveType::PRIMITIVE_TYPE_INVALID; if (should_use_float_error_spec && error_.low_precision_fp_error_spec.within_n_values >= 0) { is_within_n_floats = float_distance <= error_.low_precision_fp_error_spec.within_n_values; } const bool is_abs_mismatch = (should_use_float_error_spec && is_within_n_floats) ? false : (abs_error > error_.abs); const bool is_rel_mismatch = (should_use_float_error_spec && is_within_n_floats) ? false : (rel_error > error_.rel); const bool is_mismatch = is_abs_mismatch && is_rel_mismatch; if (is_abs_mismatch) { num_abs_mismatches_++; UpdateErrorBucket(rel_error, absl::MakeSpan(rel_error_buckets_)); } if (is_rel_mismatch) { num_rel_mismatches_++; UpdateErrorBucket(abs_error, absl::MakeSpan(abs_error_buckets_)); } UpdateAbsValueBucket(actual, is_mismatch); if (!is_mismatch) { return; } num_mismatches_++; if (top_rel_mismatches_.size() < kTopRelativeErrorCount || rel_error > top_rel_mismatches_.begin()->rel_error) { Mismatch mismatch = {actual, expected, rel_error, abs_error, linear_index, float_distance}; top_rel_mismatches_.insert(mismatch); if (top_rel_mismatches_.size() > kTopRelativeErrorCount) { top_rel_mismatches_.erase(top_rel_mismatches_.begin()); } } mismatches_.data<bool>()[linear_index] = true; } template <typename T> void CompareValues(std::complex<T> expected, std::complex<T> actual, int64_t linear_index) { const auto both_parts_mismatch = num_mismatches_ + 2; CompareValues<T>(expected.real(), actual.real(), linear_index); CompareValues<T>(expected.imag(), actual.imag(), linear_index); if (num_mismatches_ == both_parts_mismatch) { num_mismatches_--; } } void CompareLiterals() { if (LayoutUtil::Equal(actual_.shape().layout(), expected_.shape().layout()) && expected_.shape().is_static() && actual_.shape().is_static()) { absl::Span<const NativeT> expected_data = expected_.data<NativeT>(); absl::Span<const NativeT> actual_data = actual_.data<NativeT>(); const int64_t len = expected_data.size(); for (int64_t i = 0; i < len; ++i) { CompareValues(expected_data[i], actual_data[i], i); } return; } std::vector<int64_t> multi_index(actual_.shape().rank(), 0); CompareLiteralsSlow(0, &multi_index); } void CompareLiteralsSlow(int64_t dimension, std::vector<int64_t>* multi_index) { if (dimension == multi_index->size()) { CompareValues(expected_.Get<NativeT>(*multi_index), actual_.Get<NativeT>(*multi_index), IndexUtil::MultidimensionalIndexToLinearIndex( actual_.shape(), *multi_index)); } else { int64_t upper_bound = expected_.shape().dimensions(dimension); if (expected_.shape().is_dynamic_dimension(dimension)) { upper_bound = expected_.GetDynamicSize(dimension); } for (int64_t i = 0; i < upper_bound; ++i) { (*multi_index)[dimension] = i; CompareLiteralsSlow(dimension + 1, multi_index); } } } std::string ErrorMessage() { std::string out; int64_t element_count = ShapeUtil::ElementsIn(actual_.shape()); auto percent_string = [](double a, double b) { double pct = b == 0.0 ? 0.0 : 100.0 * a / b; return absl::StrFormat("%0.4f%%", pct); }; StrAppendFormat( &out, "\nMismatch count %d (%s) in shape %s (%d elements), abs bound " "%g, rel bound %g\n", num_mismatches_, percent_string(num_mismatches_, element_count), ShapeUtil::HumanString(actual_.shape()), ShapeUtil::ElementsIn(actual_.shape()), error_.abs, error_.rel); if (num_nan_mismatches_ > 0) { StrAppend(&out, "nan mismatches ", num_nan_mismatches_, "\n"); } StrAppendFormat(&out, "Top relative error mismatches:\n"); for (auto it = top_rel_mismatches_.rbegin(); it != top_rel_mismatches_.rend(); ++it) { StrAppend(&out, " ", it->ToString(actual_.shape()), "\n"); } if (!detailed_message_) { return out; } StrAppend(&out, "Absolute magnitude breakdown of actual values:\n"); CHECK_EQ(abs_value_buckets_.size() + 1, kAbsValueBucketBounds.size()); for (int i = 0; i < abs_value_buckets_.size(); ++i) { const int64_t bucket_size = abs_value_buckets_[i].first; const int64_t bucket_mismatches = abs_value_buckets_[i].second; std::string mismatch_str = bucket_mismatches > 0 ? absl::StrFormat(", mismatches %d", bucket_mismatches) : ""; StrAppendFormat(&out, " %-6g <= x < %-6g : %7d (%9s)%s\n", kAbsValueBucketBounds[i], kAbsValueBucketBounds[i + 1], bucket_size, percent_string(bucket_size, element_count), mismatch_str); } auto print_accum_buckets = [&](const std::string& header, int64_t total, absl::Span<const int64_t> buckets) { StrAppend(&out, header, ":\n"); StrAppendFormat(&out, " < %-6g : %7d (%s)\n", kErrorBucketBounds[0], total - buckets[0], percent_string(total - buckets[0], total)); CHECK_EQ(buckets.size(), kErrorBucketBounds.size()); for (int i = 0; i < kErrorBucketBounds.size(); ++i) { StrAppendFormat(&out, " >= %-6g : %7d (%s)\n", kErrorBucketBounds[i], buckets[i], percent_string(buckets[i], total)); } }; StrAppendFormat(&out, "Elements exceeding abs error bound %g: %d (%s)\n", error_.abs, num_abs_mismatches_, percent_string(num_abs_mismatches_, element_count)); print_accum_buckets( "Relative error breakdown of elements exceeding abs error bound", num_abs_mismatches_, rel_error_buckets_); StrAppendFormat(&out, "Elements exceeding rel error bound %g: %d (%s)\n", error_.rel, num_rel_mismatches_, percent_string(num_rel_mismatches_, element_count)); print_accum_buckets( "Absolute error breakdown of elements exceeding rel error bound", num_rel_mismatches_, abs_error_buckets_); return out; } LiteralSlice expected_; LiteralSlice actual_; ShapeIndex shape_index_; ErrorSpec error_; bool detailed_message_; MiscompareCallback miscompare_callback_; int64_t num_mismatches_ = 0; int64_t num_nan_mismatches_ = 0; int64_t num_abs_mismatches_ = 0; int64_t num_rel_mismatches_ = 0; Literal mismatches_; static constexpr int64_t kTopRelativeErrorCount = 5; std::multiset<Mismatch> top_rel_mismatches_; static inline constexpr std::array<double, 7> kAbsValueBucketBounds = { 0.0, 0.0001, 0.001, 0.01, 0.1, 1, std::numeric_limits<double>::infinity(), }; std::vector<std::pair<int64_t, int64_t>> abs_value_buckets_; static inline constexpr std::array<double, 5> kErrorBucketBounds = { 0.0001, 0.001, 0.01, 0.1, 1}; std::vector<int64_t> abs_error_buckets_; std::vector<int64_t> rel_error_buckets_; }; absl::Status EqualHelper(const LiteralSlice& expected, const LiteralSlice& actual, const ShapeIndex& shape_index, const MiscompareCallback& miscompare_callback) { if (expected.shape().is_static() && actual.shape().is_static()) { TF_RETURN_IF_ERROR(EqualShapes(expected.shape(), actual.shape())); } else { TF_RETURN_IF_ERROR(EqualDynamicShapesAndDimensions(expected, actual)); } absl::Status result; if (expected.shape().IsTuple()) { ShapeIndex next_index = shape_index; for (int i = 0; i < ShapeUtil::TupleElementCount(expected.shape()); ++i) { next_index.push_back(i); absl::Status tuple_result = EqualHelper(LiteralSlice(expected, {i}), LiteralSlice(actual, {i}), next_index, miscompare_callback); if (miscompare_callback) { result.Update(tuple_result); } else { TF_RETURN_IF_ERROR(tuple_result); } next_index.pop_back(); } } else { std::vector<int64_t> multi_index(expected.shape().dimensions_size(), 0); auto index = absl::MakeSpan(multi_index); Shape unequal_shape = ShapeUtil::MakeShape(PrimitiveType::PRED, expected.shape().dimensions()); Literal miscompared(unequal_shape); Literal* miscompared_ptr = (miscompare_callback == nullptr ? nullptr : &miscompared); primitive_util::PrimitiveTypeSwitch<void>( [&](auto primitive_type_constant) -> void { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; result = Equal<NativeT>(expected, actual, index, 0, miscompared_ptr); return; } if constexpr (primitive_type_constant == TOKEN) { return; } LOG(FATAL) << "Unsupported primitive type: " << PrimitiveType_Name(expected.shape().element_type()); }, expected.shape().element_type()); if (!result.ok() && miscompare_callback) { miscompare_callback(expected, actual, LiteralSlice(miscompared), shape_index, ErrorBuckets()); } } return result; } absl::Status NearHelper(const LiteralSlice& expected, const LiteralSlice& actual, const ShapeIndex& shape_index, const ErrorSpec& error, std::optional<bool> detailed_message, const MiscompareCallback& miscompare_callback) { if (expected.shape().is_static() && actual.shape().is_static()) { TF_RETURN_IF_ERROR(EqualShapes(expected.shape(), actual.shape())); } else { TF_RETURN_IF_ERROR(EqualDynamicShapesAndDimensions(expected, actual)); } if (expected.shape().IsTuple()) { absl::Status return_status; for (int64_t i = 0; i < ShapeUtil::TupleElementCount(expected.shape()); ++i) { const auto expected_element = LiteralSlice(expected, {i}); const auto actual_element = LiteralSlice(actual, {i}); ShapeIndex element_index = shape_index; element_index.push_back(i); absl::Status element_result = NearHelper(expected_element, actual_element, element_index, error, detailed_message, miscompare_callback); if (!element_result.ok()) { element_result = InvalidArgument("Array at shape index %s, %s", element_index.ToString(), element_result.message()); if (return_status.ok()) { return_status = element_result; } else { return_status = AppendStatus(return_status, element_result.message()); } } } if (!return_status.ok() && shape_index.empty()) { int64_t total_elements = RecursiveElementCount(actual.shape()); return_status = InvalidArgument("\nMismatches in shape %s (%d elements):\n%s", ShapeUtil::HumanString(actual.shape()), total_elements, return_status.message()); } return return_status; } if (ShapeUtil::ElementIsFloating(expected.shape()) || ShapeUtil::ElementIsComplex(expected.shape())) { bool use_detailed_message = detailed_message.value_or( ShapeUtil::ElementsIn(expected.shape()) >= 64); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType(primitive_type) || primitive_util::IsComplexType(primitive_type)) { using NativeT = primitive_util::NativeTypeOf<primitive_type>; return NearComparator<NativeT>::Compare( expected, actual, shape_index, error, use_detailed_message, miscompare_callback); } LOG(FATAL) << "Unsupported primitive type in near comparator: " << PrimitiveType_Name(expected.shape().element_type()) << ". Must be floating-point type."; }, expected.shape().element_type()); } return EqualHelper(expected, actual, shape_index, miscompare_callback); } } absl::Status EqualShapes(const Shape& expected, const Shape& actual) { if (expected.element_type() != actual.element_type()) { return InvalidArgument("element type mismatch, want: %s got %s", ShapeUtil::HumanString(expected), ShapeUtil::HumanString(actual)); } if (expected.IsTuple()) { if (ShapeUtil::TupleElementCount(expected) != ShapeUtil::TupleElementCount(actual)) { return InvalidArgument( "want tuple element count: %d got tuple element count: %d", ShapeUtil::TupleElementCount(expected), ShapeUtil::TupleElementCount(actual)); } for (int i = 0; i < expected.tuple_shapes_size(); ++i) { absl::Status result = EqualShapes(expected.tuple_shapes(i), actual.tuple_shapes(i)); if (!result.ok()) { return AppendStatus(result, StrCat("mismatch in tuple index", i)); } } } else if (expected.IsArray()) { if (expected.rank() != actual.rank()) { return InvalidArgument("want rank of %s got rank of %s", ShapeUtil::HumanString(expected), ShapeUtil::HumanString(actual)); } if (expected.element_type() != actual.element_type()) { return InvalidArgument("mismatch in primitive type %s vs %s", PrimitiveType_Name(expected.element_type()), PrimitiveType_Name(actual.element_type())); } if (expected.dimensions_size() != actual.dimensions_size()) { return InvalidArgument("want dimensions_size %d got dimensions_size %d", expected.dimensions_size(), actual.dimensions_size()); } for (int i = 0; i < expected.dimensions_size(); ++i) { if (expected.dimensions(i) != actual.dimensions(i)) { return InvalidArgument( "mismatch in dimension #%d expected: %s actual: %s", i, ShapeUtil::HumanString(expected), ShapeUtil::HumanString(actual)); } } } return absl::OkStatus(); } absl::Status EqualDynamicShapesAndDimensions(const LiteralSlice& expected, const LiteralSlice& actual) { TF_RETURN_IF_ERROR(EqualShapes(expected.shape(), actual.shape())); return ShapeUtil::ForEachSubshapeWithStatus( expected.shape(), [&expected, &actual](const Shape& expected_shape, const ShapeIndex& index) -> absl::Status { auto actual_shape = ShapeUtil::GetSubshape(actual.shape(), index); for (int i = 0; i < expected_shape.dimensions().size(); ++i) { if (!expected_shape.is_dynamic_dimension(i) && !actual_shape.is_dynamic_dimension(i)) { continue; } if (expected_shape.is_dynamic_dimension(i) && !actual_shape.is_dynamic_dimension(i)) { return InvalidArgument( "mismatch at dimension %d. the expected shape %s is dynamic " "while " "the actual shape %s is not.", i, ShapeUtil::HumanString(expected.shape()), ShapeUtil::HumanString(actual.shape())); } if (!expected_shape.is_dynamic_dimension(i) && actual_shape.is_dynamic_dimension(i)) { return InvalidArgument( "mismatch at dimension %d. the expected shape %s is not " "dynamic " "while the actual shape %s is dynamic.", i, ShapeUtil::HumanString(expected.shape()), ShapeUtil::HumanString(actual.shape())); } int64_t expected_dynamic_size = expected.GetDynamicSize(i, index); int64_t actual_dynamic_size = actual.GetDynamicSize(i, index); if (expected_dynamic_size != actual_dynamic_size) { return InvalidArgument( "mismatch at dimension %d. The expected dynamic size does not " "match " "the actual dynamic size. %d vs. %d", i, expected_dynamic_size, actual_dynamic_size); } } return absl::OkStatus(); }); } namespace { absl::Status EmitLiteralsInErrorMessage(const absl::Status& result, const LiteralSlice& expected, const LiteralSlice& actual) { if (result.ok()) { return result; } return InvalidArgument("%s\n\nExpected literal:\n%s\n\nActual literal:\n%s", result.message(), ToStringTruncated(expected), ToStringTruncated(actual)); } } absl::Status Equal(const LiteralSlice& expected, const LiteralSlice& actual) { if (VLOG_IS_ON(1)) { LOG(INFO) << "expected:"; XLA_LOG_LINES(INFO, expected.ToString()); LOG(INFO) << "actual:"; XLA_LOG_LINES(INFO, actual.ToString()); } absl::Status result = EqualHelper(expected, actual, {}, nullptr); return EmitLiteralsInErrorMessage(result, expected, actual); } absl::Status Near(const LiteralSlice& expected, const LiteralSlice& actual, const ErrorSpec& error, std::optional<bool> detailed_message, const MiscompareCallback& miscompare_callback) { if (VLOG_IS_ON(1)) { LOG(INFO) << "Expected literal:"; XLA_LOG_LINES(INFO, expected.ToString()); LOG(INFO) << "Actual literal:"; XLA_LOG_LINES(INFO, actual.ToString()); } absl::Status result = NearHelper(expected, actual, {}, error, detailed_message, miscompare_callback); return EmitLiteralsInErrorMessage(result, expected, actual); } std::string ToStringTruncated(const LiteralSlice& literal) { return RecursiveElementCount(literal.shape()) < 1000 ? literal.ToString() : "[TRUNCATED, Literal with more than 1000 values]"; } } }
#include "xla/literal_comparison.h" #include <gtest/gtest.h> #include "xla/error_spec.h" #include "xla/literal_util.h" #include "xla/test_helpers.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/ml_dtypes.h" namespace xla { namespace { template <typename T> class LiteralComparisonTest : public ::testing::Test {}; using TestedTypes = ::testing::Types<tsl::float8_e3m4, tsl::float8_e4m3, tsl::float8_e4m3fn, tsl::float8_e4m3b11fnuz, tsl::float8_e5m2>; TYPED_TEST_SUITE(LiteralComparisonTest, TestedTypes); TYPED_TEST(LiteralComparisonTest, CompareNear_Equal) { auto actual = LiteralUtil::CreateR0<TypeParam>(TypeParam(8.0)); auto expected = LiteralUtil::CreateR0<TypeParam>(TypeParam(8.0)); TF_EXPECT_OK(literal_comparison::Near(expected, actual, ErrorSpec(0.0, 0.0), false, nullptr)); } TYPED_TEST(LiteralComparisonTest, CompareNear_NotEqual_1ulp) { PrimitiveType type = primitive_util::NativeToPrimitiveType<TypeParam>(); auto actual = LiteralUtil::CreateR0<TypeParam>(TypeParam(8.0)); float expV = 9.0; if (type == F8E5M2) expV = 10.0; else if (type == F8E3M4) expV = 8.5; auto expected = LiteralUtil::CreateR0<TypeParam>(TypeParam{expV}); auto error_spec = ErrorSpec(0.0, 0.0); EXPECT_IS_NOT_OK(literal_comparison::Near(expected, actual, error_spec, false, nullptr)); error_spec.low_precision_fp_error_spec.type = type; error_spec.low_precision_fp_error_spec.within_n_values = 1; EXPECT_IS_OK(literal_comparison::Near(expected, actual, error_spec, false, nullptr)); } TYPED_TEST(LiteralComparisonTest, CompareNear_NotEqual_4ulps) { PrimitiveType type = primitive_util::NativeToPrimitiveType<TypeParam>(); auto actual = LiteralUtil::CreateR0<TypeParam>(TypeParam(8.0)); float expV = 12.0; if (type == F8E5M2) expV = 14.0; else if (type == F8E3M4) expV = 10.0; auto expected = LiteralUtil::CreateR0<TypeParam>(TypeParam{expV}); auto error_spec = ErrorSpec(0.0, 0.0); error_spec.low_precision_fp_error_spec.type = type; error_spec.low_precision_fp_error_spec.within_n_values = 1; EXPECT_IS_NOT_OK(literal_comparison::Near(expected, actual, error_spec, false, nullptr)); error_spec.low_precision_fp_error_spec.type = type; error_spec.low_precision_fp_error_spec.within_n_values = 4; EXPECT_IS_OK(literal_comparison::Near(expected, actual, error_spec, false, nullptr)); } TYPED_TEST(LiteralComparisonTest, FloatUsingCompareNear_NotEqual_4ulps) { PrimitiveType type = primitive_util::NativeToPrimitiveType<TypeParam>(); auto actual = LiteralUtil::CreateR0<float>(8.0); float expV = 12.1; if (type == F8E5M2) expV = 13.0; else if (type == F8E3M4) expV = 10.125; auto expected = LiteralUtil::CreateR0<float>(expV); auto error_spec = ErrorSpec(0.0, 0.0); error_spec.low_precision_fp_error_spec.type = type; error_spec.low_precision_fp_error_spec.within_n_values = 1; EXPECT_IS_NOT_OK(literal_comparison::Near(expected, actual, error_spec, false, nullptr)); error_spec.low_precision_fp_error_spec.type = type; error_spec.low_precision_fp_error_spec.within_n_values = 4; EXPECT_IS_OK(literal_comparison::Near(expected, actual, error_spec, false, nullptr)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/literal_comparison.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/literal_comparison_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
de45acd3-74d9-4eaa-9c40-ea4acfaf2a07
cpp
tensorflow/tensorflow
tuple_points_to_analysis
third_party/xla/xla/service/tuple_points_to_analysis.cc
third_party/xla/xla/service/tuple_points_to_analysis_test.cc
#include "xla/service/tuple_points_to_analysis.h" #include <memory> #include <ostream> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/map_util.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/shape_util.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { std::string BufferAlias::ToString() const { return absl::StrCat("BufferAlias(", instruction_->name(), "[", absl::StrJoin(index_, ","), "])"); } std::ostream& operator<<(std::ostream& out, const BufferAlias& buffer_alias) { out << buffer_alias.ToString(); return out; } bool PointsToSet::IsAmbiguous() const { bool ambiguous = false; ForEachElement( [&ambiguous](const ShapeIndex& , const BufferList& points_to) { ambiguous |= points_to.size() > 1; }); return ambiguous; } bool PointsToSet::IsDistinct() const { bool distinct = true; absl::flat_hash_set<const LogicalBuffer*> all_points_to; ForEachElement([&](const ShapeIndex& , const BufferList& points_to) { for (auto& buffer : points_to) { if (all_points_to.contains(buffer)) { distinct = false; } all_points_to.insert(buffer); } }); return distinct; } size_t PointsToSet::size() const { return CreateFlattenedSet().size(); } PointsToSet::BufferSet PointsToSet::CreateFlattenedSet() const { BufferSet flat_set; ForEachElement( [&flat_set](const ShapeIndex& , const BufferList& buffers) { flat_set.insert(buffers.begin(), buffers.end()); }); return flat_set; } bool PointsToSet::ContainsBuffer(const LogicalBuffer& buffer) const { bool found = false; ForEachElement([&found, &buffer](const ShapeIndex& , const BufferList& pointed_to_buffers) { if (!found && absl::c_linear_search(pointed_to_buffers, &buffer)) { found = true; } }); return found; } bool PointsToSet::ContainsBufferAtIndex(const LogicalBuffer& buffer, const ShapeIndex& index) const { const auto& pointed_to_buffers = element(index); return absl::c_linear_search(pointed_to_buffers, &buffer); } void PointsToSet::AddPointedToBuffer(const LogicalBuffer& buffer, const ShapeIndex& index) { if (ContainsBufferAtIndex(buffer, index)) { return; } mutable_element(index)->push_back(&buffer); } const PointsToSet::SourceSet& PointsToSet::tuple_sources( const ShapeIndex& index) const { return tree_.element(index).tuple_sources; } void PointsToSet::add_tuple_source(const ShapeIndex& index, HloInstruction* tuple) { tree_.mutable_element(index)->tuple_sources.insert(tuple); } namespace { void GatherFusionInstructions( HloInstruction* instruction, std::vector<HloInstruction*>* fusion_instructions) { CHECK_EQ(HloOpcode::kFusion, instruction->opcode()); for (auto* fused : instruction->fused_instructions()) { if (fused->opcode() == HloOpcode::kFusion) { GatherFusionInstructions(fused, fusion_instructions); } } fusion_instructions->push_back(instruction); } } absl::StatusOr<std::unique_ptr<TuplePointsToAnalysis>> TuplePointsToAnalysis::Run(const HloModule* module) { auto logical_buffer_analysis = LogicalBufferAnalysis::Run(module); std::unique_ptr<TuplePointsToAnalysis> analysis(new TuplePointsToAnalysis( module, std::move(logical_buffer_analysis).value())); TF_RETURN_IF_ERROR(analysis->Analyze()); return std::move(analysis); } absl::Status TuplePointsToAnalysis::Analyze() { per_instruction_.clear(); per_instruction_.reserve(module_->instruction_count()); logical_buffer_aliases_.clear(); logical_buffer_aliases_.resize( logical_buffer_analysis_->num_logical_buffers()); std::vector<HloInstruction*> fusion_instructions; for (auto* computation : module_->MakeNonfusionComputations()) { TF_RETURN_IF_ERROR(computation->Accept(this)); TF_RETURN_IF_ERROR( PopulateDefinedBuffersAndAliases(computation->instructions())); for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kFusion) { GatherFusionInstructions(instruction, &fusion_instructions); } } } for (auto* instruction : fusion_instructions) { TF_RETURN_IF_ERROR(instruction->fused_expression_root()->Accept(this)); TF_RETURN_IF_ERROR( PopulateDefinedBuffersAndAliases(instruction->fused_instructions())); } XLA_VLOG_LINES(3, ToString()); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::PopulateDefinedBuffersAndAliases( const decltype(std::declval<HloComputation>() .instructions())& instructions) { for (auto* instruction : instructions) { PerInstruction* pi = PerInst(instruction); TF_RETURN_IF_ERROR(GatherBuffersDefinedByInstruction( instruction, &pi->instruction_defined_buffers)); const PointsToSet& points_to_set = GetPointsToSet(instruction); points_to_set.ForEachElement( [this, &instruction]( const ShapeIndex& index, const PointsToSet::BufferList& pointed_to_buffers) { for (const LogicalBuffer* buffer : pointed_to_buffers) { logical_buffer_aliases_[buffer->id()].emplace_back(instruction, index); } }); } return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::DefaultAction( HloInstruction* hlo_instruction) { PointsToSet& points_to_set = CreateEmptyPointsToSet(hlo_instruction); points_to_set.ForEachMutableElement( [this, hlo_instruction](const ShapeIndex& index, PointsToSet::BufferList* buffers) { buffers->push_back( &logical_buffer_analysis_->GetBuffer(hlo_instruction, index)); }); if (hlo_instruction->shape().IsTuple()) { points_to_set.add_tuple_source({}, hlo_instruction); } return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleGetTupleElement( HloInstruction* get_tuple_element) { int64_t element_index = get_tuple_element->tuple_index(); PointsToSet& points_to_set = CreateEmptyPointsToSet(get_tuple_element); const PointsToSet& operand_points_to_set = *PerInst(get_tuple_element->operand(0))->points_to_set; points_to_set.ForEachMutableElement( [&](const ShapeIndex& target_index, PointsToSet::BufferList* points_to) { ShapeIndex src_index; src_index.push_back(element_index); for (auto element : target_index) { src_index.push_back(element); } *points_to = operand_points_to_set.element(src_index); for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCopy(HloInstruction* copy) { PointsToSet& points_to_set = CreateCopiedPointsToSet(copy, copy->operand(0)); points_to_set.mutable_element({})->clear(); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(copy, {}), {}); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleBitcast(HloInstruction* bitcast) { CreateCopiedPointsToSet(bitcast, bitcast->operand(0)); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleDomain(HloInstruction* domain) { CreateCopiedPointsToSet(domain, domain->operand(0)); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAddDependency( HloInstruction* add_dependency) { CreateCopiedPointsToSet(add_dependency, add_dependency->operand(0)); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleRecvDone(HloInstruction* recv_done) { PointsToSet& points_to_set = CreateEmptyPointsToSet(recv_done); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(recv_done, {}), {}); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(recv_done, {1}), {1}); const PointsToSet& operand_points_to_set = GetPointsToSet(recv_done->operand(0)); points_to_set.ForEachMutableElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& index, PointsToSet::BufferList* buffers) { if (index.empty() || index[0] != 0) { return; } *buffers = operand_points_to_set.element(index); for (auto& tuple_source : operand_points_to_set.tuple_sources(index)) { points_to_set.add_tuple_source(index, tuple_source); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAsyncStart( HloInstruction* async_start) { PointsToSet& points_to_set = CreateEmptyPointsToSet(async_start); points_to_set.ForEachMutableElement( [&](const ShapeIndex& target_index, PointsToSet::BufferList* buffers) { if (target_index.size() >= 2 && target_index.front() == 0) { const PointsToSet& operand_points_to_set = GetPointsToSet(async_start->operand(target_index[1])); ShapeIndex source_index(target_index.begin() + 2, target_index.end()); *buffers = operand_points_to_set.element(source_index); for (HloInstruction* tuple : operand_points_to_set.tuple_sources(source_index)) { points_to_set.add_tuple_source(target_index, tuple); } } else { buffers->push_back( &logical_buffer_analysis_->GetBuffer(async_start, target_index)); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAsyncUpdate( HloInstruction* async_update) { PointsToSet& points_to_set = CreateEmptyPointsToSet(async_update); const PointsToSet& operand_points_to_set = GetPointsToSet(async_update->operand(0)); CHECK_EQ(async_update->shape(), async_update->operand(0)->shape()); points_to_set.ForEachMutableElement([&](const ShapeIndex& index, PointsToSet::BufferList* buffers) { *buffers = operand_points_to_set.element(index); for (HloInstruction* tuple : operand_points_to_set.tuple_sources(index)) { points_to_set.add_tuple_source(index, tuple); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleAsyncDone( HloInstruction* async_done) { PointsToSet& points_to_set = CreateEmptyPointsToSet(async_done); const PointsToSet& operand_points_to_set = GetPointsToSet(async_done->operand(0)); operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { if (!src_index.empty() && src_index.front() == 1) { const ShapeIndex target_index(src_index.begin() + 1, src_index.end()); *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCopyStart( HloInstruction* copy_start) { PointsToSet& points_to_set = CreateEmptyPointsToSet(copy_start); const PointsToSet& operand_points_to_set = GetPointsToSet(copy_start->operand(0)); points_to_set.ForEachMutableElement( [&](const ShapeIndex& target_index, PointsToSet::BufferList* buffers) { if (target_index == ShapeIndex({1})) { *buffers = operand_points_to_set.element({}); } else { buffers->push_back( &logical_buffer_analysis_->GetBuffer(copy_start, target_index)); } }); for (HloInstruction* tuple : operand_points_to_set.tuple_sources({})) { points_to_set.add_tuple_source({1}, tuple); } return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCopyDone(HloInstruction* copy_done) { PointsToSet& points_to_set = CreateEmptyPointsToSet(copy_done); const PointsToSet& operand_points_to_set = GetPointsToSet(copy_done->operand(0)); operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { if (src_index == ShapeIndex({0})) { const ShapeIndex target_index = {}; *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleSend(HloInstruction* send) { PointsToSet& points_to_set = CreateEmptyPointsToSet(send); auto top_buffer = points_to_set.mutable_element(ShapeIndex({})); top_buffer->push_back( &logical_buffer_analysis_->GetBuffer(send, ShapeIndex({}))); points_to_set.add_tuple_source({}, send); auto context_buffer = points_to_set.mutable_element(ShapeIndex({1})); context_buffer->push_back( &logical_buffer_analysis_->GetBuffer(send, ShapeIndex({1}))); auto token_buffer = points_to_set.mutable_element(ShapeIndex({2})); token_buffer->push_back( &logical_buffer_analysis_->GetBuffer(send, ShapeIndex({2}))); const PointsToSet& operand_points_to_set = GetPointsToSet(send->operand(0)); operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { ShapeIndex target_index({0}); for (auto element : src_index) { target_index.push_back(element); } *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } }); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleTuple(HloInstruction* tuple) { absl::Span<HloInstruction* const> operands(tuple->operands()); PointsToSet& points_to_set = CreateEmptyPointsToSet(tuple); points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(tuple, {}), {}); for (int64_t i = 0; i < operands.size(); ++i) { const PointsToSet& operand_points_to_set = *PerInst(operands[i])->points_to_set; operand_points_to_set.ForEachElement( [&points_to_set, &operand_points_to_set, i]( const ShapeIndex& src_index, const PointsToSet::BufferList& points_to) { ShapeIndex target_index; target_index.push_back(i); for (auto element : src_index) { target_index.push_back(element); } *points_to_set.mutable_element(target_index) = points_to; for (HloInstruction* tuple : operand_points_to_set.tuple_sources(src_index)) { points_to_set.add_tuple_source(target_index, tuple); } }); } points_to_set.add_tuple_source({}, tuple); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleCustomCall( HloInstruction* custom_call) { auto ccall = Cast<HloCustomCallInstruction>(custom_call); PointsToSet& points_to_set = CreateEmptyPointsToSet(custom_call); absl::flat_hash_map<ShapeIndex, std::pair<int64_t, ShapeIndex>> aliased_outputs; for (const auto& pair : ccall->output_to_operand_aliasing()) { aliased_outputs.emplace(pair.first, pair.second); } points_to_set.ForEachMutableElement([&](const ShapeIndex& index, PointsToSet::BufferList* buffers) { auto it = aliased_outputs.find(index); if (it == aliased_outputs.end() || !alias_buffer_across_dataflow_) { points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(custom_call, index), index); } else { const PointsToSet& input_set = *PerInst(ccall->operand(it->second.first))->points_to_set; for (const LogicalBuffer* input_buffer : input_set.element(it->second.second)) { points_to_set.AddPointedToBuffer(*input_buffer, index); } for (HloInstruction* tuple : input_set.tuple_sources(it->second.second)) { points_to_set.add_tuple_source(index, tuple); } } }); points_to_set.add_tuple_source({}, custom_call); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleFusion(HloInstruction* fusion) { auto cfusion = Cast<HloFusionInstruction>(fusion); PointsToSet& points_to_set = CreateEmptyPointsToSet(fusion); absl::flat_hash_map<ShapeIndex, std::pair<int64_t, ShapeIndex>> aliased_outputs; for (const auto& pair : cfusion->output_to_operand_aliasing()) { aliased_outputs.emplace(pair.first, pair.second); } points_to_set.ForEachMutableElement([&](const ShapeIndex& index, PointsToSet::BufferList* buffers) { auto it = aliased_outputs.find(index); if (it == aliased_outputs.end()) { points_to_set.AddPointedToBuffer( logical_buffer_analysis_->GetBuffer(fusion, index), index); } else { const PointsToSet& input_set = *PerInst(cfusion->operand(it->second.first))->points_to_set; for (const LogicalBuffer* input_buffer : input_set.element(it->second.second)) { points_to_set.AddPointedToBuffer(*input_buffer, index); } for (HloInstruction* tuple : input_set.tuple_sources(it->second.second)) { points_to_set.add_tuple_source(index, tuple); } } }); points_to_set.add_tuple_source({}, fusion); return absl::OkStatus(); } absl::Status TuplePointsToAnalysis::HandleOptimizationBarrier( HloInstruction* barrier) { CreateCopiedPointsToSet(barrier, barrier->operand(0)); return absl::OkStatus(); } const PointsToSet& TuplePointsToAnalysis::GetPointsToSet( const HloInstruction* hlo_instruction) const { return *PerInst(hlo_instruction)->points_to_set; } PointsToSet& TuplePointsToAnalysis::CreateEmptyPointsToSet( const HloInstruction* instruction) { PerInstruction* pi = PerInst(instruction); CHECK(pi->points_to_set == nullptr) << "instruction should not have been present in the map."; auto set = std::make_unique<PointsToSet>(&instruction->shape()); pi->points_to_set = std::move(set); return *pi->points_to_set; } bool TuplePointsToAnalysis::InstructionDefinesBufferAtIndex( const HloInstruction* instruction, const ShapeIndex& index) const { const auto& buffers = GetPointsToSet(instruction).element(index); return (buffers.size() == 1 && buffers[0]->instruction() == instruction); } absl::Status TuplePointsToAnalysis::VerifyBuffer( const LogicalBuffer& buffer) const { if (!InstructionDefinesBufferAtIndex(buffer.instruction(), buffer.index())) { return FailedPrecondition( "LogicalBuffer %s is ill-defined: instruction %s does not define a " "buffer at that index", buffer.ToString(), buffer.instruction()->name()); } if (buffer.id() < 0 || buffer.id() >= logical_buffer_analysis_->num_logical_buffers()) { return FailedPrecondition("LogicalBuffer %s is ill-defined: invalid id %d", buffer.ToString(), buffer.id()); } if (GetBuffer(buffer.id()).instruction() != buffer.instruction() || GetBuffer(buffer.id()).index() != buffer.index()) { return FailedPrecondition( "LogicalBuffer %s is ill-defined: buffer with same id differs: %s", buffer.ToString(), GetBuffer(buffer.id()).ToString()); } return absl::OkStatus(); } const LogicalBuffer& TuplePointsToAnalysis::GetBuffer( LogicalBuffer::Id id) const { CHECK_GE(id, 0); CHECK_LT(id, logical_buffer_analysis_->num_logical_buffers()); return logical_buffer_analysis_->GetBuffer(id); } absl::StatusOr<const LogicalBuffer*> TuplePointsToAnalysis::GetBufferDefinedAt( const HloInstruction* instruction, const ShapeIndex& index) const { const auto& buffers = GetPointsToSet(instruction).element(index); if (buffers.size() != 1 || buffers[0]->instruction() != instruction) { return FailedPrecondition( "instruction %s does not define buffer at index {%s}", instruction->name(), absl::StrJoin(index, ",")); } return buffers[0]; } const TuplePointsToAnalysis::BufferAliasVector& TuplePointsToAnalysis::GetBufferAliases(const LogicalBuffer& buffer) const { return logical_buffer_aliases_[buffer.id()]; } const TuplePointsToAnalysis::BufferDefinitionVector& TuplePointsToAnalysis::GetBuffersDefinedByInstruction( const HloInstruction* instruction) const { return PerInst(instruction)->instruction_defined_buffers; } absl::Status TuplePointsToAnalysis::GatherBuffersDefinedByInstruction( const HloInstruction* instruction, TuplePointsToAnalysis::BufferDefinitionVector* buffers) { GetPointsToSet(instruction) .ForEachElement([buffers, instruction]( const ShapeIndex& index, const PointsToSet::BufferList& source_buffers) { CHECK(!source_buffers.empty()); if (source_buffers.size() == 1 && source_buffers[0]->instruction() == instruction) { DCHECK(source_buffers[0]->index() == index); buffers->push_back(source_buffers[0]); } else { for (const LogicalBuffer* source_buffer : source_buffers) { DCHECK(source_buffer->instruction() != instruction); } } }); return absl::OkStatus(); } PointsToSet& TuplePointsToAnalysis::CreateCopiedPointsToSet( const HloInstruction* instruction, const HloInstruction* src) { PointsToSet& dst_points_to_set = CreateEmptyPointsToSet(instruction); const PointsToSet& src_points_to_set = GetPointsToSet(src); dst_points_to_set.ForEachMutableElement( [&dst_points_to_set, &src_points_to_set]( const ShapeIndex& index, PointsToSet::BufferList* buffers) { *buffers = src_points_to_set.element(index); for (auto& tuple_source : src_points_to_set.tuple_sources(index)) { dst_points_to_set.add_tuple_source(index, tuple_source); } }); return *PerInst(instruction)->points_to_set; } std::string TuplePointsToAnalysis::ToString() const { std::string output = absl::StrFormat("TuplePointsToSet for module %s:\n", module_->name()); for (const auto* computation : module_->MakeNonfusionComputations()) { const char* entry = computation == module_->entry_computation() ? "entry " : ""; absl::StrAppend(&output, entry, "computation ", computation->name(), ":\n"); for (const HloInstruction* instruction : computation->MakeInstructionPostOrder()) { InstructionToString(instruction, &output); if (instruction->opcode() == HloOpcode::kFusion) { for (auto* fused : instruction->fused_instructions()) { InstructionToString(fused, &output); } } } } absl::StrAppend(&output, "LogicalBuffers:\n"); for (const auto& b : logical_buffer_analysis_->logical_buffers()) { absl::StrAppend(&output, " buffer ", b->ToString(), ":\n"); for (const BufferAlias& alias : logical_buffer_aliases_[b->id()]) { absl::StrAppend(&output, " alias ", alias.ToString(), "\n"); } } return output; } void TuplePointsToAnalysis::InstructionToString( const HloInstruction* instruction, std::string* output) const { const std::string prefix = instruction->IsFused() ? " " : ""; absl::StrAppend(output, prefix, " instruction ", instruction->ToShortString(), ":\n"); const PointsToSet& points_to_set = GetPointsToSet(instruction); points_to_set.ForEachElement( [&prefix, &output](const ShapeIndex& index, const PointsToSet::BufferList& points_to) { absl::StrAppend( output, prefix, " {", absl::StrJoin(index, ","), "}: ", absl::StrJoin(points_to, ", ", [](std::string* out, const LogicalBuffer* source) { out->append(source->ToString()); }), "\n"); }); } bool TuplePointsToAnalysis::DoesNotUseOperandBuffer( const HloInstruction* operand, const ShapeIndex& index, const HloInstruction* user) const { CHECK(user->IsUserOf(operand)) << "user: " << user->ToString() << " operand: " << operand->ToString(); if (user->opcode() == HloOpcode::kGetTupleElement && !index.empty()) { return true; } else if (user->IsLoopFusion()) { auto it = absl::c_find_if( user->fused_parameters(), [&](HloInstruction* fused_param) { return user->operand(fused_param->parameter_number()) == operand; }); CHECK(it != user->fused_parameters().end()); const LogicalBuffer* buffer = GetBufferDefinedAt(*it, index).value(); for (const BufferAlias& alias : GetBufferAliases(*buffer)) { for (HloInstruction* alias_user : alias.instruction()->users()) { if (DoesNotUseOperandBuffer(alias.instruction(), alias.index(), alias_user)) { continue; } return false; } } return true; } return false; } std::vector<std::pair<HloInstruction*, int64_t>> TuplePointsToAnalysis::GetAllUsesOfInstructionAtIndex( HloInstruction* instruction, const ShapeIndex& index) const { std::vector<std::pair<HloInstruction*, int64_t>> uses; const PointsToSet::BufferList& points_to = GetPointsToSet(instruction).element(index); for (const LogicalBuffer* buffer : points_to) { for (const BufferAlias& alias : GetBufferAliases(*buffer)) { for (HloInstruction* alias_user : alias.instruction()->users()) { if (DoesNotUseOperandBuffer(alias.instruction(), alias.index(), alias_user)) { continue; } for (int64_t op_idx : alias_user->OperandIndices(alias.instruction())) { uses.emplace_back(alias_user, op_idx); } } } } return uses; } bool TuplePointsToAnalysis::HasUniqueFusedUseOfOperandAt( HloInstruction* operand, const ShapeIndex& operand_index, HloInstruction* fusion, const int64_t use_operand_index) const { CHECK_EQ(HloOpcode::kFusion, fusion->opcode()); if (fusion->OperandIndices(operand).size() > 1) { return false; } const auto& fused_params = fusion->fused_parameters(); auto fused_param_it = absl::c_find_if(fused_params, [&](HloInstruction* fused_param) { return fusion->operand(fused_param->parameter_number()) == operand; }); if (fused_param_it == fused_params.end()) { return false; } auto* fused_param = *fused_param_it; auto fused_param_uses = GetAllUsesOfInstructionAtIndex(fused_param, operand_index); return fused_param_uses.size() == 1 && fused_param_uses[0].first == fusion->fused_expression_root() && fused_param_uses[0].second == use_operand_index; } }
#include "xla/service/tuple_points_to_analysis.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/logical_buffer.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using ::testing::UnorderedElementsAre; using ::testing::UnorderedElementsAreArray; class TuplePointsToAnalysisTest : public HloTestBase { protected: void BuildModuleAndRunAnalysis(std::unique_ptr<HloComputation> computation) { BuildModule(std::move(computation)); RunAnalysis(); } void BuildModule(std::unique_ptr<HloComputation> computation) { module_ = CreateNewVerifiedModule(); module_->AddEntryComputation(std::move(computation)); } void RunAnalysis() { CHECK_NOTNULL(module_.get()); points_to_analysis_ = TuplePointsToAnalysis::Run(module_.get()).value(); } const LogicalBuffer* GetBuffer(const HloInstruction* instruction, const ShapeIndex& index) { const auto& pointed_to = points_to_analysis_->GetPointsToSet(instruction).element(index); CHECK_EQ(1, pointed_to.size()); CHECK_EQ(instruction, pointed_to[0]->instruction()); CHECK(index == pointed_to[0]->index()); return pointed_to[0]; } void ExpectHasBuffers(const PointsToSet::BufferList& points_to_set, absl::Span<const LogicalBuffer* const> buffers) { std::vector<const LogicalBuffer*> vec(buffers.begin(), buffers.end()); EXPECT_THAT(points_to_set, UnorderedElementsAreArray(vec)); } void ExpectHasTopLevelBuffers( const PointsToSet::BufferList& points_to_set, absl::Span<HloInstruction* const> instructions) { PointsToSet::BufferList buffers; for (auto instruction : instructions) { buffers.push_back(GetBuffer(instruction, {})); } ExpectHasBuffers(points_to_set, buffers); } void ExpectHasTopLevelBuffers( const PointsToSet::BufferSet& points_to_set, absl::Span<HloInstruction* const> instructions) { ExpectHasTopLevelBuffers( PointsToSet::BufferList(points_to_set.begin(), points_to_set.end()), instructions); } void ExpectHasBufferAliases( const HloInstruction* instruction, const ShapeIndex& index, absl::Span<const std::pair<HloInstruction*, ShapeIndex>> expected) { const LogicalBuffer* buffer = points_to_analysis_->GetBufferDefinedAt(instruction, index).value(); std::vector<BufferAlias> expected_aliases; expected_aliases.reserve(expected.size()); for (auto& pair : expected) { expected_aliases.push_back(BufferAlias(pair.first, pair.second)); } EXPECT_THAT(points_to_analysis_->GetBufferAliases(*buffer), UnorderedElementsAreArray(expected_aliases)); } std::unique_ptr<HloModule> module_; std::unique_ptr<TuplePointsToAnalysis> points_to_analysis_; }; TEST_F(TuplePointsToAnalysisTest, SimpleTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_EQ(1, points_to_analysis_->GetPointsToSet(constant1).size()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant1).element({}), {constant1}); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(constant1).tuple_sources({}).empty()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(tuple).IsDistinct()); EXPECT_EQ(1, points_to_analysis_->GetPointsToSet(constant2).size()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant2).element({}), {constant2}); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(constant2).tuple_sources({}).empty()); EXPECT_EQ(3, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({}), UnorderedElementsAre(tuple)); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({}), {tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({1}), {constant2}); const PointsToSet& tuple_points_to_set = points_to_analysis_->GetPointsToSet(tuple); EXPECT_TRUE(tuple_points_to_set.ContainsBufferAtIndex( *GetBuffer(constant1, {}), {0})); EXPECT_TRUE(tuple_points_to_set.ContainsBufferAtIndex( *GetBuffer(constant2, {}), {1})); EXPECT_FALSE(tuple_points_to_set.ContainsBufferAtIndex( *GetBuffer(constant2, {}), {0})); EXPECT_TRUE(tuple_points_to_set.ContainsBuffer(*GetBuffer(constant1, {}))); EXPECT_TRUE(tuple_points_to_set.ContainsBuffer(*GetBuffer(constant2, {}))); } TEST_F(TuplePointsToAnalysisTest, NestedTuple) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto inner_tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({inner_tuple, constant3})); BuildModuleAndRunAnalysis(builder.Build()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant1).element({}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant2).element({}), {constant2}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(constant3).element({}), {constant3}); EXPECT_EQ(3, points_to_analysis_->GetPointsToSet(inner_tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(inner_tuple).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(inner_tuple).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(inner_tuple).CreateFlattenedSet(), {constant1, constant2, inner_tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(inner_tuple).element({}), {inner_tuple}); EXPECT_THAT( points_to_analysis_->GetPointsToSet(inner_tuple).tuple_sources({}), UnorderedElementsAre(inner_tuple)); EXPECT_EQ(5, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, constant3, inner_tuple, tuple}); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({}), UnorderedElementsAre(tuple)); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({0}), UnorderedElementsAre(inner_tuple)); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(tuple).tuple_sources({1}).empty()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0}), {inner_tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0, 0}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0, 1}), {constant2}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({1}), {constant3}); } TEST_F(TuplePointsToAnalysisTest, GetTupleElement) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto inner_tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto constant3 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(3.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({inner_tuple, constant3})); auto get_tuple_element = builder.AddInstruction( HloInstruction::CreateGetTupleElement(inner_tuple->shape(), tuple, 0)); BuildModuleAndRunAnalysis(builder.Build()); auto& points_to_set = points_to_analysis_->GetPointsToSet(get_tuple_element); EXPECT_EQ(3, points_to_set.size()); EXPECT_FALSE(points_to_set.IsAmbiguous()); EXPECT_TRUE(points_to_set.IsDistinct()); ExpectHasTopLevelBuffers(points_to_set.CreateFlattenedSet(), {constant1, constant2, inner_tuple}); ExpectHasTopLevelBuffers(points_to_set.element({}), {inner_tuple}); EXPECT_THAT(points_to_set.tuple_sources({}), UnorderedElementsAre(inner_tuple)); } TEST_F(TuplePointsToAnalysisTest, AddDependency) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto add_dependency = builder.AddInstruction( HloInstruction::CreateAddDependency(constant, token)); BuildModuleAndRunAnalysis(builder.Build()); auto& points_to_set = points_to_analysis_->GetPointsToSet(add_dependency); EXPECT_EQ(1, points_to_set.size()); EXPECT_FALSE(points_to_set.IsAmbiguous()); EXPECT_TRUE(points_to_set.IsDistinct()); ExpectHasTopLevelBuffers(points_to_set.CreateFlattenedSet(), {constant}); } TEST_F(TuplePointsToAnalysisTest, DuplicatedElement) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant, constant, constant})); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_EQ(2, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({}), {tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant, tuple}); } TEST_F(TuplePointsToAnalysisTest, TupleCopy) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto copy = builder.AddInstruction( HloInstruction::CreateUnary(tuple->shape(), HloOpcode::kCopy, tuple)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(copy).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(copy).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(copy).element({}), {copy}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(copy).CreateFlattenedSet(), {constant1, constant2, copy}); } TEST_F(TuplePointsToAnalysisTest, CopyStartAndCopyDone) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto copy_start = builder.AddInstruction(HloInstruction::CreateCopyStart( ShapeUtil::MakeTupleShape({constant->shape(), constant->shape(), ShapeUtil::MakeShape(U32, {})}), constant)); auto copy_done = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kCopyDone, copy_start)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(copy_start).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(copy_start).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(copy_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(copy_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(copy_start).element({}), {copy_start}); ExpectHasBufferAliases(copy_start, {0}, {{copy_start, {0}}, {copy_done, {}}}); ExpectHasBufferAliases(constant, {}, {{constant, {}}, {copy_start, {1}}}); } TEST_F(TuplePointsToAnalysisTest, AsyncOps) { std::string hlo_str = R"( HloModule module ENTRY entry { p0 = f32[2,3] parameter(0) async-start = ((f32[2,3]), f32[2,3], u32[]) custom-call-start(p0), custom_call_target="foo" async-update = ((f32[2,3]), f32[2,3], u32[]) custom-call-update(async-start) ROOT async-done = f32[2,3] custom-call-done(async-update) } )"; TF_ASSERT_OK_AND_ASSIGN( module_, ParseAndReturnVerifiedModule(hlo_str, GetModuleConfigForTest())); HloInstruction* param = module_->entry_computation()->parameter_instruction(0); HloInstruction* async_start = FindInstruction(module_.get(), "async-start"); HloInstruction* async_update = FindInstruction(module_.get(), "async-update"); HloInstruction* async_done = FindInstruction(module_.get(), "async-done"); RunAnalysis(); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(async_start).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(async_start).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(async_update).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(async_update).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(async_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(async_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(async_start).element({}), {async_start}); ExpectHasBufferAliases( param, {}, {{param, {}}, {async_start, {0, 0}}, {async_update, {0, 0}}}); ExpectHasBufferAliases( async_start, {1}, {{async_start, {1}}, {async_update, {1}}, {async_done, {}}}); ExpectHasBufferAliases(async_start, {2}, {{async_start, {2}}, {async_update, {2}}}); } TEST_F(TuplePointsToAnalysisTest, SendAndSendDone) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto send = builder.AddInstruction( HloInstruction::CreateSend(constant, token, 0)); auto send_done = builder.AddInstruction(HloInstruction::CreateSendDone(send)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(send).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(send).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(send_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(send_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(send).element({}), {send}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(send).element({0}), {constant}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(send_done).CreateFlattenedSet(), {send_done}); ExpectHasBufferAliases(constant, {}, {{constant, {}}, {send, {0}}}); } TEST_F(TuplePointsToAnalysisTest, RecvAndRecvDone) { auto builder = HloComputation::Builder(TestName()); auto token = builder.AddInstruction(HloInstruction::CreateToken()); auto recv = builder.AddInstruction(HloInstruction::CreateRecv( ShapeUtil::MakeShape(F32, {1, 2, 3}), token, 0)); auto recv_done = builder.AddInstruction(HloInstruction::CreateRecvDone(recv)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(recv).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(recv).IsDistinct()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(recv_done).IsAmbiguous()); EXPECT_TRUE(points_to_analysis_->GetPointsToSet(recv_done).IsDistinct()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(recv).element({}), {recv}); ExpectHasBufferAliases(recv, {0}, {{recv, {0}}, {recv_done, {0}}}); } TEST_F(TuplePointsToAnalysisTest, TupleWithBitcast) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(constant2->shape(), constant2)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant1, bitcast})); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_EQ(1, points_to_analysis_->GetPointsToSet(bitcast).size()); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(bitcast).element({}), {constant2}); EXPECT_TRUE( points_to_analysis_->GetPointsToSet(bitcast).tuple_sources({}).empty()); EXPECT_EQ(3, points_to_analysis_->GetPointsToSet(tuple).size()); EXPECT_FALSE(points_to_analysis_->GetPointsToSet(tuple).IsAmbiguous()); EXPECT_THAT(points_to_analysis_->GetPointsToSet(tuple).tuple_sources({}), UnorderedElementsAre(tuple)); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).CreateFlattenedSet(), {constant1, constant2, tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({}), {tuple}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({0}), {constant1}); ExpectHasTopLevelBuffers( points_to_analysis_->GetPointsToSet(tuple).element({1}), {constant2}); } TEST_F(TuplePointsToAnalysisTest, PointsToTupleConstantElements) { auto builder = HloComputation::Builder(TestName()); Literal elements[] = {LiteralUtil::CreateR2<float>({{1.0}, {2.0}}), LiteralUtil::CreateR1<float>({2.0, 42})}; auto tuple_constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::MakeTuple({&elements[0], &elements[1]}))); auto copy = builder.AddInstruction(HloInstruction::CreateUnary( tuple_constant->shape(), HloOpcode::kCopy, tuple_constant)); BuildModuleAndRunAnalysis(builder.Build()); auto& points_to_set = points_to_analysis_->GetPointsToSet(copy); ExpectHasBuffers(points_to_set.element({}), {GetBuffer(copy, {})}); ExpectHasBuffers(points_to_set.element({0}), {GetBuffer(tuple_constant, {0})}); ExpectHasBuffers(points_to_set.element({1}), {GetBuffer(tuple_constant, {1})}); } TEST_F(TuplePointsToAnalysisTest, BufferAliases) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto inner_tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({inner_tuple, constant2})); BuildModuleAndRunAnalysis(builder.Build()); ExpectHasBufferAliases( constant1, {}, {{constant1, {}}, {inner_tuple, {0}}, {tuple, {0, 0}}}); ExpectHasBufferAliases( constant2, {}, {{constant2, {}}, {inner_tuple, {1}}, {tuple, {0, 1}}, {tuple, {1}}}); ExpectHasBufferAliases(inner_tuple, {}, {{inner_tuple, {}}, {tuple, {0}}}); ExpectHasBufferAliases(tuple, {}, {{tuple, {}}}); } TEST_F(TuplePointsToAnalysisTest, DISABLED_CustomCall) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); Shape data_shape = ShapeUtil::MakeShape(F32, {}); auto ccall = builder.AddInstruction(HloInstruction::CreateCustomCall( ShapeUtil::MakeTupleShape({data_shape, data_shape}), {constant}, "TestOp")); Cast<HloCustomCallInstruction>(ccall)->set_output_to_operand_aliasing( {std::pair<ShapeIndex, std::pair<int64_t, ShapeIndex>>{ ShapeIndex{1}, std::pair<int64_t, ShapeIndex>(0, {})}}); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, ccall, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, ccall, 1)); BuildModuleAndRunAnalysis(builder.Build()); ExpectHasBufferAliases(ccall, {0}, {{gte0, {}}, {ccall, {0}}}); ExpectHasBufferAliases(constant, {}, {{constant, {}}, {gte1, {}}, {ccall, {1}}}); } class FusionPointsToAnalysisTest : public TuplePointsToAnalysisTest { protected: void Run(const std::string& hlo_str, int64_t expected_num_users) { TF_ASSERT_OK_AND_ASSIGN(module_, ParseAndReturnVerifiedModule(hlo_str)); auto* fusion = module_->entry_computation()->root_instruction(); auto* tuple_param0 = fusion->operand(0); RunAnalysis(); auto* fusion_param = GetFusionParameterForOperand(fusion, tuple_param0); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fusion_param).element({}), {GetBuffer(fusion_param, {})}); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fusion_param).element({0}), {GetBuffer(fusion_param, {0})}); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fusion_param).element({1}), {GetBuffer(fusion_param, {1})}); auto fused_gte0 = GetUniqueFusionParameterUserAt(fusion_param, 0); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fused_gte0).element({}), {GetBuffer(fusion_param, {0})}); auto fused_gte1 = GetUniqueFusionParameterUserAt(fusion_param, 1); ExpectHasBuffers( points_to_analysis_->GetPointsToSet(fused_gte1).element({}), {GetBuffer(fusion_param, {1})}); ExpectHasBufferAliases(fusion_param, {0}, {{fusion_param, {0}}, {fused_gte0, {}}}); ExpectHasBufferAliases(fusion_param, {1}, {{fusion_param, {1}}, {fused_gte1, {}}}); ExpectNumUsersOfAliases(fusion_param, {0}, expected_num_users); } HloInstruction* GetFusionParameterForOperand(HloInstruction* fusion, const HloInstruction* operand) { const auto& fused_instructions = fusion->fused_instructions(); auto it = absl::c_find_if(fused_instructions, [&](const HloInstruction* fused) { return fused->opcode() == HloOpcode::kParameter && fusion->operand(fused->parameter_number()) == operand; }); CHECK(it != fusion->fused_instructions().end()); return *it; } std::vector<HloInstruction*> GetFusionParameterUsersAt( HloInstruction* fusion_param, int64_t tuple_index) { CHECK(fusion_param->shape().IsTuple()); std::vector<HloInstruction*> users_at_tuple_index; for (auto user : fusion_param->users()) { CHECK_EQ(HloOpcode::kGetTupleElement, user->opcode()); if (user->tuple_index() == tuple_index) { users_at_tuple_index.push_back(user); } } return users_at_tuple_index; } HloInstruction* GetUniqueFusionParameterUserAt(HloInstruction* fusion_param, int64_t tuple_index) { std::vector<HloInstruction*> users = GetFusionParameterUsersAt(fusion_param, tuple_index); CHECK_EQ(1, users.size()); return users[0]; } void ExpectNumUsersOfAliases(const HloInstruction* instruction, const ShapeIndex& index, const int64_t expected_num_users) { const auto* buffer = GetBuffer(instruction, index); int64_t num_users = 0; for (const auto& alias : points_to_analysis_->GetBufferAliases(*buffer)) { for (auto user : alias.instruction()->users()) { if (user->opcode() == HloOpcode::kGetTupleElement && !index.empty()) { continue; } ++num_users; } } EXPECT_EQ(expected_num_users, num_users); } }; TEST_F(FusionPointsToAnalysisTest, FusionParam0OneUser) { std::string hlo_str = R"( HloModule FusionParam0OneUser %fused_computation (param_1.2: (f32[8], f32[3])) -> f32[8] { %param_1.2 = (f32[8]{0}, f32[3]{0}) parameter(0) %get-tuple-element.1 = f32[8]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=0 %get-tuple-element.2 = f32[3]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=1 %constant.3 = f32[3]{0} constant({1, 1, 1}) %add.1 = f32[3]{0} add(f32[3]{0} %get-tuple-element.2, f32[3]{0} %constant.3) %constant.2 = s32[] constant(0) ROOT %dynamic-update-slice.1 = f32[8]{0} dynamic-update-slice(f32[8]{0} %get-tuple-element.1, f32[3]{0} %add.1, s32[] %constant.2) } ENTRY %FusionParam0OneUser (param0: (f32[8], f32[3])) -> f32[8] { %param0 = (f32[8]{0}, f32[3]{0}) parameter(0) ROOT %fusion = f32[8]{0} fusion((f32[8]{0}, f32[3]{0}) %param0), kind=kLoop, calls=%fused_computation } )"; Run(hlo_str, 1); } TEST_F(FusionPointsToAnalysisTest, FusionParam0TwoUsers) { std::string hlo_str = R"( HloModule FusionParam0TwoUsers %fused_computation (param_1.2: (f32[8], f32[3])) -> f32[8] { %param_1.2 = (f32[8]{0}, f32[3]{0}) parameter(0) %get-tuple-element.1 = f32[8]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=0 %get-tuple-element.2 = f32[3]{0} get-tuple-element((f32[8]{0}, f32[3]{0}) %param_1.2), index=1 %constant.3 = f32[3]{0} constant({1, 1, 1}) %add.1 = f32[3]{0} add(f32[3]{0} %get-tuple-element.2, f32[3]{0} %constant.3) %slice = f32[3]{0} slice(f32[8]{0} %get-tuple-element.1), slice={[0:3]} %add.2 = f32[3]{0} add(f32[3]{0} %add.1, f32[3]{0} %slice) %constant.2 = s32[] constant(0) ROOT %dynamic-update-slice.1 = f32[8]{0} dynamic-update-slice(f32[8]{0} %get-tuple-element.1, f32[3]{0} %add.2, s32[] %constant.2) } ENTRY %FusionParam0TwoUsers (param0: (f32[8], f32[3])) -> f32[8] { %param0 = (f32[8]{0}, f32[3]{0}) parameter(0) ROOT %fusion = f32[8]{0} fusion((f32[8]{0}, f32[3]{0}) %param0), kind=kLoop, calls=%fused_computation } )"; Run(hlo_str, 2); } class PointsToAnalysisTestBase : public HloTestBase { protected: void BuildModule(std::unique_ptr<HloComputation> computation) { module_ = CreateNewVerifiedModule(); computation_ = module_->AddEntryComputation(std::move(computation)); } void RunAnalysis() { CHECK_NOTNULL(module_.get()); points_to_analysis_ = TuplePointsToAnalysis::Run(module_.get()).value(); } void BuildModuleAndRunAnalysis(std::unique_ptr<HloComputation> computation) { BuildModule(std::move(computation)); RunAnalysis(); } std::unique_ptr<HloModule> module_; HloComputation* computation_ = nullptr; std::unique_ptr<TuplePointsToAnalysis> points_to_analysis_; }; class DoesNotUseOperandBufferTest : public PointsToAnalysisTestBase {}; TEST_F(DoesNotUseOperandBufferTest, GetTupleElement) { auto builder = HloComputation::Builder(TestName()); Shape elem_shape = ShapeUtil::MakeShape(F32, {8}); auto tuple = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape({elem_shape, elem_shape}), "tuple")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(elem_shape, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(elem_shape, tuple, 1)); builder.AddInstruction( HloInstruction::CreateBinary(elem_shape, HloOpcode::kAdd, gte0, gte1)); BuildModuleAndRunAnalysis(builder.Build()); EXPECT_TRUE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {0}, gte0)); EXPECT_TRUE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {1}, gte1)); EXPECT_FALSE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {}, gte0)); EXPECT_FALSE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {}, gte1)); } TEST_F(DoesNotUseOperandBufferTest, FusedDynamicUpdateSlice) { auto builder = HloComputation::Builder(TestName()); Shape data_shape = ShapeUtil::MakeShape(F32, {8}); auto tuple = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape({data_shape, data_shape}), "tuple")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, tuple, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape, tuple, 1)); auto starts = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(2))); auto update = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({2.f, 2.f, 2.f}))); auto dynamic_update_slice = builder.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( data_shape, gte1, update, {starts})); builder.AddInstruction( HloInstruction::CreateTuple({gte0, dynamic_update_slice})); BuildModule(builder.Build()); auto fusion = computation_->CreateFusionInstruction( {dynamic_update_slice, starts, update, gte1}, HloInstruction::FusionKind::kLoop); RunAnalysis(); EXPECT_TRUE(points_to_analysis_->DoesNotUseOperandBuffer(tuple, {0}, fusion)); EXPECT_FALSE( points_to_analysis_->DoesNotUseOperandBuffer(tuple, {1}, fusion)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_points_to_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/tuple_points_to_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8ff0df2a-07c8-4646-97be-0b6b24b801e6
cpp
google/quiche
moqt_outgoing_queue
quiche/quic/moqt/moqt_outgoing_queue.cc
quiche/quic/moqt/moqt_outgoing_queue_test.cc
#include "quiche/quic/moqt/moqt_outgoing_queue.h" #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "quiche/quic/moqt/moqt_cached_object.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/quic/moqt/moqt_publisher.h" #include "quiche/quic/moqt/moqt_subscribe_windows.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_mem_slice.h" namespace moqt { void MoqtOutgoingQueue::AddObject(quiche::QuicheMemSlice payload, bool key) { if (queue_.empty() && !key) { QUICHE_BUG(MoqtOutgoingQueue_AddObject_first_object_not_key) << "The first object ever added to the queue must have the \"key\" " "flag."; return; } if (key) { if (!queue_.empty()) { AddRawObject(MoqtObjectStatus::kEndOfGroup, quiche::QuicheMemSlice()); } if (queue_.size() == kMaxQueuedGroups) { queue_.erase(queue_.begin()); } queue_.emplace_back(); ++current_group_id_; } AddRawObject(MoqtObjectStatus::kNormal, std::move(payload)); } void MoqtOutgoingQueue::AddRawObject(MoqtObjectStatus status, quiche::QuicheMemSlice payload) { FullSequence sequence{current_group_id_, queue_.back().size()}; queue_.back().push_back(CachedObject{ sequence, status, std::make_shared<quiche::QuicheMemSlice>(std::move(payload))}); for (MoqtObjectListener* listener : listeners_) { listener->OnNewObjectAvailable(sequence); } } std::optional<PublishedObject> MoqtOutgoingQueue::GetCachedObject( FullSequence sequence) const { if (sequence.group < first_group_in_queue()) { return PublishedObject{FullSequence{sequence.group, sequence.object}, MoqtObjectStatus::kGroupDoesNotExist, quiche::QuicheMemSlice()}; } if (sequence.group > current_group_id_) { return std::nullopt; } const std::vector<CachedObject>& group = queue_[sequence.group - first_group_in_queue()]; if (sequence.object >= group.size()) { if (sequence.group == current_group_id_) { return std::nullopt; } return PublishedObject{FullSequence{sequence.group, sequence.object}, MoqtObjectStatus::kObjectDoesNotExist, quiche::QuicheMemSlice()}; } QUICHE_DCHECK(sequence == group[sequence.object].sequence); return CachedObjectToPublishedObject(group[sequence.object]); } std::vector<FullSequence> MoqtOutgoingQueue::GetCachedObjectsInRange( FullSequence start, FullSequence end) const { std::vector<FullSequence> sequences; SubscribeWindow window(start, end); for (const Group& group : queue_) { for (const CachedObject& object : group) { if (window.InWindow(object.sequence)) { sequences.push_back(object.sequence); } } } return sequences; } absl::StatusOr<MoqtTrackStatusCode> MoqtOutgoingQueue::GetTrackStatus() const { if (queue_.empty()) { return MoqtTrackStatusCode::kNotYetBegun; } return MoqtTrackStatusCode::kInProgress; } FullSequence MoqtOutgoingQueue::GetLargestSequence() const { if (queue_.empty()) { QUICHE_BUG(MoqtOutgoingQueue_GetLargestSequence_not_begun) << "Calling GetLargestSequence() on a track that hasn't begun"; return FullSequence{0, 0}; } return FullSequence{current_group_id_, queue_.back().size() - 1}; } }
#include "quiche/quic/moqt/moqt_outgoing_queue.h" #include <cstdint> #include <optional> #include <vector> #include "absl/strings/string_view.h" #include "quiche/quic/moqt/moqt_messages.h" #include "quiche/quic/moqt/moqt_publisher.h" #include "quiche/quic/moqt/moqt_subscribe_windows.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace moqt { namespace { using ::quic::test::MemSliceFromString; using ::testing::AnyOf; class TestMoqtOutgoingQueue : public MoqtOutgoingQueue, public MoqtObjectListener { public: TestMoqtOutgoingQueue() : MoqtOutgoingQueue(FullTrackName{"test", "track"}, MoqtForwardingPreference::kSubgroup) { AddObjectListener(this); } void OnNewObjectAvailable(FullSequence sequence) override { std::optional<PublishedObject> object = GetCachedObject(sequence); QUICHE_CHECK(object.has_value()); ASSERT_THAT(object->status, AnyOf(MoqtObjectStatus::kNormal, MoqtObjectStatus::kEndOfGroup)); if (object->status == MoqtObjectStatus::kNormal) { PublishObject(object->sequence.group, object->sequence.object, object->payload.AsStringView()); } else { CloseStreamForGroup(object->sequence.group); } } void CallSubscribeForPast(const SubscribeWindow& window) { std::vector<FullSequence> objects = GetCachedObjectsInRange(FullSequence(0, 0), GetLargestSequence()); for (FullSequence object : objects) { if (window.InWindow(object)) { OnNewObjectAvailable(object); } } } MOCK_METHOD(void, CloseStreamForGroup, (uint64_t group_id), ()); MOCK_METHOD(void, PublishObject, (uint64_t group_id, uint64_t object_id, absl::string_view payload), ()); }; TEST(MoqtOutgoingQueue, FirstObjectNotKeyframe) { TestMoqtOutgoingQueue queue; EXPECT_QUICHE_BUG(queue.AddObject(MemSliceFromString("a"), false), "The first object"); } TEST(MoqtOutgoingQueue, SingleGroup) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), false); } TEST(MoqtOutgoingQueue, SingleGroupPastSubscribeFromZero) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), false); queue.CallSubscribeForPast(SubscribeWindow(0, 0)); } TEST(MoqtOutgoingQueue, SingleGroupPastSubscribeFromMidGroup) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), false); queue.CallSubscribeForPast(SubscribeWindow(0, 1)); } TEST(MoqtOutgoingQueue, TwoGroups) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); EXPECT_CALL(queue, CloseStreamForGroup(0)); EXPECT_CALL(queue, PublishObject(1, 0, "d")); EXPECT_CALL(queue, PublishObject(1, 1, "e")); EXPECT_CALL(queue, PublishObject(1, 2, "f")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), false); queue.AddObject(MemSliceFromString("d"), true); queue.AddObject(MemSliceFromString("e"), false); queue.AddObject(MemSliceFromString("f"), false); } TEST(MoqtOutgoingQueue, TwoGroupsPastSubscribe) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); EXPECT_CALL(queue, CloseStreamForGroup(0)); EXPECT_CALL(queue, PublishObject(1, 0, "d")); EXPECT_CALL(queue, PublishObject(1, 1, "e")); EXPECT_CALL(queue, PublishObject(1, 2, "f")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, PublishObject(0, 2, "c")); EXPECT_CALL(queue, CloseStreamForGroup(0)); EXPECT_CALL(queue, PublishObject(1, 0, "d")); EXPECT_CALL(queue, PublishObject(1, 1, "e")); EXPECT_CALL(queue, PublishObject(1, 2, "f")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), false); queue.AddObject(MemSliceFromString("d"), true); queue.AddObject(MemSliceFromString("e"), false); queue.AddObject(MemSliceFromString("f"), false); queue.CallSubscribeForPast(SubscribeWindow(0, 1)); } TEST(MoqtOutgoingQueue, FiveGroups) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, CloseStreamForGroup(0)); EXPECT_CALL(queue, PublishObject(1, 0, "c")); EXPECT_CALL(queue, PublishObject(1, 1, "d")); EXPECT_CALL(queue, CloseStreamForGroup(1)); EXPECT_CALL(queue, PublishObject(2, 0, "e")); EXPECT_CALL(queue, PublishObject(2, 1, "f")); EXPECT_CALL(queue, CloseStreamForGroup(2)); EXPECT_CALL(queue, PublishObject(3, 0, "g")); EXPECT_CALL(queue, PublishObject(3, 1, "h")); EXPECT_CALL(queue, CloseStreamForGroup(3)); EXPECT_CALL(queue, PublishObject(4, 0, "i")); EXPECT_CALL(queue, PublishObject(4, 1, "j")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), true); queue.AddObject(MemSliceFromString("d"), false); queue.AddObject(MemSliceFromString("e"), true); queue.AddObject(MemSliceFromString("f"), false); queue.AddObject(MemSliceFromString("g"), true); queue.AddObject(MemSliceFromString("h"), false); queue.AddObject(MemSliceFromString("i"), true); queue.AddObject(MemSliceFromString("j"), false); } TEST(MoqtOutgoingQueue, FiveGroupsPastSubscribe) { TestMoqtOutgoingQueue queue; { testing::InSequence seq; EXPECT_CALL(queue, PublishObject(0, 0, "a")); EXPECT_CALL(queue, PublishObject(0, 1, "b")); EXPECT_CALL(queue, CloseStreamForGroup(0)); EXPECT_CALL(queue, PublishObject(1, 0, "c")); EXPECT_CALL(queue, PublishObject(1, 1, "d")); EXPECT_CALL(queue, CloseStreamForGroup(1)); EXPECT_CALL(queue, PublishObject(2, 0, "e")); EXPECT_CALL(queue, PublishObject(2, 1, "f")); EXPECT_CALL(queue, CloseStreamForGroup(2)); EXPECT_CALL(queue, PublishObject(3, 0, "g")); EXPECT_CALL(queue, PublishObject(3, 1, "h")); EXPECT_CALL(queue, CloseStreamForGroup(3)); EXPECT_CALL(queue, PublishObject(4, 0, "i")); EXPECT_CALL(queue, PublishObject(4, 1, "j")); EXPECT_CALL(queue, PublishObject(2, 0, "e")); EXPECT_CALL(queue, PublishObject(2, 1, "f")); EXPECT_CALL(queue, CloseStreamForGroup(2)); EXPECT_CALL(queue, PublishObject(3, 0, "g")); EXPECT_CALL(queue, PublishObject(3, 1, "h")); EXPECT_CALL(queue, CloseStreamForGroup(3)); EXPECT_CALL(queue, PublishObject(4, 0, "i")); EXPECT_CALL(queue, PublishObject(4, 1, "j")); } queue.AddObject(MemSliceFromString("a"), true); queue.AddObject(MemSliceFromString("b"), false); queue.AddObject(MemSliceFromString("c"), true); queue.AddObject(MemSliceFromString("d"), false); queue.AddObject(MemSliceFromString("e"), true); queue.AddObject(MemSliceFromString("f"), false); queue.AddObject(MemSliceFromString("g"), true); queue.AddObject(MemSliceFromString("h"), false); queue.AddObject(MemSliceFromString("i"), true); queue.AddObject(MemSliceFromString("j"), false); queue.CallSubscribeForPast(SubscribeWindow(0, 0)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/moqt_outgoing_queue.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/moqt_outgoing_queue_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
d96664ba-3a28-4df3-85b0-d237c15b7457
cpp
tensorflow/tensorflow
interleave_dataset_op
tensorflow/core/kernels/data/interleave_dataset_op.cc
tensorflow/core/kernels/data/interleave_dataset_op_test.cc
#include "tensorflow/core/kernels/data/interleave_dataset_op.h" #include <algorithm> #include <memory> #include <optional> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringprintf.h" #include "tsl/platform/errors.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr const char* const InterleaveDatasetOp::kDatasetType; constexpr const char* const InterleaveDatasetOp::kInputDataset; constexpr const char* const InterleaveDatasetOp::kOtherArguments; constexpr const char* const InterleaveDatasetOp::kCycleLength; constexpr const char* const InterleaveDatasetOp::kBlockLength; constexpr const char* const InterleaveDatasetOp::kFunc; constexpr const char* const InterleaveDatasetOp::kTarguments; constexpr const char* const InterleaveDatasetOp::kOutputTypes; constexpr const char* const InterleaveDatasetOp::kOutputShapes; constexpr char kCycleIndex[] = "cycle_index"; constexpr char kBlockIndex[] = "block_index"; constexpr char kEndOfInput[] = "end_of_input"; constexpr char kNumOpen[] = "num_open"; constexpr char kArgsSize[] = "args_size"; constexpr char kArgsList[] = "args_list_"; constexpr char kCurrentElementsUninitialized[] = "current_elements_uninitialized"; constexpr char kNextInputElementIndex[] = "next_input_element_index"; constexpr char kLastCheckpointedInputElementIndex[] = "last_checkpointed_input_element_index"; constexpr char kInputElementIndices[] = "input_element_indices"; class InterleaveDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, std::unique_ptr<CapturedFunction> captured_func, int64_t cycle_length, int64_t block_length, const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes) : DatasetBase(DatasetContext(ctx)), input_(input), captured_func_(std::move(captured_func)), cycle_length_(cycle_length), block_length_(block_length), output_types_(output_types), output_shapes_(output_shapes), traceme_metadata_( {{"block_length", strings::Printf("%lld", static_cast<long long>(block_length))}, {"cycle_length", strings::Printf("%lld", static_cast<long long>(cycle_length))}}) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return output_types_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(captured_func_->CheckExternalState()); return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_node; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_node)); Node* cycle_length_node; TF_RETURN_IF_ERROR(b->AddScalar(cycle_length_, &cycle_length_node)); Node* block_length_node; TF_RETURN_IF_ERROR(b->AddScalar(block_length_, &block_length_node)); std::vector<Node*> other_arguments; DataTypeVector other_arguments_types; TF_RETURN_IF_ERROR(captured_func_->AddToGraph(ctx, b, &other_arguments, &other_arguments_types)); AttrValue f; b->BuildAttrValue(captured_func_->func(), &f); AttrValue other_arguments_types_attr; b->BuildAttrValue(other_arguments_types, &other_arguments_types_attr); TF_RETURN_IF_ERROR(b->AddDataset( this, {{0, input_node}, {2, cycle_length_node}, {3, block_length_node}}, {{1, other_arguments}}, {{kFunc, f}, {kTarguments, other_arguments_types_attr}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), current_elements_(params.dataset->cycle_length_) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); input_ckpt_ = std::make_unique<MemoryCheckpoint>(ctx->id_registry()); TF_RETURN_IF_ERROR( dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_)); return dataset()->captured_func_->Instantiate( ctx, &instantiated_captured_func_); } void AdvanceToNextInCycle() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { block_index_ = 0; cycle_index_ = (cycle_index_ + 1) % dataset()->cycle_length_; } Status AdvancePosition(int num_elements) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { block_index_ += num_elements; if (block_index_ == dataset()->block_length_) { AdvanceToNextInCycle(); return absl::OkStatus(); } else if (block_index_ < dataset()->block_length_) { return absl::OkStatus(); } return absl::InternalError( "Something went wrong as `block_index_` should never be larger than " "`dataset()->block_length_`"); } void AdvancePosition() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { ++block_index_; if (block_index_ == dataset()->block_length_) { AdvanceToNextInCycle(); } } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); while (!end_of_input_ || num_open_ > 0) { if (current_elements_[cycle_index_]) { bool end_of_element; auto nested_ctx = MakeNestedIteratorContext(ctx); CurrentElement& current_element = *current_elements_[cycle_index_]; TF_RETURN_IF_ERROR(current_element.iterator->GetNext( &nested_ctx, out_tensors, &end_of_element)); ctx->MergeCheckpoint(nested_ctx.checkpoint()); if (!end_of_element) { AdvancePosition(); *end_of_sequence = false; return absl::OkStatus(); } else { ctx->PurgeCheckpoint(current_element.iterator->prefix()); UpdateSymbolicCheckpointAfterCurrentElementFinished( *ctx, *current_elements_[cycle_index_]); current_elements_[cycle_index_].reset(); --num_open_; AdvanceToNextInCycle(); } } else { TF_RETURN_IF_ERROR(MoveToNextElement(ctx)); } } ctx->MergeCheckpoint(input_ckpt_.get()); *end_of_sequence = true; return absl::OkStatus(); } Status SkipInternal(IteratorContext* ctx, int num_to_skip, bool* end_of_sequence, int* num_skipped) override { mutex_lock l(mu_); *num_skipped = 0; while (!end_of_input_ || num_open_ > 0) { if (current_elements_[cycle_index_]) { CurrentElement& current_element = *current_elements_[cycle_index_]; int element_num_to_skip = num_to_skip - *num_skipped; if (element_num_to_skip > dataset()->block_length_ - block_index_) { element_num_to_skip = dataset()->block_length_ - block_index_; } bool end_of_element = false; int element_num_skipped = 0; auto nested_ctx = MakeNestedIteratorContext(ctx); TF_RETURN_IF_ERROR(current_element.iterator->Skip( &nested_ctx, element_num_to_skip, &end_of_element, &element_num_skipped)); *num_skipped += element_num_skipped; ctx->MergeCheckpoint(nested_ctx.checkpoint()); if (!end_of_element) { TF_RETURN_IF_ERROR(AdvancePosition(element_num_skipped)); } else { ctx->PurgeCheckpoint(current_element.iterator->prefix()); UpdateSymbolicCheckpointAfterCurrentElementFinished( *ctx, *current_elements_[cycle_index_]); current_elements_[cycle_index_].reset(); --num_open_; AdvanceToNextInCycle(); } if (num_to_skip == *num_skipped) { *end_of_sequence = false; return absl::OkStatus(); } } else { TF_RETURN_IF_ERROR(MoveToNextElement(ctx)); } } ctx->MergeCheckpoint(input_ckpt_.get()); *end_of_sequence = true; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeInterleaveManyNode( std::move(args), {model::MakeNonTunableParameter( kCycleLength, dataset()->cycle_length_)}); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(ctx->HandleCheckExternalStateStatus( dataset()->captured_func_->CheckExternalState())); mutex_lock l(mu_); TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kCycleIndex, cycle_index_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kBlockIndex, block_index_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kEndOfInput, static_cast<int64_t>(end_of_input_))); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kNumOpen, num_open_)); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kNextInputElementIndex, next_input_element_index_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kLastCheckpointedInputElementIndex, last_checkpointed_input_element_index_)); TF_RETURN_IF_ERROR(SaveCurrentElements(ctx, writer)); return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); int64_t cycle_index; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kCycleIndex, &cycle_index)); cycle_index_ = size_t(cycle_index); TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kBlockIndex, &block_index_)); int64_t end_of_input; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kEndOfInput, &end_of_input)); end_of_input_ = static_cast<bool>(end_of_input); int64_t num_open; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kNumOpen, &num_open)); num_open_ = size_t(num_open); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kNextInputElementIndex, &next_input_element_index_)); TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kLastCheckpointedInputElementIndex, &last_checkpointed_input_element_index_)); int64_t cycle_length = dataset()->cycle_length_; std::vector<InputOffset> input_element_indices(cycle_length, -1); std::vector<std::optional<MemoryCheckpoint>> checkpoints(cycle_length); std::vector<std::vector<Tensor>> args(cycle_length); if (ctx->symbolic_checkpoint()) { auto status_or = RestoreInputOffsets(*reader); if (!status_or.ok()) { return status_or.status(); } auto& input_offset_w_cycle_idxs = status_or.value(); TF_RETURN_IF_ERROR(RestoreArgsListAndInputOffsetCycleIdxMap( *ctx, input_element_indices, checkpoints, args, input_offset_w_cycle_idxs)); } TF_RETURN_IF_ERROR( RestoreCurrentElements(ctx, reader, input_element_indices, std::move(checkpoints), std::move(args))); return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { return dataset()->traceme_metadata_; } private: using InputOffset = int64_t; using CycleIdx = int; struct CurrentElement; struct InputOffsetWithCycleIdx; int64_t GetSubIteratorIndexForPrefix(bool symbolic_checkpoint) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return GetSubIteratorIndexForPrefix(symbolic_checkpoint, cycle_index_, next_input_element_index_); } int64_t GetSubIteratorIndexForPrefix( bool symbolic_checkpoint, int64_t cycle_index, std::optional<int64_t> input_element_index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return (symbolic_checkpoint) ? (input_element_index.value()) : (cycle_index); } Status SaveCurrentElements(SerializationContext* ctx, IteratorStateWriter* writer) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (int idx = 0; idx < current_elements_.size(); idx++) { TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), strings::StrCat(kCurrentElementsUninitialized, "[", idx, "]"), !current_elements_[idx])); if (!current_elements_[idx]) { continue; } if (!ctx->symbolic_checkpoint()) { TF_RETURN_IF_ERROR( SaveInput(ctx, writer, current_elements_[idx]->iterator)); const auto& args = current_elements_[idx]->args; TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), strings::StrCat(kArgsSize, "[", idx, "]"), args.size())); for (int i = 0; i < args.size(); i++) { TF_RETURN_IF_ERROR(writer->WriteTensor( prefix(), strings::StrCat(kArgsList, "[", idx, "][", i, "]"), args[i])); } } else { TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), strings::StrCat(kInputElementIndices, "[", idx, "]"), current_elements_[idx]->input_element_index)); } } return absl::OkStatus(); } absl::StatusOr<std::vector<InputOffsetWithCycleIdx>> RestoreInputOffsets( IteratorStateReader& reader) { std::vector<InputOffsetWithCycleIdx> input_offsets; int64_t cycle_length = dataset()->cycle_length_; for (int cycle_idx = 0; cycle_idx < cycle_length; cycle_idx++) { int64_t current_element_uninitialized; TF_RETURN_IF_ERROR(reader.ReadScalar( prefix(), strings::StrCat(kCurrentElementsUninitialized, "[", cycle_idx, "]"), &current_element_uninitialized)); if (!current_element_uninitialized) { int64_t input_element_index; TF_RETURN_IF_ERROR(reader.ReadScalar( prefix(), strings::StrCat(kInputElementIndices, "[", cycle_idx, "]"), &input_element_index)); input_offsets.push_back( InputOffsetWithCycleIdx{input_element_index, cycle_idx}); } } return std::move(input_offsets); } Status RestoreArgsListAndInputOffsetCycleIdxMap( IteratorContext& ctx, std::vector<InputOffset>& input_element_indices, std::vector<std::optional<MemoryCheckpoint>>& checkpoints, std::vector<std::vector<Tensor>>& args, std::vector<InputOffsetWithCycleIdx>& input_offset_w_cycle_idxs) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (input_element_indices.size() != dataset()->cycle_length_ || checkpoints.size() != dataset()->cycle_length_ || args.size() != dataset()->cycle_length_) { return absl::FailedPreconditionError( "input_element_indices, checkpoints and args should be of same " "length"); } std::sort(input_offset_w_cycle_idxs.begin(), input_offset_w_cycle_idxs.end(), [](const InputOffsetWithCycleIdx& lhs, const InputOffsetWithCycleIdx& rhs) { return lhs.input_element_index < rhs.input_element_index; }); bool end_of_sequence = false; int num_to_skip; int num_actually_skip; InputOffset prev_input_element_index = last_checkpointed_input_element_index_; auto input_ctx = std::make_unique<IteratorContext>(ctx); for (const auto& input_offset_w_cycle_idx : input_offset_w_cycle_idxs) { InputOffset input_element_index = input_offset_w_cycle_idx.input_element_index; CycleIdx cycle_idx = input_offset_w_cycle_idx.cycle_idx; if (input_element_index >= next_input_element_index_) { return absl::FailedPreconditionError( "input_element_index < next_input_element_index_ must be " "met."); } num_to_skip = input_element_index - prev_input_element_index - 1; TF_RETURN_IF_ERROR(input_impl_->Skip(input_ctx.get(), num_to_skip, &end_of_sequence, &num_actually_skip)); if (end_of_sequence || num_actually_skip != num_to_skip) { return absl::InternalError( "Unexpected end of sequence while symbolically restoring " "InterleaveDataset. Please verify that the input produces data " "deterministically."); } std::vector<Tensor> current_element_args; TF_RETURN_IF_ERROR(input_impl_->GetNext( input_ctx.get(), &current_element_args, &end_of_sequence)); prev_input_element_index = input_element_index; checkpoints[cycle_idx].emplace(*input_ctx->checkpoint()); args[cycle_idx] = std::move(current_element_args); input_element_indices[cycle_idx] = input_element_index; } num_to_skip = next_input_element_index_ - prev_input_element_index - 1; TF_RETURN_IF_ERROR(input_impl_->Skip( input_ctx.get(), num_to_skip, &end_of_sequence, &num_actually_skip)); if (end_of_sequence || num_actually_skip != num_to_skip) { return absl::InternalError( "Unexpected end of sequence while symbolically restoring " "InterleaveDataset. Please verify that the input produces data " "deterministically."); } input_ckpt_->Merge(input_ctx->checkpoint()); return absl::OkStatus(); } Status RestoreCurrentElements( IteratorContext* ctx, IteratorStateReader* reader, std::vector<InputOffset>& input_element_indices, std::vector<std::optional<MemoryCheckpoint>>&& checkpoints, std::vector<std::vector<Tensor>>&& args) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (int idx = 0; idx < current_elements_.size(); idx++) { int64_t current_element_uninitialized; TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), strings::StrCat(kCurrentElementsUninitialized, "[", idx, "]"), &current_element_uninitialized)); if (!current_element_uninitialized) { if (!ctx->symbolic_checkpoint()) { int64_t args_size; std::vector<Tensor> current_element_args; TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), strings::StrCat(kArgsSize, "[", idx, "]"), &args_size)); current_element_args.resize(args_size); for (int i = 0; i < args_size; i++) { TF_RETURN_IF_ERROR(reader->ReadTensor( ctx->flr(), prefix(), strings::StrCat(kArgsList, "[", idx, "][", i, "]"), &current_element_args[i])); } args[idx] = std::move(current_element_args); } std::unique_ptr<IteratorBase> iterator; TF_RETURN_IF_ERROR(MakeIteratorFromInputElement( ctx, this, args[idx], GetSubIteratorIndexForPrefix(ctx->symbolic_checkpoint(), idx, input_element_indices[idx]), *instantiated_captured_func_, prefix(), &iterator, nullptr)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, iterator)); current_elements_[idx].emplace( std::move(checkpoints[idx]), std::move(args[idx]), input_element_indices[idx], std::move(iterator)); } else { current_elements_[idx].reset(); } } return absl::OkStatus(); } Status MoveToNextElement(IteratorContext* ctx) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!end_of_input_) { IteratorContext input_ctx = MakeNestedIteratorContext(ctx); std::vector<Tensor> args; TF_RETURN_IF_ERROR( input_impl_->GetNext(&input_ctx, &args, &end_of_input_)); input_ckpt_->Merge(input_ctx.checkpoint()); if (!end_of_input_) { std::unique_ptr<IteratorBase> iterator; TF_RETURN_IF_ERROR(MakeIteratorFromInputElement( ctx, this, args, GetSubIteratorIndexForPrefix(ctx->symbolic_checkpoint()), *instantiated_captured_func_, prefix(), &iterator, model_node())); ++num_open_; std::optional<MemoryCheckpoint> checkpoint; if (ctx->symbolic_checkpoint()) { checkpoint.emplace(*input_ckpt_); } current_elements_[cycle_index_].emplace( std::move(checkpoint), std::move(args), next_input_element_index_, std::move(iterator)); next_input_element_index_++; } } else { AdvanceToNextInCycle(); } return absl::OkStatus(); } InputOffset IsEarliestInputElementIndex(InputOffset input_element_index) { InputOffset min_input_element_index = input_element_index; for (int i = 0; i < current_elements_.size(); ++i) { if (!current_elements_[i]) continue; if (current_elements_[i]->input_element_index < min_input_element_index) { min_input_element_index = current_elements_[i]->input_element_index; } } return (min_input_element_index == input_element_index); } void UpdateSymbolicCheckpointAfterCurrentElementFinished( IteratorContext& ctx, CurrentElement& current_element) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!ctx.symbolic_checkpoint()) { return; } InputOffset input_element_index = current_element.input_element_index; if (IsEarliestInputElementIndex(input_element_index)) { MemoryCheckpoint& checkpoint = const_cast<MemoryCheckpoint&>(current_element.checkpoint.value()); ctx.MergeCheckpoint(&checkpoint); last_checkpointed_input_element_index_ = input_element_index; } } mutex mu_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); struct CurrentElement { const std::optional<MemoryCheckpoint> checkpoint = std::nullopt; const InputOffset input_element_index = -1; const std::vector<Tensor> args; std::unique_ptr<IteratorBase> iterator = nullptr; explicit CurrentElement(std::optional<MemoryCheckpoint>&& checkpoint, std::vector<Tensor>&& args, InputOffset input_element_index, std::unique_ptr<IteratorBase> iterator) : checkpoint(std::move(checkpoint)), input_element_index(input_element_index), args(std::move(args)), iterator(std::move(iterator)) {} CurrentElement(CurrentElement&& other) = default; }; struct InputOffsetWithCycleIdx { InputOffset input_element_index; CycleIdx cycle_idx; }; std::vector<std::optional<CurrentElement>> current_elements_; InputOffset last_checkpointed_input_element_index_ TF_GUARDED_BY(mu_) = -1; InputOffset next_input_element_index_ TF_GUARDED_BY(mu_) = 0; std::unique_ptr<MemoryCheckpoint> input_ckpt_ TF_GUARDED_BY(mu_); size_t cycle_index_ TF_GUARDED_BY(mu_) = 0; int64_t block_index_ TF_GUARDED_BY(mu_) = 0; bool end_of_input_ TF_GUARDED_BY(mu_) = false; size_t num_open_ TF_GUARDED_BY(mu_) = 0; std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func_; }; const DatasetBase* const input_; const std::unique_ptr<CapturedFunction> captured_func_; const int64_t cycle_length_; const int64_t block_length_; const DataTypeVector output_types_; const std::vector<PartialTensorShape> output_shapes_; const TraceMeMetadata traceme_metadata_; }; InterleaveDatasetOp::InterleaveDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx), graph_def_version_(ctx->graph_def_version()) { OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, kFunc, {}, &func_metadata_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void InterleaveDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t cycle_length = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kCycleLength, &cycle_length)); if (cycle_length == model::kAutotune) { cycle_length = port::MaxParallelism(); } OP_REQUIRES( ctx, cycle_length > 0, errors::InvalidArgument("cycle_length must be greater than zero.")); int64_t block_length = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kBlockLength, &block_length)); OP_REQUIRES( ctx, block_length > 0, errors::InvalidArgument("block_length must be greater than zero.")); std::unique_ptr<CapturedFunction> captured_func; OP_REQUIRES_OK(ctx, CapturedFunction::Create(ctx, func_metadata_, kOtherArguments, &captured_func)); *output = new Dataset(ctx, input, std::move(captured_func), cycle_length, block_length, output_types_, output_shapes_); } namespace { REGISTER_KERNEL_BUILDER(Name("InterleaveDataset").Device(DEVICE_CPU), InterleaveDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("InterleaveDataset"); } } }
#include "tensorflow/core/kernels/data/interleave_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "interleave_dataset"; class InterleaveDatasetParams : public DatasetParams { public: template <typename T> InterleaveDatasetParams(T input_dataset_params, std::vector<Tensor> other_arguments, int64_t cycle_length, int64_t block_length, FunctionDefHelper::AttrValueWrapper func, std::vector<FunctionDef> func_lib, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), other_arguments_(std::move(other_arguments)), cycle_length_(cycle_length), block_length_(block_length), func_(std::move(func)), func_lib_(std::move(func_lib)), type_arguments_(std::move(type_arguments)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { std::vector<Tensor> input_tensors = other_arguments_; input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {cycle_length_})); input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {block_length_})); return input_tensors; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->reserve(input_dataset_params_.size() + other_arguments_.size() + 2); input_names->emplace_back(InterleaveDatasetOp::kInputDataset); for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back( absl::StrCat(InterleaveDatasetOp::kOtherArguments, "_", i)); } input_names->emplace_back(InterleaveDatasetOp::kCycleLength); input_names->emplace_back(InterleaveDatasetOp::kBlockLength); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"f", func_}, {"Targuments", type_arguments_}, {"output_shapes", output_shapes_}, {"output_types", output_dtypes_}, {"metadata", ""}}; return absl::OkStatus(); } std::vector<FunctionDef> func_lib() const override { return func_lib_; } string dataset_type() const override { return InterleaveDatasetOp::kDatasetType; } private: std::vector<Tensor> other_arguments_; int64_t cycle_length_; int64_t block_length_; FunctionDefHelper::AttrValueWrapper func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_arguments_; }; class InterleaveDatasetOpTest : public DatasetOpsTestBase {}; FunctionDefHelper::AttrValueWrapper MakeTensorSliceDatasetFunc( const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes) { return FunctionDefHelper::FunctionRef( "MakeTensorSliceDataset", {{"Toutput_types", output_types}, {"output_shapes", output_shapes}}); } InterleaveDatasetParams InterleaveDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 2, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParams3() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 3, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParams4() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 5, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParams5() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<tstring>(TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 2, 2, MakeTensorSliceDatasetFunc( DataTypeVector({DT_STRING}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_STRING}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParams6() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<tstring>(TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 2, 3, MakeTensorSliceDatasetFunc( DataTypeVector({DT_STRING}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_STRING}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParams7() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<tstring>(TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 2, 5, MakeTensorSliceDatasetFunc( DataTypeVector({DT_STRING}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_STRING}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParamsWithInvalidCycleLength() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 0, 5, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } InterleaveDatasetParams InterleaveDatasetParamsWithInvalidBlockLength() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice_dataset"); return InterleaveDatasetParams( std::move(tensor_slice_dataset_params), {}, 1, -1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } std::vector<GetNextTestCase<InterleaveDatasetParams>> GetNextTestCases() { return { {InterleaveDatasetParams1(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}})}, {InterleaveDatasetParams2(), CreateTensors<int64_t>( TensorShape({1}), {{0}, {3}, {1}, {4}, {2}, {5}, {6}, {7}, {8}})}, {InterleaveDatasetParams3(), CreateTensors<int64_t>( TensorShape({1}), {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}})}, {InterleaveDatasetParams4(), CreateTensors<int64_t>( TensorShape({1}), {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}})}, {InterleaveDatasetParams5(), CreateTensors<tstring>( TensorShape({1}), {{"a"}, {"b"}, {"d"}, {"e"}, {"c"}, {"f"}, {"g"}, {"h"}, {"i"}})}, {InterleaveDatasetParams6(), CreateTensors<tstring>( TensorShape({1}), {{"a"}, {"b"}, {"c"}, {"d"}, {"e"}, {"f"}, {"g"}, {"h"}, {"i"}})}, {InterleaveDatasetParams7(), CreateTensors<tstring>( TensorShape({1}), {{"a"}, {"b"}, {"c"}, {"d"}, {"e"}, {"f"}, {"g"}, {"h"}, {"i"}})}}; } ITERATOR_GET_NEXT_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, GetNextTestCases()) std::vector<SkipTestCase<InterleaveDatasetParams>> SkipTestCases() { return {{InterleaveDatasetParams1(), 0, 0, true, CreateTensors<int64_t>(TensorShape({1}), {{0}})}, {InterleaveDatasetParams1(), 5, 5, true, CreateTensors<int64_t>(TensorShape({1}), {{5}})}, {InterleaveDatasetParams1(), 10, 9}, {InterleaveDatasetParams2(), 5, 5, true, CreateTensors<int64_t>(TensorShape({1}), {{5}})}, {InterleaveDatasetParams2(), 10, 9}, {InterleaveDatasetParams3(), 5, 5, true, CreateTensors<int64_t>(TensorShape({1}), {{7}})}, {InterleaveDatasetParams3(), 10, 9}, {InterleaveDatasetParams4(), 5, 5, true, CreateTensors<int64_t>(TensorShape({1}), {{7}})}, {InterleaveDatasetParams4(), 10, 9}, {InterleaveDatasetParams5(), 3, 3, true, CreateTensors<tstring>(TensorShape({1}), {{"e"}})}, {InterleaveDatasetParams5(), 10, 9}, {InterleaveDatasetParams6(), 3, 3, true, CreateTensors<tstring>(TensorShape({1}), {{"d"}})}, {InterleaveDatasetParams6(), 10, 9}, {InterleaveDatasetParams7(), 3, 3, true, CreateTensors<tstring>(TensorShape({1}), {{"d"}})}, {InterleaveDatasetParams7(), 10, 9}}; } ITERATOR_SKIP_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, SkipTestCases()) TEST_F(InterleaveDatasetOpTest, DatasetNodeName) { auto dataset_params = InterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(InterleaveDatasetOpTest, DatasetTypeString) { auto dataset_params = InterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(InterleaveDatasetOp::kDatasetType))); } std::vector<DatasetOutputDtypesTestCase<InterleaveDatasetParams>> DatasetOutputDtypesTestCases() { return {{InterleaveDatasetParams1(), {DT_INT64}}, {InterleaveDatasetParams2(), {DT_INT64}}, {InterleaveDatasetParams3(), {DT_INT64}}, {InterleaveDatasetParams4(), {DT_INT64}}, {InterleaveDatasetParams5(), {DT_STRING}}, {InterleaveDatasetParams6(), {DT_STRING}}, {InterleaveDatasetParams7(), {DT_STRING}}}; } DATASET_OUTPUT_DTYPES_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, DatasetOutputDtypesTestCases()) std::vector<DatasetOutputShapesTestCase<InterleaveDatasetParams>> DatasetOutputShapesTestCases() { return {{InterleaveDatasetParams1(), {PartialTensorShape({1})}}, {InterleaveDatasetParams2(), {PartialTensorShape({1})}}, {InterleaveDatasetParams3(), {PartialTensorShape({1})}}, {InterleaveDatasetParams4(), {PartialTensorShape({1})}}, {InterleaveDatasetParams5(), {PartialTensorShape({1})}}, {InterleaveDatasetParams6(), {PartialTensorShape({1})}}, {InterleaveDatasetParams7(), {PartialTensorShape({1})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<InterleaveDatasetParams>> CardinalityTestCases() { return {{InterleaveDatasetParams1(), kUnknownCardinality}, {InterleaveDatasetParams2(), kUnknownCardinality}, {InterleaveDatasetParams3(), kUnknownCardinality}, {InterleaveDatasetParams4(), kUnknownCardinality}, {InterleaveDatasetParams5(), kUnknownCardinality}, {InterleaveDatasetParams6(), kUnknownCardinality}, {InterleaveDatasetParams7(), kUnknownCardinality}}; } DATASET_CARDINALITY_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, CardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<InterleaveDatasetParams>> IteratorOutputDtypesTestCases() { return {{InterleaveDatasetParams1(), {DT_INT64}}, {InterleaveDatasetParams2(), {DT_INT64}}, {InterleaveDatasetParams3(), {DT_INT64}}, {InterleaveDatasetParams4(), {DT_INT64}}, {InterleaveDatasetParams5(), {DT_STRING}}, {InterleaveDatasetParams6(), {DT_STRING}}, {InterleaveDatasetParams7(), {DT_STRING}}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, IteratorOutputDtypesTestCases()) std::vector<IteratorOutputShapesTestCase<InterleaveDatasetParams>> IteratorOutputShapesTestCases() { return {{InterleaveDatasetParams1(), {PartialTensorShape({1})}}, {InterleaveDatasetParams2(), {PartialTensorShape({1})}}, {InterleaveDatasetParams3(), {PartialTensorShape({1})}}, {InterleaveDatasetParams4(), {PartialTensorShape({1})}}, {InterleaveDatasetParams5(), {PartialTensorShape({1})}}, {InterleaveDatasetParams6(), {PartialTensorShape({1})}}, {InterleaveDatasetParams7(), {PartialTensorShape({1})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, IteratorOutputShapesTestCases()) TEST_F(InterleaveDatasetOpTest, IteratorPrefix) { auto dataset_params = InterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( InterleaveDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<InterleaveDatasetParams>> IteratorSaveAndRestoreTestCases() { return { {InterleaveDatasetParams1(), {0, 4, 11}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}})}, {InterleaveDatasetParams2(), {0, 4, 11}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {3}, {1}, {4}, {2}, {5}, {6}, {7}, {8}})}, {InterleaveDatasetParams3(), {0, 4, 11}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}})}, {InterleaveDatasetParams4(), {0, 4, 11}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}})}, {InterleaveDatasetParams5(), {0, 4, 11}, CreateTensors<tstring>( TensorShape({1}), {{"a"}, {"b"}, {"d"}, {"e"}, {"c"}, {"f"}, {"g"}, {"h"}, {"i"}})}, {InterleaveDatasetParams6(), {0, 4, 11}, CreateTensors<tstring>( TensorShape({1}), {{"a"}, {"b"}, {"c"}, {"d"}, {"e"}, {"f"}, {"g"}, {"h"}, {"i"}})}, {InterleaveDatasetParams7(), {0, 4, 11}, CreateTensors<tstring>( TensorShape({1}), {{"a"}, {"b"}, {"c"}, {"d"}, {"e"}, {"f"}, {"g"}, {"h"}, {"i"}})}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(InterleaveDatasetOpTest, InterleaveDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(InterleaveDatasetOpTest, InvalidCycleLength) { auto dataset_params = InterleaveDatasetParamsWithInvalidCycleLength(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } TEST_F(InterleaveDatasetOpTest, InvalidLength) { auto dataset_params = InterleaveDatasetParamsWithInvalidBlockLength(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/interleave_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/interleave_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
abfebcd9-00e5-45bc-b724-26719c12e44e
cpp
tensorflow/tensorflow
device_compiler_client
tensorflow/compiler/jit/device_compiler_client.cc
tensorflow/compiler/jit/device_compiler_client_test.cc
#include "tensorflow/compiler/jit/device_compiler_client.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/core/util/determinism.h" namespace tensorflow { xla::ExecutableBuildOptions GetExecutableBuildOptions( const XlaCompiler::Options& options, const XlaCompiler::CompilationResult& result, int default_device_ordinal) { xla::ExecutableBuildOptions build_options; if (result.collective_info) { build_options.set_num_replicas(result.collective_info->group_size); } if (options.device_ordinal != -1) { build_options.set_device_ordinal(options.device_ordinal); } else if (default_device_ordinal != -1) { build_options.set_device_ordinal(default_device_ordinal); } build_options.set_result_layout(result.xla_output_shape); build_options.set_device_allocator(options.device_allocator.get()); build_options.set_alias_passthrough_params(options.alias_passthrough_params); build_options.mutable_debug_options()->set_xla_detailed_logging( options.detailed_logging); if (tensorflow::OpDeterminismRequired()) { build_options.mutable_debug_options()->set_xla_gpu_deterministic_ops(true); } return build_options; } }
#include "tensorflow/compiler/jit/device_compiler_client.h" #include <gtest/gtest.h> namespace tensorflow { namespace { TEST(GetExecutableOptionTest, Basic) { XlaCompiler::Options options; options.device_ordinal = 0; options.alias_passthrough_params = true; options.detailed_logging = true; XlaCompiler::CompilationResult result; xla::Shape xla_output_shape; result.xla_output_shape = xla_output_shape; auto build_option = GetExecutableBuildOptions(options, result, -1); EXPECT_EQ(build_option.device_ordinal(), 0); EXPECT_EQ(build_option.result_layout()->ToString(), xla_output_shape.ToString()); EXPECT_EQ(build_option.alias_passthrough_params(), true); EXPECT_EQ(build_option.debug_options().xla_detailed_logging(), true); EXPECT_EQ(build_option.debug_options().xla_enable_dumping(), true); } TEST(GetExecutableOptionTest, DefaultDeviceOrdinal) { XlaCompiler::Options options; XlaCompiler::CompilationResult result; auto build_option = GetExecutableBuildOptions(options, result, 0); EXPECT_EQ(build_option.device_ordinal(), 0); } TEST(GetExecutableOptionTest, DeviceOrdinalNotSet) { XlaCompiler::Options options; XlaCompiler::CompilationResult result; auto build_option = GetExecutableBuildOptions(options, result, -1); EXPECT_EQ(build_option.device_ordinal(), -1); } TEST(GetExecutableOptionTest, DumpingWithoutDetailedLogging) { XlaCompiler::Options options; options.detailed_logging = false; XlaCompiler::CompilationResult result; auto build_option = GetExecutableBuildOptions(options, result, -1); EXPECT_FALSE(build_option.debug_options().xla_detailed_logging()); EXPECT_TRUE(build_option.debug_options().xla_enable_dumping()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/device_compiler_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/device_compiler_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2589f64c-eb8c-442a-8faa-a014e79a40f7
cpp
tensorflow/tensorflow
conv_map_wrapper
tensorflow/core/util/autotune_maps/conv_map_wrapper.cc
tensorflow/core/util/autotune_maps/conv_map_wrapper_test.cc
#include "tensorflow/core/util/autotune_maps/conv_map_wrapper.h" #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "xla/tsl/lib/strings/proto_serialization.h" #include "xla/tsl/protobuf/dnn.pb.h" #include "tensorflow/core/util/autotune_maps/autotune_map.pb.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.pb.h" namespace tensorflow { absl::StatusOr<ConvMapWrapper> ConvMapWrapper::FromKeyAndValue( OpaqueKey key, OpaqueValue value) { ConvMapProto::Entry key_proto; if (!key_proto.ParseFromString(key)) { return absl::Status(absl::StatusCode::kInvalidArgument, "Could not parse the provided key"); } ConvMapProto::Entry value_proto; if (!value_proto.ParseFromString(value)) { return absl::Status(absl::StatusCode::kInvalidArgument, "Could not parse the provided value"); } ConvMapProto::Entry full_entry; *full_entry.mutable_key() = key_proto.key(); *full_entry.mutable_value() = value_proto.value(); return ConvMapWrapper(full_entry); } ConvMapWrapper::OpaqueKey ConvMapWrapper::Key() const { ConvMapProto::Entry entry; *entry.mutable_key() = conv_map_entry_.key(); OpaqueKey serialized; CHECK(tsl::SerializeToStringDeterministic(entry, &serialized)); return serialized; } ConvMapWrapper::OpaqueValue ConvMapWrapper::Value() const { ConvMapProto::Entry entry; *entry.mutable_value() = conv_map_entry_.value(); OpaqueValue serialized; CHECK(tsl::SerializeToStringDeterministic(entry, &serialized)); return serialized; } std::vector<ConvMapWrapper> ConvMapWrapper::ConvMapToWrappers( const ConvMapProto& autotune_results) { std::vector<ConvMapWrapper> wrappers; wrappers.reserve(autotune_results.kv_pairs_size()); for (const auto& entry : autotune_results.kv_pairs()) { wrappers.push_back(ConvMapWrapper(entry)); } return wrappers; } absl::StatusOr<ConvMapProto> ConvMapWrapper::ConvMapFromWrappers( const std::vector<ConvMapWrapper>& wrappers) { ConvMapProto conv_map_proto; for (const auto& wrapper : wrappers) { *conv_map_proto.add_kv_pairs() = wrapper.conv_map_entry_; } return conv_map_proto; } }
#include "tensorflow/core/util/autotune_maps/conv_map_wrapper.h" #include <utility> #include <vector> #include <gtest/gtest.h> #include "xla/test.h" #include "xla/tsl/protobuf/dnn.pb.h" #include "tensorflow/core/util/autotune_maps/autotune_map.pb.h" #include "tensorflow/core/util/autotune_maps/conv_parameters.pb.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { ConvMapProto ThreeConvMapEntries() { ConvMapProto proto; auto r1 = proto.add_kv_pairs(); r1->mutable_key()->set_batch(1); r1->mutable_key()->set_in_depths(2); r1->mutable_key()->set_out_depths(3); r1->mutable_value()->mutable_algorithm()->set_algo_id(4); auto r2 = proto.add_kv_pairs(); r2->mutable_key()->set_batch(5); r2->mutable_key()->set_in_depths(6); r2->mutable_key()->set_out_depths(7); r2->mutable_value()->mutable_algorithm()->set_algo_id(8); auto r3 = proto.add_kv_pairs(); r3->mutable_key()->set_batch(9); r3->mutable_key()->set_in_depths(10); r3->mutable_key()->set_out_depths(11); r3->mutable_value()->mutable_algorithm()->set_algo_id(12); return proto; } TEST(ConvMapWrapperTest, FullRoundTrip) { std::vector<ConvMapWrapper> wrappers = ConvMapWrapper::ConvMapToWrappers(ThreeConvMapEntries()); std::vector<std::pair<ConvMapWrapper::OpaqueKey, ConvMapWrapper::OpaqueValue>> key_value_pairs; for (const auto& wrapper : wrappers) { key_value_pairs.emplace_back(wrapper.Key(), wrapper.Value()); } std::vector<ConvMapWrapper> new_wrappers; for (const auto& [key, value] : key_value_pairs) { TF_ASSERT_OK_AND_ASSIGN(ConvMapWrapper wrapper, ConvMapWrapper::FromKeyAndValue(key, value)); new_wrappers.push_back(wrapper); } TF_ASSERT_OK_AND_ASSIGN(ConvMapProto round_tripped, ConvMapWrapper::ConvMapFromWrappers(new_wrappers)); EXPECT_EQ(round_tripped.kv_pairs_size(), 3); EXPECT_EQ(round_tripped.kv_pairs(0).key().batch(), 1); EXPECT_EQ(round_tripped.kv_pairs(0).key().in_depths(), 2); EXPECT_EQ(round_tripped.kv_pairs(0).key().out_depths(), 3); EXPECT_EQ(round_tripped.kv_pairs(0).value().algorithm().algo_id(), 4); EXPECT_EQ(round_tripped.kv_pairs(1).key().batch(), 5); EXPECT_EQ(round_tripped.kv_pairs(1).key().in_depths(), 6); EXPECT_EQ(round_tripped.kv_pairs(1).key().out_depths(), 7); EXPECT_EQ(round_tripped.kv_pairs(1).value().algorithm().algo_id(), 8); EXPECT_EQ(round_tripped.kv_pairs(2).key().batch(), 9); EXPECT_EQ(round_tripped.kv_pairs(2).key().in_depths(), 10); EXPECT_EQ(round_tripped.kv_pairs(2).key().out_depths(), 11); EXPECT_EQ(round_tripped.kv_pairs(2).value().algorithm().algo_id(), 12); } TEST(ConvMapWrapperTest, DeterministicSerialization) { std::vector<ConvMapWrapper> wrappers = ConvMapWrapper::ConvMapToWrappers(ThreeConvMapEntries()); std::vector<ConvMapWrapper::OpaqueKey> keys; std::vector<ConvMapWrapper::OpaqueValue> values; for (const auto& wrapper : wrappers) { keys.push_back(wrapper.Key()); values.push_back(wrapper.Value()); } const int kNumIterations = 100; for (int i = 0; i < kNumIterations; ++i) { std::vector<ConvMapWrapper> test_wrappers = ConvMapWrapper::ConvMapToWrappers(ThreeConvMapEntries()); std::vector<ConvMapWrapper::OpaqueKey> test_keys; std::vector<ConvMapWrapper::OpaqueValue> test_values; for (const auto& test_wrapper : test_wrappers) { test_keys.push_back(test_wrapper.Key()); test_values.push_back(test_wrapper.Value()); } EXPECT_EQ(keys, test_keys); EXPECT_EQ(values, test_values); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/autotune_maps/conv_map_wrapper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/autotune_maps/conv_map_wrapper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
68355e70-e453-4069-8d76-79f9dacc44d2
cpp
google/tensorstore
nditerable_data_type_conversion
tensorstore/internal/nditerable_data_type_conversion.cc
tensorstore/internal/nditerable_data_type_conversion_test.cc
#include "tensorstore/internal/nditerable_data_type_conversion.h" #include <cassert> #include <memory> #include <utility> #include "tensorstore/data_type.h" #include "tensorstore/data_type_conversion.h" #include "tensorstore/index.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_elementwise_input_transform.h" #include "tensorstore/internal/nditerable_elementwise_output_transform.h" #include "tensorstore/internal/nditerable_util.h" #include "tensorstore/internal/unique_with_intrusive_allocator.h" namespace tensorstore { namespace internal { namespace { template <typename Derived, typename BasePointer = NDIterable::Ptr> class NDIterableAdapter : public NDIterable::Base<Derived> { public: NDIterableAdapter(BasePointer base) : base_(std::move(base)) {} const BasePointer& base() const { return base_; } BasePointer& base() { return base_; } int GetDimensionOrder(DimensionIndex dim_i, DimensionIndex dim_j) const override { return base_->GetDimensionOrder(dim_i, dim_j); } void UpdateDirectionPrefs(NDIterable::DirectionPref* prefs) const override { base_->UpdateDirectionPrefs(prefs); } bool CanCombineDimensions(DimensionIndex dim_i, int dir_i, DimensionIndex dim_j, int dir_j, Index size_j) const override { return base_->CanCombineDimensions(dim_i, dir_i, dim_j, dir_j, size_j); } NDIterable::IterationBufferConstraint GetIterationBufferConstraint( NDIterable::IterationLayoutView layout) const override { return base_->GetIterationBufferConstraint(layout); } std::ptrdiff_t GetWorkingMemoryBytesPerElement( NDIterable::IterationLayoutView layout, IterationBufferKind buffer_kind) const override { return base_->GetWorkingMemoryBytesPerElement(layout, buffer_kind); } DataType dtype() const override { return base_->dtype(); } ArenaAllocator<> get_allocator() const override { return base_->get_allocator(); } NDIterator::Ptr GetIterator( NDIterable::IterationBufferKindLayoutView layout) const override { return base_->GetIterator(layout); } private: BasePointer base_; }; class ReinterpretCastNDIterable : public NDIterableAdapter<ReinterpretCastNDIterable> { public: ReinterpretCastNDIterable(NDIterable::Ptr base, DataType new_dtype, ArenaAllocator<> allocator) : NDIterableAdapter<ReinterpretCastNDIterable>(std::move(base)), dtype_(new_dtype) {} DataType dtype() const override { return dtype_; } private: DataType dtype_; }; } NDIterable::Ptr GetConvertedInputNDIterable( NDIterable::Ptr iterable, DataType target_type, const DataTypeConversionLookupResult& conversion) { assert(DataTypeConversionFlags::kSupported == (conversion.flags & DataTypeConversionFlags::kSupported)); if (DataTypeConversionFlags::kIdentity == (conversion.flags & DataTypeConversionFlags::kIdentity)) { return iterable; } auto allocator = iterable->get_allocator(); if (DataTypeConversionFlags::kCanReinterpretCast == (conversion.flags & DataTypeConversionFlags::kCanReinterpretCast)) { return MakeUniqueWithVirtualIntrusiveAllocator<ReinterpretCastNDIterable>( allocator, std::move(iterable), target_type); } return GetElementwiseInputTransformNDIterable({{std::move(iterable)}}, target_type, conversion.closure, allocator.arena()); } NDIterable::Ptr GetConvertedOutputNDIterable( NDIterable::Ptr iterable, DataType source_type, const DataTypeConversionLookupResult& conversion) { assert(!!(conversion.flags & DataTypeConversionFlags::kSupported)); if (!!(conversion.flags & DataTypeConversionFlags::kIdentity)) { return iterable; } auto allocator = iterable->get_allocator(); if (!!(conversion.flags & DataTypeConversionFlags::kCanReinterpretCast)) { return MakeUniqueWithVirtualIntrusiveAllocator<ReinterpretCastNDIterable>( allocator, std::move(iterable), source_type); } return GetElementwiseOutputTransformNDIterable( std::move(iterable), source_type, conversion.closure, allocator.arena()); } } }
#include "tensorstore/internal/nditerable_data_type_conversion.h" #include <stdint.h> #include <memory> #include <new> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/data_type_conversion.h" #include "tensorstore/index.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_array.h" #include "tensorstore/internal/nditerable_copy.h" #include "tensorstore/internal/nditerable_transformed_array.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DataType; using ::tensorstore::dtype_v; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::Shared; using ::tensorstore::SharedArray; using ::tensorstore::TransformedArray; using ::tensorstore::internal::GetDataTypeConverter; using ::testing::Pair; using ::tensorstore::dtypes::json_t; using ::tensorstore::dtypes::string_t; } class NDIterableDataTypeConversionTest : public ::testing::TestWithParam<bool> { protected: tensorstore::internal::Arena arena; std::pair<absl::Status, SharedArray<const void>> Convert( TransformedArray<Shared<const void>> source, DataType target_dtype) { tensorstore::internal::Arena arena; auto target = tensorstore::AllocateArray(source.shape(), tensorstore::c_order, tensorstore::value_init, target_dtype); auto source_iterable = tensorstore::internal::GetTransformedArrayNDIterable(source, &arena) .value(); auto target_iterable = tensorstore::internal::GetArrayNDIterable(target, &arena); if (GetParam()) { source_iterable = GetConvertedInputNDIterable( std::move(source_iterable), target_dtype, GetDataTypeConverter(source.dtype(), target_dtype)); } else { target_iterable = GetConvertedOutputNDIterable( std::move(target_iterable), source.dtype(), GetDataTypeConverter(source.dtype(), target_dtype)); } tensorstore::internal::NDIterableCopier copier( *source_iterable, *target_iterable, target.shape(), tensorstore::c_order, &arena); absl::Status status = copier.Copy(); return std::make_pair(status, target); } }; INSTANTIATE_TEST_SUITE_P(GetConvertedInputNDIterable, NDIterableDataTypeConversionTest, ::testing::Values(true)); INSTANTIATE_TEST_SUITE_P(GetConvertedOutputNDIterable, NDIterableDataTypeConversionTest, ::testing::Values(false)); TEST_P(NDIterableDataTypeConversionTest, Int32ToInt32) { EXPECT_THAT(Convert(MakeArray<int32_t>({1, 2, 3}), dtype_v<int32_t>), Pair(absl::OkStatus(), MakeArray<int32_t>({1, 2, 3}))); } TEST_P(NDIterableDataTypeConversionTest, Int32ToUint32) { EXPECT_THAT(Convert(MakeArray<int32_t>({1, 2, 3}), dtype_v<uint32_t>), Pair(absl::OkStatus(), MakeArray<uint32_t>({1, 2, 3}))); } TEST_P(NDIterableDataTypeConversionTest, Int32ToString) { EXPECT_THAT(Convert(MakeArray<int32_t>({1, 2, 3}), dtype_v<string_t>), Pair(absl::OkStatus(), MakeArray<string_t>({"1", "2", "3"}))); } TEST_P(NDIterableDataTypeConversionTest, JsonToString) { EXPECT_THAT( Convert(MakeArray<json_t>({"hello", "world", 3}), dtype_v<string_t>), Pair(MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected string, but received: 3"), MakeArray<string_t>({"hello", "world", ""}))); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/nditerable_data_type_conversion.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/nditerable_data_type_conversion_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d5247d11-dec1-4e23-8082-84562476de33
cpp
google/quiche
metadata_decoder
quiche/quic/core/http/metadata_decoder.cc
quiche/quic/core/http/metadata_decoder_test.cc
#include "quiche/quic/core/http/metadata_decoder.h" #include <cstddef> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/http/quic_header_list.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" namespace quic { MetadataDecoder::MetadataDecoder(QuicStreamId id, size_t max_header_list_size, size_t frame_header_len, size_t payload_length) : qpack_decoder_(0, 0, &delegate_), accumulator_(id, &qpack_decoder_, &decoder_, max_header_list_size), frame_len_(frame_header_len + payload_length), bytes_remaining_(payload_length) {} bool MetadataDecoder::Decode(absl::string_view payload) { accumulator_.Decode(payload); bytes_remaining_ -= payload.length(); return decoder_.error_code() == QUIC_NO_ERROR; } bool MetadataDecoder::EndHeaderBlock() { QUIC_BUG_IF(METADATA bytes remaining, bytes_remaining_ != 0) << "More metadata remaining: " << bytes_remaining_; accumulator_.EndHeaderBlock(); return !decoder_.header_list_size_limit_exceeded(); } void MetadataDecoder::MetadataHeadersDecoder::OnHeadersDecoded( QuicHeaderList headers, bool header_list_size_limit_exceeded) { header_list_size_limit_exceeded_ = header_list_size_limit_exceeded; headers_ = std::move(headers); } void MetadataDecoder::MetadataHeadersDecoder::OnHeaderDecodingError( QuicErrorCode error_code, absl::string_view error_message) { error_code_ = error_code; error_message_ = absl::StrCat("Error decoding metadata: ", error_message); } }
#include "quiche/quic/core/http/metadata_decoder.h" #include <string> #include "absl/strings/escaping.h" #include "quiche/quic/core/qpack/qpack_encoder.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { class MetadataDecoderTest : public QuicTest { protected: std::string EncodeHeaders(quiche::HttpHeaderBlock& headers) { quic::NoopDecoderStreamErrorDelegate delegate; quic::QpackEncoder encoder(&delegate, quic::HuffmanEncoding::kDisabled, quic::CookieCrumbling::kDisabled); return encoder.EncodeHeaderList(id_, headers, nullptr); } size_t max_header_list_size = 1 << 20; const QuicStreamId id_ = 1; }; TEST_F(MetadataDecoderTest, Initialize) { const size_t frame_header_len = 4; const size_t payload_len = 123; MetadataDecoder decoder(id_, max_header_list_size, frame_header_len, payload_len); EXPECT_EQ(frame_header_len + payload_len, decoder.frame_len()); EXPECT_EQ("", decoder.error_message()); EXPECT_TRUE(decoder.headers().empty()); } TEST_F(MetadataDecoderTest, Decode) { quiche::HttpHeaderBlock headers; headers["key1"] = "val1"; headers["key2"] = "val2"; headers["key3"] = "val3"; std::string data = EncodeHeaders(headers); const size_t frame_header_len = 4; MetadataDecoder decoder(id_, max_header_list_size, frame_header_len, data.length()); EXPECT_TRUE(decoder.Decode(data)); EXPECT_TRUE(decoder.EndHeaderBlock()); EXPECT_EQ(quic::test::AsHeaderList(headers), decoder.headers()); } TEST_F(MetadataDecoderTest, DecodeInvalidHeaders) { std::string data = "aaaaaaaaaa"; const size_t frame_header_len = 4; MetadataDecoder decoder(id_, max_header_list_size, frame_header_len, data.length()); EXPECT_FALSE(decoder.Decode(data)); EXPECT_EQ("Error decoding metadata: Error decoding Required Insert Count.", decoder.error_message()); } TEST_F(MetadataDecoderTest, TooLarge) { quiche::HttpHeaderBlock headers; for (int i = 0; i < 1024; ++i) { headers.AppendValueOrAddHeader(absl::StrCat(i), std::string(1024, 'a')); } std::string data = EncodeHeaders(headers); EXPECT_GT(data.length(), 1 << 20); const size_t frame_header_len = 4; MetadataDecoder decoder(id_, max_header_list_size, frame_header_len, data.length()); EXPECT_TRUE(decoder.Decode(data)); EXPECT_FALSE(decoder.EndHeaderBlock()); EXPECT_TRUE(decoder.error_message().empty()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/metadata_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/metadata_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
7c94decb-6d82-4473-ad0d-6c905e6bb8ac
cpp
tensorflow/tensorflow
lookup_ops
tensorflow/core/ops/lookup_ops.cc
tensorflow/core/ops/lookup_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/dataset_stateful_op_allowlist.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeAndType; using shape_inference::ShapeHandle; namespace { Status TwoElementVectorInputsAndScalarOutputs(InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_handle; for (int i = 0; i < c->num_inputs(); ++i) { TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_handle)); } for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, c->Scalar()); } return absl::OkStatus(); } Status ScalarAndTwoElementVectorInputsAndScalarOutputs(InferenceContext* c) { ShapeHandle handle; DimensionHandle unused_handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); for (int i = 1; i < c->num_inputs(); ++i) { TF_RETURN_IF_ERROR(c->WithRank(c->input(i), 1, &handle)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_handle)); } for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, c->Scalar()); } return absl::OkStatus(); } Status TwoElementOutput(InferenceContext* c) { c->set_output(0, c->Vector(2)); return absl::OkStatus(); } Status ScalarOutput(InferenceContext* c) { c->set_output(0, c->Scalar()); return absl::OkStatus(); } } REGISTER_OP("LookupTableFind") .Input("table_handle: Ref(string)") .Input("keys: Tin") .Input("default_value: Tout") .Output("values: Tout") .Attr("Tin: type") .Attr("Tout: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRankAtMost(c->input(2), 1, &unused)); c->set_output(0, c->UnknownShape()); return absl::OkStatus(); }); Status ValidateTableType(InferenceContext* c, const ShapeAndType& key_shape_and_type, const string& key_dtype_attr, const ShapeAndType& value_shape_and_type, const string& value_dtype_attr) { DataType key_dtype; TF_RETURN_IF_ERROR(c->GetAttr(key_dtype_attr, &key_dtype)); if (key_shape_and_type.dtype != key_dtype) { return errors::InvalidArgument( "Trying to read value with wrong dtype. " "Expected ", DataTypeString(key_shape_and_type.dtype), " got ", DataTypeString(key_dtype)); } DataType value_dtype; TF_RETURN_IF_ERROR(c->GetAttr(value_dtype_attr, &value_dtype)); if (value_shape_and_type.dtype != value_dtype) { return errors::InvalidArgument( "Trying to read value with wrong dtype. " "Expected ", DataTypeString(value_shape_and_type.dtype), " got ", DataTypeString(value_dtype)); } return absl::OkStatus(); } Status ValidateTableResourceHandle(InferenceContext* c, ShapeHandle keys, const string& key_dtype_attr, const string& value_dtype_attr, ShapeAndType* output_shape_and_type) { auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data == nullptr || handle_data->size() != 2) { output_shape_and_type->shape = c->UnknownShape(); output_shape_and_type->dtype = DT_INVALID; } else { const ShapeAndType& key_shape_and_type = (*handle_data)[0]; const ShapeAndType& value_shape_and_type = (*handle_data)[1]; TF_RETURN_IF_ERROR(ValidateTableType(c, key_shape_and_type, key_dtype_attr, value_shape_and_type, value_dtype_attr)); output_shape_and_type->dtype = value_shape_and_type.dtype; if (c->RankKnown(key_shape_and_type.shape) && c->RankKnown(keys)) { int keys_rank = c->Rank(keys); int key_suffix_rank = c->Rank(key_shape_and_type.shape); if (keys_rank < key_suffix_rank) { return errors::InvalidArgument( "Expected keys to have suffix ", c->DebugString(key_shape_and_type.shape), " but saw shape: ", c->DebugString(keys)); } for (int d = 0; d < key_suffix_rank; d++) { DimensionHandle dim = c->Dim(key_shape_and_type.shape, d); TF_RETURN_IF_ERROR( c->ReplaceDim(keys, keys_rank - key_suffix_rank + d, dim, &keys)); } std::vector<DimensionHandle> keys_prefix_vec; keys_prefix_vec.reserve(keys_rank - key_suffix_rank); for (int d = 0; d < keys_rank - key_suffix_rank; ++d) { keys_prefix_vec.push_back(c->Dim(keys, d)); } ShapeHandle keys_prefix = c->MakeShape(keys_prefix_vec); TF_RETURN_IF_ERROR(c->Concatenate(keys_prefix, value_shape_and_type.shape, &output_shape_and_type->shape)); } else { output_shape_and_type->shape = c->UnknownShape(); } } return absl::OkStatus(); } REGISTER_OP("LookupTableFindV2") .Input("table_handle: resource") .Input("keys: Tin") .Input("default_value: Tout") .Output("values: Tout") .Attr("Tin: type") .Attr("Tout: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); ShapeAndType value_shape_and_type; TF_RETURN_IF_ERROR(ValidateTableResourceHandle( c, c->input(1), "Tin", "Tout", &value_shape_and_type)); c->set_output(0, value_shape_and_type.shape); return absl::OkStatus(); }); ALLOW_STATEFUL_OP_FOR_DATASET_FUNCTIONS("LookupTableFindV2"); REGISTER_OP("LookupTableInsert") .Input("table_handle: Ref(string)") .Input("keys: Tin") .Input("values: Tout") .Attr("Tin: type") .Attr("Tout: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); return absl::OkStatus(); }); REGISTER_OP("LookupTableInsertV2") .Input("table_handle: resource") .Input("keys: Tin") .Input("values: Tout") .Attr("Tin: type") .Attr("Tout: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); return absl::OkStatus(); }); REGISTER_OP("LookupTableRemoveV2") .Input("table_handle: resource") .Input("keys: Tin") .Attr("Tin: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 1, &handle)); return absl::OkStatus(); }); REGISTER_OP("LookupTableSize") .Input("table_handle: Ref(string)") .Output("size: int64") .SetShapeFn(TwoElementVectorInputsAndScalarOutputs); ALLOW_STATEFUL_OP_FOR_DATASET_FUNCTIONS("LookupTableSize"); REGISTER_OP("LookupTableSizeV2") .Input("table_handle: resource") .Output("size: int64") .SetShapeFn(ScalarAndTwoElementVectorInputsAndScalarOutputs); ALLOW_STATEFUL_OP_FOR_DATASET_FUNCTIONS("LookupTableSizeV2"); REGISTER_OP("LookupTableExport") .Input("table_handle: Ref(string)") .Output("keys: Tkeys") .Output("values: Tvalues") .Attr("Tkeys: type") .Attr("Tvalues: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle values = c->UnknownShape(); TF_RETURN_IF_ERROR(c->WithRankAtLeast(values, 1, &values)); ShapeHandle keys = c->Vector(c->Dim(values, 0)); c->set_output(0, keys); c->set_output(1, values); return absl::OkStatus(); }); REGISTER_OP("LookupTableExportV2") .Input("table_handle: resource") .Output("keys: Tkeys") .Output("values: Tvalues") .Attr("Tkeys: type") .Attr("Tvalues: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data != nullptr && handle_data->size() == 2) { const ShapeAndType& key_shape_and_type = (*handle_data)[0]; const ShapeAndType& value_shape_and_type = (*handle_data)[1]; TF_RETURN_IF_ERROR(ValidateTableType(c, key_shape_and_type, "Tkeys", value_shape_and_type, "Tvalues")); } c->set_output(0, c->UnknownShape()); c->set_output(1, c->UnknownShape()); return absl::OkStatus(); }); REGISTER_OP("LookupTableImport") .Input("table_handle: Ref(string)") .Input("keys: Tin") .Input("values: Tout") .Attr("Tin: type") .Attr("Tout: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); return absl::OkStatus(); }); REGISTER_OP("LookupTableImportV2") .Input("table_handle: resource") .Input("keys: Tin") .Input("values: Tout") .Attr("Tin: type") .Attr("Tout: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); ShapeHandle keys; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &keys)); ShapeHandle values; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(2), 1, &values)); DimensionHandle unused; TF_RETURN_IF_ERROR(c->Merge(c->Dim(keys, 0), c->Dim(values, 0), &unused)); return absl::OkStatus(); }); Status MutableHashTableShape(InferenceContext* c, const ShapeHandle& key, const ShapeHandle& value) { c->set_output(0, c->Scalar()); ShapeHandle key_s; TF_RETURN_IF_ERROR(c->WithRankAtMost(key, 1, &key_s)); DataType key_t; TF_RETURN_IF_ERROR(c->GetAttr("key_dtype", &key_t)); DataType value_t; TF_RETURN_IF_ERROR(c->GetAttr("value_dtype", &value_t)); c->set_output_handle_shapes_and_types( 0, std::vector<ShapeAndType>{{key_s, key_t}, {value, value_t}}); return absl::OkStatus(); } Status MutableHashTableShapeFn(InferenceContext* c) { return MutableHashTableShape(c, c->Scalar(), c->Scalar()); } Status MutableHashTableOfTensorsShapeFn(InferenceContext* c) { PartialTensorShape value_p; TF_RETURN_IF_ERROR(c->GetAttr("value_shape", &value_p)); ShapeHandle value_s; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(value_p, &value_s)); return MutableHashTableShape(c, c->Scalar(), value_s); } Status MutableDenseHashTableShapeFn(InferenceContext* c) { PartialTensorShape value_p; TF_RETURN_IF_ERROR(c->GetAttr("value_shape", &value_p)); ShapeHandle value_s; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape(value_p, &value_s)); return MutableHashTableShape(c, c->input(0), value_s); } REGISTER_OP("HashTable") .Output("table_handle: Ref(string)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("HashTableV2") .Output("table_handle: resource") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .SetIsStateful() .SetShapeFn(ScalarOutput); REGISTER_OP("AnonymousHashTable") .Output("table_handle: resource") .Attr("key_dtype: type") .Attr("value_dtype: type") .SetIsStateful() .SetShapeFn(ScalarOutput); REGISTER_OP("MutableHashTable") .Output("table_handle: Ref(string)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("MutableHashTableV2") .Output("table_handle: resource") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .SetIsStateful() .SetShapeFn(MutableHashTableShapeFn); REGISTER_OP("AnonymousMutableHashTable") .Output("table_handle: resource") .Attr("key_dtype: type") .Attr("value_dtype: type") .SetIsStateful() .SetShapeFn(MutableHashTableShapeFn); REGISTER_OP("MutableHashTableOfTensors") .Output("table_handle: Ref(string)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .Attr("value_shape: shape = {}") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("MutableHashTableOfTensorsV2") .Output("table_handle: resource") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .Attr("value_shape: shape = {}") .SetIsStateful() .SetShapeFn(MutableHashTableOfTensorsShapeFn); REGISTER_OP("AnonymousMutableHashTableOfTensors") .Output("table_handle: resource") .Attr("key_dtype: type") .Attr("value_dtype: type") .Attr("value_shape: shape = {}") .SetIsStateful() .SetShapeFn(MutableHashTableOfTensorsShapeFn); REGISTER_OP("MutableDenseHashTable") .Input("empty_key: key_dtype") .Output("table_handle: Ref(string)") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .Attr("value_shape: shape = {}") .Attr("initial_num_buckets: int = 131072") .Attr("max_load_factor: float = 0.8") .SetIsStateful() .SetShapeFn(TwoElementOutput); REGISTER_OP("MutableDenseHashTableV2") .Input("empty_key: key_dtype") .Input("deleted_key: key_dtype") .Output("table_handle: resource") .Attr("container: string = ''") .Attr("shared_name: string = ''") .Attr("use_node_name_sharing: bool = false") .Attr("key_dtype: type") .Attr("value_dtype: type") .Attr("value_shape: shape = {}") .Attr("initial_num_buckets: int = 131072") .Attr("max_load_factor: float = 0.8") .SetIsStateful() .SetShapeFn(MutableDenseHashTableShapeFn); REGISTER_OP("AnonymousMutableDenseHashTable") .Input("empty_key: key_dtype") .Input("deleted_key: key_dtype") .Output("table_handle: resource") .Attr("key_dtype: type") .Attr("value_dtype: type") .Attr("value_shape: shape = {}") .Attr("initial_num_buckets: int = 131072") .Attr("max_load_factor: float = 0.8") .SetIsStateful() .SetShapeFn(MutableDenseHashTableShapeFn); REGISTER_OP("InitializeTable") .Input("table_handle: Ref(string)") .Input("keys: Tkey") .Input("values: Tval") .Attr("Tkey: type") .Attr("Tval: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); ShapeHandle keys; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &keys)); TF_RETURN_IF_ERROR(c->Merge(keys, c->input(2), &keys)); return absl::OkStatus(); }); REGISTER_OP("InitializeTableV2") .Input("table_handle: resource") .Input("keys: Tkey") .Input("values: Tval") .Attr("Tkey: type") .Attr("Tval: type") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); ShapeHandle keys; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &keys)); TF_RETURN_IF_ERROR(c->Merge(keys, c->input(2), &keys)); return absl::OkStatus(); }); REGISTER_OP("InitializeTableFromTextFile") .Input("table_handle: Ref(string)") .Input("filename: string") .Attr("key_index: int >= -2") .Attr("value_index: int >= -2") .Attr("vocab_size: int >= -1 = -1") .Attr("delimiter: string = '\t'") .Attr("offset: int = 0") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &handle)); DimensionHandle unused_dim; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(handle, 0), 2, &unused_dim)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &handle)); return absl::OkStatus(); }); REGISTER_OP("InitializeTableFromTextFileV2") .Input("table_handle: resource") .Input("filename: string") .Attr("key_index: int >= -2") .Attr("value_index: int >= -2") .Attr("vocab_size: int >= -1 = -1") .Attr("delimiter: string = '\t'") .Attr("offset: int = 0") .SetShapeFn([](InferenceContext* c) { ShapeHandle handle; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &handle)); TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &handle)); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(LookupOpsTest, LookupTableFindV2_ShapeFn) { ShapeInferenceTestOp op("LookupTableFindV2"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];?;?"); TF_ASSERT_OK(NodeDefBuilder("test", "LookupTableFindV2") .Input({"table_handle", 0, DT_RESOURCE}) .Input({"keys", 0, DT_INT64}) .Input({"default_value", 0, DT_FLOAT}) .Attr("Tin", DT_INT64) .Attr("Tout", DT_FLOAT) .Finalize(&op.node_def)); std::vector<std::vector<ShapeInferenceTestOp::ShapeAndType>> types; auto set_types = [&op, &types](DataType key_type, DataType value_type) { types.emplace_back(); auto& table = types.back(); table.emplace_back("[3]", key_type); table.emplace_back("[4]", value_type); op.input_resource_handle_shapes_and_types = {&table, nullptr, nullptr}; }; INFER_OK(op, "[];[?,3];[4]", "?"); set_types(DT_INT32, DT_FLOAT); INFER_ERROR("read value with wrong dtype", op, "[];[?,3];[4]"); set_types(DT_INT64, DT_INT64); INFER_ERROR("read value with wrong dtype", op, "[];[?,3];[4]"); set_types(DT_INT64, DT_FLOAT); INFER_OK(op, "[];[?,3];[4]", "[d1_0,4]"); INFER_OK(op, "[];[1,3];[4]", "[d1_0,4]"); INFER_OK(op, "[];[1,?];[4]", "[d1_0,4]"); } TEST(LookupOpsTest, LookupTableExportV2_ShapeFn) { ShapeInferenceTestOp op("LookupTableExportV2"); TF_ASSERT_OK(NodeDefBuilder("test", "LookupTableExportV2") .Input({"table_handle", 0, DT_RESOURCE}) .Attr("Tkeys", DT_INT64) .Attr("Tvalues", DT_FLOAT) .Finalize(&op.node_def)); std::vector<std::vector<ShapeInferenceTestOp::ShapeAndType>> types; auto set_types = [&op, &types](DataType key_type, DataType value_type) { types.emplace_back(); auto& table = types.back(); table.emplace_back("[3]", key_type); table.emplace_back("[4]", value_type); op.input_resource_handle_shapes_and_types = {&table}; }; set_types(DT_INT32, DT_FLOAT); INFER_ERROR("read value with wrong dtype", op, "[]"); set_types(DT_INT64, DT_INT64); INFER_ERROR("read value with wrong dtype", op, "[]"); set_types(DT_INT64, DT_FLOAT); INFER_OK(op, "[]", "?;?"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/lookup_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/lookup_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3f724e4c-5886-46ce-b51a-9bca38c3cd16
cpp
google/arolla
type_meta_eval_strategies
arolla/expr/operators/type_meta_eval_strategies.cc
arolla/expr/operators/type_meta_eval_strategies_test.cc
#include "arolla/expr/operators/type_meta_eval_strategies.h" #include <algorithm> #include <cstddef> #include <functional> #include <initializer_list> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/array/qtype/types.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/backend_wrapping_operator.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operators/casting_registry.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/shape_qtype.h" #include "arolla/qtype/standard_type_properties/properties.h" #include "arolla/qtype/weak_qtype.h" #include "arolla/util/bytes.h" #include "arolla/util/text.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { using ::arolla::expr::BackendWrappingOperator; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr_operators::CastingRegistry; bool IsIntegral(const QType* qtype) { return IsIntegralScalarQType(GetScalarQTypeOrNull(qtype)); } bool IsFloatingPoint(QTypePtr qtype) { return IsFloatingPointScalarQType(GetScalarQTypeOrNull(qtype)); } bool IsNumeric(const QType* qtype) { return IsNumericScalarQType(GetScalarQTypeOrNull(qtype)); } bool IsBoolean(QTypePtr qtype) { return GetScalarQTypeOrNull(qtype) == GetQType<bool>(); } bool IsString(QTypePtr qtype) { ASSIGN_OR_RETURN(qtype, GetScalarQType(qtype), false); return qtype == GetQType<Bytes>() || qtype == GetQType<Text>(); } bool IsText(QTypePtr qtype) { return GetScalarQTypeOrNull(qtype) == GetQType<Text>(); } namespace { absl::Status InvalidArgTypeError(absl::Span<const QTypePtr> qtypes, int index, absl::string_view msg) { absl::string_view name = qtypes[index] == nullptr ? "null" : qtypes[index]->name(); return absl::InvalidArgumentError(absl::StrFormat( "expected all arguments to %s, but got %s for %i-th argument", msg, name, index)); } } namespace type_meta { Strategy ArgCount(int n) { return [n](absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { if (types.size() != n) { return absl::InvalidArgumentError(absl::StrFormat( "expected to have %d arguments, got %d", n, types.size())); } return QTypes(types.begin(), types.end()); }; } absl::StatusOr<QTypePtr> ApplyStrategy(const Strategy& strategy, absl::Span<const QTypePtr> qtypes) { if (std::find(qtypes.begin(), qtypes.end(), nullptr) != qtypes.end()) { return nullptr; } ASSIGN_OR_RETURN(auto result, strategy(qtypes)); if (result.size() != 1) { return absl::FailedPreconditionError(absl::StrFormat( "unexpected number of resulting qtypes from MetaEval strategy: " "expected 1, got %d; probably the strategy is incorrect", result.size())); } return result[0]; } BackendWrappingOperator::TypeMetaEvalStrategy CallableStrategy( type_meta::Strategy strategy) { return [strategy = std::move(strategy)](absl::Span<const QTypePtr> ts) { return type_meta::ApplyStrategy(strategy, ts); }; } template <> Strategy Chain(absl::Span<const Strategy> strategies) { return [strategies_ = std::vector<Strategy>(strategies.begin(), strategies.end())]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { QTypes result(types.begin(), types.end()); for (const auto& s : strategies_) { ASSIGN_OR_RETURN(result, s(result)); } return result; }; } template <> Strategy Or(absl::Span<const Strategy> strategies) { return [strategies_ = std::vector<Strategy>{strategies.begin(), strategies.end()}]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { std::vector<std::string> errors; for (const auto& s : strategies_) { auto result = s(types); if (result.ok()) { return result; } errors.push_back(result.status().ToString()); } return absl::InvalidArgumentError( absl::StrFormat("none of meta eval strategies matches types %s: %s", FormatTypeVector(types), absl::StrJoin(errors, "; "))); }; } namespace { absl::StatusOr<QTypes> AllTypesAre( absl::Span<const QTypePtr> types, std::function<bool(QTypePtr qtype)> predicate, absl::string_view predicate_str) { for (size_t i = 0; i < types.size(); ++i) { if (!predicate(types[i])) { return InvalidArgTypeError(types, i, absl::StrFormat("be %s", predicate_str)); } } return QTypes(types.begin(), types.end()); } } absl::StatusOr<QTypes> AllSame(absl::Span<const QTypePtr> types) { if (types.empty()) return QTypes{}; for (size_t i = 1; i < types.size(); ++i) { if (types[i] != types[0]) { return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("expected all types to be equal, got %s and %s", types[0]->name(), types[i]->name())); } } return QTypes{types.begin(), types.end()}; } absl::StatusOr<QTypes> AllSameScalarType(absl::Span<const QTypePtr> types) { if (types.empty()) return QTypes{}; ASSIGN_OR_RETURN(auto qtype_0, GetScalarQType(types[0])); for (size_t i = 1; i < types.size(); ++i) { ASSIGN_OR_RETURN(auto qtype, GetScalarQType(types[i])); if (qtype != qtype_0) { return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "expected all scalar types to be equal, got %s and %s", types[0]->name(), types[i]->name())); } } return QTypes{types.begin(), types.end()}; } absl::StatusOr<QTypes> Array(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsArrayLikeQType, "array"); } absl::StatusOr<QTypes> Numeric(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsNumeric, "numeric"); } absl::StatusOr<QTypes> Integral(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsIntegral, "integral"); } absl::StatusOr<QTypes> Floating(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsFloatingPoint, "floating point"); } absl::StatusOr<QTypes> Boolean(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsBoolean, "boolean"); } absl::StatusOr<QTypes> String(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsString, "Text or Bytes"); } absl::StatusOr<QTypes> Text(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsText, "Text"); } absl::StatusOr<QTypes> Optional(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsOptionalQType, "optional"); } absl::StatusOr<QTypes> OptionalLike(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsOptionalLikeQType, "optional"); } absl::StatusOr<QTypes> Scalar(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsScalarQType, "scalar"); } absl::StatusOr<QTypes> ScalarOrOptional(absl::Span<const QTypePtr> types) { return AllTypesAre( types, [](QTypePtr t) { return IsScalarQType(t) || IsOptionalQType(t); }, "scalar or optional scalar"); } absl::StatusOr<QTypes> IntegralScalar(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsIntegralScalarQType, "integral"); } absl::StatusOr<QTypes> FloatingScalar(absl::Span<const QTypePtr> types) { return AllTypesAre(types, IsFloatingPointScalarQType, "floating point"); } absl::StatusOr<QTypes> Unary(absl::Span<const QTypePtr> types) { if (types.size() != 1) { return absl::InvalidArgumentError( absl::StrCat("expected to have one argument, got ", types.size())); } return QTypes(types.begin(), types.end()); } absl::StatusOr<QTypes> Binary(absl::Span<const QTypePtr> types) { if (types.size() != 2) { return absl::InvalidArgumentError( absl::StrCat("expected to have two arguments, got ", types.size())); } return QTypes(types.begin(), types.end()); } absl::StatusOr<QTypes> Ternary(absl::Span<const QTypePtr> types) { if (types.size() != 3) { return absl::InvalidArgumentError( absl::StrCat("expected to have three arguments, got ", types.size())); } return QTypes(types.begin(), types.end()); } absl::StatusOr<QTypes> CommonType(absl::Span<const QTypePtr> types) { const CastingRegistry* registry = CastingRegistry::GetInstance(); ASSIGN_OR_RETURN(auto common_type, registry->CommonType(types, true)); return QTypes{common_type}; } absl::StatusOr<QTypes> CommonFloatType(absl::Span<const QTypePtr> types) { std::vector<QTypePtr> extended_types; extended_types.reserve(types.size() + 1); extended_types.assign(types.begin(), types.end()); extended_types.push_back(GetWeakFloatQType()); return CommonType(extended_types); } namespace { absl::StatusOr<QTypes> TakeArguments(absl::Span<const int> index_list, absl::Span<const QTypePtr> types) { if (index_list.empty()) { return QTypes{}; } QTypes arg_types; arg_types.reserve(index_list.size()); for (int arg : index_list) { if (arg < 0) { return absl::InvalidArgumentError( absl::StrFormat("invalid argument index: %d", arg)); } if (arg >= types.size()) { size_t max_i = *std::max_element(index_list.begin(), index_list.end()); return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("expected to have at least %d argument(s), got %d", max_i + 1, types.size())); } arg_types.push_back(types[arg]); } return arg_types; } } Strategy Nth(std::initializer_list<int> index_list) { absl::InlinedVector<int, 8> indexes(index_list); return [indexes](absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { return TakeArguments(indexes, types); }; } Strategy NthMatch(std::initializer_list<int> index_list, Strategy strategy) { absl::InlinedVector<int, 8> indexes(index_list); return [indexes, strategy]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { ASSIGN_OR_RETURN(auto arg_types, TakeArguments(indexes, types)); RETURN_IF_ERROR(strategy(arg_types).status()) << "for arguments (" << absl::StrJoin(indexes, ", ") << ")"; return QTypes{types.begin(), types.end()}; }; } Strategy NthMatch(int n, Strategy strategy) { return NthMatch({n}, strategy); } Strategy NthApply(std::initializer_list<int> index_list, Strategy strategy) { absl::InlinedVector<int, 8> indexes(index_list); return [indexes, strategy]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { ASSIGN_OR_RETURN(auto arg_types, TakeArguments(indexes, types)); ASSIGN_OR_RETURN( auto applied_args, strategy(arg_types), _ << "for arguments (" << absl::StrJoin(indexes, ", ") << ")"); QTypes res(types.begin(), types.end()); for (int i = 0; i < indexes.size(); i++) { res[indexes[i]] = applied_args[i]; } return res; }; } Strategy NthApply(int n, Strategy strategy) { return NthApply({n}, strategy); } Strategy FirstMatchingTypeStrategy(std::function<bool(QTypePtr)> predicate_fn, Strategy default_fn) { return [=](absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { if (auto it = std::find_if(types.begin(), types.end(), predicate_fn); it != types.end()) { return QTypes{*it}; } else { return default_fn(types); } }; } absl::StatusOr<QTypes> ToOptional(absl::Span<const QTypePtr> types) { QTypes result(types.size(), nullptr); for (size_t i = 0; i < types.size(); ++i) { ASSIGN_OR_RETURN(result[i], ToOptionalLikeQType(types[i]), _ << "in argument " << i); } return result; } absl::StatusOr<QTypes> ToTestResult(absl::Span<const QTypePtr> types) { QTypes result(types.size(), nullptr); for (size_t i = 0; i < types.size(); ++i) { ASSIGN_OR_RETURN(auto opt_type, ToOptionalLikeQType(types[i]), _ << "in argument " << i); ASSIGN_OR_RETURN(result[i], GetPresenceQType(opt_type), _ << "in argument " << i); } return result; } absl::StatusOr<QTypes> ToShape(absl::Span<const QTypePtr> types) { QTypes result(types.size(), nullptr); for (size_t i = 0; i < types.size(); ++i) { ASSIGN_OR_RETURN(result[i], GetShapeQType(types[i]), _ << "in argument " << i); } return result; } absl::StatusOr<QTypes> IsShape(absl::Span<const QTypePtr> qtypes) { for (auto qtype : qtypes) { if (!IsShapeQType(qtype)) { return absl::InvalidArgumentError(absl::StrFormat( "expected all arguments to be shapes, got %s", qtype->name())); } } return QTypes{qtypes.begin(), qtypes.end()}; } absl::StatusOr<QTypes> IsArrayShape(absl::Span<const QTypePtr> qtypes) { for (auto qtype : qtypes) { if (!IsArrayLikeShapeQType(qtype)) { return absl::InvalidArgumentError(absl::StrFormat( "expected all arguments to be array shapes, got %s", qtype->name())); } } return QTypes{qtypes.begin(), qtypes.end()}; } absl::StatusOr<QTypes> IsEdge(absl::Span<const QTypePtr> qtypes) { for (auto qtype : qtypes) { if (dynamic_cast<const EdgeQType*>(qtype) == nullptr) { return absl::InvalidArgumentError(absl::StrFormat( "expected all arguments to be edges, got %s", qtype->name())); } } return QTypes{qtypes.begin(), qtypes.end()}; } absl::StatusOr<QTypes> IsArray(absl::Span<const QTypePtr> qtypes) { for (auto qtype : qtypes) { if (!IsArrayQType(qtype)) { return absl::InvalidArgumentError(absl::StrFormat( "expected all arguments to be Arrays, got %s", qtype->name())); } } return QTypes{qtypes.begin(), qtypes.end()}; } absl::StatusOr<QTypes> IsDenseArray(absl::Span<const QTypePtr> qtypes) { for (auto qtype : qtypes) { if (!IsDenseArrayQType(qtype)) { return absl::InvalidArgumentError(absl::StrFormat( "expected all arguments to be DenseArrays, got %s", qtype->name())); } } return QTypes{qtypes.begin(), qtypes.end()}; } Strategy LiftResultType(QTypePtr scalar_type) { return [scalar_type]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { for (auto type : types) { if (IsArrayLikeQType(type)) { ASSIGN_OR_RETURN(auto result_type, WithScalarQType(type, scalar_type)); return QTypes{result_type}; } } for (auto type : types) { if (IsOptionalLikeQType(type)) { ASSIGN_OR_RETURN(auto result_type, WithScalarQType(type, scalar_type)); return QTypes{result_type}; } } return QTypes{scalar_type}; }; } Strategy LiftNthType(int n) { return [n](absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { if (n >= types.size()) { return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("expected at least %d arguments, got %d", n + 1, types.size())); } ASSIGN_OR_RETURN(auto scalar_type, GetScalarQType(types[n])); return LiftResultType(scalar_type)(types); }; } absl::StatusOr<QTypes> Broadcast(absl::Span<const QTypePtr> qtypes) { const auto is_scalar_like_shape_qtype = [](const ShapeQType* qtype) { return qtype == GetQType<ScalarShape>() || qtype == GetQType<OptionalScalarShape>(); }; const auto combine_shape_qtypes = [&](const ShapeQType* lhs, const ShapeQType* rhs) -> absl::StatusOr<const ShapeQType*> { if (lhs == rhs) { return lhs; } if (is_scalar_like_shape_qtype(lhs)) { return rhs; } else if (is_scalar_like_shape_qtype(rhs)) { return lhs; } return absl::InvalidArgumentError("unable to broadcast arguments"); }; const ShapeQType* common_shape_qtype = static_cast<const ShapeQType*>(GetQType<ScalarShape>()); for (auto qtype : qtypes) { ASSIGN_OR_RETURN(const ShapeQType* shape_qtype, GetShapeQType(qtype)); ASSIGN_OR_RETURN(common_shape_qtype, combine_shape_qtypes(common_shape_qtype, shape_qtype), _ << JoinTypeNames(qtypes)); } if (is_scalar_like_shape_qtype(common_shape_qtype)) { return QTypes{qtypes.begin(), qtypes.end()}; } QTypes result; result.reserve(qtypes.size()); for (QTypePtr qtype : qtypes) { ASSIGN_OR_RETURN(qtype, GetScalarQType(qtype)); ASSIGN_OR_RETURN(qtype, common_shape_qtype->WithValueQType(qtype)); result.push_back(qtype); } return result; } Strategy Is(QTypePtr desired_type) { return [desired_type]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { for (size_t i = 0; i < types.size(); ++i) { if (types[i] != desired_type) { std::string arg_msg = types.size() == 1 ? "" : absl::StrFormat(" of argument %d", i); return absl::Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("expected type%s to be %s, got %s", arg_msg, desired_type->name(), types[i]->name())); } } return QTypes{types.begin(), types.end()}; }; } Strategy IsNot(QTypePtr undesired_type) { return [undesired_type]( absl::Span<const QTypePtr> types) -> absl::StatusOr<QTypes> { for (size_t i = 0; i < types.size(); ++i) { if (types[i] == undesired_type) { std::string arg_msg = types.size() == 1 ? "" : absl::StrFormat(" of argument %d", i); return absl::Status(absl::StatusCode::kInvalidArgument, absl::StrFormat("expected type%s to be not %s", arg_msg, undesired_type->name())); } } return QTypes{types.begin(), types.end()}; }; } absl::StatusOr<QTypes> EdgeParentShapeQType(absl::Span<const QTypePtr> types) { QTypes result(types.size(), nullptr); for (size_t i = 0; i < types.size(); ++i) { if (auto edge_type = dynamic_cast<const EdgeQType*>(types[i]); edge_type != nullptr) { result[i] = edge_type->parent_shape_qtype(); } else { return absl::InvalidArgumentError( absl::StrFormat("invalid argument %d: expected an edge, got %s", i, types[i]->name())); } } return result; } absl::StatusOr<QTypes> PresenceOrType(absl::Span<const QTypePtr> types) { QTypes scalar_types; for (const auto& type : types) { ASSIGN_OR_RETURN(auto scalar_type, GetScalarQType(type)); scalar_types.push_back(scalar_type); } ASSIGN_OR_RETURN(auto common_scalar_type, CommonType(scalar_types)); auto* shape_type = &types[0]; for (size_t i = 1; i < types.size(); ++i) { if (!IsOptionalLikeQType(types[i])) { shape_type = &types[i]; break; } } ASSIGN_OR_RETURN(auto result, WithScalarQType(*shape_type, common_scalar_type[0])); return QTypes{result}; } } absl::StatusOr<expr::ExprOperatorPtr> RegisterBackendOperator( absl::string_view op_name, type_meta::Strategy strategy, absl::string_view doc) { return expr::RegisterBackendOperator( op_name, [strategy = std::move(strategy)](absl::Span<const QTypePtr> ts) { return type_meta::ApplyStrategy(strategy, ts); }, doc); } absl::StatusOr<expr::ExprOperatorPtr> RegisterBackendOperator( absl::string_view op_name, const expr::ExprOperatorSignature& signature, type_meta::Strategy strategy, absl::string_view doc) { return expr::RegisterBackendOperator( op_name, signature, [strategy = std::move(strategy)](absl::Span<const QTypePtr> ts) { return type_meta::ApplyStrategy(strategy, ts); }, doc); } }
#include "arolla/expr/operators/type_meta_eval_strategies.h" #include <cstdint> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/array/array.h" #include "arolla/array/edge.h" #include "arolla/array/qtype/types.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/edge.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/shape_qtype.h" #include "arolla/util/bytes.h" #include "arolla/util/text.h" namespace arolla::expr_operators { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::arolla::expr_operators::type_meta::AllSame; using ::arolla::expr_operators::type_meta::AllSameScalarType; using ::arolla::expr_operators::type_meta::ArgCount; using ::arolla::expr_operators::type_meta::Broadcast; using ::arolla::expr_operators::type_meta::CallableStrategy; using ::arolla::expr_operators::type_meta::FirstMatchingTypeStrategy; using ::arolla::expr_operators::type_meta::Is; using ::arolla::expr_operators::type_meta::IsArrayShape; using ::arolla::expr_operators::type_meta::IsDenseArray; using ::arolla::expr_operators::type_meta::IsEdge; using ::arolla::expr_operators::type_meta::IsNot; using ::arolla::expr_operators::type_meta::IsShape; using ::arolla::expr_operators::type_meta::LiftResultType; using ::arolla::expr_operators::type_meta::Nth; using ::arolla::expr_operators::type_meta::NthApply; using ::arolla::expr_operators::type_meta::NthMatch; using ::arolla::expr_operators::type_meta::Optional; using ::arolla::expr_operators::type_meta::OptionalLike; using ::arolla::expr_operators::type_meta::Scalar; using ::arolla::expr_operators::type_meta::ScalarOrOptional; using ::arolla::expr_operators::type_meta::ScalarTypeIs; using ::arolla::expr_operators::type_meta::ToOptional; using ::arolla::expr_operators::type_meta::ToShape; using ::arolla::expr_operators::type_meta::Unary; TEST(TypeMetaEvalStrategiesTest, ArgCount) { std::vector<QTypePtr> i32_types = {GetQType<int32_t>(), GetQType<int32_t>(), GetQType<int32_t>()}; std::vector<QTypePtr> empty = {}; EXPECT_THAT(ArgCount(3)(i32_types), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT(ArgCount(1)(empty), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to have 1 arguments, got 0"))); EXPECT_THAT(ArgCount(0)(i32_types), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to have 0 arguments, got 3"))); } TEST(TypeMetaEvalStrategiesTest, NthSingleArg) { auto second_type = CallableStrategy(Nth(1)); EXPECT_THAT(second_type({GetQType<int32_t>(), GetQType<int64_t>()}), IsOkAndHolds(GetQType<int64_t>())); EXPECT_THAT( second_type({}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to have at least 2 argument(s), got 0"))); } TEST(TypeMetaEvalStrategiesTest, NthMultipleArgs) { auto i32 = GetQType<int32_t>(); auto oi32 = GetQType<OptionalValue<int32_t>>(); auto f32 = GetQType<float>(); auto of32 = GetQType<OptionalValue<float>>(); std::vector<QTypePtr> types = {i32, oi32, f32, of32}; EXPECT_THAT((Nth({0, 2})(types)), IsOkAndHolds(ElementsAre(i32, f32))); EXPECT_THAT((Nth({1, 3})(types)), IsOkAndHolds(ElementsAre(oi32, of32))); EXPECT_THAT((Nth({0, 2, 4})(types)), StatusIs(absl::StatusCode::kInvalidArgument, "expected to have at least 5 argument(s), got 4")); } TEST(TypeMetaEvalStrategiesTest, Scalar) { EXPECT_THAT( Scalar({GetQType<int32_t>(), GetQType<float>()}), IsOkAndHolds(ElementsAre(GetQType<int32_t>(), GetQType<float>()))); EXPECT_THAT( Scalar({GetQType<int32_t>(), GetOptionalQType<int32_t>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "expected all arguments to be scalar, but got OPTIONAL_INT32"))); EXPECT_THAT(Scalar({GetQType<int32_t>(), GetDenseArrayQType<int32_t>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be scalar, but got " "DENSE_ARRAY_INT32"))); } TEST(TypeMetaEvalStrategiesTest, Optional) { EXPECT_THAT( Optional({GetOptionalQType<int32_t>(), GetOptionalQType<float>()}), IsOkAndHolds( ElementsAre(GetOptionalQType<int32_t>(), GetOptionalQType<float>()))); EXPECT_THAT( Optional({GetOptionalQType<int32_t>(), GetQType<int32_t>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be optional, but got INT32"))); EXPECT_THAT( Optional({GetOptionalQType<int32_t>(), GetDenseArrayQType<int32_t>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be optional, but got " "DENSE_ARRAY_INT32"))); } TEST(TypeMetaEvalStrategiesTest, ScalarOrOptional) { EXPECT_THAT( ScalarOrOptional({GetOptionalQType<int32_t>(), GetQType<float>()}), IsOkAndHolds( ElementsAre(GetOptionalQType<int32_t>(), GetQType<float>()))); EXPECT_THAT( ScalarOrOptional( {GetOptionalQType<int32_t>(), GetDenseArrayQType<int32_t>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "expected all arguments to be scalar or optional scalar, but got " "DENSE_ARRAY_INT32"))); } TEST(TypeMetaEvalStrategiesTest, OptionalLike) { EXPECT_THAT(OptionalLike( {GetOptionalQType<int32_t>(), GetDenseArrayQType<int32_t>()}), IsOkAndHolds(ElementsAre(GetOptionalQType<int32_t>(), GetDenseArrayQType<int32_t>()))); EXPECT_THAT( OptionalLike({GetOptionalQType<int32_t>(), GetQType<int32_t>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be optional, but got INT32"))); EXPECT_THAT( OptionalLike({GetOptionalQType<int32_t>(), GetQType<DenseArrayEdge>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be optional, but got " "DENSE_ARRAY_EDGE"))); } TEST(TypeMetaEvalStrategiesTest, FirstMatchingTypeStrategy) { auto first_numeric = CallableStrategy(FirstMatchingTypeStrategy(IsNumeric, Nth(0))); EXPECT_THAT(first_numeric({GetQType<int32_t>(), GetQType<int64_t>()}), IsOkAndHolds(GetQType<int32_t>())); EXPECT_THAT(first_numeric({GetQType<Text>(), GetQType<int64_t>()}), IsOkAndHolds(GetQType<int64_t>())); EXPECT_THAT(first_numeric({GetQType<int32_t>(), GetQType<Text>()}), IsOkAndHolds(GetQType<int32_t>())); EXPECT_THAT(first_numeric({GetQType<Text>(), GetQType<Text>()}), IsOkAndHolds(GetQType<Text>())); EXPECT_THAT( first_numeric({}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to have at least 1 argument(s), got 0"))); } TEST(TypeMetaEvalStrategiesTest, IsNumeric) { EXPECT_TRUE(IsNumeric(GetQType<int32_t>())); EXPECT_TRUE(IsNumeric(GetQType<float>())); EXPECT_TRUE(IsNumeric(GetOptionalQType<float>())); EXPECT_TRUE(IsNumeric(GetArrayQType<float>())); EXPECT_TRUE(IsNumeric(GetDenseArrayQType<float>())); EXPECT_FALSE(IsNumeric(GetQType<bool>())); EXPECT_FALSE(IsNumeric(GetQType<Bytes>())); EXPECT_FALSE(IsNumeric(GetArrayQType<bool>())); EXPECT_FALSE(IsNumeric(GetDenseArrayQType<bool>())); EXPECT_FALSE(IsNumeric(GetOptionalQType<bool>())); } TEST(TypeMetaEvalStrategiesTest, NthMatch) { std::vector<QTypePtr> i32_types = {GetQType<int32_t>(), GetQType<int32_t>(), GetQType<int32_t>()}; std::vector<QTypePtr> i32_type = {GetQType<int32_t>()}; std::vector<QTypePtr> i32_types_len_2 = {GetQType<int32_t>(), GetQType<int32_t>()}; EXPECT_THAT((NthMatch(1, Is<int32_t>)(i32_types)), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT( (NthMatch(1, Is<int64_t>)(i32_types)), StatusIs(absl::StatusCode::kInvalidArgument, "expected type to be INT64, got INT32; for arguments (1)")); EXPECT_THAT((NthMatch(1, Is<int64_t>)(i32_type)), StatusIs(absl::StatusCode::kInvalidArgument, "expected to have at least 2 argument(s), got 1")); EXPECT_THAT((NthMatch(2, Is<int32_t>)(i32_types)), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT( (NthMatch(2, Is<int64_t>)(i32_types)), StatusIs(absl::StatusCode::kInvalidArgument, "expected type to be INT64, got INT32; for arguments (2)")); EXPECT_THAT((NthMatch(2, Is<int64_t>)(i32_types_len_2)), StatusIs(absl::StatusCode::kInvalidArgument, "expected to have at least 3 argument(s), got 2")); std::vector<QTypePtr> types1 = {GetQType<int32_t>(), GetQType<int32_t>(), GetQType<OptionalValue<int32_t>>(), GetQType<OptionalValue<int32_t>>(), GetQType<float>()}; EXPECT_THAT((NthMatch({0, 1}, AllSame)(types1)), IsOkAndHolds(ElementsAreArray(types1))); EXPECT_THAT((NthMatch({2, 3}, AllSame)(types1)), IsOkAndHolds(ElementsAreArray(types1))); EXPECT_THAT((NthMatch({0, 1, 2, 3}, AllSameScalarType)(types1)), IsOkAndHolds(ElementsAreArray(types1))); EXPECT_THAT((NthMatch({0, 2}, AllSame)(types1)), StatusIs(absl::StatusCode::kInvalidArgument, "expected all types to be equal, got INT32 and " "OPTIONAL_INT32; for arguments (0, 2)")); EXPECT_THAT((NthMatch({0, 2}, AllSame)({GetQType<int32_t>()})), StatusIs(absl::StatusCode::kInvalidArgument, "expected to have at least 3 argument(s), got 1")); } TEST(TypeMetaEvalStrategiesTest, NthApply) { std::vector<QTypePtr> types = {GetQType<int32_t>(), GetDenseArrayQType<int32_t>(), GetArrayQType<int32_t>()}; { std::vector<QTypePtr> res_types = {GetDenseArrayQType<int32_t>(), GetDenseArrayQType<int32_t>(), GetArrayQType<int32_t>()}; EXPECT_THAT(NthApply({0, 1}, Broadcast)(types), IsOkAndHolds(ElementsAreArray(res_types))); } { std::vector<QTypePtr> res_types = {GetArrayQType<int32_t>(), GetDenseArrayQType<int32_t>(), GetArrayQType<int32_t>()}; EXPECT_THAT(NthApply({0, 2}, Broadcast)(types), IsOkAndHolds(ElementsAreArray(res_types))); } { std::vector<QTypePtr> res_types = {GetOptionalQType<int32_t>(), GetDenseArrayQType<int32_t>(), GetArrayQType<int32_t>()}; EXPECT_THAT(NthApply(0, ToOptional)(types), IsOkAndHolds(ElementsAreArray(res_types))); } EXPECT_THAT(NthApply({1, 2}, Broadcast)(types), StatusIs(absl::StatusCode::kInvalidArgument, "unable to broadcast arguments; " "DENSE_ARRAY_INT32,ARRAY_INT32; for arguments (1, 2)")); EXPECT_THAT(NthApply({2, 3}, Broadcast)(types), StatusIs(absl::StatusCode::kInvalidArgument, "expected to have at least 4 argument(s), got 3")); } TEST(TypeMetaEvalStrategiesTest, LiftResultType) { auto i32 = GetQType<int32_t>(); auto f32 = GetQType<float>(); auto oi32 = GetOptionalQType<int32_t>(); auto of32 = GetOptionalQType<float>(); auto ai32 = GetArrayQType<int32_t>(); auto af32 = GetArrayQType<float>(); auto lift_f32 = CallableStrategy(LiftResultType(f32)); EXPECT_THAT(lift_f32({}), IsOkAndHolds(f32)); EXPECT_THAT(lift_f32({i32}), IsOkAndHolds(f32)); EXPECT_THAT(lift_f32({i32, f32}), IsOkAndHolds(f32)); EXPECT_THAT(lift_f32({oi32}), IsOkAndHolds(of32)); EXPECT_THAT(lift_f32({i32, oi32}), IsOkAndHolds(of32)); EXPECT_THAT(lift_f32({ai32}), IsOkAndHolds(af32)); EXPECT_THAT(lift_f32({oi32, ai32}), IsOkAndHolds(af32)); EXPECT_THAT(lift_f32({i32, oi32, ai32}), IsOkAndHolds(af32)); } TEST(TypeMetaEvalStrategiesTest, Broadcast) { auto i32 = GetQType<int32_t>(); auto f32 = GetQType<float>(); auto oi32 = GetOptionalQType<int32_t>(); auto ai32 = GetArrayQType<int32_t>(); auto af32 = GetArrayQType<float>(); auto di32 = GetDenseArrayQType<int32_t>(); auto df32 = GetDenseArrayQType<float>(); EXPECT_THAT(Broadcast({}), IsOkAndHolds(ElementsAre())); EXPECT_THAT(Broadcast({i32}), IsOkAndHolds(ElementsAre(i32))); EXPECT_THAT(Broadcast({i32, f32}), IsOkAndHolds(ElementsAre(i32, f32))); EXPECT_THAT(Broadcast({i32, oi32}), IsOkAndHolds(ElementsAre(i32, oi32))); EXPECT_THAT(Broadcast({ai32}), IsOkAndHolds(ElementsAre(ai32))); EXPECT_THAT(Broadcast({ai32, f32}), IsOkAndHolds(ElementsAre(ai32, af32))); EXPECT_THAT(Broadcast({i32, oi32, af32}), IsOkAndHolds(ElementsAre(ai32, ai32, af32))); EXPECT_THAT(Broadcast({i32, oi32, af32, ai32}), IsOkAndHolds(ElementsAre(ai32, ai32, af32, ai32))); EXPECT_THAT( Broadcast({df32, GetQType<int32_t>(), GetOptionalQType<int32_t>()}), IsOkAndHolds(ElementsAre(df32, di32, di32))); EXPECT_THAT(Broadcast({af32, df32}), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(TypeMetaEvalStrategiesTest, Is) { std::vector<QTypePtr> i32_types = {GetQType<int32_t>(), GetQType<int32_t>()}; EXPECT_THAT(Is<int32_t>(i32_types), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT(Is(GetQType<int32_t>())(i32_types), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT(Is<int64_t>(i32_types), StatusIs(absl::StatusCode::kInvalidArgument, "expected type of argument 0 to be INT64, got INT32")); EXPECT_THAT(Is(GetQType<int64_t>())(i32_types), StatusIs(absl::StatusCode::kInvalidArgument, "expected type of argument 0 to be INT64, got INT32")); } TEST(TypeMetaEvalStrategiesTest, IsNot) { std::vector<QTypePtr> i32_types = {GetQType<int32_t>(), GetQType<int32_t>()}; EXPECT_THAT(IsNot<int64_t>(i32_types), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT(IsNot(GetQType<int64_t>())(i32_types), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT(IsNot<int32_t>(i32_types), StatusIs(absl::StatusCode::kInvalidArgument, "expected type of argument 0 to be not INT32")); EXPECT_THAT(IsNot(GetQType<int32_t>())(i32_types), StatusIs(absl::StatusCode::kInvalidArgument, "expected type of argument 0 to be not INT32")); } TEST(TypeMetaEvalStrategiesTest, ScalarTypeIs) { std::vector<QTypePtr> i32_types = { GetQType<int32_t>(), GetOptionalQType<int32_t>(), GetDenseArrayQType<int32_t>(), GetDenseArrayQType<int32_t>(), GetArrayQType<int32_t>()}; EXPECT_THAT(ScalarTypeIs<int32_t>(i32_types), IsOkAndHolds(ElementsAreArray(i32_types))); EXPECT_THAT( ScalarTypeIs<int64_t>(i32_types), StatusIs(absl::StatusCode::kInvalidArgument, "expected scalar type of argument 0 to be INT64, got INT32")); } TEST(TypeMetaEvalStrategiesTest, Unary) { auto single_arg_type = CallableStrategy(Unary); EXPECT_THAT(single_arg_type({GetQType<int32_t>()}), IsOkAndHolds(GetQType<int32_t>())); EXPECT_THAT(single_arg_type({GetQType<int32_t>(), GetQType<int32_t>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected to have one argument"))); } TEST(TypeMetaEvalStrategiesTest, ToShape) { auto shape_type = CallableStrategy(ToShape); EXPECT_THAT(shape_type({GetQType<int32_t>()}), IsOkAndHolds(GetQType<ScalarShape>())); EXPECT_THAT(shape_type({GetArrayQType<bool>()}), IsOkAndHolds(GetQType<ArrayShape>())); EXPECT_THAT(shape_type({GetDenseArrayQType<bool>()}), IsOkAndHolds(GetQType<DenseArrayShape>())); EXPECT_THAT(shape_type({GetQType<OptionalValue<bool>>()}), IsOkAndHolds(GetQType<OptionalScalarShape>())); EXPECT_THAT(shape_type({GetQType<OptionalScalarShape>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("no shape type for"))); } TEST(TypeMetaEvalStrategiesTest, ToOptional) { auto to_optional = CallableStrategy(ToOptional); EXPECT_THAT(to_optional({GetArrayQType<int32_t>()}), IsOkAndHolds(GetArrayQType<int32_t>())); EXPECT_THAT( to_optional({GetQType<ArrayEdge>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("no optional-like qtype for ARRAY_EDGE; in argument 0"))); } TEST(TypeMetaEvalStrategiesTest, AllSame) { EXPECT_THAT(AllSame({GetArrayQType<int32_t>(), GetArrayQType<int32_t>()}), IsOkAndHolds(ElementsAreArray( {GetArrayQType<int32_t>(), GetArrayQType<int32_t>()}))); EXPECT_THAT(AllSame({}), IsOkAndHolds(ElementsAre())); EXPECT_THAT(AllSame({GetArrayQType<int32_t>(), GetArrayQType<int64_t>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected all types to be equal, got " "ARRAY_INT32 and ARRAY_INT64"))); } TEST(TypeMetaEvalStrategiesTest, AllSameScalarType) { EXPECT_THAT(AllSameScalarType( {GetQType<int32_t>(), GetQType<OptionalValue<int32_t>>()}), IsOkAndHolds(ElementsAre(GetQType<int32_t>(), GetQType<OptionalValue<int32_t>>()))); EXPECT_THAT(AllSameScalarType({}), IsOkAndHolds(ElementsAre())); EXPECT_THAT(AllSameScalarType({GetQType<int32_t>(), GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, "expected all scalar types to be equal, got INT32 and " "FLOAT32")); } TEST(TypeMetaEvalStrategiesTest, IsShape) { auto shape_qtypes = {GetQType<ScalarShape>(), GetQType<ArrayShape>()}; auto non_shape_qtypes = {GetQType<OptionalScalarShape>(), GetQType<int32_t>()}; EXPECT_THAT(IsShape(shape_qtypes), IsOkAndHolds(ElementsAreArray(shape_qtypes))); EXPECT_THAT( IsShape(non_shape_qtypes), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be shapes, got INT32"))); } TEST(TypeMetaEvalStrategiesTest, IsArrayShape) { auto shape_qtypes = {GetQType<ArrayShape>(), GetQType<DenseArrayShape>()}; auto non_shape_qtypes = {GetQType<ArrayShape>(), GetQType<ScalarShape>()}; EXPECT_THAT(IsArrayShape(shape_qtypes), IsOkAndHolds(ElementsAreArray(shape_qtypes))); EXPECT_THAT( IsArrayShape(non_shape_qtypes), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "expected all arguments to be array shapes, got SCALAR_SHAPE"))); } TEST(TypeMetaEvalStrategiesTest, IsEdge) { auto edge_qtypes = {GetQType<ArrayEdge>(), GetQType<DenseArrayEdge>()}; EXPECT_THAT(IsEdge(edge_qtypes), IsOkAndHolds(ElementsAreArray(edge_qtypes))); EXPECT_THAT( IsEdge({GetQType<ArrayEdge>(), GetQType<int32_t>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected all arguments to be edges, got INT32"))); } TEST(TypeMetaEvalStrategiesTest, IsDenseArray) { auto da_qtypes = {GetDenseArrayQType<int64_t>(), GetDenseArrayQType<float>()}; EXPECT_THAT(IsDenseArray(da_qtypes), IsOkAndHolds(ElementsAreArray(da_qtypes))); EXPECT_THAT( IsDenseArray({GetArrayQType<int64_t>(), GetDenseArrayQType<int64_t>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "expected all arguments to be DenseArrays, got ARRAY_INT64"))); } TEST(TypeMetaEvalStrategiesTest, EdgeParentShapeQType) { auto edge_qtypes = {GetQType<ArrayEdge>(), GetQType<DenseArrayEdge>(), GetQType<ArrayGroupScalarEdge>(), GetQType<DenseArrayGroupScalarEdge>()}; auto shape_qtypes = {GetQType<ArrayShape>(), GetQType<DenseArrayShape>(), GetQType<OptionalScalarShape>(), GetQType<OptionalScalarShape>()}; EXPECT_THAT(type_meta::EdgeParentShapeQType(edge_qtypes), IsOkAndHolds(ElementsAreArray(shape_qtypes))); EXPECT_THAT( type_meta::EdgeParentShapeQType({GetArrayQType<int64_t>()}), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("invalid argument 0: expected an edge, got ARRAY_INT64"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/type_meta_eval_strategies.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/type_meta_eval_strategies_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
6a8fcf3d-0f76-41b8-a604-cc75abf82d40
cpp
google/arolla
compile_while_operator
arolla/expr/eval/compile_while_operator.cc
arolla/expr/eval/compile_while_operator_test.cc
#include "arolla/expr/eval/compile_while_operator.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/evaluator_operators.h" #include "arolla/expr/eval/executable_builder.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/operators/while_loop/while_loop.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/evaluation_engine.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { namespace { struct BoundLoopOperators { std::shared_ptr<const BoundExpr> condition; std::shared_ptr<const BoundExpr> body; }; class WhileLoopBoundOperator : public BoundOperator { public: WhileLoopBoundOperator(BoundLoopOperators operators_on_out, BoundLoopOperators operators_on_tmp, FrameLayout::Slot<OptionalUnit> condition_slot, TypedSlot initial_state_slot, TypedSlot tmp_state_slot, TypedSlot output_state_slot) : operators_on_out_(std::move(operators_on_out)), operators_on_tmp_(std::move(operators_on_tmp)), condition_slot_(condition_slot), initial_state_slot_(initial_state_slot), tmp_state_slot_(tmp_state_slot), output_state_slot_(output_state_slot) {} void Run(EvaluationContext* ctx, FramePtr frame) const override { initial_state_slot_.CopyTo(frame, output_state_slot_, frame); for (;;) { operators_on_out_.condition->Execute(ctx, frame); if (!ctx->status().ok() || !frame.Get(condition_slot_)) { break; } operators_on_out_.body->Execute(ctx, frame); if (!ctx->status().ok()) { break; } operators_on_tmp_.condition->Execute(ctx, frame); if (!ctx->status().ok() || !frame.Get(condition_slot_)) { tmp_state_slot_.CopyTo(frame, output_state_slot_, frame); break; } operators_on_tmp_.body->Execute(ctx, frame); if (!ctx->status().ok()) { break; } } } private: BoundLoopOperators operators_on_out_; BoundLoopOperators operators_on_tmp_; FrameLayout::Slot<OptionalUnit> condition_slot_; TypedSlot initial_state_slot_; TypedSlot tmp_state_slot_; TypedSlot output_state_slot_; }; absl::StatusOr<std::shared_ptr<BoundExpr>> CompileAndBindExprOperator( const DynamicEvaluationEngineOptions& options, const ExprOperatorPtr& op, absl::Span<const TypedSlot> input_slots, std::optional<TypedSlot> output_slot, ExecutableBuilder& executable_builder) { ASSIGN_OR_RETURN( auto evaluator, CompileAndBindExprOperator(options, executable_builder.layout_builder(), op, input_slots, output_slot), _ << "in loop condition"); executable_builder.AddInitOp( std::make_unique<InitializeAstLiteralsBoundOperator>(evaluator), "internal.while_loop:initialize_literals()"); return evaluator; } absl::StatusOr<BoundLoopOperators> BindLoopOperators( const DynamicEvaluationEngineOptions& options, const expr_operators::WhileLoopOperator& while_op, absl::Span<const TypedSlot> constant_slots, TypedSlot current_state_slot, TypedSlot next_state_slot, FrameLayout::Slot<OptionalUnit> condition_slot, ExecutableBuilder& executable_builder) { std::vector<TypedSlot> input_slots; input_slots.reserve(1 + constant_slots.size()); input_slots.push_back(current_state_slot); input_slots.insert(input_slots.end(), constant_slots.begin(), constant_slots.end()); ASSIGN_OR_RETURN(auto condition_on_out_op, CompileAndBindExprOperator( options, while_op.condition(), input_slots, TypedSlot::FromSlot(condition_slot), executable_builder), _ << "in loop condition"); ASSIGN_OR_RETURN( auto body_out_to_tmp_op, CompileAndBindExprOperator(options, while_op.body(), input_slots, next_state_slot, executable_builder), _ << "in loop body"); return BoundLoopOperators{std::move(condition_on_out_op), std::move(body_out_to_tmp_op)}; } } absl::Status CompileWhileOperator( const DynamicEvaluationEngineOptions& options, const expr_operators::WhileLoopOperator& while_op, absl::Span<const TypedSlot> input_slots, TypedSlot output_slot, ExecutableBuilder& executable_builder) { if (input_slots.empty()) { return absl::InvalidArgumentError( "unexpected number of input slots: expected at least 1 slot, got 0"); } TypedSlot initial_state_slot = input_slots[0]; if (output_slot.GetType() != initial_state_slot.GetType()) { return absl::InvalidArgumentError(absl::StrFormat( "unexpected type of output slot: expected %s slot, got %s", initial_state_slot.GetType()->name(), output_slot.GetType()->name())); } FrameLayout::Slot<OptionalUnit> condition_slot = executable_builder.layout_builder()->AddSlot<OptionalUnit>(); TypedSlot tmp_state_slot = AddSlot(output_slot.GetType(), executable_builder.layout_builder()); DynamicEvaluationEngineOptions subexpression_options(options); subexpression_options.enabled_preparation_stages = DynamicEvaluationEngineOptions::PreparationStage::kAll; ASSIGN_OR_RETURN(auto operators_on_out, BindLoopOperators(subexpression_options, while_op, input_slots.subspan(1), output_slot, tmp_state_slot, condition_slot, executable_builder)); ASSIGN_OR_RETURN(auto operators_on_tmp, BindLoopOperators(subexpression_options, while_op, input_slots.subspan(1), tmp_state_slot, output_slot, condition_slot, executable_builder)); std::vector<TypedSlot> used_slots(input_slots.begin(), input_slots.end()); used_slots.push_back(tmp_state_slot); used_slots.push_back(TypedSlot::FromSlot(condition_slot)); executable_builder.AddEvalOp( std::make_unique<WhileLoopBoundOperator>( std::move(operators_on_out), std::move(operators_on_tmp), condition_slot, initial_state_slot, tmp_state_slot, output_slot), eval_internal::FormatOperatorCall("internal.while_loop", input_slots, {output_slot}), "internal.while_loop"); return absl::OkStatus(); } }
#include <cstddef> #include <cstdint> #include <utility> #include "benchmark/benchmark.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/invoke.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/operators/while_loop/while_loop.h" #include "arolla/expr/visitors/substitution.h" #include "arolla/memory/frame.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qtype/testing/qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/init_arolla.h" #include "arolla/util/text.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::arolla::testing::TypedValueWith; using ::testing::ElementsAre; using ::testing::Eq; class WhileOperatorTest : public ::testing::TestWithParam<DynamicEvaluationEngineOptions> { protected: DynamicEvaluationEngineOptions GetOptions() const { return GetParam(); } }; INSTANTIATE_TEST_SUITE_P( GarbageCollection, WhileOperatorTest, ::testing::Values( DynamicEvaluationEngineOptions{.allow_overriding_input_slots = false}, DynamicEvaluationEngineOptions{.allow_overriding_input_slots = true})); TEST_P(WhileOperatorTest, SimpleWhile) { auto init_x = Leaf("x"); auto init_y = Leaf("y"); ASSERT_OK_AND_ASSIGN( auto loop_condition, CallOp("core.not_equal", {Placeholder("y"), Literal<int64_t>(0)})); auto new_x = Placeholder("y"); ASSERT_OK_AND_ASSIGN( auto new_y, CallOp("math.mod", {Placeholder("x"), Placeholder("y")})); ASSERT_OK_AND_ASSIGN(ExprNodePtr while_loop, expr_operators::MakeWhileLoop( {{"x", init_x}, {"y", init_y}}, loop_condition, {{"x", new_x}, {"y", new_y}})); ASSERT_OK_AND_ASSIGN( ExprNodePtr gcd, CallOp("namedtuple.get_field", {while_loop, Literal(Text("x"))})); EXPECT_THAT(Invoke(gcd, {{"x", TypedValue::FromValue<int64_t>(57)}, {"y", TypedValue::FromValue<int64_t>(58)}}, GetOptions()), IsOkAndHolds(TypedValueWith<int64_t>(Eq(1)))); EXPECT_THAT(Invoke(gcd, {{"x", TypedValue::FromValue<int64_t>(171)}, {"y", TypedValue::FromValue<int64_t>(285)}}, GetOptions()), IsOkAndHolds(TypedValueWith<int64_t>(Eq(57)))); } absl::StatusOr<ExprNodePtr> SumOfXs(int64_t number_of_xs) { auto init_n = Literal<int64_t>(1); auto init_x = Leaf("x"); auto init_accumulator = Leaf("x"); ASSIGN_OR_RETURN(auto loop_condition, CallOp("core.not_equal", {Placeholder("n"), Literal<int64_t>(number_of_xs)})); ASSIGN_OR_RETURN(auto new_n, CallOp("math.add", {Placeholder("n"), Literal<int64_t>(1)})); ASSIGN_OR_RETURN( auto new_accumulator, CallOp("math.add", {Placeholder("accumulator"), Placeholder("x")})); return CallOp( "namedtuple.get_field", {expr_operators::MakeWhileLoop( {{"n", init_n}, {"x", init_x}, {"accumulator", init_accumulator}}, loop_condition, {{"n", new_n}, {"accumulator", new_accumulator}}), Literal(Text("accumulator"))}); } TEST_P(WhileOperatorTest, LoopWithDifferentNumberOfIterations) { for (int64_t iterations = 0; iterations < 10; ++iterations) { ASSERT_OK_AND_ASSIGN(ExprNodePtr sum, SumOfXs(iterations + 1)); EXPECT_THAT( Invoke(sum, {{"x", TypedValue::FromValue<int64_t>(57)}}, GetOptions()), IsOkAndHolds(TypedValueWith<int64_t>(57 * (iterations + 1)))); } } TEST_P(WhileOperatorTest, LoopWithDenseArray) { ASSERT_OK_AND_ASSIGN(ExprNodePtr sum_of_1000, SumOfXs(1000)); EXPECT_THAT(Invoke(sum_of_1000, {{"x", TypedValue::FromValue<int64_t>(1)}}, GetOptions()), IsOkAndHolds(TypedValueWith<int64_t>(1000))); EXPECT_THAT( Invoke( sum_of_1000, {{"x", TypedValue::FromValue(CreateDenseArray<int64_t>({0, 1, 2}))}}, GetOptions()), IsOkAndHolds( TypedValueWith<DenseArray<int64_t>>(ElementsAre(0, 1000, 2000)))); auto init_x = Leaf("x"); ASSERT_OK_AND_ASSIGN( ExprNodePtr sum_of_1000_1000, SubstituteByFingerprint(sum_of_1000, {{init_x->fingerprint(), sum_of_1000}})); EXPECT_THAT( Invoke( sum_of_1000_1000, {{"x", TypedValue::FromValue(CreateDenseArray<int64_t>({0, 1, 2}))}}, GetOptions()), IsOkAndHolds(TypedValueWith<DenseArray<int64_t>>( ElementsAre(0, 1000000, 2000000)))); } template <typename T> void BM_WhileOperator(benchmark::State& state, T initial_value) { InitArolla(); auto sum_of_1000_x = SumOfXs(1000).value(); FrameLayout::Builder builder; auto x_slot = builder.AddSlot<T>(); auto sum_of_1000_x_expr = CompileAndBindForDynamicEvaluation(DynamicEvaluationEngineOptions(), &builder, sum_of_1000_x, {{"x", TypedSlot::FromSlot(x_slot)}}) .value(); FrameLayout layout = std::move(builder).Build(); RootEvaluationContext ctx(&layout); CHECK_OK(sum_of_1000_x_expr->InitializeLiterals(&ctx)); for (auto _ : state) { CHECK_OK(sum_of_1000_x_expr->Execute(&ctx)); } } void BM_WhileOperator_Scalar(benchmark::State& state) { BM_WhileOperator(state, int64_t{57}); } BENCHMARK(BM_WhileOperator_Scalar); void BM_WhileOperator_DenseArray(benchmark::State& state) { constexpr size_t kArraySize = 100; BM_WhileOperator(state, CreateConstDenseArray<int64_t>(kArraySize, 57)); } BENCHMARK(BM_WhileOperator_DenseArray); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/compile_while_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/compile_while_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
e8706a30-8422-4dae-a5da-72cc6621a425
cpp
tensorflow/tensorflow
trt_engine_resource_ops
tensorflow/compiler/tf2tensorrt/ops/trt_engine_resource_ops.cc
tensorflow/compiler/tf2tensorrt/kernels/trt_engine_resource_ops_test.cc
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" namespace tensorflow { REGISTER_OP("CreateTRTResourceHandle") .Attr("resource_name: string") .Output("resource_handle: resource") .SetIsStateful() .SetShapeFn(shape_inference::ScalarShape); REGISTER_OP("InitializeTRTResource") .Attr("max_cached_engines_count: int = 1") .Input("resource_handle: resource") .Input("filename: string") .SetIsStateful() .SetShapeFn(shape_inference::NoOutputs); REGISTER_OP("SerializeTRTResource") .Attr("delete_resource: bool = false") .Attr("save_gpu_specific_engines: bool = True") .Input("resource_name: string") .Input("filename: string") .SetIsStateful() .SetShapeFn(shape_inference::NoOutputs); } #endif
#include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/memory/memory.h" #include "absl/strings/str_join.h" #include "tensorflow/compiler/tf2tensorrt/common/datavec.h" #include "tensorflow/compiler/tf2tensorrt/common/utils.h" #include "tensorflow/compiler/tf2tensorrt/convert/utils.h" #include "tensorflow/compiler/tf2tensorrt/utils/trt_engine_instance.pb.h" #include "tensorflow/compiler/tf2tensorrt/utils/trt_logger.h" #include "tensorflow/compiler/tf2tensorrt/utils/trt_lru_cache.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/record_reader.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/file_system.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" #if GOOGLE_CUDA && GOOGLE_TENSORRT namespace tensorflow { namespace tensorrt { struct TestParam { nvinfer1::Dims dims; bool dynamic_shape; int n_inputs; }; class TRTEngineResourceOpsTest : public OpsTestBase, public ::testing::WithParamInterface<TestParam> { public: TRTEngineResourceOpsTest() : param_(GetParam()) {} protected: void Reset() { for (auto& temp : tensors_) { delete temp; } for (auto& temp : managed_outputs_) { delete temp; } tensors_.clear(); managed_outputs_.clear(); inputs_.clear(); } ITensorProxyPtr NetworkWith1Input(nvinfer1::INetworkDefinition* network, ITensorProxyPtr input) { nvinfer1::IUnaryLayer* layer = network->addUnary(*input->trt_tensor(), nvinfer1::UnaryOperation::kEXP); EXPECT_NE(nullptr, layer); return layer->getOutput(0); } ITensorProxyPtr NetworkWith2Inputs(nvinfer1::INetworkDefinition* network, ITensorProxyPtr input) { nvinfer1::Dims dims2{1, {2}}; ITensorProxyPtr input2 = network->addInput(absl::StrCat(IONamePrefixes::kInputPHName, 1).c_str(), nvinfer1::DataType::kINT32, dims2); EXPECT_NE(nullptr, input2->trt_tensor()); nvinfer1::Dims start{2, {0, 0}}; nvinfer1::Dims stride{2, {1, 1}}; auto slice_layer = network->addSlice(*input->trt_tensor(), start, stride, stride); EXPECT_NE(nullptr, slice_layer); slice_layer->setInput(2, *input2->trt_tensor()); ITensorProxyPtr sliced_input = slice_layer->getOutput(0); EXPECT_NE(nullptr, sliced_input->trt_tensor()); auto layer = network->addElementWise(*sliced_input->trt_tensor(), *sliced_input->trt_tensor(), nvinfer1::ElementWiseOperation::kSUM); EXPECT_NE(nullptr, layer); return layer->getOutput(0); } TrtUniquePtrType<nvinfer1::ICudaEngine> CreateTRTEngine() { TrtUniquePtrType<nvinfer1::IBuilder> builder( nvinfer1::createInferBuilder(logger_)); TrtUniquePtrType<nvinfer1::INetworkDefinition> network; #if IS_TRT_VERSION_GE(8, 0, 0, 0) network = TrtUniquePtrType<nvinfer1::INetworkDefinition>(builder->createNetworkV2( 1U << static_cast<int>( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH))); #else network = TrtUniquePtrType<nvinfer1::INetworkDefinition>(builder->createNetworkV2( 1U << static_cast<int>( nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH))); #endif nvinfer1::Dims dims = this->param_.dims; if (this->param_.dynamic_shape) { std::fill(dims.d, dims.d + dims.nbDims, -1); } const std::string in_name = StrCat(IONamePrefixes::kInputPHName, 0); ITensorProxyPtr input = network->addInput(in_name.c_str(), nvinfer1::DataType::kFLOAT, dims); EXPECT_NE(nullptr, input->trt_tensor()); ITensorProxyPtr output = this->param_.n_inputs == 1 ? this->NetworkWith1Input(network.get(), input) : this->NetworkWith2Inputs(network.get(), input); output->setName("output"); network->markOutput(*output->trt_tensor()); TrtUniquePtrType<nvinfer1::IBuilderConfig> builder_config( builder->createBuilderConfig()); builder_config->setMaxWorkspaceSize(1 << 10); builder->setMaxBatchSize(1); if (this->param_.dynamic_shape) { TrtShapeOptimizationProfile profile; profile.SetShapeTensorMask(network.get()); const int n_input = param_.n_inputs; std::vector<bool> input_mask(n_input, true); profile.SetInputMask(input_mask); for (int i = 1; i <= 3; i++) { std::vector<TensorShape> shape_vec(n_input); std::vector<int> dimvec(this->param_.dims.nbDims, 3 * i); TensorShape shape; TF_CHECK_OK( TensorShapeUtils::MakeShape(dimvec.data(), dimvec.size(), &shape)); const ITensorProxyPtr input = network->getInput(0); const char* name = input->getName(); VLOG(2) << "Defining profile for input " << name; shape_vec[0] = shape; if (this->param_.n_inputs == 2) { TF_CHECK_OK(TensorShapeUtils::MakeShape( std::vector<int32>{param_.dims.nbDims}, &shape)); shape_vec[1] = shape; Tensor shape_tensor(DT_INT32, shape); std::vector<int32> vals{1, i}; std::copy_n(vals.data(), vals.size(), shape_tensor.flat<int32_t>().data()); DataVec shape_values{{"one", {}}, {"two", shape_tensor}}; TF_CHECK_OK(profile.CollectShapeValues(shape_values)); } else { TF_CHECK_OK(profile.CollectShapeValues({{"one", {}}})); } profile.AddShape(shape_vec); } std::vector<PartialTensorShape> input_partial_shapes; TF_CHECK_OK(GetNetworkInputShapes(network.get(), &input_partial_shapes)); profile.InitProfiles(input_partial_shapes, ProfileStrategy::kOptimal); TF_CHECK_OK(profile.ConfigureBuilder(builder.get(), builder_config.get(), network.get())); } VLOG(2) << "ConfigureBuilder Finished"; TrtUniquePtrType<nvinfer1::ICudaEngine> engine( builder->buildEngineWithConfig(*network, *builder_config)); VLOG(2) << "Engine constructed"; EXPECT_NE(nullptr, engine); return engine; } Logger& logger_ = *Logger::GetLogger(); TestParam param_; }; #if IS_TRT_VERSION_GE(7, 1, 3, 0) constexpr std::array<TestParam, 3> TestParameters = { TestParam{nvinfer1::Dims{1, {1}}, false, 1}, TestParam{nvinfer1::Dims{1, {1}}, true, 1}, TestParam{nvinfer1::Dims{2, {3, 3}}, true, 2}}; #else constexpr std::array<TestParam, 2> TestParameters = { TestParam{nvinfer1::Dims{1, {1}}, false, 1}, TestParam{nvinfer1::Dims{1, {1}}, true, 1}}; #endif INSTANTIATE_TEST_CASE_P(EngineResourceOpsTestInstantiation, TRTEngineResourceOpsTest, ::testing::ValuesIn(TestParameters)); TEST_P(TRTEngineResourceOpsTest, Basic) { std::unique_ptr<Device> device( DeviceFactory::NewDevice("GPU", {}, "/job:worker/replica:0/task:0")); ResourceMgr* rm = device->resource_manager(); SetDevice(DEVICE_GPU, std::move(device)); const string container(kTfTrtContainerName); const string resource_name = "myresource"; Reset(); TF_ASSERT_OK(NodeDefBuilder("op", "CreateTRTResourceHandle") .Attr("resource_name", resource_name) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); TF_ASSERT_OK(RunOpKernel()); ResourceHandle handle = context_->mutable_output(0)->scalar<ResourceHandle>()(); TRTEngineCacheResource* resource = nullptr; EXPECT_TRUE( errors::IsNotFound(rm->Lookup(container, resource_name, &resource))); Reset(); Env* env = Env::Default(); const string filename = io::JoinPath(testing::TmpDir(), "trt_engine_file"); { std::unique_ptr<WritableFile> file; TF_ASSERT_OK(env->NewWritableFile(filename, &file)); } TF_ASSERT_OK(NodeDefBuilder("op", "InitializeTRTResource") .Input(FakeInput(DT_RESOURCE)) .Input(FakeInput(DT_STRING)) .Attr("max_cached_engines_count", 1) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<ResourceHandle>(TensorShape({}), {handle}); AddInputFromArray<tstring>(TensorShape({}), {filename}); TF_ASSERT_OK(RunOpKernel()); EXPECT_TRUE(rm->Lookup(container, resource_name, &resource).ok()); EXPECT_EQ(0, resource->cache_.size()); TrtUniquePtrType<nvinfer1::ICudaEngine> engine = CreateTRTEngine(); ExecutionContext context = ExecutionContext::Create(engine.get()); std::vector<TensorShape> engine_input_shape(1); TF_ASSERT_OK(DimsAdapter(param_.dims).TensorShape(&(engine_input_shape[0]))); if (param_.n_inputs > 1) { engine_input_shape.push_back(TensorShape({1, 1})); } resource->cache_.emplace( engine_input_shape, std::make_unique<EngineContext>(std::move(engine), std::move(context))); EXPECT_FALSE(resource->RefCountIsOne()); Reset(); TF_ASSERT_OK(NodeDefBuilder("op", "SerializeTRTResource") .Attr("delete_resource", true) .Input(FakeInput(DT_STRING)) .Input(FakeInput(DT_STRING)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<tstring>(TensorShape({}), {resource_name}); AddInputFromArray<tstring>(TensorShape({}), {filename}); TF_ASSERT_OK(RunOpKernel()); EXPECT_TRUE(resource->RefCountIsOne()); resource->Unref(); Reset(); TF_ASSERT_OK(NodeDefBuilder("op", "DestroyResourceOp") .Attr("ignore_lookup_error", false) .Input(FakeInput(DT_RESOURCE)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<ResourceHandle>(TensorShape({}), {handle}); EXPECT_TRUE(errors::IsNotFound(RunOpKernel())); std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK(env->NewRandomAccessFile(filename, &file)); auto reader = std::make_unique<io::RecordReader>(file.get()); uint64 offset = 0; tstring record; TF_ASSERT_OK(reader->ReadRecord(&offset, &record)); TRTEngineInstance engine_instance; engine_instance.ParseFromString(record); EXPECT_EQ(param_.n_inputs, engine_instance.input_shapes_size()); EXPECT_EQ(param_.dims.nbDims, engine_instance.input_shapes(0).dim_size()); for (int i = 0; i < param_.dims.nbDims; i++) { EXPECT_EQ(param_.dims.d[i], engine_instance.input_shapes(0).dim(i).size()); } EXPECT_TRUE(errors::IsOutOfRange(reader->ReadRecord(&offset, &record))); Reset(); TF_ASSERT_OK(NodeDefBuilder("op", "InitializeTRTResource") .Input(FakeInput(DT_RESOURCE)) .Input(FakeInput(DT_STRING)) .Attr("max_cached_engines_count", 1) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<ResourceHandle>(TensorShape({}), {handle}); AddInputFromArray<tstring>(TensorShape({}), {filename}); TF_ASSERT_OK(RunOpKernel()); EXPECT_TRUE(rm->Lookup(container, resource_name, &resource).ok()); EXPECT_EQ(1, resource->cache_.size()); if (this->param_.dynamic_shape) { EXPECT_EQ(3, resource->profiles_.GetNumProfiles()); EXPECT_EQ(3, resource->cache_.begin()->second->GetNumContexts()); if (this->param_.n_inputs == 1) { std::vector<TensorShape> shapes(1); TF_CHECK_OK( TensorShapeUtils::MakeShape(std::vector<int32>{6}, &shapes[0])); EXPECT_EQ(1, resource->profiles_.GetProfileNumber(shapes)); } else { std::vector<TensorShape> shapes(2); TF_CHECK_OK( TensorShapeUtils::MakeShape(std::vector<int32>{9, 9}, &shapes[0])); TF_CHECK_OK( TensorShapeUtils::MakeShape(std::vector<int32>{2}, &shapes[1])); Tensor shape_tensor(DT_INT32, shapes[1]); std::vector<int32> vals{1, 3}; std::copy_n(vals.data(), vals.size(), shape_tensor.flat<int32_t>().data()); DataVec shape_values{{"one", {}}, {"two", shape_tensor}}; TF_CHECK_OK(resource->profiles_.CollectShapeValues(shape_values)); EXPECT_EQ(2, resource->profiles_.GetProfileNumber(shapes)); } } EXPECT_FALSE(resource->RefCountIsOne()); Reset(); TF_ASSERT_OK(NodeDefBuilder("op", "DestroyResourceOp") .Attr("ignore_lookup_error", false) .Input(FakeInput(DT_RESOURCE)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<ResourceHandle>(TensorShape({}), {handle}); TF_ASSERT_OK(RunOpKernel()); EXPECT_TRUE(errors::IsNotFound(RunOpKernel())); EXPECT_TRUE(resource->RefCountIsOne()); resource->Unref(); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/ops/trt_engine_resource_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/kernels/trt_engine_resource_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
589b93b3-2eb7-49ee-946c-2062dc9b29b0
cpp
google/quiche
legacy_quic_stream_id_manager
quiche/quic/core/legacy_quic_stream_id_manager.cc
quiche/quic/core/legacy_quic_stream_id_manager_test.cc
#include "quiche/quic/core/legacy_quic_stream_id_manager.h" #include "quiche/quic/core/quic_session.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" namespace quic { LegacyQuicStreamIdManager::LegacyQuicStreamIdManager( Perspective perspective, QuicTransportVersion transport_version, size_t max_open_outgoing_streams, size_t max_open_incoming_streams) : perspective_(perspective), transport_version_(transport_version), max_open_outgoing_streams_(max_open_outgoing_streams), max_open_incoming_streams_(max_open_incoming_streams), next_outgoing_stream_id_(QuicUtils::GetFirstBidirectionalStreamId( transport_version_, perspective_)), largest_peer_created_stream_id_( perspective_ == Perspective::IS_SERVER ? (QuicVersionUsesCryptoFrames(transport_version_) ? QuicUtils::GetInvalidStreamId(transport_version_) : QuicUtils::GetCryptoStreamId(transport_version_)) : QuicUtils::GetInvalidStreamId(transport_version_)), num_open_incoming_streams_(0), num_open_outgoing_streams_(0) {} LegacyQuicStreamIdManager::~LegacyQuicStreamIdManager() {} bool LegacyQuicStreamIdManager::CanOpenNextOutgoingStream() const { QUICHE_DCHECK_LE(num_open_outgoing_streams_, max_open_outgoing_streams_); QUIC_DLOG_IF(INFO, num_open_outgoing_streams_ == max_open_outgoing_streams_) << "Failed to create a new outgoing stream. " << "Already " << num_open_outgoing_streams_ << " open."; return num_open_outgoing_streams_ < max_open_outgoing_streams_; } bool LegacyQuicStreamIdManager::CanOpenIncomingStream() const { return num_open_incoming_streams_ < max_open_incoming_streams_; } bool LegacyQuicStreamIdManager::MaybeIncreaseLargestPeerStreamId( const QuicStreamId stream_id) { available_streams_.erase(stream_id); if (largest_peer_created_stream_id_ != QuicUtils::GetInvalidStreamId(transport_version_) && stream_id <= largest_peer_created_stream_id_) { return true; } size_t additional_available_streams = (stream_id - largest_peer_created_stream_id_) / 2 - 1; if (largest_peer_created_stream_id_ == QuicUtils::GetInvalidStreamId(transport_version_)) { additional_available_streams = (stream_id + 1) / 2 - 1; } size_t new_num_available_streams = GetNumAvailableStreams() + additional_available_streams; if (new_num_available_streams > MaxAvailableStreams()) { QUIC_DLOG(INFO) << perspective_ << "Failed to create a new incoming stream with id:" << stream_id << ". There are already " << GetNumAvailableStreams() << " streams available, which would become " << new_num_available_streams << ", which exceeds the limit " << MaxAvailableStreams() << "."; return false; } QuicStreamId first_available_stream = largest_peer_created_stream_id_ + 2; if (largest_peer_created_stream_id_ == QuicUtils::GetInvalidStreamId(transport_version_)) { first_available_stream = QuicUtils::GetFirstBidirectionalStreamId( transport_version_, QuicUtils::InvertPerspective(perspective_)); } for (QuicStreamId id = first_available_stream; id < stream_id; id += 2) { available_streams_.insert(id); } largest_peer_created_stream_id_ = stream_id; return true; } QuicStreamId LegacyQuicStreamIdManager::GetNextOutgoingStreamId() { QuicStreamId id = next_outgoing_stream_id_; next_outgoing_stream_id_ += 2; return id; } void LegacyQuicStreamIdManager::ActivateStream(bool is_incoming) { if (is_incoming) { ++num_open_incoming_streams_; return; } ++num_open_outgoing_streams_; } void LegacyQuicStreamIdManager::OnStreamClosed(bool is_incoming) { if (is_incoming) { QUIC_BUG_IF(quic_bug_12720_1, num_open_incoming_streams_ == 0); --num_open_incoming_streams_; return; } QUIC_BUG_IF(quic_bug_12720_2, num_open_outgoing_streams_ == 0); --num_open_outgoing_streams_; } bool LegacyQuicStreamIdManager::IsAvailableStream(QuicStreamId id) const { if (!IsIncomingStream(id)) { return id >= next_outgoing_stream_id_; } return largest_peer_created_stream_id_ == QuicUtils::GetInvalidStreamId(transport_version_) || id > largest_peer_created_stream_id_ || available_streams_.contains(id); } bool LegacyQuicStreamIdManager::IsIncomingStream(QuicStreamId id) const { return id % 2 != next_outgoing_stream_id_ % 2; } size_t LegacyQuicStreamIdManager::GetNumAvailableStreams() const { return available_streams_.size(); } size_t LegacyQuicStreamIdManager::MaxAvailableStreams() const { return max_open_incoming_streams_ * kMaxAvailableStreamsMultiplier; } }
#include "quiche/quic/core/legacy_quic_stream_id_manager.h" #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_session_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { using testing::_; using testing::StrictMock; struct TestParams { TestParams(ParsedQuicVersion version, Perspective perspective) : version(version), perspective(perspective) {} ParsedQuicVersion version; Perspective perspective; }; std::string PrintToString(const TestParams& p) { return absl::StrCat( ParsedQuicVersionToString(p.version), (p.perspective == Perspective::IS_CLIENT ? "Client" : "Server")); } std::vector<TestParams> GetTestParams() { std::vector<TestParams> params; for (ParsedQuicVersion version : AllSupportedVersions()) { for (auto perspective : {Perspective::IS_CLIENT, Perspective::IS_SERVER}) { if (!VersionHasIetfQuicFrames(version.transport_version)) { params.push_back(TestParams(version, perspective)); } } } return params; } class LegacyQuicStreamIdManagerTest : public QuicTestWithParam<TestParams> { public: LegacyQuicStreamIdManagerTest() : manager_(GetParam().perspective, GetParam().version.transport_version, kDefaultMaxStreamsPerConnection, kDefaultMaxStreamsPerConnection) {} protected: QuicStreamId GetNthPeerInitiatedId(int n) { if (GetParam().perspective == Perspective::IS_SERVER) { return QuicUtils::GetFirstBidirectionalStreamId( GetParam().version.transport_version, Perspective::IS_CLIENT) + 2 * n; } else { return 2 + 2 * n; } } LegacyQuicStreamIdManager manager_; }; INSTANTIATE_TEST_SUITE_P(Tests, LegacyQuicStreamIdManagerTest, ::testing::ValuesIn(GetTestParams()), ::testing::PrintToStringParamName()); TEST_P(LegacyQuicStreamIdManagerTest, CanOpenNextOutgoingStream) { for (size_t i = 0; i < manager_.max_open_outgoing_streams() - 1; ++i) { manager_.ActivateStream(false); } EXPECT_TRUE(manager_.CanOpenNextOutgoingStream()); manager_.ActivateStream(false); EXPECT_FALSE(manager_.CanOpenNextOutgoingStream()); } TEST_P(LegacyQuicStreamIdManagerTest, CanOpenIncomingStream) { for (size_t i = 0; i < manager_.max_open_incoming_streams() - 1; ++i) { manager_.ActivateStream(true); } EXPECT_TRUE(manager_.CanOpenIncomingStream()); manager_.ActivateStream(true); EXPECT_FALSE(manager_.CanOpenIncomingStream()); } TEST_P(LegacyQuicStreamIdManagerTest, AvailableStreams) { ASSERT_TRUE( manager_.MaybeIncreaseLargestPeerStreamId(GetNthPeerInitiatedId(3))); EXPECT_TRUE(manager_.IsAvailableStream(GetNthPeerInitiatedId(1))); EXPECT_TRUE(manager_.IsAvailableStream(GetNthPeerInitiatedId(2))); ASSERT_TRUE( manager_.MaybeIncreaseLargestPeerStreamId(GetNthPeerInitiatedId(2))); ASSERT_TRUE( manager_.MaybeIncreaseLargestPeerStreamId(GetNthPeerInitiatedId(1))); } TEST_P(LegacyQuicStreamIdManagerTest, MaxAvailableStreams) { const size_t kMaxStreamsForTest = 10; const size_t kAvailableStreamLimit = manager_.MaxAvailableStreams(); EXPECT_EQ( manager_.max_open_incoming_streams() * kMaxAvailableStreamsMultiplier, manager_.MaxAvailableStreams()); EXPECT_LE(10 * kMaxStreamsForTest, kAvailableStreamLimit); EXPECT_TRUE( manager_.MaybeIncreaseLargestPeerStreamId(GetNthPeerInitiatedId(0))); const int kLimitingStreamId = GetNthPeerInitiatedId(kAvailableStreamLimit + 1); EXPECT_TRUE(manager_.MaybeIncreaseLargestPeerStreamId(kLimitingStreamId)); EXPECT_FALSE( manager_.MaybeIncreaseLargestPeerStreamId(kLimitingStreamId + 2 * 2)); } TEST_P(LegacyQuicStreamIdManagerTest, MaximumAvailableOpenedStreams) { QuicStreamId stream_id = GetNthPeerInitiatedId(0); EXPECT_TRUE(manager_.MaybeIncreaseLargestPeerStreamId(stream_id)); EXPECT_TRUE(manager_.MaybeIncreaseLargestPeerStreamId( stream_id + 2 * (manager_.max_open_incoming_streams() - 1))); } TEST_P(LegacyQuicStreamIdManagerTest, TooManyAvailableStreams) { QuicStreamId stream_id = GetNthPeerInitiatedId(0); EXPECT_TRUE(manager_.MaybeIncreaseLargestPeerStreamId(stream_id)); QuicStreamId stream_id2 = GetNthPeerInitiatedId(2 * manager_.MaxAvailableStreams() + 4); EXPECT_FALSE(manager_.MaybeIncreaseLargestPeerStreamId(stream_id2)); } TEST_P(LegacyQuicStreamIdManagerTest, ManyAvailableStreams) { manager_.set_max_open_incoming_streams(200); QuicStreamId stream_id = GetNthPeerInitiatedId(0); EXPECT_TRUE(manager_.MaybeIncreaseLargestPeerStreamId(stream_id)); EXPECT_TRUE( manager_.MaybeIncreaseLargestPeerStreamId(GetNthPeerInitiatedId(199))); } TEST_P(LegacyQuicStreamIdManagerTest, TestMaxIncomingAndOutgoingStreamsAllowed) { EXPECT_EQ(manager_.max_open_incoming_streams(), kDefaultMaxStreamsPerConnection); EXPECT_EQ(manager_.max_open_outgoing_streams(), kDefaultMaxStreamsPerConnection); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/legacy_quic_stream_id_manager.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/legacy_quic_stream_id_manager_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
2707fc17-810b-4e82-b824-5dc398f336ce
cpp
google/tensorstore
multi_vector_view
tensorstore/internal/multi_vector_view.h
tensorstore/internal/multi_vector_view_test.cc
#ifndef TENSORSTORE_INTERNAL_MULTI_VECTOR_VIEW_H_ #define TENSORSTORE_INTERNAL_MULTI_VECTOR_VIEW_H_ #include <cassert> #include <cstddef> #include "tensorstore/index.h" #include "tensorstore/internal/gdb_scripting.h" #include "tensorstore/internal/meta.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/rank.h" #include "tensorstore/util/span.h" TENSORSTORE_GDB_AUTO_SCRIPT("multi_vector_gdb.py") namespace tensorstore { namespace internal { template <DimensionIndex Extent, typename... Ts> class MultiVectorViewStorage; template <typename StorageT> class MultiVectorAccess; template <ptrdiff_t Extent, typename... Ts> class MultiVectorViewStorage { private: friend class MultiVectorAccess<MultiVectorViewStorage>; constexpr static StaticRank<Extent> InternalGetExtent() { return {}; } void InternalSetExtent(StaticRank<Extent>) {} void* InternalGetDataPointer(size_t i) const { return const_cast<void*>(data_[i]); } void InternalSetDataPointer(size_t i, const void* ptr) { data_[i] = ptr; } const void* data_[sizeof...(Ts)]{}; }; template <typename... Ts> class MultiVectorViewStorage<0, Ts...> { private: friend class MultiVectorAccess<MultiVectorViewStorage>; constexpr static StaticRank<0> InternalGetExtent() { return {}; } void InternalSetExtent(StaticRank<0>) {} void* InternalGetDataPointer(size_t i) const { return nullptr; } void InternalSetDataPointer(size_t i, const void* ptr) {} }; template <typename... Ts> class MultiVectorViewStorage<dynamic_rank, Ts...> { private: friend class MultiVectorAccess<MultiVectorViewStorage>; ptrdiff_t InternalGetExtent() const { return extent_; } void InternalSetExtent(ptrdiff_t extent) { extent_ = extent; } void* InternalGetDataPointer(size_t i) const { return const_cast<void*>(data_[i]); } void InternalSetDataPointer(size_t i, const void* ptr) { data_[i] = ptr; } const void* data_[sizeof...(Ts)]{}; ptrdiff_t extent_ = 0; }; template <DimensionIndex Extent, typename... Ts> class MultiVectorAccess<MultiVectorViewStorage<Extent, Ts...>> { public: using StorageType = MultiVectorViewStorage<Extent, Ts...>; using ExtentType = StaticOrDynamicRank<Extent>; constexpr static ptrdiff_t static_extent = Extent; constexpr static size_t num_vectors = sizeof...(Ts); template <size_t I> using ElementType = TypePackElement<I, Ts...>; template <size_t I> using ConstElementType = TypePackElement<I, Ts...>; static ExtentType GetExtent(const StorageType& storage) { return storage.InternalGetExtent(); } template <size_t I> static tensorstore::span<ElementType<I>, Extent> get( const StorageType* array) noexcept { return {static_cast<ElementType<I>*>(array->InternalGetDataPointer(I)), array->InternalGetExtent()}; } static void Assign(StorageType* array, ExtentType extent, Ts*... pointers) { array->InternalSetExtent(extent); size_t i = 0; (array->InternalSetDataPointer(i++, pointers), ...); } static void Assign(StorageType* array, tensorstore::span<Ts, Extent>... spans) { const ExtentType extent = GetFirstArgument(GetStaticOrDynamicExtent(spans)...); assert(((spans.size() == extent) && ...)); Assign(array, extent, spans.data()...); } }; } } #endif
#include "tensorstore/internal/multi_vector_view.h" #include <cstddef> #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/rank.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::dynamic_rank; using ::tensorstore::internal::MultiVectorAccess; using ::tensorstore::internal::MultiVectorViewStorage; using ::testing::ElementsAre; static_assert( MultiVectorAccess<MultiVectorViewStorage<3, int, float>>::static_extent == 3); static_assert( MultiVectorAccess<MultiVectorViewStorage<3, int, float>>::num_vectors == 2); TEST(MultiVectorViewStorageTest, StaticExtent2) { using Container = MultiVectorViewStorage<2, float, int>; using Access = MultiVectorAccess<Container>; static_assert( std::is_same_v<float, typename Access::template ElementType<0>>); static_assert(std::is_same_v<int, typename Access::template ElementType<1>>); static_assert( std::is_same_v<float, typename Access::template ConstElementType<0>>); static_assert( std::is_same_v<int, typename Access::template ConstElementType<1>>); Container vec; static_assert(std::is_same_v<std::integral_constant<ptrdiff_t, 2>, decltype(Access::GetExtent(vec))>); EXPECT_EQ(2, Access::GetExtent(vec)); EXPECT_EQ(nullptr, Access::template get<0>(&vec).data()); EXPECT_EQ(nullptr, Access::template get<1>(&vec).data()); float float_arr[] = {1, 2}; int int_arr[] = {3, 4}; Access::Assign(&vec, std::integral_constant<ptrdiff_t, 2>(), float_arr, int_arr); EXPECT_THAT(Access::template get<0>(&vec), ElementsAre(1, 2)); EXPECT_THAT(Access::template get<1>(&vec), ElementsAre(3, 4)); EXPECT_EQ(&float_arr[0], Access::template get<0>(&vec).data()); EXPECT_EQ(&int_arr[0], Access::template get<1>(&vec).data()); float float_arr2[] = {5, 6}; int int_arr2[] = {7, 8}; Access::Assign(&vec, tensorstore::span(float_arr2), tensorstore::span(int_arr2)); EXPECT_EQ(&float_arr2[0], Access::template get<0>(&vec).data()); EXPECT_EQ(&int_arr2[0], Access::template get<1>(&vec).data()); } TEST(MultiVectorViewStorageTest, StaticExtent0) { using Container = MultiVectorViewStorage<0, float, int>; using Access = MultiVectorAccess<Container>; static_assert( std::is_same_v<float, typename Access::template ElementType<0>>); static_assert(std::is_same_v<int, typename Access::template ElementType<1>>); static_assert( std::is_same_v<float, typename Access::template ConstElementType<0>>); static_assert( std::is_same_v<int, typename Access::template ConstElementType<1>>); Container vec; static_assert(std::is_same_v<std::integral_constant<ptrdiff_t, 0>, decltype(Access::GetExtent(vec))>); EXPECT_EQ(0, Access::GetExtent(vec)); EXPECT_EQ(nullptr, Access::template get<0>(&vec).data()); EXPECT_EQ(nullptr, Access::template get<1>(&vec).data()); Access::Assign(&vec, std::integral_constant<ptrdiff_t, 0>(), nullptr, nullptr); EXPECT_EQ(nullptr, Access::template get<0>(&vec).data()); EXPECT_EQ(nullptr, Access::template get<1>(&vec).data()); Access::Assign(&vec, tensorstore::span<float, 0>{}, tensorstore::span<int, 0>{}); } TEST(MultiVectorViewStorageTest, DynamicExtent) { using Container = MultiVectorViewStorage<dynamic_rank, float, int>; using Access = MultiVectorAccess<Container>; static_assert( std::is_same_v<float, typename Access::template ElementType<0>>); static_assert(std::is_same_v<int, typename Access::template ElementType<1>>); static_assert( std::is_same_v<float, typename Access::template ConstElementType<0>>); static_assert( std::is_same_v<int, typename Access::template ConstElementType<1>>); Container vec; static_assert(std::is_same_v<ptrdiff_t, decltype(Access::GetExtent(vec))>); EXPECT_EQ(0, Access::GetExtent(vec)); EXPECT_EQ(nullptr, Access::template get<0>(&vec).data()); EXPECT_EQ(nullptr, Access::template get<1>(&vec).data()); float float_arr[] = {1, 2}; int int_arr[] = {3, 4}; Access::Assign(&vec, std::integral_constant<ptrdiff_t, 2>(), float_arr, int_arr); EXPECT_EQ(2, Access::GetExtent(vec)); EXPECT_THAT(Access::template get<0>(&vec), ElementsAre(1, 2)); EXPECT_THAT(Access::template get<1>(&vec), ElementsAre(3, 4)); EXPECT_EQ(&float_arr[0], Access::template get<0>(&vec).data()); EXPECT_EQ(&int_arr[0], Access::template get<1>(&vec).data()); float float_arr2[] = {5, 6, 7}; int int_arr2[] = {7, 8, 9}; Access::Assign(&vec, tensorstore::span<float>(float_arr2), tensorstore::span<int>(int_arr2)); EXPECT_EQ(3, Access::GetExtent(vec)); EXPECT_EQ(&float_arr2[0], Access::template get<0>(&vec).data()); EXPECT_EQ(&int_arr2[0], Access::template get<1>(&vec).data()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/multi_vector_view.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/multi_vector_view_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4e5bcc50-72d6-4339-883c-ccbd053d6c39
cpp
google/arolla
binary_search
arolla/util/binary_search.cc
arolla/qexpr/operators/math/binary_search_test.cc
#include "arolla/util/binary_search.h" #include <cassert> #include <cmath> #include <cstddef> #include <cstdint> #include "absl/types/span.h" #include "arolla/util/bits.h" #include "arolla/util/switch_index.h" namespace arolla::binary_search_details { namespace { template <size_t kArraySize, typename T, class Predicate> size_t FastBinarySearchT(const T* const array, Predicate predicate) { static_assert((kArraySize & (kArraySize + 1)) == 0); size_t offset = 0; for (size_t k = kArraySize; k > 0;) { k >>= 1; offset = (!predicate(array[offset + k]) ? offset + k + 1 : offset); } return offset; } template <typename T, typename Predicate> size_t BinarySearchT(absl::Span<const T> array, Predicate predicate) { assert(!array.empty()); const int log2_size = BitScanReverse(array.size()); return switch_index<8 * sizeof(size_t)>( log2_size, [array, predicate](auto constexpr_log2_size) { constexpr size_t size = (1ULL << static_cast<int>(constexpr_log2_size)) - 1; size_t offset = 0; #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" #endif offset = (!predicate(array[size]) ? array.size() - size : offset); #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif return offset + FastBinarySearchT<size>(array.begin() + offset, predicate); }); } } size_t LowerBoundImpl(float value, absl::Span<const float> array) { return BinarySearchT(array, [value](auto arg) { return !(arg < value); }); } size_t LowerBoundImpl(double value, absl::Span<const double> array) { return BinarySearchT(array, [value](auto arg) { return !(arg < value); }); } size_t LowerBoundImpl(int32_t value, absl::Span<const int32_t> array) { return BinarySearchT(array, [value](auto arg) { return arg >= value; }); } size_t LowerBoundImpl(int64_t value, absl::Span<const int64_t> array) { return BinarySearchT(array, [value](auto arg) { return arg >= value; }); } size_t UpperBoundImpl(float value, absl::Span<const float> array) { if (std::isnan(value)) { return array.size(); } return BinarySearchT(array, [value](auto arg) { return !(arg <= value); }); } size_t UpperBoundImpl(double value, absl::Span<const double> array) { if (std::isnan(value)) { return array.size(); } return BinarySearchT(array, [value](auto arg) { return !(arg <= value); }); } size_t UpperBoundImpl(int32_t value, absl::Span<const int32_t> array) { return BinarySearchT(array, [value](auto arg) { return arg > value; }); } size_t UpperBoundImpl(int64_t value, absl::Span<const int64_t> array) { return BinarySearchT(array, [value](auto arg) { return arg > value; }); } }
#include "arolla/qexpr/operators/math/binary_search.h" #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/dense_array/bitmap.h" #include "arolla/dense_array/dense_array.h" #include "arolla/memory/buffer.h" namespace arolla { namespace { using ::absl_testing::IsOk; using ::absl_testing::StatusIs; TEST(BinarySearch, VerifyHaystackFullBitmap) { Buffer<float> values(CreateBuffer(std::vector<float>{1., 2., 3.})); Buffer<bitmap::Word> bitmask(CreateBuffer(std::vector<bitmap::Word>{7})); DenseArray<float> array{std::move(values), std::move(bitmask)}; EXPECT_THAT(SearchSortedOp::VerifyHaystack(array), IsOk()); } TEST(BinarySearch, VerifyHaystackEmptyBitmap) { Buffer<float> values(CreateBuffer(std::vector<float>{1., 2., 3.})); Buffer<bitmap::Word> bitmask(CreateBuffer(std::vector<bitmap::Word>{})); DenseArray<float> array{std::move(values), std::move(bitmask)}; EXPECT_THAT(SearchSortedOp::VerifyHaystack(array), IsOk()); } TEST(BinarySearch, VerifyHaystackRaisesNotFullBitmap) { Buffer<float> values(CreateBuffer(std::vector<float>{1., 2., 3.})); Buffer<bitmap::Word> bitmask(CreateBuffer(std::vector<bitmap::Word>{5})); DenseArray<float> array{std::move(values), std::move(bitmask)}; EXPECT_THAT( SearchSortedOp::VerifyHaystack(array), StatusIs(absl::StatusCode::kUnimplemented, "math.searchsorted operator supports only full haystacks")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/binary_search.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/math/binary_search_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
01d2348a-58d6-42fa-82b6-d0616d993f89
cpp
tensorflow/tensorflow
conditional_thunk
third_party/xla/xla/service/gpu/runtime/conditional_thunk.cc
third_party/xla/xla/backends/cpu/runtime/conditional_thunk_test.cc
#include "xla/service/gpu/runtime/conditional_thunk.h" #include <cstdint> #include <memory> #include <string_view> #include <utility> #include <variant> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { ConditionalThunk::ConditionalThunk( ThunkInfo thunk_info, ConditionalThunkConfig config, const BufferAllocation::Slice& branch_index_buffer_index) : Thunk(Kind::kConditional, thunk_info), config_(std::move(config)), branch_index_buffer_index_(branch_index_buffer_index) {} absl::Status ConditionalThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { if (config_.branch_index_is_bool) { TF_RET_CHECK(config_.branch_thunks.size() == 2); } else { TF_RET_CHECK(!config_.branch_thunks.empty()); } for (auto& branch_thunk : config_.branch_thunks) { TF_RETURN_IF_ERROR(branch_thunk->Prepare(params, resource_requests)); } return absl::OkStatus(); } absl::Status ConditionalThunk::Initialize(const InitializeParams& params) { if (config_.branch_index_is_bool) { TF_RET_CHECK(config_.branch_thunks.size() == 2); } else { TF_RET_CHECK(!config_.branch_thunks.empty()); } for (auto& branch_thunk : config_.branch_thunks) { TF_RETURN_IF_ERROR(branch_thunk->Initialize(params)); } absl::MutexLock lock(&mutex_); if (auto it = predicates_.find(params.executor); it == predicates_.end()) { TF_ASSIGN_OR_RETURN( std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate( config_.branch_index_is_bool ? sizeof(bool) : sizeof(int32_t))); predicates_.emplace(params.executor, std::move(allocation)); } return absl::OkStatus(); } absl::Status ConditionalThunk::ExecuteOnStream(const ExecuteParams& params) { auto& stream = *params.stream; auto branch_index_or_pred = [&]() -> std::variant<int32_t*, bool*> { absl::MutexLock lock(&mutex_); se::StreamExecutor* executor = stream.parent(); if (config_.branch_index_is_bool) { return reinterpret_cast<bool*>(predicates_.at(executor)->opaque()); } else { return reinterpret_cast<int32_t*>(predicates_.at(executor)->opaque()); } }(); se::DeviceMemoryBase branch_index_address = params.buffer_allocations->GetDeviceAddress(branch_index_buffer_index_); if (config_.branch_index_is_bool) { TF_RETURN_IF_ERROR(stream.Memcpy(std::get<bool*>(branch_index_or_pred), branch_index_address, sizeof(bool))); } else { TF_RETURN_IF_ERROR(stream.Memcpy(std::get<int32_t*>(branch_index_or_pred), branch_index_address, sizeof(int32_t))); } if (absl::Status blocked = stream.BlockHostUntilDone(); !blocked.ok()) { return Internal("Failed to retrieve branch_index value on stream %p: %s.", &stream, blocked.message()); } int32_t branch_index = std::visit( VariantVisitor{[](int32_t* branch_index) { return *branch_index; }, [](bool* pred) { return *pred ? 0 : 1; }}, branch_index_or_pred); std::string_view branch_kind = std::visit(VariantVisitor{[](int32_t*) { return "index"; }, [](bool*) { return "pred"; }}, branch_index_or_pred); VLOG(3) << "ConditionalThunk: branch_index=" << branch_index << " (kind: " << branch_kind << ")"; if (branch_index < 0 || branch_index >= config_.branch_count) { branch_index = config_.branch_count - 1; } TF_RETURN_IF_ERROR( config_.branch_thunks[branch_index]->ExecuteOnStream(params)); return absl::OkStatus(); } } }
#include "xla/backends/cpu/runtime/conditional_thunk.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "xla/backends/cpu/runtime/resource_use.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/backends/cpu/runtime/thunk_testlib.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { TEST(ConditionalThunkTest, BufferUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice branch_index_slice(&alloc, 0, sizeof(int32_t)); BufferAllocation::Slice read_slice(&alloc, 10, 10); std::vector<ThunkSequence> branch_sequences(1); branch_sequences[0].push_back( std::make_unique<BufferUseThunk>(BufferUse::Read(read_slice))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, ConditionalThunk::Create({"conditional"}, branch_index_slice, std::move(branch_sequences))); EXPECT_EQ(thunk->buffer_uses().size(), 2); EXPECT_EQ(thunk->buffer_uses()[0], BufferUse::Read(branch_index_slice)); EXPECT_EQ(thunk->buffer_uses()[1], BufferUse::Read(read_slice)); } TEST(ConditionalThunkTest, ResourceUses) { BufferAllocation alloc(0, 1024, 0); BufferAllocation::Slice branch_index_slice(&alloc, 0, sizeof(int32_t)); auto token = Resource::Create(Resource::kToken); std::vector<ThunkSequence> branch_sequences(1); branch_sequences[0].push_back( std::make_unique<ResourceUseThunk>(ResourceUse::Read(token))); TF_ASSERT_OK_AND_ASSIGN( auto thunk, ConditionalThunk::Create({"conditional"}, branch_index_slice, std::move(branch_sequences))); EXPECT_EQ(thunk->resource_uses().size(), 1); EXPECT_EQ(thunk->resource_uses()[0], ResourceUse::Read(token)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/conditional_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/conditional_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
21725ba1-c718-4024-a3ae-27f4d851549c
cpp
tensorflow/tensorflow
tf_executor_to_graph
tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.cc
tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph_test.cc
#include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Location.h" #include "mlir/IR/Operation.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/Types.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/DebugStringHelper.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/op_or_arg_name_mapper.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_executor.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/translate/export_tf_dialect_op.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/export_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/translate_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/verify_suitable_for_graph_export.h" #include "tensorflow/compiler/mlir/utils/name_utils.h" #include "xla/status_macros.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/regularization/util.h" #include "tensorflow/core/graph/tensor_id.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace tf2xla { namespace v2 { using mlir::BlockArgument; using mlir::Dialect; using mlir::Operation; using mlir::SymbolTable; using mlir::Value; using mlir::func::FuncOp; using tsl::StatusOr; namespace { constexpr char kDeviceAttr[] = "tf.device"; constexpr char kResourceArgUniqueIdAttr[] = "tf._resource_arg_unique_id"; constexpr char kEntryFuncAttr[] = "tf.entry_function"; constexpr char kAliasingAttr[] = "tf.aliasing_output"; class LegalizedOpOrValLocNameMapper : public OpOrArgLocNameMapper { private: std::string GetName(OpOrVal op_or_val) override { std::string name = OpOrArgLocNameMapper::GetName(op_or_val); assert(!name.empty() && "expected non-empty name"); mlir::LegalizeNodeName(name); return name; } }; Operation* GetIslandInnerOpOrSelf(mlir::Operation* op) { auto island = llvm::dyn_cast<mlir::tf_executor::IslandOp>(op); if (island) return &island.GetBody().front(); return op; } class Exporter { public: static Status Convert(mlir::ModuleOp module, const GraphExportConfig& configs, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, absl::flat_hash_set<Node*>* control_ret_nodes); static Status ConvertLibFunction( const GraphExportConfig& configs, const Dialect* tf_dialect, const SymbolTable& symbol_table, FuncOp function, FunctionLibraryDefinition* flib_def, llvm::SmallDenseSet<FuncOp>& visited_functions); static absl::StatusOr<std::unique_ptr<Graph>> Convert( const GraphExportConfig& configs, const Dialect* tf_dialect, const SymbolTable& symbol_table, FuncOp function, FunctionLibraryDefinition* flib_def, llvm::SmallDenseSet<FuncOp>& visited_functions, absl::flat_hash_set<Node*>* control_ret_nodes); private: explicit Exporter(const GraphExportConfig* configs, Graph* graph, const Dialect* tf_dialect, const SymbolTable* symbol_table) : configs_(*configs), graph_(graph), tf_dialect_(tf_dialect), symbol_table_(*symbol_table) { graph_->ToGraphDef(&graphdef_); } Status AddArgumentNode(BlockArgument arg, unsigned index, llvm::StringRef name); Status AddFetchNode(FuncOp function, mlir::tf_executor::FetchOp fetch, llvm::ArrayRef<llvm::StringRef> names); Status AddInstructionNode(Operation* inst); void UseOriginalFunctionNames(NodeDef& node_def); Status AddEdge(Operation* inst); absl::StatusOr<std::unique_ptr<NodeDef>> GetArgumentNode( BlockArgument arg, unsigned index, llvm::StringRef name); absl::StatusOr<std::unique_ptr<NodeDef>> GetReturnNode(FuncOp function, Value operand, unsigned index, llvm::StringRef name); Status GetControlRetNodes(mlir::tf_executor::FetchOp fetch, absl::flat_hash_set<Node*>* control_ret_nodes); Status AddEdgeBetweenNodes(Value src, Node* dst_node, unsigned dst_index); const GraphExportConfig& configs_; Graph* graph_; GraphDef graphdef_; LegalizedOpOrValLocNameMapper op_to_name_; absl::flat_hash_map<Operation*, Node*> nodes_; llvm::DenseMap<BlockArgument, Node*> args_; typedef absl::InlinedVector<Node*, 4> NodeVector; absl::flat_hash_map<Operation*, NodeVector> returns_; const mlir::Dialect* tf_dialect_; const SymbolTable& symbol_table_; }; std::string FindFunctionName(const GraphExportConfig& configs, FuncOp func) { if (auto original_func_name = func->getAttrOfType<mlir::StringAttr>("tf._original_func_name"); configs.export_original_tf_func_name && original_func_name) { return original_func_name.str(); } return func.getName().str(); } absl::StatusOr<std::unique_ptr<NodeDef>> Exporter::GetArgumentNode( BlockArgument arg, unsigned index, llvm::StringRef name) { auto func = arg.getParentRegion()->getParentOfType<FuncOp>(); auto node_def = std::make_unique<NodeDef>(); if (!name.empty()) node_def->set_name(std::string(ParseTensorName(name.str()).node())); else node_def->set_name( std::string(op_to_name_.GetUniqueName(func.getName().str()))); node_def->set_op(FunctionLibraryDefinition::kArgOp); mlir::TensorType arg_type = mlir::cast<mlir::TensorType>(arg.getType()); if (auto resource_type = mlir::dyn_cast<mlir::TF::ResourceType>(arg_type.getElementType())) { llvm::ArrayRef<mlir::TensorType> subtypes = resource_type.getSubtypes(); if (!subtypes.empty()) { AttrValue handle_dtypes_attr; AttrValue handle_shapes_attr; for (mlir::TensorType subtype : subtypes) { DataType dtype; TF_RETURN_IF_ERROR(ConvertToDataType(subtype.getElementType(), &dtype)); handle_dtypes_attr.mutable_list()->add_type(dtype); SetTensorShapeProto(subtype, handle_shapes_attr.mutable_list()->add_shape()); } (*node_def->mutable_attr())["_handle_dtypes"] = handle_dtypes_attr; (*node_def->mutable_attr())["_handle_shapes"] = handle_shapes_attr; } } TF_RETURN_IF_ERROR( SetShapeAttribute("_output_shapes", arg_type, node_def->mutable_attr())); DataType dtype; TF_RETURN_IF_ERROR(ConvertToDataType(arg_type.getElementType(), &dtype)); AttrValue type_attr; type_attr.set_type(dtype); (*node_def->mutable_attr())["T"] = type_attr; AttrValue index_attr; index_attr.set_i(index); (*node_def->mutable_attr())["index"] = index_attr; if (auto device_attr = func.getArgAttrOfType<mlir::StringAttr>(index, kDeviceAttr)) *node_def->mutable_device() = device_attr.getValue().str(); llvm::ArrayRef<mlir::NamedAttribute> func_arg_i_attrs = mlir::function_interface_impl::getArgAttrs(func, index); absl::flat_hash_set<absl::string_view> attrs_to_ignore = {kDeviceAttr, kAliasingAttr}; TF_RETURN_IF_ERROR(ConvertAttributes(func_arg_i_attrs, attrs_to_ignore, false, node_def->mutable_attr())); return node_def; } absl::StatusOr<std::unique_ptr<NodeDef>> Exporter::GetReturnNode( FuncOp function, Value operand, unsigned index, llvm::StringRef name) { auto node_def = std::make_unique<NodeDef>(); if (!name.empty()) node_def->set_name(std::string(ParseTensorName(name.str()).node())); else node_def->set_name( std::string(op_to_name_.GetUniqueName(function.getName().str()))); node_def->set_op(FunctionLibraryDefinition::kRetOp); DataType dtype; TF_RETURN_IF_ERROR(ConvertToDataType( mlir::cast<mlir::TensorType>(operand.getType()).getElementType(), &dtype)); AttrValue type_attr; type_attr.set_type(dtype); (*node_def->mutable_attr())["T"] = type_attr; AttrValue index_attr; index_attr.set_i(index); (*node_def->mutable_attr())["index"] = index_attr; if (auto device_attr = function.getResultAttrOfType<mlir::StringAttr>(index, kDeviceAttr)) *node_def->mutable_device() = device_attr.getValue().str(); llvm::ArrayRef<mlir::NamedAttribute> func_res_i_attrs = function.getResultAttrs(index); absl::flat_hash_set<absl::string_view> attrs_to_ignore = {kDeviceAttr}; TF_RETURN_IF_ERROR(ConvertAttributes(func_res_i_attrs, attrs_to_ignore, false, node_def->mutable_attr())); return node_def; } Status Exporter::AddEdgeBetweenNodes(Value src, Node* dst_node, unsigned dst_index) { if (auto input_result = mlir::dyn_cast<mlir::OpResult>(src)) { auto* input_inst = GetIslandInnerOpOrSelf(input_result.getOwner()); if (auto next_iter_source = llvm::dyn_cast<mlir::tf_executor::NextIterationSourceOp>( input_inst)) input_inst = next_iter_source.GetSink(); auto node_it = nodes_.find(input_inst); TF_RET_CHECK(node_it != nodes_.end()) << "Use of OpResult encountered before def!"; if (mlir::isa<mlir::tf_executor::ControlType>(input_result.getType())) { graph_->AddControlEdge(node_it->second, dst_node, true); } else { graph_->AddEdge(node_it->second, input_result.getResultNumber(), dst_node, dst_index); } return absl::OkStatus(); } auto input_arg = mlir::cast<BlockArgument>(src); auto input_node_it = args_.find(input_arg); TF_RET_CHECK(input_node_it != args_.end()) << "Use of BlockArgument encounted before def!"; graph_->AddEdge(input_node_it->second, 0, dst_node, dst_index); return absl::OkStatus(); } Status Exporter::AddEdge(Operation* inst) { if (auto fetch = llvm::dyn_cast<mlir::tf_executor::FetchOp>(inst)) { for (auto operand_and_idx : llvm::enumerate(fetch.getOperands())) { Value operand = operand_and_idx.value(); if (mlir::isa<mlir::tf_executor::ControlType>(operand.getType())) break; auto* dst_node = returns_[fetch][operand_and_idx.index()]; TF_RETURN_IF_ERROR(AddEdgeBetweenNodes(operand, dst_node, 0)); } return absl::OkStatus(); } if (auto next_iter_sink = llvm::dyn_cast<mlir::tf_executor::NextIterationSinkOp>(inst)) { auto* dst_node = nodes_[inst]; TF_RETURN_IF_ERROR( AddEdgeBetweenNodes(next_iter_sink.getInput(), dst_node, 0)); for (auto control_and_idx : llvm::enumerate(next_iter_sink.getControlInputs())) TF_RETURN_IF_ERROR(AddEdgeBetweenNodes(control_and_idx.value(), dst_node, control_and_idx.index() + 1)); return absl::OkStatus(); } if (llvm::isa<mlir::tf_executor::NextIterationSourceOp>(inst)) { assert(inst->getNumOperands() == 0); return absl::OkStatus(); } Operation* op = GetIslandInnerOpOrSelf(inst); auto* dst_node = nodes_[op]; int operand_offset = 0; if (auto island = llvm::dyn_cast<mlir::tf_executor::IslandOp>(inst)) { for (auto operand_and_idx : llvm::enumerate(op->getOperands())) TF_RETURN_IF_ERROR(AddEdgeBetweenNodes(operand_and_idx.value(), dst_node, operand_and_idx.index())); operand_offset = op->getNumOperands(); } for (auto operand_and_idx : llvm::enumerate(inst->getOperands())) TF_RETURN_IF_ERROR( AddEdgeBetweenNodes(operand_and_idx.value(), dst_node, operand_and_idx.index() + operand_offset)); return absl::OkStatus(); } void Exporter::UseOriginalFunctionNames(NodeDef& node_def) { if (!configs_.export_original_tf_func_name) return; auto& attrs = *node_def.mutable_attr(); auto try_use_original_func_name = [this](std::string* name) { if (auto func = symbol_table_.lookup<FuncOp>(*name)) { if (auto original_func_name = func->getAttrOfType<mlir::StringAttr>("tf._original_func_name")) { *name = original_func_name.str(); } } }; try_use_original_func_name(node_def.mutable_op()); for (auto& iter : attrs) { auto& attr = iter.second; if (attr.has_func()) { try_use_original_func_name(attr.mutable_func()->mutable_name()); } else if (attr.has_list()) { for (auto& func_attr : *attr.mutable_list()->mutable_func()) { try_use_original_func_name(func_attr.mutable_name()); } } } } Status Exporter::AddInstructionNode(Operation* inst) { std::unique_ptr<NodeDef> node_def; int graph_hash_value = graph_regularization::ComputeHash(graphdef_); auto name = op_to_name_.GetUniqueName(inst, graph_hash_value); TF_ASSIGN_OR_RETURN(node_def, ConvertTFDialectOpToNodeDef( inst, name, false)); UseOriginalFunctionNames(*node_def); TF_ASSIGN_OR_RETURN(Node * node, graph_->AddNode(std::move(*node_def))); DCHECK(node != nullptr); nodes_[inst] = node; return absl::OkStatus(); } bool IsEntryFunctionArg(BlockArgument arg) { return arg.getParentRegion()->getParentOfType<FuncOp>().getName() == "main"; } Status Exporter::AddArgumentNode(BlockArgument arg, unsigned index, llvm::StringRef name) { TF_ASSIGN_OR_RETURN(auto node_def, GetArgumentNode(arg, index, name)); TF_ASSIGN_OR_RETURN(Node * node, graph_->AddNode(std::move(*node_def))); args_[arg] = node; return absl::OkStatus(); } Status Exporter::AddFetchNode(FuncOp function, mlir::tf_executor::FetchOp fetch, llvm::ArrayRef<llvm::StringRef> names) { auto& return_nodes = returns_[fetch]; for (auto operand_and_idx : llvm::enumerate(fetch.getOperands())) { if (mlir::isa<mlir::tf_executor::ControlType>( operand_and_idx.value().getType())) break; TF_ASSIGN_OR_RETURN( auto node_def, GetReturnNode(function, operand_and_idx.value(), operand_and_idx.index(), names.empty() ? "" : names[operand_and_idx.index()])); TF_ASSIGN_OR_RETURN(Node * node, graph_->AddNode(std::move(*node_def))); return_nodes.push_back(node); } return absl::OkStatus(); } Status Exporter::GetControlRetNodes( mlir::tf_executor::FetchOp fetch, absl::flat_hash_set<Node*>* control_ret_nodes) { for (Value fetch_operand : fetch.getOperands()) { if (mlir::isa<mlir::tf_executor::ControlType>(fetch_operand.getType())) { Operation* defining_op = GetIslandInnerOpOrSelf(fetch_operand.getDefiningOp()); auto node_it = nodes_.find(defining_op); TF_RET_CHECK(node_it != nodes_.end()); control_ret_nodes->insert(node_it->second); } } return absl::OkStatus(); } void FixupInputNamesFromEdges(Graph* graph) { for (Node* n : graph->nodes()) { if (n->IsOp()) { NodeDef* node_def = n->mutable_def(); node_def->clear_input(); for (const Edge* e : n->in_edges()) { Node* src = e->src(); if (src->IsOp()) { Graph::AddInput(node_def, src->name(), e->src_output()); } } } } } absl::StatusOr<std::unique_ptr<Graph>> Exporter::Convert( const GraphExportConfig& configs, const Dialect* tf_dialect, const SymbolTable& symbol_table, FuncOp function, FunctionLibraryDefinition* flib_def, llvm::SmallDenseSet<FuncOp>& visited_functions, absl::flat_hash_set<Node*>* control_ret_nodes) { mlir::Block& block = function.front(); llvm::SmallVector<llvm::StringRef, 2> input_names; llvm::SmallVector<llvm::StringRef, 2> output_names; llvm::SmallVector<llvm::StringRef, 2> unique_output_names; auto dict_attr = function->getAttrOfType<mlir::DictionaryAttr>(kEntryFuncAttr); if (dict_attr) { TF_RET_CHECK(mlir::isa<mlir::StringAttr>(dict_attr.get("inputs"))) << "inputs missing in entry function attribute"; TF_RET_CHECK(mlir::isa<mlir::StringAttr>(dict_attr.get("outputs"))) << "outputs missing in entry function attribute"; mlir::cast<mlir::StringAttr>(dict_attr.get("inputs")) .getValue() .split(input_names, ',', -1, false); mlir::cast<mlir::StringAttr>(dict_attr.get("outputs")) .getValue() .split(output_names, ',', -1, false); } auto graph = std::make_unique<Graph>(OpRegistry::Global()); VersionDef versions; auto module = function->getParentOfType<mlir::ModuleOp>(); if (mlir::succeeded(ExtractTfVersions(module, &versions))) { graph->set_versions(versions); } Exporter exporter(&configs, graph.get(), tf_dialect, &symbol_table); auto graph_op = llvm::cast<mlir::tf_executor::GraphOp>(block.front()); if (!output_names.empty()) { const int num_data_results = graph_op.getNumResults(); const int64_t output_names_size = output_names.size(); TF_RET_CHECK(output_names_size == num_data_results) << "output names (" << output_names.size() << ") != terminator operands (" << num_data_results << ")"; llvm::DenseMap<Operation*, llvm::StringRef> output_op_to_name; llvm::StringMap<Operation*> name_to_op; for (const auto& it : llvm::enumerate(graph_op.GetFetch().getOperands())) { const int64_t index = it.index(); if (index >= num_data_results) break; std::string name(output_names[index]); auto tensor_id = ParseTensorName(name); std::string tensor_id_node(tensor_id.node()); assert(!tensor_id_node.empty() && "expected non-empty name"); mlir::LegalizeNodeName(tensor_id_node); unique_output_names.push_back( exporter.op_to_name_.GetUniqueName(tensor_id_node)); } } if (!input_names.empty()) { TF_RET_CHECK(input_names.size() == block.getNumArguments()); for (const auto& it : llvm::enumerate(function.getArguments())) { std::string name(input_names[it.index()]); assert(!name.empty() && "expected non-empty name"); mlir::LegalizeNodeName(name); auto tensor_id = ParseTensorName(name); TF_RET_CHECK(tensor_id.index() == 0) << "input port designation not supported"; (void)exporter.op_to_name_.GetUniqueName(name); } } for (auto it : llvm::enumerate(block.getArguments())) { int index = it.index(); auto arg = it.value(); mlir::Type type = arg.getType(); if (!mlir::isa<mlir::TensorType>(type)) { return errors::InvalidArgument( "FuncOps arguments must have tensor types. Found ", mlir::debugString(type), " in function ", function.getName().str()); } TF_RETURN_IF_ERROR(exporter.AddArgumentNode( arg, index, !input_names.empty() ? input_names[index] : "")); } auto convert_called_function = [&](llvm::StringRef name) { auto func = symbol_table.lookup<FuncOp>(name); if (func != nullptr) { TF_RETURN_IF_ERROR(ConvertLibFunction(configs, tf_dialect, symbol_table, func, flib_def, visited_functions)); TF_RETURN_IF_ERROR(graph->mutable_flib_def()->AddLibrary(*flib_def)); } return absl::OkStatus(); }; for (Operation& inst : graph_op.GetBody()) { for (auto type : inst.getResultTypes()) if (!mlir::isa<mlir::TensorType, mlir::tf_executor::ControlType, mlir::tf_executor::TokenType>(type)) return errors::InvalidArgument( "Values must be of tensor type, TensorFlow control type, or " "TensorFlow token type. Found ", mlir::debugString(type)); if (llvm::isa<mlir::tf_executor::NextIterationSourceOp>(inst)) { continue; } else if (auto fetch = llvm::dyn_cast<mlir::tf_executor::FetchOp>(inst)) { TF_RETURN_IF_ERROR( exporter.AddFetchNode(function, fetch, unique_output_names)); } else if (auto island = llvm::dyn_cast<mlir::tf_executor::IslandOp>(inst)) { Operation& inner_op = island.GetBody().front(); auto op_name = GetTensorFlowOpName(inner_op.getName().getStringRef()); if (llvm::isa<FuncOp>(inner_op) && op_name.ok()) { TF_RETURN_IF_ERROR(convert_called_function(op_name.value().str())); } if (IsLegacyCallInstruction(&inner_op)) { TF_RETURN_IF_ERROR(convert_called_function( inner_op.getAttrOfType<mlir::SymbolRefAttr>("f") .getLeafReference() .getValue())); } TF_RETURN_IF_ERROR(exporter.AddInstructionNode(&inner_op)); } else { TF_RETURN_IF_ERROR(exporter.AddInstructionNode(&inst)); } } for (Operation& inst : graph_op.GetBody()) { TF_RETURN_IF_ERROR(exporter.AddEdge(&inst)); } FixupSourceAndSinkEdges(graph.get()); FixupInputNamesFromEdges(graph.get()); TF_RETURN_IF_ERROR( exporter.GetControlRetNodes(graph_op.GetFetch(), control_ret_nodes)); return graph; } Status Exporter::ConvertLibFunction( const GraphExportConfig& configs, const Dialect* tf_dialect, const SymbolTable& symbol_table, FuncOp function, FunctionLibraryDefinition* flib_def, llvm::SmallDenseSet<FuncOp>& visited_functions) { bool is_new_function = visited_functions.insert(function).second; if (!is_new_function) return absl::OkStatus(); auto function_name = FindFunctionName(configs, function); absl::flat_hash_set<Node*> control_ret_nodes; TF_ASSIGN_OR_RETURN( auto sub_graph, Exporter::Convert(configs, tf_dialect, symbol_table, function, flib_def, visited_functions, &control_ret_nodes)); const auto control_ret = [&](const Node* n) -> std::optional<string> { return control_ret_nodes.contains(n) ? std::make_optional<string>(n->name()) : std::nullopt; }; FunctionDef func_def; TF_RETURN_IF_ERROR( GraphToFunctionDef(*sub_graph, function_name, control_ret, &func_def)); auto grad_string = mlir::TF::TensorFlowDialect::GetGradientAttrName(); if (auto attr = function->getAttrOfType<mlir::FlatSymbolRefAttr>(grad_string)) { auto grad_func = symbol_table.lookup<FuncOp>(attr.getValue()); TF_RETURN_IF_ERROR(ConvertLibFunction(configs, tf_dialect, symbol_table, grad_func, flib_def, visited_functions)); GradientDef grad; grad.set_function_name(function_name); grad.set_gradient_func(grad_func.getName().str()); TF_RETURN_IF_ERROR(flib_def->AddGradientDef(grad)); } auto stateful_string = mlir::TF::TensorFlowDialect::GetStatefulAttrName(); if (auto attr = function->getAttrOfType<mlir::UnitAttr>(stateful_string)) { func_def.mutable_signature()->set_is_stateful(true); } absl::flat_hash_set<absl::string_view> attrs_to_ignore = { grad_string.data(), stateful_string.data(), kEntryFuncAttr}; llvm::SmallVector<mlir::NamedAttribute, 8> funcAttrs( function->getDialectAttrs()); TF_RETURN_IF_ERROR(ConvertAttributes(funcAttrs, attrs_to_ignore, false, func_def.mutable_attr())); for (int i = 0, e = function.getNumArguments(); i < e; ++i) { if (auto resource_arg_unique_id_attr = function.getArgAttrOfType<mlir::IntegerAttr>( i, kResourceArgUniqueIdAttr)) { (*func_def.mutable_resource_arg_unique_id())[i] = resource_arg_unique_id_attr.getInt(); } } return flib_def->AddFunctionDef(std::move(func_def)); } Status Exporter::Convert(mlir::ModuleOp module, const GraphExportConfig& configs, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, absl::flat_hash_set<Node*>* control_ret_nodes) { mlir::StringAttr entry_func_id = mlir::StringAttr::get(module.getContext(), "main"); std::optional<FuncOp> entry_func; FunctionLibraryDefinition temp_flib_def(OpRegistry::Global(), FunctionDefLibrary()); llvm::SmallDenseSet<FuncOp> visited_functions; auto tf_dialect = module.getContext()->getLoadedDialect("tf"); SymbolTable symbol_table(module); for (auto function : module.getOps<FuncOp>()) { if (function.isExternal()) return errors::FailedPrecondition("External functions not supported"); if (function.getName() == entry_func_id && !configs.export_entry_func_to_flib) { entry_func.emplace(function); } else { TF_RETURN_IF_ERROR(ConvertLibFunction(configs, tf_dialect, symbol_table, function, &temp_flib_def, visited_functions)); } } if (flib_def != nullptr) { TF_RETURN_IF_ERROR(flib_def->AddLibrary(temp_flib_def)); } if (!configs.export_entry_func_to_flib) { if (!entry_func.has_value()) return errors::FailedPrecondition( "entry function `main` must be present"); TF_ASSIGN_OR_RETURN( *graph, Exporter::Convert(configs, tf_dialect, symbol_table, entry_func.value(), &temp_flib_def, visited_functions, control_ret_nodes)); TF_RETURN_IF_ERROR( graph->get()->mutable_flib_def()->AddLibrary(temp_flib_def)); } else if (graph != nullptr) { TF_RETURN_IF_ERROR( graph->get()->mutable_flib_def()->AddLibrary(std::move(*flib_def))); } return absl::OkStatus(); } } Status ConvertTfExecutorToGraph(mlir::ModuleOp module, const GraphExportConfig& configs, std::unique_ptr<Graph>* graph, FunctionLibraryDefinition* flib_def, absl::flat_hash_set<Node*>* control_ret_nodes) { mlir::StatusScopedDiagnosticHandler sh(module.getContext()); if (failed(VerifyExportSuitable(module))) return sh.ConsumeStatus(); return sh.Combine( Exporter::Convert(module, configs, graph, flib_def, control_ret_nodes)); } absl::Status ConvertMlirFunctionToFunctionLibraryDef( FuncOp func, const GraphExportConfig& configs, FunctionDef* function_def) { Dialect* tf_dialect = func.getContext()->getLoadedDialect("tf"); FunctionLibraryDefinition flib_def(OpRegistry::Global(), FunctionDefLibrary()); llvm::SmallDenseSet<FuncOp> visited_functions; SymbolTable symbol_table(func->getParentOfType<mlir::ModuleOp>()); TF_RETURN_IF_ERROR(Exporter::ConvertLibFunction( configs, tf_dialect, symbol_table, func, &flib_def, visited_functions)); auto name = FindFunctionName(configs, func); const FunctionDef* func_def = flib_def.Find(name); if (func_def != nullptr) { *function_def = *func_def; return absl::OkStatus(); } return absl::InvalidArgumentError( absl::StrCat("Function '", name, "' couldn't be found in the FunctionDefLibrary after " "converting from MLIR")); } } } }
#include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include <stdlib.h> #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/resource_loader.h" #include "tsl/platform/protobuf.h" namespace tensorflow { namespace tf2xla { namespace v2 { namespace { using mlir::DialectRegistry; using mlir::MLIRContext; using mlir::ModuleOp; using mlir::OwningOpRef; std::string TestDataPath() { return tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tf2xla/api/v2/testdata/"); } class TfExecutorToGraphTest : public ::testing::Test { public: TfExecutorToGraphTest() { mlir::RegisterCommonToolingDialects(registry_); context_.appendDialectRegistry(registry_); context_.loadAllAvailableDialects(); } absl::StatusOr<OwningOpRef<mlir::ModuleOp>> CreateMlirModule( std::string mlir_module_filename) { std::string mlir_module_path = TestDataPath() + mlir_module_filename; return mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context_); } GraphDef CreateGraphDef(std::string graphdef_filename) { std::string file_path = TestDataPath() + graphdef_filename; std::string contents; GraphDef graph_def; auto status = riegeli::ReadAll(riegeli::FdReader(file_path), contents); if (!status.ok()) { return graph_def; } tsl::protobuf::TextFormat::ParseFromString(contents, &graph_def); return graph_def; } DialectRegistry registry_; MLIRContext context_; OwningOpRef<mlir::ModuleOp> mlir_module_; }; TEST_F(TfExecutorToGraphTest, ConvertMlirToGraphSucceeds) { auto valid_executor_module = CreateMlirModule("valid_executor.mlir"); GraphExportConfig confs; absl::flat_hash_set<Node*> control_ret_nodes; FunctionLibraryDefinition flib_def(OpRegistry::Global(), FunctionDefLibrary()); auto result_graph = std::make_unique<Graph>(flib_def); TF_ASSERT_OK(ConvertTfExecutorToGraph(valid_executor_module.value().get(), confs, &result_graph, &flib_def, &control_ret_nodes)); GraphDef result_graphdef; result_graph->ToGraphDef(&result_graphdef); GraphDef expected_graphdef = CreateGraphDef("valid_graph.txt"); EXPECT_EQ(result_graphdef.DebugString(), expected_graphdef.DebugString()); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7f0424d3-3804-43b2-8e39-74cec9ac5e61
cpp
tensorflow/tensorflow
conv_canonicalization
third_party/xla/xla/service/cpu/conv_canonicalization.cc
third_party/xla/xla/service/cpu/conv_canonicalization_test.cc
#include "xla/service/cpu/conv_canonicalization.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/permutation_util.h" #include "xla/service/cpu/cpu_runtime.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace cpu { absl::StatusOr<bool> ConvCanonicalization::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloInstruction* hlo : module->entry_computation()->MakeInstructionPostOrder()) { if (hlo->opcode() == HloOpcode::kConvolution && !PotentiallyImplementedAsEigenConvolution(*hlo, target_machine_features_)) { const ConvolutionDimensionNumbers& dnums = hlo->convolution_dimension_numbers(); auto input_batch_dim = dnums.input_batch_dimension(); auto input_feature_dim = dnums.input_feature_dimension(); auto kernel_input_feature_dim = dnums.kernel_input_feature_dimension(); auto kernel_output_feature_dim = dnums.kernel_output_feature_dimension(); const int64_t num_spatial_dims = dnums.output_spatial_dimensions_size(); const int64_t num_dims = num_spatial_dims + 2; HloInstruction* input = hlo->mutable_operand(0); std::vector<int64_t> new_input_dim_order(num_dims); std::vector<int64_t> new_input_dims(num_dims); new_input_dim_order[0] = input_batch_dim; new_input_dims[0] = input->shape().dimensions(input_batch_dim); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_input_dim_order[i + 1] = dnums.input_spatial_dimensions(i); new_input_dims[i + 1] = input->shape().dimensions(dnums.input_spatial_dimensions(i)); } new_input_dim_order[num_dims - 1] = input_feature_dim; new_input_dims[num_dims - 1] = input->shape().dimensions(input_feature_dim); Shape new_input_shape = ShapeUtil::MakeShape(input->shape().element_type(), new_input_dims); HloInstruction* new_input = module->entry_computation()->AddInstruction( HloInstruction::CreateTranspose(new_input_shape, input, new_input_dim_order)); HloInstruction* kernel = hlo->mutable_operand(1); std::vector<int64_t> new_kernel_dim_order(num_dims); std::vector<int64_t> new_kernel_dims(num_dims); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_kernel_dim_order[i] = dnums.kernel_spatial_dimensions(i); new_kernel_dims[i] = kernel->shape().dimensions(dnums.kernel_spatial_dimensions(i)); } new_kernel_dim_order[num_dims - 2] = kernel_input_feature_dim; new_kernel_dims[num_dims - 2] = kernel->shape().dimensions(kernel_input_feature_dim); new_kernel_dim_order[num_dims - 1] = kernel_output_feature_dim; new_kernel_dims[num_dims - 1] = kernel->shape().dimensions(kernel_output_feature_dim); Shape new_kernel_shape = ShapeUtil::MakeShape(kernel->shape().element_type(), new_kernel_dims); HloInstruction* new_kernel = module->entry_computation()->AddInstruction( HloInstruction::CreateTranspose(new_kernel_shape, kernel, new_kernel_dim_order)); std::vector<int64_t> new_output_dim_order(num_dims); std::vector<int64_t> new_conv_dims(num_dims); auto output_batch_dim = dnums.output_batch_dimension(); auto output_feature_dim = dnums.output_feature_dimension(); new_output_dim_order[0] = output_batch_dim; new_conv_dims[0] = hlo->shape().dimensions(output_batch_dim); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_output_dim_order[i + 1] = dnums.output_spatial_dimensions(i); new_conv_dims[i + 1] = hlo->shape().dimensions(dnums.output_spatial_dimensions(i)); } new_output_dim_order[num_dims - 1] = output_feature_dim; new_conv_dims[num_dims - 1] = hlo->shape().dimensions(output_feature_dim); Shape new_conv_shape = ShapeUtil::MakeShape(hlo->shape().element_type(), new_conv_dims); ConvolutionDimensionNumbers new_dnums; new_dnums.set_input_batch_dimension(0); new_dnums.set_output_batch_dimension(0); for (int64_t i = 0; i < num_spatial_dims; ++i) { new_dnums.add_input_spatial_dimensions(i + 1); new_dnums.add_kernel_spatial_dimensions(i); new_dnums.add_output_spatial_dimensions(i + 1); } new_dnums.set_input_feature_dimension(num_dims - 1); new_dnums.set_output_feature_dimension(num_dims - 1); new_dnums.set_kernel_input_feature_dimension(num_dims - 2); new_dnums.set_kernel_output_feature_dimension(num_dims - 1); HloInstruction* new_conv = module->entry_computation()->AddInstruction( HloInstruction::CreateConvolve( new_conv_shape, new_input, new_kernel, hlo->feature_group_count(), hlo->batch_group_count(), hlo->window(), new_dnums, hlo->precision_config())); TF_RETURN_IF_ERROR(module->entry_computation()->ReplaceWithNewInstruction( hlo, HloInstruction::CreateTranspose( hlo->shape(), new_conv, InversePermutation(new_output_dim_order)))); changed = true; } } return changed; } } }
#include "xla/service/cpu/conv_canonicalization.h" #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" namespace xla { namespace cpu { using ::testing::ElementsAre; class ConvCanonicalizationTest : public HloTestBase { public: ConvCanonicalizationTest() { for (int i = 0; i < 2; ++i) { auto dim = conv_window_.add_dimensions(); dim->set_size(kWindowSize); dim->set_stride(1); dim->set_padding_low(0); dim->set_padding_high(0); dim->set_window_dilation(1); dim->set_base_dilation(1); } } protected: Window conv_window_; static constexpr int kBatchSize = 50; static constexpr int kInputSize = 28; static constexpr int kWindowSize = 5; static constexpr int kInputFeatureCount = 32; static constexpr int kOutputFeatureCount = 64; }; TEST_F(ConvCanonicalizationTest, NonCanonicalToCanonical) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kInputFeatureCount, kBatchSize, kInputSize, kInputSize)))); auto kernel = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kOutputFeatureCount, kInputFeatureCount, kWindowSize, kWindowSize)))); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(1); dnums.set_output_batch_dimension(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_kernel_spatial_dimensions(2); dnums.add_kernel_spatial_dimensions(3); dnums.set_kernel_input_feature_dimension(1); dnums.set_kernel_output_feature_dimension(0); auto output_size = kInputSize - kWindowSize + 1; builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape( F32, {kOutputFeatureCount, kBatchSize, output_size, output_size}), input, kernel, 1, 1, conv_window_, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); ConvCanonicalization conv_canonicalization(&target_machine_features); EXPECT_TRUE(conv_canonicalization.Run(module.get()).value()); const HloInstruction* output_reshape = entry_computation->root_instruction(); EXPECT_EQ(HloOpcode::kTranspose, output_reshape->opcode()); const HloInstruction* canonical_conv = output_reshape->operand(0); EXPECT_EQ(HloOpcode::kConvolution, canonical_conv->opcode()); const HloInstruction* input_reshape = canonical_conv->operand(0); EXPECT_EQ(HloOpcode::kTranspose, input_reshape->opcode()); const HloInstruction* kernel_reshape = canonical_conv->operand(1); EXPECT_EQ(HloOpcode::kTranspose, kernel_reshape->opcode()); EXPECT_THAT(input_reshape->dimensions(), ElementsAre(1, 2, 3, 0)); EXPECT_THAT(kernel_reshape->dimensions(), ElementsAre(2, 3, 1, 0)); EXPECT_THAT(output_reshape->dimensions(), ElementsAre(3, 0, 1, 2)); } TEST_F(ConvCanonicalizationTest, CanonicalStaysTheSame) { auto builder = HloComputation::Builder(TestName()); auto input = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kBatchSize, kInputSize, kInputSize, kInputFeatureCount)))); auto kernel = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR4FromArray4D(Array4D<float>( kWindowSize, kWindowSize, kInputFeatureCount, kOutputFeatureCount)))); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); auto output_size = kInputSize - kWindowSize + 1; builder.AddInstruction(HloInstruction::CreateConvolve( ShapeUtil::MakeShape( F32, {kBatchSize, output_size, output_size, kOutputFeatureCount}), input, kernel, 1, 1, conv_window_, dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); ConvCanonicalization conv_canonicalization(&target_machine_features); EXPECT_FALSE(conv_canonicalization.Run(module.get()).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/conv_canonicalization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/conv_canonicalization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bea3fc56-baf4-4f52-a00f-73076a7b90ad
cpp
tensorflow/tensorflow
fusion_process_dump
third_party/xla/xla/service/gpu/fusion_process_dump.cc
third_party/xla/xla/service/gpu/fusion_process_dump_test.cc
#include "xla/service/gpu/fusion_process_dump.h" #include <string> #include <string_view> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/stream_executor/device_description.h" #include "xla/tools/hlo_module_loader.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { HloInstruction* AddFusionInstruction(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation, std::string_view fusion_name) { if (consumer->opcode() == HloOpcode::kFusion) { return consumer; } auto kind = HloInstruction::FusionKind::kLoop; auto fusion_instruction = computation->AddInstruction( HloInstruction::CreateFusion(consumer->shape(), kind, consumer), fusion_name); TF_CHECK_OK(computation->ReplaceInstruction(consumer, fusion_instruction)); return fusion_instruction; } HloInstruction* Fuse(HloInstruction* producer, HloInstruction* consumer, HloComputation* computation, std::string_view fusion_name) { HloInstruction* fusion_instruction = AddFusionInstruction(producer, consumer, computation, fusion_name); if (producer->opcode() == HloOpcode::kFusion) { fusion_instruction->MergeFusionInstruction(producer); } else { fusion_instruction->FuseInstruction(producer); } if (producer->user_count() == 0) { TF_CHECK_OK(computation->RemoveInstruction(producer)); } return fusion_instruction; } absl::string_view GetProducerName(const FusionStep& step) { if (step.has_fusion()) { return step.fusion().producer_name(); } if (step.has_update_priority()) { return step.update_priority().producer_name(); } if (step.has_producer_ineligible()) { return step.producer_ineligible().producer_name(); } LOG(FATAL) << "Producer name not found in the current step."; } } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromFile( const std::string& path) { std::string format = std::string(tsl::io::Extension(path)); std::string data; TF_RETURN_IF_ERROR(tsl::ReadFileToString(tsl::Env::Default(), path, &data)); return FusionProcessDump::LoadFromData(data, format); } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromData( const std::string& data, absl::string_view format) { FusionProcessDumpProto fusion_process_dump_proto; if (format == "txt" || format == "pbtxt") { if (!tsl::protobuf::TextFormat::ParseFromString( data, &fusion_process_dump_proto)) { return InvalidArgument("Failed to parse input as HLO protobuf text"); } } else if (format == "pb") { if (!fusion_process_dump_proto.ParseFromString(data)) { return InvalidArgument("Failed to parse input as HLO protobuf binary"); } } else { return InvalidArgument( "Invalid format from file extension: '%s'. Expected: txt, pb, or pbtxt", format); } return FusionProcessDump::LoadFromProto(fusion_process_dump_proto); } absl::StatusOr<FusionProcessDump> FusionProcessDump::LoadFromProto( const FusionProcessDumpProto& fusion_process_dump_proto) { TF_ASSIGN_OR_RETURN( auto module, LoadModuleFromData(fusion_process_dump_proto.hlo_module_before_fusion(), "txt")); se::DeviceDescription gpu_device_info( fusion_process_dump_proto.gpu_device_info()); absl::flat_hash_map<std::string, HloComputation*> instruction_name_to_computation_map; for (HloComputation* computation : module->MakeNonfusionComputations()) { for (HloInstruction* instr : computation->instructions()) { instruction_name_to_computation_map[instr->name()] = computation; } } return FusionProcessDump(std::move(fusion_process_dump_proto), std::move(module), std::move(gpu_device_info), std::move(instruction_name_to_computation_map)); } HloComputation* FusionProcessDump::GetCurrentComputation() { return instruction_name_to_computation_map_.at( GetProducerName(CurrentStep())); } HloInstruction* FusionProcessDump::GetInstructionWithName( absl::string_view name) { return instruction_name_to_computation_map_[name]->GetInstructionWithName( name); } HloInstruction* FusionProcessDump::GetProducer() { return GetInstructionWithName(GetProducerName(CurrentStep())); } absl::InlinedVector<HloInstruction*, 2> FusionProcessDump::GetConsumers() { auto& step = CurrentStep(); if (step.has_fusion()) { return {GetInstructionWithName(step.fusion().consumer_name())}; } if (step.has_update_priority()) { absl::InlinedVector<HloInstruction*, 2> consumers; for (const auto& consumer_name : step.update_priority().consumer_names()) { consumers.push_back(GetInstructionWithName(consumer_name)); } return consumers; } return {}; } const FusionStep& FusionProcessDump::CurrentStep() { CHECK(HasNext()); return fusion_process_dump_proto_.fusion_steps(current_step_idx_); } bool FusionProcessDump::HasNext() { return current_step_idx_ < fusion_process_dump_proto_.fusion_steps_size(); } void FusionProcessDump::Advance() { auto step = CurrentStep(); if (step.has_fusion()) { const auto& fusion_step = step.fusion(); auto* computation = GetCurrentComputation(); HloInstruction* producer = computation->GetInstructionWithName(fusion_step.producer_name()); HloInstruction* consumer = computation->GetInstructionWithName(fusion_step.consumer_name()); HloInstruction* fusion = Fuse(producer, consumer, computation, fusion_step.fusion_name()); instruction_name_to_computation_map_[fusion->name()] = computation; last_fusion_ = fusion; } ++current_step_idx_; } } }
#include "xla/service/gpu/fusion_process_dump.h" #include <string> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/fusion_process_dump.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace m = ::xla::match; namespace xla { namespace gpu { namespace { using FusionProcessDumpTest = HloTestBase; void AddFusion(FusionProcessDumpProto& dump_proto, const std::string& fusion_name, const std::string& producer_name, const std::string& consumer_name) { auto step = dump_proto.add_fusion_steps(); auto fusion_step = step->mutable_fusion(); fusion_step->set_fusion_name(fusion_name); fusion_step->set_producer_name(producer_name); fusion_step->set_consumer_name(consumer_name); } TEST_F(FusionProcessDumpTest, MultipleFusionSteps) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module ENTRY main { p0 = f32[] parameter(0) p1 = f32[] parameter(1) add = f32[] add(p0, p1) subtract = f32[] subtract(p0, p1) abs = f32[] abs(subtract) ROOT multiply = f32[] multiply(add, abs) })")); FusionProcessDumpProto dump_proto; *dump_proto.mutable_gpu_device_info() = TestGpuDeviceInfo::RTXA6000DeviceInfo().ToGpuProto(); dump_proto.set_hlo_module_before_fusion( module->ToString(HloPrintOptions::ShortParsable())); AddFusion(dump_proto, "fusion.1", "subtract", "abs"); AddFusion(dump_proto, "fusion.2", "fusion.1", "multiply"); AddFusion(dump_proto, "fusion.2", "add", "fusion.2"); TF_ASSERT_OK_AND_ASSIGN(auto fusion_process_dump, FusionProcessDump::LoadFromProto(dump_proto)); fusion_process_dump.Advance(); fusion_process_dump.Advance(); fusion_process_dump.Advance(); EXPECT_FALSE(fusion_process_dump.HasNext()); auto root = fusion_process_dump.module()->entry_computation()->root_instruction(); EXPECT_EQ(root->name(), "fusion.2"); ASSERT_THAT(root, GmockMatch(m::Fusion(m::Parameter(), m::Parameter()))); EXPECT_THAT(root->fused_expression_root(), GmockMatch(m::Multiply( m::Add(m::Parameter(), m::Parameter()), m::Abs(m::Subtract(m::Parameter(), m::Parameter()))))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusion_process_dump.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusion_process_dump_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dce4203b-7007-428f-b60f-a239e8cc6927
cpp
google/cel-cpp
timestamp
extensions/protobuf/internal/timestamp.cc
extensions/protobuf/internal/timestamp_test.cc
#include "extensions/protobuf/internal/timestamp.h" #include <cstdint> #include "google/protobuf/timestamp.pb.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "extensions/protobuf/internal/is_generated_message.h" #include "extensions/protobuf/internal/is_message_lite.h" #include "extensions/protobuf/internal/timestamp_lite.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace cel::extensions::protobuf_internal { absl::StatusOr<absl::Time> UnwrapDynamicTimestampProto( const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Timestamp"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if constexpr (NotMessageLite<google::protobuf::Timestamp>) { if (IsGeneratedMessage(message)) { return UnwrapGeneratedTimestampProto( google::protobuf::DownCastMessage<google::protobuf::Timestamp>(message)); } } const auto* reflect = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflect == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* seconds_field = desc->FindFieldByNumber(google::protobuf::Timestamp::kSecondsFieldNumber); if (ABSL_PREDICT_FALSE(seconds_field == nullptr)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " missing seconds field descriptor")); } if (ABSL_PREDICT_FALSE(seconds_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT64)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected seconds field type: ", seconds_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(seconds_field->is_map() || seconds_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", seconds_field->name(), " field cardinality: REPEATED")); } const auto* nanos_field = desc->FindFieldByNumber(google::protobuf::Timestamp::kNanosFieldNumber); if (ABSL_PREDICT_FALSE(nanos_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing nanos field descriptor")); } if (ABSL_PREDICT_FALSE(nanos_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT32)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected nanos field type: ", nanos_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(nanos_field->is_map() || nanos_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", nanos_field->name(), " field cardinality: REPEATED")); } return absl::UnixEpoch() + absl::Seconds(reflect->GetInt64(message, seconds_field)) + absl::Nanoseconds(reflect->GetInt32(message, nanos_field)); } absl::Status WrapDynamicTimestampProto(absl::Time value, google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Timestamp"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if constexpr (NotMessageLite<google::protobuf::Timestamp>) { if (IsGeneratedMessage(message)) { return WrapGeneratedTimestampProto( value, google::protobuf::DownCastMessage<google::protobuf::Timestamp>(message)); } } const auto* reflect = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflect == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* seconds_field = desc->FindFieldByNumber(google::protobuf::Timestamp::kSecondsFieldNumber); if (ABSL_PREDICT_FALSE(seconds_field == nullptr)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " missing seconds field descriptor")); } if (ABSL_PREDICT_FALSE(seconds_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT64)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected seconds field type: ", seconds_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(seconds_field->is_map() || seconds_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", seconds_field->name(), " field cardinality: REPEATED")); } const auto* nanos_field = desc->FindFieldByNumber(google::protobuf::Timestamp::kNanosFieldNumber); if (ABSL_PREDICT_FALSE(nanos_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing nanos field descriptor")); } if (ABSL_PREDICT_FALSE(nanos_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT32)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected nanos field type: ", nanos_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(nanos_field->is_map() || nanos_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", nanos_field->name(), " field cardinality: REPEATED")); } auto duration = value - absl::UnixEpoch(); reflect->SetInt64(&message, seconds_field, absl::IDivDuration(duration, absl::Seconds(1), &duration)); reflect->SetInt32(&message, nanos_field, static_cast<int32_t>(absl::IDivDuration( duration, absl::Nanoseconds(1), &duration))); return absl::OkStatus(); } }
#include "extensions/protobuf/internal/timestamp.h" #include <memory> #include "google/protobuf/timestamp.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/memory/memory.h" #include "absl/time/time.h" #include "extensions/protobuf/internal/timestamp_lite.h" #include "internal/testing.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/descriptor_database.h" #include "google/protobuf/dynamic_message.h" namespace cel::extensions::protobuf_internal { namespace { using ::absl_testing::IsOkAndHolds; using ::testing::Eq; TEST(Timestamp, GeneratedFromProto) { EXPECT_THAT(UnwrapGeneratedTimestampProto(google::protobuf::Timestamp()), IsOkAndHolds(Eq(absl::UnixEpoch()))); } TEST(Timestamp, CustomFromProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Timestamp::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); EXPECT_THAT(UnwrapDynamicTimestampProto(*factory.GetPrototype( pool.FindMessageTypeByName("google.protobuf.Timestamp"))), IsOkAndHolds(Eq(absl::UnixEpoch()))); } TEST(Timestamp, GeneratedToProto) { google::protobuf::Timestamp proto; ASSERT_OK(WrapGeneratedTimestampProto( absl::UnixEpoch() + absl::Seconds(1) + absl::Nanoseconds(2), proto)); EXPECT_EQ(proto.seconds(), 1); EXPECT_EQ(proto.nanos(), 2); } TEST(Timestamp, CustomToProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Timestamp::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); std::unique_ptr<google::protobuf::Message> proto = absl::WrapUnique( factory .GetPrototype(pool.FindMessageTypeByName("google.protobuf.Timestamp")) ->New()); const auto* descriptor = proto->GetDescriptor(); const auto* reflection = proto->GetReflection(); const auto* seconds_field = descriptor->FindFieldByName("seconds"); ASSERT_NE(seconds_field, nullptr); const auto* nanos_field = descriptor->FindFieldByName("nanos"); ASSERT_NE(nanos_field, nullptr); ASSERT_OK(WrapDynamicTimestampProto( absl::UnixEpoch() + absl::Seconds(1) + absl::Nanoseconds(2), *proto)); EXPECT_EQ(reflection->GetInt64(*proto, seconds_field), 1); EXPECT_EQ(reflection->GetInt32(*proto, nanos_field), 2); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/timestamp.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/extensions/protobuf/internal/timestamp_test.cc
4552db5798fb0853b131b783d8875794334fae7f
c0bbb1d9-7af7-45c5-8810-2ff63fa804c5
cpp
google/arolla
tuple_input_loader
arolla/io/tuple_input_loader.h
arolla/io/tuple_input_loader_test.cc
#ifndef AROLLA_IO_TUPLE_INPUT_LOADER_H_ #define AROLLA_IO_TUPLE_INPUT_LOADER_H_ #include <cstddef> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "arolla/io/input_loader.h" #include "arolla/memory/frame.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" namespace arolla { template <typename Input> class TupleInputLoader; template <typename... Ts> class TupleInputLoader<std::tuple<Ts...>> final : public StaticInputLoader<std::tuple<Ts...>> { public: using Input = std::tuple<Ts...>; static absl::StatusOr<InputLoaderPtr<Input>> Create( std::vector<std::string> arg_names) { if (arg_names.size() != sizeof...(Ts)) { return absl::InvalidArgumentError( absl::StrFormat("tuple size doesn't match arg_names size: %d vs %d", sizeof...(Ts), arg_names.size())); } return InputLoaderPtr<Input>( static_cast<InputLoader<Input>*>(new TupleInputLoader<Input>( std::move(arg_names), std::index_sequence_for<Ts...>{}))); } private: template <size_t... Is> explicit TupleInputLoader(std::vector<std::string> arg_names, std::index_sequence<Is...>) : StaticInputLoader<std::tuple<Ts...>>( {{arg_names[Is], ::arolla::GetQType<Ts>()}...}) {} absl::StatusOr<BoundInputLoader<Input>> BindImpl( const absl::flat_hash_map<std::string, TypedSlot>& output_slots) const override { std::vector<TypedSlot> slots_in_order; slots_in_order.reserve(this->types_in_order().size()); for (const auto& [name, _] : this->types_in_order()) { auto it = output_slots.find(name); if (it == output_slots.end()) { return absl::FailedPreconditionError(absl::StrCat( "TupleInputLoader doesn't support unused arguments; no slot for: ", name)); } slots_in_order.push_back(it->second); } return BoundInputLoader<Input>( [slots_in_order](const Input& input, FramePtr frame, RawBufferFactory*) -> absl::Status { LoaderImpl(input, frame, slots_in_order, std::index_sequence_for<Ts...>{}); return absl::OkStatus(); }); } template <size_t... Is> static void LoaderImpl(const Input& input, FramePtr frame, const std::vector<TypedSlot>& slots, std::index_sequence<Is...>) { (frame.Set(slots[Is].UnsafeToSlot<Ts>(), std::get<Is>(input)), ...); } }; } #endif
#include "arolla/io/tuple_input_loader.h" #include <tuple> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/io/input_loader.h" #include "arolla/io/testing/matchers.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" namespace arolla { namespace { using ::absl_testing::IsOk; using ::absl_testing::StatusIs; using ::arolla::testing::InputLoaderSupports; using ::testing::Eq; using ::testing::HasSubstr; TEST(TupleInputLoaderTest, Scalars) { using Input = std::tuple<float, int>; ASSERT_OK_AND_ASSIGN(std::unique_ptr<InputLoader<Input>> input_loader, (TupleInputLoader<Input>::Create({"a", "b"}))); EXPECT_THAT(input_loader, InputLoaderSupports({{"a", GetQType<float>()}, {"b", GetQType<int>()}})); FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<float>(); auto b_slot = layout_builder.AddSlot<int>(); ASSERT_OK_AND_ASSIGN(BoundInputLoader<Input> bound_input_loader, input_loader->Bind({ {"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); ASSERT_THAT(bound_input_loader({5, 7}, alloc.frame()), IsOk()); EXPECT_THAT(alloc.frame().Get(a_slot), Eq(5)); EXPECT_THAT(alloc.frame().Get(b_slot), Eq(7)); EXPECT_THAT(input_loader->Bind({ {"b", TypedSlot::FromSlot(b_slot)}, }), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("TupleInputLoader doesn't support unused " "arguments; no slot for: a"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/tuple_input_loader.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/tuple_input_loader_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
9e90afce-2432-421a-af39-184f82dff8c1
cpp
tensorflow/tensorflow
disable_intra_op_parallelism
tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.cc
tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism_test.cc
#include "tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { constexpr char kMaxIntraOpParallelismDataset[] = "MaxIntraOpParallelismDataset"; constexpr char kModelDataset[] = "ModelDataset"; constexpr std::array<const char*, 2> kMaxIntraOpParallelismDatasetOps = { "MaxIntraOpParallelismDataset", "ExperimentalMaxIntraOpParallelismDataset", }; } Status DisableIntraOpParallelism::OptimizeAndCollectStats( Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); if (graph_utils::IsItemDerivedFromFunctionDef(item, graph)) return absl::OkStatus(); if (item.fetch.size() != 1) { return errors::InvalidArgument( "Expected only one fetch node but there were ", item.fetch.size(), ": ", absl::StrJoin(item.fetch, ", ")); } for (const NodeDef& node : item.graph.node()) { for (const auto& target_dataset_op : kMaxIntraOpParallelismDatasetOps) { if (node.op() == target_dataset_op) { return absl::OkStatus(); } } } NodeDef* sink_node = graph.GetNode(item.fetch.at(0)); NodeDef* last_node = graph_utils::GetInputNode(*sink_node, graph); if (last_node->op() == kModelDataset) { last_node = graph_utils::GetInputNode(*last_node, graph); } NodeDef* max_parallelism_value = graph_utils::AddScalarConstNode(int64_t{1}, &graph); NodeDef insert_node; graph_utils::SetUniqueGraphNodeName("intra_op_parallelism", graph.graph(), &insert_node); insert_node.set_op(kMaxIntraOpParallelismDataset); *insert_node.mutable_input()->Add() = last_node->name(); *insert_node.mutable_input()->Add() = max_parallelism_value->name(); if (!graph_utils::CopyShapesAndTypesAttrs(*last_node, &insert_node)) return absl::OkStatus(); auto* added_node = graph.AddNode(std::move(insert_node)); TF_RETURN_IF_ERROR( graph.UpdateFanouts(last_node->name(), added_node->name())); stats->num_changes++; return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(DisableIntraOpParallelism, "disable_intra_op_parallelism"); } }
#include "tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using test::function::NDef; class IntraOpAlreadySetTest : public ::testing::TestWithParam<std::tuple<string, int64_t>> {}; TEST_P(IntraOpAlreadySetTest, IntraOpParallelism) { const string op = std::get<0>(GetParam()); const int64_t value = std::get<1>(GetParam()); GrapplerItem item; MutableGraphView graph(&item.graph); NodeDef *start_val = graph_utils::AddScalarConstNode<int64_t>(0, &graph); NodeDef *stop_val = graph_utils::AddScalarConstNode<int64_t>(10, &graph); NodeDef *step_val = graph_utils::AddScalarConstNode<int64_t>(1, &graph); std::vector<string> range_inputs(3); range_inputs[0] = start_val->name(); range_inputs[1] = stop_val->name(); range_inputs[2] = step_val->name(); std::vector<std::pair<string, AttrValue>> range_attrs; NodeDef *range_node = graph_utils::AddNode("range", "RangeDataset", range_inputs, range_attrs, &graph); NodeDef *parallelism_val = graph_utils::AddScalarConstNode<int64_t>(value, &graph); std::vector<string> parallelism_inputs(2); parallelism_inputs[0] = range_node->name(); parallelism_inputs[1] = parallelism_val->name(); std::vector<std::pair<string, AttrValue>> parallelism_attrs; NodeDef *parallelism_node = graph_utils::AddNode( "max_parallelism", op, parallelism_inputs, parallelism_attrs, &graph); std::vector<string> sink_inputs(1); sink_inputs[0] = parallelism_node->name(); std::vector<std::pair<string, AttrValue>> sink_attrs; NodeDef *sink_node = graph_utils::AddNode("Sink", "Identity", sink_inputs, sink_attrs, &graph); item.fetch.push_back(sink_node->name()); EXPECT_TRUE(graph_utils::ContainsNodeWithOp(op, item.graph)); EXPECT_EQ(item.graph.node_size(), 7); EXPECT_EQ(parallelism_val->attr().at("value").tensor().int64_val(0), value); DisableIntraOpParallelism optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 7); EXPECT_TRUE(graph_utils::ContainsNodeWithOp(op, output)); NodeDef new_parallelism_node = output.node(graph_utils::FindGraphNodeWithOp(op, output)); NodeDef new_parallelism_val = output.node(graph_utils::FindGraphNodeWithName( new_parallelism_node.input(1), output)); EXPECT_EQ(new_parallelism_val.attr().at("value").tensor().int64_val(0), value); } INSTANTIATE_TEST_SUITE_P( Test, IntraOpAlreadySetTest, ::testing::Combine( ::testing::Values("MaxIntraOpParallelismDataset", "ExperimentalMaxIntraOpParallelismDataset"), ::testing::Values(1, 5))); class IntraOpNotSetTest : public ::testing::TestWithParam<string> {}; TEST_P(IntraOpNotSetTest, IntraOpParallelism) { const string op = GetParam(); GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("Sink", op, {"range"}, {})}); EXPECT_FALSE(graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 5); item.fetch.push_back("Sink_fake"); DisableIntraOpParallelism optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_FALSE( graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); EXPECT_EQ(output.node_size(), 5); item.fetch[0] = "Sink"; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); if (op == "_Retval") { EXPECT_FALSE(graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); EXPECT_EQ(output.node_size(), 5); return; } EXPECT_EQ(output.node_size(), 7); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); NodeDef sink_node = output.node(graph_utils::FindGraphNodeWithName("Sink", output)); EXPECT_EQ(sink_node.input_size(), 1); NodeDef parallelism_node = output.node( graph_utils::FindGraphNodeWithName(sink_node.input(0), output)); EXPECT_EQ(parallelism_node.op(), "MaxIntraOpParallelismDataset"); EXPECT_EQ(parallelism_node.input_size(), 2); NodeDef range_node = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(0), output)); EXPECT_EQ(range_node.name(), "range"); NodeDef parallelism_val = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(1), output)); EXPECT_EQ(parallelism_val.attr().at("value").tensor().int64_val(0), 1); } INSTANTIATE_TEST_SUITE_P(Test, IntraOpNotSetTest, ::testing::Values("Identity", "_Retval")); TEST(AutotuneWithModelTest, IntraOpParallelism) { GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {{"output_shapes", absl::Span<const TensorShape>{}}, {"output_types", absl::Span<const DataType>{}}}), NDef("model", "ModelDataset", {"range"}, {}), NDef("Sink", "Identity", {"model"}, {})}); EXPECT_FALSE(graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", item.graph)); EXPECT_EQ(item.graph.node_size(), 6); item.fetch.push_back("Sink"); DisableIntraOpParallelism optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_EQ(output.node_size(), 8); EXPECT_TRUE( graph_utils::ContainsNodeWithOp("MaxIntraOpParallelismDataset", output)); NodeDef sink_node = output.node(graph_utils::FindGraphNodeWithName("Sink", output)); EXPECT_EQ(sink_node.input_size(), 1); NodeDef model_node = output.node( graph_utils::FindGraphNodeWithName(sink_node.input(0), output)); EXPECT_EQ(model_node.op(), "ModelDataset"); EXPECT_EQ(model_node.input_size(), 1); NodeDef parallelism_node = output.node( graph_utils::FindGraphNodeWithName(model_node.input(0), output)); EXPECT_EQ(parallelism_node.op(), "MaxIntraOpParallelismDataset"); EXPECT_EQ(parallelism_node.input_size(), 2); NodeDef range_node = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(0), output)); EXPECT_EQ(range_node.name(), "range"); NodeDef parallelism_val = output.node( graph_utils::FindGraphNodeWithName(parallelism_node.input(1), output)); EXPECT_EQ(parallelism_val.attr().at("value").tensor().int64_val(0), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/disable_intra_op_parallelism_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3e141fb0-20e1-44bb-9811-0160bc6ad953
cpp
google/tsl
criticality
tsl/platform/default/criticality.h
tsl/platform/criticality_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_DEFAULT_CRITICALITY_H_ #define TENSORFLOW_TSL_PLATFORM_DEFAULT_CRITICALITY_H_ namespace tsl { namespace criticality { inline Criticality GetCriticality() { return Criticality::kCritical; } } } #endif
#include "tsl/platform/criticality.h" #include "tsl/platform/test.h" namespace tsl { namespace criticality { TEST(CriticalityTest, Basic) { EXPECT_EQ(GetCriticality(), Criticality::kCritical); } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/default/criticality.h
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/criticality_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
f28ff54a-3cd8-49b4-8105-283d85478981
cpp
google/libaddressinput
localization
cpp/src/localization.cc
cpp/test/localization_test.cc
#include <libaddressinput/localization.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/address_problem.h> #include <cassert> #include <cstddef> #include <string> #include <vector> #include "messages.h" #include "region_data_constants.h" #include "rule.h" #include "util/string_split.h" #include "util/string_util.h" namespace { void PushBackUrl(const std::string& url, std::vector<std::string>* parameters) { assert(parameters != nullptr); parameters->push_back("<a href=\"" + url + "\">"); parameters->emplace_back("</a>"); } } namespace i18n { namespace addressinput { namespace { #include "en_messages.cc" std::string GetEnglishString(int message_id) { const char* str = GetString(message_id); return str != nullptr ? std::string(str) : std::string(); } } Localization::Localization() : get_string_(&GetEnglishString) {} std::string Localization::GetString(int message_id) const { return get_string_(message_id); } std::string Localization::GetErrorMessage(const AddressData& address, AddressField field, AddressProblem problem, bool enable_examples, bool enable_links) const { if (field == POSTAL_CODE) { Rule rule; rule.CopyFrom(Rule::GetDefault()); std::string postal_code_example, post_service_url; if (rule.ParseSerializedRule( RegionDataConstants::GetRegionData(address.region_code))) { if (enable_examples) { std::vector<std::string> examples_list; SplitString(rule.GetPostalCodeExample(), ',', &examples_list); if (!examples_list.empty()) { postal_code_example = examples_list.front(); } } if (enable_links) { post_service_url = rule.GetPostServiceUrl(); } } else { assert(false); } bool uses_postal_code_as_label = rule.GetPostalCodeNameMessageId() == IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL; return GetErrorMessageForPostalCode(problem, uses_postal_code_as_label, postal_code_example, post_service_url); } else { if (problem == MISSING_REQUIRED_FIELD) { return get_string_(IDS_LIBADDRESSINPUT_MISSING_REQUIRED_FIELD); } else if (problem == UNKNOWN_VALUE) { std::vector<std::string> parameters; if (AddressData::IsRepeatedFieldValue(field)) { const auto& values = address.GetRepeatedFieldValue(field); assert(!values.empty()); parameters.push_back(values.front()); } else { parameters.push_back(address.GetFieldValue(field)); } return DoReplaceStringPlaceholders( get_string_(IDS_LIBADDRESSINPUT_UNKNOWN_VALUE), parameters); } else if (problem == USES_P_O_BOX) { return get_string_(IDS_LIBADDRESSINPUT_PO_BOX_FORBIDDEN_VALUE); } else { assert(false); return ""; } } } void Localization::SetGetter(std::string (*getter)(int)) { assert(getter != nullptr); get_string_ = getter; } std::string Localization::GetErrorMessageForPostalCode( AddressProblem problem, bool uses_postal_code_as_label, const std::string& postal_code_example, const std::string& post_service_url) const { int message_id; std::vector<std::string> parameters; if (problem == MISSING_REQUIRED_FIELD) { if (!postal_code_example.empty() && !post_service_url.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE_AND_URL : IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE_AND_URL; parameters.push_back(postal_code_example); PushBackUrl(post_service_url, &parameters); } else if (!postal_code_example.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE : IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE; parameters.push_back(postal_code_example); } else { message_id = IDS_LIBADDRESSINPUT_MISSING_REQUIRED_FIELD; } return DoReplaceStringPlaceholders(get_string_(message_id), parameters); } else if (problem == INVALID_FORMAT) { if (!postal_code_example.empty() && !post_service_url.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE_AND_URL : IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE_AND_URL; parameters.push_back(postal_code_example); PushBackUrl(post_service_url, &parameters); } else if (!postal_code_example.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE : IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE; parameters.push_back(postal_code_example); } else { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE : IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP; } return DoReplaceStringPlaceholders(get_string_(message_id), parameters); } else if (problem == MISMATCHING_VALUE) { if (!post_service_url.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE_URL : IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP_URL; PushBackUrl(post_service_url, &parameters); } else { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE : IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP; } return DoReplaceStringPlaceholders(get_string_(message_id), parameters); } else { assert(false); return ""; } } } }
#include <libaddressinput/localization.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/address_problem.h> #include <string> #include <vector> #include <gtest/gtest.h> #include "grit.h" #include "messages.h" namespace { using i18n::addressinput::AddressData; using i18n::addressinput::AddressField; using i18n::addressinput::INVALID_MESSAGE_ID; using i18n::addressinput::Localization; using i18n::addressinput::COUNTRY; using i18n::addressinput::ADMIN_AREA; using i18n::addressinput::LOCALITY; using i18n::addressinput::DEPENDENT_LOCALITY; using i18n::addressinput::SORTING_CODE; using i18n::addressinput::POSTAL_CODE; using i18n::addressinput::STREET_ADDRESS; using i18n::addressinput::ORGANIZATION; using i18n::addressinput::RECIPIENT; using i18n::addressinput::MISSING_REQUIRED_FIELD; using i18n::addressinput::UNKNOWN_VALUE; using i18n::addressinput::INVALID_FORMAT; using i18n::addressinput::MISMATCHING_VALUE; using i18n::addressinput::USES_P_O_BOX; class LocalizationTest : public testing::TestWithParam<int> { public: LocalizationTest(const LocalizationTest&) = delete; LocalizationTest& operator=(const LocalizationTest&) = delete; protected: LocalizationTest() = default; Localization localization_; }; const char kValidMessage[] = "Data"; std::string GetValidMessage(int message_id) { return kValidMessage; } TEST_P(LocalizationTest, ValidStringGetterCanBeUsed) { localization_.SetGetter(&GetValidMessage); EXPECT_EQ(kValidMessage, localization_.GetString(GetParam())); } TEST_P(LocalizationTest, DefaultStringIsNotEmpty) { EXPECT_FALSE(localization_.GetString(GetParam()).empty()); } TEST_P(LocalizationTest, NoNewline) { EXPECT_EQ(std::string::npos, localization_.GetString(GetParam()).find('\n')); } TEST_P(LocalizationTest, NoDoubleSpace) { EXPECT_EQ(std::string::npos, localization_.GetString(GetParam()).find(std::string(2U, ' '))); } INSTANTIATE_TEST_SUITE_P( AllMessages, LocalizationTest, testing::Values( IDS_LIBADDRESSINPUT_COUNTRY_OR_REGION_LABEL, IDS_LIBADDRESSINPUT_LOCALITY_LABEL, IDS_LIBADDRESSINPUT_ADDRESS_LINE_1_LABEL, IDS_LIBADDRESSINPUT_PIN_CODE_LABEL, IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL, IDS_LIBADDRESSINPUT_ZIP_CODE_LABEL, IDS_LIBADDRESSINPUT_AREA, IDS_LIBADDRESSINPUT_COUNTY, IDS_LIBADDRESSINPUT_DEPARTMENT, IDS_LIBADDRESSINPUT_DISTRICT, IDS_LIBADDRESSINPUT_DO_SI, IDS_LIBADDRESSINPUT_EMIRATE, IDS_LIBADDRESSINPUT_ISLAND, IDS_LIBADDRESSINPUT_PARISH, IDS_LIBADDRESSINPUT_PREFECTURE, IDS_LIBADDRESSINPUT_PROVINCE, IDS_LIBADDRESSINPUT_STATE, IDS_LIBADDRESSINPUT_ORGANIZATION_LABEL, IDS_LIBADDRESSINPUT_RECIPIENT_LABEL, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_FIELD, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_UNKNOWN_VALUE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE_URL, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP_URL, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP, IDS_LIBADDRESSINPUT_PO_BOX_FORBIDDEN_VALUE)); TEST_F(LocalizationTest, InvalidMessageIsEmptyString) { EXPECT_TRUE(localization_.GetString(INVALID_MESSAGE_ID).empty()); } TEST(LocalizationGetErrorMessageTest, MissingRequiredPostalCode) { Localization localization; const AddressData address{.region_code = "CH"}; EXPECT_EQ("You must provide a postal code, for example 2544." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, true)); EXPECT_EQ("You must provide a postal code, for example 2544.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, true)); } TEST(LocalizationGetErrorMessageTest, MissingRequiredZipCode) { Localization localization; const AddressData address{.region_code = "US"}; EXPECT_EQ("You must provide a ZIP code, for example 95014." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, true)); EXPECT_EQ("You must provide a ZIP code, for example 95014.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, true)); } TEST(LocalizationGetErrorMessageTest, MissingRequiredOtherFields) { Localization localization; const AddressData address{.region_code = "US"}; const std::vector<AddressField> other_fields{ COUNTRY, ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, STREET_ADDRESS, ORGANIZATION, RECIPIENT, }; for (AddressField field : other_fields) { EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, true, true)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, true, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, false, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, false, true)); } } TEST(LocalizationGetErrorMessageTest, UnknownValueOtherFields) { Localization localization; const AddressData address{ .region_code = "US", .address_line{ "bad address line 1", "bad address line 2", }, .administrative_area = "bad admin area", .locality = "bad locality", .dependent_locality = "bad dependent locality", .sorting_code = "bad sorting code", .organization = "bad organization", .recipient = "bad recipient", }; EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, true, true)); EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, true, false)); EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, false, false)); EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, false, true)); } TEST(LocalizationGetErrorMessageTest, InvalidFormatPostalCode) { Localization localization; const AddressData address{.region_code = "CH"}; EXPECT_EQ("This postal code format is not recognized. Example " "of a valid postal code: 2544." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, true)); EXPECT_EQ("This postal code format is not recognized. Example " "of a valid postal code: 2544.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, false)); EXPECT_EQ("This postal code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, false)); EXPECT_EQ("This postal code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, true)); } TEST(LocalizationGetErrorMessageTest, InvalidFormatZipCode) { Localization localization; const AddressData address{.region_code = "US"}; EXPECT_EQ("This ZIP code format is not recognized. Example of " "a valid ZIP code: 95014." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, true)); EXPECT_EQ("This ZIP code format is not recognized. Example of " "a valid ZIP code: 95014.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, false)); EXPECT_EQ("This ZIP code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, false)); EXPECT_EQ("This ZIP code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, true)); } TEST(LocalizationGetErrorMessageTest, MismatchingValuePostalCode) { Localization localization; const AddressData address{.region_code = "CH"}; EXPECT_EQ("This postal code does not appear to match the rest " "of this address." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, true)); EXPECT_EQ("This postal code does not appear to match the rest " "of this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, false)); EXPECT_EQ("This postal code does not appear to match the rest " "of this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, false)); EXPECT_EQ("This postal code does not appear to match the rest " "of this address." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, true)); } TEST(LocalizationGetErrorMessageTest, MismatchingValueZipCode) { Localization localization; const AddressData address{.region_code = "US"}; EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, true)); EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, false)); EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, false)); EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, true)); } TEST(LocalizationGetErrorMessageTest, UsesPOBoxOtherFields) { Localization localization; const AddressData address{.region_code = "US"}; const std::vector<AddressField> other_fields{ COUNTRY, ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, STREET_ADDRESS, ORGANIZATION, RECIPIENT, }; for (AddressField field : other_fields) { EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, true, true)); EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, true, false)); EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, false, false)); EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, false, true)); } } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/localization.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/localization_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
9cd56c00-f971-453e-acfd-2b230713e4ec
cpp
tensorflow/tensorflow
status
third_party/xla/third_party/tsl/tsl/platform/status.cc
tensorflow/core/lib/core/status_test.cc
#include "tsl/platform/status.h" #include <stdio.h> #include <deque> #include <functional> #include <memory> #include <ostream> #include <sstream> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/call_once.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tsl/platform/mutex.h" #include "tsl/platform/stack_frame.h" #include "tsl/platform/stacktrace.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/stringprintf.h" #include "tsl/protobuf/error_codes.pb.h" namespace tsl { namespace { class StatusLogSink : public TFLogSink { public: static StatusLogSink* GetInstance() { static StatusLogSink* sink = new StatusLogSink(); return sink; } void enable() { absl::call_once(flag_, [this] { num_messages_ = 5; if (const char* num_msgs_str = getenv("TF_WORKER_NUM_FORWARDED_LOG_MESSAGES")) { if (!absl::SimpleAtoi(num_msgs_str, &num_messages_)) { LOG(WARNING) << "Failed to parse env variable " "TF_WORKER_NUM_WARNING_ERROR_LOG_IN_STATUS=" << num_msgs_str << " as int. Using the default value " << num_messages_ << "."; } } if (num_messages_ > 0) { TFAddLogSink(this); } }); } void GetMessages(std::vector<std::string>* logs) TF_LOCKS_EXCLUDED(mu_) { mutex_lock lock(mu_); for (auto& msg : messages_) { logs->push_back(msg); } } void Send(const TFLogEntry& entry) override TF_LOCKS_EXCLUDED(mu_) { if (entry.log_severity() < absl::LogSeverity::kWarning) return; mutex_lock lock(mu_); messages_.emplace_back(entry.ToString()); if (messages_.size() > static_cast<size_t>(num_messages_)) { messages_.pop_front(); } } private: mutex mu_; absl::once_flag flag_; int num_messages_ = 0; std::deque<std::string> messages_ TF_GUARDED_BY(mu_); }; } namespace errors { static constexpr const char kStackTraceProtoUrl[] = "type.googleapis.com/tensorflow.StackTracePayload"; void SetStackTrace(absl::Status& status, std::vector<StackFrame> stack_trace) { std::vector<std::string> items; items.reserve(stack_trace.size()); for (StackFrame& frame : stack_trace) { items.push_back( absl::StrCat(absl::StrReplaceAll(frame.file_name, {{"\n", ""}}), "\n", frame.line_number, "\n", absl::StrReplaceAll(frame.function_name, {{"\n", ""}}))); } status.SetPayload(kStackTraceProtoUrl, absl::Cord(absl::StrJoin(items, "\n"))); } std::vector<StackFrame> GetStackTrace(const absl::Status& status) { std::vector<StackFrame> stack_trace; absl::optional<absl::Cord> maybe_serialized_payload = status.GetPayload(kStackTraceProtoUrl); if (maybe_serialized_payload.has_value()) { std::vector<std::string> split = absl::StrSplit(maybe_serialized_payload.value().Flatten(), '\n'); assert(split.size() % 3 == 0); for (int i = 0; i < split.size() / 3; ++i) { const int idx = 3 * i; int line_number = -1; CHECK(absl::SimpleAtoi(split[idx + 1], &line_number)); stack_trace.emplace_back(std::move(split[idx]), line_number, std::move(split[idx + 2])); } } return stack_trace; } } #ifdef _WIN32 const char* NullTerminatedMessage(const absl::Status& status) { return absl::StatusMessageAsCStr(status); } #endif std::string* TfCheckOpHelperOutOfLine(const absl::Status& v, const char* msg) { std::stringstream ss; ss << "Non-OK-status: " << msg << "\nStatus: " << v; return new std::string(ss.str()); } StatusGroup::StatusGroup() {} StatusGroup::StatusGroup(std::initializer_list<absl::Status> statuses) { for (const absl::Status& s : statuses) { Update(s); } } static constexpr const char kDerivedStatusProtoUrl[] = "type.googleapis.com/tensorflow.DerivedStatus"; absl::Status StatusGroup::MakeDerived(const absl::Status& s) { if (IsDerived(s)) { return s; } else { absl::Status derived(s); derived.SetPayload(kDerivedStatusProtoUrl, absl::Cord("")); return derived; } } bool StatusGroup::IsDerived(const absl::Status& s) { return s.GetPayload(kDerivedStatusProtoUrl).has_value(); } void StatusGroup::ConfigureLogHistory() { StatusLogSink::GetInstance()->enable(); } void StatusGroup::Update(const absl::Status& s) { if (s.ok()) { ++num_ok_; } else { ok_ = false; if (IsDerived(s)) { derived_.insert(s); } else { non_derived_.insert(s); } } } static constexpr int kMaxAggregatedStatusMessageSize = 8 * 1024; static constexpr int kMaxAttachedLogMessageSize = 512; std::unordered_map<std::string, absl::Cord> StatusGroup::GetPayloads() const { std::unordered_map<std::string, absl::Cord> payloads; auto capture_payload = [&payloads](absl::string_view key, const absl::Cord& value) { payloads[std::string(key)] = value; }; for (const auto& status : derived_) { status.ForEachPayload(capture_payload); } for (const auto& status : non_derived_) { status.ForEachPayload(capture_payload); } payloads.erase(kDerivedStatusProtoUrl); return payloads; } absl::Status MakeStatus( absl::StatusCode code, absl::string_view message, const std::unordered_map<std::string, absl::Cord>& payloads) { absl::Status status(code, message); for (const auto& payload : payloads) { status.SetPayload(payload.first, payload.second); } return status; } std::string MakeString(const absl::Status& status) { return absl::StrCat(absl::StatusCodeToString(status.code()), ": ", status.message()); } absl::Status StatusGroup::as_summary_status() const { if (ok_) { return absl::OkStatus(); } auto get_recent_logs = [this]() -> std::string { if (!recent_logs_.empty()) { std::vector<std::string> fmt; fmt.push_back("\nRecent warning and error logs:"); for (auto& log : recent_logs_) { fmt.push_back(" " + log.substr(0, kMaxAttachedLogMessageSize)); } return absl::StrJoin(fmt, "\n"); } else { return ""; } }; if (non_derived_.size() == 1) { return MakeStatus( non_derived_.begin()->code(), strings::StrCat(non_derived_.begin()->message(), get_recent_logs()), GetPayloads()); } if (!non_derived_.empty()) { std::vector<std::string> fmt; fmt.push_back( strings::Printf("%zu root error(s) found.", non_derived_.size())); int index = 0; auto code = absl::StatusCode::kCancelled; for (const auto& s : non_derived_) { if (code == absl::StatusCode::kCancelled && s.code() != absl::StatusCode::kCancelled) { code = s.code(); } fmt.emplace_back(strings::StrCat(" (", index, ") ", MakeString(s))); ++index; } fmt.push_back(strings::Printf("%zu successful operations.", num_ok_)); fmt.push_back( strings::Printf("%zu derived errors ignored.", derived_.size())); std::string error_msg = absl::StrJoin(fmt, "\n").substr(0, kMaxAggregatedStatusMessageSize); return MakeStatus(code, strings::StrCat(error_msg, get_recent_logs()), GetPayloads()); } else { return MakeDerived(MakeStatus(derived_.begin()->code(), derived_.begin()->message(), GetPayloads())); } } absl::Status StatusGroup::as_concatenated_status() const { if (ok_) { return absl::OkStatus(); } if (non_derived_.size() == 1) { return MakeStatus(non_derived_.begin()->code(), non_derived_.begin()->message(), GetPayloads()); } if (!non_derived_.empty()) { std::vector<string> fmt; fmt.emplace_back("\n====================="); for (const auto& s : non_derived_) { fmt.emplace_back(MakeString(s)); } fmt.emplace_back("=====================\n"); return MakeStatus( non_derived_.begin()->code(), absl::StrJoin(fmt, "\n").substr(0, kMaxAggregatedStatusMessageSize), GetPayloads()); } else { return MakeDerived(MakeStatus(derived_.begin()->code(), derived_.begin()->message(), GetPayloads())); } } void StatusGroup::AttachLogMessages() { recent_logs_.clear(); StatusLogSink::GetInstance()->GetMessages(&recent_logs_); } }
#include "tensorflow/core/lib/core/status.h" #include "absl/strings/match.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { TEST(Status, OK) { EXPECT_EQ(absl::OkStatus().code(), error::OK); EXPECT_EQ(absl::OkStatus().message(), ""); TF_EXPECT_OK(absl::OkStatus()); TF_ASSERT_OK(absl::OkStatus()); EXPECT_EQ(absl::OkStatus(), Status()); Status s; EXPECT_TRUE(s.ok()); } TEST(DeathStatus, CheckOK) { Status status(errors::InvalidArgument("Invalid")); ASSERT_DEATH(TF_CHECK_OK(status), "Invalid"); } TEST(Status, Set) { Status status; status = Status(absl::StatusCode::kCancelled, "Error message"); EXPECT_EQ(status.code(), absl::StatusCode::kCancelled); EXPECT_EQ(status.message(), "Error message"); } TEST(Status, Copy) { Status a(errors::InvalidArgument("Invalid")); Status b(a); ASSERT_EQ(a.ToString(), b.ToString()); } TEST(Status, Assign) { Status a(errors::InvalidArgument("Invalid")); Status b; b = a; ASSERT_EQ(a.ToString(), b.ToString()); } TEST(Status, Move) { Status a(errors::InvalidArgument("Invalid")); Status b(std::move(a)); ASSERT_EQ("INVALID_ARGUMENT: Invalid", b.ToString()); } TEST(Status, MoveAssign) { Status a(errors::InvalidArgument("Invalid")); Status b; b = std::move(a); ASSERT_EQ("INVALID_ARGUMENT: Invalid", b.ToString()); } TEST(Status, Update) { Status s; s.Update(absl::OkStatus()); ASSERT_TRUE(s.ok()); Status a(errors::InvalidArgument("Invalid")); s.Update(a); ASSERT_EQ(s.ToString(), a.ToString()); Status b(errors::Internal("Internal")); s.Update(b); ASSERT_EQ(s.ToString(), a.ToString()); s.Update(absl::OkStatus()); ASSERT_EQ(s.ToString(), a.ToString()); ASSERT_FALSE(s.ok()); } TEST(Status, EqualsOK) { ASSERT_EQ(absl::OkStatus(), Status()); } TEST(Status, EqualsSame) { Status a(errors::InvalidArgument("Invalid")); Status b(errors::InvalidArgument("Invalid")); ASSERT_EQ(a, b); } TEST(Status, EqualsCopy) { const Status a(errors::InvalidArgument("Invalid")); const Status b = a; ASSERT_EQ(a, b); } TEST(Status, EqualsDifferentCode) { const Status a(errors::InvalidArgument("message")); const Status b(errors::Internal("message")); ASSERT_NE(a, b); } TEST(Status, EqualsDifferentMessage) { const Status a(errors::InvalidArgument("message")); const Status b(errors::InvalidArgument("another")); ASSERT_NE(a, b); } TEST(StatusGroup, OKStatusGroup) { StatusGroup c; c.Update(absl::OkStatus()); c.Update(absl::OkStatus()); ASSERT_EQ(c.as_summary_status(), absl::OkStatus()); ASSERT_EQ(c.as_concatenated_status(), absl::OkStatus()); } TEST(StatusGroup, AggregateWithSingleErrorStatus) { StatusGroup c; const Status internal(errors::Internal("Original error.")); c.Update(internal); ASSERT_EQ(c.as_summary_status(), internal); Status concat_status = c.as_concatenated_status(); ASSERT_EQ(concat_status.code(), internal.code()); ASSERT_TRUE(absl::StrContains(concat_status.message(), internal.message())); const Status derived = StatusGroup::MakeDerived(errors::Internal("Derived error.")); c.Update(derived); ASSERT_EQ(c.as_summary_status(), internal); concat_status = c.as_concatenated_status(); ASSERT_EQ(concat_status.code(), internal.code()); ASSERT_TRUE(absl::StrContains(concat_status.message(), internal.message())); } TEST(StatusGroup, AggregateWithMultipleErrorStatus) { StatusGroup c; const Status internal(errors::Internal("Original error.")); const Status cancelled(errors::Cancelled("Cancelled after 10 steps.")); const Status aborted(errors::Aborted("Aborted after 10 steps.")); c.Update(internal); c.Update(cancelled); c.Update(aborted); Status summary = c.as_summary_status(); ASSERT_EQ(summary.code(), internal.code()); ASSERT_TRUE(absl::StrContains(summary.message(), internal.message())); ASSERT_TRUE(absl::StrContains(summary.message(), cancelled.message())); ASSERT_TRUE(absl::StrContains(summary.message(), aborted.message())); Status concat_status = c.as_concatenated_status(); ASSERT_EQ(concat_status.code(), internal.code()); ASSERT_TRUE(absl::StrContains(concat_status.message(), internal.message())); ASSERT_TRUE(absl::StrContains(concat_status.message(), cancelled.message())); ASSERT_TRUE(absl::StrContains(concat_status.message(), aborted.message())); } TEST(Status, InvalidPayloadGetsIgnored) { Status s = Status(); s.SetPayload("Invalid", absl::Cord("Invalid Val")); ASSERT_FALSE(s.GetPayload("Invalid").has_value()); bool is_err_erased = s.ErasePayload("Invalid"); ASSERT_EQ(is_err_erased, false); } TEST(Status, SetPayloadSetsOrUpdatesIt) { Status s(absl::StatusCode::kInternal, "Error message"); s.SetPayload("Error key", absl::Cord("Original")); ASSERT_EQ(s.GetPayload("Error key"), absl::Cord("Original")); s.SetPayload("Error key", absl::Cord("Updated")); ASSERT_EQ(s.GetPayload("Error key"), absl::Cord("Updated")); } TEST(Status, ErasePayloadRemovesIt) { Status s(absl::StatusCode::kInternal, "Error message"); s.SetPayload("Error key", absl::Cord("Original")); bool is_err_erased = s.ErasePayload("Error key"); ASSERT_EQ(is_err_erased, true); is_err_erased = s.ErasePayload("Error key"); ASSERT_EQ(is_err_erased, false); ASSERT_FALSE(s.GetPayload("Error key").has_value()); } static void BM_TF_CHECK_OK(::testing::benchmark::State& state) { tensorflow::Status s = (state.max_iterations < 0) ? errors::InvalidArgument("Invalid") : absl::OkStatus(); for (auto i : state) { TF_CHECK_OK(s); } } BENCHMARK(BM_TF_CHECK_OK); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/status.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/status_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
53ac2892-65fc-4c7b-870d-4c1419791a50
cpp
google/tensorstore
driver_impl
tensorstore/driver/zarr/driver_impl.h
tensorstore/driver/zarr/driver_impl_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR_DRIVER_IMPL_H_ #define TENSORSTORE_DRIVER_ZARR_DRIVER_IMPL_H_ #include <stddef.h> #include <string> #include <string_view> #include "tensorstore/driver/kvs_backed_chunk_driver.h" #include "tensorstore/driver/zarr/metadata.h" #include "tensorstore/driver/zarr/spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/chunk_cache.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_zarr { std::string EncodeChunkIndices(span<const Index> indices, DimensionSeparator dimension_separator); class MetadataCache : public internal_kvs_backed_chunk_driver::MetadataCache { using Base = internal_kvs_backed_chunk_driver::MetadataCache; public: using Base::Base; std::string GetMetadataStorageKey(std::string_view entry_key) override; Result<MetadataPtr> DecodeMetadata(std::string_view entry_key, absl::Cord encoded_metadata) override; Result<absl::Cord> EncodeMetadata(std::string_view entry_key, const void* metadata) override; }; class ZarrDriverSpec : public internal::RegisteredDriverSpec< ZarrDriverSpec, internal_kvs_backed_chunk_driver::KvsDriverSpec> { public: using Base = internal::RegisteredDriverSpec< ZarrDriverSpec, internal_kvs_backed_chunk_driver::KvsDriverSpec>; constexpr static char id[] = "zarr"; ZarrPartialMetadata partial_metadata; SelectedField selected_field; std::string metadata_key; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(internal::BaseCast<KvsDriverSpec>(x), x.partial_metadata, x.selected_field, x.metadata_key); }; absl::Status ApplyOptions(SpecOptions&& options) override; Result<SpecRankAndFieldInfo> GetSpecInfo() const; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ZarrDriverSpec, JsonSerializationOptions, JsonSerializationOptions, ::nlohmann::json::object_t) Result<IndexDomain<>> GetDomain() const override; Result<CodecSpec> GetCodec() const override; Result<ChunkLayout> GetChunkLayout() const override; Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) const override; Future<internal::Driver::Handle> Open( DriverOpenRequest request) const override; }; class DataCache : public internal_kvs_backed_chunk_driver::DataCache { using Base = internal_kvs_backed_chunk_driver::DataCache; public: explicit DataCache(Initializer&& initializer, std::string key_prefix, DimensionSeparator dimension_separator, std::string metadata_key); const ZarrMetadata& metadata() { return *static_cast<const ZarrMetadata*>(initial_metadata().get()); } absl::Status ValidateMetadataCompatibility( const void* existing_metadata_ptr, const void* new_metadata_ptr) override; void GetChunkGridBounds(const void* metadata_ptr, MutableBoxView<> bounds, DimensionSet& implicit_lower_bounds, DimensionSet& implicit_upper_bounds) override; Result<std::shared_ptr<const void>> GetResizedMetadata( const void* existing_metadata, span<const Index> new_inclusive_min, span<const Index> new_exclusive_max) override; static internal::ChunkGridSpecification GetChunkGridSpecification( const ZarrMetadata& metadata); Result<absl::InlinedVector<SharedArray<const void>, 1>> DecodeChunk( span<const Index> chunk_indices, absl::Cord data) override; Result<absl::Cord> EncodeChunk( span<const Index> chunk_indices, span<const SharedArray<const void>> component_arrays) override; std::string GetChunkStorageKey(span<const Index> cell_indices) override; absl::Status GetBoundSpecData( internal_kvs_backed_chunk_driver::KvsDriverSpec& spec_base, const void* metadata_ptr, size_t component_index) override; Result<ChunkLayout> GetChunkLayoutFromMetadata( const void* metadata_ptr, size_t component_index) override; std::string GetBaseKvstorePath() override; std::string key_prefix_; DimensionSeparator dimension_separator_; std::string metadata_key_; }; class ZarrDriver; using ZarrDriverBase = internal_kvs_backed_chunk_driver::RegisteredKvsDriver< ZarrDriver, ZarrDriverSpec, DataCache, internal::ChunkCacheReadWriteDriverMixin< ZarrDriver, internal_kvs_backed_chunk_driver::KvsChunkedDriverBase>>; class ZarrDriver : public ZarrDriverBase { using Base = ZarrDriverBase; public: using Base::Base; class OpenState; const ZarrMetadata& metadata() const { return *static_cast<const ZarrMetadata*>( this->cache()->initial_metadata().get()); } Result<CodecSpec> GetCodec() override; Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) override; Future<ArrayStorageStatistics> GetStorageStatistics( GetStorageStatisticsRequest request) override; }; } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::internal_zarr::ZarrDriver) #endif
#include "tensorstore/driver/zarr/driver_impl.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/driver/kvs_backed_chunk_driver_impl.h" #include "tensorstore/driver/zarr/metadata.h" #include "tensorstore/driver/zarr/spec.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/open.h" #include "tensorstore/resize_options.h" #include "tensorstore/tensorstore.h" #include "tensorstore/transaction.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kImplicit; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::TransactionMode; using ::tensorstore::internal_kvs_backed_chunk_driver::ResizeParameters; using ::tensorstore::internal_zarr::DimensionSeparator; using ::tensorstore::internal_zarr::ZarrDriver; using ::tensorstore::internal_zarr::ZarrMetadata; template <typename... Option> Result<tensorstore::IndexTransform<>> ResolveBoundsFromMetadata( const ZarrMetadata& metadata, std::string field, tensorstore::IndexTransform<> transform, tensorstore::ResolveBoundsOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( auto store, tensorstore::Open({ {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", ::nlohmann::json(metadata)}, {"field", field}, {"create", true}, }) .result()); return tensorstore::internal::TensorStoreAccess::handle(store) .driver->ResolveBounds({{}, transform, options}) .result(); } Result<ResizeParameters> GetResizeParameters( const ZarrMetadata& metadata, std::string field, tensorstore::IndexTransformView<> transform, span<const Index> inclusive_min, span<const Index> exclusive_max, tensorstore::ResizeOptions options, TransactionMode transaction_mode = TransactionMode::no_transaction_mode) { TENSORSTORE_ASSIGN_OR_RETURN( auto store, tensorstore::Open({ {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", ::nlohmann::json(metadata)}, {"field", field}, {"create", true}, }) .result()); auto driver = tensorstore::internal::dynamic_pointer_cast<ZarrDriver>( tensorstore::internal::TensorStoreAccess::handle(store).driver); return tensorstore::internal_kvs_backed_chunk_driver::GetResizeParameters( driver->cache(), &metadata, driver->component_index(), transform, inclusive_min, exclusive_max, options, transaction_mode); } TEST(EncodeChunkIndicesTest, DotSeparated) { EXPECT_EQ("1.2.3", EncodeChunkIndices(span<const Index>({1, 2, 3}), DimensionSeparator::kDotSeparated)); } TEST(EncodeChunkIndicesTest, SlashSeparated) { EXPECT_EQ("1/2/3", EncodeChunkIndices(span<const Index>({1, 2, 3}), DimensionSeparator::kSlashSeparated)); } TEST(ResolveBoundsFromMetadataTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson({ {"zarr_format", 2}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"compressor", nullptr}, {"dtype", "<i2"}, {"shape", {100, 100}}, {"chunks", {3, 2}}, })); EXPECT_THAT(ResolveBoundsFromMetadata( metadata, "", tensorstore::IdentityTransform(2), {}), (tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({100, 100}) .implicit_upper_bounds({1, 1}) .output_identity_transform() .Finalize() .value())); } TEST(ResolveBoundsFromMetadataTest, FixResizableBoundsSuccess) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson({ {"zarr_format", 2}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"compressor", nullptr}, {"dtype", "<i2"}, {"shape", {100, 100}}, {"chunks", {3, 2}}, })); tensorstore::ResolveBoundsOptions options; options.Set(tensorstore::fix_resizable_bounds).IgnoreError(); EXPECT_THAT(ResolveBoundsFromMetadata( metadata, "", tensorstore::IdentityTransform(2), options), (tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({100, 100}) .output_identity_transform() .Finalize() .value())); } TEST(ResolveBoundsFromMetadataTest, FixResizableBoundsFailure) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson({ {"zarr_format", 2}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"compressor", nullptr}, {"dtype", "<i2"}, {"shape", {100, 100}}, {"chunks", {3, 2}}, })); tensorstore::ResolveBoundsOptions options; options.Set(tensorstore::fix_resizable_bounds).IgnoreError(); EXPECT_THAT(ResolveBoundsFromMetadata( metadata, "", tensorstore::IdentityTransform(span<const Index>({200, 100})), options), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ResolveBoundsFromMetadataTest, MultipleFieldsWithFieldShape) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson({ {"zarr_format", 2}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"compressor", nullptr}, {"dtype", { {"x", "<i2", {2, 3}}, {"y", "<i4", {4}}, }}, {"shape", {100, 100}}, {"chunks", {3, 2}}, })); EXPECT_THAT( ResolveBoundsFromMetadata( metadata, "x", tensorstore::IdentityTransform(4), {}), (tensorstore::IndexTransformBuilder<>(4, 4) .input_origin({0, 0, 0, 0}) .input_shape({100, 100, 2, 3}) .implicit_upper_bounds({1, 1, 0, 0}) .output_identity_transform() .Finalize() .value())); EXPECT_THAT( ResolveBoundsFromMetadata( metadata, "y", tensorstore::IdentityTransform(3), {}), (tensorstore::IndexTransformBuilder<>(3, 3) .input_origin({0, 0, 0}) .input_shape({100, 100, 4}) .implicit_upper_bounds({1, 1, 0}) .output_identity_transform() .Finalize() .value())); } TEST(GetResizeParametersTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson({ {"zarr_format", 2}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"compressor", nullptr}, {"dtype", "<i2"}, {"shape", {100, 100}}, {"chunks", {3, 2}}, })); const auto transform = tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({100, 100}) .implicit_upper_bounds({1, 1}) .output_identity_transform() .Finalize() .value(); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetResizeParameters(metadata, "", transform, span<const Index>({kImplicit, kImplicit}), span<const Index>({kImplicit, 150}), {})); EXPECT_THAT(p.new_exclusive_max, ::testing::ElementsAre(kImplicit, 150)); EXPECT_THAT(p.exclusive_max_constraint, ::testing::ElementsAre(kImplicit, kImplicit)); EXPECT_FALSE(p.expand_only); EXPECT_FALSE(p.shrink_only); } { tensorstore::ResizeOptions options; options.Set(tensorstore::expand_only).IgnoreError(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetResizeParameters(metadata, "", transform, span<const Index>({kImplicit, kImplicit}), span<const Index>({kImplicit, 150}), options)); EXPECT_THAT(p.new_exclusive_max, ::testing::ElementsAre(kImplicit, 150)); EXPECT_THAT(p.exclusive_max_constraint, ::testing::ElementsAre(kImplicit, kImplicit)); EXPECT_TRUE(p.expand_only); EXPECT_FALSE(p.shrink_only); } { tensorstore::ResizeOptions options; options.Set(tensorstore::shrink_only).IgnoreError(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetResizeParameters(metadata, "", transform, span<const Index>({kImplicit, kImplicit}), span<const Index>({kImplicit, 150}), options)); EXPECT_THAT(p.new_exclusive_max, ::testing::ElementsAre(kImplicit, 150)); EXPECT_THAT(p.exclusive_max_constraint, ::testing::ElementsAre(kImplicit, kImplicit)); EXPECT_FALSE(p.expand_only); EXPECT_TRUE(p.shrink_only); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetResizeParameters(metadata, "", transform, span<const Index>({kImplicit, kImplicit}), span<const Index>({kImplicit, 150}), {}, TransactionMode::atomic_isolated)); EXPECT_THAT(p.new_exclusive_max, ::testing::ElementsAre(kImplicit, 150)); EXPECT_THAT(p.exclusive_max_constraint, ::testing::ElementsAre(100, 100)); EXPECT_THAT(p.inclusive_min_constraint, ::testing::ElementsAre(0, 0)); EXPECT_FALSE(p.expand_only); EXPECT_FALSE(p.shrink_only); } { tensorstore::ResizeOptions options; options.Set(tensorstore::resize_metadata_only).IgnoreError(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetResizeParameters(metadata, "", transform, span<const Index>({kImplicit, kImplicit}), span<const Index>({kImplicit, 150}), options, TransactionMode::atomic_isolated)); EXPECT_THAT(p.new_exclusive_max, ::testing::ElementsAre(kImplicit, 150)); EXPECT_THAT(p.exclusive_max_constraint, ::testing::ElementsAre(kImplicit, kImplicit)); EXPECT_FALSE(p.expand_only); EXPECT_FALSE(p.shrink_only); } EXPECT_THAT( GetResizeParameters(metadata, "", transform, span<const Index>({kImplicit, kImplicit}), span<const Index>({kImplicit, kImplicit}), {}), MatchesStatus(absl::StatusCode::kAborted)); EXPECT_THAT( GetResizeParameters(metadata, "", tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({100, 100}) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_identity_transform() .Finalize() .value(), span<const Index>({2, kImplicit}), span<const Index>({kImplicit, kImplicit}), {}), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(GetResizeParametersTest, MultipleFields) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson({ {"zarr_format", 2}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"compressor", nullptr}, {"dtype", { {"x", "<i2", {2, 3}}, {"y", "<i4", {4}}, }}, {"shape", {100, 100}}, {"chunks", {3, 2}}, })); const auto transform = tensorstore::IndexTransformBuilder<>(4, 4) .input_origin({0, 0, 0, 0}) .input_shape({100, 100, 2, 3}) .implicit_lower_bounds({1, 1, 1, 1}) .implicit_upper_bounds({1, 1, 1, 1}) .output_identity_transform() .Finalize() .value(); EXPECT_THAT( GetResizeParameters( metadata, "x", transform, span<const Index>({kImplicit, kImplicit, kImplicit, kImplicit}), span<const Index>({kImplicit, 150, kImplicit, kImplicit}), {}), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Resize operation would affect other fields but " "`resize_tied_bounds` was not specified")); tensorstore::ResizeOptions options; options.Set(tensorstore::ResizeMode::resize_tied_bounds).IgnoreError(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetResizeParameters( metadata, "x", transform, span<const Index>({kImplicit, kImplicit, kImplicit, kImplicit}), span<const Index>({kImplicit, 150, kImplicit, kImplicit}), options)); EXPECT_THAT(p.new_exclusive_max, ::testing::ElementsAre(kImplicit, 150)); EXPECT_THAT(p.exclusive_max_constraint, ::testing::ElementsAre(kImplicit, kImplicit)); EXPECT_FALSE(p.expand_only); EXPECT_FALSE(p.shrink_only); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/zarr/driver_impl.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/zarr/driver_impl_test.cc
4f887a6430414cd6088e1743555015b10f116d50
44ee2e2d-d074-4a87-b125-2bf59679e221
cpp
tensorflow/tensorflow
tracking_allocator
third_party/xla/xla/tsl/framework/tracking_allocator.cc
tensorflow/core/framework/tracking_allocator_test.cc
#include "xla/tsl/framework/tracking_allocator.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" namespace tsl { TrackingAllocator::TrackingAllocator(Allocator* allocator, bool track_sizes) : allocator_(allocator), ref_(1), allocated_(0), high_watermark_(0), total_bytes_(0), track_sizes_locally_(track_sizes && !allocator_->TracksAllocationSizes()), next_allocation_id_(0) {} void* TrackingAllocator::AllocateRaw( size_t alignment, size_t num_bytes, const AllocationAttributes& allocation_attr) { void* ptr = allocator_->AllocateRaw(alignment, num_bytes, allocation_attr); if (nullptr == ptr) { return ptr; } if (allocator_->TracksAllocationSizes()) { size_t allocated_bytes = allocator_->AllocatedSize(ptr); { mutex_lock lock(mu_); allocated_ += allocated_bytes; high_watermark_ = std::max(high_watermark_, allocated_); total_bytes_ += allocated_bytes; allocations_.emplace_back(allocated_bytes, Env::Default()->NowMicros()); ++ref_; } } else if (track_sizes_locally_) { size_t allocated_bytes = allocator_->AllocatedSizeSlow(ptr); allocated_bytes = std::max(num_bytes, allocated_bytes); mutex_lock lock(mu_); next_allocation_id_ += 1; Chunk chunk = {num_bytes, allocated_bytes, next_allocation_id_}; in_use_.emplace(std::make_pair(ptr, chunk)); allocated_ += allocated_bytes; high_watermark_ = std::max(high_watermark_, allocated_); total_bytes_ += allocated_bytes; allocations_.emplace_back(allocated_bytes, Env::Default()->NowMicros()); ++ref_; } else { mutex_lock lock(mu_); total_bytes_ += num_bytes; allocations_.emplace_back(num_bytes, Env::Default()->NowMicros()); ++ref_; } return ptr; } void TrackingAllocator::DeallocateRaw(void* ptr) { if (nullptr == ptr) { return; } bool should_delete; bool tracks_allocation_sizes = allocator_->TracksAllocationSizes(); size_t allocated_bytes = 0; if (tracks_allocation_sizes) { allocated_bytes = allocator_->AllocatedSize(ptr); } else if (track_sizes_locally_) { mutex_lock lock(mu_); auto itr = in_use_.find(ptr); if (itr != in_use_.end()) { tracks_allocation_sizes = true; allocated_bytes = (*itr).second.allocated_size; in_use_.erase(itr); } } Allocator* allocator = allocator_; { mutex_lock lock(mu_); if (tracks_allocation_sizes) { CHECK_GE(allocated_, allocated_bytes); allocated_ -= allocated_bytes; allocations_.emplace_back(-allocated_bytes, Env::Default()->NowMicros()); } should_delete = UnRef(); } allocator->DeallocateRaw(ptr); if (should_delete) { delete this; } } bool TrackingAllocator::TracksAllocationSizes() const { return track_sizes_locally_ || allocator_->TracksAllocationSizes(); } size_t TrackingAllocator::RequestedSize(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.requested_size; } return 0; } else { return allocator_->RequestedSize(ptr); } } size_t TrackingAllocator::AllocatedSize(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.allocated_size; } return 0; } else { return allocator_->AllocatedSize(ptr); } } int64_t TrackingAllocator::AllocationId(const void* ptr) const { if (track_sizes_locally_) { mutex_lock lock(mu_); auto it = in_use_.find(ptr); if (it != in_use_.end()) { return (*it).second.allocation_id; } return 0; } else { return allocator_->AllocationId(ptr); } } absl::optional<AllocatorStats> TrackingAllocator::GetStats() { return allocator_->GetStats(); } bool TrackingAllocator::ClearStats() { return allocator_->ClearStats(); } std::tuple<size_t, size_t, size_t> TrackingAllocator::GetSizes() { size_t high_watermark; size_t total_bytes; size_t still_live_bytes; { mutex_lock lock(mu_); high_watermark = high_watermark_; total_bytes = total_bytes_; still_live_bytes = allocated_; } return std::make_tuple(total_bytes, high_watermark, still_live_bytes); } absl::InlinedVector<AllocRecord, 4UL> TrackingAllocator::GetRecordsAndUnRef() { bool should_delete; absl::InlinedVector<AllocRecord, 4UL> allocations; { mutex_lock lock(mu_); allocations.swap(allocations_); should_delete = UnRef(); } if (should_delete) { delete this; } return allocations; } absl::InlinedVector<AllocRecord, 4UL> TrackingAllocator::GetCurrentRecords() { absl::InlinedVector<AllocRecord, 4UL> allocations; { mutex_lock lock(mu_); for (const AllocRecord& alloc : allocations_) { allocations.push_back(alloc); } } return allocations; } bool TrackingAllocator::UnRef() { CHECK_GE(ref_, 1); --ref_; return (ref_ == 0); } }
#include "tensorflow/core/framework/tracking_allocator.h" #include <unordered_map> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class TestableSizeTrackingAllocator : public Allocator { public: string Name() override { return "test"; } void* AllocateRaw(size_t , size_t num_bytes) override { void* ptr = port::Malloc(num_bytes); size_map_[ptr] = num_bytes; return ptr; } void DeallocateRaw(void* ptr) override { const auto& iter = size_map_.find(ptr); EXPECT_NE(size_map_.end(), iter); size_map_.erase(iter); port::Free(ptr); } bool TracksAllocationSizes() const override { return true; } size_t RequestedSize(const void* ptr) const override { const auto& iter = size_map_.find(ptr); EXPECT_NE(size_map_.end(), iter); return iter->second; } absl::optional<AllocatorStats> GetStats() override { return absl::nullopt; } private: std::unordered_map<const void*, size_t> size_map_; }; class NoMemoryAllocator : public Allocator { public: string Name() override { return "test"; } void* AllocateRaw(size_t , size_t num_bytes) override { return nullptr; } void DeallocateRaw(void* ptr) override {} bool TracksAllocationSizes() const override { return true; } absl::optional<AllocatorStats> GetStats() override { return absl::nullopt; } }; TEST(TrackingAllocatorTest, SimpleNoTracking) { Allocator* a = cpu_allocator(); EXPECT_FALSE(a->TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(a, false); void* p1 = ta->AllocateRaw(4, 4); ta->DeallocateRaw(p1); void* p2 = ta->AllocateRaw(4, 12); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(16, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); ta->DeallocateRaw(p2); auto records = ta->GetRecordsAndUnRef(); EXPECT_EQ(4, records[0].alloc_bytes); EXPECT_EQ(12, records[1].alloc_bytes); ta = new TrackingAllocator(a, true); p1 = ta->AllocateRaw(4, 4); EXPECT_EQ(4, ta->RequestedSize(p1)); EXPECT_LE(4, ta->AllocatedSize(p1)); EXPECT_EQ(1, ta->AllocationId(p1)); ta->DeallocateRaw(p1); p2 = ta->AllocateRaw(4, 12); EXPECT_EQ(12, ta->RequestedSize(p2)); EXPECT_LE(12, ta->AllocatedSize(p2)); EXPECT_EQ(2, ta->AllocationId(p2)); sizes = ta->GetSizes(); EXPECT_LE(16, std::get<0>(sizes)); EXPECT_LE(12, std::get<1>(sizes)); EXPECT_LE(12, std::get<2>(sizes)); ta->DeallocateRaw(p2); records = ta->GetRecordsAndUnRef(); EXPECT_LE(4, records[0].alloc_bytes); EXPECT_GE(-4, records[1].alloc_bytes); EXPECT_LE(12, records[2].alloc_bytes); EXPECT_GE(-12, records[3].alloc_bytes); } TEST(TrackingAllocatorTest, SimpleTracking) { TestableSizeTrackingAllocator a = TestableSizeTrackingAllocator(); EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); void* p1 = ta->AllocateRaw(4, 12); ta->DeallocateRaw(p1); void* p2 = ta->AllocateRaw(4, 4); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(16, std::get<0>(sizes)); EXPECT_EQ(12, std::get<1>(sizes)); EXPECT_EQ(4, std::get<2>(sizes)); ta->DeallocateRaw(p2); auto records = ta->GetRecordsAndUnRef(); EXPECT_EQ(12, records[0].alloc_bytes); EXPECT_EQ(-12, records[1].alloc_bytes); EXPECT_EQ(4, records[2].alloc_bytes); EXPECT_EQ(-4, records[3].alloc_bytes); } TEST(TrackingAllocatorTest, OutOfMemory) { NoMemoryAllocator a; EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); void* p1 = ta->AllocateRaw(4, 12); EXPECT_EQ(nullptr, p1); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(0, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); EXPECT_EQ(0, ta->GetRecordsAndUnRef().size()); } TEST(TrackingAllocatorTest, FreeNullPtr) { NoMemoryAllocator a; EXPECT_TRUE(a.TracksAllocationSizes()); TrackingAllocator* ta = new TrackingAllocator(&a, false); ta->DeallocateRaw(nullptr); std::tuple<size_t, size_t, size_t> sizes = ta->GetSizes(); EXPECT_EQ(0, std::get<0>(sizes)); EXPECT_EQ(0, std::get<1>(sizes)); EXPECT_EQ(0, std::get<2>(sizes)); EXPECT_EQ(0, ta->GetRecordsAndUnRef().size()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/framework/tracking_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/tracking_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5036342e-0544-4dc5-a2c3-c2d51efedf19
cpp
google/arolla
qtype_traits
arolla/qtype/qtype_traits.h
arolla/qtype/qtype_traits_test.cc
#ifndef AROLLA_QTYPE_QTYPE_TRAITS_H_ #define AROLLA_QTYPE_QTYPE_TRAITS_H_ #include <type_traits> #include "absl/base/attributes.h" #include "absl/log/check.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/util/demangle.h" namespace arolla { template <typename T> struct QTypeTraits; template <typename T, typename = void> struct has_qtype_traits : std::false_type {}; template <typename T> struct has_qtype_traits<T, std::void_t<decltype(QTypeTraits<T>::type())>> : std::true_type {}; template <typename T> constexpr bool has_qtype_traits_v = has_qtype_traits<T>::value; template <typename T> ABSL_ATTRIBUTE_ALWAYS_INLINE inline QTypePtr GetQType() { static_assert( has_qtype_traits_v<T>, "QTypeTraits<T> specialization is not included. #include file with " "QTypeTraits<T> expliclty to fix this problem. " "E.g., #include \"arolla/qtype/base_types.h\" for standard " "Arolla scalar and OptionalValue types."); DCHECK(typeid(T) == QTypeTraits<T>::type()->type_info()) << "There is an error in the QType implementation for " << QTypeTraits<T>::type()->name(); DCHECK(sizeof(T) <= QTypeTraits<T>::type()->type_layout().AllocSize()) << "QType " << QTypeTraits<T>::type()->name() << " has too small frame layout to carry a value of C++ type " << TypeName<T>(); return QTypeTraits<T>::type(); } #define AROLLA_DECLARE_QTYPE(...) \ template <> \ struct QTypeTraits<__VA_ARGS__> { \ static QTypePtr type(); \ } template <> struct QTypeTraits<QTypePtr> { static QTypePtr type() { return GetQTypeQType(); } }; } #endif
#include "arolla/qtype/qtype_traits.h" namespace arolla { struct WithQTypeTraits {}; AROLLA_DECLARE_QTYPE(WithQTypeTraits); struct WithoutQTypeTraits {}; static_assert(has_qtype_traits_v<WithQTypeTraits>); static_assert(!has_qtype_traits_v<WithoutQTypeTraits>); }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/qtype_traits.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/qtype_traits_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
7e858b4c-c1de-484e-a11b-a26d73efd5ce
cpp
abseil/abseil-cpp
bit_gen_ref
absl/random/bit_gen_ref.h
absl/random/bit_gen_ref_test.cc
#ifndef ABSL_RANDOM_BIT_GEN_REF_H_ #define ABSL_RANDOM_BIT_GEN_REF_H_ #include <limits> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/internal/fast_type_id.h" #include "absl/base/macros.h" #include "absl/meta/type_traits.h" #include "absl/random/internal/distribution_caller.h" #include "absl/random/internal/fast_uniform_bits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { template <typename URBG, typename = void, typename = void, typename = void> struct is_urbg : std::false_type {}; template <typename URBG> struct is_urbg< URBG, absl::enable_if_t<std::is_same< typename URBG::result_type, typename std::decay<decltype((URBG::min)())>::type>::value>, absl::enable_if_t<std::is_same< typename URBG::result_type, typename std::decay<decltype((URBG::max)())>::type>::value>, absl::enable_if_t<std::is_same< typename URBG::result_type, typename std::decay<decltype(std::declval<URBG>()())>::type>::value>> : std::true_type {}; template <typename> struct DistributionCaller; class MockHelpers; } class BitGenRef { template <template <class...> class Trait, class AlwaysVoid, class... Args> struct detector : std::false_type {}; template <template <class...> class Trait, class... Args> struct detector<Trait, absl::void_t<Trait<Args...>>, Args...> : std::true_type {}; template <class T> using invoke_mock_t = decltype(std::declval<T*>()->InvokeMock( std::declval<base_internal::FastTypeIdType>(), std::declval<void*>(), std::declval<void*>())); template <typename T> using HasInvokeMock = typename detector<invoke_mock_t, void, T>::type; public: BitGenRef(const BitGenRef&) = default; BitGenRef(BitGenRef&&) = default; BitGenRef& operator=(const BitGenRef&) = default; BitGenRef& operator=(BitGenRef&&) = default; template < typename URBGRef, typename URBG = absl::remove_cvref_t<URBGRef>, typename absl::enable_if_t<(!std::is_same<URBG, BitGenRef>::value && random_internal::is_urbg<URBG>::value && !HasInvokeMock<URBG>::value)>* = nullptr> BitGenRef(URBGRef&& gen ABSL_ATTRIBUTE_LIFETIME_BOUND) : t_erased_gen_ptr_(reinterpret_cast<uintptr_t>(&gen)), mock_call_(NotAMock), generate_impl_fn_(ImplFn<URBG>) {} template <typename URBGRef, typename URBG = absl::remove_cvref_t<URBGRef>, typename absl::enable_if_t<(!std::is_same<URBG, BitGenRef>::value && random_internal::is_urbg<URBG>::value && HasInvokeMock<URBG>::value)>* = nullptr> BitGenRef(URBGRef&& gen ABSL_ATTRIBUTE_LIFETIME_BOUND) : t_erased_gen_ptr_(reinterpret_cast<uintptr_t>(&gen)), mock_call_(&MockCall<URBG>), generate_impl_fn_(ImplFn<URBG>) {} using result_type = uint64_t; static constexpr result_type(min)() { return (std::numeric_limits<result_type>::min)(); } static constexpr result_type(max)() { return (std::numeric_limits<result_type>::max)(); } result_type operator()() { return generate_impl_fn_(t_erased_gen_ptr_); } private: using impl_fn = result_type (*)(uintptr_t); using mock_call_fn = bool (*)(uintptr_t, base_internal::FastTypeIdType, void*, void*); template <typename URBG> static result_type ImplFn(uintptr_t ptr) { absl::random_internal::FastUniformBits<result_type> fast_uniform_bits; return fast_uniform_bits(*reinterpret_cast<URBG*>(ptr)); } template <typename URBG> static bool MockCall(uintptr_t gen_ptr, base_internal::FastTypeIdType type, void* result, void* arg_tuple) { return reinterpret_cast<URBG*>(gen_ptr)->InvokeMock(type, result, arg_tuple); } static bool NotAMock(uintptr_t, base_internal::FastTypeIdType, void*, void*) { return false; } inline bool InvokeMock(base_internal::FastTypeIdType type, void* args_tuple, void* result) { if (mock_call_ == NotAMock) return false; return mock_call_(t_erased_gen_ptr_, type, args_tuple, result); } uintptr_t t_erased_gen_ptr_; mock_call_fn mock_call_; impl_fn generate_impl_fn_; template <typename> friend struct ::absl::random_internal::DistributionCaller; friend class ::absl::random_internal::MockHelpers; }; ABSL_NAMESPACE_END } #endif
#include "absl/random/bit_gen_ref.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/fast_type_id.h" #include "absl/random/internal/sequence_urbg.h" #include "absl/random/random.h" namespace absl { ABSL_NAMESPACE_BEGIN class ConstBitGen { public: using result_type = absl::BitGen::result_type; static constexpr result_type(min)() { return (absl::BitGen::min)(); } static constexpr result_type(max)() { return (absl::BitGen::max)(); } result_type operator()() { return 1; } bool InvokeMock(base_internal::FastTypeIdType index, void*, void* result) { *static_cast<int*>(result) = 42; return true; } }; namespace { int FnTest(absl::BitGenRef gen_ref) { return absl::Uniform(gen_ref, 1, 7); } template <typename T> class BitGenRefTest : public testing::Test {}; using BitGenTypes = ::testing::Types<absl::BitGen, absl::InsecureBitGen, std::mt19937, std::mt19937_64, std::minstd_rand>; TYPED_TEST_SUITE(BitGenRefTest, BitGenTypes); TYPED_TEST(BitGenRefTest, BasicTest) { TypeParam gen; auto x = FnTest(gen); EXPECT_NEAR(x, 4, 3); } TYPED_TEST(BitGenRefTest, Copyable) { TypeParam gen; absl::BitGenRef gen_ref(gen); FnTest(gen_ref); } TEST(BitGenRefTest, PassThroughEquivalence) { absl::random_internal::sequence_urbg urbg( {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); std::vector<uint64_t> output(12); { absl::BitGenRef view(urbg); for (auto& v : output) { v = view(); } } std::vector<uint64_t> expected( {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); EXPECT_THAT(output, testing::Eq(expected)); } TEST(BitGenRefTest, MockingBitGenBaseOverrides) { ConstBitGen const_gen; EXPECT_EQ(FnTest(const_gen), 42); absl::BitGenRef gen_ref(const_gen); EXPECT_EQ(FnTest(gen_ref), 42); } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/bit_gen_ref.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/bit_gen_ref_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
9c4ce22d-cbf0-4e42-b3eb-255b77c035b5
cpp
tensorflow/tensorflow
grappler_item_builder
tensorflow/core/grappler/grappler_item_builder.cc
tensorflow/core/grappler/grappler_item_builder_test.cc
#include "tensorflow/core/grappler/grappler_item_builder.h" #include <type_traits> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_optimizer.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variable.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/grappler/inputs/utils.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/model_pruner.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/protobuf_internal.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/protobuf/saver.pb.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace grappler { namespace { void InitializeTensor(DataType type, Tensor* tensor) { const int period = 7; if (type == DT_FLOAT) { auto flat = tensor->flat<float>(); for (int i = 0; i < flat.size(); i++) { flat(i) = static_cast<float>(i % period) / 10.0f; } } else if (type == DT_INT64) { auto flat = tensor->flat<int64_t>(); for (int i = 0; i < flat.size(); i++) { flat(i) = i % period; } } else if (type != DT_STRING && type != DT_RESOURCE && type != DT_VARIANT) { memset(const_cast<char*>(tensor->tensor_data().data()), 0, tensor->tensor_data().size()); } } Status PruneGraph(GrapplerItem* item) { ModelPruner pruner; GraphDef pruned_graph; Cluster* cluster = nullptr; TF_RETURN_IF_ERROR(pruner.Optimize(cluster, *item, &pruned_graph)); item->graph = std::move(pruned_graph); return absl::OkStatus(); } Status ReplaceUnknownShapeDim(const ItemConfig& cfg, const TensorShapeProto& shape_pb_in, TensorShapeProto* shape_pb_out, TensorShape* shape_out) { std::vector<int32> dims; for (const auto& dim_proto : shape_pb_in.dim()) { if (cfg.placeholder_unknown_output_shape_dim >= 0 && dim_proto.size() == -1) { dims.push_back(cfg.placeholder_unknown_output_shape_dim); shape_pb_out->add_dim()->set_size( cfg.placeholder_unknown_output_shape_dim); } else { dims.push_back(std::max<int32>(1, dim_proto.size())); shape_pb_out->add_dim()->set_size(dim_proto.size()); } } return TensorShapeUtils::MakeShape(dims.data(), dims.size(), shape_out); } Status UpdatePlaceholderShape( const ItemConfig& cfg, const std::unordered_set<string>& signature_feed_nodes, GrapplerItem* new_item, NodeDef* node) { if (node->attr().count("dtype") == 0) { return absl::InternalError(absl::StrCat("Unknown type for placeholder ", node->name(), ", skipping this input")); } DataType type = node->attr().at("dtype").type(); if (node->attr().count("shape") == 0) { return absl::InternalError(absl::StrCat("Unknown shape for placeholder ", node->name(), ", skipping this input")); } TensorShape shape; TensorShapeProto shape_proto; Status make_shape_status = ReplaceUnknownShapeDim( cfg, node->attr().at("shape").shape(), &shape_proto, &shape); if (!make_shape_status.ok()) { return absl::InternalError( absl::StrCat("Invalid shape for placeholder ", node->name(), ": ", make_shape_status.ToString(), ", skipping this input")); } if ((cfg.placeholder_unknown_output_shape_dim >= 0) && (shape.dims() == 0) && (node->attr().count("_output_shapes") == 1)) { const auto& output_shapes = node->attr().at("_output_shapes").list().shape(0); if (output_shapes.dim_size() != 0) { shape.Clear(); shape_proto.clear_dim(); for (const auto& dim : output_shapes.dim()) { auto size = dim.size(); if (size == -1) size = cfg.placeholder_unknown_output_shape_dim; TF_RETURN_IF_ERROR(shape.AddDimWithStatus(size)); shape_proto.add_dim()->set_size(size); } } } Tensor fake_input(type, shape); InitializeTensor(type, &fake_input); if (cfg.feed_nodes.empty()) { if (signature_feed_nodes.count(node->name()) == 0) { new_item->feed.emplace_back(node->name(), fake_input); } } else if (cfg.feed_nodes.count(node->name()) > 0) { auto it = find_if(new_item->feed.begin(), new_item->feed.end(), [&node](std::pair<string, Tensor>& f) { return f.first == node->name(); }); DCHECK(it != new_item->feed.end()); it->second = fake_input; } if (!shape_proto.dim().empty()) *(node->mutable_attr()->at("shape").mutable_shape()) = shape_proto; return absl::OkStatus(); } } Status RuntimeGraphOptimizer(const GraphDef& graph_def_arg, GraphDef* output_graph_def, const ItemConfig& cfg) { if (!cfg.apply_optimizations && !cfg.inline_functions && !cfg.erase_noinline_attributes) { if (output_graph_def != &graph_def_arg) { *output_graph_def = graph_def_arg; } return absl::OkStatus(); } SessionOptions options; GraphDef graph_def(graph_def_arg); if (cfg.erase_noinline_attributes) { for (auto& func : *graph_def.mutable_library()->mutable_function()) { func.mutable_attr()->erase("_noinline"); } } std::vector<std::unique_ptr<Device>> devices; DeviceFactory* cpu_factory = DeviceFactory::GetFactory("CPU"); TF_RETURN_IF_ERROR(cpu_factory->CreateDevices( options, "/job:localhost/replica:0/task:0", &devices)); Device* cpu_device = devices[0].get(); auto dvc_mgr = std::make_unique<StaticDeviceMgr>(std::move(devices)); FunctionLibraryDefinition function_library(OpRegistry::Global(), graph_def.library()); Env* env = Env::Default(); OptimizerOptions* optimizer_opts = options.config.mutable_graph_options()->mutable_optimizer_options(); if (cfg.apply_optimizations) { optimizer_opts->set_opt_level(::tensorflow::OptimizerOptions::L1); } else { optimizer_opts->set_opt_level(::tensorflow::OptimizerOptions::L0); } optimizer_opts->set_do_function_inlining(cfg.inline_functions); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime(dvc_mgr.get(), env, &options.config, graph_def.versions().producer(), &function_library, *optimizer_opts)); FunctionLibraryRuntime* flr = pflr->GetFLR(cpu_device->name()); GraphConstructorOptions graph_ctor_opts; graph_ctor_opts.allow_internal_ops = true; graph_ctor_opts.expect_device_spec = false; std::unique_ptr<Graph> graphptr(new Graph(function_library)); TF_RETURN_IF_ERROR(ConvertGraphDefToGraph( graph_ctor_opts, std::move(graph_def), graphptr.get())); ::tensorflow::GraphOptimizer optimizer(*optimizer_opts); optimizer.Optimize(flr, env, cpu_device, &graphptr, tensorflow::GraphOptimizer::Options()); graphptr->ToGraphDef(output_graph_def); return AddDefaultAttrsToGraphDef(output_graph_def, *graphptr->op_registry(), 0, true); } std::unique_ptr<GrapplerItem> GrapplerItemFromMetaGraphDef( const string& id, const MetaGraphDef& meta_graph, const ItemConfig& cfg) { if (id.empty()) { LOG(ERROR) << "id must be non-empty."; return nullptr; } std::unique_ptr<GrapplerItem> new_item(new GrapplerItem()); new_item->id = id; new_item->graph = meta_graph.graph_def(); for (const auto& feed_node : cfg.feed_nodes) { const string feed_name = NodeName(feed_node); new_item->feed.emplace_back(feed_name, Tensor()); } for (const auto& fetch_node : cfg.fetch_nodes) { new_item->fetch.emplace_back(NodeName(fetch_node)); } if (new_item->fetch.empty() && meta_graph.collection_def().count("train_op") > 0) { const CollectionDef& nodes = meta_graph.collection_def().at("train_op"); if (nodes.has_node_list()) { for (const auto& node : nodes.node_list().value()) { new_item->fetch.push_back(NodeName(node)); } } } std::unordered_set<string> signature_feed_nodes; std::unordered_set<string> signature_fetch_nodes; for (const auto& name_and_signature : meta_graph.signature_def()) { for (const auto& name_and_input : name_and_signature.second.inputs()) { const TensorInfo& input = name_and_input.second; if (input.has_coo_sparse()) { int64_t dim = std::max(1, cfg.placeholder_unknown_output_shape_dim); TensorShape shape_1d({dim}); TensorShape shape_2d({dim, dim}); if (gtl::InsertIfNotPresent( &signature_feed_nodes, NodeName(input.coo_sparse().values_tensor_name()))) { Tensor value_tensor(input.dtype(), shape_1d); InitializeTensor(input.dtype(), &value_tensor); new_item->feed.emplace_back( NodeName(input.coo_sparse().values_tensor_name()), value_tensor); } if (gtl::InsertIfNotPresent( &signature_feed_nodes, NodeName(input.coo_sparse().indices_tensor_name()))) { Tensor indices_tensor(DT_INT64, shape_2d); InitializeTensor(input.dtype(), &indices_tensor); new_item->feed.emplace_back( NodeName(input.coo_sparse().indices_tensor_name()), indices_tensor); } if (gtl::InsertIfNotPresent( &signature_feed_nodes, NodeName(input.coo_sparse().dense_shape_tensor_name()))) { Tensor dense_shape_tensor(DT_INT64, shape_1d); InitializeTensor(input.dtype(), &dense_shape_tensor); new_item->feed.emplace_back( NodeName(input.coo_sparse().dense_shape_tensor_name()), dense_shape_tensor); } } else { if (gtl::InsertIfNotPresent(&signature_feed_nodes, NodeName(input.name()))) { TensorShape shape; TensorShapeProto shape_proto; Status s = ReplaceUnknownShapeDim(cfg, input.tensor_shape(), &shape_proto, &shape); if (!s.ok()) { LOG(ERROR) << "Invalid shape for signature input " << input.name() << ": " << s << ", skipping this input"; return nullptr; } Tensor fake_input(input.dtype(), shape); InitializeTensor(input.dtype(), &fake_input); new_item->feed.emplace_back(NodeName(input.name()), fake_input); } } } for (const auto& name_and_output : name_and_signature.second.outputs()) { const TensorInfo& output = name_and_output.second; if (output.has_coo_sparse()) { if (gtl::InsertIfNotPresent( &signature_fetch_nodes, NodeName(output.coo_sparse().values_tensor_name()))) { new_item->fetch.push_back( NodeName(output.coo_sparse().values_tensor_name())); } if (gtl::InsertIfNotPresent( &signature_fetch_nodes, NodeName(output.coo_sparse().indices_tensor_name()))) { new_item->fetch.push_back( NodeName(output.coo_sparse().indices_tensor_name())); } if (gtl::InsertIfNotPresent( &signature_fetch_nodes, NodeName(output.coo_sparse().dense_shape_tensor_name()))) { new_item->fetch.push_back( NodeName(output.coo_sparse().dense_shape_tensor_name())); } } else { if (gtl::InsertIfNotPresent(&signature_fetch_nodes, NodeName(output.name()))) { new_item->fetch.push_back(NodeName(output.name())); } } } } for (const auto& feed : new_item->feed) { if (feed.first.empty()) { LOG(ERROR) << "Invalid feed node name skipping this input"; return nullptr; } else { VLOG(1) << "Will use feed node " << feed.first; } } for (const auto& fetch : new_item->fetch) { if (fetch.empty()) { LOG(ERROR) << "Invalid fetch node name skipping this input"; return nullptr; } else { VLOG(1) << "Will use fetch node " << fetch; } } if (new_item->fetch.empty()) { LOG(ERROR) << "Failed to detect the fetch node(s), skipping this input"; return nullptr; } for (const string& var_collection : {"variables", "local_variables", "model_variables", "trainable_variables"}) { if (meta_graph.collection_def().count(var_collection) == 0) { continue; } const CollectionDef& vars = meta_graph.collection_def().at(var_collection); for (const auto& raw_var : vars.bytes_list().value()) { VariableDef var; var.ParseFromString(raw_var); if (!var.initializer_name().empty()) { new_item->init_ops.push_back(NodeName(var.initializer_name())); } } } if (meta_graph.collection_def().count("table_initializer") > 0) { const CollectionDef& inits = meta_graph.collection_def().at("table_initializer"); if (inits.has_node_list()) { for (const auto& node : inits.node_list().value()) { new_item->init_ops.push_back(NodeName(node)); new_item->expected_init_time += 30 * 60; } } } std::unordered_map<string, string> asset_node_to_value; if (!cfg.assets_directory_override.empty()) { if (meta_graph.collection_def().count("saved_model_assets") > 0) { const CollectionDef& collection = meta_graph.collection_def().at("saved_model_assets"); const auto& any_assets = collection.any_list().value(); if (!any_assets.empty()) { if (std::is_base_of<protobuf::Message, AssetFileDef>()) { for (const auto& any_asset : any_assets) { AssetFileDef asset_file_def; if (!ParseAny(any_asset, &asset_file_def, "tensorflow.AssetFileDef") .ok()) { LOG(ERROR) << "Failed to parse AssetFile."; continue; } string asset_filepath = io::JoinPath(cfg.assets_directory_override, asset_file_def.filename()); if (!FilesExist({asset_filepath}, nullptr)) { LOG(ERROR) << "Can't access one or more of the asset files " << asset_filepath << ", skipping this input"; return nullptr; } asset_node_to_value[NodeName(asset_file_def.tensor_info().name())] = asset_filepath; } } else { LOG(ERROR) << "Can't parse AssetFileDef when using lite protos."; return nullptr; } } } } else if (meta_graph.collection_def().count("asset_filepaths") > 0) { const CollectionDef& file_paths = meta_graph.collection_def().at("asset_filepaths"); std::vector<string> paths; for (const auto& raw_path : file_paths.bytes_list().value()) { paths.push_back(raw_path); } if (!FilesExist(paths, nullptr)) { LOG(ERROR) << "Can't access one or more of the asset files, skipping " "this input"; return nullptr; } } if (meta_graph.collection_def().count("queue_runners") > 0) { const CollectionDef& vars = meta_graph.collection_def().at("queue_runners"); for (const auto& raw : vars.bytes_list().value()) { QueueRunnerDef queue_runner; if (!queue_runner.ParseFromString(raw)) { LOG(ERROR) << "Could not parse queue_runners, skipping this input"; return nullptr; } if (queue_runner.cancel_op_name().empty()) { LOG(ERROR) << "Queue without a cancel op, skipping this input"; return nullptr; } new_item->queue_runners.push_back(queue_runner); } } for (const auto& col : meta_graph.collection_def()) { const CollectionDef& collection = col.second; for (const string& node : collection.node_list().value()) { new_item->keep_ops.push_back(NodeName(node)); } } for (auto& node : *new_item->graph.mutable_node()) { if (IsPlaceholder(node) && node.op() != "PlaceholderWithDefault") { Status s = UpdatePlaceholderShape(cfg, signature_feed_nodes, new_item.get(), &node); if (!s.ok()) return nullptr; } else if (IsConstant(node)) { auto it = asset_node_to_value.find(node.name()); if (it != asset_node_to_value.end()) { auto iter = node.mutable_attr()->find("value"); if (iter == node.attr().end()) { LOG(ERROR) << "Value attribute expected in const op for asset files"; return nullptr; } if (!iter->second.has_tensor() || iter->second.tensor().string_val_size() != 1) { LOG(INFO) << "Unexpected AttrValue proto: " << iter->second.DebugString(); return nullptr; } LOG(INFO) << "Using asset file " << it->second << " for node " << node.name(); *(iter->second.mutable_tensor()->mutable_string_val(0)) = it->second; } } node.mutable_attr()->erase("_output_shapes"); if (cfg.ignore_user_placement) { node.clear_device(); } if (cfg.ignore_colocation) { auto attr = node.mutable_attr(); auto it = attr->find("_class"); if (it != attr->end()) { attr->erase(it); } } } if (meta_graph.collection_def().count("savers") > 0) { const CollectionDef& savers = meta_graph.collection_def().at("savers"); for (const auto& raw : savers.bytes_list().value()) { SaverDef saver; if (!saver.ParseFromString(raw)) { continue; } if (saver.filename_tensor_name().empty()) { continue; } new_item->save_op = saver.save_tensor_name(); new_item->restore_op = saver.restore_op_name(); new_item->save_restore_loc_tensor = saver.filename_tensor_name(); break; } } else { const SaverDef& saver = meta_graph.saver_def(); new_item->save_op = saver.save_tensor_name(); new_item->restore_op = saver.restore_op_name(); new_item->save_restore_loc_tensor = saver.filename_tensor_name(); } Status attr_status = AddDefaultAttrsToGraphDef( &new_item->graph, FunctionLibraryDefinition(OpRegistry::Global(), new_item->graph.library()), 0, true); if (!attr_status.ok()) { LOG(ERROR) << "Failed to instantiate default attribute values: " << attr_status.message(); return nullptr; } VLOG(1) << "Number of nodes in graph before RuntimeGraphOptimizer: " << new_item->graph.node_size(); Status optimize_status = RuntimeGraphOptimizer(new_item->graph, &new_item->graph, cfg); if (!optimize_status.ok()) { LOG(ERROR) << "Graph preprocessing failed: " << optimize_status; return nullptr; } VLOG(1) << "Number of nodes in graph after RuntimeGraphOptimizer: " << new_item->graph.node_size(); if (cfg.prune_graph) { VLOG(1) << "Pruning graph..."; auto status = PruneGraph(new_item.get()); if (!status.ok()) { LOG(ERROR) << "Pruning failed: " << status.message(); return nullptr; } VLOG(1) << "Number of nodes in graph after pruning: " << new_item->graph.node_size(); } std::unordered_set<string> nodes; for (const auto& node : new_item->graph.node()) { nodes.insert(node.name()); } for (const auto& feed : new_item->feed) { if (nodes.find(feed.first) == nodes.end()) { LOG(ERROR) << "Feed node " << feed.first << " doesn't exist in graph"; return nullptr; } } for (const auto& fetch : new_item->fetch) { if (nodes.find(fetch) == nodes.end()) { LOG(ERROR) << "Fetch node " << fetch << " doesn't exist in graph"; return nullptr; } } for (const auto& init : new_item->init_ops) { if (nodes.find(init) == nodes.end()) { LOG(ERROR) << "Init node " << init << " doesn't exist in graph"; return nullptr; } } return new_item; } std::unique_ptr<GrapplerItem> GrapplerItemFromMetaGraphDefFile( const string& id, const string& meta_graph_file, const ItemConfig& cfg) { MetaGraphDef meta_graph; if (!ReadMetaGraphDefFromFile(meta_graph_file, &meta_graph).ok()) { LOG(ERROR) << "Failed to read " << meta_graph_file; return nullptr; } return GrapplerItemFromMetaGraphDef(id, meta_graph, cfg); } } }
#include "tensorflow/core/grappler/grappler_item_builder.h" #include "google/protobuf/any.pb.h" #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/gradients/grad_testutil.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace tensorflow { namespace grappler { namespace { class GrapplerItemBuilderTest : public ::testing::Test {}; TEST_F(GrapplerItemBuilderTest, AssetFilepathOverrideTest) { MetaGraphDef meta_graph; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output var = ops::Variable(s.WithOpName("var"), TensorShape(), DataType::DT_FLOAT); Output filename_node = ops::Const(s.WithOpName("filename"), string("model"), TensorShape()); Output tensor_name = ops::Const(s.WithOpName("tensorname"), string("var"), TensorShape()); Output restore = ops::Restore(s.WithOpName("restore"), filename_node, tensor_name, DataType::DT_FLOAT); Output assign = ops::Assign(s.WithOpName("assign"), var, restore); TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); string temp_dir = testing::TmpDir(); Env *env = Env::Default(); string filename = io::JoinPath(temp_dir, "grappler_item_builder_test_filename"); env->DeleteFile(filename).IgnoreError(); std::unique_ptr<WritableFile> file_to_write; TF_CHECK_OK(env->NewWritableFile(filename, &file_to_write)); TF_CHECK_OK(file_to_write->Close()); TF_CHECK_OK(env->FileExists(filename)); LOG(INFO) << filename; AssetFileDef asset_file_def; *asset_file_def.mutable_tensor_info()->mutable_name() = "filename"; *asset_file_def.mutable_filename() = "grappler_item_builder_test_filename"; (*meta_graph.mutable_collection_def())["saved_model_assets"] .mutable_any_list() ->add_value() ->PackFrom(asset_file_def); *((*meta_graph.mutable_collection_def())["train_op"] .mutable_node_list() ->add_value()) = "assign"; ItemConfig cfg; cfg.assets_directory_override = temp_dir; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); for (const NodeDef &node : item->graph.node()) { if (node.name() == "filename") { const auto iter = node.attr().find("value"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_tensor()); ASSERT_EQ(1, iter->second.tensor().string_val_size()); string tensor_string_val = iter->second.tensor().string_val(0); EXPECT_EQ(tensor_string_val, filename); } } } TEST_F(GrapplerItemBuilderTest, AssetFilepathOverrideTest_FileNotAccessible) { MetaGraphDef meta_graph; tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output var = ops::Variable(s.WithOpName("var"), TensorShape(), DataType::DT_FLOAT); Output filename_node1 = ops::Const(s.WithOpName("filename1"), string("model1"), TensorShape()); Output filename_node2 = ops::Const(s.WithOpName("filename2"), string("model2"), TensorShape()); Output tensor_name = ops::Const(s.WithOpName("tensorname"), string("var"), TensorShape()); Output restore1 = ops::Restore(s.WithOpName("restore1"), filename_node1, tensor_name, DataType::DT_FLOAT); Output restore2 = ops::Restore(s.WithOpName("restore2"), filename_node1, tensor_name, DataType::DT_FLOAT); Output assign1 = ops::Assign(s.WithOpName("assign1"), var, restore1); Output assign2 = ops::Assign(s.WithOpName("assign2"), var, restore2); TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); string temp_dir = testing::TmpDir(); Env *env = Env::Default(); string filename1 = io::JoinPath(temp_dir, "grappler_item_builder_test_filename1"); env->DeleteFile(filename1).IgnoreError(); std::unique_ptr<WritableFile> file_to_write; TF_CHECK_OK(env->NewWritableFile(filename1, &file_to_write)); TF_CHECK_OK(file_to_write->Close()); TF_CHECK_OK(env->FileExists(filename1)); AssetFileDef asset_file_def1; *asset_file_def1.mutable_tensor_info()->mutable_name() = "filename1"; *asset_file_def1.mutable_filename() = "grappler_item_builder_test_filename1"; string filename2 = io::JoinPath(temp_dir, "grappler_item_builder_test_filename1"); env->DeleteFile(filename2).IgnoreError(); EXPECT_FALSE(env->FileExists(filename2).ok()); AssetFileDef asset_file_def2; *asset_file_def2.mutable_tensor_info()->mutable_name() = "filename2"; *asset_file_def2.mutable_filename() = "grappler_item_builder_test_filename2"; (*meta_graph.mutable_collection_def())["saved_model_assets"] .mutable_any_list() ->add_value() ->PackFrom(asset_file_def1); (*meta_graph.mutable_collection_def())["saved_model_assets"] .mutable_any_list() ->add_value() ->PackFrom(asset_file_def2); *((*meta_graph.mutable_collection_def())["train_op"] .mutable_node_list() ->add_value()) = "assign1"; *((*meta_graph.mutable_collection_def())["train_op"] .mutable_node_list() ->add_value()) = "assign2"; ItemConfig cfg; cfg.assets_directory_override = temp_dir; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item == nullptr); } TEST_F(GrapplerItemBuilderTest, GraphWithFunctions) { MetaGraphDef meta_graph; constexpr char device[] = "/cpu:0"; *meta_graph.mutable_graph_def() = test::function::GDef( {test::function::NDef("x", "Const", {}, {{"dtype", DT_FLOAT}}, device), test::function::NDef("y", "XTimesTwo", {"x"}, {{"T", DT_FLOAT}}, device)}, { test::function::XTimesTwo(), }); CollectionDef train_op; train_op.mutable_node_list()->add_value("y"); (*meta_graph.mutable_collection_def())["train_op"] = train_op; ItemConfig cfg; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); } TEST_F(GrapplerItemBuilderTest, GraphWithCustomOps) { MetaGraphDef meta_graph; constexpr char device[] = "/cpu:0"; *meta_graph.mutable_graph_def() = test::function::GDef( {test::function::NDef("x", "Const", {}, {{"dtype", DT_FLOAT}}, device), test::function::NDef("y", "CustomOp", {"x"}, {{"T", DT_FLOAT}}, device)}, {}); CollectionDef train_op; train_op.mutable_node_list()->add_value("y"); (*meta_graph.mutable_collection_def())["train_op"] = train_op; ItemConfig cfg; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); } TEST_F(GrapplerItemBuilderTest, FromGraphWithSignatureDef) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 0); auto y = ops::Const(s.WithOpName("y"), 1); auto z = ops::Add(s.WithOpName("z"), x, y); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); TensorInfo input, output; input.set_name("x"); input.set_dtype(DT_FLOAT); output.set_name("z"); SignatureDef serving_signature; (*serving_signature.mutable_inputs())["input"] = input; (*serving_signature.mutable_outputs())["output"] = output; (*meta_graph.mutable_signature_def())["serving"] = serving_signature; TensorInfo input2, output2; input.set_name("x"); input.set_dtype(DT_FLOAT); output.set_name("z"); SignatureDef serving_signature2; (*serving_signature.mutable_inputs())["input2"] = input2; (*serving_signature.mutable_outputs())["output2"] = output2; (*meta_graph.mutable_signature_def())["serving2"] = serving_signature2; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, ItemConfig()); ASSERT_TRUE(item != nullptr); EXPECT_EQ(item->feed.size(), 1); EXPECT_EQ(item->fetch.size(), 1); EXPECT_EQ(item->feed[0].first, "x"); EXPECT_EQ(item->fetch[0], "z"); } TEST_F(GrapplerItemBuilderTest, FromGraphWithIncompleteSignatureDef) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 0); auto y = ops::Const(s.WithOpName("y"), 1); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); CollectionDef train_op; train_op.mutable_node_list()->add_value("y"); (*meta_graph.mutable_collection_def())["train_op"] = train_op; TensorInfo input, output; input.set_name("x"); input.set_dtype(DT_FLOAT); output.mutable_coo_sparse()->set_values_tensor_name("z"); SignatureDef serving_signature; (*serving_signature.mutable_inputs())["input"] = input; (*serving_signature.mutable_outputs())["output"] = output; (*meta_graph.mutable_signature_def())["serving"] = serving_signature; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, ItemConfig()); ASSERT_TRUE(item == nullptr); } TEST_F(GrapplerItemBuilderTest, FromGraphWithUnknownDimInSignatureInput) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto shape_1d = PartialTensorShape({-1}); auto x = ops::Placeholder(s.WithOpName("x"), DT_FLOAT, ops::Placeholder::Shape(shape_1d)); auto y = ops::Const(s.WithOpName("y"), static_cast<float>(1.0)); auto z = ops::Add(s.WithOpName("z"), x, y); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); TensorInfo input, output; input.set_name("x"); input.set_dtype(DT_FLOAT); shape_1d.AsProto(input.mutable_tensor_shape()); output.set_name("z"); SignatureDef serving_signature; (*serving_signature.mutable_inputs())["input"] = input; (*serving_signature.mutable_outputs())["output"] = output; (*meta_graph.mutable_signature_def())["serving"] = serving_signature; ItemConfig cfg; cfg.placeholder_unknown_output_shape_dim = 64; std::unique_ptr<GrapplerItem> item1 = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item1 != nullptr); ASSERT_EQ(item1->feed.size(), 1); EXPECT_EQ(item1->feed[0].second.NumElements(), 64); std::unique_ptr<GrapplerItem> item2 = GrapplerItemFromMetaGraphDef("0", meta_graph, ItemConfig()); ASSERT_TRUE(item2 != nullptr); ASSERT_EQ(item2->feed.size(), 1); EXPECT_EQ(item2->feed[0].second.NumElements(), 1); } TEST_F(GrapplerItemBuilderTest, ExplicitFeedAndFetch) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); auto x = ops::Const(s.WithOpName("x"), 0); auto y = ops::Const(s.WithOpName("y"), 1); auto z = ops::Add(s.WithOpName("z"), x, y); MetaGraphDef meta_graph; TF_CHECK_OK(s.ToGraphDef(meta_graph.mutable_graph_def())); ItemConfig config; config.feed_nodes.insert("x"); config.fetch_nodes.insert("z"); std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, config); ASSERT_TRUE(item != nullptr); EXPECT_EQ(item->feed.size(), 1); EXPECT_EQ(item->fetch.size(), 1); EXPECT_EQ(item->feed[0].first, "x"); EXPECT_EQ(item->fetch[0], "z"); } TEST_F(GrapplerItemBuilderTest, UnknownRankPlaceholderTest) { MetaGraphDef meta_graph; const char* text_proto = R"EOF( graph_def { node { name: "x" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { unknown_rank: true } } } } versions { producer: 51 } } collection_def { key: "train_op" value { node_list { value: "x:0" } } } )EOF"; CHECK(protobuf::TextFormat::ParseFromString(text_proto, &meta_graph)); ItemConfig cfg; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); const NodeDef& node = item->graph.node(0); const auto iter = node.attr().find("shape"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_shape()); const auto& shape = iter->second.shape(); EXPECT_TRUE(shape.unknown_rank()); } TEST_F(GrapplerItemBuilderTest, ConfigPlaceholderTest) { MetaGraphDef meta_graph; const char* text_proto = R"EOF( graph_def { node { name: "x" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { dim { size: -1 } dim { size: -1 } } } } } versions { producer: 51 } } collection_def { key: "train_op" value { node_list { value: "x:0" } } } )EOF"; CHECK(protobuf::TextFormat::ParseFromString(text_proto, &meta_graph)); ItemConfig cfg; cfg.placeholder_unknown_output_shape_dim = 64; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); const NodeDef& node = item->graph.node(0); const auto iter = node.attr().find("shape"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_shape()); const auto& shape = iter->second.shape(); EXPECT_EQ(shape.dim_size(), 2); EXPECT_EQ(shape.dim(0).size(), 64); EXPECT_EQ(shape.dim(1).size(), 64); } TEST_F(GrapplerItemBuilderTest, OutputShapePlaceholderTest) { MetaGraphDef meta_graph; const char* text_proto = R"EOF( graph_def { node { name: "x" op: "Placeholder" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "shape" value { shape { unknown_rank: true } } } attr { key: "_output_shapes" value { list { shape { dim { size: -1 } dim { size: 32 } } } } } } versions { producer: 51 } } collection_def { key: "train_op" value { node_list { value: "x:0" } } } )EOF"; CHECK(protobuf::TextFormat::ParseFromString(text_proto, &meta_graph)); ItemConfig cfg; cfg.placeholder_unknown_output_shape_dim = 64; std::unique_ptr<GrapplerItem> item = GrapplerItemFromMetaGraphDef("0", meta_graph, cfg); ASSERT_TRUE(item != nullptr); const NodeDef& node = item->graph.node(0); const auto iter = node.attr().find("shape"); ASSERT_TRUE(iter != node.attr().end()); ASSERT_TRUE(iter->second.has_shape()); const auto& shape = iter->second.shape(); EXPECT_EQ(shape.dim_size(), 2); EXPECT_EQ(shape.dim(0).size(), 64); EXPECT_EQ(shape.dim(1).size(), 32); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/grappler_item_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/grappler_item_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
509e353a-35db-4466-9316-62db78131fc1
cpp
tensorflow/tensorflow
multinomial_op
tensorflow/core/kernels/multinomial_op.cc
tensorflow/core/kernels/multinomial_op_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/kernels/multinomial_op.h" #include <algorithm> #include <cmath> #include <memory> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/kernels/stateless_random_ops.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/util/guarded_philox_random.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; namespace functor { template <typename Device, typename T, typename OutputType> struct MultinomialFunctor { void operator()(OpKernelContext* ctx, const Device& d, typename TTypes<T>::ConstMatrix logits, typename TTypes<float>::Flat noises, typename TTypes<float>::Flat scores, typename TTypes<float>::Flat scratch, int batch_size, int num_classes, int num_samples, const random::PhiloxRandom& gen, typename TTypes<OutputType>::Matrix output); }; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM extern template struct MultinomialFunctor<GPUDevice, Eigen::half, int32>; extern template struct MultinomialFunctor<GPUDevice, float, int32>; extern template struct MultinomialFunctor<GPUDevice, double, int32>; extern template struct MultinomialFunctor<GPUDevice, int32, int32>; extern template struct MultinomialFunctor<GPUDevice, int64_t, int32>; extern template struct MultinomialFunctor<GPUDevice, Eigen::half, int64_t>; extern template struct MultinomialFunctor<GPUDevice, float, int64_t>; extern template struct MultinomialFunctor<GPUDevice, double, int64_t>; extern template struct MultinomialFunctor<GPUDevice, int32, int64_t>; extern template struct MultinomialFunctor<GPUDevice, int64_t, int64_t>; #endif template <typename T, typename OutputType> struct MultinomialFunctor<CPUDevice, T, OutputType> { void operator()(OpKernelContext* ctx, const CPUDevice& d, typename TTypes<T>::ConstMatrix logits, typename TTypes<float>::Flat , typename TTypes<float>::Flat , typename TTypes<float>::Flat , int batch_size, int num_classes, int num_samples, const random::PhiloxRandom& gen, typename TTypes<OutputType>::Matrix output) { auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads()); auto DoWork = [ctx, num_samples, num_classes, &gen, &output, &logits]( int64_t start_row, int64_t limit_row) { random::PhiloxRandom gen_copy = gen; gen_copy.Skip(start_row * (num_samples + 3) / 4); random::SimplePhilox simple_philox(&gen_copy); Tensor cdf_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DT_DOUBLE, TensorShape({num_classes}), &cdf_tensor)); auto cdf = cdf_tensor.flat<double>(); for (int64_t b = start_row; b < limit_row; ++b) { const auto* logits_row = &logits(b, 0); T max = std::numeric_limits<T>::lowest(); for (int64_t j = 0; j < num_classes; ++j) { if (Eigen::numext::isfinite(logits_row[j])) { max = std::max(max, logits_row[j]); } } const double max_logit = static_cast<double>(max); cdf = (logits.template chip<0>(b).template cast<double>() - max_logit) .exp(); double running_total = 0; for (int64_t j = 0; j < num_classes; ++j) { if (Eigen::numext::isfinite(logits_row[j])) { running_total += cdf(j); } cdf(j) = running_total; } const double* cdf_begin = cdf.data(); const double* cdf_end = cdf.data() + num_classes; for (int64_t j = 0; j < num_samples; ++j) { const double to_find = simple_philox.RandDouble() * running_total; auto found_iter = std::upper_bound(cdf_begin, cdf_end, to_find); output(b, j) = std::distance(cdf_begin, found_iter); } } }; const int64_t cost = 50 * (num_samples * std::log(num_classes) / std::log(2) + num_classes); Shard(worker_threads.num_threads, worker_threads.workers, batch_size, cost, DoWork); } }; } namespace { template <typename Device, typename T, typename OutputType> class MultinomialOp : public OpKernel { public: explicit MultinomialOp(OpKernelConstruction* context) : OpKernel(context) {} void DoCompute(OpKernelContext* ctx, const Tensor& logits_t, const Tensor& num_samples_t, GuardedPhiloxRandom* generator) { OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(logits_t.shape()), errors::InvalidArgument("logits should be a matrix, got shape ", logits_t.shape().DebugString())); OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(num_samples_t.shape()), errors::InvalidArgument("num_samples should be a scalar, got shape ", num_samples_t.shape().DebugString())); const int num_samples = num_samples_t.scalar<int>()(); OP_REQUIRES(ctx, num_samples >= 0, errors::InvalidArgument( "num_samples should be nonnegative, got ", num_samples)); for (int i = 0; i < 2; i++) { const int64_t dim = logits_t.dim_size(i); OP_REQUIRES(ctx, static_cast<int>(dim) == dim, errors::InvalidArgument( "logits.shape = ", logits_t.shape().DebugString(), " too large for int")); } const int batch_size = static_cast<int>(logits_t.dim_size(0)); const int num_classes = static_cast<int>(logits_t.dim_size(1)); OP_REQUIRES(ctx, num_classes > 0, errors::InvalidArgument("num_classes should be positive, got ", num_classes)); Tensor* samples_t; OP_REQUIRES_OK( ctx, ctx->allocate_output(0, TensorShape({batch_size, num_samples}), &samples_t)); if (samples_t->NumElements() > 0) { Tensor noises, scores, scratch; if (std::is_same<Device, GPUDevice>::value) { OP_REQUIRES_OK( ctx, ctx->allocate_temp( DT_FLOAT, TensorShape({batch_size, num_samples, num_classes}), &noises)); OP_REQUIRES_OK( ctx, ctx->allocate_temp( DT_FLOAT, TensorShape({batch_size, num_samples, num_classes}), &scores)); OP_REQUIRES_OK( ctx, ctx->allocate_temp(DT_FLOAT, TensorShape({batch_size, num_samples}), &scratch)); } int num_samples_ceil_4 = (num_samples + 3) / 4 * 4; if (std::is_same<Device, CPUDevice>::value) num_samples_ceil_4 *= 2; auto rng = generator->ReserveRandomOutputs(batch_size * num_samples_ceil_4, 256); functor::MultinomialFunctor<Device, T, OutputType>()( ctx, ctx->eigen_device<Device>(), logits_t.matrix<T>(), noises.flat<float>(), scores.flat<float>(), scratch.flat<float>(), batch_size, num_classes, num_samples, rng, samples_t->matrix<OutputType>()); } } }; template <typename Device, typename T, typename OutputType> class StatefulMultinomialOp : public MultinomialOp<Device, T, OutputType> { public: explicit StatefulMultinomialOp(OpKernelConstruction* ctx) : MultinomialOp<Device, T, OutputType>(ctx) { OP_REQUIRES_OK(ctx, generator_.Init(ctx)); } void Compute(OpKernelContext* ctx) override { const Tensor& logits_t = ctx->input(0); const Tensor& num_samples_t = ctx->input(1); this->DoCompute(ctx, logits_t, num_samples_t, &generator_); } private: GuardedPhiloxRandom generator_; }; #define REGISTER(TYPE) \ REGISTER_KERNEL_BUILDER(Name("Multinomial") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT32), \ StatefulMultinomialOp<CPUDevice, TYPE, int32>); \ REGISTER_KERNEL_BUILDER(Name("Multinomial") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT64), \ StatefulMultinomialOp<CPUDevice, TYPE, int64>); TF_CALL_half(REGISTER); TF_CALL_bfloat16(REGISTER); TF_CALL_float(REGISTER); TF_CALL_double(REGISTER); #undef REGISTER #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER(TYPE) \ REGISTER_KERNEL_BUILDER(Name("Multinomial") \ .Device(DEVICE_GPU) \ .HostMemory("num_samples") \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT32), \ StatefulMultinomialOp<GPUDevice, TYPE, int32>) \ REGISTER_KERNEL_BUILDER(Name("Multinomial") \ .Device(DEVICE_GPU) \ .HostMemory("num_samples") \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT64), \ StatefulMultinomialOp<GPUDevice, TYPE, int64>) TF_CALL_half(REGISTER); TF_CALL_float(REGISTER); TF_CALL_double(REGISTER); #undef REGISTER #endif template <typename Device, typename T, typename OutputType> class StatelessMultinomialOp : public MultinomialOp<Device, T, OutputType> { public: explicit StatelessMultinomialOp(OpKernelConstruction* ctx) : MultinomialOp<Device, T, OutputType>(ctx) {} void Compute(OpKernelContext* ctx) override { const Tensor& logits_t = ctx->input(0); const Tensor& num_samples_t = ctx->input(1); const Tensor& seed_t = ctx->input(2); OP_REQUIRES(ctx, seed_t.dims() == 1 && seed_t.dim_size(0) == 2, errors::InvalidArgument("seed must have shape [2], not ", seed_t.shape().DebugString())); random::PhiloxRandom::Key key; random::PhiloxRandom::ResultType counter; OP_REQUIRES_OK(ctx, GenerateKey(seed_t, &key, &counter)); GuardedPhiloxRandom generator; generator.Init(counter, key); this->DoCompute(ctx, logits_t, num_samples_t, &generator); } private: GuardedPhiloxRandom generator_; }; #define REGISTER(TYPE) \ REGISTER_KERNEL_BUILDER(Name("StatelessMultinomial") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT32), \ StatelessMultinomialOp<CPUDevice, TYPE, int32>); \ REGISTER_KERNEL_BUILDER(Name("StatelessMultinomial") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT64), \ StatelessMultinomialOp<CPUDevice, TYPE, int64>); TF_CALL_half(REGISTER); TF_CALL_bfloat16(REGISTER); TF_CALL_float(REGISTER); TF_CALL_double(REGISTER); #undef REGISTER #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER(TYPE) \ REGISTER_KERNEL_BUILDER(Name("StatelessMultinomial") \ .Device(DEVICE_GPU) \ .HostMemory("num_samples") \ .HostMemory("seed") \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT32), \ StatelessMultinomialOp<GPUDevice, TYPE, int32>) \ REGISTER_KERNEL_BUILDER(Name("StatelessMultinomial") \ .Device(DEVICE_GPU) \ .HostMemory("num_samples") \ .HostMemory("seed") \ .TypeConstraint<TYPE>("T") \ .TypeConstraint("output_dtype", DT_INT64), \ StatelessMultinomialOp<GPUDevice, TYPE, int64>) TF_CALL_half(REGISTER); TF_CALL_float(REGISTER); TF_CALL_double(REGISTER); #undef REGISTER #endif } }
#include <functional> #include <memory> #include <vector> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { static Graph* Multinomial(int batch_size, int num_classes, int num_samples) { Graph* g = new Graph(OpRegistry::Global()); Tensor logits_t(DT_FLOAT, TensorShape({batch_size, num_classes})); Tensor num_samples_t(DT_INT32, TensorShape()); logits_t.flat<float>().setRandom(); num_samples_t.scalar<int32>().setConstant(num_samples); Node* ret; TF_CHECK_OK(NodeBuilder(g->NewName("multinomial"), "Multinomial") .Input(test::graph::Constant(g, logits_t)) .Input(test::graph::Constant(g, num_samples_t)) .Attr("T", DT_FLOAT) .Finalize(g, &ret)); return g; } #define BM_MultinomialDev(DEVICE, B, C, S) \ static void BM_Multinomial_##DEVICE##_##B##_##C##_##S( \ ::testing::benchmark::State& state) { \ test::Benchmark(#DEVICE, Multinomial(B, C, S), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(B) * C * S * \ state.iterations()); \ } \ BENCHMARK(BM_Multinomial_##DEVICE##_##B##_##C##_##S); #define BM_MultinomialBCS(B, C, S) \ BM_MultinomialDev(cpu, B, C, S); \ BM_MultinomialDev(gpu, B, C, S); BM_MultinomialBCS(1, 10000, 4); BM_MultinomialBCS(1, 10000, 128); BM_MultinomialBCS(1, 10000, 10000); BM_MultinomialBCS(1, 100000, 4); BM_MultinomialBCS(32, 10000, 4); BM_MultinomialBCS(32, 10000, 128); BM_MultinomialBCS(32, 100000, 4); BM_MultinomialBCS(128, 100000, 1); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/multinomial_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/multinomial_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04076f27-7215-4ac2-a0ad-d0a45b77807a
cpp
tensorflow/tensorflow
build_xla_ops_pass
tensorflow/compiler/jit/build_xla_ops_pass.cc
tensorflow/compiler/jit/build_xla_ops_pass_test.cc
#include "tensorflow/compiler/jit/build_xla_ops_pass.h" #include "absl/algorithm/container.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/control_flow_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/logging_ops.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/device_util.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/jit/xla_cluster_util.h" #include "tensorflow/compiler/tf2xla/cc/ops/xla_jit_ops.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/memory_types.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/util/dump_graph.h" namespace tensorflow { namespace { struct DebuggingOpts { bool print_outputs; bool check_input_numerics; bool check_output_numerics; }; void MoveOutgoingEdges(Graph* g, Node* old_node, Node* new_node) { std::vector<const Edge*> out_edges(old_node->out_edges().begin(), old_node->out_edges().end()); for (const Edge* edge : out_edges) { g->AddEdge(new_node, edge->src_output(), edge->dst(), edge->dst_input()); g->RemoveEdge(edge); } } Output ControlToData(const Scope& scope, Node* control) { Output data = ops::Const(scope.WithOpName("ctrl_as_data"), Tensor(DT_INT32, TensorShape({0}))); scope.graph()->AddControlEdge(control, data.node()); return Output(data.node()); } Operation DataToControl(const Scope& scope, Output data) { return Operation( ops::Identity(scope.WithOpName("data_as_ctrl"), data).node()); } void MergeOutgoingDataEdges(const Scope& s, Node* old_node, Node* new_node, absl::string_view cluster_name, const DebuggingOpts& debugging_opts) { if (!s.status().ok()) { return; } std::vector<Output> merged_outputs(old_node->num_outputs(), Output(nullptr)); std::vector<const Edge*> data_edges; absl::c_copy_if(old_node->out_edges(), std::back_inserter(data_edges), [](const Edge* e) { return !e->IsControlEdge(); }); for (const Edge* e : data_edges) { int oidx = e->src_output(); Output merged_output = merged_outputs[oidx]; if (merged_output.node() == nullptr) { Output new_output(new_node, oidx); if (debugging_opts.print_outputs) { string cpu_device = "/job:localhost/replica:0/task:0/device:CPU:0"; ops::Print print_op(s.WithOpName("print_", oidx) .WithDevice(cpu_device) .WithAssignedDevice(cpu_device), new_output, {new_output}, ops::Print::Attrs{} .Message(absl::StrCat("output ", oidx, " from ", old_node->name(), " is ")) .FirstN(1000) .Summarize(-1)); new_output = print_op; } if (debugging_opts.check_output_numerics && DataTypeIsFloating(new_output.type())) { ops::CheckNumerics check_numerics_op( s.WithOpName("check_output_", oidx) .WithDevice(new_node->requested_device()) .WithAssignedDevice(new_node->assigned_device_name()), new_output, absl::StrCat("CheckNumerics failed for output ", oidx, "(", new_output.name(), ") from cluster ", cluster_name)); new_output = check_numerics_op; } ops::_XlaMerge xla_merge_op(s.WithOpName("merge_oidx_", oidx), Output(old_node, oidx), new_output); merged_output = merged_outputs[oidx] = xla_merge_op.output; } Node* dst = e->dst(); int dst_idx = e->dst_input(); s.graph()->RemoveEdge(e); s.graph()->AddEdge(merged_output.node(), merged_output.index(), dst, dst_idx); } } void MergeOutgoingControlEdges(const Scope& s, Node* old_node, Node* new_node) { if (!s.status().ok()) { return; } std::vector<const Edge*> ctrl_edges; absl::c_copy_if(old_node->out_edges(), std::back_inserter(ctrl_edges), [](const Edge* e) { return e->IsControlEdge(); }); if (ctrl_edges.empty()) { return; } if (ctrl_edges.size() == 1 && ctrl_edges.front()->dst()->IsSink()) { s.graph()->AddControlEdge(new_node, s.graph()->sink_node()); return; } Output old_ctrl_as_data = ControlToData(s, old_node); Output new_ctrl_as_data = ControlToData(s, new_node); ops::Merge ctrl_merge_as_data(s.WithOpName("ctrl_merge"), {old_ctrl_as_data, new_ctrl_as_data}); Operation ctrl_merge = DataToControl(s, ctrl_merge_as_data.output); for (const Edge* e : ctrl_edges) { s.graph()->AddControlEdge(ctrl_merge.node(), e->dst()); s.graph()->RemoveControlEdge(e); } } struct XlaClusterInfo { std::vector<Output> constant_inputs; std::vector<Output> non_constant_inputs; std::vector<Output> resource_inputs; NameAttrList function; }; Output IncomingEdgeAsOutput(const Edge* e) { return Output(e->src(), e->src_output()); } Status GetXlaClusterInfo(Node* n, XlaClusterInfo* result) { int num_constant_inputs, num_resource_inputs; TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), kXlaNumConstantArgsAttr, &num_constant_inputs)); TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), kXlaNumResourceArgsAttr, &num_resource_inputs)); if (num_constant_inputs < 0 || num_resource_inputs < 0 || num_constant_inputs + num_resource_inputs > n->num_inputs()) { return errors::InvalidArgument( "Invalid number of constant/resource arguments to XLA kernel."); } int num_non_constant_inputs = n->num_inputs() - num_constant_inputs - num_resource_inputs; std::vector<const Edge*> input_edges_vector; TF_RETURN_IF_ERROR(n->input_edges(&input_edges_vector)); absl::Span<const Edge*> input_edges(input_edges_vector); absl::c_transform(input_edges.subspan(0, num_constant_inputs), std::back_inserter(result->constant_inputs), IncomingEdgeAsOutput); absl::c_transform( input_edges.subspan(num_constant_inputs, num_non_constant_inputs), std::back_inserter(result->non_constant_inputs), IncomingEdgeAsOutput); absl::c_transform( input_edges.subspan(num_constant_inputs + num_non_constant_inputs, num_resource_inputs), std::back_inserter(result->resource_inputs), IncomingEdgeAsOutput); result->function.set_name(n->type_string()); *result->function.mutable_attr() = n->def().attr(); return absl::OkStatus(); } Status CopyIncomingControlEdges(Graph* g, Node* from, Node* to) { for (const Edge* e : from->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), to); } } return absl::OkStatus(); } void RemoveAllIncomingControlEdges(Graph* g, Node* n) { std::vector<const Edge*> incoming_ctrl_edges; absl::c_copy_if(n->in_edges(), std::back_inserter(incoming_ctrl_edges), [](const Edge* e) { return e->IsControlEdge(); }); for (const Edge* e : incoming_ctrl_edges) { g->RemoveControlEdge(e); } } Status DeviceRequiresCompilation(const jit::DeviceInfoCache& device_info_cache, jit::DeviceId device, bool* result) { const XlaOpRegistry::DeviceRegistration* registration = device_info_cache.GetCompilationDevice(device); *result = registration->autoclustering_policy == XlaOpRegistry::AutoclusteringPolicy::kAlways; return absl::OkStatus(); } absl::StatusOr<Node*> ReplaceFunctionCallWithPartitionedCall( const GraphOptimizationPassOptions& options, const FunctionLibraryDefinition& flib_def, Node* n, Graph* g, const NameAttrList& func, const Scope& root) { string config_string = options.session_options->config.SerializeAsString(); int input_count = absl::c_count_if( n->in_edges(), [](const Edge* e) { return !e->IsControlEdge(); }); std::vector<Output> args(input_count); for (const Edge* e : n->in_edges()) { if (!e->IsControlEdge()) { args[e->dst_input()] = Output(e->src(), e->src_output()); } } ops::StatefulPartitionedCall call( root.WithOpName("stateful_partitioned_call"), args, n->output_types(), func, ops::StatefulPartitionedCall::Attrs{}.ConfigProto(config_string)); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { g->AddControlEdge(e->src(), call.operation.node()); } } std::vector<const Edge*> edges_to_delete; for (const Edge* e : n->out_edges()) { edges_to_delete.push_back(e); if (e->IsControlEdge()) { g->AddControlEdge(call.operation.node(), e->dst()); } else { g->AddEdge(call.operation.node(), e->src_output(), e->dst(), e->dst_input()); } } for (const Edge* e : edges_to_delete) { g->RemoveEdge(e); } g->RemoveNode(n); return call.operation.node(); } absl::StatusOr<jit::DeviceId> InferDeviceForCluster( jit::DeviceInfoCache* device_info_cache, Node* n, const string& function_name, const FunctionLibraryDefinition& flib_def) { const FunctionDef* func_def = flib_def.Find(function_name); TF_RET_CHECK(func_def) << "Could not find " << function_name; jit::DeviceSet device_set; for (const NodeDef& ndef : func_def->node_def()) { VLOG(3) << ndef.DebugString(); if (!ndef.device().empty()) { TF_ASSIGN_OR_RETURN(jit::DeviceId device_id, device_info_cache->GetIdFor(ndef.device())); device_set.Insert(device_id); } } if (!n->assigned_device_name().empty()) { TF_ASSIGN_OR_RETURN(jit::DeviceId device_id, device_info_cache->GetIdFor(n->assigned_device_name())); device_set.Insert(device_id); } TF_ASSIGN_OR_RETURN(jit::DeviceId result, PickDeviceForXla(*device_info_cache, device_set, true)); VLOG(2) << "For " << function_name << " PickDeviceForXla(" << device_info_cache->DebugString(device_set) << ") -> " << device_info_cache->GetNameFor(result); return result; } std::vector<Output> GetXlaRunArgs(const Scope& s, const XlaClusterInfo& cluster_info, const DebuggingOpts& debugging_opts) { std::vector<Output> xla_run_args; xla_run_args.reserve(cluster_info.non_constant_inputs.size() + cluster_info.resource_inputs.size()); int input_idx = 0; for (const Output& o : cluster_info.non_constant_inputs) { if (debugging_opts.check_input_numerics && DataTypeIsFloating(o.type())) { ops::CheckNumerics check_numerics_op( s.WithOpName("check_input_", input_idx), o, absl::StrCat("CheckNumerics failed for input ", input_idx, "(", o.name(), ") into ", cluster_info.function.name())); xla_run_args.push_back(check_numerics_op); } else { xla_run_args.push_back(o); } input_idx++; } absl::c_copy(cluster_info.resource_inputs, std::back_inserter(xla_run_args)); return xla_run_args; } absl::StatusOr<MemoryTypeVector> GetOutputMemoryTypes(const Scope& root, Node* n) { MemoryTypeVector input_mtypes, output_mtypes; DeviceType device_type(""); TF_RETURN_IF_ERROR( DeviceNameToDeviceType(n->assigned_device_name(), &device_type)); TF_RETURN_IF_ERROR(MemoryTypesForNode(root.graph()->op_registry(), device_type, n->def(), &input_mtypes, &output_mtypes)); return output_mtypes; } Status PredicateInt32Inputs(const Scope& root, Node* n, Operation predicate_as_control) { std::vector<Output> int32_inputs; std::vector<int> int32_inputs_input_idxs; for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { continue; } if (e->src()->output_type(e->src_output()) == DT_INT32) { TF_ASSIGN_OR_RETURN(MemoryTypeVector source_output_mem_types, GetOutputMemoryTypes(root, e->src())); if (source_output_mem_types[e->src_output()] == DEVICE_MEMORY) { int32_inputs.push_back(Output(e->src(), e->src_output())); int32_inputs_input_idxs.push_back(e->dst_input()); } } } if (int32_inputs.empty()) { return absl::OkStatus(); } ops::IdentityN identity_n(root.WithOpName("int32_id_n"), int32_inputs); root.graph()->AddControlEdge(predicate_as_control.node(), identity_n.operation.node()); for (int i = 0, end = int32_inputs.size(); i < end; i++) { TF_RETURN_IF_ERROR(root.graph()->UpdateEdge(identity_n[i].node(), i, n, int32_inputs_input_idxs[i])); } return absl::OkStatus(); } Status ReplaceNodeWithXlaCompileAndXlaRun( jit::DeviceInfoCache* device_info_cache, const GraphOptimizationPassOptions& options, const FunctionLibraryDefinition& flib_def, bool lazy_compilation_enabled, const DebuggingOpts& debugging_opts, Graph* g, Node* n) { XlaClusterInfo cluster_info; TF_RETURN_IF_ERROR(GetXlaClusterInfo(n, &cluster_info)); TF_ASSIGN_OR_RETURN( jit::DeviceId device, InferDeviceForCluster(device_info_cache, n, cluster_info.function.name(), flib_def)); bool requires_compilation; TF_RETURN_IF_ERROR(DeviceRequiresCompilation(*device_info_cache, device, &requires_compilation)); if (!lazy_compilation_enabled) { requires_compilation = true; } string device_name_str = string(device_info_cache->GetNameFor(device)); Status status; Scope root = NewInternalScope(g, &status, nullptr) .NewSubScope(n->name()) .WithDevice(n->requested_device()) .WithAssignedDevice(device_name_str); ops::_XlaCompile xla_compile(root.WithOpName("xla_compile"), cluster_info.constant_inputs, cluster_info.non_constant_inputs, cluster_info.resource_inputs, requires_compilation, cluster_info.function); bool has_ref_attr; TF_RETURN_IF_ERROR( GetNodeAttr(n->attrs(), kXlaHasReferenceVarsAttr, &has_ref_attr)); xla_compile.operation.node()->AddAttr(kXlaHasReferenceVarsAttr, has_ref_attr); TF_RETURN_IF_ERROR( CopyIncomingControlEdges(g, n, xla_compile.key.node())); std::vector<Output> xla_run_args = GetXlaRunArgs(root, cluster_info, debugging_opts); if (requires_compilation) { ops::_XlaRun xla_run(root.WithOpName("xla_run"), xla_run_args, xla_compile.key, n->output_types()); MoveOutgoingEdges(g, n, xla_run.operation.node()); g->RemoveNode(n); } else { ops::Switch s(root.WithOpName("predicated_compilation_key"), xla_compile.key, xla_compile.compilation_successful); Output predicated_compilation_key = s.output_true; Output inverse_predicated_compilation_key = s.output_false; ops::_XlaRun xla_run(root.WithOpName("xla_run"), xla_run_args, predicated_compilation_key, n->output_types()); MergeOutgoingControlEdges(root, n, xla_run.operation.node()); MergeOutgoingDataEdges(root, n, xla_run.operation.node(), cluster_info.function.name(), debugging_opts); TF_RETURN_IF_ERROR(root.status()); RemoveAllIncomingControlEdges(g, n); Operation inverse_predicate_as_control = DataToControl(root, inverse_predicated_compilation_key); g->AddControlEdge(inverse_predicate_as_control.node(), n); n->ClearAttr(kXlaCompiledKernelAttr); TF_ASSIGN_OR_RETURN(Node* const pco, ReplaceFunctionCallWithPartitionedCall( options, flib_def, n, g, cluster_info.function, root)); TF_RETURN_IF_ERROR( PredicateInt32Inputs(root, pco, inverse_predicate_as_control)); } return absl::OkStatus(); } } Status BuildXlaOpsPass::Run(const GraphOptimizationPassOptions& options) { Graph* graph = options.graph->get(); std::vector<Node*> xla_compiled_kernels; absl::c_copy_if(graph->op_nodes(), std::back_inserter(xla_compiled_kernels), [](const Node* n) { if (n->IsSend() || n->IsRecv() || n->IsControlFlow()) { return false; } return IsXlaCompiledKernel(*n); }); bool lazy_compilation_enabled = enable_lazy_compilation_ ? *enable_lazy_compilation_ : GetBuildXlaOpsPassFlags()->tf_xla_enable_lazy_compilation; jit::DeviceInfoCache device_info_cache; const BuildXlaOpsPassFlags& flags = *GetBuildXlaOpsPassFlags(); DebuggingOpts debugging_opts; debugging_opts.print_outputs = flags.tf_xla_print_cluster_outputs; debugging_opts.check_input_numerics = flags.tf_xla_check_cluster_input_numerics; debugging_opts.check_output_numerics = flags.tf_xla_check_cluster_output_numerics; VLOG(1) << "print_outputs = " << debugging_opts.print_outputs; VLOG(1) << "check_input_numerics = " << debugging_opts.check_input_numerics; VLOG(1) << "check_output_numerics = " << debugging_opts.check_output_numerics; for (Node* n : xla_compiled_kernels) { TF_RETURN_IF_ERROR(ReplaceNodeWithXlaCompileAndXlaRun( &device_info_cache, options, *options.flib_def, lazy_compilation_enabled, debugging_opts, graph, n)); } if (VLOG_IS_ON(1)) { DumpGraphToFile("build_xla_ops", *graph, options.flib_def); } return absl::OkStatus(); } }
#include "tensorflow/compiler/jit/build_xla_ops_pass.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/defs.h" #include "tensorflow/compiler/jit/encapsulate_subgraphs_pass.h" #include "tensorflow/compiler/jit/node_matchers.h" #include "tensorflow/compiler/jit/test_util.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class BuildXlaOpsTest : public ::testing::Test { protected: void SetUp() override { CHECK(DeviceFactory::AddDevices( SessionOptions(), "/job:localhost/replica:0/task:0", &devices_) .ok()); } private: std::vector<std::unique_ptr<Device>> devices_; }; using ::tensorflow::testing::FindNodeByName; using ::tensorflow::testing::matchers::Attr; using ::tensorflow::testing::matchers::CtrlDeps; using ::tensorflow::testing::matchers::Inputs; using ::tensorflow::testing::matchers::NodeWith; using ::tensorflow::testing::matchers::Op; using ::tensorflow::testing::matchers::Out; using ::testing::_; Status BuildXlaOps(const Scope& s, const FunctionDefLibrary& fdef_lib, std::unique_ptr<Graph>* result) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); TF_RETURN_IF_ERROR(s.ToGraph(graph.get())); FunctionLibraryDefinition flib_def(graph->op_registry(), fdef_lib); static const char* kCpuDevice = "/job:localhost/replica:0/task:0/cpu:0"; for (Node* n : graph->nodes()) { if (n->requested_device().empty()) { n->set_assigned_device_name(kCpuDevice); } else { n->set_assigned_device_name(n->requested_device()); } } FixupSourceAndSinkEdges(graph.get()); GraphOptimizationPassWrapper wrapper; GraphOptimizationPassOptions opt_options = wrapper.CreateGraphOptimizationPassOptions(&graph); opt_options.flib_def = &flib_def; BuildXlaOpsPass pass(true); TF_RETURN_IF_ERROR(pass.Run(opt_options)); VLOG(3) << graph->ToGraphDefDebug().DebugString(); *result = std::move(graph); return absl::OkStatus(); } Status MakeXlaCompiledKernel(Graph* graph, const string& callee_name, const string& node_name, int num_constant_args, int num_resource_args, Node** result) { NodeDef call_node; call_node.set_name(node_name); call_node.set_op(callee_name); AddNodeAttr(kXlaCompiledKernelAttr, true, &call_node); AddNodeAttr(kXlaNumConstantArgsAttr, num_constant_args, &call_node); AddNodeAttr(kXlaNumResourceArgsAttr, num_resource_args, &call_node); TF_ASSIGN_OR_RETURN(*result, graph->AddNode(call_node)); return absl::OkStatus(); } Status MakeXlaCompiledKernel(Graph* graph, const string& callee_name, const string& node_name, Node** result) { return MakeXlaCompiledKernel(graph, callee_name, node_name, 0, 0, result); } Node* MakeWrite(const Scope& scope, Output value_to_write, const string& id) { Output var_handle = ops::VarHandleOp(scope.WithOpName("Var_" + id), DT_FLOAT, TensorShape({})); ops::AssignVariableOp assign_op(scope.WithOpName("Assignee_" + id), var_handle, value_to_write); return assign_op.operation.node(); } Node* MakeWrite(const Scope& scope, const string& id) { return MakeWrite( scope, ops::Const(scope.WithOpName("ValueToAssign" + id), 1.0f), id); } FunctionDefLibrary CreateFunctionDefLibWithConstFunction(const string& name) { FunctionDefLibrary fdef_lib; FunctionDef func = FunctionDefHelper::Create( name, {}, {"out: float"}, {}, {FunctionDefHelper::Const("one", 1.0f)}, {{"out", "out:output:0"}}); *fdef_lib.add_function() = std::move(func); return fdef_lib; } TEST_F(BuildXlaOpsTest, ControlDepsPreserved) { const char* kXlaDeviceName = "/job:worker/replica:0/task:0/device:XLA_CPU:0"; Scope root = Scope::NewRootScope().WithDevice(kXlaDeviceName).ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); call->set_requested_device(kXlaDeviceName); Node* write_op = MakeWrite(root, "write"); write_op->AddAttr(kXlaHasReferenceVarsAttr, false); root.graph()->AddControlEdge(call, write_op); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* write_op_new = FindNodeByName(graph.get(), write_op->name()); ASSERT_NE(write_op_new, nullptr); EXPECT_THAT(write_op_new, NodeWith(CtrlDeps(NodeWith(Op("_XlaRun"))))); } TEST_F(BuildXlaOpsTest, CleanFailureOnBogusAttr) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK( MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", 100, 100, &call)); Node* write_op = MakeWrite(root, "write"); root.graph()->AddControlEdge(call, write_op); std::unique_ptr<Graph> graph; Status failure_status = BuildXlaOps(root, fdef_lib, &graph); ASSERT_FALSE(failure_status.ok()); EXPECT_EQ(failure_status.code(), error::INVALID_ARGUMENT); } TEST_F(BuildXlaOpsTest, OnNonXlaDevice) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); TF_ASSERT_OK(root.DoShapeInference(call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); Node* write_op = MakeWrite(root, Output(call), "write_result"); write_op->AddAttr(kXlaHasReferenceVarsAttr, false); auto xla_compile = NodeWith(Op("_XlaCompile"), Attr("must_compile", false)); auto predicated_compilation_key = NodeWith(Op("Switch"), Inputs(Out(0, xla_compile), Out(1, xla_compile))); auto xla_run = NodeWith(Op("_XlaRun"), Inputs(Out(1, predicated_compilation_key))); auto tf_call = NodeWith(Op("StatefulPartitionedCall"), CtrlDeps(NodeWith(Op("Identity"), Inputs(Out(0, predicated_compilation_key))))); auto merge = NodeWith(Op("_XlaMerge"), Inputs(Out(tf_call), Out(xla_run))); auto assign_var = NodeWith(Op("AssignVariableOp"), Inputs(_, Out(merge))); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* write_op_new = FindNodeByName(graph.get(), write_op->name()); ASSERT_NE(write_op_new, nullptr); EXPECT_THAT(write_op_new, assign_var); } TEST_F(BuildXlaOpsTest, OnXlaDevice) { const char* kXlaDeviceName = "/job:worker/replica:0/task:0/device:XLA_CPU:0"; Scope root = Scope::NewRootScope().WithDevice(kXlaDeviceName).ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); call->set_requested_device(kXlaDeviceName); TF_ASSERT_OK(root.DoShapeInference(call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); Node* write_op = MakeWrite(root, Output(call), "write_result"); write_op->AddAttr(kXlaHasReferenceVarsAttr, false); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); auto xla_op = NodeWith(Op("_XlaRun"), Inputs(Out(NodeWith(Op("_XlaCompile"))))); auto assign_var = NodeWith(Op("AssignVariableOp"), Inputs(Out(NodeWith()), Out(xla_op))); Node* write_op_new = FindNodeByName(graph.get(), write_op->name()); ASSERT_NE(write_op_new, nullptr); EXPECT_THAT(write_op_new, assign_var); } TEST_F(BuildXlaOpsTest, NoExtraMergeForEdgeToSink) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithConstFunction("cluster_0"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK(MakeXlaCompiledKernel(root.graph(), "cluster_0", "C", &call)); call->AddAttr(kXlaHasReferenceVarsAttr, false); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* sink_node = graph->sink_node(); EXPECT_THAT(sink_node, NodeWith(CtrlDeps(NodeWith(Op("_XlaRun")), NodeWith(Op("StatefulPartitionedCall")), NodeWith(Op("NoOp"))))); } #ifdef GOOGLE_CUDA FunctionDefLibrary CreateFunctionDefLibWithInt32Input(const string& name) { FunctionDefLibrary fdef_lib; FunctionDef func = FunctionDefHelper::Create( name, {"in: int32"}, {"out: int32"}, {}, {{{"out"}, "Identity", {"in"}}}, {{"out", "out:output:0"}}); *fdef_lib.add_function() = std::move(func); return fdef_lib; } TEST_F(BuildXlaOpsTest, NoDeviceToHostCopiesForClustersWithInt32Inputs) { const char* kXlaDeviceName = "/job:worker/replica:0/task:0/device:GPU:0"; Scope root = Scope::NewRootScope() .WithDevice(kXlaDeviceName) .WithAssignedDevice(kXlaDeviceName) .ExitOnError(); FunctionDefLibrary fdef_lib = CreateFunctionDefLibWithInt32Input("cluster_int32"); TF_ASSERT_OK(root.graph()->AddFunctionLibrary(fdef_lib)); Node* call; TF_ASSERT_OK( MakeXlaCompiledKernel(root.graph(), "cluster_int32", "C", &call)); call->set_requested_device(kXlaDeviceName); call->AddAttr(kXlaHasReferenceVarsAttr, false); auto var = ops::VarHandleOp(root.WithOpName("var"), DT_INT32, TensorShape({})); auto int32_on_device = ops::ReadVariableOp(root.WithOpName("int32_on_device"), var, DT_INT32); root.graph()->AddEdge(int32_on_device.node(), 0, call, 0); std::unique_ptr<Graph> graph; TF_ASSERT_OK(BuildXlaOps(root, fdef_lib, &graph)); Node* stateful_partitioned_call_op = nullptr; for (Node* n : graph->op_nodes()) { if (n->type_string() == "StatefulPartitionedCall") { ASSERT_EQ(stateful_partitioned_call_op, nullptr); stateful_partitioned_call_op = n; } } ASSERT_NE(stateful_partitioned_call_op, nullptr); auto xla_compile = NodeWith(Op("_XlaCompile")); auto switch_on_compilation_pred = NodeWith(Op("Switch"), Inputs(Out(0, xla_compile), Out(1, xla_compile))); auto ctrl_dep = NodeWith(Op("Identity"), Inputs(Out(0, switch_on_compilation_pred))); EXPECT_THAT( stateful_partitioned_call_op, NodeWith(Inputs(Out(NodeWith(Op("IdentityN"), CtrlDeps(ctrl_dep)))))); } #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/build_xla_ops_pass.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/build_xla_ops_pass_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
90cb12a6-a116-4867-b829-8f9408189ca5
cpp
google/quiche
random_decoder_test_base
quiche/http2/test_tools/random_decoder_test_base.cc
quiche/http2/test_tools/random_decoder_test_base_test.cc
#include "quiche/http2/test_tools/random_decoder_test_base.h" #include <stddef.h> #include <algorithm> #include <memory> #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionResult; namespace http2 { namespace test { RandomDecoderTest::RandomDecoderTest() = default; bool RandomDecoderTest::StopDecodeOnDone() { return stop_decode_on_done_; } DecodeStatus RandomDecoderTest::DecodeSegments(DecodeBuffer* original, const SelectSize& select_size) { DecodeStatus status = DecodeStatus::kDecodeInProgress; bool first = true; QUICHE_VLOG(2) << "DecodeSegments: input size=" << original->Remaining(); while (first || original->HasData()) { size_t remaining = original->Remaining(); size_t size = std::min(remaining, select_size(first, original->Offset(), remaining)); DecodeBuffer db(original->cursor(), size); QUICHE_VLOG(2) << "Decoding " << size << " bytes of " << remaining << " remaining"; if (first) { first = false; status = StartDecoding(&db); } else { status = ResumeDecoding(&db); } if (db.Offset() == 0 && db.HasData() && status != DecodeStatus::kDecodeError) { ADD_FAILURE() << "Decoder didn't make any progress; db.FullSize=" << db.FullSize() << " original.Offset=" << original->Offset(); return DecodeStatus::kDecodeError; } original->AdvanceCursor(db.Offset()); switch (status) { case DecodeStatus::kDecodeDone: if (original->Empty() || StopDecodeOnDone()) { return DecodeStatus::kDecodeDone; } continue; case DecodeStatus::kDecodeInProgress: continue; case DecodeStatus::kDecodeError: return DecodeStatus::kDecodeError; } } return status; } AssertionResult RandomDecoderTest::DecodeAndValidateSeveralWays( DecodeBuffer* original, bool return_non_zero_on_first, const Validator& validator) { const uint32_t original_remaining = original->Remaining(); QUICHE_VLOG(1) << "DecodeAndValidateSeveralWays - Start, remaining = " << original_remaining; uint32_t first_consumed; { DecodeBuffer input(original->cursor(), original_remaining); QUICHE_VLOG(2) << "DecodeSegmentsAndValidate with SelectRemaining"; HTTP2_VERIFY_SUCCESS( DecodeSegmentsAndValidate(&input, SelectRemaining(), validator)) << "\nFailed with SelectRemaining; input.Offset=" << input.Offset() << "; input.Remaining=" << input.Remaining(); first_consumed = input.Offset(); } if (original_remaining <= 30) { DecodeBuffer input(original->cursor(), original_remaining); QUICHE_VLOG(2) << "DecodeSegmentsAndValidate with SelectOne"; HTTP2_VERIFY_SUCCESS( DecodeSegmentsAndValidate(&input, SelectOne(), validator)) << "\nFailed with SelectOne; input.Offset=" << input.Offset() << "; input.Remaining=" << input.Remaining(); HTTP2_VERIFY_EQ(first_consumed, input.Offset()) << "\nFailed with SelectOne"; } if (original_remaining <= 20) { DecodeBuffer input(original->cursor(), original_remaining); QUICHE_VLOG(2) << "DecodeSegmentsAndValidate with SelectZeroAndOne"; HTTP2_VERIFY_SUCCESS(DecodeSegmentsAndValidate( &input, SelectZeroAndOne(return_non_zero_on_first), validator)) << "\nFailed with SelectZeroAndOne"; HTTP2_VERIFY_EQ(first_consumed, input.Offset()) << "\nFailed with SelectZeroAndOne; input.Offset=" << input.Offset() << "; input.Remaining=" << input.Remaining(); } { DecodeBuffer input(original->cursor(), original_remaining); QUICHE_VLOG(2) << "DecodeSegmentsAndValidate with SelectRandom"; HTTP2_VERIFY_SUCCESS(DecodeSegmentsAndValidate( &input, SelectRandom(return_non_zero_on_first), validator)) << "\nFailed with SelectRandom; input.Offset=" << input.Offset() << "; input.Remaining=" << input.Remaining(); HTTP2_VERIFY_EQ(first_consumed, input.Offset()) << "\nFailed with SelectRandom"; } HTTP2_VERIFY_EQ(original_remaining, original->Remaining()); original->AdvanceCursor(first_consumed); QUICHE_VLOG(1) << "DecodeAndValidateSeveralWays - SUCCESS"; return ::testing::AssertionSuccess(); } RandomDecoderTest::SelectSize RandomDecoderTest::SelectZeroAndOne( bool return_non_zero_on_first) { std::shared_ptr<bool> zero_next(new bool); *zero_next = !return_non_zero_on_first; return [zero_next](bool , size_t , size_t ) -> size_t { if (*zero_next) { *zero_next = false; return 0; } else { *zero_next = true; return 1; } }; } RandomDecoderTest::SelectSize RandomDecoderTest::SelectRandom( bool return_non_zero_on_first) { return [this, return_non_zero_on_first](bool first, size_t , size_t remaining) -> size_t { uint32_t r = random_.Rand32(); if (first && return_non_zero_on_first) { QUICHE_CHECK_LT(0u, remaining); if (remaining == 1) { return 1; } return 1 + (r % remaining); } return r % (remaining + 1); }; } uint32_t RandomDecoderTest::RandStreamId() { return random_.Rand32() & StreamIdMask(); } } }
#include "quiche/http2/test_tools/random_decoder_test_base.h" #include <stddef.h> #include <functional> #include <ios> #include <set> #include <type_traits> #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_callbacks.h" namespace http2 { namespace test { namespace { const char kData[]{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}; const bool kReturnNonZeroOnFirst = true; const bool kMayReturnZeroOnFirst = false; class RandomDecoderTestTest : public RandomDecoderTest { public: RandomDecoderTestTest() : data_db_(kData) { QUICHE_CHECK_EQ(sizeof kData, 8u); } protected: typedef quiche::MultiUseCallback<DecodeStatus(DecodeBuffer* db)> DecodingFn; DecodeStatus StartDecoding(DecodeBuffer* db) override { ++start_decoding_calls_; if (start_decoding_fn_) { return start_decoding_fn_(db); } return DecodeStatus::kDecodeError; } DecodeStatus ResumeDecoding(DecodeBuffer* db) override { ++resume_decoding_calls_; if (resume_decoding_fn_) { return resume_decoding_fn_(db); } return DecodeStatus::kDecodeError; } bool StopDecodeOnDone() override { ++stop_decode_on_done_calls_; if (override_stop_decode_on_done_) { return sub_stop_decode_on_done_; } return RandomDecoderTest::StopDecodeOnDone(); } size_t start_decoding_calls_ = 0; size_t resume_decoding_calls_ = 0; size_t stop_decode_on_done_calls_ = 0; DecodingFn start_decoding_fn_; DecodingFn resume_decoding_fn_; DecodeBuffer data_db_; bool sub_stop_decode_on_done_ = true; bool override_stop_decode_on_done_ = true; }; TEST_F(RandomDecoderTestTest, StopOnStartPartiallyDone) { start_decoding_fn_ = [this](DecodeBuffer* db) { EXPECT_EQ(1u, start_decoding_calls_); EXPECT_EQ(kData, db->cursor()); EXPECT_EQ(sizeof kData, db->Remaining()); db->DecodeUInt8(); return DecodeStatus::kDecodeDone; }; EXPECT_EQ(DecodeStatus::kDecodeDone, DecodeSegments(&data_db_, SelectRemaining())); EXPECT_EQ(1u, data_db_.Offset()); EXPECT_EQ(1u, start_decoding_calls_); EXPECT_EQ(0u, resume_decoding_calls_); EXPECT_EQ(1u, stop_decode_on_done_calls_); } TEST_F(RandomDecoderTestTest, StopOnResumePartiallyDone) { start_decoding_fn_ = [this](DecodeBuffer* db) { EXPECT_EQ(1u, start_decoding_calls_); db->DecodeUInt8(); return DecodeStatus::kDecodeInProgress; }; resume_decoding_fn_ = [this](DecodeBuffer* db) { EXPECT_EQ(1u, resume_decoding_calls_); EXPECT_EQ(data_db_.cursor(), db->cursor()); db->DecodeUInt16(); return DecodeStatus::kDecodeDone; }; override_stop_decode_on_done_ = false; stop_decode_on_done_ = true; EXPECT_EQ(DecodeStatus::kDecodeDone, DecodeSegments(&data_db_, SelectRemaining())); EXPECT_EQ(3u, data_db_.Offset()); EXPECT_EQ(1u, start_decoding_calls_); EXPECT_EQ(1u, resume_decoding_calls_); EXPECT_EQ(1u, stop_decode_on_done_calls_); } TEST_F(RandomDecoderTestTest, InProgressWhenEmpty) { start_decoding_fn_ = [this](DecodeBuffer* db) { EXPECT_EQ(1u, start_decoding_calls_); if (db->HasData()) { db->DecodeUInt8(); if (db->HasData()) { db->DecodeUInt8(); } } return DecodeStatus::kDecodeInProgress; }; resume_decoding_fn_ = [](DecodeBuffer* db) { if (db->HasData()) { db->AdvanceCursor(db->Remaining()); } return DecodeStatus::kDecodeInProgress; }; EXPECT_EQ(DecodeStatus::kDecodeInProgress, DecodeSegments(&data_db_, SelectRandom(kMayReturnZeroOnFirst))); EXPECT_TRUE(data_db_.Empty()); EXPECT_EQ(1u, start_decoding_calls_); EXPECT_LE(1u, resume_decoding_calls_); EXPECT_EQ(0u, stop_decode_on_done_calls_); } TEST_F(RandomDecoderTestTest, DoneExactlyAtEnd) { start_decoding_fn_ = [this](DecodeBuffer* db) { EXPECT_EQ(1u, start_decoding_calls_); EXPECT_EQ(1u, db->Remaining()); EXPECT_EQ(1u, db->FullSize()); db->DecodeUInt8(); return DecodeStatus::kDecodeInProgress; }; resume_decoding_fn_ = [this](DecodeBuffer* db) { EXPECT_EQ(1u, db->Remaining()); EXPECT_EQ(1u, db->FullSize()); db->DecodeUInt8(); if (data_db_.Remaining() == 1) { return DecodeStatus::kDecodeDone; } return DecodeStatus::kDecodeInProgress; }; override_stop_decode_on_done_ = true; sub_stop_decode_on_done_ = true; EXPECT_EQ(DecodeStatus::kDecodeDone, DecodeSegments(&data_db_, SelectOne())); EXPECT_EQ(0u, data_db_.Remaining()); EXPECT_EQ(1u, start_decoding_calls_); EXPECT_EQ((sizeof kData) - 1, resume_decoding_calls_); EXPECT_EQ(0u, stop_decode_on_done_calls_); } TEST_F(RandomDecoderTestTest, DecodeSeveralWaysToEnd) { size_t decoded_since_start = 0; auto shared_fn = [&decoded_since_start, this](DecodeBuffer* db) { decoded_since_start += db->Remaining(); db->AdvanceCursor(db->Remaining()); EXPECT_EQ(0u, db->Remaining()); if (decoded_since_start == data_db_.FullSize()) { return DecodeStatus::kDecodeDone; } return DecodeStatus::kDecodeInProgress; }; start_decoding_fn_ = [&decoded_since_start, shared_fn](DecodeBuffer* db) { decoded_since_start = 0; return shared_fn(db); }; resume_decoding_fn_ = shared_fn; Validator validator = ValidateDoneAndEmpty(); EXPECT_TRUE(DecodeAndValidateSeveralWays(&data_db_, kMayReturnZeroOnFirst, validator)); EXPECT_EQ(0u, data_db_.Remaining()); EXPECT_EQ(4u, start_decoding_calls_); EXPECT_EQ(0u, stop_decode_on_done_calls_); } TEST_F(RandomDecoderTestTest, DecodeTwoWaysAndStopEarly) { size_t decoded_since_start = 0; auto shared_fn = [&decoded_since_start, this](DecodeBuffer* db) { uint32_t amount = db->Remaining(); if (start_decoding_calls_ == 2 && amount > 1) { amount = 1; } decoded_since_start += amount; db->AdvanceCursor(amount); if (decoded_since_start == data_db_.FullSize()) { return DecodeStatus::kDecodeDone; } if (decoded_since_start > 1 && start_decoding_calls_ == 2) { return DecodeStatus::kDecodeDone; } return DecodeStatus::kDecodeInProgress; }; start_decoding_fn_ = [&decoded_since_start, shared_fn](DecodeBuffer* db) { decoded_since_start = 0; return shared_fn(db); }; resume_decoding_fn_ = shared_fn; Validator validator = [this](const DecodeBuffer& , DecodeStatus status) -> AssertionResult { if (start_decoding_calls_ <= 2 && status != DecodeStatus::kDecodeDone) { return ::testing::AssertionFailure() << "Expected DecodeStatus::kDecodeDone, not " << status; } if (start_decoding_calls_ > 2) { return ::testing::AssertionFailure() << "How did we get to pass " << start_decoding_calls_; } return ::testing::AssertionSuccess(); }; EXPECT_FALSE(DecodeAndValidateSeveralWays(&data_db_, kMayReturnZeroOnFirst, validator)); EXPECT_EQ(2u, start_decoding_calls_); EXPECT_EQ(1u, stop_decode_on_done_calls_); } TEST_F(RandomDecoderTestTest, DecodeThreeWaysAndError) { size_t decoded_since_start = 0; auto shared_fn = [&decoded_since_start, this](DecodeBuffer* db) { if (start_decoding_calls_ == 3 && decoded_since_start > 0) { return DecodeStatus::kDecodeError; } uint32_t amount = db->Remaining(); if (start_decoding_calls_ == 3 && amount > 1) { amount = 1; } decoded_since_start += amount; db->AdvanceCursor(amount); if (decoded_since_start == data_db_.FullSize()) { return DecodeStatus::kDecodeDone; } return DecodeStatus::kDecodeInProgress; }; start_decoding_fn_ = [&decoded_since_start, shared_fn](DecodeBuffer* db) { decoded_since_start = 0; return shared_fn(db); }; resume_decoding_fn_ = shared_fn; Validator validator = ValidateDoneAndEmpty(); EXPECT_FALSE(DecodeAndValidateSeveralWays(&data_db_, kReturnNonZeroOnFirst, validator)); EXPECT_EQ(3u, start_decoding_calls_); EXPECT_EQ(0u, stop_decode_on_done_calls_); } TEST(CorruptEnumTest, ManyValues) { std::set<uint64_t> values; DecodeStatus status; QUICHE_LOG(INFO) << "sizeof status = " << sizeof status; Http2Random rng; for (int ndx = 0; ndx < 256; ++ndx) { CorruptEnum(&status, &rng); values.insert(static_cast<uint64_t>(status)); } } typedef typename std::underlying_type<DecodeStatus>::type DecodeStatusUT; struct CorruptEnumTestStruct { DecodeStatusUT filler1; DecodeStatus status; DecodeStatusUT filler2; }; TEST(CorruptEnumTest, CorruptsOnlyEnum) { Http2Random rng; for (const DecodeStatusUT filler : {DecodeStatusUT(), ~DecodeStatusUT()}) { QUICHE_LOG(INFO) << "filler=0x" << std::hex << filler; CorruptEnumTestStruct s; s.filler1 = filler; s.filler2 = filler; for (int ndx = 0; ndx < 256; ++ndx) { CorruptEnum(&s.status, &rng); EXPECT_EQ(s.filler1, filler); EXPECT_EQ(s.filler2, filler); } } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/test_tools/random_decoder_test_base.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/test_tools/random_decoder_test_base_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
813f4cdc-b499-41a1-9d6d-a182f641d0ef
cpp
tensorflow/tensorflow
bf16
tensorflow/lite/experimental/shlo/legacy/src/bf16.h
tensorflow/lite/experimental/shlo/bf16_test.cc
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_SHLO_LEGACY_SRC_BF16_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_SHLO_LEGACY_SRC_BF16_H_ #include "tensorflow/lite/experimental/shlo/legacy/src/has_keyword.h" #if defined(__STDCPP_BFLOAT16_T__) #include <stdfloat> namespace stablehlo { using BF16 = bfloat16_t; } #elif __has_keyword(__bf16) && __x86_64__ namespace stablehlo { using BF16 = __bf16; } #elif __has_keyword(__bf16) && __aarch64__ #include <cmath> #include <cstdint> namespace stablehlo { class BF16 { public: BF16(float f = 0.0f) { if (std::isnan(f)) { value_ = std::signbit(f) ? 0xFFC0 : 0x7FC0; } else { uint32_t input = *reinterpret_cast<const uint32_t*>(&f); uint32_t lsb = (input >> 16) & 1; uint32_t rounding_bias = 0x7fff + lsb; input += rounding_bias; value_ = static_cast<uint16_t>(input >> 16u); } } BF16& operator=(BF16 other) { value_ = other.value_; return *this; } bool operator==(BF16 other) const { return value_ == other.value_; } bool operator!=(BF16 other) const { return !(*this == other); } operator float() const { uint32_t tmp = value_ << 16; return *reinterpret_cast<float*>(&tmp); } BF16 operator-() const { return BF16(-static_cast<float>(*this)); } BF16& operator+=(BF16 other) { value_ = BF16(static_cast<float>(*this) + static_cast<float>(other)).value_; return *this; } BF16& operator-=(BF16 other) { value_ = BF16(static_cast<float>(*this) - static_cast<float>(other)).value_; return *this; } BF16& operator*=(BF16 other) { value_ = BF16(static_cast<float>(*this) * static_cast<float>(other)).value_; return *this; } BF16& operator/=(BF16 other) { value_ = BF16(static_cast<float>(*this) / static_cast<float>(other)).value_; return *this; } private: uint16_t value_; }; inline BF16 operator+(BF16 x, BF16 y) { x += y; return x; } inline BF16 operator-(BF16 x, BF16 y) { x -= y; return x; } inline BF16 operator*(BF16 x, BF16 y) { x *= y; return x; } inline BF16 operator/(BF16 x, BF16 y) { x /= y; return x; } } #else #error Type BF16 is not available #endif #endif
#include "tensorflow/lite/experimental/shlo/bf16.h" #include <cmath> #include <cstdint> #include <cstring> #include <limits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/casts.h" namespace shlo_ref { namespace { ::testing::Matcher<BF16> MatchesBits(uint16_t bits) { return ::testing::ResultOf([](BF16 y) { return absl::bit_cast<uint16_t>(y); }, ::testing::Eq(bits)); } ::testing::Matcher<float> NearFloat(float x, float relative_error = 1e-3) { return ::testing::FloatNear(x, std::abs(x) * relative_error); } float BinaryToFloat(uint32_t sign, uint32_t exponent, uint32_t high_mantissa, uint32_t low_mantissa) { float dest; uint32_t src = (sign << 31) + (exponent << 23) + (high_mantissa << 16) + low_mantissa; memcpy(static_cast<void*>(&dest), static_cast<const void*>(&src), sizeof(dest)); return dest; } template <typename T> void TestRoundtrips() { for (T value : { -std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), T(-1.0), T(-0.5), T(-0.0), T(1.0), T(0.5), T(0.0), }) { EXPECT_EQ(value, static_cast<T>(static_cast<BF16>(value))); } } TEST(BF16Test, FloatRoundtrips) { TestRoundtrips<float>(); } TEST(BF16Test, DoubleRoundtrips) { TestRoundtrips<double>(); } TEST(BF16Test, Float16Roundtrips) { TestRoundtrips<BF16>(); } TEST(BF16Test, ConversionFromFloat) { EXPECT_THAT(BF16(1.0f), MatchesBits(0x3f80)); EXPECT_THAT(BF16(0.5f), MatchesBits(0x3f00)); EXPECT_THAT(BF16(0.33333f), MatchesBits(0x3eab)); EXPECT_THAT(BF16(3.38e38f), MatchesBits(0x7f7e)); EXPECT_THAT(BF16(3.40e38f), MatchesBits(0x7f80)); } TEST(BF16Test, RoundToNearestEven) { float val1 = static_cast<float>(absl::bit_cast<BF16>(uint16_t{0x3c00})); float val2 = static_cast<float>(absl::bit_cast<BF16>(uint16_t{0x3c01})); float val3 = static_cast<float>(absl::bit_cast<BF16>(uint16_t{0x3c02})); EXPECT_THAT(BF16(0.5f * (val1 + val2)), MatchesBits(0x3c00)); EXPECT_THAT(BF16(0.5f * (val2 + val3)), MatchesBits(0x3c02)); } TEST(BF16Test, ConversionFromInt) { EXPECT_THAT(BF16(-1), MatchesBits(0xbf80)); EXPECT_THAT(BF16(0), MatchesBits(0x0000)); EXPECT_THAT(BF16(1), MatchesBits(0x3f80)); EXPECT_THAT(BF16(2), MatchesBits(0x4000)); EXPECT_THAT(BF16(3), MatchesBits(0x4040)); EXPECT_THAT(BF16(12), MatchesBits(0x4140)); } TEST(BF16Test, ConversionFromBool) { EXPECT_THAT(BF16(false), MatchesBits(0x0000)); EXPECT_THAT(BF16(true), MatchesBits(0x3f80)); } TEST(BF16Test, ConversionToBool) { EXPECT_EQ(static_cast<bool>(BF16(3)), true); EXPECT_EQ(static_cast<bool>(BF16(0.33333f)), true); EXPECT_EQ(BF16(-0.0), false); EXPECT_EQ(static_cast<bool>(BF16(0.0)), false); } TEST(BF16Test, ExplicitConversionToFloat) { EXPECT_EQ(static_cast<float>(absl::bit_cast<BF16, uint16_t>(0x0000)), 0.0f); EXPECT_EQ(static_cast<float>(absl::bit_cast<BF16, uint16_t>(0x3f80)), 1.0f); } TEST(BF16Test, ImplicitConversionToFloat) { EXPECT_EQ((absl::bit_cast<BF16, uint16_t>(0x0000)), 0.0f); EXPECT_EQ((absl::bit_cast<BF16, uint16_t>(0x3f80)), 1.0f); } TEST(BF16Test, Zero) { EXPECT_EQ(BF16(0.0f), BF16(0.0f)); EXPECT_EQ(BF16(-0.0f), BF16(0.0f)); EXPECT_EQ(BF16(-0.0f), BF16(-0.0f)); EXPECT_THAT(BF16(0.0f), MatchesBits(0x0000)); EXPECT_THAT(BF16(-0.0f), MatchesBits(0x8000)); } TEST(BF16Test, DefaultConstruct) { EXPECT_EQ(static_cast<float>(BF16()), 0.0f); } TEST(BF16Test, Conversion) { for (int i = 0; i < 100; ++i) { float a = i + 1.25; BF16 b = static_cast<BF16>(a); float c = static_cast<float>(b); EXPECT_LE(std::abs(c - a), a / 128); } } TEST(BF16Test, Epsilon) { EXPECT_LE(1.0f, static_cast<float>(std::numeric_limits<BF16>::epsilon() + BF16(1.0f))); EXPECT_EQ(1.0f, static_cast<float>(std::numeric_limits<BF16>::epsilon() / BF16(2.0f) + BF16(1.0f))); } TEST(BF16Test, Negate) { EXPECT_EQ(static_cast<float>(-BF16(3.0f)), -3.0f); EXPECT_EQ(static_cast<float>(-BF16(-4.5f)), 4.5f); } TEST(BF16Test, DivisionByZero) { EXPECT_TRUE(std::isnan(static_cast<float>(BF16(0.0 / 0.0)))); EXPECT_TRUE(std::isinf(static_cast<float>(BF16(1.0 / 0.0)))); EXPECT_TRUE(std::isinf(static_cast<float>(BF16(-1.0 / 0.0)))); EXPECT_TRUE(std::isnan(BF16(0.0 / 0.0))); EXPECT_TRUE(std::isinf(BF16(1.0 / 0.0))); EXPECT_TRUE(std::isinf(BF16(-1.0 / 0.0))); } TEST(BF16Test, NonFinite) { EXPECT_FALSE(std::isinf( static_cast<float>(BF16(3.38e38f)))); EXPECT_FALSE(std::isnan(static_cast<float>(BF16(0.0f)))); EXPECT_TRUE( std::isinf(static_cast<float>(absl::bit_cast<BF16, uint16_t>(0xff80)))); EXPECT_TRUE( std::isnan(static_cast<float>(absl::bit_cast<BF16, uint16_t>(0xffc0)))); EXPECT_TRUE( std::isinf(static_cast<float>(absl::bit_cast<BF16, uint16_t>(0x7f80)))); EXPECT_TRUE( std::isnan(static_cast<float>(absl::bit_cast<BF16, uint16_t>(0x7fc0)))); EXPECT_FALSE(isinf(absl::bit_cast<BF16, uint16_t>(0x7bff))); EXPECT_FALSE(isnan(absl::bit_cast<BF16, uint16_t>(0x0000))); EXPECT_TRUE(isinf(absl::bit_cast<BF16, uint16_t>(0xff80))); EXPECT_TRUE(isnan(absl::bit_cast<BF16, uint16_t>(0xffc0))); EXPECT_TRUE(isinf(absl::bit_cast<BF16, uint16_t>(0x7f80))); EXPECT_TRUE(isnan(absl::bit_cast<BF16, uint16_t>(0x7fc0))); EXPECT_THAT(BF16(BinaryToFloat(0x0, 0xff, 0x40, 0x0)), MatchesBits(0x7fe0)); EXPECT_THAT(BF16(BinaryToFloat(0x1, 0xff, 0x40, 0x0)), MatchesBits(0xffe0)); } TEST(BF16Test, NumericLimits) { static_assert(std::numeric_limits<BF16>::is_signed); EXPECT_EQ( absl::bit_cast<uint16_t>(std::numeric_limits<BF16>::infinity()), absl::bit_cast<uint16_t>(BF16(std::numeric_limits<float>::infinity()))); constexpr uint16_t BFLOAT16_QUIET_BIT = 0x0040; EXPECT_TRUE(isnan(std::numeric_limits<BF16>::quiet_NaN())); EXPECT_TRUE(isnan(BF16(std::numeric_limits<float>::quiet_NaN()))); EXPECT_GT((absl::bit_cast<uint16_t>(std::numeric_limits<BF16>::quiet_NaN()) & BFLOAT16_QUIET_BIT), 0); EXPECT_GT( (absl::bit_cast<uint16_t>(BF16(std::numeric_limits<float>::quiet_NaN())) & BFLOAT16_QUIET_BIT), 0); EXPECT_TRUE(isnan(std::numeric_limits<BF16>::signaling_NaN())); EXPECT_TRUE(isnan(BF16(std::numeric_limits<float>::signaling_NaN()))); EXPECT_EQ( 0, (absl::bit_cast<uint16_t>(std::numeric_limits<BF16>::signaling_NaN()) & BFLOAT16_QUIET_BIT)); EXPECT_EQ(0, (absl::bit_cast<uint16_t>( BF16(std::numeric_limits<float>::signaling_NaN())) & BFLOAT16_QUIET_BIT)); EXPECT_GT(std::numeric_limits<BF16>::min(), BF16(0.f)); EXPECT_GT(std::numeric_limits<BF16>::denorm_min(), BF16(0.f)); EXPECT_EQ(std::numeric_limits<BF16>::denorm_min() / BF16(2), BF16(0.f)); } TEST(BF16Test, Arithmetic) { EXPECT_EQ(static_cast<float>(BF16(2) + BF16(2)), 4); EXPECT_EQ(static_cast<float>(BF16(2) + BF16(-2)), 0); EXPECT_THAT(static_cast<float>(BF16(0.33333f) + BF16(0.66667f)), NearFloat(1.0f)); EXPECT_EQ(static_cast<float>(BF16(2.0f) * BF16(-5.5f)), -11.0f); EXPECT_THAT(static_cast<float>(BF16(1.0f) / BF16(3.0f)), NearFloat(0.3339f)); EXPECT_EQ(static_cast<float>(-BF16(4096.0f)), -4096.0f); EXPECT_EQ(static_cast<float>(-BF16(-4096.0f)), 4096.0f); } TEST(BF16Test, Comparison) { EXPECT_TRUE(BF16(1.0f) > BF16(0.5f)); EXPECT_TRUE(BF16(0.5f) < BF16(1.0f)); EXPECT_FALSE((BF16(1.0f) < BF16(0.5f))); EXPECT_FALSE((BF16(0.5f) > BF16(1.0f))); EXPECT_FALSE((BF16(4.0f) > BF16(4.0f))); EXPECT_FALSE((BF16(4.0f) < BF16(4.0f))); EXPECT_FALSE((BF16(0.0f) < BF16(-0.0f))); EXPECT_FALSE((BF16(-0.0f) < BF16(0.0f))); EXPECT_FALSE((BF16(0.0f) > BF16(-0.0f))); EXPECT_FALSE((BF16(-0.0f) > BF16(0.0f))); EXPECT_TRUE(BF16(0.2f) > BF16(-1.0f)); EXPECT_TRUE(BF16(-1.0f) < BF16(0.2f)); EXPECT_TRUE(BF16(-16.0f) < BF16(-15.0f)); EXPECT_TRUE(BF16(1.0f) == BF16(1.0f)); EXPECT_TRUE(BF16(1.0f) != BF16(2.0f)); EXPECT_FALSE((BF16(0.0 / 0.0) == BF16(0.0 / 0.0))); EXPECT_TRUE(BF16(0.0 / 0.0) != BF16(0.0 / 0.0)); EXPECT_FALSE((BF16(1.0) == BF16(0.0 / 0.0))); EXPECT_FALSE((BF16(1.0) < BF16(0.0 / 0.0))); EXPECT_FALSE((BF16(1.0) > BF16(0.0 / 0.0))); EXPECT_TRUE(BF16(1.0) != BF16(0.0 / 0.0)); EXPECT_TRUE(BF16(1.0) < BF16(1.0 / 0.0)); EXPECT_TRUE(BF16(1.0) > BF16(-1.0 / 0.0)); } constexpr float PI = 3.14159265358979323846f; TEST(BF16Test, BasicFunctions) { EXPECT_EQ(static_cast<float>(abs(BF16(3.5f))), 3.5f); EXPECT_EQ(static_cast<float>(abs(BF16(3.5f))), 3.5f); EXPECT_EQ(static_cast<float>(abs(BF16(-3.5f))), 3.5f); EXPECT_EQ(static_cast<float>(abs(BF16(-3.5f))), 3.5f); EXPECT_EQ(static_cast<float>(floor(BF16(3.5f))), 3.0f); EXPECT_EQ(static_cast<float>(floor(BF16(3.5f))), 3.0f); EXPECT_EQ(static_cast<float>(floor(BF16(-3.5f))), -4.0f); EXPECT_EQ(static_cast<float>(floor(BF16(-3.5f))), -4.0f); EXPECT_EQ(static_cast<float>(ceil(BF16(3.5f))), 4.0f); EXPECT_EQ(static_cast<float>(ceil(BF16(3.5f))), 4.0f); EXPECT_EQ(static_cast<float>(ceil(BF16(-3.5f))), -3.0f); EXPECT_EQ(static_cast<float>(ceil(BF16(-3.5f))), -3.0f); EXPECT_FLOAT_EQ(static_cast<float>(sqrt(BF16(0.0f))), 0.0f); EXPECT_FLOAT_EQ(static_cast<float>(sqrt(BF16(0.0f))), 0.0f); EXPECT_FLOAT_EQ(static_cast<float>(sqrt(BF16(4.0f))), 2.0f); EXPECT_FLOAT_EQ(static_cast<float>(sqrt(BF16(4.0f))), 2.0f); EXPECT_FLOAT_EQ(static_cast<float>(pow(BF16(0.0f), BF16(1.0f))), 0.0f); EXPECT_FLOAT_EQ(static_cast<float>(pow(BF16(0.0f), BF16(1.0f))), 0.0f); EXPECT_FLOAT_EQ(static_cast<float>(pow(BF16(2.0f), BF16(2.0f))), 4.0f); EXPECT_FLOAT_EQ(static_cast<float>(pow(BF16(2.0f), BF16(2.0f))), 4.0f); EXPECT_EQ(static_cast<float>(exp(BF16(0.0f))), 1.0f); EXPECT_EQ(static_cast<float>(exp(BF16(0.0f))), 1.0f); EXPECT_THAT(static_cast<float>(exp(BF16(PI))), NearFloat(20.f + static_cast<float>(PI))); EXPECT_THAT(static_cast<float>(exp(BF16(PI))), NearFloat(20.f + static_cast<float>(PI))); EXPECT_EQ(static_cast<float>(expm1(BF16(0.0f))), 0.0f); EXPECT_EQ(static_cast<float>(expm1(BF16(0.0f))), 0.0f); EXPECT_THAT(static_cast<float>(expm1(BF16(2.0f))), NearFloat(6.375f)); EXPECT_THAT(static_cast<float>(expm1(BF16(2.0f))), NearFloat(6.375f)); EXPECT_EQ(static_cast<float>(log(BF16(1.0f))), 0.0f); EXPECT_EQ(static_cast<float>(log(BF16(1.0f))), 0.0f); EXPECT_THAT(static_cast<float>(log(BF16(10.0f))), NearFloat(2.296875f)); EXPECT_THAT(static_cast<float>(log(BF16(10.0f))), NearFloat(2.296875f)); EXPECT_EQ(static_cast<float>(log1p(BF16(0.0f))), 0.0f); EXPECT_EQ(static_cast<float>(log1p(BF16(0.0f))), 0.0f); EXPECT_THAT(static_cast<float>(log1p(BF16(10.0f))), NearFloat(2.390625f)); EXPECT_THAT(static_cast<float>(log1p(BF16(10.0f))), NearFloat(2.390625f)); } TEST(BF16Test, TrigonometricFunctions) { EXPECT_THAT(cos(BF16(0.0f)), NearFloat(BF16(std::cos(0.0f)))); EXPECT_THAT(cos(BF16(0.0f)), NearFloat(BF16(std::cos(0.0f)))); EXPECT_FLOAT_EQ(cos(BF16(PI)), BF16(std::cos(PI))); EXPECT_NEAR(cos(BF16(PI / 2)), BF16(std::cos(PI / 2)), 1e-3); EXPECT_NEAR(cos(BF16(3 * PI / 2)), BF16(std::cos(3 * PI / 2)), 1e-2); EXPECT_THAT(cos(BF16(3.5f)), NearFloat(BF16(std::cos(3.5f)))); EXPECT_FLOAT_EQ(sin(BF16(0.0f)), BF16(std::sin(0.0f))); EXPECT_FLOAT_EQ(sin(BF16(0.0f)), BF16(std::sin(0.0f))); EXPECT_NEAR(sin(BF16(PI)), BF16(std::sin(PI)), 1e-3); EXPECT_THAT(sin(BF16(PI / 2)), NearFloat(BF16(std::sin(PI / 2)))); EXPECT_THAT(sin(BF16(3 * PI / 2)), NearFloat(BF16(std::sin(3 * PI / 2)))); EXPECT_THAT(sin(BF16(3.5f)), NearFloat(BF16(std::sin(3.5f)))); EXPECT_FLOAT_EQ(tan(BF16(0.0f)), BF16(std::tan(0.0f))); EXPECT_FLOAT_EQ(tan(BF16(0.0f)), BF16(std::tan(0.0f))); EXPECT_NEAR(tan(BF16(PI)), BF16(std::tan(PI)), 1e-3); EXPECT_THAT(tan(BF16(3.5f)), NearFloat(BF16(std::tan(3.5f)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/bf16.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/bf16_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
56045f28-85a8-4780-80eb-1f1726626053
cpp
google/cel-cpp
string_extension_func_registrar
eval/public/string_extension_func_registrar.cc
eval/public/string_extension_func_registrar_test.cc
#include "eval/public/string_extension_func_registrar.h" #include "absl/status/status.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_options.h" #include "extensions/strings.h" namespace google::api::expr::runtime { absl::Status RegisterStringExtensionFunctions( CelFunctionRegistry* registry, const InterpreterOptions& options) { return cel::extensions::RegisterStringsFunctions(registry, options); } }
#include "eval/public/string_extension_func_registrar.h" #include <cstdint> #include <string> #include <vector> #include "google/api/expr/v1alpha1/checked.pb.h" #include "absl/types/span.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_function_registry.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace google::api::expr::runtime { namespace { using google::protobuf::Arena; class StringExtensionTest : public ::testing::Test { protected: StringExtensionTest() = default; void SetUp() override { ASSERT_OK(RegisterBuiltinFunctions(&registry_)); ASSERT_OK(RegisterStringExtensionFunctions(&registry_)); } void PerformSplitStringTest(Arena* arena, std::string* value, std::string* delimiter, CelValue* result) { auto function = registry_.FindOverloads( "split", true, {CelValue::Type::kString, CelValue::Type::kString}); ASSERT_EQ(function.size(), 1); auto func = function[0]; std::vector<CelValue> args = {CelValue::CreateString(value), CelValue::CreateString(delimiter)}; absl::Span<CelValue> arg_span(&args[0], args.size()); auto status = func->Evaluate(arg_span, result, arena); ASSERT_OK(status); } void PerformSplitStringWithLimitTest(Arena* arena, std::string* value, std::string* delimiter, int64_t limit, CelValue* result) { auto function = registry_.FindOverloads( "split", true, {CelValue::Type::kString, CelValue::Type::kString, CelValue::Type::kInt64}); ASSERT_EQ(function.size(), 1); auto func = function[0]; std::vector<CelValue> args = {CelValue::CreateString(value), CelValue::CreateString(delimiter), CelValue::CreateInt64(limit)}; absl::Span<CelValue> arg_span(&args[0], args.size()); auto status = func->Evaluate(arg_span, result, arena); ASSERT_OK(status); } void PerformJoinStringTest(Arena* arena, std::vector<std::string>& values, CelValue* result) { auto function = registry_.FindOverloads("join", true, {CelValue::Type::kList}); ASSERT_EQ(function.size(), 1); auto func = function[0]; std::vector<CelValue> cel_list; cel_list.reserve(values.size()); for (const std::string& value : values) { cel_list.push_back( CelValue::CreateString(Arena::Create<std::string>(arena, value))); } std::vector<CelValue> args = {CelValue::CreateList( Arena::Create<ContainerBackedListImpl>(arena, cel_list))}; absl::Span<CelValue> arg_span(&args[0], args.size()); auto status = func->Evaluate(arg_span, result, arena); ASSERT_OK(status); } void PerformJoinStringWithSeparatorTest(Arena* arena, std::vector<std::string>& values, std::string* separator, CelValue* result) { auto function = registry_.FindOverloads( "join", true, {CelValue::Type::kList, CelValue::Type::kString}); ASSERT_EQ(function.size(), 1); auto func = function[0]; std::vector<CelValue> cel_list; cel_list.reserve(values.size()); for (const std::string& value : values) { cel_list.push_back( CelValue::CreateString(Arena::Create<std::string>(arena, value))); } std::vector<CelValue> args = { CelValue::CreateList( Arena::Create<ContainerBackedListImpl>(arena, cel_list)), CelValue::CreateString(separator)}; absl::Span<CelValue> arg_span(&args[0], args.size()); auto status = func->Evaluate(arg_span, result, arena); ASSERT_OK(status); } void PerformLowerAsciiTest(Arena* arena, std::string* value, CelValue* result) { auto function = registry_.FindOverloads("lowerAscii", true, {CelValue::Type::kString}); ASSERT_EQ(function.size(), 1); auto func = function[0]; std::vector<CelValue> args = {CelValue::CreateString(value)}; absl::Span<CelValue> arg_span(&args[0], args.size()); auto status = func->Evaluate(arg_span, result, arena); ASSERT_OK(status); } CelFunctionRegistry registry_; Arena arena_; }; TEST_F(StringExtensionTest, TestStringSplit) { Arena arena; CelValue result; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; std::vector<std::string> expected = {"This", "Is", "Test"}; ASSERT_NO_FATAL_FAILURE( PerformSplitStringTest(&arena, &value, &delimiter, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 3); for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(result.ListOrDie()->Get(&arena, i).StringOrDie().value(), expected[i]); } } TEST_F(StringExtensionTest, TestStringSplitEmptyDelimiter) { Arena arena; CelValue result; std::string value = "TEST"; std::string delimiter = ""; std::vector<std::string> expected = {"T", "E", "S", "T"}; ASSERT_NO_FATAL_FAILURE( PerformSplitStringTest(&arena, &value, &delimiter, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 4); for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(result.ListOrDie()->Get(&arena, i).StringOrDie().value(), expected[i]); } } TEST_F(StringExtensionTest, TestStringSplitWithLimitTwo) { Arena arena; CelValue result; int64_t limit = 2; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; std::vector<std::string> expected = {"This", "Is!!Test"}; ASSERT_NO_FATAL_FAILURE(PerformSplitStringWithLimitTest( &arena, &value, &delimiter, limit, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 2); for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(result.ListOrDie()->Get(&arena, i).StringOrDie().value(), expected[i]); } } TEST_F(StringExtensionTest, TestStringSplitWithLimitOne) { Arena arena; CelValue result; int64_t limit = 1; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; ASSERT_NO_FATAL_FAILURE(PerformSplitStringWithLimitTest( &arena, &value, &delimiter, limit, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 1); EXPECT_EQ(result.ListOrDie()->Get(&arena, 0).StringOrDie().value(), value); } TEST_F(StringExtensionTest, TestStringSplitWithLimitZero) { Arena arena; CelValue result; int64_t limit = 0; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; ASSERT_NO_FATAL_FAILURE(PerformSplitStringWithLimitTest( &arena, &value, &delimiter, limit, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 0); } TEST_F(StringExtensionTest, TestStringSplitWithLimitNegative) { Arena arena; CelValue result; int64_t limit = -1; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; std::vector<std::string> expected = {"This", "Is", "Test"}; ASSERT_NO_FATAL_FAILURE(PerformSplitStringWithLimitTest( &arena, &value, &delimiter, limit, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 3); for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(result.ListOrDie()->Get(&arena, i).StringOrDie().value(), expected[i]); } } TEST_F(StringExtensionTest, TestStringSplitWithLimitAsMaxPossibleSplits) { Arena arena; CelValue result; int64_t limit = 3; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; std::vector<std::string> expected = {"This", "Is", "Test"}; ASSERT_NO_FATAL_FAILURE(PerformSplitStringWithLimitTest( &arena, &value, &delimiter, limit, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 3); for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(result.ListOrDie()->Get(&arena, i).StringOrDie().value(), expected[i]); } } TEST_F(StringExtensionTest, TestStringSplitWithLimitGreaterThanMaxPossibleSplits) { Arena arena; CelValue result; int64_t limit = 4; std::string value = "This!!Is!!Test"; std::string delimiter = "!!"; std::vector<std::string> expected = {"This", "Is", "Test"}; ASSERT_NO_FATAL_FAILURE(PerformSplitStringWithLimitTest( &arena, &value, &delimiter, limit, &result)); ASSERT_EQ(result.type(), CelValue::Type::kList); EXPECT_EQ(result.ListOrDie()->size(), 3); for (int i = 0; i < expected.size(); ++i) { EXPECT_EQ(result.ListOrDie()->Get(&arena, i).StringOrDie().value(), expected[i]); } } TEST_F(StringExtensionTest, TestStringJoin) { Arena arena; CelValue result; std::vector<std::string> value = {"This", "Is", "Test"}; std::string expected = "ThisIsTest"; ASSERT_NO_FATAL_FAILURE(PerformJoinStringTest(&arena, value, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestStringJoinEmptyInput) { Arena arena; CelValue result; std::vector<std::string> value = {}; std::string expected = ""; ASSERT_NO_FATAL_FAILURE(PerformJoinStringTest(&arena, value, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestStringJoinWithSeparator) { Arena arena; CelValue result; std::vector<std::string> value = {"This", "Is", "Test"}; std::string separator = "-"; std::string expected = "This-Is-Test"; ASSERT_NO_FATAL_FAILURE( PerformJoinStringWithSeparatorTest(&arena, value, &separator, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestStringJoinWithMultiCharSeparator) { Arena arena; CelValue result; std::vector<std::string> value = {"This", "Is", "Test"}; std::string separator = "--"; std::string expected = "This--Is--Test"; ASSERT_NO_FATAL_FAILURE( PerformJoinStringWithSeparatorTest(&arena, value, &separator, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestStringJoinWithEmptySeparator) { Arena arena; CelValue result; std::vector<std::string> value = {"This", "Is", "Test"}; std::string separator = ""; std::string expected = "ThisIsTest"; ASSERT_NO_FATAL_FAILURE( PerformJoinStringWithSeparatorTest(&arena, value, &separator, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestStringJoinWithSeparatorEmptyInput) { Arena arena; CelValue result; std::vector<std::string> value = {}; std::string separator = "-"; std::string expected = ""; ASSERT_NO_FATAL_FAILURE( PerformJoinStringWithSeparatorTest(&arena, value, &separator, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestLowerAscii) { Arena arena; CelValue result; std::string value = "ThisIs@Test!-5"; std::string expected = "thisis@test!-5"; ASSERT_NO_FATAL_FAILURE(PerformLowerAsciiTest(&arena, &value, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestLowerAsciiWithEmptyInput) { Arena arena; CelValue result; std::string value = ""; std::string expected = ""; ASSERT_NO_FATAL_FAILURE(PerformLowerAsciiTest(&arena, &value, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } TEST_F(StringExtensionTest, TestLowerAsciiWithNonAsciiCharacter) { Arena arena; CelValue result; std::string value = "TacoCÆt"; std::string expected = "tacocÆt"; ASSERT_NO_FATAL_FAILURE(PerformLowerAsciiTest(&arena, &value, &result)); ASSERT_EQ(result.type(), CelValue::Type::kString); EXPECT_EQ(result.StringOrDie().value(), expected); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/string_extension_func_registrar.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/string_extension_func_registrar_test.cc
4552db5798fb0853b131b783d8875794334fae7f
3109da71-abb0-461e-846c-6d61ac6ece58
cpp
google/arolla
id_filter
arolla/array/id_filter.cc
arolla/array/id_filter_test.cc
#include "arolla/array/id_filter.h" #include <algorithm> #include <cstdint> #include <utility> #include "arolla/memory/buffer.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/util/fingerprint.h" namespace arolla { IdFilter IdFilter::UpperBoundMergeImpl(int64_t size, RawBufferFactory* buf_factory, const IdFilter& a, const IdFilter& b) { if (a.type() == kEmpty || b.type() == kFull) return b; if (b.type() == kEmpty || a.type() == kFull) return a; if (a.IsSame(b)) return a; if (std::max(a.ids().size(), b.ids().size()) >= size * kDenseSparsityLimit) { return kFull; } Buffer<int64_t>::Builder bldr(a.ids().size() + b.ids().size(), buf_factory); auto inserter = bldr.GetInserter(); auto ia = a.ids().begin(); auto ib = b.ids().begin(); while (ia != a.ids().end() && ib != b.ids().end()) { int64_t va = *ia - a.ids_offset(); int64_t vb = *ib - b.ids_offset(); int64_t v = std::min(va, vb); if (va == v) ia++; if (vb == v) ib++; inserter.Add(v); } while (ia != a.ids().end()) inserter.Add(*(ia++) - a.ids_offset()); while (ib != b.ids().end()) inserter.Add(*(ib++) - b.ids_offset()); return IdFilter(size, std::move(bldr).Build(inserter)); } void FingerprintHasherTraits<IdFilter>::operator()( FingerprintHasher* hasher, const IdFilter& value) const { hasher->Combine(value.type()); if (value.type() != IdFilter::Type::kFull) { hasher->Combine(value.ids()); } } }
#include "arolla/array/id_filter.h" #include <cstdint> #include <tuple> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/memory/buffer.h" #include "arolla/memory/raw_buffer_factory.h" namespace arolla { namespace { TEST(IdFilterTest, UpperBoundIntersect) { IdFilter empty(IdFilter::kEmpty); IdFilter full(IdFilter::kFull); IdFilter a = IdFilter(5, CreateBuffer<int64_t>({3, 4})); IdFilter b = IdFilter(5, CreateBuffer<int64_t>({0, 2, 3})); IdFilter c = IdFilter(5, CreateBuffer<int64_t>({0, 1, 3, 4})); EXPECT_TRUE(IdFilter::UpperBoundIntersect(a).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(a, empty).IsSame(empty)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(empty, a).IsSame(empty)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(a, full).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(full, a).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(a, b).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(b, a).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(a, b, c).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(c, b, a).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(a, empty, c).IsSame(empty)); EXPECT_TRUE(IdFilter::UpperBoundIntersect(full, b, c).IsSame(b)); } TEST(IdFilterTest, UpperBoundMerge) { IdFilter empty(IdFilter::kEmpty); IdFilter full(IdFilter::kFull); IdFilter a = IdFilter(5, CreateBuffer<int64_t>({3, 4})); IdFilter b = IdFilter(5, CreateBuffer<int64_t>({0, 2, 3})); RawBufferFactory* bf = GetHeapBufferFactory(); EXPECT_TRUE(IdFilter::UpperBoundMerge(5, bf, a).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundMerge(5, bf, a, empty).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundMerge(5, bf, empty, a).IsSame(a)); EXPECT_TRUE(IdFilter::UpperBoundMerge(25, bf, a, full).IsSame(full)); EXPECT_TRUE(IdFilter::UpperBoundMerge(25, bf, a, full, b).IsSame(full)); EXPECT_TRUE(IdFilter::UpperBoundMerge(5, bf, a, b).IsSame(full)); EXPECT_THAT(IdFilter::UpperBoundMerge(25, bf, a, b).ids(), testing::ElementsAre(0, 2, 3, 4)); } TEST(IdFilterTest, IntersectPartial_ForEach) { IdFilter a = IdFilter(5, CreateBuffer<int64_t>({3, 4})); IdFilter b = IdFilter(5, CreateBuffer<int64_t>({0, 2, 3})); IdFilter c = IdFilter(5, CreateBuffer<int64_t>({0, 1, 3, 4})); using FnArgs = std::tuple<int64_t, int64_t, int64_t>; std::vector<FnArgs> res; auto fn = [&](int64_t id, int64_t offset1, int64_t offset2) { res.push_back({id, offset1, offset2}); }; IdFilter::IntersectPartial_ForEach(a, b, fn); EXPECT_EQ(res, (std::vector<FnArgs>{{3, 0, 2}})); res.clear(); IdFilter::IntersectPartial_ForEach(b, a, fn); EXPECT_EQ(res, (std::vector<FnArgs>{{3, 2, 0}})); res.clear(); IdFilter::IntersectPartial_ForEach(a, c, fn); EXPECT_EQ(res, (std::vector<FnArgs>{{3, 0, 2}, {4, 1, 3}})); res.clear(); IdFilter::IntersectPartial_ForEach(c, a, fn); EXPECT_EQ(res, (std::vector<FnArgs>{{3, 2, 0}, {4, 3, 1}})); res.clear(); IdFilter::IntersectPartial_ForEach(b, c, fn); EXPECT_EQ(res, (std::vector<FnArgs>{{0, 0, 0}, {3, 2, 2}})); res.clear(); IdFilter::IntersectPartial_ForEach(c, b, fn); EXPECT_EQ(res, (std::vector<FnArgs>{{0, 0, 0}, {3, 2, 2}})); res.clear(); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/id_filter.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/array/id_filter_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
69fb686e-9d31-45fd-992b-c343fb30b34f
cpp
tensorflow/tensorflow
prefetch_interval_picker
third_party/xla/xla/service/memory_space_assignment/prefetch_interval_picker.cc
third_party/xla/xla/service/memory_space_assignment/prefetch_interval_picker_test.cc
#include "xla/service/memory_space_assignment/prefetch_interval_picker.h" #include <algorithm> #include <cmath> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo_value.h" #include "xla/service/memory_space_assignment/cost_analysis.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace memory_space_assignment { namespace { const float kEvictionRetryMultiplier = 2.0; const int kNumExploredDecreasingIntervals = 100; } bool InstructionCountPrefetchIntervalPicker::CanAllocateInAlternateMemoryNoCopy( const Shape& shape, int64_t start_time, int64_t end_time) const { return end_time - start_time <= max_overlap_count_; } int64_t InstructionCountPrefetchIntervalPicker::PreferredEvictionEndTime( const Shape& shape, int64_t start_time, int64_t latest_end_time) const { return std::min(start_time + min_overlap_count_, latest_end_time); } int64_t InstructionCountPrefetchIntervalPicker::LatestPrefetchStartTime( const Shape& shape, int64_t start_time, int64_t end_time, const HloUse* use) const { return end_time - min_overlap_count_; } int64_t InstructionCountPrefetchIntervalPicker::PreferredPrefetchStartTime( const Shape& shape, int64_t earliest_prefetch_start_time, int64_t latest_prefetch_start_time, int64_t prefetch_end_time) const { return std::max(earliest_prefetch_start_time, prefetch_end_time - max_overlap_count_); } int64_t InstructionCountPrefetchIntervalPicker::EstimatedPrefetchEndTime( const Shape& shape, int64_t start_time, int64_t end_time) const { return end_time; } float InstructionCountPrefetchIntervalPicker::GetLogicalIntervalElapsed( int64_t start_time, int64_t end_time) const { return static_cast<float>(end_time - start_time - 1); } void InstructionCountPrefetchIntervalPicker::Begin( const HloUse& use, int64_t start_time, int64_t end_time, std::optional<int64_t> preferred_time) { end_time_ = end_time; const Shape& shape = ShapeUtil::GetSubshape( use.instruction->operand(use.operand_number)->shape(), use.operand_index); if (preferred_time) { current_prefetch_time_ = *preferred_time; } else { current_prefetch_time_ = PreferredPrefetchStartTime(shape, start_time, end_time, end_time); } } int64_t InstructionCountPrefetchIntervalPicker::Next() { CHECK(!Done()) << "Prefetch interval picker's Next() is called even though " "Done() is false"; return current_prefetch_time_++; } bool InstructionCountPrefetchIntervalPicker::Done() const { return end_time_ - current_prefetch_time_ <= min_overlap_count_; } int64_t InstructionCountPrefetchIntervalPicker::latest_time() const { return end_time_ - min_overlap_count_ - 1; } std::string InstructionCountPrefetchIntervalPicker::ToDebugString() const { return absl::StrCat("Overlapped HLOs = ", end_time_ - current_prefetch_time_); } std::string InstructionCountPrefetchIntervalPicker::ToNoCopyDebugString( const Shape& shape, int64_t start_time, int64_t end_time) const { return absl::StrCat("Overlapped HLOs = ", end_time - start_time); } CostAnalysisPrefetchIntervalPicker::CostAnalysisPrefetchIntervalPicker( const CostAnalysis& cost_analysis, float min_overlap_to_async_copy_ratio, float preferred_overlap_to_async_copy_ratio, float max_overlap_to_mem_size_async_copy_ratio, int64_t mem_size_bytes, const Shape* shape_override) : while_nest_level_( cost_analysis.hlo_live_range().instruction_schedule().size() + 1, 0), computation_nest_level_( cost_analysis.hlo_live_range().instruction_schedule().size() + 1, 0), cost_analysis_(cost_analysis), min_overlap_to_async_copy_ratio_(min_overlap_to_async_copy_ratio), preferred_overlap_to_async_copy_ratio_( preferred_overlap_to_async_copy_ratio), max_async_copy_elapsed_( cost_analysis_.GetAsyncCopyElapsed( ShapeUtil::MakeShape(S32, {mem_size_bytes / 4})) * max_overlap_to_mem_size_async_copy_ratio), shape_override_(shape_override ? std::optional(*shape_override) : std::nullopt) { instruction_schedule_ = &cost_analysis_.hlo_live_range().instruction_schedule(); std::vector<float> instructions_elapsed_time( instruction_schedule_->size() + 1, 0.0); int max_while_nest_level = 0; for (const auto& instruction_and_logical_time : *instruction_schedule_) { const HloInstruction* instruction = instruction_and_logical_time.first; int64_t logical_time = instruction_and_logical_time.second; if (logical_time >= instructions_elapsed_time.size()) { instructions_elapsed_time.resize(logical_time + 1, 0.0); while_nest_level_.resize(logical_time + 1, 0); } int while_nest_level = cost_analysis_.CalculateComputationNestLevel( instruction_and_logical_time.first, true); while_nest_level_[logical_time] = while_nest_level; max_while_nest_level = std::max(max_while_nest_level, while_nest_level); int computation_nest_level = cost_analysis_.CalculateComputationNestLevel( instruction_and_logical_time.first, false); computation_nest_level_[logical_time] = computation_nest_level; if (instruction->opcode() == HloOpcode::kWhile || instruction->opcode() == HloOpcode::kConditional) { continue; } float elapsed_time = cost_analysis_.GetInstructionElapsed( *instruction_and_logical_time.first); instructions_elapsed_time[logical_time] = elapsed_time * cost_analysis_.GetWhileNestMultiplier(while_nest_level); } float cumsum = 0.0; elapsed_time_cumsum_.reserve(instructions_elapsed_time.size()); for (float elapsed_time : instructions_elapsed_time) { cumsum += elapsed_time; elapsed_time_cumsum_.push_back(cumsum); } const int64_t size = instructions_elapsed_time.size(); CHECK_EQ(size, while_nest_level_.size()); std::vector<int> most_recent_by_level(while_nest_level_.size(), -1); int prev_nest_level = 0; int change_idx = -1; while_nest_level_change_.reserve(size); for (int i = 0; i < size; ++i) { int nest_level = while_nest_level_[i]; if (nest_level != prev_nest_level) { prev_nest_level = nest_level; change_idx = -1; for (int smaller_level = 0; smaller_level < nest_level; smaller_level++) { change_idx = std::max(change_idx, most_recent_by_level[smaller_level]); } } most_recent_by_level[nest_level] = i; while_nest_level_change_.push_back(change_idx); } for (int i = 0; i <= max_while_nest_level; ++i) { while_execution_counts_.push_back(cost_analysis_.GetWhileNestMultiplier(i)); } } float CostAnalysisPrefetchIntervalPicker::GetMaxElapsedInAlternateMemory( float async_copy_elapsed) const { return max_async_copy_elapsed_; } bool CostAnalysisPrefetchIntervalPicker::CanAllocateInAlternateMemoryNoCopy( const Shape& shape, int64_t start_time, int64_t end_time) const { float async_copy_elapsed = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); float logical_interval_elapsed = GetLogicalIntervalElapsed(start_time, end_time); return GetMaxElapsedInAlternateMemory(async_copy_elapsed) > logical_interval_elapsed; } int64_t CostAnalysisPrefetchIntervalPicker::PreferredEvictionEndTime( const Shape& shape, int64_t start_time, int64_t latest_end_time) const { float async_copy_elapsed = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); int64_t end_time; for (end_time = start_time + 1; end_time <= latest_end_time; ++end_time) { float logical_interval_elapsed = GetLogicalIntervalElapsed(start_time, end_time); if (logical_interval_elapsed >= (1 + kEvictionRetryMultiplier * retry_number_) * preferred_overlap_to_async_copy_ratio_ * async_copy_elapsed) { break; } } return end_time; } int64_t CostAnalysisPrefetchIntervalPicker::LatestPrefetchStartTime( const Shape& shape, int64_t start_time, int64_t end_time, const HloUse* use) const { float async_copy_elapsed = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); float inst_elapsed_reduction = 0.0f; if (use) { float elapsed_time = cost_analysis_.GetInstructionElapsed(*use->instruction); float elapsed_time_in_alternate_mem = cost_analysis_.GetInstructionElapsedInAlternateMemory( *use->instruction, {std::make_pair(use->operand_number, use->operand_index)}, {}); inst_elapsed_reduction = elapsed_time - elapsed_time_in_alternate_mem; } int end_nest_level = computation_nest_level_[end_time]; float min_interval = min_overlap_to_async_copy_ratio_ * async_copy_elapsed; int latest_prefetch_time; for (latest_prefetch_time = end_time - 1; latest_prefetch_time >= start_time && (computation_nest_level_[latest_prefetch_time] != end_nest_level || min_interval > GetLogicalIntervalElapsed(latest_prefetch_time, end_time) + inst_elapsed_reduction); --latest_prefetch_time) { } return latest_prefetch_time; } int64_t CostAnalysisPrefetchIntervalPicker::PreferredPrefetchStartTime( const Shape& shape, int64_t earliest_prefetch_start_time, int64_t latest_prefetch_start_time, int64_t prefetch_end_time) const { float async_copy_elapsed = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); int64_t preferred_prefetch_start_time = earliest_prefetch_start_time; float preferred_interval = preferred_overlap_to_async_copy_ratio_ * async_copy_elapsed; float best_interval = GetLogicalIntervalElapsed(earliest_prefetch_start_time, prefetch_end_time); int end_nest_level = computation_nest_level_[prefetch_end_time]; for (int64_t prefetch_start_time = earliest_prefetch_start_time + 1; prefetch_start_time <= latest_prefetch_start_time; ++prefetch_start_time) { float interval = GetLogicalIntervalElapsed(prefetch_start_time, prefetch_end_time); if (computation_nest_level_[prefetch_start_time] == end_nest_level && std::abs(preferred_interval - interval) < std::abs(preferred_interval - best_interval)) { best_interval = interval; preferred_prefetch_start_time = prefetch_start_time; } } return preferred_prefetch_start_time; } int64_t CostAnalysisPrefetchIntervalPicker::LatestPrefetchEndTime( int64_t original_prefetch_end_time, int64_t proposed_prefetch_end_time) const { int64_t original_nest_level = computation_nest_level_[original_prefetch_end_time]; int64_t new_prefetch_end_time; for (new_prefetch_end_time = proposed_prefetch_end_time; computation_nest_level_[new_prefetch_end_time] != original_nest_level; --new_prefetch_end_time) { } return new_prefetch_end_time; } int64_t CostAnalysisPrefetchIntervalPicker::EstimatedPrefetchEndTime( const Shape& shape, int64_t start_time, int64_t end_time) const { float async_copy_elapsed = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); int64_t estimated_end_time; for (estimated_end_time = start_time + 1; estimated_end_time < end_time; ++estimated_end_time) { float interval = GetLogicalIntervalElapsed(start_time, estimated_end_time); if (interval >= async_copy_elapsed) { break; } } return estimated_end_time; } void CostAnalysisPrefetchIntervalPicker::Begin( const HloUse& use, int64_t start_time, int64_t end_time, std::optional<int64_t> preferred_time) { const Shape& shape = ShapeUtil::GetSubshape( use.instruction->operand(use.operand_number)->shape(), use.operand_index); async_copy_elapsed_ = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); float elapsed_time = cost_analysis_.GetInstructionElapsed(*use.instruction); float elapsed_time_in_alternate_mem = cost_analysis_.GetInstructionElapsedInAlternateMemory( *use.instruction, {std::make_pair(use.operand_number, use.operand_index)}, {}); inst_elapsed_reduction_ = elapsed_time - elapsed_time_in_alternate_mem; end_logical_time_ = end_time; int end_nest_level = computation_nest_level_[end_logical_time_]; float min_interval = min_overlap_to_async_copy_ratio_ * async_copy_elapsed_; latest_prefetch_time_ = LatestPrefetchStartTime(shape, start_time, end_time, &use); float max_interval = GetMaxElapsedInAlternateMemory(async_copy_elapsed_); for (earliest_prefetch_time_ = start_time; earliest_prefetch_time_ < latest_prefetch_time_ && (computation_nest_level_[earliest_prefetch_time_] != end_nest_level || max_interval < GetLogicalIntervalElapsed(earliest_prefetch_time_, end_logical_time_)); ++earliest_prefetch_time_) { } if (earliest_prefetch_time_ > latest_prefetch_time_) { increasing_prefetch_time_iterator_ = earliest_prefetch_time_; decreasing_prefetch_time_iterator_ = latest_prefetch_time_; CHECK(Done()); return; } int64_t starting_prefetch_time; if (preferred_time && *preferred_time <= latest_prefetch_time_) { starting_prefetch_time = *preferred_time; } else { starting_prefetch_time = PreferredPrefetchStartTime(shape, earliest_prefetch_time_, latest_prefetch_time_, end_logical_time_); } float preferred_interval = preferred_overlap_to_async_copy_ratio_ * async_copy_elapsed_; VLOG(4) << "Interval min/max/preferred = " << min_interval << " " << max_interval << " " << preferred_interval << " prefetch time earliest/latest/starting = " << earliest_prefetch_time_ << " " << latest_prefetch_time_ << " " << starting_prefetch_time; increasing_prefetch_time_iterator_ = starting_prefetch_time; decreasing_prefetch_time_iterator_ = starting_prefetch_time; using_increasing_prefetch_time_iterator_ = true; Next(); } int64_t CostAnalysisPrefetchIntervalPicker::Next() { CHECK(!Done()) << "Prefetch interval picker's Next() is called even though " "Done() is false"; if (using_increasing_prefetch_time_iterator_) { int64_t prefetch_time = increasing_prefetch_time_iterator_++; while (increasing_prefetch_time_iterator_ <= latest_prefetch_time_ && computation_nest_level_[increasing_prefetch_time_iterator_] != computation_nest_level_[end_logical_time_]) { ++increasing_prefetch_time_iterator_; } if (decreasing_prefetch_time_iterator_ >= earliest_prefetch_time_) { using_increasing_prefetch_time_iterator_ = false; } return prefetch_time; } else { int64_t prefetch_time = decreasing_prefetch_time_iterator_--; float next_target_interval_elapsed = 0; if (increasing_prefetch_time_iterator_ > latest_prefetch_time_) { next_target_interval_elapsed = GetLogicalIntervalElapsed(prefetch_time, end_logical_time_) + (GetLogicalIntervalElapsed(earliest_prefetch_time_, end_logical_time_) / kNumExploredDecreasingIntervals); VLOG(3) << "Next target interval elapsed: " << next_target_interval_elapsed; } while (decreasing_prefetch_time_iterator_ >= earliest_prefetch_time_ && (computation_nest_level_[decreasing_prefetch_time_iterator_] != computation_nest_level_[end_logical_time_] || GetLogicalIntervalElapsed(decreasing_prefetch_time_iterator_, end_logical_time_) < next_target_interval_elapsed)) { --decreasing_prefetch_time_iterator_; } if (increasing_prefetch_time_iterator_ <= latest_prefetch_time_) { using_increasing_prefetch_time_iterator_ = true; } return prefetch_time; } } bool CostAnalysisPrefetchIntervalPicker::Done() const { return increasing_prefetch_time_iterator_ > latest_prefetch_time_ && decreasing_prefetch_time_iterator_ < earliest_prefetch_time_; } int64_t CostAnalysisPrefetchIntervalPicker::latest_time() const { return latest_prefetch_time_; } void CostAnalysisPrefetchIntervalPicker::SetRetryNumber(int retry_number) { retry_number_ = retry_number; } int CostAnalysisPrefetchIntervalPicker::GetMinWhileNestLevel( int64_t start_time, int64_t end_time) const { int min_nest_level = std::min(while_nest_level_[start_time], while_nest_level_[end_time]); int change_idx = while_nest_level_change_[end_time]; while (change_idx >= start_time) { min_nest_level = std::min(min_nest_level, while_nest_level_[change_idx]); change_idx = while_nest_level_change_[change_idx]; } return min_nest_level; } float CostAnalysisPrefetchIntervalPicker::GetLogicalIntervalElapsed( int64_t start_time, int64_t end_time) const { CHECK_LE(start_time, end_time); if (start_time == end_time) { return 0.0; } if (start_time < 0) { start_time = 0; } int interval_while_nest_level = GetMinWhileNestLevel(start_time, end_time); return (elapsed_time_cumsum_[end_time - 1] - elapsed_time_cumsum_[start_time]) / while_execution_counts_[interval_while_nest_level]; } std::string CostAnalysisPrefetchIntervalPicker::ToDebugString() const { int current_logical_prefetch_time = using_increasing_prefetch_time_iterator_ ? increasing_prefetch_time_iterator_ : decreasing_prefetch_time_iterator_; float logical_interval_elapsed = GetLogicalIntervalElapsed( current_logical_prefetch_time, end_logical_time_); return absl::StrCat( "Async copy elapsed (s) = ", async_copy_elapsed_, ", inst elapsed reduction (s) = ", inst_elapsed_reduction_, ", logical interval elapsed (s) = ", logical_interval_elapsed, ", interval = (", current_logical_prefetch_time, ", ", end_logical_time_, ")"); } std::string CostAnalysisPrefetchIntervalPicker::ToNoCopyDebugString( const Shape& shape, int64_t start_time, int64_t end_time) const { float async_copy_elapsed = cost_analysis_.GetAsyncCopyElapsed( shape_override_ ? *shape_override_ : shape); float logical_interval_elapsed = GetLogicalIntervalElapsed(start_time, end_time); return absl::StrCat( "Async copy elapsed (s) = ", async_copy_elapsed, ", logical interval elapsed (s) = ", logical_interval_elapsed); } std::optional<float> CostAnalysisPrefetchIntervalPicker::BufferIntervalAlternateMemoryBenefit( const GlobalDecreasingSizeBestFitHeap<HloValue>::BufferInterval& interval) const { return cost_analysis_.GetMemoryBoundedness(interval); } } }
#include "xla/service/memory_space_assignment/prefetch_interval_picker.h" #include <cstdint> #include <optional> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/memory_space_assignment/cost_analysis.h" #include "xla/service/memory_space_assignment/testing_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace memory_space_assignment { namespace { constexpr int64_t kPointerSize = 8; int64_t ShapeSize(const Shape& shape) { return ShapeUtil::ByteSizeOf(shape, kPointerSize); } using CostAnalysisPrefetchIntervalPickerTest = HloTestBase; TEST_F(CostAnalysisPrefetchIntervalPickerTest, PrefetchIntervalOrder) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) f = f32[2,4] negate(e) g = f32[2,4] negate(f) h = f32[2,4] negate(g) i = f32[2,4] negate(h) j = f32[2,4] negate(i) k = f32[2,4] negate(j) l = f32[2,4] negate(k) m = f32[2,4] negate(l) n = f32[2,4] negate(m) o = f32[2,4] negate(n) p = f32[2,4] negate(o) q = f32[2,4] negate(p) r = f32[2,4] negate(q) s = f32[2,4] negate(r) t = f32[2,4] negate(s) u = f32[2,4] negate(t) ROOT v = f32[2,4] add(u, param0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloCostAnalysis hlo_cost_analysis(ShapeSize); CostAnalysisOptions options; HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); TF_ASSERT_OK_AND_ASSIGN( auto cost_analysis, FakeCostAnalysis::Create(hlo_cost_analysis_costs, *module, options)); CostAnalysisPrefetchIntervalPicker interval_picker( *cost_analysis, 1.0, 2.0, 4.0, 32); HloInstruction* root = module->entry_computation()->root_instruction(); const HloUse use{root, 1, {}}; interval_picker.Begin(use, 0, 22, std::nullopt); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 15); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 16); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 14); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 17); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 13); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 18); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 12); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 11); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 10); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 9); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_TRUE(interval_picker.Done()); interval_picker.Begin(use, 19, 22, std::nullopt); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_TRUE(interval_picker.Done()); } TEST_F(CostAnalysisPrefetchIntervalPickerTest, PrefetchIntervalOrderWhile) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true while_condition { param1 = (f32[2,4]) parameter(0) ROOT cond = pred[] constant(true) } while_body { param2 = (f32[2,4]) parameter(0) gte2 = f32[2,4] get-tuple-element(param2), index=0 add = f32[2,4] add(gte2, gte2) ROOT tuple2 = (f32[2,4]) tuple(add) } ENTRY Entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) f = f32[2,4] negate(e) g = f32[2,4] negate(f) h = f32[2,4] negate(g) i = f32[2,4] negate(h) j = f32[2,4] negate(i) k = f32[2,4] negate(j) l = f32[2,4] negate(k) m = f32[2,4] negate(l) n = f32[2,4] negate(m) o = f32[2,4] negate(n) p = f32[2,4] negate(o) q = f32[2,4] negate(p) tuple = (f32[2,4]) tuple(q) while = (f32[2,4]) while(tuple), condition=while_condition, body=while_body gte1 = f32[2,4] get-tuple-element(while), index=0 r = f32[2,4] negate(gte1) s = f32[2,4] negate(r) t = f32[2,4] negate(s) u = f32[2,4] negate(t) ROOT v = f32[2,4] add(u, param0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloCostAnalysis hlo_cost_analysis(ShapeSize); CostAnalysisOptions options; HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); TF_ASSERT_OK_AND_ASSIGN( auto cost_analysis, FakeCostAnalysis::Create(hlo_cost_analysis_costs, *module, options)); CostAnalysisPrefetchIntervalPicker interval_picker( *cost_analysis, 1.0, 2.0, 12.0, 32); EXPECT_EQ(cost_analysis->GetWhileNestMultiplier(1), 5.0); HloInstruction* root = module->entry_computation()->root_instruction(); const HloUse use{root, 1, {}}; interval_picker.Begin(use, 0, 31, std::nullopt); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 25); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 26); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 18); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 27); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_EQ(interval_picker.Next(), 17); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_TRUE(interval_picker.Done()); } TEST_F(CostAnalysisPrefetchIntervalPickerTest, NestedWhile) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true while_condition.2 { param1 = (f32[2,4]) parameter(0) ROOT cond = pred[] constant(true) } while_body.2 { param2 = (f32[2,4]) parameter(0) gte2 = f32[2,4] get-tuple-element(param2), index=0 add = f32[2,4] add(gte2, gte2) ROOT tuple2 = (f32[2,4]) tuple(add) } while_condition.1 { param3 = (f32[2,4]) parameter(0) ROOT cond = pred[] constant(true) } while_body.1 { param4 = (f32[2,4]) parameter(0) gte1 = f32[2,4] get-tuple-element(param4), index=0 add1 = f32[2,4] add(gte1, gte1) tuple1 = (f32[2,4]) tuple(add1) while = (f32[2,4]) while(tuple1), condition=while_condition.2, body=while_body.2 gte2 = f32[2,4] get-tuple-element(while), index=0 add2 = f32[2,4] add(gte2, gte2) ROOT tuple2 = (f32[2,4]) tuple(add2) } ENTRY Entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) tuple = (f32[2,4]) tuple(c) while = (f32[2,4]) while(tuple), condition=while_condition.1, body=while_body.1 gte1 = f32[2,4] get-tuple-element(while), index=0 ROOT root = f32[2,4] add(gte1, param0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloCostAnalysis hlo_cost_analysis(ShapeSize); CostAnalysisOptions options; HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); TF_ASSERT_OK_AND_ASSIGN( auto cost_analysis, FakeCostAnalysis::Create(hlo_cost_analysis_costs, *module, options)); CostAnalysisPrefetchIntervalPicker interval_picker( *cost_analysis, 1.0, 2.0, 12.0, 32); HloInstruction* root = module->entry_computation()->root_instruction(); const HloUse use{root, 1, {}}; const Shape& shape = root->operand(1)->shape(); EXPECT_EQ(interval_picker.LatestPrefetchStartTime(shape, 0, 23, &use), 4); } TEST_F(CostAnalysisPrefetchIntervalPickerTest, ConsecutiveConditionals) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true true_computation.0 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg1 = f32[3]{0} negate(gte) } false_computation.0 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg2 = f32[3]{0} negate(gte) } true_computation.1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg1 = f32[3]{0} negate(gte) } false_computation.1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg2 = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = f32[3]{0} parameter(1) p2 = pred[] parameter(2) tuple0 = (f32[3]{0}) tuple(p0) tuple1 = (f32[3]{0}) tuple(p1) conditional0 = f32[3]{0} conditional(p2, tuple0, tuple0), true_computation=true_computation.0, false_computation=false_computation.0 conditional1 = f32[3]{0} conditional(p2, tuple1, tuple1), true_computation=true_computation.1, false_computation=false_computation.1 ROOT tuple2 = (f32[3]{0}, f32[3]{0}) tuple(conditional0, conditional1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloCostAnalysis hlo_cost_analysis(ShapeSize); CostAnalysisOptions options; HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); TF_ASSERT_OK_AND_ASSIGN( auto cost_analysis, FakeCostAnalysis::Create(hlo_cost_analysis_costs, *module, options)); CostAnalysisPrefetchIntervalPicker interval_picker( *cost_analysis, 1.0, 2.0, 12.0, 32); LOG(INFO) << module->ToString(); HloInstruction* conditional1 = module->entry_computation()->GetInstructionWithName("conditional1"); const HloUse use{conditional1, 1, {0}}; const Shape& shape = module->entry_computation()->parameter_instruction(0)->shape(); EXPECT_LT(interval_picker.LatestPrefetchStartTime(shape, 0, 11, &use), 5); } TEST_F(CostAnalysisPrefetchIntervalPickerTest, EarliestLatestWindowTooSmall) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[2,4] parameter(0) negate = f32[2,4] negate(param0) tanh = f32[2,4] tanh(param0) ROOT add = f32[2,4] add(tanh, negate) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloCostAnalysis hlo_cost_analysis(ShapeSize); CostAnalysisOptions options; HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); TF_ASSERT_OK_AND_ASSIGN( auto cost_analysis, FakeCostAnalysis::Create(hlo_cost_analysis_costs, *module, options)); cost_analysis->SetOverrideForGetInstructionElapsed( [](const HloInstruction& hlo) { if (hlo.opcode() == HloOpcode::kTanh) { return 20.0; } return 1.0; }); CostAnalysisPrefetchIntervalPicker interval_picker( *cost_analysis, 1.0, 2.0, 12.0, 32); HloInstruction* root = module->entry_computation()->root_instruction(); const HloUse use{root, 1, {}}; interval_picker.Begin(use, 1, 3, std::nullopt); LOG(INFO) << interval_picker.ToDebugString(); EXPECT_FALSE(interval_picker.Done()); EXPECT_EQ(interval_picker.Next(), 1); EXPECT_TRUE(interval_picker.Done()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/prefetch_interval_picker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/prefetch_interval_picker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
46d571f3-161a-4386-84a9-90482896c9ef
cpp
tensorflow/tensorflow
sparse_add_op
tensorflow/core/kernels/sparse_add_op.cc
tensorflow/core/kernels/sparse_add_op_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { template <typename T, typename Treal> class SparseAddOp : public OpKernel { public: explicit SparseAddOp(OpKernelConstruction *ctx) : OpKernel(ctx) {} void Compute(OpKernelContext *ctx) override { const Tensor *a_indices, *b_indices, *a_values_t, *b_values_t, *a_shape, *b_shape, *thresh_t; OP_REQUIRES_OK(ctx, ctx->input("a_indices", &a_indices)); OP_REQUIRES_OK(ctx, ctx->input("b_indices", &b_indices)); OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(a_indices->shape()) && TensorShapeUtils::IsMatrix(b_indices->shape()), errors::InvalidArgument( "Input indices should be matrices but received shapes: ", a_indices->shape().DebugString(), " and ", b_indices->shape().DebugString())); const int64_t a_nnz = a_indices->dim_size(0); const int64_t b_nnz = b_indices->dim_size(0); const int num_dims = a_indices->dim_size(1); OP_REQUIRES(ctx, b_indices->dim_size(1) == num_dims, errors::InvalidArgument( "Input indices must have the same dimension, got ", num_dims, " and ", b_indices->dim_size(1))); OP_REQUIRES_OK(ctx, ctx->input("a_values", &a_values_t)); OP_REQUIRES_OK(ctx, ctx->input("b_values", &b_values_t)); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(a_values_t->shape()) && TensorShapeUtils::IsVector(b_values_t->shape()), errors::InvalidArgument( "Input values should be vectors but received shapes: ", a_values_t->shape().DebugString(), " and ", b_values_t->shape().DebugString())); auto a_values = ctx->input(1).vec<T>(); auto b_values = ctx->input(4).vec<T>(); OP_REQUIRES( ctx, a_values.size() == a_nnz && b_values.size() == b_nnz, errors::InvalidArgument("Expected ", a_nnz, " and ", b_nnz, " non-empty input values, got ", a_values.size(), " and ", b_values.size())); OP_REQUIRES_OK(ctx, ctx->input("a_shape", &a_shape)); OP_REQUIRES_OK(ctx, ctx->input("b_shape", &b_shape)); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(a_shape->shape()) && TensorShapeUtils::IsVector(b_shape->shape()), errors::InvalidArgument( "Input shapes should be a vector but received shapes ", a_shape->shape().DebugString(), " and ", b_shape->shape().DebugString())); OP_REQUIRES( ctx, a_shape->NumElements() == num_dims, errors::InvalidArgument("Second dimension of a_indices and length of " "a_shape must match, got ", num_dims, " and ", a_shape->NumElements())); OP_REQUIRES(ctx, num_dims > 0, errors::InvalidArgument("Tesors must not be empty")); OP_REQUIRES( ctx, a_shape->IsSameSize(*b_shape), errors::InvalidArgument( "Operands do not have the same ranks; got shapes: ", a_shape->SummarizeValue(10), " and ", b_shape->SummarizeValue(10))); const auto a_shape_flat = a_shape->flat<int64_t>(); const auto b_shape_flat = b_shape->flat<int64_t>(); for (int i = 0; i < a_shape->NumElements(); ++i) { OP_REQUIRES(ctx, a_shape_flat(i) == b_shape_flat(i), errors::InvalidArgument( "Operands' shapes do not match: got ", a_shape_flat(i), " and ", b_shape_flat(i), " for dimension ", i)); } OP_REQUIRES_OK(ctx, ctx->input("thresh", &thresh_t)); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(thresh_t->shape()), errors::InvalidArgument( "The magnitude threshold must be a scalar: got shape ", thresh_t->shape().DebugString())); const Treal thresh = thresh_t->scalar<Treal>()(); auto a_indices_mat = a_indices->matrix<int64_t>(); auto b_indices_mat = b_indices->matrix<int64_t>(); std::vector<std::pair<bool, int64>> entries_to_copy; entries_to_copy.reserve(a_nnz + b_nnz); std::vector<T> out_values; int64_t i = 0, j = 0; T s; while (i < a_nnz && j < b_nnz) { switch (sparse::DimComparator::cmp(a_indices_mat, b_indices_mat, i, j, num_dims)) { case -1: entries_to_copy.emplace_back(true, i); out_values.push_back(a_values(i)); ++i; break; case 0: s = a_values(i) + b_values(j); if (thresh <= std::abs(s)) { entries_to_copy.emplace_back(true, i); out_values.push_back(s); } ++i; ++j; break; case 1: entries_to_copy.emplace_back(false, j); out_values.push_back(b_values(j)); ++j; break; } } #define HANDLE_LEFTOVERS(A_OR_B, IDX, IS_A) \ while (IDX < A_OR_B##_nnz) { \ entries_to_copy.emplace_back(IS_A, IDX); \ out_values.push_back(A_OR_B##_values(IDX)); \ ++IDX; \ } HANDLE_LEFTOVERS(a, i, true); HANDLE_LEFTOVERS(b, j, false); #undef HANDLE_LEFTOVERS const int64_t sum_nnz = out_values.size(); Tensor *out_indices_t, *out_values_t; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({sum_nnz, num_dims}), &out_indices_t)); OP_REQUIRES_OK( ctx, ctx->allocate_output(1, TensorShape({sum_nnz}), &out_values_t)); auto out_indices_mat = out_indices_t->matrix<int64_t>(); auto out_values_flat = out_values_t->vec<T>(); for (i = 0; i < sum_nnz; ++i) { const bool from_a = entries_to_copy[i].first; const int64_t idx = entries_to_copy[i].second; out_indices_mat.chip<0>(i) = from_a ? a_indices_mat.chip<0>(idx) : b_indices_mat.chip<0>(idx); } if (sum_nnz > 0) { std::copy_n(out_values.begin(), sum_nnz, &out_values_flat(0)); } ctx->set_output(2, *a_shape); } }; #define REGISTER_KERNELS(type, thresh_type) \ REGISTER_KERNEL_BUILDER( \ Name("SparseAdd").Device(DEVICE_CPU).TypeConstraint<type>("T"), \ SparseAddOp<type, thresh_type>) REGISTER_KERNELS(float, float); REGISTER_KERNELS(double, double); REGISTER_KERNELS(int64_t, int64); REGISTER_KERNELS(int32, int32); REGISTER_KERNELS(int16, int16); REGISTER_KERNELS(int8, int8); REGISTER_KERNELS(complex64, float); REGISTER_KERNELS(complex128, double); #undef REGISTER_KERNELS }
#include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class SparseAddOpTest : public OpsTestBase { protected: template <typename T> void MakeOp() { DataType value_type = tensorflow::DataTypeToEnum<T>::value; DataType thresh_type = value_type; if (std::is_same<T, std::complex<float>>::value) { thresh_type = DT_FLOAT; } else if (std::is_same<T, std::complex<double>>::value) { thresh_type = DT_DOUBLE; } TF_ASSERT_OK(NodeDefBuilder("sparseadd", "SparseAdd") .Input(FakeInput(DT_INT64)) .Input(FakeInput(value_type)) .Input(FakeInput(DT_INT64)) .Input(FakeInput(DT_INT64)) .Input(FakeInput(value_type)) .Input(FakeInput(DT_INT64)) .Input(FakeInput(thresh_type)) .Attr("Treal", thresh_type) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SparseAddOpTest, TwoD_AddSparseTensorWithSelf) { MakeOp<float>(); const auto indices_shape = TensorShape({4, 2}); std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; const absl::Span<const int64_t> indices(in); std::initializer_list<int64_t> sh{3, 2}; const absl::Span<const int64_t> shape(sh); #define ADD_TENSOR_INPUT() \ AddInputFromArray<int64_t>(indices_shape, indices); \ AddInputFromArray<float>(TensorShape({4}), {1, 2, 3, 4}); \ AddInputFromArray<int64_t>(TensorShape({2}), shape); ADD_TENSOR_INPUT(); ADD_TENSOR_INPUT(); AddInputFromArray<float>(TensorShape({}), {0.0}); #undef ADD_TENSOR_INPUT TF_ASSERT_OK(RunOpKernel()); Tensor expected_indices(allocator(), DT_INT64, indices_shape); test::FillValues<int64_t>(&expected_indices, indices); test::ExpectTensorEqual<int64_t>(expected_indices, *GetOutput(0)); Tensor expected_values(allocator(), DT_FLOAT, {4}); test::FillValues<float>(&expected_values, {2, 4, 6, 8}); test::ExpectTensorEqual<float>(expected_values, *GetOutput(1)); Tensor expected_shape(allocator(), DT_INT64, {static_cast<int64_t>(shape.size())}); test::FillValues<int64_t>(&expected_shape, shape); test::ExpectTensorEqual<int64_t>(expected_shape, *GetOutput(2)); } #define RUN_TEST(VALTYPE) \ TEST_F(SparseAddOpTest, TwoD_AddSparseTensorsWithDiffIndices_##VALTYPE) { \ MakeOp<VALTYPE>(); \ DataType val_dtype = tensorflow::DataTypeToEnum<VALTYPE>::value; \ \ const auto indices_shape = TensorShape({4, 2}); \ std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; \ const gtl::ArraySlice<int64_t> indices(in); \ std::initializer_list<int64_t> sh{3, 2}; \ const gtl::ArraySlice<int64_t> shape(sh); \ \ AddInputFromArray<int64_t>(indices_shape, indices); \ AddInputFromArray<VALTYPE>(TensorShape({4}), {1, 2, 3, 4}); \ AddInputFromArray<int64_t>(TensorShape({2}), shape); \ \ AddInputFromArray<int64_t>(TensorShape({2, 2}), {0, 0, 1, 1}); \ AddInputFromArray<VALTYPE>(TensorShape({2}), {5, 6}); \ AddInputFromArray<int64_t>(TensorShape({2}), shape); \ \ if (val_dtype == DT_COMPLEX64) { \ AddInputFromArray<float>(TensorShape({}), {0}); \ } else if (val_dtype == DT_COMPLEX128) { \ AddInputFromArray<double>(TensorShape({}), {0}); \ } else { \ AddInputFromArray<VALTYPE>(TensorShape({}), {0}); \ } \ \ TF_ASSERT_OK(RunOpKernel()); \ \ const int expected_nnz = 6; \ Tensor expected_indices(allocator(), DT_INT64, \ TensorShape({expected_nnz, 2})); \ test::FillValues<int64_t>(&expected_indices, \ {0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 1}); \ test::ExpectTensorEqual<int64_t>(expected_indices, *GetOutput(0)); \ \ Tensor expected_values(allocator(), val_dtype, {expected_nnz}); \ test::FillValues<VALTYPE>(&expected_values, {5, 1, 2, 6, 3, 4}); \ test::ExpectTensorEqual<VALTYPE>(expected_values, *GetOutput(1)); \ \ Tensor expected_shape(allocator(), DT_INT64, \ {static_cast<int64_t>(shape.size())}); \ test::FillValues<int64_t>(&expected_shape, shape); \ test::ExpectTensorEqual<int64_t>(expected_shape, *GetOutput(2)); \ } RUN_TEST(int64_t); RUN_TEST(float); RUN_TEST(double); RUN_TEST(complex64); RUN_TEST(complex128); #undef RUN_TEST #define RUN_TEST(VALTYPE, THRESH) \ TEST_F(SparseAddOpTest, TwoD_SmallValuesShouldVanish_##VALTYPE) { \ MakeOp<VALTYPE>(); \ DataType val_dtype = tensorflow::DataTypeToEnum<VALTYPE>::value; \ const auto indices_shape = TensorShape({4, 2}); \ std::initializer_list<int64_t> in{0, 1, 1, 0, 2, 0, 2, 1}; \ const gtl::ArraySlice<int64_t> indices(in); \ std::initializer_list<int64_t> sh{3, 2}; \ const gtl::ArraySlice<int64_t> shape(sh); \ \ auto AddSparseTensor = [indices, indices_shape, shape, \ this](bool negate) { \ AddInputFromArray<int64_t>(indices_shape, indices); \ if (!negate) { \ AddInputFromArray<VALTYPE>(TensorShape({4}), {1, 2, 3, 4}); \ } else { \ AddInputFromArray<VALTYPE>(TensorShape({4}), {-1, -2, -3, -4}); \ } \ AddInputFromArray<int64_t>(TensorShape({2}), shape); \ }; \ AddSparseTensor(false); \ AddSparseTensor(true); \ if (val_dtype == DT_COMPLEX64) { \ AddInputFromArray<float>(TensorShape({}), {THRESH}); \ } else if (val_dtype == DT_COMPLEX128) { \ AddInputFromArray<double>(TensorShape({}), {THRESH}); \ } else { \ AddInputFromArray<VALTYPE>(TensorShape({}), {THRESH}); \ } \ \ TF_ASSERT_OK(RunOpKernel()); \ \ Tensor expected_indices(allocator(), DT_INT64, TensorShape({0, 2})); \ test::ExpectTensorEqual<int64_t>(expected_indices, *GetOutput(0)); \ \ Tensor expected_values(allocator(), val_dtype, TensorShape({0})); \ test::ExpectTensorEqual<VALTYPE>(expected_values, *GetOutput(1)); \ \ Tensor expected_shape(allocator(), DT_INT64, \ {static_cast<int64_t>(shape.size())}); \ test::FillValues<int64_t>(&expected_shape, shape); \ test::ExpectTensorEqual<int64_t>(expected_shape, *GetOutput(2)); \ } RUN_TEST(int64_t, 1); RUN_TEST(float, 1e-3f); RUN_TEST(double, 1e-3f); RUN_TEST(complex64, 1e-3f); RUN_TEST(complex128, 1e-3f); #undef RUN_TEST } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_add_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_add_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b05f06be-edfe-47f9-b53c-9ba3c2f004b0
cpp
google/cel-cpp
exercise1
codelab/solutions/exercise1.cc
codelab/exercise1_test.cc
#include "codelab/exercise1.h" #include <memory> #include <string> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/arena.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "eval/public/activation.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "internal/status_macros.h" #include "parser/parser.h" namespace google::api::expr::codelab { namespace { using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::parser::Parse; using ::google::api::expr::runtime::Activation; using ::google::api::expr::runtime::CelExpression; using ::google::api::expr::runtime::CelExpressionBuilder; using ::google::api::expr::runtime::CelValue; using ::google::api::expr::runtime::CreateCelExpressionBuilder; using ::google::api::expr::runtime::InterpreterOptions; using ::google::api::expr::runtime::RegisterBuiltinFunctions; absl::StatusOr<std::string> ConvertResult(const CelValue& value) { if (CelValue::StringHolder inner_value; value.GetValue(&inner_value)) { return std::string(inner_value.value()); } else { return absl::InvalidArgumentError(absl::StrCat( "expected string result got '", CelValue::TypeName(value.type()), "'")); } } } absl::StatusOr<std::string> ParseAndEvaluate(absl::string_view cel_expr) { InterpreterOptions options; std::unique_ptr<CelExpressionBuilder> builder = CreateCelExpressionBuilder(options); CEL_RETURN_IF_ERROR( RegisterBuiltinFunctions(builder->GetRegistry(), options)); ParsedExpr parsed_expr; CEL_ASSIGN_OR_RETURN(parsed_expr, Parse(cel_expr)); google::protobuf::Arena arena; Activation activation; CEL_ASSIGN_OR_RETURN(std::unique_ptr<CelExpression> expression_plan, builder->CreateExpression(&parsed_expr.expr(), &parsed_expr.source_info())); CEL_ASSIGN_OR_RETURN(CelValue result, expression_plan->Evaluate(activation, &arena)); return ConvertResult(result); } }
#include "codelab/exercise1.h" #include "internal/testing.h" namespace google::api::expr::codelab { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; TEST(Exercise1, PrintHelloWorld) { EXPECT_THAT(ParseAndEvaluate("'Hello, World!'"), IsOkAndHolds("Hello, World!")); } TEST(Exercise1, WrongTypeResultError) { EXPECT_THAT(ParseAndEvaluate("true"), StatusIs(absl::StatusCode::kInvalidArgument, "expected string result got 'bool'")); } TEST(Exercise1, Conditional) { EXPECT_THAT(ParseAndEvaluate("(1 < 0)? 'Hello, World!' : '¡Hola, Mundo!'"), IsOkAndHolds("¡Hola, Mundo!")); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/codelab/solutions/exercise1.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/codelab/exercise1_test.cc
4552db5798fb0853b131b783d8875794334fae7f
08070099-b020-4907-8983-05a3e1f40a7b
cpp
tensorflow/tensorflow
stablehlo_reduce_window
tensorflow/lite/kernels/stablehlo_reduce_window.cc
tensorflow/lite/kernels/stablehlo_reduce_window_test.cc
#include <algorithm> #include <array> #include <cassert> #include <cstdint> #include <cstring> #include <functional> #include <limits> #include <memory> #include <type_traits> #include <vector> #include "tensorflow/lite/array.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace ops { namespace builtin { namespace { constexpr int32_t kMaxReduceWindowRank = 6; void StridedCopy(const int rank, const char* input, const int64_t* input_shape, const int64_t* input_strides, char* output, const int64_t* output_strides, const int64_t element_size, const int depth) { if (depth + 1 == rank) { for (int64_t i = 0; i < input_shape[depth]; ++i) { std::memcpy(output, input, element_size); input += input_strides[depth]; output += output_strides[depth]; } } else { for (int64_t i = 0; i < input_shape[depth]; ++i) { StridedCopy(rank, input, input_shape, input_strides, output, output_strides, element_size, depth + 1); input += input_strides[depth]; output += output_strides[depth]; } } } } namespace dilate { namespace { const int64_t kTFLiteDefaultBaseDilation[kMaxReduceWindowRank] = {1, 1, 1, 1, 1, 1}; struct DilateData { DilateData() = default; DilateData(const int rank, const int64_t* input_shape, const int64_t* dilation, const int64_t element_size) : rank(rank), init_element_size(element_size) { std::copy_n(input_shape, rank, shape); std::copy_n(dilation, rank, base_dilations); ComputeOutputShapeAndSize(element_size); skip = std::all_of(dilation, dilation + rank, [](int64_t d) { return d == 1; }); if (skip) { return; } MergeTrailingDilations(element_size); ComputeInputStrides(); ComputeOutputStridesAndSizes(); } void MergeTrailingDilations(int64_t element_size) { for (int i = rank - 2; i >= 0; --i) { if (base_dilations[i + 1] == 1) { element_size *= shape[i + 1]; --rank; } else { break; } } if (rank == 1 && base_dilations[0] == 1) { element_size *= shape[0]; shape[0] = 1; } input_strides[rank - 1] = element_size; } void ComputeInputStrides() { assert(input_strides[rank - 1] != 0); for (int i = rank - 2; i >= 0; --i) { input_strides[i] = shape[i + 1] * input_strides[i + 1]; } } void ComputeOutputStridesAndSizes() { output_dimension_sizes[rank - 1] = input_strides[rank - 1]; output_strides[rank - 1] = base_dilations[rank - 1] * output_dimension_sizes[rank - 1]; for (int i = rank - 2; i >= 0; --i) { output_dimension_sizes[i] = ((shape[i + 1] - 1) * output_strides[i + 1] + output_dimension_sizes[i + 1]); output_strides[i] = base_dilations[i] * output_dimension_sizes[i]; } } void ComputeOutputShapeAndSize(const int64_t element_size) { output_size = element_size; for (int i = 0; i < rank; ++i) { output_shape[i] = (shape[i] - 1) * base_dilations[i] + 1; output_size *= output_shape[i]; } } int64_t ElementSize() const { return input_strides[rank - 1]; } bool skip = true; int rank = 0; int64_t init_element_size = 0; int64_t shape[kMaxReduceWindowRank] = {}; int64_t base_dilations[kMaxReduceWindowRank] = {}; int64_t output_strides[kMaxReduceWindowRank] = {}; int64_t output_dimension_sizes[kMaxReduceWindowRank] = {}; int64_t input_strides[kMaxReduceWindowRank] = {}; int64_t output_shape[kMaxReduceWindowRank] = {}; int64_t output_size = 1; }; void Dilate(const DilateData& ctx, const char* input, const char* init_value, char* output) { assert(!ctx.skip); { std::memcpy(output, init_value, ctx.init_element_size); int64_t remaining_bytes = ctx.output_size - ctx.init_element_size; int64_t copied_bytes = ctx.init_element_size; while (remaining_bytes) { int64_t bytes = std::min(remaining_bytes, copied_bytes); std::memcpy(output + copied_bytes, output, bytes); remaining_bytes -= bytes; copied_bytes += bytes; } } StridedCopy(ctx.rank, input, ctx.shape, ctx.input_strides, output, ctx.output_strides, ctx.ElementSize(), 0); } } } namespace pad { namespace { const int64_t kTFLiteDefaultPadding[kMaxReduceWindowRank] = {0, 0, 0, 0, 0, 0}; struct PadCropData { PadCropData() = default; PadCropData(int rank, const int64_t* dims, const int64_t* padding, const int64_t element_size) : rank(rank), element_size(element_size) { assert(rank > 0); assert(rank < kMaxReduceWindowRank); output_size = element_size; for (int i = 0; i < rank; ++i) { output_shape[i] = dims[i] + padding[2 * i] + padding[2 * i + 1]; output_size *= output_shape[i]; } skip = std::all_of(padding, padding + 2 * rank, [](int64_t v) { return v == 0; }); if (skip) { return; } output_strides[rank - 1] = element_size; input_strides[rank - 1] = element_size; for (int i = rank - 2; i >= 0; --i) { output_strides[i] = output_shape[i + 1] * output_strides[i + 1]; input_strides[i] = dims[i + 1] * input_strides[i + 1]; } for (int i = 0; i < rank; ++i) { input_offset += std::max<int64_t>(-padding[2 * i], 0) * input_strides[i]; output_offset += std::max<int64_t>(padding[2 * i], 0) * output_strides[i]; cropped_input_shape[i] = dims[i] + std::min<int64_t>(padding[2 * i], 0) + std::min<int64_t>(padding[2 * i + 1], 0); } } bool skip = true; int rank = 0; int64_t element_size = 0; int64_t cropped_input_shape[kMaxReduceWindowRank]; int64_t input_strides[kMaxReduceWindowRank]; int64_t output_shape[kMaxReduceWindowRank]; int64_t output_strides[kMaxReduceWindowRank]; int64_t input_offset = 0; int64_t output_offset = 0; int64_t output_size = 0; }; void PadCrop(const PadCropData& ctx, const char* input, const char* init_value, char* output) { assert(!ctx.skip); { std::memcpy(output, init_value, ctx.element_size); int64_t remaining_bytes = ctx.output_size - ctx.element_size; int64_t copied_bytes = ctx.element_size; while (remaining_bytes) { int64_t bytes = std::min(remaining_bytes, copied_bytes); std::memcpy(output + copied_bytes, output, bytes); remaining_bytes -= bytes; copied_bytes += bytes; } } StridedCopy(ctx.rank, input + ctx.input_offset, ctx.cropped_input_shape, ctx.input_strides, output + ctx.output_offset, ctx.output_strides, ctx.element_size, 0); } } } namespace reduce_window { namespace { template <class Op, class Type> void StridedReduce(const Type* input, const int64_t* const shape, const int64_t* const strides, Type& accu, const int rank, const int depth) { const int64_t stride = strides[depth]; const int64_t size = shape[depth]; if (depth + 1 == rank) { const Op op; for (int64_t i = 0; i < size; ++i) { accu = op(accu, *input); input += stride; } } else { for (int64_t i = 0; i < size; ++i) { StridedReduce<Op, Type>(input, shape, strides, accu, rank, depth + 1); input += stride; } } } template <class Op, class Type> void ReduceWindowImpl(const Type* input, Type* output, const int64_t* const output_shape, const int64_t* const output_strides, const int64_t* const window_offset_strides, const int64_t* const window_shape, const int64_t* const window_reduce_strides, const Type init, const int rank, const int depth) { if (depth + 1 == rank) { for (int32_t dim = 0; dim < output_shape[depth]; ++dim) { *output = init; StridedReduce<Op, Type>(input, window_shape, window_reduce_strides, *output, rank, 0); input += window_offset_strides[depth]; output += output_strides[depth]; } } else { for (int32_t dim = 0; dim < output_shape[depth]; ++dim) { ReduceWindowImpl<Op, Type>(input, output, output_shape, output_strides, window_offset_strides, window_shape, window_reduce_strides, init, rank, depth + 1); input += window_offset_strides[depth]; output += output_strides[depth]; } } } struct ReduceWindowData { ReduceWindowData() = default; ReduceWindowData(const int rank, const int64_t* input_shape, const int64_t* window_shape, const int64_t* window_strides, const int64_t* window_dilations) : rank(rank), input_shape(input_shape), window_shape(window_shape), window_dilations(window_dilations), window_strides(window_strides) { ComputeStrides(input_strides, input_shape); Multiply(window_reduce_strides, input_strides, window_dilations); Multiply(window_offset_strides, input_strides, window_strides); ComputeOutputShape(); ComputeStrides(output_strides, output_shape); } void ComputeStrides(int64_t* strides, const int64_t* const shape) { strides[rank - 1] = 1; for (int64_t i = rank - 2; i >= 0; --i) { strides[i] = shape[i + 1] * strides[i + 1]; } } void Multiply(int64_t* dst, const int64_t* const vec1, const int64_t* const vec2) { for (int64_t i = 0; i < rank; ++i) { dst[i] = vec2[i] * vec1[i]; } } void ComputeOutputShape() { int64_t dilated_window_shape[kMaxReduceWindowRank]; for (int64_t i = 0; i < rank; ++i) { dilated_window_shape[i] = (window_shape[i] - 1) * window_dilations[i] + 1; } for (int64_t i = 0; i < rank; ++i) { if (input_shape[i] < dilated_window_shape[i]) { output_shape[i] = 0; } else { output_shape[i] = (input_shape[i] - dilated_window_shape[i]) / window_strides[i] + 1; } } } int rank = 0; const int64_t* input_shape; const int64_t* window_shape; const int64_t* window_dilations; const int64_t* window_strides; int64_t input_strides[kMaxReduceWindowRank] = {}; int64_t window_offset_strides[kMaxReduceWindowRank] = {}; int64_t window_reduce_strides[kMaxReduceWindowRank] = {}; int64_t output_shape[kMaxReduceWindowRank] = {}; int64_t output_strides[kMaxReduceWindowRank] = {}; }; template <class Op, class Type> void ReduceWindow(const ReduceWindowData& ctx, const Type* const input, const Type init, Type* output) { ReduceWindowImpl<Op, Type>(input, output, ctx.output_shape, ctx.output_strides, ctx.window_offset_strides, ctx.window_shape, ctx.window_reduce_strides, init, ctx.rank, 0); } } } namespace reduce_window_op { namespace { struct NodeData { enum { kDilateOutput, kPadOutput, kTempTensorCount }; int temporary_tensor_offset = -1; pad::PadCropData pad_ctx; dilate::DilateData dilate_ctx; reduce_window::ReduceWindowData reduce_window_ctx; TfLiteReduceWindowFunction body; }; struct OpData { OpData(TfLiteContext* context, TfLiteNode* node) : context(context), node(node) {} TfLiteContext* context; TfLiteNode* node; TfLiteType type; int rank; int64_t element_size; int64_t input_dims[kMaxReduceWindowRank]; const char* input; const char* init_value; const int64_t* window_dimensions; const int64_t* window_strides; const int64_t* base_dilations; const int64_t* window_dilations; const int64_t* padding; char* dilate_output = nullptr; char* pad_output = nullptr; char* output; TfLiteStatus ResizeTensor(TfLiteTensor* const tensor, const int64_t* const shape) { auto dims = BuildTfLiteArray<int32_t>(rank, shape); return context->ResizeTensor(context, tensor, dims.release()); } TfLiteStatus SetElementType(TfLiteType t) { type = t; size_t unsigned_element_size; TF_LITE_ENSURE_OK(context, GetSizeOfType(context, type, &unsigned_element_size)); TF_LITE_ENSURE_MSG( context, sizeof(unsigned_element_size) < sizeof(int64_t) || unsigned_element_size <= std::numeric_limits<int64_t>::max(), "The element size cannot be contained in an int64_t value."); element_size = unsigned_element_size; return kTfLiteOk; } template <class Semantic> TfLiteStatus InitializeBase() { init_value = reinterpret_cast<const char*>( GetInput(context, node, Semantic::kInitValue)->data.data); const TfLiteTensor* const input_tensor = GetInput(context, node, Semantic::kInput); SetElementType(input_tensor->type); rank = input_tensor->dims->size; std::copy_n(input_tensor->dims->data, rank, input_dims); input = reinterpret_cast<const char*>(input_tensor->data.data); TfLiteTensor* const output_tensor = GetOutput(context, node, Semantic::kOutput); output = reinterpret_cast<char*>(output_tensor->data.data); return kTfLiteOk; } }; struct StablehloData : public OpData { enum InputTensorId { kInput, kInitValue, kNumInputTensors }; enum OutputTensorId { kOutput, kNumOutputTensors }; using OpData::OpData; TfLiteTensor* GetTemporary(int id) { return tflite::GetTemporary(context, node, id); } TfLiteStatus Check() const { TF_LITE_ENSURE_EQ(context, NumInputs(node), kNumInputTensors); TF_LITE_ENSURE_EQ(context, NumOutputs(node), kNumOutputTensors); const TfLiteTensor* const input_tensor = GetInput(context, node, kInput); const TfLiteTensor* const output_tensor = GetOutput(context, node, kOutput); const TfLiteTensor* const init_value_tensor = GetInput(context, node, kInitValue); TF_LITE_ENSURE_EQ(context, input_tensor->type, output_tensor->type); TF_LITE_ENSURE_EQ(context, input_tensor->type, init_value_tensor->type); TF_LITE_ENSURE(context, input_tensor->dims != nullptr); TF_LITE_ENSURE(context, input_tensor->dims->size > 0); TF_LITE_ENSURE(context, input_tensor->dims->size <= kMaxReduceWindowRank); return kTfLiteOk; } TfLiteStatus Initialize() { TF_LITE_ENSURE_OK(context, InitializeBase<StablehloData>()); const auto& params = *reinterpret_cast<TfLiteStablehloReduceWindowParams*>( node->builtin_data); window_dimensions = params.window_dimensions; window_strides = params.window_strides; base_dilations = params.base_dilations; window_dilations = params.window_dilations; padding = params.padding; auto AllGtThanZero = [&](const int64_t* const attr) { return std::all_of(attr, attr + rank, [](int64_t d) { return d > 0; }); }; TF_LITE_ENSURE(context, AllGtThanZero(base_dilations)); TF_LITE_ENSURE(context, AllGtThanZero(window_dimensions)); TF_LITE_ENSURE(context, AllGtThanZero(window_strides)); TF_LITE_ENSURE(context, AllGtThanZero(window_dilations)); if (node->temporaries && node->temporaries->size >= NodeData::kTempTensorCount) { TfLiteTensor* const dilated_tensor = GetTemporary(NodeData::kDilateOutput); TfLiteTensor* const padded_tensor = GetTemporary(NodeData::kPadOutput); TF_LITE_ENSURE(context, dilated_tensor != nullptr); TF_LITE_ENSURE(context, padded_tensor != nullptr); dilate_output = dilated_tensor->data.raw; pad_output = padded_tensor->data.raw; } return kTfLiteOk; } TfLiteStatus Setup() { NodeData& node_data = *reinterpret_cast<NodeData*>(node->user_data); TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(NodeData::kTempTensorCount); for (int i = 0; i < NodeData::kTempTensorCount; ++i) { node->temporaries->data[i] = node_data.temporary_tensor_offset + i; } node_data.body = GetBodyFunction(); node_data.dilate_ctx = dilate::DilateData(rank, input_dims, base_dilations, element_size); node_data.pad_ctx = pad::PadCropData( rank, node_data.dilate_ctx.output_shape, padding, element_size); node_data.reduce_window_ctx = reduce_window::ReduceWindowData( rank, node_data.pad_ctx.output_shape, window_dimensions, window_strides, window_dilations); TfLiteTensor* const dilated_tensor = GetTemporary(NodeData::kDilateOutput); TfLiteTensor* const padded_tensor = GetTemporary(NodeData::kPadOutput); TfLiteTensor* const output_tensor = GetOutput(context, node, kOutput); dilated_tensor->type = type; dilated_tensor->allocation_type = kTfLiteArenaRw; padded_tensor->type = type; padded_tensor->allocation_type = kTfLiteArenaRw; TF_LITE_ENSURE_OK(context, ResizeTensor(dilated_tensor, node_data.dilate_ctx.output_shape)); TF_LITE_ENSURE_OK( context, ResizeTensor(padded_tensor, node_data.pad_ctx.output_shape)); TF_LITE_ENSURE_OK( context, ResizeTensor(output_tensor, node_data.reduce_window_ctx.output_shape)); return kTfLiteOk; } TfLiteReduceWindowFunction GetBodyFunction() { const TfLiteStablehloReduceWindowParams& params = *reinterpret_cast<TfLiteStablehloReduceWindowParams*>( node->builtin_data); const int body_subgraph_index = params.body_subgraph_index; const Subgraph& parent_subgraph = *reinterpret_cast<Subgraph*>(context->impl_); const std::vector<std::unique_ptr<Subgraph>>& subgraphs = *parent_subgraph.GetSubgraphs(); if (body_subgraph_index >= subgraphs.size()) { TF_LITE_KERNEL_LOG( context, "Body subgraph not found for stablehlo.reduce_window: %d.", body_subgraph_index); return TfLiteReduceWindowFunctionUnsupported; } const Subgraph& body_subgraph = *subgraphs[body_subgraph_index]; const std::vector<int>& execution_plan = body_subgraph.pre_delegation_execution_plan().empty() ? body_subgraph.execution_plan() : body_subgraph.pre_delegation_execution_plan(); if (execution_plan.size() != 1) { TF_LITE_KERNEL_LOG(context, "Only one kernel is allowed within " "stablehlo.reduce_window body. (%zu) kernels found.\n", execution_plan.size()); return TfLiteReduceWindowFunctionUnsupported; } const int body_kernel_index = execution_plan[0]; const TfLiteRegistration& body_kernel_registration = body_subgraph.node_and_registration(body_kernel_index)->second; switch (body_kernel_registration.builtin_code) { case kTfLiteBuiltinAdd: case kTfLiteBuiltinStablehloAdd: return TfLiteReduceWindowFunctionAdd; case kTfLiteBuiltinMul: case kTfLiteBuiltinStablehloMultiply: return TfLiteReduceWindowFunctionMul; case kTfLiteBuiltinMaximum: case kTfLiteBuiltinStablehloMaximum: return TfLiteReduceWindowFunctionMax; case kTfLiteBuiltinMinimum: case kTfLiteBuiltinStablehloMinimum: return TfLiteReduceWindowFunctionMin; case kTfLiteBuiltinLogicalAnd: case kTfLiteBuiltinStablehloAnd: return TfLiteReduceWindowFunctionAll; case kTfLiteBuiltinLogicalOr: case kTfLiteBuiltinStablehloOr: return TfLiteReduceWindowFunctionAny; default: TF_LITE_KERNEL_LOG( context, "%s:%d unsupported reduction body builtin code: %d.\n", __FILE__, __LINE__, body_kernel_registration.builtin_code); return TfLiteReduceWindowFunctionUnsupported; } } }; struct TFLiteData : public OpData { enum InputTensorId { kInput, kInitValue, kWindowShape, kWindowStrides, kWindowDilations, kNumInputTensors }; enum OutputTensorId { kOutput, kNumOutputTensors }; using OpData::OpData; TfLiteStatus Check() const { TF_LITE_ENSURE_EQ(context, NumInputs(node), kNumInputTensors); TF_LITE_ENSURE_EQ(context, NumOutputs(node), kNumOutputTensors); const TfLiteTensor* const input_tensor = GetInput(context, node, kInput); const TfLiteTensor* const init_value_tensor = GetInput(context, node, kInitValue); const TfLiteTensor* const window_dimensions_tensor = GetInput(context, node, kWindowShape); const TfLiteTensor* const window_strides_tensor = GetInput(context, node, kWindowStrides); const TfLiteTensor* const window_dilations_tensor = GetInput(context, node, kWindowDilations); const TfLiteTensor* const output_tensor = GetOutput(context, node, kOutput); TF_LITE_ENSURE(context, IsConstantTensor(window_dimensions_tensor)); TF_LITE_ENSURE(context, IsConstantTensor(window_strides_tensor)); TF_LITE_ENSURE(context, IsConstantTensor(window_dilations_tensor)); TF_LITE_ENSURE_EQ(context, input_tensor->type, output_tensor->type); TF_LITE_ENSURE_EQ(context, input_tensor->type, init_value_tensor->type); TF_LITE_ENSURE_EQ(context, window_dimensions_tensor->type, kTfLiteInt64); TF_LITE_ENSURE_EQ(context, window_strides_tensor->type, kTfLiteInt64); TF_LITE_ENSURE_EQ(context, window_dilations_tensor->type, kTfLiteInt64); TF_LITE_ENSURE(context, input_tensor->dims != nullptr); TF_LITE_ENSURE(context, input_tensor->dims->size > 0); TF_LITE_ENSURE(context, input_tensor->dims->size <= kMaxReduceWindowRank); return kTfLiteOk; } TfLiteStatus Initialize() { TF_LITE_ENSURE_OK(context, InitializeBase<TFLiteData>()); window_dimensions = reinterpret_cast<const int64_t*>( GetInput(context, node, kWindowShape)->data.data); window_strides = reinterpret_cast<const int64_t*>( GetInput(context, node, kWindowStrides)->data.data); base_dilations = dilate::kTFLiteDefaultBaseDilation; window_dilations = reinterpret_cast<const int64_t*>( GetInput(context, node, kWindowDilations)->data.data); padding = pad::kTFLiteDefaultPadding; return kTfLiteOk; } TfLiteStatus Setup() { NodeData& node_data = *reinterpret_cast<NodeData*>(node->user_data); const auto& params = *reinterpret_cast<TfLiteReduceWindowParams*>(node->builtin_data); node_data.body = params.reduce_function; node_data.dilate_ctx.skip = true; node_data.pad_ctx.skip = true; node_data.reduce_window_ctx = reduce_window::ReduceWindowData( rank, input_dims, window_dimensions, window_strides, window_dilations); TfLiteTensor* const output_tensor = GetOutput(context, node, kOutput); return context->ResizeTensor( context, output_tensor, BuildTfLiteArray<int32_t>(rank, node_data.reduce_window_ctx.output_shape) .release()); } }; template <class Op, class Type> void PadCropReduceWindow(const OpData& op_ctx) { NodeData& node_data = *reinterpret_cast<NodeData*>(op_ctx.node->user_data); const char* input = op_ctx.input; const int64_t* input_shape = op_ctx.input_dims; if (!node_data.dilate_ctx.skip) { dilate::Dilate(node_data.dilate_ctx, input, op_ctx.init_value, op_ctx.dilate_output); input = op_ctx.dilate_output; input_shape = node_data.dilate_ctx.output_shape; } if (!node_data.pad_ctx.skip) { pad::PadCrop(node_data.pad_ctx, input, op_ctx.init_value, op_ctx.pad_output); input = op_ctx.pad_output; input_shape = node_data.pad_ctx.output_shape; } reduce_window::ReduceWindow<Op, Type>( node_data.reduce_window_ctx, reinterpret_cast<const Type*>(input), *reinterpret_cast<const Type*>(op_ctx.init_value), reinterpret_cast<Type*>(op_ctx.output)); } template <class Op> TfLiteStatus DispatchReduceWindowType(OpData& ctx) { #define REDUCE_WINDOW_TYPE_CASE(CPP_TYPE, TENSOR_TYPE) \ case TENSOR_TYPE: \ PadCropReduceWindow<Op, CPP_TYPE>(ctx); \ break; switch (ctx.type) { REDUCE_WINDOW_TYPE_CASE(int8_t, kTfLiteBool); REDUCE_WINDOW_TYPE_CASE(int8_t, kTfLiteInt8); REDUCE_WINDOW_TYPE_CASE(int16_t, kTfLiteInt16); REDUCE_WINDOW_TYPE_CASE(int32_t, kTfLiteInt32); REDUCE_WINDOW_TYPE_CASE(int64_t, kTfLiteInt64); REDUCE_WINDOW_TYPE_CASE(uint8_t, kTfLiteUInt8); REDUCE_WINDOW_TYPE_CASE(float, kTfLiteFloat32); REDUCE_WINDOW_TYPE_CASE(double, kTfLiteFloat64); default: TF_LITE_KERNEL_LOG( ctx.context, "%s:%d unsupported kernel data type (TfliteType: %d a.k.a %s).", __FILE__, __LINE__, ctx.type, TfLiteTypeGetName(ctx.type)); return kTfLiteError; } #undef REDUCE_WINDOW_TYPE_CASE return kTfLiteOk; } struct Max { template <class T> constexpr T operator()(const T& a, const T& b) const { return a >= b ? a : b; } }; struct Min { template <class T> constexpr T operator()(const T& a, const T& b) const { return a <= b ? a : b; } }; TfLiteStatus DispatchReduceWindowBody(OpData& ctx) { const NodeData& node_data = *static_cast<NodeData*>(ctx.node->user_data); switch (node_data.body) { case TfLiteReduceWindowFunctionUnsupported: TF_LITE_KERNEL_LOG(ctx.context, "%s:%d unsupported reduction body.\n", __FILE__, __LINE__); return kTfLiteError; case TfLiteReduceWindowFunctionAdd: return DispatchReduceWindowType<std::plus<>>(ctx); case TfLiteReduceWindowFunctionMul: return DispatchReduceWindowType<std::multiplies<>>(ctx); case TfLiteReduceWindowFunctionAll: return DispatchReduceWindowType<std::logical_and<>>(ctx); case TfLiteReduceWindowFunctionAny: return DispatchReduceWindowType<std::logical_or<>>(ctx); case TfLiteReduceWindowFunctionMin: return DispatchReduceWindowType<Min>(ctx); case TfLiteReduceWindowFunctionMax: return DispatchReduceWindowType<Max>(ctx); } TF_LITE_KERNEL_LOG(ctx.context, "%s:%d unhandled reduction body case.\n", __FILE__, __LINE__); return kTfLiteError; } void* StablehloInit(TfLiteContext* context, const char* options, size_t options_len) { NodeData* node_data = new NodeData(); context->AddTensors(context, NodeData::kTempTensorCount, &node_data->temporary_tensor_offset); return node_data; } void* TFLiteInit(TfLiteContext* context, const char* options, size_t options_len) { return new NodeData(); } void Free(TfLiteContext* context, void* node_data) { delete static_cast<NodeData*>(node_data); } template <class Semantic> TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { Semantic ctx(context, node); TF_LITE_ENSURE_OK(context, ctx.Check()); TF_LITE_ENSURE_OK(context, ctx.Initialize()); return ctx.Setup(); } template <class Semantic> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { Semantic ctx(context, node); TF_LITE_ENSURE_OK(context, ctx.Initialize()); NodeData& node_data = *reinterpret_cast<NodeData*>(node->user_data); TF_LITE_ENSURE_MSG( context, node_data.pad_ctx.skip || node_data.pad_ctx.output_size > 0, "The padding specification of stablehlo.reduce_window gives an empty " "tensor."); return DispatchReduceWindowBody(ctx); } } } TfLiteRegistration* Register_STABLEHLO_REDUCE_WINDOW() { static TfLiteRegistration r = { reduce_window_op::StablehloInit, reduce_window_op::Free, reduce_window_op::Prepare<reduce_window_op::StablehloData>, reduce_window_op::Eval<reduce_window_op::StablehloData>}; return &r; } TfLiteRegistration* Register_REDUCE_WINDOW() { static TfLiteRegistration r = { reduce_window_op::TFLiteInit, reduce_window_op::Free, reduce_window_op::Prepare<reduce_window_op::TFLiteData>, reduce_window_op::Eval<reduce_window_op::TFLiteData>}; return &r; } } } }
#include <cstddef> #include <cstdint> #include <functional> #include <initializer_list> #include <limits> #include <ostream> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/log/absl_log.h" #include "absl/random/bit_gen_ref.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/types/span.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/stablehlo_reduce_window_test_util.h" #include "tensorflow/lite/kernels/subgraph_test_util.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace reduce_window { namespace { using ::testing::ElementsAre; using ::testing::ElementsAreArray; #define REDUCE_WINDOW_ENSURE_OK(expr) \ do { \ if (TfLiteStatus status = (expr); status != kTfLiteOk) { \ ABSL_LOG(ERROR) << #expr " failed.\n"; \ return status; \ } \ } while (false) #define REDUCE_WINDOW_ENSURE_IMPL(expr, msg) \ do { \ if (!(expr)) { \ ABSL_LOG(ERROR) << #msg " failed.\n"; \ return kTfLiteError; \ } \ } while (false) #define REDUCE_WINDOW_ENSURE(expr) REDUCE_WINDOW_ENSURE_IMPL((expr), #expr) #define REDUCE_WINDOW_ENSURE_EQ(a, b) \ REDUCE_WINDOW_ENSURE_IMPL((a) == (b), #a " == " #b) #define REDUCE_WINDOW_ENSURE_NE(a, b) \ REDUCE_WINDOW_ENSURE_IMPL((a) != (b), #a " != " #b) #define REDUCE_WINDOW_ENSURE_GE(a, b) \ REDUCE_WINDOW_ENSURE_IMPL((a) >= (b), #a " >= " #b) #define REDUCE_WINDOW_ENSURE_LE(a, b) \ REDUCE_WINDOW_ENSURE_IMPL((a) <= (b), #a " <= " #b) #define REDUCE_WINDOW_ENSURE_GT(a, b) \ REDUCE_WINDOW_ENSURE_IMPL((a) > (b), #a " > " #b) #define REDUCE_WINDOW_ENSURE_LT(a, b) \ REDUCE_WINDOW_ENSURE_IMPL((a) < (b), #a " < " #b) #define REDUCE_WINDOW_ENSURE_UNREACHABLE(msg) \ REDUCE_WINDOW_ENSURE_IMPL(false, msg) template <class T> struct TensorTypeFor; #define TENSOR_TYPE_ASSOC(CPP_TYPE, TENSORTYPE_VALUE) \ template <> \ struct TensorTypeFor<CPP_TYPE> { \ static constexpr TensorType value = TENSORTYPE_VALUE; \ }; TENSOR_TYPE_ASSOC(int8_t, TensorType_INT8); TENSOR_TYPE_ASSOC(int16_t, TensorType_INT16); TENSOR_TYPE_ASSOC(int32_t, TensorType_INT32); TENSOR_TYPE_ASSOC(int64_t, TensorType_INT64); TENSOR_TYPE_ASSOC(uint8_t, TensorType_UINT8); TENSOR_TYPE_ASSOC(uint16_t, TensorType_UINT16); TENSOR_TYPE_ASSOC(uint32_t, TensorType_UINT32); TENSOR_TYPE_ASSOC(uint64_t, TensorType_UINT64); TENSOR_TYPE_ASSOC(float, TensorType_FLOAT32); static_assert(sizeof(float) == 4, "float type is expected to be 32 bit long"); TENSOR_TYPE_ASSOC(double, TensorType_FLOAT64); static_assert(sizeof(double) == 8, "double type is expected to be 64 bit long"); enum class BodyFunction { kUnset, kUnsupported, kAdd, kMul, kMax, kMin, kAll, kAny }; std::ostream& operator<<(std::ostream& os, const BodyFunction& f) { switch (f) { case BodyFunction::kUnset: return os << "unset"; case BodyFunction::kUnsupported: return os << "unsupported"; case BodyFunction::kAdd: return os << "add"; case BodyFunction::kMul: return os << "mul"; case BodyFunction::kMax: return os << "max"; case BodyFunction::kMin: return os << "min"; case BodyFunction::kAll: return os << "all"; case BodyFunction::kAny: return os << "any"; } return os; } template <class T> class ReduceWindowOpModel : public SingleOpModel { static constexpr TensorType kTensorType = TensorTypeFor<T>::value; public: void SetInput(absl::Span<const int64_t> shape) { input_shape_.assign(shape.begin(), shape.end()); input_data_.resize(absl::c_accumulate(shape, 1, std::multiplies<>())); absl::c_iota(input_data_, 1); } void SetInput(absl::Span<const int64_t> shape, absl::Span<const T> data) { input_shape_.assign(shape.begin(), shape.end()); input_data_.assign(data.begin(), data.end()); } void SetInput(absl::Span<const int64_t> shape, absl::BitGenRef bitgen, T min, T max) { input_shape_.assign(shape.begin(), shape.end()); input_data_.resize(absl::c_accumulate(shape, 1, std::multiplies<>())); absl::c_generate(input_data_, [&] { return absl::Uniform(absl::IntervalClosed, bitgen, min, max); }); } void SetWindowDimensions(absl::Span<const int64_t> dimensions) { window_dimensions_.assign(dimensions.begin(), dimensions.end()); } void SetWindowStrides(absl::Span<const int64_t> strides) { window_strides_.assign(strides.begin(), strides.end()); } void SetBaseDilations(absl::Span<const int64_t> dilations) { base_dilations_.assign(dilations.begin(), dilations.end()); } void SetWindowDilations(absl::Span<const int64_t> dilations) { window_dilations_.assign(dilations.begin(), dilations.end()); } void SetPadding(absl::Span<const int64_t> padding) { padding_.assign(padding.begin(), padding.end()); } void SetInitValue(const T& val) { init_value_ = val; } void SetBody(const BodyFunction func) { body_function_ = func; } TfLiteStatus Build() { constexpr int kBodySubGraphIndex = 1; REDUCE_WINDOW_ENSURE(!input_shape_.empty()); REDUCE_WINDOW_ENSURE_EQ(window_dimensions_.size(), input_shape_.size()); REDUCE_WINDOW_ENSURE_EQ(window_strides_.size(), input_shape_.size()); REDUCE_WINDOW_ENSURE_EQ(base_dilations_.size(), input_shape_.size()); REDUCE_WINDOW_ENSURE_EQ(window_dilations_.size(), input_shape_.size()); REDUCE_WINDOW_ENSURE_EQ(padding_.size(), 2 * input_shape_.size()); REDUCE_WINDOW_ENSURE_NE(body_function_, BodyFunction::kUnset); REDUCE_WINDOW_ENSURE_NE(body_function_, BodyFunction::kUnsupported); input_tensor_id_ = AddInput({kTensorType, std::vector<int>(input_shape_.begin(), input_shape_.end())}); init_value_tensor_id_ = AddConstInput(kTensorType, {init_value_}, {1}); output_tensor_id_ = AddOutput(kTensorType); SetBuiltinOp(BuiltinOperator_STABLEHLO_REDUCE_WINDOW, BuiltinOptions2_StablehloReduceWindowOptions, CreateStablehloReduceWindowOptions( builder_, builder_.CreateVector(window_dimensions_), builder_.CreateVector(window_strides_), builder_.CreateVector(base_dilations_), builder_.CreateVector(window_dilations_), builder_.CreateVector(padding_), kBodySubGraphIndex) .Union()); BuildInterpreter( {std::vector<int>(input_shape_.begin(), input_shape_.end())}, -1, false, true, false, false); int body_subgraph_index; AddSubgraphs(1, &body_subgraph_index); REDUCE_WINDOW_ENSURE_EQ(body_subgraph_index, kBodySubGraphIndex); switch (body_function_) { case BodyFunction::kAdd: subgraph_builder_.BuildAddSubgraph( interpreter_->subgraph(body_subgraph_index)); break; case BodyFunction::kMul: subgraph_builder_.BuildMulSubgraph( interpreter_->subgraph(body_subgraph_index)); break; case BodyFunction::kMax: subgraph_builder_.BuildMaximumSubgraph( interpreter_->subgraph(body_subgraph_index)); break; case BodyFunction::kMin: subgraph_builder_.BuildMinimumSubgraph( interpreter_->subgraph(body_subgraph_index)); break; case BodyFunction::kAll: subgraph_builder_.BuildLogicalAndSubgraph( interpreter_->subgraph(body_subgraph_index)); break; case BodyFunction::kAny: subgraph_builder_.BuildLogicalOrSubgraph( interpreter_->subgraph(body_subgraph_index)); break; default: REDUCE_WINDOW_ENSURE_UNREACHABLE("Unhandled body function enum value."); } AllocateAndDelegate(true); PopulateTensor(input_tensor_id_, input_data_); return kTfLiteOk; } TfLiteStatus BuildAndInvoke() { REDUCE_WINDOW_ENSURE_OK(Build()); return Invoke(); } absl::Span<const T> GetOutputData() { return absl::Span<const T>(interpreter_->typed_tensor<T>(output_tensor_id_), GetTensorSize(output_tensor_id_)); } absl::Span<const int> GetOutputShape() { const TfLiteIntArray& shape = *(interpreter_->tensor(output_tensor_id_)->dims); return absl::Span<const int>(shape.data, shape.size); } const std::vector<T>& GetInput() const { return input_data_; } const std::vector<int64_t>& GetInputShape() const { return input_shape_; } const std::vector<int64_t>& GetWindowDimensions() const { return window_dimensions_; } const std::vector<int64_t>& GetWindowStrides() const { return window_strides_; } const std::vector<int64_t>& GetBaseDilations() const { return base_dilations_; } const std::vector<int64_t>& GetWindowDilations() const { return window_dilations_; } const std::vector<int64_t>& GetPadding() const { return padding_; } const T& GetInitValue() const { return init_value_; } const BodyFunction& GetBodyFunction() const { return body_function_; } friend std::ostream& operator<<(std::ostream& os, const ReduceWindowOpModel& model) { using Adapt = ReduceWindowOpModel::VectorOutputAdapter; os << "input dimensions: {" << Adapt{model.GetInputShape()} << "}\n"; os << " base dilations: {" << Adapt{model.GetBaseDilations()} << "}\n"; os << " padding: {" << Adapt{model.GetPadding()} << "}\n"; os << " window dimensions: {" << Adapt{model.GetWindowDimensions()} << "}\n"; os << " window dilations: {" << Adapt{model.GetWindowDilations()} << "}\n"; os << " window strides: {" << Adapt{model.GetWindowStrides()} << "}\n"; os << " init value: " << +model.GetInitValue() << "\n"; os << " body function: " << model.GetBodyFunction() << "\n"; return os; } protected: struct VectorOutputAdapter { const std::vector<int64_t>& data; friend std::ostream& operator<<(std::ostream& os, const VectorOutputAdapter& vec) { if (!vec.data.empty()) { os << +vec.data[0]; for (size_t i = 1; i < vec.data.size(); ++i) { os << ", " << +vec.data[i]; } } return os; } }; int input_tensor_id_ = -1; int init_value_tensor_id_ = -1; int output_tensor_id_ = -1; std::vector<T> input_data_; T init_value_; std::vector<int64_t> input_shape_; std::vector<int64_t> window_dimensions_; std::vector<int64_t> window_strides_; std::vector<int64_t> base_dilations_; std::vector<int64_t> window_dilations_; std::vector<int64_t> padding_; BodyFunction body_function_{}; subgraph_test_util::SubgraphBuilder subgraph_builder_; }; template <class StorageType> class StablehloReduceWindowTest : public testing::Test {}; using TestList = testing::Types<int8_t, int16_t, int32_t, int64_t, uint8_t, float, double>; TYPED_TEST_SUITE(StablehloReduceWindowTest, TestList); TYPED_TEST(StablehloReduceWindowTest, Identity) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 3)); EXPECT_THAT(model.GetOutputData(), ElementsAre(1, 2, 3, 4, 5, 6, 7, 8, 9)); } TYPED_TEST(StablehloReduceWindowTest, Dilate) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({2, 2}); model.SetPadding({0, 0, 0, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(5, 5)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({1, 0, 2, 0, 3, 0, 0, 0, 0, 0, 4, 0, 5, 0, 6, 0, 0, 0, 0, 0, 7, 0, 8, 0, 9})); } TYPED_TEST(StablehloReduceWindowTest, IdentityPadTop) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({1, 0, 0, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9})); } TYPED_TEST(StablehloReduceWindowTest, IdentityPadBottom) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 1, 0, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(4, 3)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0})); } TYPED_TEST(StablehloReduceWindowTest, IdentityPadLeft) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 1, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 4)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9})); } TYPED_TEST(StablehloReduceWindowTest, IdentityPadRight) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 1}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 4)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0})); } TYPED_TEST(StablehloReduceWindowTest, IdentityPadAll) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({1, 1, 1, 1}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(5, 5)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 4, 5, 6, 0, 0, 7, 8, 9, 0, 0, 0, 0, 0, 0})); } TYPED_TEST(StablehloReduceWindowTest, IdentityCropTop) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({-1, 0, 0, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({4, 5, 6, 7, 8, 9})); } TYPED_TEST(StablehloReduceWindowTest, IdentityCropBottom) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, -1, 0, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({1, 2, 3, 4, 5, 6})); } TYPED_TEST(StablehloReduceWindowTest, IdentityCropLeft) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, -1, 0}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({2, 3, 5, 6, 8, 9})); } TYPED_TEST(StablehloReduceWindowTest, IdentityCropRight) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, -1}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 2)); EXPECT_THAT(model.GetOutputData(), ElementsAreArray({1, 2, 4, 5, 7, 8})); } TYPED_TEST(StablehloReduceWindowTest, IdentityCropAll) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({-1, -1, -1, -1}); model.SetWindowDimensions({1, 1}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1)); EXPECT_THAT(model.GetOutputData(), ElementsAre(5)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowFullWindow) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetWindowDimensions({3, 3}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); model.SetBody(BodyFunction::kAdd); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1)); EXPECT_THAT(model.GetOutputData(), ElementsAre(45)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowNoDilation) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetBody(BodyFunction::kAdd); model.SetWindowDimensions({2, 2}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2)); EXPECT_THAT(model.GetOutputData(), ElementsAre(12, 16, 24, 28)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowFullWindowWithDilation) { ReduceWindowOpModel<TypeParam> model; model.SetInput({3, 3}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetBody(BodyFunction::kAdd); model.SetWindowDimensions({2, 2}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({2, 2}); model.SetInitValue(0); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 1)); EXPECT_THAT(model.GetOutputData(), ElementsAre(20)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowWithDilation) { ReduceWindowOpModel<TypeParam> model; model.SetInput({4, 4}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetBody(BodyFunction::kAdd); model.SetWindowDimensions({2, 2}); model.SetWindowStrides({1, 1}); model.SetWindowDilations({2, 2}); model.SetInitValue(0); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2)); EXPECT_THAT(model.GetOutputData(), ElementsAre(24, 28, 40, 44)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowWithStrides) { ReduceWindowOpModel<TypeParam> model; model.SetInput({4, 4}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetBody(BodyFunction::kAdd); model.SetWindowDimensions({2, 2}); model.SetWindowStrides({2, 2}); model.SetWindowDilations({1, 1}); model.SetInitValue(0); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2)); EXPECT_THAT(model.GetOutputData(), ElementsAre(14, 22, 46, 54)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowWithDilationAndStrides) { ReduceWindowOpModel<TypeParam> model; model.SetInput({5, 5}); model.SetBaseDilations({1, 1}); model.SetPadding({0, 0, 0, 0}); model.SetBody(BodyFunction::kAdd); model.SetWindowDimensions({2, 2}); model.SetWindowStrides({2, 2}); model.SetWindowDilations({2, 2}); model.SetInitValue(2); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 2)); EXPECT_THAT(model.GetOutputData(), ElementsAre(30, 38, 70, 78)); } TYPED_TEST(StablehloReduceWindowTest, ReduceWindowOutputShapeRoundingIsCorrect) { ReduceWindowOpModel<TypeParam> model; model.SetInput({1, 64, 114, 114}); model.SetBaseDilations({1, 1, 1, 1}); model.SetPadding({0, 0, 0, 0, 0, 0, 0, 0}); model.SetBody(BodyFunction::kAdd); model.SetWindowDimensions({1, 1, 3, 3}); model.SetWindowStrides({1, 1, 2, 2}); model.SetWindowDilations({1, 1, 1, 1}); model.SetInitValue(2); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 64, 56, 56)); } template <class T> std::vector<T> RandomVector(absl::BitGen& bitgen, size_t size, T min, T max) { std::vector<T> vec(size); for (T& v : vec) { v = absl::Uniform(absl::IntervalClosed, bitgen, min, max); } return vec; } struct Body { static Body GetRandomSupported(absl::BitGen& bitgen, bool allow_mul) { Body b; b = Body{static_cast<BodyFunction>(absl::Uniform<int>( absl::IntervalClosed, bitgen, static_cast<int>(BodyFunction::kAdd), static_cast<int>(BodyFunction::kAny)))}; if (!allow_mul && b.func == BodyFunction::kMul) { b.func = BodyFunction::kAdd; } return b; } template <class T> T operator()(const T& a, const T& b) const noexcept { switch (func) { case BodyFunction::kUnset: case BodyFunction::kUnsupported: return -1; case BodyFunction::kAdd: return a + b; case BodyFunction::kMul: return a * b; case BodyFunction::kMin: return a <= b ? a : b; case BodyFunction::kMax: return a >= b ? a : b; case BodyFunction::kAll: return a && b; case BodyFunction::kAny: return a || b; } } template <class T> T init_value() const noexcept { switch (func) { case BodyFunction::kUnset: case BodyFunction::kUnsupported: return -1; case BodyFunction::kAdd: return 0; case BodyFunction::kMul: return 1; case BodyFunction::kMin: return std::numeric_limits<T>::max(); case BodyFunction::kMax: return std::numeric_limits<T>::lowest(); case BodyFunction::kAll: return true; case BodyFunction::kAny: return false; } } BodyFunction func; }; TYPED_TEST(StablehloReduceWindowTest, FuzzyTest) { absl::BitGen bitgen; for (size_t iteration = 0; iteration < 1000; ++iteration) { const int rank = absl::Uniform(absl::IntervalClosed, bitgen, 1, 3); ReduceWindowOpModel<TypeParam> model; Body body = Body::GetRandomSupported( bitgen, std::is_floating_point<TypeParam>::value); model.SetInput( RandomVector<int64_t>(bitgen, rank, 1, 10), bitgen, -5, 5); model.SetBaseDilations( RandomVector<int64_t>(bitgen, rank, 1, 3)); model.SetPadding( RandomVector<int64_t>(bitgen, 2 * rank, -5, 5)); model.SetWindowDimensions( RandomVector<int64_t>(bitgen, rank, 1, 3)); model.SetWindowStrides( RandomVector<int64_t>(bitgen, rank, 1, 3)); model.SetWindowDilations( RandomVector<int64_t>(bitgen, rank, 1, 3)); model.SetInitValue(body.init_value<TypeParam>()); model.SetBody(body.func); const std::vector<int64_t> padded_shape = reference::PadCropShape( reference::DilateShape(model.GetInputShape(), model.GetBaseDilations()), model.GetPadding()); if (absl::c_any_of(padded_shape, [](int64_t d) { return d <= 0; })) { iteration = iteration > 1 ? iteration - 1 : 0; continue; } const reference::Tensor<TypeParam> expected = reference::ReduceWindow( reference::Tensor<TypeParam>{model.GetInputShape(), model.GetInput()}, model.GetBaseDilations(), model.GetPadding(), model.GetInitValue(), model.GetWindowDimensions(), model.GetWindowDilations(), model.GetWindowStrides(), body); ASSERT_EQ(model.BuildAndInvoke(), kTfLiteOk); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray(expected.shape)) << model; EXPECT_THAT(model.GetOutputData(), ElementsAreArray(expected.data)) << model; } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/stablehlo_reduce_window.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/stablehlo_reduce_window_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ceb21061-0cca-4cc6-964c-1a8e710c929c
cpp
tensorflow/tensorflow
maximum
tensorflow/lite/experimental/shlo/ops/maximum.cc
tensorflow/lite/delegates/xnnpack/maximum_test.cc
#include "tensorflow/lite/experimental/shlo/ops/maximum.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Maximum { template <class T> constexpr auto operator()(const T a, const T b) { return a > b ? a : b; } }; MaximumOp Create(MaximumOp::Attributes) { return {}; } absl::Status Prepare(MaximumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("maximum"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("maximum"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("maximum"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(MaximumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Maximum maximum; if (IsBoolTensor(lhs) || IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_BOOL_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), maximum, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), maximum, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.maximum: Unsupported tensor type."); } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Maximum, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } TEST(Maximum, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MAXIMUM, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/maximum.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/maximum_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
189ba346-65b2-4a18-9e26-4f064de7f3b7
cpp
google/tensorstore
dump
tensorstore/kvstore/ocdbt/format/dump.cc
tensorstore/kvstore/ocdbt/format/dump_test.cc
#include "tensorstore/kvstore/ocdbt/format/dump.h" #include <map> #include <string> #include <string_view> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include <nlohmann/json.hpp> #include "re2/re2.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_variant.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/ocdbt/config.h" #include "tensorstore/kvstore/ocdbt/format/btree.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/manifest.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_ocdbt { Result<LabeledIndirectDataReference> LabeledIndirectDataReference::Parse( std::string_view s) { LabeledIndirectDataReference r; static LazyRE2 kPattern = {"([^:]+):([^:]*):([^:]*):([0-9]+):([0-9]+)"}; std::string_view label, encoded_base_path, encoded_relative_path; if (!RE2::FullMatch(s, *kPattern, &label, &encoded_base_path, &encoded_relative_path, &r.location.offset, &r.location.length)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid indirect data reference: ", tensorstore::QuoteString(s))); } TENSORSTORE_ASSIGN_OR_RETURN(r.kind, ParseIndirectDataKind(label)); r.location.file_id.base_path = internal::PercentDecode(encoded_base_path); r.location.file_id.relative_path = internal::PercentDecode(encoded_relative_path); TENSORSTORE_RETURN_IF_ERROR(r.location.Validate(false)); return r; } namespace { namespace jb = tensorstore::internal_json_binding; constexpr auto ConfigBinder = jb::Compose<ConfigConstraints>( [](auto is_loading, const auto& options, auto* obj, auto* constraints) { if constexpr (is_loading) { CreateConfig(constraints, *obj); if (ConfigConstraints(*obj) != *constraints) { return absl::InvalidArgumentError("Config is not fully specified"); } } else { *constraints = ConfigConstraints(*obj); } return absl::OkStatus(); }); static inline constexpr internal::AsciiSet kLabeledIndirectDataReferenceUnreservedChars{ "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789" "-_./"}; constexpr auto LabeledIndirectDataReferenceBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (auto* s = j->template get_ptr<const std::string*>()) { TENSORSTORE_ASSIGN_OR_RETURN(*obj, LabeledIndirectDataReference::Parse(*s)); } else { return internal_json::ExpectedError(*j, "string"); } } else { if (obj->location.IsMissing()) { *j = ::nlohmann::json::value_t::discarded; } else { *j = tensorstore::StrCat( IndirectDataKindToString(obj->kind), ":", internal::PercentEncodeReserved( obj->location.file_id.base_path, kLabeledIndirectDataReferenceUnreservedChars), ":", internal::PercentEncodeReserved( obj->location.file_id.relative_path, kLabeledIndirectDataReferenceUnreservedChars), ":", obj->location.offset, ":", obj->location.length); } } return absl::OkStatus(); }; constexpr auto IndirectDataReferenceBinder(IndirectDataKind kind) { return jb::Compose<LabeledIndirectDataReference>( [kind](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { *obj = j->location; } else { j->location = *obj; j->kind = kind; } return absl::OkStatus(); }, LabeledIndirectDataReferenceBinder); } constexpr auto CommitTimeBinder = jb::Projection<&CommitTime::value>(); constexpr auto BtreeNodeStatisticsBinder = jb::Object( jb::Member( "num_indirect_value_bytes", jb::Projection<&BtreeNodeStatistics::num_indirect_value_bytes>()), jb::Member("num_tree_bytes", jb::Projection<&BtreeNodeStatistics::num_tree_bytes>()), jb::Member("num_keys", jb::Projection<&BtreeNodeStatistics::num_keys>())); constexpr auto BtreeNodeReferenceBinder = jb::Object( jb::Member("location", jb::Projection<&BtreeNodeReference::location>( IndirectDataReferenceBinder(IndirectDataKind::kBtreeNode))), jb::Member("statistics", jb::Projection<&BtreeNodeReference::statistics>( BtreeNodeStatisticsBinder))); constexpr auto BtreeGenerationReferenceBinder = jb::Object( jb::Member("root", jb::Projection<&BtreeGenerationReference::root>( BtreeNodeReferenceBinder)), jb::Member("generation_number", jb::Projection<&BtreeGenerationReference::generation_number>()), jb::Member("root_height", jb::Projection<&BtreeGenerationReference::root_height>()), jb::Member("commit_time", jb::Projection<&BtreeGenerationReference::commit_time>( CommitTimeBinder))); constexpr auto VersionNodeReferenceBinder = jb::Object( jb::Member("location", jb::Projection<&VersionNodeReference::location>( IndirectDataReferenceBinder( IndirectDataKind::kVersionNode))), jb::Member("generation_number", jb::Projection<&VersionNodeReference::generation_number>()), jb::Member("height", jb::Projection<&VersionNodeReference::height>()), jb::Member("num_generations", jb::Projection<&VersionNodeReference::num_generations>()), jb::Member( "commit_time", jb::Projection<&VersionNodeReference::commit_time>(CommitTimeBinder))); constexpr auto ManifestBinder = jb::Object( jb::Member("config", jb::Projection<&Manifest::config>(ConfigBinder)), jb::Member("versions", jb::Projection<&Manifest::versions>( jb::Array(BtreeGenerationReferenceBinder))), jb::Member("version_tree_nodes", jb::Projection<&Manifest::version_tree_nodes>( jb::Array(VersionNodeReferenceBinder)))); constexpr auto BinaryCordBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (auto* b = j->template get_ptr<const ::nlohmann::json::binary_t*>()) { *obj = absl::Cord(std::string_view( reinterpret_cast<const char*>(b->data()), b->size())); return absl::OkStatus(); } else if (auto* s = j->template get_ptr<const std::string*>()) { *obj = absl::Cord(*s); return absl::OkStatus(); } else { return internal_json::ExpectedError(*j, "string or byte string"); } } else { ::nlohmann::json::binary_t v; v.reserve(obj->size()); for (std::string_view chunk : obj->Chunks()) { v.insert(v.end(), chunk.begin(), chunk.end()); } *j = std::move(v); return absl::OkStatus(); } }; constexpr auto LeafNodeValueReferenceBinder = jb::Variant( jb::Member("inline_value", BinaryCordBinder), jb::Member("indirect_value", IndirectDataReferenceBinder(IndirectDataKind::kValue))); constexpr auto BtreeLeafNodeEntryBinder(std::string_view key_prefix) { return [=](std::false_type is_loading, const auto& options, auto* obj, auto* j) { ::nlohmann::json::binary_t key; key.insert(key.end(), key_prefix.begin(), key_prefix.end()); key.insert(key.end(), obj->key.begin(), obj->key.end()); ::nlohmann::json::object_t x{{"key", key}}; TENSORSTORE_RETURN_IF_ERROR(LeafNodeValueReferenceBinder( std::false_type{}, IncludeDefaults{}, &obj->value_reference, &x)); *j = std::move(x); return absl::OkStatus(); }; } constexpr auto BtreeInteriorNodeEntryBinder(std::string_view key_prefix) { return [=](std::false_type is_loading, const auto& options, auto* obj, auto* j) { ::nlohmann::json::binary_t key; key.insert(key.end(), key_prefix.begin(), key_prefix.end()); key.insert(key.end(), obj->key.begin(), obj->key.end()); auto common_prefix = key; common_prefix.resize(obj->subtree_common_prefix_length + key_prefix.size()); ::nlohmann::json::object_t x; TENSORSTORE_RETURN_IF_ERROR(BtreeNodeReferenceBinder( std::false_type{}, IncludeDefaults{}, &obj->node, &x)); x["key"] = key; x["subtree_common_prefix"] = common_prefix; *j = std::move(x); return absl::OkStatus(); }; } constexpr auto BtreeNodeBinder = jb::Object( jb::Member("height", jb::Projection<&BtreeNode::height>()), jb::Member("entries", [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Variant( jb::Array(BtreeLeafNodeEntryBinder(obj->key_prefix)), jb::Array(BtreeInteriorNodeEntryBinder(obj->key_prefix)))( is_loading, options, &obj->entries, j); })); constexpr auto VersionTreeNodeBinder = jb::Object( jb::Member("height", jb::Projection<&VersionTreeNode::height>()), jb::Member("version_tree_arity_log2", jb::Projection<&VersionTreeNode::version_tree_arity_log2>()), jb::Member("entries", jb::Projection<&VersionTreeNode::entries>(jb::Variant( jb::Array(BtreeGenerationReferenceBinder), jb::Array(VersionNodeReferenceBinder))))); } ::nlohmann::json Dump(const Manifest& manifest) { return jb::ToJson(manifest, ManifestBinder).value(); } ::nlohmann::json Dump(const BtreeNode& node) { return jb::ToJson(node, BtreeNodeBinder).value(); } ::nlohmann::json Dump(const VersionTreeNode& node) { return jb::ToJson(node, VersionTreeNodeBinder).value(); } } }
#include "tensorstore/kvstore/ocdbt/format/dump.h" #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/kvstore/ocdbt/format/btree.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/manifest.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_ocdbt::BtreeNode; using ::tensorstore::internal_ocdbt::CommitTime; using ::tensorstore::internal_ocdbt::DataFileId; using ::tensorstore::internal_ocdbt::Dump; using ::tensorstore::internal_ocdbt::IndirectDataKind; using ::tensorstore::internal_ocdbt::IndirectDataReference; using ::tensorstore::internal_ocdbt::LabeledIndirectDataReference; using ::tensorstore::internal_ocdbt::Manifest; TEST(LabeledIndirectDataReferenceTest, ParseBtreeNode) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse("btreenode:abc:def%20:1:36")); EXPECT_EQ(IndirectDataKind::kBtreeNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(1, value.location.offset); EXPECT_EQ(36, value.location.length); } TEST(LabeledIndirectDataReferenceTest, ParseValue) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse("value:abc:def%20:1:36")); EXPECT_EQ(IndirectDataKind::kValue, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(1, value.location.offset); EXPECT_EQ(36, value.location.length); } TEST(LabeledIndirectDataReferenceTest, ParseVersionNode) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse("versionnode:abc:def%20:1:36")); EXPECT_EQ(IndirectDataKind::kVersionNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(1, value.location.offset); EXPECT_EQ(36, value.location.length); } TEST(LabeledIndirectDataReferenceTest, MaxOffset) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775807:0")); EXPECT_EQ(IndirectDataKind::kBtreeNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(9223372036854775807, value.location.offset); EXPECT_EQ(0, value.location.length); } TEST(LabeledIndirectDataReferenceTest, MaxOffsetAndLength) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775806:1")); EXPECT_EQ(IndirectDataKind::kBtreeNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(9223372036854775806, value.location.offset); EXPECT_EQ(1, value.location.length); } TEST(LabeledIndirectDataReferenceTest, OffsetTooLarge) { EXPECT_THAT( LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775808:0"), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid offset/length .*")); } TEST(LabeledIndirectDataReferenceTest, InvalidKind) { EXPECT_THAT(LabeledIndirectDataReference::Parse("abc:abc:def:0:10"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid indirect data kind: abc")); } TEST(LabeledIndirectDataReferenceTest, LengthTooLarge) { EXPECT_THAT( LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775807:1"), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid offset/length .*")); } TEST(DumpTest, Manifest) { Manifest manifest; manifest.config.uuid = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}; manifest.config.version_tree_arity_log2 = 1; { auto& x = manifest.versions.emplace_back(); x.root.location.file_id = {"abc", "def"}; x.root.location.offset = 10; x.root.location.length = 42; x.generation_number = 15; x.root.statistics.num_indirect_value_bytes = 101; x.root.statistics.num_tree_bytes = 220; x.root.statistics.num_keys = 8; x.root_height = 0; x.commit_time = CommitTime{10}; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id = {"abc", "def"}; x.location.offset = 10; x.location.length = 42; x.generation_number = 8; x.height = 3; x.commit_time = CommitTime{1}; x.num_generations = 8; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id = {"abc", "def"}; x.location.offset = 10; x.location.length = 42; x.generation_number = 12; x.height = 2; x.commit_time = CommitTime{5}; x.num_generations = 4; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id = {"abc", "def"}; x.location.offset = 10; x.location.length = 42; x.generation_number = 14; x.height = 1; x.commit_time = CommitTime{8}; x.num_generations = 2; } EXPECT_THAT(Dump(manifest), MatchesJson({ {"config", {{"uuid", "000102030405060708090a0b0c0d0e0f"}, {"compression", {{"id", "zstd"}}}, {"max_decoded_node_bytes", 8388608}, {"max_inline_value_bytes", 100}, {"version_tree_arity_log2", 1}}}, {"version_tree_nodes", {{ {"commit_time", 1}, {"generation_number", 8}, {"height", 3}, {"location", "versionnode:abc:def:10:42"}, {"num_generations", 8}, }, { {"commit_time", 5}, {"generation_number", 12}, {"height", 2}, {"location", "versionnode:abc:def:10:42"}, {"num_generations", 4}, }, { {"commit_time", 8}, {"generation_number", 14}, {"height", 1}, {"location", "versionnode:abc:def:10:42"}, {"num_generations", 2}, }}}, {"versions", {{{"commit_time", 10}, {"root", {{"location", "btreenode:abc:def:10:42"}, {"statistics", {{"num_indirect_value_bytes", 101}, {"num_keys", 8}, {"num_tree_bytes", 220}}}}}, {"generation_number", 15}, {"root_height", 0}}}}, })); } TEST(DumpTest, BtreeLeafNode) { BtreeNode node; node.height = 0; node.key_prefix = "ab"; auto& entries = node.entries.emplace<BtreeNode::LeafNodeEntries>(); entries.push_back({"c", absl::Cord("value1")}); entries.push_back({"d", absl::Cord("value2")}); entries.push_back({"e", IndirectDataReference{{"abc", "def"}, 1, 25}}); EXPECT_THAT( Dump(node), MatchesJson({ {"entries", { { {"inline_value", ::nlohmann::json::binary_t{ std::vector<uint8_t>{'v', 'a', 'l', 'u', 'e', '1'}}}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'c'}}}, }, { {"inline_value", ::nlohmann::json::binary_t{ std::vector<uint8_t>{'v', 'a', 'l', 'u', 'e', '2'}}}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'd'}}}, }, { {"indirect_value", "value:abc:def:1:25"}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'e'}}}, }, }}, {"height", 0}, })); } TEST(DumpTest, BtreeInteriorNode) { BtreeNode node; node.height = 2; auto& entries = node.entries.emplace<BtreeNode::InteriorNodeEntries>(); entries.push_back({"abc", 1, { { {"abc", "def"}, 5, 6, }, { 100, 200, 5, }, }}); entries.push_back({"def", 1, { { {"ghi", "jkl"}, 42, 9, }, { 101, 220, 8, }, }}); EXPECT_THAT( Dump(node), MatchesJson({ {"entries", { {{"location", "btreenode:abc:def:5:6"}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'c'}}}, {"subtree_common_prefix", ::nlohmann::json::binary_t{std::vector<uint8_t>{'a'}}}, { "statistics", {{"num_indirect_value_bytes", 100}, {"num_keys", 5}, {"num_tree_bytes", 200}}, }}, { {"location", "btreenode:ghi:jkl:42:9"}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'd', 'e', 'f'}}}, {"subtree_common_prefix", ::nlohmann::json::binary_t{std::vector<uint8_t>{'d'}}}, {"statistics", {{"num_indirect_value_bytes", 101}, {"num_keys", 8}, {"num_tree_bytes", 220}}}, }, }}, {"height", 2}, })); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/dump.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/dump_test.cc
4f887a6430414cd6088e1743555015b10f116d50
84e73c58-4c71-4603-8fd2-133a99b2e99a
cpp
tensorflow/tensorflow
squared_difference
tensorflow/lite/delegates/hexagon/builders/squared_difference.cc
tensorflow/lite/delegates/xnnpack/squared_difference_test.cc
#include "hexagon/hexagon_nn_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/hexagon/builders/op_builder.h" namespace tflite { namespace delegates { namespace hexagon { class SquaredDifferenceOpBuilder : public OpBuilder { public: explicit SquaredDifferenceOpBuilder(GraphBuilder* graph_builder, int op_type) : OpBuilder(graph_builder, op_type) {} TfLiteStatus PopulateSubGraph(const TfLiteIntArray* inputs, const TfLiteIntArray* outputs, TfLiteContext* context) override; TfLiteStatus RegisterOutputs(const TfLiteIntArray* outputs, TfLiteContext* context) override; private: TensorID node_output_; }; TfLiteStatus SquaredDifferenceOpBuilder::PopulateSubGraph( const TfLiteIntArray* inputs, const TfLiteIntArray* outputs, TfLiteContext* context) { const int tensor_a_index = inputs->data[0]; const int tensor_b_index = inputs->data[1]; const auto& tensor_a = context->tensors[tensor_a_index]; const auto& tensor_b = context->tensors[tensor_b_index]; AddInput(graph_builder_->GetHexagonTensorId(tensor_a_index)); AddInput(graph_builder_->GetHexagonTensorId(tensor_b_index)); TF_LITE_ENSURE_STATUS(ComputeAndAddMinAndMax(context, tensor_a)); TF_LITE_ENSURE_STATUS(ComputeAndAddMinAndMax(context, tensor_b)); float output_min = -1, output_max = -1; TF_LITE_ENSURE_STATUS(ComputeMinAndMaxQuantValues( context->tensors[outputs->data[0]], &output_min, &output_max)); auto* output_min_const = graph_builder_->AddConstNodeWithData( kScalarShape, reinterpret_cast<char*>(&output_min), sizeof(output_min)); auto* output_max_const = graph_builder_->AddConstNodeWithData( kScalarShape, reinterpret_cast<char*>(&output_max), sizeof(output_max)); int output_batch_size, output_height_size, output_width_size, output_depth_size; GetDims(&output_batch_size, &output_height_size, &output_width_size, &output_depth_size, context->tensors[outputs->data[0]].dims); auto sub_out = AddOutput(sizeof(uint8_t), 4, {output_batch_size, output_height_size, output_width_size, output_depth_size}); auto sub_min = AddOutput(sizeof(float), 4, kScalarShape); auto sub_max = AddOutput(sizeof(float), 4, kScalarShape); auto* mul_op = graph_builder_->AddNode(GetTFLiteNodeID()); mul_op->SetOpType(OP_QuantizedMul_8x8to8); mul_op->AddInput(sub_out); mul_op->AddInput(sub_out); mul_op->AddInput(sub_min); mul_op->AddInput(sub_max); mul_op->AddInput(sub_min); mul_op->AddInput(sub_max); mul_op->AddInput(TensorID(output_min_const->GetID(), 0)); mul_op->AddInput(TensorID(output_max_const->GetID(), 0)); node_output_ = mul_op->AddOutput(sizeof(uint8_t), 4, {output_batch_size, output_height_size, output_width_size, output_depth_size}); mul_op->AddOutput(sizeof(float), 4, kScalarShape); mul_op->AddOutput(sizeof(float), 4, kScalarShape); return kTfLiteOk; } TfLiteStatus SquaredDifferenceOpBuilder::RegisterOutputs( const TfLiteIntArray* outputs, TfLiteContext* context) { graph_builder_->AddTensorWithID(outputs->data[0], node_output_.first, node_output_.second); return kTfLiteOk; } OpBuilder* CreateSquaredDifferenceOpBuilder(GraphBuilder* graph_builder, int op_type) { return new SquaredDifferenceOpBuilder(graph_builder, op_type); } } } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(SquaredDifference, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } TEST(SquaredDifference, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_SQUARED_DIFFERENCE, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/hexagon/builders/squared_difference.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/squared_difference_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
96364946-0861-4cb2-be1c-71b60afa30b0
cpp
google/quiche
tls_chlo_extractor
quiche/quic/core/tls_chlo_extractor.cc
quiche/quic/core/tls_chlo_extractor_test.cc
#include "quiche/quic/core/tls_chlo_extractor.h" #include <cstdint> #include <cstring> #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/ssl.h" #include "quiche/quic/core/frames/quic_crypto_frame.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_framer.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/common/platform/api/quiche_logging.h" namespace quic { namespace { bool HasExtension(const SSL_CLIENT_HELLO* client_hello, uint16_t extension) { const uint8_t* unused_extension_bytes; size_t unused_extension_len; return 1 == SSL_early_callback_ctx_extension_get(client_hello, extension, &unused_extension_bytes, &unused_extension_len); } std::vector<uint16_t> GetSupportedGroups(const SSL_CLIENT_HELLO* client_hello) { const uint8_t* extension_data; size_t extension_len; int rv = SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_supported_groups, &extension_data, &extension_len); if (rv != 1) { return {}; } QuicDataReader named_groups_reader( reinterpret_cast<const char*>(extension_data), extension_len); uint16_t named_groups_len; if (!named_groups_reader.ReadUInt16(&named_groups_len) || named_groups_len + sizeof(uint16_t) != extension_len) { QUIC_CODE_COUNT(quic_chlo_supported_groups_invalid_length); return {}; } std::vector<uint16_t> named_groups; while (!named_groups_reader.IsDoneReading()) { uint16_t named_group; if (!named_groups_reader.ReadUInt16(&named_group)) { QUIC_CODE_COUNT(quic_chlo_supported_groups_odd_length); QUIC_LOG_FIRST_N(WARNING, 10) << "Failed to read named groups"; break; } named_groups.push_back(named_group); } return named_groups; } std::vector<uint16_t> GetCertCompressionAlgos( const SSL_CLIENT_HELLO* client_hello) { const uint8_t* extension_data; size_t extension_len; int rv = SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_cert_compression, &extension_data, &extension_len); if (rv != 1) { return {}; } QuicDataReader cert_compression_algos_reader( reinterpret_cast<const char*>(extension_data), extension_len); uint8_t algos_len; if (!cert_compression_algos_reader.ReadUInt8(&algos_len) || algos_len == 0 || algos_len % sizeof(uint16_t) != 0 || algos_len + sizeof(uint8_t) != extension_len) { QUIC_CODE_COUNT(quic_chlo_cert_compression_algos_invalid_length); return {}; } size_t num_algos = algos_len / sizeof(uint16_t); std::vector<uint16_t> cert_compression_algos; cert_compression_algos.reserve(num_algos); for (size_t i = 0; i < num_algos; ++i) { uint16_t cert_compression_algo; if (!cert_compression_algos_reader.ReadUInt16(&cert_compression_algo)) { QUIC_CODE_COUNT(quic_chlo_fail_to_read_cert_compression_algo); return {}; } cert_compression_algos.push_back(cert_compression_algo); } return cert_compression_algos; } } TlsChloExtractor::TlsChloExtractor() : crypto_stream_sequencer_(this), state_(State::kInitial), parsed_crypto_frame_in_this_packet_(false) {} TlsChloExtractor::TlsChloExtractor(TlsChloExtractor&& other) : TlsChloExtractor() { *this = std::move(other); } TlsChloExtractor& TlsChloExtractor::operator=(TlsChloExtractor&& other) { framer_ = std::move(other.framer_); if (framer_) { framer_->set_visitor(this); } crypto_stream_sequencer_ = std::move(other.crypto_stream_sequencer_); crypto_stream_sequencer_.set_stream(this); ssl_ = std::move(other.ssl_); if (ssl_) { std::pair<SSL_CTX*, int> shared_handles = GetSharedSslHandles(); int ex_data_index = shared_handles.second; const int rv = SSL_set_ex_data(ssl_.get(), ex_data_index, this); QUICHE_CHECK_EQ(rv, 1) << "Internal allocation failure in SSL_set_ex_data"; } state_ = other.state_; error_details_ = std::move(other.error_details_); parsed_crypto_frame_in_this_packet_ = other.parsed_crypto_frame_in_this_packet_; supported_groups_ = std::move(other.supported_groups_); cert_compression_algos_ = std::move(other.cert_compression_algos_); alpns_ = std::move(other.alpns_); server_name_ = std::move(other.server_name_); client_hello_bytes_ = std::move(other.client_hello_bytes_); return *this; } void TlsChloExtractor::IngestPacket(const ParsedQuicVersion& version, const QuicReceivedPacket& packet) { if (state_ == State::kUnrecoverableFailure) { QUIC_DLOG(ERROR) << "Not ingesting packet after unrecoverable error"; return; } if (version == UnsupportedQuicVersion()) { QUIC_DLOG(ERROR) << "Not ingesting packet with unsupported version"; return; } if (version.handshake_protocol != PROTOCOL_TLS1_3) { QUIC_DLOG(ERROR) << "Not ingesting packet with non-TLS version " << version; return; } if (framer_) { if (!framer_->IsSupportedVersion(version)) { QUIC_DLOG(ERROR) << "Not ingesting packet with version mismatch, expected " << framer_->version() << ", got " << version; return; } } else { framer_ = std::make_unique<QuicFramer>( ParsedQuicVersionVector{version}, QuicTime::Zero(), Perspective::IS_SERVER, 0); framer_->set_visitor(this); } parsed_crypto_frame_in_this_packet_ = false; const bool parse_success = framer_->ProcessPacket(packet); if (state_ == State::kInitial && parsed_crypto_frame_in_this_packet_) { state_ = State::kParsedPartialChloFragment; } if (!parse_success) { QUIC_DLOG(ERROR) << "Failed to process packet"; return; } } bool TlsChloExtractor::OnUnauthenticatedPublicHeader( const QuicPacketHeader& header) { if (header.form != IETF_QUIC_LONG_HEADER_PACKET) { QUIC_DLOG(ERROR) << "Not parsing non-long-header packet " << header; return false; } if (header.long_packet_type != INITIAL) { QUIC_DLOG(ERROR) << "Not parsing non-initial packet " << header; return false; } if (GetQuicRestartFlag(quic_dispatcher_ack_buffered_initial_packets)) { if (framer_->GetDecrypter(ENCRYPTION_INITIAL) == nullptr) { framer_->SetInitialObfuscators(header.destination_connection_id); } } else { framer_->SetInitialObfuscators(header.destination_connection_id); } return true; } bool TlsChloExtractor::OnProtocolVersionMismatch(ParsedQuicVersion version) { QUIC_BUG(quic_bug_10855_1) << "Unexpected version mismatch, expected " << framer_->version() << ", got " << version; return false; } void TlsChloExtractor::OnUnrecoverableError(QuicErrorCode error, const std::string& details) { HandleUnrecoverableError(absl::StrCat( "Crypto stream error ", QuicErrorCodeToString(error), ": ", details)); } void TlsChloExtractor::OnUnrecoverableError( QuicErrorCode error, QuicIetfTransportErrorCodes ietf_error, const std::string& details) { HandleUnrecoverableError(absl::StrCat( "Crypto stream error ", QuicErrorCodeToString(error), "(", QuicIetfTransportErrorCodeString(ietf_error), "): ", details)); } bool TlsChloExtractor::OnCryptoFrame(const QuicCryptoFrame& frame) { if (frame.level != ENCRYPTION_INITIAL) { QUIC_BUG(quic_bug_10855_2) << "Parsed bad-level CRYPTO frame " << frame; return false; } parsed_crypto_frame_in_this_packet_ = true; crypto_stream_sequencer_.OnCryptoFrame(frame); return true; } void TlsChloExtractor::OnDataAvailable() { SetupSslHandle(); struct iovec iov; while (crypto_stream_sequencer_.GetReadableRegion(&iov)) { const int rv = SSL_provide_quic_data( ssl_.get(), ssl_encryption_initial, reinterpret_cast<const uint8_t*>(iov.iov_base), iov.iov_len); if (rv != 1) { HandleUnrecoverableError("SSL_provide_quic_data failed"); return; } crypto_stream_sequencer_.MarkConsumed(iov.iov_len); } (void)SSL_do_handshake(ssl_.get()); } TlsChloExtractor* TlsChloExtractor::GetInstanceFromSSL(SSL* ssl) { std::pair<SSL_CTX*, int> shared_handles = GetSharedSslHandles(); int ex_data_index = shared_handles.second; return reinterpret_cast<TlsChloExtractor*>( SSL_get_ex_data(ssl, ex_data_index)); } int TlsChloExtractor::SetReadSecretCallback( SSL* ssl, enum ssl_encryption_level_t , const SSL_CIPHER* , const uint8_t* , size_t ) { GetInstanceFromSSL(ssl)->HandleUnexpectedCallback("SetReadSecretCallback"); return 0; } int TlsChloExtractor::SetWriteSecretCallback( SSL* ssl, enum ssl_encryption_level_t , const SSL_CIPHER* , const uint8_t* , size_t ) { GetInstanceFromSSL(ssl)->HandleUnexpectedCallback("SetWriteSecretCallback"); return 0; } int TlsChloExtractor::WriteMessageCallback( SSL* ssl, enum ssl_encryption_level_t , const uint8_t* , size_t ) { GetInstanceFromSSL(ssl)->HandleUnexpectedCallback("WriteMessageCallback"); return 0; } int TlsChloExtractor::FlushFlightCallback(SSL* ssl) { GetInstanceFromSSL(ssl)->HandleUnexpectedCallback("FlushFlightCallback"); return 0; } void TlsChloExtractor::HandleUnexpectedCallback( const std::string& callback_name) { std::string error_details = absl::StrCat("Unexpected callback ", callback_name); QUIC_BUG(quic_bug_10855_3) << error_details; HandleUnrecoverableError(error_details); } int TlsChloExtractor::SendAlertCallback(SSL* ssl, enum ssl_encryption_level_t , uint8_t desc) { GetInstanceFromSSL(ssl)->SendAlert(desc); return 0; } void TlsChloExtractor::SendAlert(uint8_t tls_alert_value) { if (tls_alert_value == SSL3_AD_HANDSHAKE_FAILURE && HasParsedFullChlo()) { return; } HandleUnrecoverableError(absl::StrCat( "BoringSSL attempted to send alert ", static_cast<int>(tls_alert_value), " ", SSL_alert_desc_string_long(tls_alert_value))); if (state_ == State::kUnrecoverableFailure) { tls_alert_ = tls_alert_value; } } enum ssl_select_cert_result_t TlsChloExtractor::SelectCertCallback( const SSL_CLIENT_HELLO* client_hello) { GetInstanceFromSSL(client_hello->ssl)->HandleParsedChlo(client_hello); return ssl_select_cert_error; } void TlsChloExtractor::HandleParsedChlo(const SSL_CLIENT_HELLO* client_hello) { const char* server_name = SSL_get_servername(client_hello->ssl, TLSEXT_NAMETYPE_host_name); if (server_name) { server_name_ = std::string(server_name); } resumption_attempted_ = HasExtension(client_hello, TLSEXT_TYPE_pre_shared_key); early_data_attempted_ = HasExtension(client_hello, TLSEXT_TYPE_early_data); QUICHE_DCHECK(client_hello_bytes_.empty()); client_hello_bytes_.assign( client_hello->client_hello, client_hello->client_hello + client_hello->client_hello_len); const uint8_t* alpn_data; size_t alpn_len; int rv = SSL_early_callback_ctx_extension_get( client_hello, TLSEXT_TYPE_application_layer_protocol_negotiation, &alpn_data, &alpn_len); if (rv == 1) { QuicDataReader alpns_reader(reinterpret_cast<const char*>(alpn_data), alpn_len); absl::string_view alpns_payload; if (!alpns_reader.ReadStringPiece16(&alpns_payload)) { QUIC_CODE_COUNT_N(quic_chlo_alpns_invalid, 1, 2); HandleUnrecoverableError("Failed to read alpns_payload"); return; } QuicDataReader alpns_payload_reader(alpns_payload); while (!alpns_payload_reader.IsDoneReading()) { absl::string_view alpn_payload; if (!alpns_payload_reader.ReadStringPiece8(&alpn_payload)) { QUIC_CODE_COUNT_N(quic_chlo_alpns_invalid, 2, 2); HandleUnrecoverableError("Failed to read alpn_payload"); return; } alpns_.emplace_back(std::string(alpn_payload)); } } supported_groups_ = GetSupportedGroups(client_hello); if (GetQuicReloadableFlag(quic_parse_cert_compression_algos_from_chlo)) { cert_compression_algos_ = GetCertCompressionAlgos(client_hello); if (cert_compression_algos_.empty()) { QUIC_RELOADABLE_FLAG_COUNT_N(quic_parse_cert_compression_algos_from_chlo, 1, 2); } else { QUIC_RELOADABLE_FLAG_COUNT_N(quic_parse_cert_compression_algos_from_chlo, 2, 2); } } if (state_ == State::kInitial) { state_ = State::kParsedFullSinglePacketChlo; } else if (state_ == State::kParsedPartialChloFragment) { state_ = State::kParsedFullMultiPacketChlo; } else { QUIC_BUG(quic_bug_10855_4) << "Unexpected state on successful parse " << StateToString(state_); } } std::pair<SSL_CTX*, int> TlsChloExtractor::GetSharedSslHandles() { static std::pair<SSL_CTX*, int>* shared_handles = []() { CRYPTO_library_init(); SSL_CTX* ssl_ctx = SSL_CTX_new(TLS_with_buffers_method()); SSL_CTX_set_min_proto_version(ssl_ctx, TLS1_3_VERSION); SSL_CTX_set_max_proto_version(ssl_ctx, TLS1_3_VERSION); static const SSL_QUIC_METHOD kQuicCallbacks{ TlsChloExtractor::SetReadSecretCallback, TlsChloExtractor::SetWriteSecretCallback, TlsChloExtractor::WriteMessageCallback, TlsChloExtractor::FlushFlightCallback, TlsChloExtractor::SendAlertCallback}; SSL_CTX_set_quic_method(ssl_ctx, &kQuicCallbacks); SSL_CTX_set_select_certificate_cb(ssl_ctx, TlsChloExtractor::SelectCertCallback); int ex_data_index = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr); return new std::pair<SSL_CTX*, int>(ssl_ctx, ex_data_index); }(); return *shared_handles; } void TlsChloExtractor::SetupSslHandle() { if (ssl_) { return; } std::pair<SSL_CTX*, int> shared_handles = GetSharedSslHandles(); SSL_CTX* ssl_ctx = shared_handles.first; int ex_data_index = shared_handles.second; ssl_ = bssl::UniquePtr<SSL>(SSL_new(ssl_ctx)); const int rv = SSL_set_ex_data(ssl_.get(), ex_data_index, this); QUICHE_CHECK_EQ(rv, 1) << "Internal allocation failure in SSL_set_ex_data"; SSL_set_accept_state(ssl_.get()); int use_legacy_extension = 0; if (framer_->version().UsesLegacyTlsExtension()) { use_legacy_extension = 1; } SSL_set_quic_use_legacy_codepoint(ssl_.get(), use_legacy_extension); } void TlsChloExtractor::HandleUnrecoverableError( const std::string& error_details) { if (HasParsedFullChlo()) { QUIC_DLOG(ERROR) << "Ignoring error: " << error_details; return; } QUIC_DLOG(ERROR) << "Handling error: " << error_details; state_ = State::kUnrecoverableFailure; if (error_details_.empty()) { error_details_ = error_details; } else { error_details_ = absl::StrCat(error_details_, "; ", error_details); } } std::string TlsChloExtractor::StateToString(State state) { switch (state) { case State::kInitial: return "Initial"; case State::kParsedFullSinglePacketChlo: return "ParsedFullSinglePacketChlo"; case State::kParsedFullMultiPacketChlo: return "ParsedFullMultiPacketChlo"; case State::kParsedPartialChloFragment: return "ParsedPartialChloFragment"; case State::kUnrecoverableFailure: return "UnrecoverableFailure"; } return absl::StrCat("Unknown(", static_cast<int>(state), ")"); } std::ostream& operator<<(std::ostream& os, const TlsChloExtractor::State& state) { os << TlsChloExtractor::StateToString(state); return os; } }
#include "quiche/quic/core/tls_chlo_extractor.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "openssl/ssl.h" #include "quiche/quic/core/http/quic_spdy_client_session.h" #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/quic/test_tools/first_flight.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simple_session_cache.h" #include "quiche/common/print_elements.h" namespace quic { namespace test { namespace { static int DummyCompressFunc(SSL* , CBB* , const uint8_t* , size_t ) { return 1; } static int DummyDecompressFunc(SSL* , CRYPTO_BUFFER** , size_t , const uint8_t* , size_t ) { return 1; } using testing::_; using testing::AnyNumber; class TlsChloExtractorTest : public QuicTestWithParam<ParsedQuicVersion> { protected: TlsChloExtractorTest() : version_(GetParam()), server_id_(TestServerId()) {} void Initialize() { tls_chlo_extractor_ = std::make_unique<TlsChloExtractor>(); AnnotatedPackets packets = GetAnnotatedFirstFlightOfPackets(version_, config_); packets_ = std::move(packets.packets); crypto_stream_size_ = packets.crypto_stream_size; QUIC_DLOG(INFO) << "Initialized with " << packets_.size() << " packets with crypto_stream_size:" << crypto_stream_size_; } void Initialize(std::unique_ptr<QuicCryptoClientConfig> crypto_config) { tls_chlo_extractor_ = std::make_unique<TlsChloExtractor>(); AnnotatedPackets packets = GetAnnotatedFirstFlightOfPackets( version_, config_, TestConnectionId(), EmptyQuicConnectionId(), std::move(crypto_config)); packets_ = std::move(packets.packets); crypto_stream_size_ = packets.crypto_stream_size; QUIC_DLOG(INFO) << "Initialized with " << packets_.size() << " packets with crypto_stream_size:" << crypto_stream_size_; } void PerformFullHandshake(QuicCryptoClientConfig* crypto_config) const { ASSERT_NE(crypto_config->session_cache(), nullptr); MockQuicConnectionHelper client_helper, server_helper; MockAlarmFactory alarm_factory; ParsedQuicVersionVector supported_versions = {version_}; PacketSavingConnection* client_connection = new PacketSavingConnection(&client_helper, &alarm_factory, Perspective::IS_CLIENT, supported_versions); client_connection->AdvanceTime(QuicTime::Delta::FromSeconds(1)); QuicSpdyClientSession client_session(config_, supported_versions, client_connection, server_id_, crypto_config); client_session.Initialize(); std::unique_ptr<QuicCryptoServerConfig> server_crypto_config = crypto_test_utils::CryptoServerConfigForTesting(); QuicConfig server_config; EXPECT_CALL(*client_connection, SendCryptoData(_, _, _)).Times(AnyNumber()); client_session.GetMutableCryptoStream()->CryptoConnect(); crypto_test_utils::HandshakeWithFakeServer( &server_config, server_crypto_config.get(), &server_helper, &alarm_factory, client_connection, client_session.GetMutableCryptoStream(), AlpnForVersion(client_connection->version())); SettingsFrame server_settings; server_settings.values[SETTINGS_QPACK_MAX_TABLE_CAPACITY] = kDefaultQpackMaxDynamicTableCapacity; std::string settings_frame = HttpEncoder::SerializeSettingsFrame(server_settings); client_session.GetMutableCryptoStream() ->SetServerApplicationStateForResumption( std::make_unique<ApplicationState>( settings_frame.data(), settings_frame.data() + settings_frame.length())); } void IngestPackets() { for (const std::unique_ptr<QuicReceivedPacket>& packet : packets_) { ReceivedPacketInfo packet_info( QuicSocketAddress(TestPeerIPAddress(), kTestPort), QuicSocketAddress(TestPeerIPAddress(), kTestPort), *packet); std::string detailed_error; std::optional<absl::string_view> retry_token; const QuicErrorCode error = QuicFramer::ParsePublicHeaderDispatcher( *packet, 0, &packet_info.form, &packet_info.long_packet_type, &packet_info.version_flag, &packet_info.use_length_prefix, &packet_info.version_label, &packet_info.version, &packet_info.destination_connection_id, &packet_info.source_connection_id, &retry_token, &detailed_error); ASSERT_THAT(error, IsQuicNoError()) << detailed_error; tls_chlo_extractor_->IngestPacket(packet_info.version, packet_info.packet); } packets_.clear(); } void ValidateChloDetails(const TlsChloExtractor* extractor = nullptr) const { if (extractor == nullptr) { extractor = tls_chlo_extractor_.get(); } EXPECT_TRUE(extractor->HasParsedFullChlo()); std::vector<std::string> alpns = extractor->alpns(); ASSERT_EQ(alpns.size(), 1u); EXPECT_EQ(alpns[0], AlpnForVersion(version_)); EXPECT_EQ(extractor->server_name(), TestHostname()); EXPECT_EQ(extractor->client_hello_bytes().size(), crypto_stream_size_ - 4); } void IncreaseSizeOfChlo() { constexpr auto kCustomParameterId = static_cast<TransportParameters::TransportParameterId>(0xff33); std::string kCustomParameterValue(2000, '-'); config_.custom_transport_parameters_to_send()[kCustomParameterId] = kCustomParameterValue; } ParsedQuicVersion version_; QuicServerId server_id_; std::unique_ptr<TlsChloExtractor> tls_chlo_extractor_; QuicConfig config_; std::vector<std::unique_ptr<QuicReceivedPacket>> packets_; uint64_t crypto_stream_size_; }; INSTANTIATE_TEST_SUITE_P(TlsChloExtractorTests, TlsChloExtractorTest, ::testing::ValuesIn(AllSupportedVersionsWithTls()), ::testing::PrintToStringParamName()); TEST_P(TlsChloExtractorTest, Simple) { Initialize(); EXPECT_EQ(packets_.size(), 1u); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullSinglePacketChlo); EXPECT_FALSE(tls_chlo_extractor_->resumption_attempted()); EXPECT_FALSE(tls_chlo_extractor_->early_data_attempted()); } TEST_P(TlsChloExtractorTest, TlsExtensionInfo_ResumptionOnly) { auto crypto_client_config = std::make_unique<QuicCryptoClientConfig>( crypto_test_utils::ProofVerifierForTesting(), std::make_unique<SimpleSessionCache>()); PerformFullHandshake(crypto_client_config.get()); SSL_CTX_set_early_data_enabled(crypto_client_config->ssl_ctx(), 0); Initialize(std::move(crypto_client_config)); EXPECT_GE(packets_.size(), 1u); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullSinglePacketChlo); EXPECT_TRUE(tls_chlo_extractor_->resumption_attempted()); EXPECT_FALSE(tls_chlo_extractor_->early_data_attempted()); } TEST_P(TlsChloExtractorTest, TlsExtensionInfo_ZeroRtt) { auto crypto_client_config = std::make_unique<QuicCryptoClientConfig>( crypto_test_utils::ProofVerifierForTesting(), std::make_unique<SimpleSessionCache>()); PerformFullHandshake(crypto_client_config.get()); IncreaseSizeOfChlo(); Initialize(std::move(crypto_client_config)); EXPECT_GE(packets_.size(), 1u); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullMultiPacketChlo); EXPECT_TRUE(tls_chlo_extractor_->resumption_attempted()); EXPECT_TRUE(tls_chlo_extractor_->early_data_attempted()); } TEST_P(TlsChloExtractorTest, TlsExtensionInfo_SupportedGroups) { const std::vector<std::vector<uint16_t>> preferred_groups_to_test = { {SSL_GROUP_X25519}, {SSL_GROUP_X25519_KYBER768_DRAFT00, SSL_GROUP_X25519}, }; for (const std::vector<uint16_t>& preferred_groups : preferred_groups_to_test) { auto crypto_client_config = std::make_unique<QuicCryptoClientConfig>( crypto_test_utils::ProofVerifierForTesting()); crypto_client_config->set_preferred_groups(preferred_groups); Initialize(std::move(crypto_client_config)); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->supported_groups(), preferred_groups); } } TEST_P(TlsChloExtractorTest, TlsExtensionInfo_CertCompressionAlgos) { const std::vector<std::vector<uint16_t>> supported_groups_to_test = { {}, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 65535}, }; for (const std::vector<uint16_t>& supported_cert_compression_algos : supported_groups_to_test) { auto crypto_client_config = std::make_unique<QuicCryptoClientConfig>( crypto_test_utils::ProofVerifierForTesting()); for (uint16_t cert_compression_algo : supported_cert_compression_algos) { ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( crypto_client_config->ssl_ctx(), cert_compression_algo, DummyCompressFunc, DummyDecompressFunc)); } Initialize(std::move(crypto_client_config)); IngestPackets(); ValidateChloDetails(); if (GetQuicReloadableFlag(quic_parse_cert_compression_algos_from_chlo)) { EXPECT_EQ(tls_chlo_extractor_->cert_compression_algos(), supported_cert_compression_algos) << quiche::PrintElements( tls_chlo_extractor_->cert_compression_algos()); } else { EXPECT_TRUE(tls_chlo_extractor_->cert_compression_algos().empty()); } } } TEST_P(TlsChloExtractorTest, MultiPacket) { IncreaseSizeOfChlo(); Initialize(); EXPECT_EQ(packets_.size(), 2u); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullMultiPacketChlo); } TEST_P(TlsChloExtractorTest, MultiPacketReordered) { IncreaseSizeOfChlo(); Initialize(); ASSERT_EQ(packets_.size(), 2u); std::swap(packets_[0], packets_[1]); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullMultiPacketChlo); } TEST_P(TlsChloExtractorTest, MoveAssignment) { Initialize(); EXPECT_EQ(packets_.size(), 1u); TlsChloExtractor other_extractor; *tls_chlo_extractor_ = std::move(other_extractor); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullSinglePacketChlo); } TEST_P(TlsChloExtractorTest, MoveAssignmentAfterExtraction) { Initialize(); EXPECT_EQ(packets_.size(), 1u); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullSinglePacketChlo); TlsChloExtractor other_extractor = std::move(*tls_chlo_extractor_); EXPECT_EQ(other_extractor.state(), TlsChloExtractor::State::kParsedFullSinglePacketChlo); ValidateChloDetails(&other_extractor); } TEST_P(TlsChloExtractorTest, MoveAssignmentBetweenPackets) { IncreaseSizeOfChlo(); Initialize(); ASSERT_EQ(packets_.size(), 2u); TlsChloExtractor other_extractor; ReceivedPacketInfo packet_info( QuicSocketAddress(TestPeerIPAddress(), kTestPort), QuicSocketAddress(TestPeerIPAddress(), kTestPort), *packets_[0]); std::string detailed_error; std::optional<absl::string_view> retry_token; const QuicErrorCode error = QuicFramer::ParsePublicHeaderDispatcher( *packets_[0], 0, &packet_info.form, &packet_info.long_packet_type, &packet_info.version_flag, &packet_info.use_length_prefix, &packet_info.version_label, &packet_info.version, &packet_info.destination_connection_id, &packet_info.source_connection_id, &retry_token, &detailed_error); ASSERT_THAT(error, IsQuicNoError()) << detailed_error; other_extractor.IngestPacket(packet_info.version, packet_info.packet); packets_.erase(packets_.begin()); EXPECT_EQ(packets_.size(), 1u); *tls_chlo_extractor_ = std::move(other_extractor); IngestPackets(); ValidateChloDetails(); EXPECT_EQ(tls_chlo_extractor_->state(), TlsChloExtractor::State::kParsedFullMultiPacketChlo); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/tls_chlo_extractor.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/tls_chlo_extractor_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
346fb862-6591-4707-9ae5-a1961ad6018b
cpp
abseil/abseil-cpp
cord_data_edge
absl/strings/internal/cord_data_edge.h
absl/strings/internal/cord_data_edge_test.cc
#ifndef ABSL_STRINGS_INTERNAL_CORD_DATA_EDGE_H_ #define ABSL_STRINGS_INTERNAL_CORD_DATA_EDGE_H_ #include <cassert> #include <cstddef> #include "absl/base/config.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { inline bool IsDataEdge(const CordRep* edge) { assert(edge != nullptr); if (edge->tag == EXTERNAL || edge->tag >= FLAT) return true; if (edge->tag == SUBSTRING) edge = edge->substring()->child; return edge->tag == EXTERNAL || edge->tag >= FLAT; } inline absl::string_view EdgeData(const CordRep* edge) { assert(IsDataEdge(edge)); size_t offset = 0; const size_t length = edge->length; if (edge->IsSubstring()) { offset = edge->substring()->start; edge = edge->substring()->child; } return edge->tag >= FLAT ? absl::string_view{edge->flat()->Data() + offset, length} : absl::string_view{edge->external()->base + offset, length}; } } ABSL_NAMESPACE_END } #endif
#include "absl/strings/internal/cord_data_edge.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_test_util.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { namespace { using ::absl::cordrep_testing::MakeExternal; using ::absl::cordrep_testing::MakeFlat; using ::absl::cordrep_testing::MakeSubstring; TEST(CordDataEdgeTest, IsDataEdgeOnFlat) { CordRep* rep = MakeFlat("Lorem ipsum dolor sit amet, consectetur ..."); EXPECT_TRUE(IsDataEdge(rep)); CordRep::Unref(rep); } TEST(CordDataEdgeTest, IsDataEdgeOnExternal) { CordRep* rep = MakeExternal("Lorem ipsum dolor sit amet, consectetur ..."); EXPECT_TRUE(IsDataEdge(rep)); CordRep::Unref(rep); } TEST(CordDataEdgeTest, IsDataEdgeOnSubstringOfFlat) { CordRep* rep = MakeFlat("Lorem ipsum dolor sit amet, consectetur ..."); CordRep* substr = MakeSubstring(1, 20, rep); EXPECT_TRUE(IsDataEdge(substr)); CordRep::Unref(substr); } TEST(CordDataEdgeTest, IsDataEdgeOnSubstringOfExternal) { CordRep* rep = MakeExternal("Lorem ipsum dolor sit amet, consectetur ..."); CordRep* substr = MakeSubstring(1, 20, rep); EXPECT_TRUE(IsDataEdge(substr)); CordRep::Unref(substr); } TEST(CordDataEdgeTest, IsDataEdgeOnBtree) { CordRep* rep = MakeFlat("Lorem ipsum dolor sit amet, consectetur ..."); CordRepBtree* tree = CordRepBtree::New(rep); EXPECT_FALSE(IsDataEdge(tree)); CordRep::Unref(tree); } TEST(CordDataEdgeTest, IsDataEdgeOnBadSubstr) { CordRep* rep = MakeFlat("Lorem ipsum dolor sit amet, consectetur ..."); CordRep* substr = MakeSubstring(1, 18, MakeSubstring(1, 20, rep)); EXPECT_FALSE(IsDataEdge(substr)); CordRep::Unref(substr); } TEST(CordDataEdgeTest, EdgeDataOnFlat) { absl::string_view value = "Lorem ipsum dolor sit amet, consectetur ..."; CordRep* rep = MakeFlat(value); EXPECT_EQ(EdgeData(rep), value); CordRep::Unref(rep); } TEST(CordDataEdgeTest, EdgeDataOnExternal) { absl::string_view value = "Lorem ipsum dolor sit amet, consectetur ..."; CordRep* rep = MakeExternal(value); EXPECT_EQ(EdgeData(rep), value); CordRep::Unref(rep); } TEST(CordDataEdgeTest, EdgeDataOnSubstringOfFlat) { absl::string_view value = "Lorem ipsum dolor sit amet, consectetur ..."; CordRep* rep = MakeFlat(value); CordRep* substr = MakeSubstring(1, 20, rep); EXPECT_EQ(EdgeData(substr), value.substr(1, 20)); CordRep::Unref(substr); } TEST(CordDataEdgeTest, EdgeDataOnSubstringOfExternal) { absl::string_view value = "Lorem ipsum dolor sit amet, consectetur ..."; CordRep* rep = MakeExternal(value); CordRep* substr = MakeSubstring(1, 20, rep); EXPECT_EQ(EdgeData(substr), value.substr(1, 20)); CordRep::Unref(substr); } #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) TEST(CordDataEdgeTest, IsDataEdgeOnNullPtr) { EXPECT_DEATH(IsDataEdge(nullptr), ".*"); } TEST(CordDataEdgeTest, EdgeDataOnNullPtr) { EXPECT_DEATH(EdgeData(nullptr), ".*"); } TEST(CordDataEdgeTest, EdgeDataOnBtree) { CordRep* rep = MakeFlat("Lorem ipsum dolor sit amet, consectetur ..."); CordRepBtree* tree = CordRepBtree::New(rep); EXPECT_DEATH(EdgeData(tree), ".*"); CordRep::Unref(tree); } TEST(CordDataEdgeTest, EdgeDataOnBadSubstr) { CordRep* rep = MakeFlat("Lorem ipsum dolor sit amet, consectetur ..."); CordRep* substr = MakeSubstring(1, 18, MakeSubstring(1, 20, rep)); EXPECT_DEATH(EdgeData(substr), ".*"); CordRep::Unref(substr); } #endif } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_data_edge.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_data_edge_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
5130d7d4-9f23-4265-be36-863bc3775da5
cpp
tensorflow/tensorflow
api
tensorflow/lite/delegates/gpu/cl/api.cc
tensorflow/core/api_def/api_test.cc
#include "tensorflow/lite/delegates/gpu/cl/api.h" #include <utility> #ifndef CL_DELEGATE_NO_GL #define CL_DELEGATE_ALLOW_GL #endif #include <algorithm> #include <cstring> #include <memory> #include <variant> #include <vector> #include "absl/memory/memory.h" #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/cl/cl_command_queue.h" #include "tensorflow/lite/delegates/gpu/cl/cl_errors.h" #include "tensorflow/lite/delegates/gpu/cl/cl_event.h" #include "tensorflow/lite/delegates/gpu/cl/environment.h" #include "tensorflow/lite/delegates/gpu/cl/inference_context.h" #include "tensorflow/lite/delegates/gpu/cl/kernels/converter.h" #include "tensorflow/lite/delegates/gpu/cl/opencl_wrapper.h" #include "tensorflow/lite/delegates/gpu/cl/tensor.h" #include "tensorflow/lite/delegates/gpu/cl/tensor_type_util.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/precision.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/task/tensor_desc.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/tflite_profile.h" #ifdef CL_DELEGATE_ALLOW_GL #include <EGL/eglext.h> #include "tensorflow/lite/delegates/gpu/cl/egl_sync.h" #include "tensorflow/lite/delegates/gpu/cl/gl_interop.h" #endif namespace tflite { namespace gpu { namespace cl { namespace { class NoopTensorTie : public TensorTie { public: NoopTensorTie(const TensorTieDef& def, TensorObject obj) : TensorTie(def), obj_(obj) {} static bool IsSupported(const TensorTieDef& def) { return def.external_def == def.internal_def; } absl::Status SetExternalObject(TensorObject obj) final { if (!def().external_def.object_def.user_provided) { return absl::InvalidArgumentError("Tensor object is readonly."); } if (!IsValid(def().external_def, obj)) { return absl::InvalidArgumentError("Given object is not valid"); } obj_ = obj; return absl::OkStatus(); } TensorObject GetExternalObject() final { return obj_; } absl::Status CopyToExternalObject() final { return absl::OkStatus(); } absl::Status CopyFromExternalObject() final { return absl::OkStatus(); } private: TensorObject obj_; }; class DefaultTensorTie : public TensorTie { public: DefaultTensorTie(const TensorTieDef& def, TensorObject internal_obj) : TensorTie(def), internal_obj_(internal_obj) {} static bool IsSupported( const TensorTieDef& def, const TensorObjectConverterBuilder& converter_builder) { auto object_type = def.external_def.object_def.object_type; #ifdef CL_DELEGATE_ALLOW_GL if (def.external_def.object_def.user_provided && GlClBufferCopier::IsSupported(def.external_def.object_def, def.internal_def.object_def)) { return true; } #endif return (object_type == ObjectType::OPENCL_BUFFER || object_type == ObjectType::OPENCL_TEXTURE || object_type == ObjectType::CPU_MEMORY) && converter_builder.IsSupported(def.internal_def, def.external_def) && converter_builder.IsSupported(def.external_def, def.internal_def); } static absl::Status New(const TensorTieDef& def, TensorObject internal_object, TensorObjectConverterBuilder* converter_builder, Environment* env, std::unique_ptr<TensorTie>* tie) { auto tie_impl = std::make_unique<DefaultTensorTie>(def, internal_object); RETURN_IF_ERROR(tie_impl->Init(converter_builder, env)); *tie = std::move(tie_impl); return absl::OkStatus(); } absl::Status CopyToExternalObject() final { if (!converter_to_) { return absl::UnavailableError("Conversion is not available"); } return converter_to_->Convert(internal_obj_, GetExternalObject()); } absl::Status CopyFromExternalObject() final { if (!converter_from_) { return absl::UnavailableError("Conversion is not available"); } return converter_from_->Convert(GetExternalObject(), internal_obj_); } absl::Status SetExternalObject(TensorObject obj) final { if (!def().external_def.object_def.user_provided) { return absl::InvalidArgumentError("External object is read-only"); } if (!IsValid(def().external_def, obj)) { return absl::InvalidArgumentError("Given object is not valid"); } external_obj_ = obj; return absl::OkStatus(); } TensorObject GetExternalObject() final { return external_obj_; } private: absl::Status Init(TensorObjectConverterBuilder* converter_builder, Environment* env) { #ifdef CL_DELEGATE_ALLOW_GL if (def().external_def.object_def.user_provided && GlClBufferCopier::IsSupported(def().external_def.object_def, def().internal_def.object_def)) { converter_from_ = std::make_unique<GlClBufferCopier>( def().internal_def, def().external_def, env); } else { RETURN_IF_ERROR(converter_builder->MakeConverter( def().external_def, def().internal_def, &converter_from_)); } if (def().external_def.object_def.user_provided && GlClBufferCopier::IsSupported(def().internal_def.object_def, def().external_def.object_def)) { converter_to_ = std::make_unique<GlClBufferCopier>( def().internal_def, def().external_def, env); } else { RETURN_IF_ERROR(converter_builder->MakeConverter( def().internal_def, def().external_def, &converter_to_)); } #else RETURN_IF_ERROR(converter_builder->MakeConverter( def().external_def, def().internal_def, &converter_from_)); RETURN_IF_ERROR(converter_builder->MakeConverter( def().internal_def, def().external_def, &converter_to_)); #endif return MaybeAllocateExternalObject(env); } absl::Status MaybeAllocateExternalObject(Environment* env) { const TensorObjectDef& d = def().external_def; if (d.object_def.user_provided) { return absl::OkStatus(); } switch (d.object_def.object_type) { case ObjectType::CPU_MEMORY: { size_t bytes_size = NumElements(d) * SizeOf(d.object_def.data_type); cpu_memory_.resize(bytes_size); external_obj_ = CpuMemory{cpu_memory_.data(), cpu_memory_.size()}; break; } case ObjectType::OPENCL_TEXTURE: case ObjectType::OPENCL_BUFFER: { auto& dims = d.dimensions; const BHWC shape(dims.b, dims.h, dims.w, dims.c); TensorStorageType storage_type = ToTensorStorageType( d.object_def.object_type, d.object_def.data_layout); TensorDescriptor desc = CreateBhwcTensorDescriptor( d.object_def.data_type, storage_type, shape); RETURN_IF_ERROR( AllocateTensorMemory(env->context(), desc, &cl_memory_)); if (d.object_def.object_type == ObjectType::OPENCL_TEXTURE) { external_obj_ = OpenClTexture{cl_memory_.memory()}; } else { external_obj_ = OpenClBuffer{cl_memory_.memory()}; } break; } default: return absl::InternalError("Unexpected object type"); } return absl::OkStatus(); } const TensorObject internal_obj_; TensorObject external_obj_; CLMemory cl_memory_; std::vector<uint8_t> cpu_memory_; std::unique_ptr<TensorObjectConverter> converter_to_; std::unique_ptr<TensorObjectConverter> converter_from_; }; class TwoStepTensorTie : public TensorTie { public: explicit TwoStepTensorTie(const TensorTieDef& def) : TensorTie(def) {} static bool IsSupported( const TensorTieDef& def, const TensorObjectConverterBuilder& converter_builder) { auto defs = MakeOuterInnerDefs(def); return DefaultTensorTie::IsSupported(defs.first, converter_builder) && DefaultTensorTie::IsSupported(defs.second, converter_builder); } static absl::Status New(const TensorTieDef& def, TensorObject internal_object, TensorObjectConverterBuilder* converter_builder, Environment* env, std::unique_ptr<TensorTie>* tie) { auto tie_impl = std::make_unique<TwoStepTensorTie>(def); RETURN_IF_ERROR(tie_impl->Init(internal_object, converter_builder, env)); *tie = std::move(tie_impl); return absl::OkStatus(); } absl::Status CopyToExternalObject() final { RETURN_IF_ERROR(inner_tie_->CopyToExternalObject()); return outer_tie_->CopyToExternalObject(); } absl::Status CopyFromExternalObject() final { RETURN_IF_ERROR(outer_tie_->CopyFromExternalObject()); return inner_tie_->CopyFromExternalObject(); } absl::Status SetExternalObject(TensorObject obj) final { return outer_tie_->SetExternalObject(obj); } TensorObject GetExternalObject() final { return outer_tie_->GetExternalObject(); } private: static std::pair<TensorTieDef, TensorTieDef> MakeOuterInnerDefs( const TensorTieDef& def) { TensorTieDef outer_def; outer_def.external_def = def.external_def; outer_def.internal_def = def.external_def; outer_def.internal_def.object_def.object_type = ObjectType::OPENCL_BUFFER; outer_def.internal_def.object_def.user_provided = true; TensorTieDef inner_def; inner_def.external_def = outer_def.internal_def; inner_def.external_def.object_def.user_provided = false; inner_def.internal_def = def.internal_def; return std::make_pair(outer_def, inner_def); } absl::Status Init(TensorObject internal_object, TensorObjectConverterBuilder* converter_builder, Environment* env) { auto defs = MakeOuterInnerDefs(def()); RETURN_IF_ERROR(DefaultTensorTie::New(defs.second, internal_object, converter_builder, env, &inner_tie_)); return DefaultTensorTie::New(defs.first, inner_tie_->GetExternalObject(), converter_builder, env, &outer_tie_); } std::unique_ptr<TensorTie> inner_tie_; std::unique_ptr<TensorTie> outer_tie_; }; #ifdef CL_DELEGATE_ALLOW_GL class GlBufferHolder : public TensorTie { public: GlBufferHolder(const TensorTieDef& def, GlInteropFabric* gl_interop_fabric, Environment* env) : TensorTie(def), gl_interop_fabric_(gl_interop_fabric), environment_(env) {} static bool IsSupported( const TensorTieDef& def, const TensorObjectConverterBuilder& converter_builder) { if (!def.external_def.object_def.user_provided || def.external_def.object_def.object_type != ObjectType::OPENGL_SSBO) { return false; } return DefaultTensorTie::IsSupported(MakeClDef(def), converter_builder); } static absl::Status New(const TensorTieDef& def, TensorObject internal_object, TensorObjectConverterBuilder* converter_builder, GlInteropFabric* gl_interop_fabric, Environment* env, std::unique_ptr<TensorTie>* tie) { auto tie_impl = std::make_unique<GlBufferHolder>(def, gl_interop_fabric, env); RETURN_IF_ERROR(DefaultTensorTie::New(MakeClDef(def), internal_object, converter_builder, env, &tie_impl->tie_)); *tie = std::move(tie_impl); return absl::OkStatus(); } absl::Status SetExternalObject(TensorObject obj) final { auto ssbo = std::get_if<OpenGlBuffer>(&obj); if (!ssbo) { return absl::InvalidArgumentError("Missing OpenGL SSBO"); } auto old_ssbo = std::get_if<OpenGlBuffer>(&external_obj_); if (old_ssbo && ssbo->id == old_ssbo->id) { return absl::OkStatus(); } if (cl_object_.memory()) { gl_interop_fabric_->UnregisterMemory(cl_object_.memory()); } RETURN_IF_ERROR(CreateClMemoryFromGlBuffer( ssbo->id, def().access_type, &environment_->context(), &cl_object_)); external_obj_ = obj; RETURN_IF_ERROR(tie_->SetExternalObject(OpenClBuffer{cl_object_.memory()})); gl_interop_fabric_->RegisterMemory(cl_object_.memory()); return absl::OkStatus(); } TensorObject GetExternalObject() final { return external_obj_; } absl::Status CopyFromExternalObject() final { return tie_->CopyFromExternalObject(); } absl::Status CopyToExternalObject() final { return tie_->CopyToExternalObject(); } private: static TensorTieDef MakeClDef(const TensorTieDef& def) { auto cl_def = def; cl_def.external_def.object_def.object_type = ObjectType::OPENCL_BUFFER; cl_def.external_def.object_def.user_provided = true; return cl_def; } CLMemory cl_object_; GlInteropFabric* gl_interop_fabric_; Environment* environment_; std::unique_ptr<TensorTie> tie_; TensorObject external_obj_; }; #endif TensorObject TensorToObj(const Tensor& tensor) { if (tensor.GetStorageType() == TensorStorageType::BUFFER) { return OpenClBuffer{tensor.GetMemoryPtr()}; } if (tensor.GetStorageType() == TensorStorageType::IMAGE_BUFFER) { return OpenClBuffer{tensor.GetMemoryPtrForWriting()}; } return OpenClTexture{tensor.GetMemoryPtr()}; } class TensorTieFactory { public: TensorTieFactory(Environment* env, InferenceContext* context #ifdef CL_DELEGATE_ALLOW_GL , GlInteropFabric* gl_interop_fabric #endif ) : env_(*env), context_(*context), #ifdef CL_DELEGATE_ALLOW_GL gl_interop_fabric_(gl_interop_fabric), #endif converter_builder_(NewConverterBuilder(env)) { } bool IsSupported(const TensorTieDef& def) const { return IsValid(def.external_def.object_def) && (NoopTensorTie::IsSupported(def) || DefaultTensorTie::IsSupported(def, *converter_builder_) || #ifdef CL_DELEGATE_ALLOW_GL (gl_interop_fabric_ && GlBufferHolder::IsSupported(def, *converter_builder_)) || #endif TwoStepTensorTie::IsSupported(def, *converter_builder_)); } absl::Status NewTensorTie(const TensorTieDef& def, std::unique_ptr<TensorTie>* tie) { TensorObject internal_object = TensorToObj(*context_.GetTensor(def.id)); auto converter = converter_builder_.get(); if (NoopTensorTie::IsSupported(def)) { *tie = std::make_unique<NoopTensorTie>(def, internal_object); return absl::OkStatus(); } if (DefaultTensorTie::IsSupported(def, *converter)) { return DefaultTensorTie::New(def, internal_object, converter, &env_, tie); } #ifdef CL_DELEGATE_ALLOW_GL if (gl_interop_fabric_ && GlBufferHolder::IsSupported(def, *converter)) { return GlBufferHolder::New(def, internal_object, converter, gl_interop_fabric_, &env_, tie); } #endif if (TwoStepTensorTie::IsSupported(def, *converter)) { return TwoStepTensorTie::New(def, internal_object, converter, &env_, tie); } return absl::UnimplementedError("Unsupported tensor tie definition."); } private: Environment& env_; InferenceContext& context_; #ifdef CL_DELEGATE_ALLOW_GL GlInteropFabric* gl_interop_fabric_; #endif std::unique_ptr<TensorObjectConverterBuilder> converter_builder_; }; class InferenceRunnerImpl : public CLInferenceRunner { public: InferenceRunnerImpl(Environment* environment, std::unique_ptr<InferenceContext> context #ifdef CL_DELEGATE_ALLOW_GL , std::unique_ptr<GlInteropFabric> gl_interop_fabric #endif #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP , int gpu_invoke_loop_times #endif ) : queue_(environment->queue()), profiling_queue_(environment->profiling_queue()), context_(std::move(context)) #ifdef CL_DELEGATE_ALLOW_GL , gl_interop_fabric_(std::move(gl_interop_fabric)) #endif #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP , gpu_invoke_loop_times_(gpu_invoke_loop_times) #endif { } absl::Status Initialize(const std::vector<TensorTieDef>& inputs, const std::vector<TensorTieDef>& outputs, TensorTieFactory* factory) { RETURN_IF_ERROR(LinkTensors(inputs, factory, &inputs_)); return LinkTensors(outputs, factory, &outputs_); } std::vector<TensorObjectDef> inputs() const override { return GetExternalDefinitions(inputs_); } std::vector<TensorObjectDef> outputs() const override { return GetExternalDefinitions(outputs_); } absl::Status GetInputObject(int index, TensorObject* object) override { if (index < 0 || index >= inputs_.size()) { return absl::OutOfRangeError("Index is out of range"); } *object = inputs_[index]->GetExternalObject(); return absl::OkStatus(); } absl::Status GetOutputObject(int index, TensorObject* object) override { if (index < 0 || index >= outputs_.size()) { return absl::OutOfRangeError("Index is out of range"); } *object = outputs_[index]->GetExternalObject(); return absl::OkStatus(); } absl::Status SetInputObject(int index, TensorObject object) override { if (index < 0 || index >= inputs_.size()) { return absl::OutOfRangeError("Input index is out of range"); } return inputs_[index]->SetExternalObject(object); } absl::Status SetOutputObject(int index, TensorObject object) override { if (index < 0 || index >= outputs_.size()) { return absl::OutOfRangeError("Output index is out of range"); } return outputs_[index]->SetExternalObject(object); } absl::Status CopyFromExternalInput(int index) override { if (index > inputs_.size()) { return absl::NotFoundError( absl::StrCat("Input id ", index, " is an invalid input index.")); } return inputs_[index]->CopyFromExternalObject(); } absl::Status CopyToExternalOutput(int index) override { if (index > outputs_.size()) { return absl::NotFoundError( absl::StrCat("Output id ", index, " is an invalid output index")); } return outputs_[index]->CopyToExternalObject(); } absl::Status Run() override { #ifdef CL_DELEGATE_ALLOW_GL if (gl_interop_fabric_) { RETURN_IF_ERROR(gl_interop_fabric_->Start()); } #endif for (const auto& input : inputs_) { RETURN_IF_ERROR(input->CopyFromExternalObject()); } #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP if (gpu_invoke_loop_times_ <= 0) { return absl::InvalidArgumentError( "gpu_invoke_loop_times must be positive"); } for (int i = 0; i < gpu_invoke_loop_times_; i++) { RETURN_IF_ERROR(RunWithoutExternalBufferCopy()); } #else RETURN_IF_ERROR(RunWithoutExternalBufferCopy()); #endif bool has_async_copies = false; for (const auto& output : outputs_) { RETURN_IF_ERROR(output->CopyToExternalObject()); if (output->def().external_def.object_def.object_type == ObjectType::CPU_MEMORY) { has_async_copies = true; } } #ifdef CL_DELEGATE_ALLOW_GL if (gl_interop_fabric_) { RETURN_IF_ERROR(gl_interop_fabric_->Finish()); } #endif if (has_async_copies) { RETURN_IF_ERROR(queue_->WaitForCompletion()); } return absl::OkStatus(); } absl::Status RunWithoutExternalBufferCopy() override { if (IsTfLiteProfilerActive()) { ProfilingInfo profiling_info; RETURN_IF_ERROR(context_->Profile(profiling_queue_, &profiling_info)); AddTfLiteProfilerEvents(&profiling_info); } RETURN_IF_ERROR(context_->AddToQueue(queue_)); context_->FlushQueue(queue_); return absl::OkStatus(); } private: static absl::Status LinkTensors( const std::vector<TensorTieDef>& defs, TensorTieFactory* factory, std::vector<std::unique_ptr<TensorTie>>* objects) { objects->reserve(defs.size()); for (auto& def : defs) { std::unique_ptr<TensorTie> object; RETURN_IF_ERROR(factory->NewTensorTie(def, &object)); objects->push_back(std::move(object)); } return absl::OkStatus(); } static std::vector<TensorObjectDef> GetExternalDefinitions( const std::vector<std::unique_ptr<TensorTie>>& objects) { std::vector<TensorObjectDef> defs; defs.reserve(objects.size()); for (auto& obj : objects) { defs.push_back(obj->def().external_def); } return defs; } CLCommandQueue* queue_; ProfilingCommandQueue* profiling_queue_; std::unique_ptr<InferenceContext> context_; #ifdef CL_DELEGATE_ALLOW_GL std::unique_ptr<GlInteropFabric> gl_interop_fabric_; #endif #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP int gpu_invoke_loop_times_; #endif std::vector<std::unique_ptr<TensorTie>> inputs_; std::vector<std::unique_ptr<TensorTie>> outputs_; }; TensorObjectDef TensorToDef(const Tensor& tensor) { TensorObjectDef def; def.dimensions.b = tensor.Batch(); def.dimensions.h = tensor.Height(); def.dimensions.w = tensor.Width(); def.dimensions.c = tensor.Channels(); def.object_def.data_layout = ToDataLayout(tensor.GetStorageType()); def.object_def.data_type = tensor.GetDataType(); def.object_def.object_type = ToObjectType(tensor.GetStorageType()); def.object_def.user_provided = false; return def; } CalculationsPrecision GetPrecision(const Environment& env, const InferenceOptions& options) { CalculationsPrecision precision; switch (GetPosition(options, InferencePriority::MAX_PRECISION)) { case 1: precision = CalculationsPrecision::F32; break; case 2: precision = CalculationsPrecision::F32_F16; break; case 3: precision = CalculationsPrecision::F16; break; default: precision = CalculationsPrecision::F16; break; } if (!env.IsSupported(precision)) { precision = CalculationsPrecision::F32_F16; if (!env.IsSupported(precision)) { precision = CalculationsPrecision::F32; } } return precision; } TensorStorageType GetStorageTypeFromOptions(const Environment& env, const InferenceOptions& options) { std::vector<TensorStorageType> preferred_storage_types; if (GetRelativeImportance(options, InferencePriority::MIN_LATENCY, InferencePriority::MIN_MEMORY_USAGE) == PriorityImportance::HIGHER) { preferred_storage_types = {GetFastestStorageType(env.device().GetInfo()), TensorStorageType::BUFFER}; } else { preferred_storage_types = { GetStorageTypeWithMinimalMemoryConsumption(env.device().GetInfo()), TensorStorageType::BUFFER}; } for (TensorStorageType storage_type : preferred_storage_types) { if (env.IsSupported(storage_type)) { return storage_type; } } return TensorStorageType::UNKNOWN; } CreateGpuModelInfo GetCreateInfo(const Environment& environment, const InferenceOptions& options) { CreateGpuModelInfo create_info; create_info.precision = GetPrecision(environment, options); create_info.storage_type = GetStorageTypeFromOptions(environment, options); if (options.usage == InferenceUsage::FAST_SINGLE_ANSWER) { create_info.hints.Add(ModelHints::kReduceKernelsCount); create_info.hints.Add(ModelHints::kFastTuning); } else if (options.usage == InferenceUsage::BALANCED) { create_info.hints.Add(ModelHints::kReduceKernelsCount); } else if (options.usage == InferenceUsage::SUSTAINED_SPEED) { create_info.hints.Add(ModelHints::kAllowSpecialKernels); } if (GetRelativeImportance(options, InferencePriority::MIN_MEMORY_USAGE, InferencePriority::MIN_LATENCY) == PriorityImportance::HIGHER) { create_info.hints.Add(ModelHints::kNoWinogradOptimizations); create_info.hints.Add(ModelHints::kReuseConvWeights); } return create_info; } class InferenceBuilderImpl : public InferenceBuilder { public: explicit InferenceBuilderImpl(Environment* environment) : environment_(environment) {} absl::Status Initialize(const InferenceOptions& options, const InferenceEnvironmentOptions& env_options, const GraphFloat32& graph) { context_ = std::make_unique<InferenceContext>(); CreateGpuModelInfo create_info = GetCreateInfo(*environment_, options); RETURN_IF_ERROR(context_->InitFromGraph(create_info, graph, environment_)); #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP gpu_invoke_loop_times_ = options.gpu_invoke_loop_times; #endif #ifdef CL_DELEGATE_ALLOW_GL if (env_options.IsGlAware() && IsGlSharingSupported(environment_->device())) { gl_interop_fabric_ = std::make_unique<GlInteropFabric>( env_options.egl_display, environment_); } tie_factory_ = std::make_unique<TensorTieFactory>( environment_, context_.get(), gl_interop_fabric_.get()); #else tie_factory_ = std::make_unique<TensorTieFactory>(environment_, context_.get()); #endif inputs_ = LinkTensors(context_->GetInputIds(), AccessType::READ); outputs_ = LinkTensors(context_->GetOutputIds(), AccessType::WRITE); return absl::OkStatus(); } absl::Status Initialize(const InferenceEnvironmentOptions& env_options, const absl::Span<const uint8_t> serialized_model) { context_ = std::make_unique<InferenceContext>(); RETURN_IF_ERROR( context_->RestoreDeserialized(serialized_model, environment_)); #ifdef CL_DELEGATE_ALLOW_GL if (env_options.IsGlAware() && IsGlSharingSupported(environment_->device())) { gl_interop_fabric_ = std::make_unique<GlInteropFabric>( env_options.egl_display, environment_); } tie_factory_ = std::make_unique<TensorTieFactory>( environment_, context_.get(), gl_interop_fabric_.get()); #else tie_factory_ = std::make_unique<TensorTieFactory>(environment_, context_.get()); #endif inputs_ = LinkTensors(context_->GetInputIds(), AccessType::READ); outputs_ = LinkTensors(context_->GetOutputIds(), AccessType::WRITE); return absl::OkStatus(); } std::vector<TensorObjectDef> inputs() const override { return GetExternalDefinitions(inputs_); } std::vector<TensorObjectDef> outputs() const override { return GetExternalDefinitions(outputs_); } absl::Status SetInputShape(int index, const Dimensions& dimensions) override { if (index < 0 || index >= inputs_.size()) { return absl::OutOfRangeError("Index is out of range"); } return absl::UnimplementedError("Changing input shapes is not supported"); } absl::Status SetInputObjectDef(int index, ObjectDef new_def) override { if (index < 0 || index >= inputs_.size()) { return absl::OutOfRangeError("Input index is out of range"); } auto def = inputs_[index]; def.external_def.object_def = new_def; if (!tie_factory_->IsSupported(def)) { return absl::InvalidArgumentError( "New input object definition is not supported."); } inputs_[index] = def; return absl::OkStatus(); } absl::Status SetOutputObjectDef(int index, ObjectDef new_def) override { if (index < 0 || index >= outputs_.size()) { return absl::OutOfRangeError("Output index is out of range"); } auto def = outputs_[index]; def.external_def.object_def = new_def; if (!tie_factory_->IsSupported(def)) { return absl::InvalidArgumentError( "New output object definition is not supported."); } outputs_[index] = def; return absl::OkStatus(); } absl::Status Build(std::unique_ptr<InferenceRunner>* runner) override { #ifdef CL_DELEGATE_ALLOW_GL if (gl_interop_fabric_ && !HasGlObjects()) { gl_interop_fabric_.reset(nullptr); } auto runner_impl = std::make_unique<InferenceRunnerImpl>( environment_, std::move(context_), std::move(gl_interop_fabric_) #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP , gpu_invoke_loop_times_ #endif ); #else auto runner_impl = std::make_unique<InferenceRunnerImpl>(environment_, std::move(context_) #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP , gpu_invoke_loop_times_ #endif ); #endif RETURN_IF_ERROR( runner_impl->Initialize(inputs_, outputs_, tie_factory_.get())); *runner = std::move(runner_impl); return absl::OkStatus(); } private: std::vector<TensorTieDef> LinkTensors(const std::vector<ValueId>& ids, AccessType access) { std::vector<TensorTieDef> links; links.reserve(ids.size()); for (const auto& id : ids) { TensorObjectDef def = TensorToDef(*context_->GetTensor(id)); links.push_back({id, access, def, def}); } return links; } bool HasGlObjects() const { #ifdef CL_DELEGATE_ALLOW_GL auto is_gl = [](ObjectType t) { return t == ObjectType::OPENGL_SSBO || t == ObjectType::OPENGL_TEXTURE; }; for (const TensorTieDef& def : inputs_) { if (is_gl(def.external_def.object_def.object_type)) { return true; } } for (const TensorTieDef& def : outputs_) { if (is_gl(def.external_def.object_def.object_type)) { return true; } } #endif return false; } static std::vector<TensorObjectDef> GetExternalDefinitions( const std::vector<TensorTieDef>& links) { std::vector<TensorObjectDef> defs; defs.reserve(links.size()); for (auto& desc : links) { defs.push_back(desc.external_def); } return defs; } std::unique_ptr<InferenceContext> context_; #ifdef CL_DELEGATE_ALLOW_GL std::unique_ptr<GlInteropFabric> gl_interop_fabric_; #endif #ifdef TFLITE_GPU_ENABLE_INVOKE_LOOP int gpu_invoke_loop_times_; #endif Environment* environment_; std::vector<TensorTieDef> inputs_; std::vector<TensorTieDef> outputs_; std::unique_ptr<TensorTieFactory> tie_factory_; }; class InferenceEnvironmentImpl : public InferenceEnvironment { public: explicit InferenceEnvironmentImpl(const InferenceEnvironmentOptions& options) : options_(options) {} absl::Status Init() { RETURN_IF_ERROR(LoadOpenCL()); properties_.is_opencl_available = true; CLDevice device; if (options_.device) { cl_platform_id platform; RETURN_IF_ERROR(GetDeviceInfo<cl_platform_id>( options_.device, CL_DEVICE_PLATFORM, &platform)); device = CLDevice(options_.device, platform); } else { RETURN_IF_ERROR(CreateDefaultGPUDevice(&device)); } #ifdef CL_DELEGATE_ALLOW_GL properties_.is_gl_sharing_supported = IsGlSharingSupported(device); properties_.is_gl_to_cl_fast_sync_supported = IsClEventFromEglSyncSupported(device); properties_.is_cl_to_gl_fast_sync_supported = IsEglSyncFromClEventSupported(); #endif CLContext context; if (options_.context) { #ifdef CL_DELEGATE_ALLOW_GL if (options_.IsGlAware()) { return absl::InvalidArgumentError( "OpenCL context and EGL parameters are set in the same time."); } #endif context = CLContext(options_.context, false, device); } else { #ifdef CL_DELEGATE_ALLOW_GL if (options_.IsGlAware() && properties_.is_gl_sharing_supported) { RETURN_IF_ERROR(CreateCLGLContext( device, reinterpret_cast<cl_context_properties>(options_.egl_context), reinterpret_cast<cl_context_properties>(options_.egl_display), &context)); } else { RETURN_IF_ERROR(CreateCLContext(device, &context)); } #else RETURN_IF_ERROR(CreateCLContext(device, &context)); #endif } CLCommandQueue queue; if (options_.command_queue) { queue = CLCommandQueue(options_.command_queue, false); } else { RETURN_IF_ERROR(CreateCLCommandQueue(device, context, &queue)); } ProfilingCommandQueue profiling_queue; RETURN_IF_ERROR( CreateProfilingCommandQueue(device, context, &profiling_queue)); environment_ = Environment(std::move(device), std::move(context), std::move(queue), std::move(profiling_queue)); return environment_.Init(); } absl::Status BuildSerializedModel( const InferenceOptions& options, GraphFloat32 model, std::vector<uint8_t>* serialized_model) final { if (!IsValid(options)) { return absl::InvalidArgumentError("InferenceOptions are invalid."); } InferenceOptions resolved_options = options; ResolveAutoPriority(&resolved_options); if (environment_.program_cache() && !options_.serialized_binary_cache.empty()) { environment_.program_cache() ->AddSerializedCache(environment_.context(), environment_.device(), options_.serialized_binary_cache) .IgnoreError(); } RETURN_IF_ERROR(RunGraphTransformsForGpuModel(&model)); InferenceContext context; CreateGpuModelInfo create_info = GetCreateInfo(environment_, options); RETURN_IF_ERROR(context.InitFromGraph(create_info, model, &environment_, serialized_model)); return absl::OkStatus(); } absl::Status NewInferenceBuilder( const InferenceOptions& options, GraphFloat32 model, std::unique_ptr<InferenceBuilder>* builder) final { if (!IsValid(options)) { return absl::InvalidArgumentError("InferenceOptions are invalid."); } InferenceOptions resolved_options = options; ResolveAutoPriority(&resolved_options); if (environment_.program_cache() && !options_.serialized_binary_cache.empty()) { environment_.program_cache() ->AddSerializedCache(environment_.context(), environment_.device(), options_.serialized_binary_cache) .IgnoreError(); } RETURN_IF_ERROR(RunGraphTransformsForGpuModel(&model)); auto builder_impl = std::make_unique<InferenceBuilderImpl>(&environment_); RETURN_IF_ERROR( builder_impl->Initialize(resolved_options, options_, model)); *builder = std::move(builder_impl); return absl::OkStatus(); } absl::Status NewInferenceBuilder( const absl::Span<const uint8_t> serialized_model, std::unique_ptr<InferenceBuilder>* builder) final { if (environment_.program_cache() && !options_.serialized_binary_cache.empty()) { environment_.program_cache() ->AddSerializedCache(environment_.context(), environment_.device(), options_.serialized_binary_cache) .IgnoreError(); } auto builder_impl = std::make_unique<InferenceBuilderImpl>(&environment_); RETURN_IF_ERROR(builder_impl->Initialize(options_, serialized_model)); *builder = std::move(builder_impl); return absl::OkStatus(); } std::vector<uint8_t> GetSerializedBinaryCache() const final { std::vector<uint8_t> data; environment_.program_cache() ->GetSerializedCache(environment_.device(), &data) .IgnoreError(); return data; } const InferenceEnvironmentProperties& properties() const { return properties_; } private: const InferenceEnvironmentOptions options_; Environment environment_; InferenceEnvironmentProperties properties_; }; } absl::Status NewInferenceEnvironment( const InferenceEnvironmentOptions& options, std::unique_ptr<InferenceEnvironment>* environment, InferenceEnvironmentProperties* properties) { auto env_impl = std::make_unique<InferenceEnvironmentImpl>(options); absl::Status status = env_impl->Init(); if (properties) { *properties = env_impl->properties(); } RETURN_IF_ERROR(status); *environment = std::move(env_impl); return absl::OkStatus(); } } } }
#include <ctype.h> #include <algorithm> #include <string> #include <unordered_map> #include <vector> #include "tensorflow/core/api_def/excluded_ops.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { constexpr char kApiDefFilePattern[] = "api_def_*.pbtxt"; string DefaultApiDefDir() { return GetDataDependencyFilepath( io::JoinPath("tensorflow", "core", "api_def", "base_api")); } string PythonApiDefDir() { return GetDataDependencyFilepath( io::JoinPath("tensorflow", "core", "api_def", "python_api")); } void GetGoldenApiDefs(Env* env, const string& api_files_dir, std::unordered_map<string, ApiDef>* name_to_api_def) { std::vector<string> matching_paths; TF_CHECK_OK(env->GetMatchingPaths( io::JoinPath(api_files_dir, kApiDefFilePattern), &matching_paths)); for (auto& file_path : matching_paths) { string file_contents; TF_CHECK_OK(ReadFileToString(env, file_path, &file_contents)); file_contents = PBTxtFromMultiline(file_contents); ApiDefs api_defs; QCHECK(tensorflow::protobuf::TextFormat::ParseFromString(file_contents, &api_defs)) << "Failed to load " << file_path; CHECK_EQ(api_defs.op_size(), 1); (*name_to_api_def)[api_defs.op(0).graph_op_name()] = api_defs.op(0); } } void TestAllApiDefsHaveCorrespondingOp( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { std::unordered_set<string> op_names; for (const auto& op : ops.op()) { op_names.insert(op.name()); } for (const auto& name_and_api_def : api_defs_map) { ASSERT_TRUE(op_names.find(name_and_api_def.first) != op_names.end()) << name_and_api_def.first << " op has ApiDef but missing from ops. " << "Does api_def_" << name_and_api_def.first << " need to be deleted?"; } } void TestAllApiDefInputArgsAreValid( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& op : ops.op()) { const auto api_def_iter = api_defs_map.find(op.name()); if (api_def_iter == api_defs_map.end()) { continue; } const auto& api_def = api_def_iter->second; for (const auto& api_def_arg : api_def.in_arg()) { bool found_arg = false; for (const auto& op_arg : op.input_arg()) { if (api_def_arg.name() == op_arg.name()) { found_arg = true; break; } } ASSERT_TRUE(found_arg) << "Input argument " << api_def_arg.name() << " (overwritten in api_def_" << op.name() << ".pbtxt) is not defined in OpDef for " << op.name(); } } } void TestAllApiDefOutputArgsAreValid( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& op : ops.op()) { const auto api_def_iter = api_defs_map.find(op.name()); if (api_def_iter == api_defs_map.end()) { continue; } const auto& api_def = api_def_iter->second; for (const auto& api_def_arg : api_def.out_arg()) { bool found_arg = false; for (const auto& op_arg : op.output_arg()) { if (api_def_arg.name() == op_arg.name()) { found_arg = true; break; } } ASSERT_TRUE(found_arg) << "Output argument " << api_def_arg.name() << " (overwritten in api_def_" << op.name() << ".pbtxt) is not defined in OpDef for " << op.name(); } } } void TestAllApiDefAttributeNamesAreValid( const OpList& ops, const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& op : ops.op()) { const auto api_def_iter = api_defs_map.find(op.name()); if (api_def_iter == api_defs_map.end()) { continue; } const auto& api_def = api_def_iter->second; for (const auto& api_def_attr : api_def.attr()) { bool found_attr = false; for (const auto& op_attr : op.attr()) { if (api_def_attr.name() == op_attr.name()) { found_attr = true; } } ASSERT_TRUE(found_attr) << "Attribute " << api_def_attr.name() << " (overwritten in api_def_" << op.name() << ".pbtxt) is not defined in OpDef for " << op.name(); } } } void TestDeprecatedAttributesSetCorrectly( const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& name_and_api_def : api_defs_map) { int num_deprecated_endpoints = 0; const auto& api_def = name_and_api_def.second; for (const auto& endpoint : api_def.endpoint()) { if (endpoint.deprecated()) { ++num_deprecated_endpoints; } } const auto& name = name_and_api_def.first; ASSERT_TRUE(api_def.deprecation_message().empty() || num_deprecated_endpoints == 0) << "Endpoints are set to 'deprecated' for deprecated op " << name << ". If an op is deprecated (i.e. deprecation_message is set), " << "all the endpoints are deprecated implicitly and 'deprecated' " << "field should not be set."; if (num_deprecated_endpoints > 0) { ASSERT_NE(num_deprecated_endpoints, api_def.endpoint_size()) << "All " << name << " endpoints are deprecated. Please, set " << "deprecation_message in api_def_" << name << ".pbtxt instead. " << "to indicate that the op is deprecated."; } } } void TestDeprecationVersionSetCorrectly( const std::unordered_map<string, ApiDef>& api_defs_map) { for (const auto& name_and_api_def : api_defs_map) { const auto& name = name_and_api_def.first; const auto& api_def = name_and_api_def.second; if (api_def.deprecation_version() != 0) { ASSERT_TRUE(api_def.deprecation_version() > 0) << "Found ApiDef with negative deprecation_version"; ASSERT_FALSE(api_def.deprecation_message().empty()) << "ApiDef that includes deprecation_version > 0 must also specify " << "a deprecation_message. Op " << name << " has deprecation_version > 0 but deprecation_message is not set."; } } } class BaseApiTest : public ::testing::Test { protected: BaseApiTest() { OpRegistry::Global()->Export(false, &ops_); const std::vector<string> multi_line_fields = {"description"}; Env* env = Env::Default(); GetGoldenApiDefs(env, DefaultApiDefDir(), &api_defs_map_); } OpList ops_; std::unordered_map<string, ApiDef> api_defs_map_; }; TEST_F(BaseApiTest, AllOpsAreInApiDef) { auto* excluded_ops = GetExcludedOps(); for (const auto& op : ops_.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } EXPECT_TRUE(api_defs_map_.find(op.name()) != api_defs_map_.end()) << op.name() << " op does not have api_def_*.pbtxt file. " << "Please add api_def_" << op.name() << ".pbtxt file " << "under tensorflow/core/api_def/base_api/ directory."; } } TEST_F(BaseApiTest, AllApiDefsHaveCorrespondingOp) { TestAllApiDefsHaveCorrespondingOp(ops_, api_defs_map_); } string GetOpDefHasDocStringError(const string& op_name) { return strings::Printf( "OpDef for %s has a doc string. " "Doc strings must be defined in ApiDef instead of OpDef. " "Please, add summary and descriptions in api_def_%s" ".pbtxt file instead", op_name.c_str(), op_name.c_str()); } TEST_F(BaseApiTest, OpDefsShouldNotHaveDocs) { auto* excluded_ops = GetExcludedOps(); for (const auto& op : ops_.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } ASSERT_TRUE(op.summary().empty()) << GetOpDefHasDocStringError(op.name()); ASSERT_TRUE(op.description().empty()) << GetOpDefHasDocStringError(op.name()); for (const auto& arg : op.input_arg()) { ASSERT_TRUE(arg.description().empty()) << GetOpDefHasDocStringError(op.name()); } for (const auto& arg : op.output_arg()) { ASSERT_TRUE(arg.description().empty()) << GetOpDefHasDocStringError(op.name()); } for (const auto& attr : op.attr()) { ASSERT_TRUE(attr.description().empty()) << GetOpDefHasDocStringError(op.name()); } } } TEST_F(BaseApiTest, AllApiDefInputArgsAreValid) { TestAllApiDefInputArgsAreValid(ops_, api_defs_map_); } TEST_F(BaseApiTest, AllApiDefOutputArgsAreValid) { TestAllApiDefOutputArgsAreValid(ops_, api_defs_map_); } TEST_F(BaseApiTest, AllApiDefAttributeNamesAreValid) { TestAllApiDefAttributeNamesAreValid(ops_, api_defs_map_); } TEST_F(BaseApiTest, DeprecationSetCorrectly) { TestDeprecatedAttributesSetCorrectly(api_defs_map_); } TEST_F(BaseApiTest, DeprecationVersionSetCorrectly) { TestDeprecationVersionSetCorrectly(api_defs_map_); } class PythonApiTest : public ::testing::Test { protected: PythonApiTest() { OpRegistry::Global()->Export(false, &ops_); const std::vector<string> multi_line_fields = {"description"}; Env* env = Env::Default(); GetGoldenApiDefs(env, PythonApiDefDir(), &api_defs_map_); } OpList ops_; std::unordered_map<string, ApiDef> api_defs_map_; }; TEST_F(PythonApiTest, AllApiDefsHaveCorrespondingOp) { TestAllApiDefsHaveCorrespondingOp(ops_, api_defs_map_); } TEST_F(PythonApiTest, AllApiDefInputArgsAreValid) { TestAllApiDefInputArgsAreValid(ops_, api_defs_map_); } TEST_F(PythonApiTest, AllApiDefOutputArgsAreValid) { TestAllApiDefOutputArgsAreValid(ops_, api_defs_map_); } TEST_F(PythonApiTest, AllApiDefAttributeNamesAreValid) { TestAllApiDefAttributeNamesAreValid(ops_, api_defs_map_); } TEST_F(PythonApiTest, DeprecationSetCorrectly) { TestDeprecatedAttributesSetCorrectly(api_defs_map_); } TEST_F(PythonApiTest, DeprecationVersionSetCorrectly) { TestDeprecationVersionSetCorrectly(api_defs_map_); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/api.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/api_def/api_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6479cac6-c669-44ce-a8f3-f49af593b676
cpp
tensorflow/tensorflow
rocm_version_parser
third_party/xla/xla/stream_executor/rocm/rocm_version_parser.cc
third_party/xla/xla/stream_executor/rocm/rocm_version_parser_test.cc
#include "xla/stream_executor/rocm/rocm_version_parser.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/stream_executor/semantic_version.h" namespace stream_executor { absl::StatusOr<SemanticVersion> ParseRocmVersion(int rocm_version) { if (rocm_version < 0) { return absl::InvalidArgumentError("Version numbers cannot be negative."); } int major = rocm_version / 10'000'000; int minor = (rocm_version % 10'000'000) / 100'000; int patch = rocm_version % 100'000; return SemanticVersion(major, minor, patch); } }
#include "xla/stream_executor/rocm/rocm_version_parser.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "rocm/include/hip/hip_version.h" #include "xla/stream_executor/semantic_version.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" namespace stream_executor { namespace { using tsl::testing::IsOkAndHolds; using tsl::testing::StatusIs; TEST(ParseRocmVersionTest, Simple) { EXPECT_THAT(stream_executor::ParseRocmVersion(60'100'002), IsOkAndHolds(SemanticVersion(6, 1, 2))); } TEST(RocmVersionParserTest, NegativeIntegerIsNotAValidVersion) { EXPECT_THAT(ParseRocmVersion(-42), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(RocmVersionParserTest, AlignsWithHIPVersion) { EXPECT_THAT(ParseRocmVersion(HIP_VERSION), IsOkAndHolds(SemanticVersion{HIP_VERSION_MAJOR, HIP_VERSION_MINOR, HIP_VERSION_PATCH})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/rocm/rocm_version_parser.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/rocm/rocm_version_parser_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c22eae69-295e-43e4-812d-9bd98c6b6375
cpp
tensorflow/tensorflow
and
tensorflow/lite/experimental/shlo/ops/and.cc
tensorflow/lite/experimental/shlo/ops/and_test.cc
#include "tensorflow/lite/experimental/shlo/ops/and.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType> struct And : std::bit_and<void> {}; template <> struct And<DataType::kI1> : std::logical_and<void> {}; AndOp Create(AndOp::Attributes) { return {}; } absl::Status Prepare(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("and"), lhs, IsBoolTensor, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("and"), lhs, output)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("and"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsIntTensor(lhs)) { And<DataType::kSI32> and_func; DISPATCH_INT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), and_func, lhs, rhs, output); } else if (IsBoolTensor(lhs)) { And<DataType::kI1> and_func; detail::EvaluateNoQuantization<DataType::kI1>(and_func, lhs, rhs, output); return absl::OkStatus(); } return absl::FailedPreconditionError( "stablehlo.and: Unsupported tensor type in Evaluate."); } }
#include "tensorflow/lite/experimental/shlo/ops/and.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<AndOp> { static std::string Get() { return "And"; } }; template <DataType> struct And : std::bit_and<void> {}; template <> struct And<DataType::kI1> : std::logical_and<void> {}; template <> struct SupportedOpDataType<AndOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(And, BinaryElementwiseOpShapePropagationTest, AndOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< AndOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( And, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<AndOp, ConcatTypes<FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(And, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using SupportedTypes = ConcatTypes<BoolTestType, IntTestTypes>; template <class T> struct AndTest : ::testing::Test {}; TYPED_TEST_SUITE(AndTest, SupportedTypes, TestParamNames); TYPED_TEST(AndTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), And<TypeParam::kStorage>()); auto op = Create(AndOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/and.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/and_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fa06c82b-257e-4064-877d-65c16a46a30e
cpp
tensorflow/tensorflow
deep_conv2d
tensorflow/core/kernels/deep_conv2d.cc
tensorflow/core/kernels/deep_conv2d_test.cc
#define USE_EIGEN_TENSOR #define EIGEN_USE_THREADS #include "tensorflow/core/kernels/deep_conv2d.h" #include <stdlib.h> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/kernels/winograd_transform.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { static int64_t GetDeepConvCost(int input_tile_rows, int input_tile_cols, int out_tile_rows, int out_tile_cols, int in_depth, int out_depth, int out_rows, int out_cols) { const int64_t input_tile_spatial_size = input_tile_rows * input_tile_cols; const int64_t input_transform_cost = input_tile_spatial_size * input_tile_spatial_size * in_depth; const int64_t product_cost = input_tile_spatial_size * in_depth * out_depth; const int64_t output_tile_spatial_size = out_tile_rows * out_tile_cols; const int64_t output_transform_cost = output_tile_spatial_size * input_tile_spatial_size * out_depth; const int64_t row_tiles = (out_rows + out_tile_rows - 1) / out_tile_rows; const int64_t col_tiles = (out_cols + out_tile_cols - 1) / out_tile_cols; const int64_t num_tiles = row_tiles * col_tiles; return num_tiles * (input_transform_cost + product_cost + output_transform_cost); } static int64_t GetDirectConvCost(int filter_rows, int filter_cols, int in_depth, int out_depth, int out_rows, int out_cols) { return filter_rows * filter_cols * in_depth * out_depth * out_rows * out_cols; } static bool ReadBoolFromEnvVar(const char* env_var_name, bool default_val) { const char* tf_env_var_val = getenv(env_var_name); if (tf_env_var_val != nullptr) { StringPiece tf_env_var_val_str(tf_env_var_val); if (tf_env_var_val_str == "0") { return false; } return true; } return default_val; } bool CanUseDeepConv2D(int stride_rows, int stride_cols, int filter_rows, int filter_cols, int in_depth, int out_depth, int out_rows, int out_cols) { if (stride_rows > 1 || stride_cols > 1 || filter_rows != 3 || filter_cols != 3) { return false; } if (!ReadBoolFromEnvVar("TF_USE_DEEP_CONV2D", false)) { return false; } WinogradTransform<float> t; const int64_t deep_conv_cost = GetDeepConvCost( t.input_shape().rows, t.input_shape().cols, t.output_shape().rows, t.output_shape().cols, in_depth, out_depth, out_rows, out_cols); const int64_t direct_conv_cost = GetDirectConvCost( filter_rows, filter_cols, in_depth, out_depth, out_rows, out_cols); VLOG(2) << "CanUseDeepConv2D" << " deep_conv_cost: " << deep_conv_cost << " direct_conv_cost: " << direct_conv_cost << " deep_direct_ratio: " << (static_cast<float>(deep_conv_cost) / static_cast<float>(direct_conv_cost)) << " use_deep_conv: " << (deep_conv_cost < direct_conv_cost); return deep_conv_cost < direct_conv_cost; } typedef Eigen::ThreadPoolDevice CPUDevice; template <typename T> struct CopyFilterDepth { void operator()(const Conv2DArgs& args, const T* filter_in, T* filter_buf) { typedef typename Eigen::internal::packet_traits<T>::type Packet; static constexpr int64_t kPacketSize = (sizeof(Packet) / sizeof(T)); const int64_t vectorized_size = args.in_depth / kPacketSize; const int64_t scalar_size = args.in_depth % kPacketSize; const int64_t input_stride = args.out_depth * kPacketSize; for (int64_t d = 0; d < vectorized_size; ++d) { auto v = Eigen::internal::pgather<T, Packet>(filter_in + d * input_stride, args.out_depth); Eigen::internal::pstoreu<T>(filter_buf + d * kPacketSize, v); } const int64_t in_scalar_base = vectorized_size * input_stride; const int64_t buf_scalar_base = vectorized_size * kPacketSize; for (int64_t d = 0; d < scalar_size; ++d) { filter_buf[buf_scalar_base + d] = filter_in[in_scalar_base + d * args.out_depth]; } } }; template <typename T> struct ComputeFilterRangeTransform { typedef typename Eigen::internal::packet_traits<T>::type Packet; static constexpr int64_t kPacketSize = (sizeof(Packet) / sizeof(T)); typedef Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> MatrixMap; typedef Eigen::Map< const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> ConstMatrixMap; void operator()(const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const int64_t od_start, const int64_t num_filters, const int64_t shard_rows, const int64_t shard_cols, const T* filter_in, const int64_t in_stride, const int64_t out_stride, const T* transform_matrix, T* out_buffer, T* filter_out) { namespace ei = Eigen::internal; const int64_t in_depth = args.in_depth; const int64_t base_filter_rows = transform->filter_shape().rows; const int64_t base_filter_cols = transform->filter_shape().cols; const int64_t base_filter_spatial_size = base_filter_rows * base_filter_cols; const int64_t tile_rows = transform->input_shape().rows; const int64_t tile_cols = transform->input_shape().cols; const int64_t tile_spatial_size = tile_rows * tile_cols; ConstMatrixMap A(transform_matrix, tile_spatial_size, base_filter_spatial_size); ConstMatrixMap B(filter_in, base_filter_spatial_size, in_stride); MatrixMap C(out_buffer, tile_spatial_size, in_stride); C.noalias() = A * B; const int64_t scalar_size = in_depth % kPacketSize; const int64_t vectorized_size = in_depth / kPacketSize; const int64_t shard_stride = args.in_depth; const int64_t out_depth_stride = shard_rows * shard_cols * shard_stride; for (int64_t od = 0; od < num_filters; ++od) { const int64_t out_depth_buf_base = od * out_depth_stride; const int64_t out_depth_base = (od_start + od) * out_depth_stride; for (int64_t s_r = 0; s_r < shard_rows; ++s_r) { for (int64_t s_c = 0; s_c < shard_cols; ++s_c) { const int64_t shard_base = shard_stride * (s_r * shard_cols + s_c); for (int64_t i = 0; i < tile_spatial_size; ++i) { const int64_t in_base = i * in_stride + out_depth_buf_base + shard_base; const int64_t out_base = i * out_stride + out_depth_base + shard_base; for (int64_t d = 0; d < vectorized_size; ++d) { auto v = ei::ploadu<Packet>(out_buffer + in_base + d * kPacketSize); ei::pstoreu<T>(filter_out + out_base + d * kPacketSize, v); } const int64_t scalar_base = vectorized_size * kPacketSize; for (int64_t d = 0; d < scalar_size; ++d) { filter_out[out_base + scalar_base + d] = out_buffer[in_base + scalar_base + d]; } } } } } } }; template <typename T> struct TransformFilterRange { void operator()(const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const int64_t od_start, const int64_t od_limit, const T* filter_in, const T* transform_matrix, T* out_buffer, T* filter_buf, T* filter_out) { const int64_t num_filters = od_limit - od_start; const int64_t base_filter_rows = transform->filter_shape().rows; const int64_t base_filter_cols = transform->filter_shape().cols; const int64_t base_filter_spatial_size = base_filter_rows * base_filter_cols; const int64_t residual_row = std::max(int64_t{0}, args.filter_rows - base_filter_rows); const int64_t shard_rows = 1 + (residual_row + 2 - 1) / 2; const int64_t residual_col = std::max(int64_t{0}, args.filter_cols - base_filter_cols); const int64_t shard_cols = 1 + (residual_col + 2 - 1) / 2; const int64_t shard_stride = args.in_depth; const int64_t out_depth_stride = shard_rows * shard_cols * shard_stride; const int64_t coord_stride = out_depth_stride * args.out_depth; const int64_t filter_buf_stride = num_filters * shard_rows * shard_cols * args.in_depth; const int64_t tile_stride_rows = transform->output_shape().rows; const int64_t tile_stride_cols = transform->output_shape().cols; const int64_t filter_buf_size = base_filter_spatial_size * num_filters * shard_rows * shard_cols * args.in_depth; memset(filter_buf, 0, sizeof(T) * filter_buf_size); for (int64_t od = 0; od < num_filters; ++od) { const int64_t out_depth_base = od * out_depth_stride; for (int64_t s_r = 0; s_r < shard_rows; ++s_r) { const int64_t row_offset = s_r == 0 ? 0 : 1; for (int64_t s_c = 0; s_c < shard_cols; ++s_c) { const int64_t col_offset = s_c == 0 ? 0 : 1; const int64_t f_r_start = s_r * tile_stride_rows; const int64_t f_c_start = s_c * tile_stride_cols; const int64_t shard_base = shard_stride * (s_r * shard_cols + s_c); for (int64_t b_r = row_offset; b_r < base_filter_rows; ++b_r) { const int64_t f_r = f_r_start + b_r; if (f_r >= args.filter_rows) continue; for (int64_t b_c = col_offset; b_c < base_filter_cols; ++b_c) { const int64_t f_c = f_c_start + b_c; if (f_c >= args.filter_cols) continue; const int64_t in_index = args.out_depth * (args.in_depth * (f_r * args.filter_cols + f_c)) + (od_start + od); const int64_t buf_index = filter_buf_stride * (b_r * base_filter_cols + b_c) + out_depth_base + shard_base; CopyFilterDepth<T>()(args, filter_in + in_index, filter_buf + buf_index); } } } } } ComputeFilterRangeTransform<T>()(args, transform, od_start, num_filters, shard_rows, shard_cols, filter_buf, filter_buf_stride, coord_stride, transform_matrix, out_buffer, filter_out); } }; template <typename T> struct TransformFilters { void operator()(OpKernelContext* ctx, const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const int64_t filter_shards_row, const int64_t filter_shards_col, const T* filter_in, T* filter_out) { const int64_t in_depth = args.in_depth; const int64_t out_depth = args.out_depth; const int64_t tile_rows = transform->input_shape().rows; const int64_t tile_cols = transform->input_shape().cols; const int64_t tile_spatial_size = tile_rows * tile_cols; const int64_t base_filter_rows = transform->filter_shape().rows; const int64_t base_filter_cols = transform->filter_shape().cols; const int64_t base_filter_spatial_size = base_filter_rows * base_filter_cols; const int64_t filter_shards_total = filter_shards_row * filter_shards_col; const int64_t cache_size = (256LL << 10) / sizeof(T); const int64_t filter_transform_matrix_size = tile_spatial_size * base_filter_spatial_size; const int64_t filter_total_size = base_filter_spatial_size * in_depth * filter_shards_total; const int64_t filter_transform_buffer_size = base_filter_spatial_size * filter_shards_total * in_depth; const int64_t filter_out_buf_size = tile_spatial_size * filter_shards_total * in_depth; const int64_t per_filter_cost = filter_total_size + filter_transform_buffer_size + filter_out_buf_size; const int64_t num_filters_cache = std::max(int64_t{1}, (cache_size - filter_transform_matrix_size) / per_filter_cost); const int64_t num_filters_transform = std::min(out_depth, num_filters_cache); Tensor filter_transform_matrix; OP_REQUIRES_OK( ctx, ctx->allocate_temp( DataTypeToEnum<T>::value, TensorShape({tile_spatial_size, base_filter_spatial_size}), &filter_transform_matrix)); T* transform_matrix = filter_transform_matrix.template flat<T>().data(); transform->GetFilterTransformMatrix( tile_spatial_size, base_filter_spatial_size, transform_matrix); auto shard = [&ctx, &args, &transform, &base_filter_rows, &base_filter_cols, &num_filters_transform, &in_depth, &filter_shards_row, &filter_shards_col, &tile_spatial_size, &filter_in, &transform_matrix, &filter_out](int64_t start, int64_t limit) { Tensor filter_transform_buffer; OP_REQUIRES_OK(ctx, ctx->allocate_temp( DataTypeToEnum<T>::value, TensorShape({base_filter_rows, base_filter_cols, num_filters_transform, filter_shards_row, filter_shards_col, in_depth}), &filter_transform_buffer)); T* filter_buf = filter_transform_buffer.template flat<T>().data(); Tensor filter_output_buffer; OP_REQUIRES_OK( ctx, ctx->allocate_temp( DataTypeToEnum<T>::value, TensorShape({tile_spatial_size, num_filters_transform, filter_shards_row, filter_shards_col, in_depth}), &filter_output_buffer)); T* out_buffer = filter_output_buffer.template flat<T>().data(); const int64_t num_filters = limit - start; const int64_t od_unroll = num_filters_transform; const int64_t od_unroll_limit = (num_filters / od_unroll) * od_unroll; for (int64_t od = start; od < od_unroll_limit; od += od_unroll) { TransformFilterRange<T>()(args, transform, od, od + od_unroll, filter_in, transform_matrix, out_buffer, filter_buf, filter_out); } if (od_unroll_limit < limit) { TransformFilterRange<T>()(args, transform, od_unroll_limit, limit, filter_in, transform_matrix, out_buffer, filter_buf, filter_out); } }; auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads()); const int64_t shard_cost = args.filter_rows * args.filter_cols * in_depth * filter_shards_total * tile_spatial_size; Shard(1, worker_threads.workers, out_depth, shard_cost, shard); } }; template <typename T> class GemmFilterPacker { public: typedef Eigen::internal::const_blas_data_mapper<T, int64_t, Eigen::RowMajor> LhsMapper; typedef Eigen::internal::gebp_traits<T, T> Traits; Eigen::internal::gemm_pack_lhs< T, int64_t, LhsMapper, Traits::mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, Eigen::RowMajor> pack_lhs; GemmFilterPacker(const int64_t rows, const int64_t depth, const T* lhs_input, T* lhs_block) : rows_(rows), depth_(depth), lhs_block_(lhs_block), lhs_mapper_(lhs_input, depth_) {} void Run() { pack_lhs(lhs_block_, lhs_mapper_, depth_, rows_); } private: const int64_t rows_; const int64_t depth_; T* lhs_block_; LhsMapper lhs_mapper_; }; template <typename T> struct PackFilters { void operator()(OpKernelContext* ctx, const Conv2DArgs& args, const int64_t tile_spatial_size, const int64_t filter_shards_row, const int64_t filter_shards_col, const T* filter_transform_data, std::vector<Tensor>* packed_filters) { const int64_t in_depth = args.in_depth; const int64_t out_depth = args.out_depth; const int64_t num_filters = filter_shards_row * filter_shards_col * out_depth; auto shard = [&ctx, &packed_filters, &filter_transform_data, &in_depth, &out_depth, &filter_shards_row, &filter_shards_col, &num_filters](int64_t start, int64_t limit) { const int64_t filter_coord_stride = num_filters * in_depth; for (int64_t i = start; i < limit; ++i) { OP_REQUIRES_OK( ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({out_depth, filter_shards_row, filter_shards_col, in_depth}), &(*packed_filters)[i])); T* packed_filter = (*packed_filters)[i].template flat<T>().data(); GemmFilterPacker<T> packer( num_filters, in_depth, filter_transform_data + i * filter_coord_stride, packed_filter); packer.Run(); } }; auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads()); Shard(worker_threads.num_threads, worker_threads.workers, tile_spatial_size, num_filters * in_depth, shard); } }; template <typename T> class GemmState { public: typedef Eigen::internal::const_blas_data_mapper<T, int64_t, Eigen::ColMajor> RhsMapper; typedef Eigen::internal::blas_data_mapper<T, int64_t, Eigen::ColMajor> OutputMapper; typedef Eigen::internal::gebp_traits<T, T> Traits; Eigen::internal::gemm_pack_rhs<T, int64_t, RhsMapper, Traits::nr, Eigen::ColMajor> pack_rhs; Eigen::internal::gebp_kernel<T, T, int64_t, OutputMapper, Traits::mr, Traits::nr, false, false> gebp; GemmState(const int64_t rows, const int64_t cols, const int64_t depth, const int64_t out_buffer_size, const T* lhs_block, const T* rhs_input, T* rhs_block, T* out_buffer) : rows_(rows), cols_(cols), depth_(depth), out_buffer_size_(out_buffer_size), lhs_block_(lhs_block), rhs_block_(rhs_block), out_buffer_(out_buffer), rhs_mapper_(rhs_input, depth_), out_mapper_(out_buffer, rows_) {} void PackRhs() { pack_rhs(rhs_block_, rhs_mapper_, depth_, cols_); } void Compute() { memset(out_buffer_, 0, sizeof(T) * out_buffer_size_); gebp(out_mapper_, lhs_block_, rhs_block_, rows_, depth_, cols_, 1.0); } private: const int64_t rows_; const int64_t cols_; const int64_t depth_; const int64_t out_buffer_size_; const T* lhs_block_; T* rhs_block_; T* out_buffer_; RhsMapper rhs_mapper_; OutputMapper out_mapper_; }; template <typename T> struct CopyInputTile { void operator()(const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const int64_t num_tiles, const int64_t in_r_start, const int64_t in_c_start, const T* input, T* tile_buffer) { typedef typename Eigen::internal::packet_traits<T>::type Packet; static const int64_t kPacketSize = (sizeof(Packet) / sizeof(T)); const int64_t tile_rows = transform->input_shape().rows; const int64_t tile_cols = transform->input_shape().cols; const int64_t coord_stride = num_tiles * args.in_depth; const int64_t input_vectorized_size = (args.in_depth / kPacketSize) * kPacketSize; const int64_t input_scalar_size = args.in_depth % kPacketSize; for (int64_t r = 0; r < tile_rows; ++r) { const int64_t in_r = in_r_start + r; if (in_r < 0 || in_r >= args.in_rows) continue; for (int64_t c = 0; c < tile_cols; ++c) { const int64_t in_c = in_c_start + c; if (in_c < 0 || in_c >= args.in_cols) continue; auto* in = input + (in_r * args.in_cols + in_c) * args.in_depth; auto* tile = tile_buffer + coord_stride * (r * tile_rows + c); for (int64_t d = 0; d < input_vectorized_size; d += kPacketSize) { auto v = Eigen::internal::ploadu<Packet>(in + d); Eigen::internal::pstoreu<T>(tile, v); tile += kPacketSize; } for (int64_t d = 0; d < input_scalar_size; ++d) { tile[d] = in[input_vectorized_size + d]; } } } } }; template <typename T> struct TransformInputTiles { typedef Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> MatrixMap; typedef Eigen::Map< const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> ConstMatrixMap; void operator()(const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const int64_t num_tiles, const int64_t in_r_start, const int64_t in_c_start, const T* input, const T* transform_matrix, T* tile_buffer, T* tile_transform) { const int64_t tile_rows = transform->input_shape().rows; const int64_t tile_cols = transform->input_shape().cols; const int64_t tile_spatial_size = tile_rows * tile_cols; const int64_t tile_stride_cols = transform->output_shape().cols; const int64_t coord_stride = num_tiles * args.in_depth; const int64_t num_tiles_stride = args.in_depth; memset(tile_buffer, 0, sizeof(T) * tile_spatial_size * coord_stride); const int64_t in_r = in_r_start; for (int64_t t = 0; t < num_tiles; ++t) { const int64_t num_tiles_base = t * num_tiles_stride; const int64_t in_c = in_c_start + t * tile_stride_cols; CopyInputTile<T>()(args, transform, num_tiles, in_r, in_c, input, tile_buffer + num_tiles_base); } ConstMatrixMap A(transform_matrix, tile_spatial_size, tile_spatial_size); ConstMatrixMap B(tile_buffer, tile_spatial_size, coord_stride); MatrixMap C(tile_transform, tile_spatial_size, coord_stride); C.noalias() = A * B; } }; template <typename T> struct TransformOutputTile { typedef Eigen::Map< Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> MatrixMap; typedef Eigen::Map< const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> ConstMatrixMap; void operator()(const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const int64_t num_tiles, const int64_t in_r, const int64_t in_c, const int64_t filter_shards_row, const int64_t filter_shards_col, const T* out_transform_matrix, const T* out_buffer, T* out_transform_buffer, T* output) { const int64_t tile_rows = transform->input_shape().rows; const int64_t tile_cols = transform->input_shape().cols; const int64_t tile_spatial_size = tile_rows * tile_cols; const int64_t out_buf_stride = num_tiles * args.out_depth * filter_shards_row * filter_shards_col; const int64_t out_tile_rows = transform->output_shape().rows; const int64_t out_tile_cols = transform->output_shape().cols; const int64_t out_tile_spatial_size = out_tile_rows * out_tile_cols; ConstMatrixMap A(out_transform_matrix, out_tile_spatial_size, tile_spatial_size); ConstMatrixMap B(out_buffer, tile_spatial_size, out_buf_stride); MatrixMap C(out_transform_buffer, out_tile_spatial_size, out_buf_stride); C.noalias() = A * B; const int64_t tile_stride_rows = transform->output_shape().rows; const int64_t tile_stride_cols = transform->output_shape().cols; const int64_t out_depth_stride = filter_shards_row * filter_shards_col; const int64_t num_tiles_stride = args.out_depth * out_depth_stride; for (int64_t t = 0; t < num_tiles; ++t) { const int64_t tile_base = t * num_tiles_stride; for (int64_t od = 0; od < args.out_depth; ++od) { const int64_t out_depth_base = od * out_depth_stride; for (int64_t sr = 0; sr < filter_shards_row; ++sr) { for (int64_t sc = 0; sc < filter_shards_col; ++sc) { const int64_t shard_base = sr * filter_shards_col + sc; const int64_t out_buf_base = tile_base + out_depth_base + shard_base; const int64_t out_r_start = in_r + args.pad_rows - sr * tile_stride_rows; const int64_t out_c_start = (in_c + t * tile_stride_cols) + args.pad_cols - sc * tile_stride_cols; if (out_r_start < 0 || out_r_start >= args.out_rows || out_c_start < 0 || out_c_start >= args.out_cols) { continue; } const bool inc_output = (sr == 0 && sc == 0) ? false : true; for (int64_t ot_row = 0; ot_row < out_tile_rows; ++ot_row) { const int64_t out_r = out_r_start + ot_row; if (out_r >= args.out_rows) continue; for (int64_t ot_col = 0; ot_col < out_tile_cols; ++ot_col) { const int64_t out_c = out_c_start + ot_col; if (out_c >= args.out_cols) continue; const int64_t out_buf_index = ot_row * out_tile_cols + ot_col; const T out_val = out_transform_buffer[out_buf_base + out_buf_index * out_buf_stride]; const int64_t output_index = args.out_depth * (out_r * args.out_cols + out_c) + od; if (inc_output) { output[output_index] += out_val; } else { output[output_index] = out_val; } } } } } } } } }; template <typename T> struct Conv2DState { Conv2DState(const int64_t tile_spatial_size, const int64_t filter_shards_row, const int64_t filter_shards_col, const T* input, const T* tile_transform_matrix, const T* output_transform_matrix, T* buffer1, T* buffer2, T* packed_tile_buffer, T* gemm_output_buffer) : tile_spatial_size(tile_spatial_size), filter_shards_row(filter_shards_row), filter_shards_col(filter_shards_col), input(input), tile_transform_matrix(tile_transform_matrix), output_transform_matrix(output_transform_matrix), buffer1(buffer1), buffer2(buffer2), packed_tile_buffer(packed_tile_buffer), gemm_output_buffer(gemm_output_buffer) {} const int64_t tile_spatial_size; const int64_t filter_shards_row; const int64_t filter_shards_col; const T* input; const T* tile_transform_matrix; const T* output_transform_matrix; T* buffer1; T* buffer2; T* packed_tile_buffer; T* gemm_output_buffer; }; template <typename T> struct ComputeConv2D { void operator()(const Conv2DArgs& args, const DeepConv2DTransform<T>* transform, const Conv2DState<T>& cs, const int64_t in_r, const int64_t in_c, const int64_t num_tiles, const std::vector<Tensor>& packed_filters, const T* input, T* output) { TransformInputTiles<T>()(args, transform, num_tiles, in_r, in_c, input, cs.tile_transform_matrix, cs.buffer1, cs.buffer2); const int64_t in_depth = args.in_depth; const int64_t out_depth = args.out_depth; const int64_t num_filters = cs.filter_shards_row * cs.filter_shards_col * out_depth; const int64_t tile_coord_stride = num_tiles * in_depth; const int64_t gemm_out_buf_size = num_tiles * num_filters; const int64_t gemm_out_buf_bytes = gemm_out_buf_size * sizeof(T); for (int64_t i = 0; i < cs.tile_spatial_size; ++i) { GemmState<T> gemm(num_filters, num_tiles, in_depth, gemm_out_buf_size, packed_filters[i].template flat<T>().data(), cs.buffer2 + i * tile_coord_stride, cs.packed_tile_buffer, cs.gemm_output_buffer); gemm.PackRhs(); gemm.Compute(); memcpy(cs.buffer1 + i * gemm_out_buf_size, cs.gemm_output_buffer, gemm_out_buf_bytes); } TransformOutputTile<T>()(args, transform, num_tiles, in_r, in_c, cs.filter_shards_row, cs.filter_shards_col, cs.output_transform_matrix, cs.buffer1, cs.buffer2, output); } }; namespace functor { template <typename T> struct DeepConv2D<CPUDevice, T> { void operator()(OpKernelContext* ctx, const Conv2DArgs& args, const T* input, const T* filter, T* output) { std::unique_ptr<DeepConv2DTransform<T>> transform(new WinogradTransform<T>); const int64_t in_depth = args.in_depth; const int64_t out_depth = args.out_depth; const int64_t tile_rows = transform->input_shape().rows; const int64_t tile_cols = transform->input_shape().cols; const int64_t tile_spatial_size = tile_rows * tile_cols; const int64_t out_tile_rows = transform->output_shape().rows; const int64_t out_tile_cols = transform->output_shape().cols; const int64_t out_tile_spatial_size = out_tile_rows * out_tile_cols; const int64_t base_filter_rows = transform->filter_shape().rows; const int64_t filter_residual_row = std::max(int64_t{0}, args.filter_rows - base_filter_rows); const int64_t filter_shards_row = 1 + (filter_residual_row + 2 - 1) / 2; const int64_t filter_residual_col = std::max(int64_t{0}, args.filter_cols - base_filter_rows); const int64_t filter_shards_col = 1 + (filter_residual_col + 2 - 1) / 2; Tensor filter_transform; OP_REQUIRES_OK( ctx, ctx->allocate_temp( DataTypeToEnum<T>::value, TensorShape({tile_rows, tile_cols, out_depth, filter_shards_row, filter_shards_col, in_depth}), &filter_transform)); T* filter_transform_data = filter_transform.template flat<T>().data(); TransformFilters<T>()(ctx, args, transform.get(), filter_shards_row, filter_shards_col, filter, filter_transform_data); std::vector<Tensor> packed_filters(tile_spatial_size); PackFilters<T>()(ctx, args, tile_spatial_size, filter_shards_row, filter_shards_col, filter_transform_data, &packed_filters); Tensor tile_transform_matrix_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp( DataTypeToEnum<T>::value, TensorShape({tile_spatial_size, tile_spatial_size}), &tile_transform_matrix_tensor)); T* tile_transform_matrix = tile_transform_matrix_tensor.template flat<T>().data(); transform->GetInputTransformMatrix(tile_spatial_size, tile_spatial_size, tile_transform_matrix); Tensor output_transform_matrix_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({out_tile_spatial_size, tile_spatial_size}), &output_transform_matrix_tensor)); T* output_transform_matrix = output_transform_matrix_tensor.template flat<T>().data(); transform->GetOutputTransformMatrix( out_tile_spatial_size, tile_spatial_size, output_transform_matrix); auto shard = [&ctx, &args, &transform, &packed_filters, &in_depth, out_depth, out_tile_rows, out_tile_cols, filter_shards_row, filter_shards_col, tile_spatial_size, &input, &tile_transform_matrix, &output_transform_matrix, &output](int64_t batch_start, int64_t batch_limit) { const int64_t row_tiles = (args.out_rows + out_tile_rows - 1) / out_tile_rows + filter_shards_row - 1; const int64_t col_tiles = (args.out_cols + out_tile_cols - 1) / out_tile_cols + filter_shards_col - 1; const int64_t filter_shard_size = filter_shards_row * filter_shards_col; const int64_t out_tile_spatial_size = out_tile_rows * out_tile_cols; const int64_t cache_size = (256LL << 10) / sizeof(T); const int64_t tile_transform_matrix_size = tile_spatial_size * tile_spatial_size; const int64_t output_transform_matrix_size = out_tile_spatial_size * tile_spatial_size; const int64_t filter_depth_size = in_depth * out_depth * filter_shard_size; const bool small_filter = ((filter_depth_size * 100) / cache_size) <= 25; const int64_t cache_reserve_size = small_filter ? filter_depth_size : 1024; const int64_t total_fixed_cost = tile_transform_matrix_size + output_transform_matrix_size + cache_reserve_size; const int64_t buffer1_per_tile_size = tile_spatial_size * std::max(in_depth, out_depth * filter_shard_size); const int64_t buffer2_per_tile_size = std::max(tile_spatial_size * in_depth, out_tile_spatial_size * out_depth * filter_shard_size); const int64_t packed_tile_per_tile_size = in_depth; const int64_t gemm_out_per_tile_size = out_depth * filter_shard_size; const int64_t total_per_tile_cost = buffer1_per_tile_size + buffer2_per_tile_size + packed_tile_per_tile_size + gemm_out_per_tile_size; const int64_t num_tiles_cache = std::max( int64{4}, (cache_size - total_fixed_cost) / total_per_tile_cost); const int64_t num_tiles = std::min(num_tiles_cache, col_tiles); const int64_t buffer1_tile_size = tile_spatial_size * num_tiles * in_depth; const int64_t buffer1_out_size = tile_spatial_size * num_tiles * out_depth * filter_shard_size; const int64_t buffer1_size = std::max(buffer1_tile_size, buffer1_out_size); Tensor buffer1_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({buffer1_size}), &buffer1_tensor)); T* buffer1 = buffer1_tensor.template flat<T>().data(); const int64_t buffer2_tile_transform_size = tile_spatial_size * num_tiles * in_depth; const int64_t buffer2_out_transform_size = out_tile_spatial_size * num_tiles * out_depth * filter_shard_size; const int64_t buffer2_size = std::max(buffer2_tile_transform_size, buffer2_out_transform_size); Tensor buffer2_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({buffer2_size}), &buffer2_tensor)); T* buffer2 = buffer2_tensor.template flat<T>().data(); Tensor packed_tile_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({num_tiles, in_depth}), &packed_tile_tensor)); T* packed_tile_buffer = packed_tile_tensor.template flat<T>().data(); Tensor gemm_output_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_temp(DataTypeToEnum<T>::value, TensorShape({num_tiles, out_depth, filter_shards_row, filter_shards_col}), &gemm_output_tensor)); T* gemm_output_buffer = gemm_output_tensor.template flat<T>().data(); Conv2DState<T> conv_state(tile_spatial_size, filter_shards_row, filter_shards_col, input, tile_transform_matrix, output_transform_matrix, buffer1, buffer2, packed_tile_buffer, gemm_output_buffer); const int64_t row_pad = args.pad_rows; const int64_t col_pad = args.pad_cols; const int64_t unroll_col_limit = (col_tiles / num_tiles) * num_tiles; const int64_t input_image_size = args.in_rows * args.in_cols * in_depth; const int64_t output_image_size = args.out_rows * args.out_cols * out_depth; const int64_t tile_stride_rows = transform->output_shape().rows; const int64_t tile_stride_cols = transform->output_shape().cols; for (int64_t b = batch_start; b < batch_limit; ++b) { const int64_t in_base = b * input_image_size; const int64_t out_base = b * output_image_size; for (int64_t tile_r = 0; tile_r < row_tiles; ++tile_r) { const int64_t in_r = tile_r * tile_stride_rows - row_pad; for (int64_t tile_c = 0; tile_c < unroll_col_limit; tile_c += num_tiles) { const int64_t in_c = tile_c * tile_stride_cols - col_pad; ComputeConv2D<T>()(args, transform.get(), conv_state, in_r, in_c, num_tiles, packed_filters, input + in_base, output + out_base); } if (unroll_col_limit < col_tiles) { const int64_t rem_tiles = col_tiles - unroll_col_limit; const int64_t in_c = unroll_col_limit * tile_stride_cols - col_pad; ComputeConv2D<T>()(args, transform.get(), conv_state, in_r, in_c, rem_tiles, packed_filters, input + in_base, output + out_base); } } } }; auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads()); const int64_t shard_cost = args.out_rows * args.out_cols * args.out_depth * tile_spatial_size * args.in_depth; Shard(worker_threads.num_threads, worker_threads.workers, args.batch, shard_cost, shard); } }; } template struct functor::DeepConv2D<CPUDevice, float>; }
#include "tensorflow/core/kernels/winograd_transform.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { static void ComputeKroneckerProduct(const int rows, const int cols, const float* matrix, float* matrix_out) { for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { const float v = matrix[i * cols + j]; const int output_index_base = cols * (i * rows * cols + j); for (int k = 0; k < rows; ++k) { for (int l = 0; l < cols; ++l) { const int input_index = k * cols + l; const int output_index = k * cols * cols + l; matrix_out[output_index_base + output_index] = matrix[input_index] * v; } } } } } TEST(DeepConv2DTransformTest, Basic) { const int rows = 2; const int cols = 2; float transform_matrix[] = {1, 2, 3, 4}; const int kron_rows = rows * rows; const int kron_cols = cols * cols; float transform_matrix_kron[kron_rows * kron_cols]; ComputeKroneckerProduct(rows, cols, &transform_matrix[0], &transform_matrix_kron[0]); float transform_matrix_test[] = {1, 2, 2, 4, 3, 4, 6, 8, 3, 6, 4, 8, 9, 12, 12, 16}; for (int i = 0; i < kron_rows * kron_cols; ++i) { EXPECT_FLOAT_EQ(transform_matrix_kron[i], transform_matrix_test[i]); } } TEST(DeepConv2DTransformTest, WingradFilterTransformMatrix) { const int rows = 4; const int cols = 3; float transform_matrix[] = {1, 0, 0, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0, 0, 1}; const int kron_rows = rows * rows; const int kron_cols = cols * cols; float transform_matrix_kron[kron_rows * kron_cols]; ComputeKroneckerProduct(rows, cols, &transform_matrix[0], &transform_matrix_kron[0]); float transform_matrix_test[kron_rows * kron_cols]; WinogradTransform<float> t; t.GetFilterTransformMatrix(kron_rows, kron_cols, &transform_matrix_test[0]); for (int i = 0; i < kron_rows * kron_cols; ++i) { EXPECT_FLOAT_EQ(transform_matrix_kron[i], transform_matrix_test[i]); } } TEST(DeepConv2DTransformTest, WingradInputTransformMatrix) { const int rows = 4; const int cols = 4; float transform_matrix[] = {1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 1, 0, -1}; const int kron_rows = rows * rows; const int kron_cols = cols * cols; float transform_matrix_kron[kron_rows * kron_cols]; ComputeKroneckerProduct(rows, cols, &transform_matrix[0], &transform_matrix_kron[0]); float transform_matrix_test[kron_rows * kron_cols]; WinogradTransform<float> t; t.GetInputTransformMatrix(kron_rows, kron_cols, &transform_matrix_test[0]); for (int i = 0; i < kron_rows * kron_cols; ++i) { EXPECT_FLOAT_EQ(transform_matrix_kron[i], transform_matrix_test[i]); } } TEST(DeepConv2DTransformTest, WingradOutputTransformMatrix) { const int rows = 2; const int cols = 4; float transform_matrix[] = {1, 1, 1, 0, 0, 1, -1, -1}; const int kron_rows = rows * rows; const int kron_cols = cols * cols; float transform_matrix_kron[kron_rows * kron_cols]; ComputeKroneckerProduct(rows, cols, &transform_matrix[0], &transform_matrix_kron[0]); float transform_matrix_test[kron_rows * kron_cols]; WinogradTransform<float> t; t.GetOutputTransformMatrix(kron_rows, kron_cols, &transform_matrix_test[0]); for (int i = 0; i < kron_rows * kron_cols; ++i) { EXPECT_FLOAT_EQ(transform_matrix_kron[i], transform_matrix_test[i]); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/deep_conv2d.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/deep_conv2d_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
695cb3a0-9478-4b86-ac63-a285b09c8693
cpp
google/arolla
expr_node
arolla/expr/expr_node.cc
arolla/expr/expr_node_test.cc
#include "arolla/expr/expr_node.h" #include <cstddef> #include <deque> #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/cleanup/cleanup.h" #include "absl/log/check.h" #include "absl/strings/string_view.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_operator.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/fingerprint.h" namespace arolla::expr { std::ostream& operator<<(std::ostream& os, ExprNodeType t) { switch (t) { case expr::ExprNodeType::kLiteral: { return os << "kLiteral"; } case expr::ExprNodeType::kLeaf: { return os << "kLeaf"; } case expr::ExprNodeType::kOperator: { return os << "kOperator"; } case expr::ExprNodeType::kPlaceholder: { return os << "kPlaceholder"; } } return os << "ExprNodeType(" << static_cast<int>(t) << ")"; } ExprNodePtr ExprNode::MakeLiteralNode(TypedValue&& qvalue) { FingerprintHasher hasher("LiteralNode"); hasher.Combine(qvalue.GetFingerprint()); auto self = std::make_unique<ExprNode>(PrivateConstructorTag()); self->type_ = ExprNodeType::kLiteral; self->attr_ = ExprAttributes(std::move(qvalue)); self->fingerprint_ = std::move(hasher).Finish(); return ExprNodePtr::Own(std::move(self)); } ExprNodePtr ExprNode::MakeLeafNode(absl::string_view leaf_key) { auto self = std::make_unique<ExprNode>(PrivateConstructorTag()); self->type_ = ExprNodeType::kLeaf; self->leaf_key_ = std::string(leaf_key); self->fingerprint_ = FingerprintHasher("LeafNode").Combine(leaf_key).Finish(); return ExprNodePtr::Own(std::move(self)); } ExprNodePtr ExprNode::MakePlaceholderNode(absl::string_view placeholder_key) { auto self = std::make_unique<ExprNode>(PrivateConstructorTag()); self->type_ = ExprNodeType::kPlaceholder; self->placeholder_key_ = std::string(placeholder_key); self->fingerprint_ = FingerprintHasher("PlaceholderNode").Combine(placeholder_key).Finish(); return ExprNodePtr::Own(std::move(self)); } ExprNodePtr ExprNode::UnsafeMakeOperatorNode( ExprOperatorPtr&& op, std::vector<ExprNodePtr>&& node_deps, ExprAttributes&& attr) { FingerprintHasher hasher("OpNode"); DCHECK(op); hasher.Combine(op->fingerprint()); for (const auto& node_dep : node_deps) { DCHECK(node_dep != nullptr); hasher.Combine(node_dep->fingerprint()); } hasher.Combine(attr); auto self = std::make_unique<ExprNode>(PrivateConstructorTag()); self->type_ = ExprNodeType::kOperator; self->op_ = std::move(op); self->node_deps_ = std::move(node_deps); self->attr_ = std::move(attr); self->fingerprint_ = std::move(hasher).Finish(); return ExprNodePtr::Own(std::move(self)); } ExprNode::~ExprNode() { if (node_deps_.empty()) { return; } constexpr size_t kMaxDepth = 32; thread_local absl::NoDestructor<std::deque<std::vector<ExprNodePtr>>> deps; thread_local size_t destructor_depth = 0; if (destructor_depth > kMaxDepth) { deps->push_back(std::move(node_deps_)); return; } destructor_depth++; absl::Cleanup decrease_depth = [&] { --destructor_depth; }; node_deps_.clear(); if (destructor_depth == 1 && !deps->empty()) { while (!deps->empty()) { auto tmp = std::move(deps->back()); deps->pop_back(); } deps->shrink_to_fit(); } } }
#include "arolla/expr/expr_node.h" #include <memory> #include <sstream> #include <vector> #include "gtest/gtest.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/testing/test_operators.h" namespace arolla::expr { namespace { using ::arolla::expr::testing::DummyOp; TEST(ExprNodeTest, ExprNodeTypeIsConvertibleToString) { std::stringstream ss; ss << ExprNodeType::kLiteral; EXPECT_EQ(ss.str(), "kLiteral"); ss.str(""); ss << ExprNodeType::kLeaf; EXPECT_EQ(ss.str(), "kLeaf"); ss.str(""); ss << ExprNodeType::kOperator; EXPECT_EQ(ss.str(), "kOperator"); ss.str(""); ss << ExprNodeType::kPlaceholder; EXPECT_EQ(ss.str(), "kPlaceholder"); ss.str(""); ss << static_cast<ExprNodeType>(255); EXPECT_EQ(ss.str(), "ExprNodeType(255)"); } TEST(ExprNodeTest, DeepTreeNoStackOverflow) { #ifndef NDEBUG constexpr int depth = 50000; #else constexpr int depth = 1000000; #endif ExprOperatorPtr op = std::make_shared<DummyOp>( "op.name", ExprOperatorSignature::MakeVariadicArgs()); auto a = ExprNode::MakeLeafNode("a"); auto deep = a; for (int i = depth; i != 0; --i) { deep = ExprNode::UnsafeMakeOperatorNode(ExprOperatorPtr(op), {deep, a}, {}); } } using ExprNodeMsanTest = ::testing::TestWithParam<ExprNodePtr>; TEST_P(ExprNodeMsanTest, Msan) { const auto& expr = GetParam(); ASSERT_NE(expr, nullptr); } INSTANTIATE_TEST_SUITE_P(ExprNodeMsanTestSuite, ExprNodeMsanTest, ::testing::ValuesIn([]() -> std::vector<ExprNodePtr> { constexpr int depth = 64; ExprOperatorPtr op = std::make_shared<DummyOp>( "op.name", ExprOperatorSignature::MakeVariadicArgs()); auto expr = ExprNode::MakeLeafNode("a"); for (int i = depth; i != 0; --i) { expr = ExprNode::UnsafeMakeOperatorNode( ExprOperatorPtr(op), {expr}, {}); } return {{expr}}; }())); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_node.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_node_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
97498087-bc6d-4463-bd2c-846b5f2c5f4d
cpp
tensorflow/tensorflow
stream_attribute_annotator
third_party/xla/xla/service/gpu/transforms/stream_attribute_annotator.cc
third_party/xla/xla/service/gpu/transforms/stream_attribute_annotator_test.cc
#include "xla/service/gpu/transforms/stream_attribute_annotator.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { bool IsOnlyRootNonDefaultStream(HloComputation* computation) { HloInstruction* root = computation->root_instruction(); auto root_gpu_config = root->backend_config<GpuBackendConfig>(); if (!root_gpu_config.ok() || root->opcode() == HloOpcode::kTuple) { return false; } int64_t root_stream_id = root_gpu_config->operation_queue_id(); VLOG(2) << "Found fusion computation's root stream id to be " << root_stream_id; if (root_stream_id == Thunk::kDefaultExecutionStreamId.value()) { return false; } for (HloInstruction* instr : computation->MakeInstructionPostOrder()) { if (instr == root) { continue; } int64_t instr_stream_id = instr->backend_config<GpuBackendConfig>()->operation_queue_id(); if (instr_stream_id != Thunk::kDefaultExecutionStreamId.value() && instr_stream_id != root_stream_id) { return false; } } return true; } absl::StatusOr<bool> AnnotateStreamAttributesForInstruction( HloInstruction* instr, GpuBackendConfig& instr_gpu_config) { if (instr->called_computations().size() != 1) { return false; } HloComputation* called_comp = instr->called_computations()[0]; int64_t stream_id = instr_gpu_config.operation_queue_id(); if (!IsOnlyRootNonDefaultStream(called_comp) || stream_id != Thunk::kDefaultExecutionStreamId.value()) { return false; } auto comp_root_gpu_config = called_comp->root_instruction()->backend_config<GpuBackendConfig>(); instr_gpu_config.set_operation_queue_id( comp_root_gpu_config->operation_queue_id()); *instr_gpu_config.mutable_wait_on_operation_queues() = comp_root_gpu_config->wait_on_operation_queues(); TF_RETURN_IF_ERROR(instr->set_backend_config(instr_gpu_config)); return true; } absl::StatusOr<bool> AnnotateStreamAttributesForCopyStart( HloInstruction* instr, int64_t channel_id, GpuBackendConfig& instr_gpu_config) { if (instr_gpu_config.operation_queue_id() != Thunk::kDefaultExecutionStreamId.value()) { return false; } instr_gpu_config.set_operation_queue_id(channel_id); TF_RETURN_IF_ERROR(instr->set_backend_config(instr_gpu_config)); VLOG(3) << "Add copy-start's backend config: " << channel_id; return true; } absl::StatusOr<bool> WrapIntoFusionAndAnnotateStreamAttributes( HloInstruction* instruction, int64_t channel_id, GpuBackendConfig& instr_gpu_config) { auto* computation = instruction->parent(); auto* module = computation->parent(); auto* fusion_instruction = computation->AddInstruction(HloInstruction::CreateFusion( instruction->shape(), ChooseFusionKind(*instruction, *instruction), instruction)); const absl::string_view wrapped_opcode = HloOpcodeString(instruction->opcode()); module->SetAndUniquifyInstrName(fusion_instruction, absl::StrCat("wrapped_", wrapped_opcode)); module->SetAndUniquifyComputationName( fusion_instruction->fused_instructions_computation(), absl::StrCat("wrapped_", wrapped_opcode, "_computation")); if (module->has_schedule()) { fusion_instruction->set_metadata_scheduling_name( fusion_instruction->name()); HloInstruction* root = fusion_instruction->fused_expression_root(); root->set_metadata_scheduling_name(root->name()); module->schedule().replace_instruction(computation, instruction, fusion_instruction); } TF_RETURN_IF_ERROR(fusion_instruction->CopyAllControlDepsFrom(instruction)); TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(fusion_instruction)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(instruction)); instr_gpu_config.set_operation_queue_id(channel_id); TF_RETURN_IF_ERROR(fusion_instruction->set_backend_config(instr_gpu_config)); VLOG(3) << "Add async stream " << channel_id << " and wrapped instruction " << instruction->ToString(); VLOG(3) << " Fusion wrapper: " << fusion_instruction->ToString(); return true; } absl::StatusOr<bool> AnnotateStreamAttributesForUsers( HloInstruction* instr, GpuBackendConfig& instr_gpu_config) { bool changed = false; int64_t stream_id = instr_gpu_config.operation_queue_id(); if (stream_id == Thunk::kDefaultExecutionStreamId.value()) { return changed; } std::vector<HloInstruction*> all_consumers; for (auto user : instr->users()) { if (user->opcode() == HloOpcode::kGetTupleElement) { user = user->users()[0]; } all_consumers.push_back(user); } for (auto user : all_consumers) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, user->backend_config<GpuBackendConfig>()); auto it = absl::c_find(gpu_config.wait_on_operation_queues(), stream_id); if (it == gpu_config.wait_on_operation_queues().end() && gpu_config.operation_queue_id() != stream_id) { gpu_config.mutable_wait_on_operation_queues()->Add(stream_id); TF_RETURN_IF_ERROR(user->set_backend_config(gpu_config)); changed = true; } } return changed; } } absl::StatusOr<bool> StreamAttributeAnnotator::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 5, "StreamAttributeAnnotator::Run(), before:\n" + module->ToString()); bool changed = false; int64_t channel_id = hlo_query::NextChannelId(*module); for (const HloComputation* comp : module->MakeComputationPostOrder(execution_threads)) { for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { auto instr_gpu_config = instr->backend_config<GpuBackendConfig>(); if (!instr_gpu_config.ok()) { continue; } if (instr->opcode() == HloOpcode::kFusion) { TF_ASSIGN_OR_RETURN(bool comp_result, AnnotateStreamAttributesForInstruction( instr, instr_gpu_config.value())); changed |= comp_result; } else if (instr->opcode() == HloOpcode::kCopyStart) { TF_ASSIGN_OR_RETURN(bool comp_result, AnnotateStreamAttributesForCopyStart( instr, channel_id, instr_gpu_config.value())); changed |= comp_result; continue; } else if (comp->IsAsyncComputation() && (instr->opcode() == HloOpcode::kDynamicSlice || instr->opcode() == HloOpcode::kDynamicUpdateSlice)) { TF_ASSIGN_OR_RETURN(bool comp_result, WrapIntoFusionAndAnnotateStreamAttributes( instr, channel_id, instr_gpu_config.value())); changed |= comp_result; continue; } TF_ASSIGN_OR_RETURN( bool user_result, AnnotateStreamAttributesForUsers(instr, instr_gpu_config.value())); changed |= user_result; } } XLA_VLOG_LINES( 5, "StreamAttributeAnnotator::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/gpu/transforms/stream_attribute_annotator.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { using StreamAttributeAnnotatorTest = HloTestBase; TEST_F(StreamAttributeAnnotatorTest, AllUsersAreAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[1] parameter(0) p2_32 = f32[1] parameter(1) add_32 = f32[1] add(p1_32, p2_32), backend_config={"operation_queue_id":"1", "wait_on_operation_queues":[]} exp_32 = f32[1] exponential(add_32) neg32 = f32[1] negate(add_32) ROOT add_out_32 = f32[1] add(neg32, exp_32) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* add = FindInstruction(module.get(), "add_32"); for (auto user : add->users()) { EXPECT_TRUE(user->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, user->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.wait_on_operation_queues()[0], 1); } } TEST_F(StreamAttributeAnnotatorTest, MultipleStreamsAreCombined) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[1] parameter(0) p2_32 = f32[1] parameter(1) add_32 = f32[1] add(p1_32, p2_32), backend_config={"operation_queue_id":"1", "wait_on_operation_queues":[]} exp_32 = f32[1] exponential(p2_32), backend_config={"operation_queue_id":"2", "wait_on_operation_queues":[]} ROOT add_out_32 = f32[1] add(add_32, exp_32) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_TRUE(root->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, root->backend_config<GpuBackendConfig>()); std::vector<int64_t> expected_stream_ids = {1, 2}; for (auto id : expected_stream_ids) { auto it = absl::c_find(gpu_config.wait_on_operation_queues(), id); EXPECT_NE(it, gpu_config.wait_on_operation_queues().end()); } } TEST_F(StreamAttributeAnnotatorTest, GTEUserIsAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsync ENTRY entry { p1_32 = f32[16,32] parameter(0) p2_32 = f32[32,16] parameter(1) custom-call.3 = (f32[16,16], s8[1028]{0}) custom-call(p1_32, p2_32), custom_call_target="__cublas$gemm", backend_config={"operation_queue_id":"1","wait_on_operation_queues":[],"gemm_backend_config":{"alpha_real":1,"alpha_imag":0,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":["1"],"rhs_contracting_dimensions":["0"],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT","grad_x":false,"grad_y":false}} get-tuple-element.24 = f32[16,16] get-tuple-element(custom-call.3), index=0 exp_32 = f32[16,16] exponential(get-tuple-element.24) ROOT neg32 = f32[16,16] negate(exp_32) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* exp = FindInstruction(module.get(), "exp_32"); EXPECT_TRUE(exp->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, exp->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.wait_on_operation_queues()[0], 1); } TEST_F(StreamAttributeAnnotatorTest, FusionIsAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithFusion fused_computation.1 { fusion_p0_32 = f32[16,16] parameter(0) fusion_p2_32 = f32[16,16] parameter(1) ROOT add = f32[16,16] add(fusion_p0_32, fusion_p2_32), backend_config={"operation_queue_id":"1","wait_on_operation_queues":[]} } ENTRY entry { p1_32 = f32[16,16] parameter(0) p2_32 = f32[16,16] parameter(1) ROOT fusion.1 = f32[16,16] fusion(p1_32, p2_32), kind=kLoop, calls=fused_computation.1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* fusion = FindInstruction(module.get(), "fusion.1"); EXPECT_TRUE(fusion->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, fusion->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); } TEST_F(StreamAttributeAnnotatorTest, CopyStartIsAnnotated) { constexpr absl::string_view kHloString = R"( HloModule offloading ENTRY %main (param_0: f32[1024], param_1: f32[1024]) -> f32[1024] { %param_1 = f32[1024]{0} parameter(1) %param_0 = f32[1024]{0} parameter(0) %res_3 = f32[1024]{0} add(f32[1024]{0} %param_0, f32[1024]{0} %param_1) %copy-start = (f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) copy-start(f32[1024]{0} %res_3) %res_4 = f32[1024]{0} tanh(f32[1024]{0} %res_3) %copy-start.2 = (f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) copy-start(f32[1024]{0} %res_4) %res_5 = f32[1024]{0} tanh(f32[1024]{0} %res_4) %copy-done = f32[1024]{0:S(5)} copy-done((f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) %copy-start) %res_6 = f32[1024]{0} tanh(f32[1024]{0} %res_5) %copy-done.2 = f32[1024]{0:S(5)} copy-done((f32[1024]{0:S(5)}, f32[1024]{0}, u32[]) %copy-start.2) %copy-start.3 = (f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) copy-start(f32[1024]{0:S(5)} %copy-done.2) %res_7 = f32[1024]{0} add(f32[1024]{0} %res_6, f32[1024]{0} %res_6) %copy-start.1 = (f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) copy-start(f32[1024]{0:S(5)} %copy-done) %res_8 = f32[1024]{0} add(f32[1024]{0} %res_7, f32[1024]{0} %res_5) %copy-done.3 = f32[1024]{0} copy-done((f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) %copy-start.3) %res_9 = f32[1024]{0} add(f32[1024]{0} %res_8, f32[1024]{0} %copy-done.3) %copy-done.1 = f32[1024]{0} copy-done((f32[1024]{0}, f32[1024]{0:S(5)}, u32[]) %copy-start.1) %res_10 = f32[1024]{0} add(f32[1024]{0} %res_9, f32[1024]{0} %copy-done.1) ROOT %res_11 = f32[1024]{0} tanh(f32[1024]{0} %res_10) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); StreamAttributeAnnotator attr_annotator; bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, attr_annotator.Run(module.get())); EXPECT_TRUE(changed); for (std::string i : {"", ".1", ".2", ".3"}) { const HloInstruction* cp_start = FindInstruction(module.get(), "copy-start" + i); EXPECT_TRUE(cp_start->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, cp_start->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); } } TEST_F(StreamAttributeAnnotatorTest, DynamicUpdateSliceWrappedAndAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsyncDynamicUpdateSlice, is_scheduled=true ENTRY entry (param_0: f32[256,128,128], param_1: f32[1,128,128]) -> f32[256,128,128] { param_0 = f32[256,128,128]{2,1,0:S(5)} parameter(0), metadata={scheduling_name="param_0"} param_1 = f32[1,128,128]{2,1,0} parameter(1), metadata={scheduling_name="param_1"} izero = s32[] constant(0), metadata={scheduling_name="izero"} dynamic-update-slice-start.2 = ((f32[256,128,128]{2,1,0:S(5)}, f32[1,128,128]{2,1,0}, s32[], s32[], s32[]), f32[256,128,128]{2,1,0:S(5)}, u32[]) dynamic-update-slice-start(param_0, param_1, izero, izero, izero), metadata={scheduling_name="dynamic-update-slice-start.2"} ROOT dynamic-update-slice-done.2 = f32[256,128,128]{2,1,0:S(5)} dynamic-update-slice-done(dynamic-update-slice-start.2), metadata={scheduling_name="dynamic-update-slice-done.2"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN(bool changed, StreamAttributeAnnotator().Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* dus = FindInstruction(module.get(), HloOpcode::kDynamicUpdateSlice); const HloComputation* computation = dus->parent(); EXPECT_TRUE(computation->IsFusionComputation()); const HloInstruction* fusion = computation->FusionInstruction(); EXPECT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_TRUE(fusion->parent()->IsAsyncComputation()); EXPECT_TRUE(fusion->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, fusion->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); for (const auto* comp : module->computations()) { for (const auto* instruction : comp->instructions()) { if (!instruction->metadata().scheduling_name().empty()) { EXPECT_EQ(instruction->name(), instruction->metadata().scheduling_name()); } } } constexpr absl::string_view kExpectedSchedulingName = R"( )"; TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck( module->ToString(HloPrintOptions().set_print_operand_shape(false)), kExpectedSchedulingName)); EXPECT_TRUE(filecheck_matches); } TEST_F(StreamAttributeAnnotatorTest, DynamicSliceWrappedAndAnnotated) { constexpr absl::string_view kHloString = R"( HloModule ModuleWithAsyncDynamicSlice, is_scheduled=true ENTRY entry (param_0: f32[256,128,128]) -> f32[1,128,128] { param_0 = f32[256,128,128]{2,1,0:S(5)} parameter(0), metadata={scheduling_name="param_0"} izero = s32[] constant(0), metadata={scheduling_name="izero"} dynamic-slice-start.2 = ((f32[256,128,128]{2,1,0:S(5)}, s32[], s32[], s32[]), f32[1,128,128]{2,1,0}, u32[]) dynamic-slice-start(param_0, izero, izero, izero), dynamic_slice_sizes={1,128,128}, metadata={scheduling_name="dynamic-slice-start.2"} ROOT dynamic-slice-done.2 = f32[1,128,128]{2,1,0} dynamic-slice-done(dynamic-slice-start.2), metadata={scheduling_name="dynamic-slice-done.2"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloString)); EXPECT_TRUE(module->has_schedule()); TF_ASSERT_OK_AND_ASSIGN(bool changed, StreamAttributeAnnotator().Run(module.get())); EXPECT_TRUE(changed); const HloInstruction* ds = FindInstruction(module.get(), HloOpcode::kDynamicSlice); const HloComputation* computation = ds->parent(); EXPECT_TRUE(computation->IsFusionComputation()); const HloInstruction* fusion = computation->FusionInstruction(); EXPECT_EQ(fusion->opcode(), HloOpcode::kFusion); EXPECT_TRUE(fusion->parent()->IsAsyncComputation()); EXPECT_TRUE(fusion->has_backend_config()); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, fusion->backend_config<GpuBackendConfig>()); EXPECT_EQ(gpu_config.operation_queue_id(), 1); for (const auto* comp : module->computations()) { for (const auto* instruction : comp->instructions()) { if (!instruction->metadata().scheduling_name().empty()) { EXPECT_EQ(instruction->name(), instruction->metadata().scheduling_name()); } } } constexpr absl::string_view kExpectedSchedulingName = R"( )"; TF_ASSERT_OK_AND_ASSIGN( bool filecheck_matches, RunFileCheck( module->ToString(HloPrintOptions().set_print_operand_shape(false)), kExpectedSchedulingName)); EXPECT_TRUE(filecheck_matches); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/stream_attribute_annotator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/stream_attribute_annotator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cb674ea6-6720-4736-b815-049e514ec55d
cpp
google/quiche
socket
quiche/quic/core/io/socket.cc
quiche/quic/core/io/socket_test.cc
#include "quiche/quic/core/io/socket.h" #include <cerrno> #include <climits> #include <cstddef> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/core/io/socket_internal.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/common/platform/api/quiche_logging.h" #if defined(_WIN32) #include "quiche/quic/core/io/socket_win.inc" #else #include "quiche/quic/core/io/socket_posix.inc" #endif namespace quic::socket_api { namespace { absl::StatusOr<AcceptResult> AcceptInternal(SocketFd fd) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); sockaddr_storage peer_addr; PlatformSocklen peer_addr_len = sizeof(peer_addr); SocketFd connection_socket = SyscallAccept( fd, reinterpret_cast<struct sockaddr*>(&peer_addr), &peer_addr_len); if (connection_socket == kInvalidSocketFd) { absl::Status status = LastSocketOperationError("::accept()"); QUICHE_DVLOG(1) << "Failed to accept connection from socket " << fd << " with error: " << status; return status; } absl::StatusOr<QuicSocketAddress> peer_address = ValidateAndConvertAddress(peer_addr, peer_addr_len); if (peer_address.ok()) { return AcceptResult{connection_socket, *peer_address}; } else { return peer_address.status(); } } absl::Status SetSockOptInt(SocketFd fd, int level, int option, int value) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); int result = SyscallSetsockopt(fd, level, option, &value, sizeof(value)); if (result >= 0) { return absl::OkStatus(); } else { absl::Status status = LastSocketOperationError("::setsockopt()"); QUICHE_DVLOG(1) << "Failed to set socket " << fd << " option " << option << " to " << value << " with error: " << status; return status; } } } absl::Status SetReceiveBufferSize(SocketFd fd, QuicByteCount size) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK_LE(size, QuicByteCount{INT_MAX}); return SetSockOptInt(fd, SOL_SOCKET, SO_RCVBUF, static_cast<int>(size)); } absl::Status SetSendBufferSize(SocketFd fd, QuicByteCount size) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK_LE(size, QuicByteCount{INT_MAX}); return SetSockOptInt(fd, SOL_SOCKET, SO_SNDBUF, static_cast<int>(size)); } absl::Status Connect(SocketFd fd, const QuicSocketAddress& peer_address) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK(peer_address.IsInitialized()); sockaddr_storage addr = peer_address.generic_address(); PlatformSocklen addrlen = GetAddrlen(peer_address.host().address_family()); int connect_result = SyscallConnect(fd, reinterpret_cast<sockaddr*>(&addr), addrlen); if (connect_result >= 0) { return absl::OkStatus(); } else { absl::Status status = LastSocketOperationError("::connect()", {EINPROGRESS}); QUICHE_DVLOG(1) << "Failed to connect socket " << fd << " to address: " << peer_address.ToString() << " with error: " << status; return status; } } absl::Status GetSocketError(SocketFd fd) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); int socket_error = 0; PlatformSocklen len = sizeof(socket_error); int sockopt_result = SyscallGetsockopt(fd, SOL_SOCKET, SO_ERROR, &socket_error, &len); if (sockopt_result >= 0) { if (socket_error == 0) { return absl::OkStatus(); } else { return ToStatus(socket_error, "SO_ERROR"); } } else { absl::Status status = LastSocketOperationError("::getsockopt()"); QUICHE_LOG_FIRST_N(ERROR, 100) << "Failed to get socket error information from socket " << fd << " with error: " << status; return status; } } absl::Status Bind(SocketFd fd, const QuicSocketAddress& address) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK(address.IsInitialized()); sockaddr_storage addr = address.generic_address(); PlatformSocklen addr_len = GetAddrlen(address.host().address_family()); int result = SyscallBind(fd, reinterpret_cast<sockaddr*>(&addr), addr_len); if (result >= 0) { return absl::OkStatus(); } else { absl::Status status = LastSocketOperationError("::bind()"); QUICHE_DVLOG(1) << "Failed to bind socket " << fd << " to address: " << address.ToString() << " with error: " << status; return status; } } absl::StatusOr<QuicSocketAddress> GetSocketAddress(SocketFd fd) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); sockaddr_storage addr; PlatformSocklen addr_len = sizeof(addr); int result = SyscallGetsockname(fd, reinterpret_cast<sockaddr*>(&addr), &addr_len); if (result >= 0) { return ValidateAndConvertAddress(addr, addr_len); } else { absl::Status status = LastSocketOperationError("::getsockname()"); QUICHE_DVLOG(1) << "Failed to get socket " << fd << " name with error: " << status; return status; } } absl::Status Listen(SocketFd fd, int backlog) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK_GT(backlog, 0); int result = SyscallListen(fd, backlog); if (result >= 0) { return absl::OkStatus(); } else { absl::Status status = LastSocketOperationError("::listen()"); QUICHE_DVLOG(1) << "Failed to mark socket: " << fd << " to listen with error :" << status; return status; } } absl::StatusOr<AcceptResult> Accept(SocketFd fd, bool blocking) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); #if defined(HAS_ACCEPT4) if (!blocking) { return AcceptWithFlags(fd, SOCK_NONBLOCK); } #endif absl::StatusOr<AcceptResult> accept_result = AcceptInternal(fd); if (!accept_result.ok() || blocking) { return accept_result; } #if !defined(__linux__) || !defined(SOCK_NONBLOCK) absl::Status set_non_blocking_result = SetSocketBlocking(accept_result->fd, false); if (!set_non_blocking_result.ok()) { QUICHE_LOG_FIRST_N(ERROR, 100) << "Failed to set socket " << fd << " as non-blocking on acceptance."; if (!Close(accept_result->fd).ok()) { QUICHE_LOG_FIRST_N(ERROR, 100) << "Failed to close socket " << accept_result->fd << " after error setting non-blocking on acceptance."; } return set_non_blocking_result; } #endif return accept_result; } absl::StatusOr<absl::Span<char>> Receive(SocketFd fd, absl::Span<char> buffer, bool peek) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK(!buffer.empty()); PlatformSsizeT num_read = SyscallRecv(fd, buffer.data(), buffer.size(), peek ? MSG_PEEK : 0); if (num_read > 0 && static_cast<size_t>(num_read) > buffer.size()) { QUICHE_LOG_FIRST_N(WARNING, 100) << "Received more bytes (" << num_read << ") from socket " << fd << " than buffer size (" << buffer.size() << ")."; return absl::OutOfRangeError( "::recv(): Received more bytes than buffer size."); } else if (num_read >= 0) { return buffer.subspan(0, num_read); } else { absl::Status status = LastSocketOperationError("::recv()"); QUICHE_DVLOG(1) << "Failed to receive from socket: " << fd << " with error: " << status; return status; } } absl::StatusOr<absl::string_view> Send(SocketFd fd, absl::string_view buffer) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK(!buffer.empty()); PlatformSsizeT num_sent = SyscallSend(fd, buffer.data(), buffer.size(), 0); if (num_sent > 0 && static_cast<size_t>(num_sent) > buffer.size()) { QUICHE_LOG_FIRST_N(WARNING, 100) << "Sent more bytes (" << num_sent << ") to socket " << fd << " than buffer size (" << buffer.size() << ")."; return absl::OutOfRangeError("::send(): Sent more bytes than buffer size."); } else if (num_sent >= 0) { return buffer.substr(num_sent); } else { absl::Status status = LastSocketOperationError("::send()"); QUICHE_DVLOG(1) << "Failed to send to socket: " << fd << " with error: " << status; return status; } } absl::StatusOr<absl::string_view> SendTo(SocketFd fd, const QuicSocketAddress& peer_address, absl::string_view buffer) { QUICHE_DCHECK_NE(fd, kInvalidSocketFd); QUICHE_DCHECK(peer_address.IsInitialized()); QUICHE_DCHECK(!buffer.empty()); sockaddr_storage addr = peer_address.generic_address(); PlatformSocklen addrlen = GetAddrlen(peer_address.host().address_family()); PlatformSsizeT num_sent = SyscallSendTo(fd, buffer.data(), buffer.size(), 0, reinterpret_cast<sockaddr*>(&addr), addrlen); if (num_sent > 0 && static_cast<size_t>(num_sent) > buffer.size()) { QUICHE_LOG_FIRST_N(WARNING, 100) << "Sent more bytes (" << num_sent << ") to socket " << fd << " to address: " << peer_address.ToString() << " than buffer size (" << buffer.size() << ")."; return absl::OutOfRangeError( "::sendto(): Sent more bytes than buffer size."); } else if (num_sent >= 0) { return buffer.substr(num_sent); } else { absl::Status status = LastSocketOperationError("::sendto()"); QUICHE_DVLOG(1) << "Failed to send to socket: " << fd << " to address: " << peer_address.ToString() << " with error: " << status; return status; } } }
#include "quiche/quic/core/io/socket.h" #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_ip_address_family.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/test_tools/test_ip_packets.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/platform/api/quiche_test_loopback.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quic::test { namespace { using quiche::test::QuicheTest; using quiche::test::StatusIs; using testing::Lt; using testing::SizeIs; SocketFd CreateTestSocket(socket_api::SocketProtocol protocol, bool blocking = true) { absl::StatusOr<SocketFd> socket = socket_api::CreateSocket( quiche::TestLoopback().address_family(), protocol, blocking); if (socket.ok()) { return socket.value(); } else { QUICHE_CHECK(false); return kInvalidSocketFd; } } SocketFd CreateTestRawSocket( bool blocking = true, IpAddressFamily address_family = IpAddressFamily::IP_UNSPEC) { absl::StatusOr<SocketFd> socket; switch (address_family) { case IpAddressFamily::IP_V4: socket = socket_api::CreateSocket( quiche::TestLoopback4().address_family(), socket_api::SocketProtocol::kRawIp, blocking); break; case IpAddressFamily::IP_V6: socket = socket_api::CreateSocket( quiche::TestLoopback6().address_family(), socket_api::SocketProtocol::kRawIp, blocking); break; case IpAddressFamily::IP_UNSPEC: socket = socket_api::CreateSocket(quiche::TestLoopback().address_family(), socket_api::SocketProtocol::kRawIp, blocking); break; } if (socket.ok()) { return socket.value(); } else { QUICHE_CHECK(absl::IsPermissionDenied(socket.status()) || absl::IsNotFound(socket.status())); return kInvalidSocketFd; } } TEST(SocketTest, CreateAndCloseSocket) { QuicIpAddress localhost_address = quiche::TestLoopback(); absl::StatusOr<SocketFd> created_socket = socket_api::CreateSocket( localhost_address.address_family(), socket_api::SocketProtocol::kUdp); QUICHE_EXPECT_OK(created_socket.status()); QUICHE_EXPECT_OK(socket_api::Close(created_socket.value())); } TEST(SocketTest, CreateAndCloseRawSocket) { QuicIpAddress localhost_address = quiche::TestLoopback(); absl::StatusOr<SocketFd> created_socket = socket_api::CreateSocket( localhost_address.address_family(), socket_api::SocketProtocol::kRawIp); if (!created_socket.ok()) { EXPECT_THAT(created_socket.status(), StatusIs(absl::StatusCode::kPermissionDenied)); return; } QUICHE_EXPECT_OK(socket_api::Close(created_socket.value())); } TEST(SocketTest, SetSocketBlocking) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, true); QUICHE_EXPECT_OK(socket_api::SetSocketBlocking(socket, false)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SetReceiveBufferSize) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, true); QUICHE_EXPECT_OK(socket_api::SetReceiveBufferSize(socket, 100)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SetSendBufferSize) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, true); QUICHE_EXPECT_OK(socket_api::SetSendBufferSize(socket, 100)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SetIpHeaderIncludedForRaw) { SocketFd socket = CreateTestRawSocket(true, IpAddressFamily::IP_V4); if (socket == kInvalidSocketFd) { GTEST_SKIP(); } QUICHE_EXPECT_OK(socket_api::SetIpHeaderIncluded( socket, IpAddressFamily::IP_V4, true)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SetIpHeaderIncludedForRawV6) { SocketFd socket = CreateTestRawSocket(true, IpAddressFamily::IP_V6); if (socket == kInvalidSocketFd) { GTEST_SKIP(); } QUICHE_EXPECT_OK(socket_api::SetIpHeaderIncluded( socket, IpAddressFamily::IP_V6, true)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SetIpHeaderIncludedForUdp) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, true); EXPECT_THAT(socket_api::SetIpHeaderIncluded(socket, IpAddressFamily::IP_V4, true), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(socket_api::SetIpHeaderIncluded(socket, IpAddressFamily::IP_V6, true), StatusIs(absl::StatusCode::kInvalidArgument)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Connect) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp); QUICHE_EXPECT_OK(socket_api::Connect( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, GetSocketError) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, true); absl::Status error = socket_api::GetSocketError(socket); QUICHE_EXPECT_OK(error); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Bind) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp); QUICHE_EXPECT_OK(socket_api::Bind( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, GetSocketAddress) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp); QUICHE_ASSERT_OK(socket_api::Bind( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); absl::StatusOr<QuicSocketAddress> address = socket_api::GetSocketAddress(socket); QUICHE_EXPECT_OK(address); EXPECT_TRUE(address.value().IsInitialized()); EXPECT_EQ(address.value().host(), quiche::TestLoopback()); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Listen) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kTcp); QUICHE_ASSERT_OK(socket_api::Bind( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); QUICHE_EXPECT_OK(socket_api::Listen(socket, 5)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Accept) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kTcp, false); QUICHE_ASSERT_OK(socket_api::Bind( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); QUICHE_ASSERT_OK(socket_api::Listen(socket, 5)); absl::StatusOr<socket_api::AcceptResult> result = socket_api::Accept(socket); EXPECT_THAT(result, StatusIs(absl::StatusCode::kUnavailable)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Receive) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, false); QUICHE_ASSERT_OK(socket_api::Bind( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); std::string buffer(100, 0); absl::StatusOr<absl::Span<char>> result = socket_api::Receive(socket, absl::MakeSpan(buffer)); EXPECT_THAT(result, StatusIs(absl::StatusCode::kUnavailable)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Peek) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp, false); QUICHE_ASSERT_OK(socket_api::Bind( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); std::string buffer(100, 0); absl::StatusOr<absl::Span<char>> result = socket_api::Receive(socket, absl::MakeSpan(buffer), true); EXPECT_THAT(result, StatusIs(absl::StatusCode::kUnavailable)); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, Send) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp); QUICHE_ASSERT_OK(socket_api::Connect( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); char buffer[] = {12, 34, 56, 78}; absl::StatusOr<absl::string_view> result = socket_api::Send(socket, absl::string_view(buffer, sizeof(buffer))); QUICHE_ASSERT_OK(result.status()); EXPECT_THAT(result.value(), SizeIs(Lt(4))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SendTo) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp); char buffer[] = {12, 34, 56, 78}; absl::StatusOr<absl::string_view> result = socket_api::SendTo( socket, QuicSocketAddress(quiche::TestLoopback(), 57290), absl::string_view(buffer, sizeof(buffer))); QUICHE_ASSERT_OK(result.status()); EXPECT_THAT(result.value(), SizeIs(Lt(4))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SendToWithConnection) { SocketFd socket = CreateTestSocket(socket_api::SocketProtocol::kUdp); QUICHE_ASSERT_OK(socket_api::Connect( socket, QuicSocketAddress(quiche::TestLoopback(), 0))); char buffer[] = {12, 34, 56, 78}; absl::StatusOr<absl::string_view> result = socket_api::SendTo( socket, QuicSocketAddress(quiche::TestLoopback(), 50495), absl::string_view(buffer, sizeof(buffer))); QUICHE_ASSERT_OK(result.status()); EXPECT_THAT(result.value(), SizeIs(Lt(4))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SendToForRaw) { SocketFd socket = CreateTestRawSocket(true); if (socket == kInvalidSocketFd) { GTEST_SKIP(); } QuicIpAddress localhost_address = quiche::TestLoopback(); QUICHE_EXPECT_OK(socket_api::SetIpHeaderIncluded( socket, localhost_address.address_family(), false)); QuicSocketAddress client_address(localhost_address, 53368); QuicSocketAddress server_address(localhost_address, 56362); std::string packet = CreateUdpPacket(client_address, server_address, "foo"); absl::StatusOr<absl::string_view> result = socket_api::SendTo( socket, QuicSocketAddress(localhost_address, 56362), packet); QUICHE_ASSERT_OK(result.status()); EXPECT_THAT(result.value(), SizeIs(Lt(packet.size()))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } TEST(SocketTest, SendToForRawWithIpHeader) { SocketFd socket = CreateTestRawSocket(true); if (socket == kInvalidSocketFd) { GTEST_SKIP(); } QuicIpAddress localhost_address = quiche::TestLoopback(); QUICHE_EXPECT_OK(socket_api::SetIpHeaderIncluded( socket, localhost_address.address_family(), true)); QuicSocketAddress client_address(localhost_address, 53368); QuicSocketAddress server_address(localhost_address, 56362); std::string packet = CreateIpPacket(client_address.host(), server_address.host(), CreateUdpPacket(client_address, server_address, "foo")); absl::StatusOr<absl::string_view> result = socket_api::SendTo( socket, QuicSocketAddress(localhost_address, 56362), packet); QUICHE_ASSERT_OK(result.status()); EXPECT_THAT(result.value(), SizeIs(Lt(packet.size()))); QUICHE_EXPECT_OK(socket_api::Close(socket)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/io/socket.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/io/socket_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
c52c1cca-1aa8-4857-935d-25c61d856f28
cpp
google/quiche
quic_connection_context
quiche/quic/core/quic_connection_context.cc
quiche/quic/core/quic_connection_context_test.cc
#include "quiche/quic/core/quic_connection_context.h" #include "absl/base/attributes.h" namespace quic { namespace { ABSL_CONST_INIT thread_local QuicConnectionContext* current_context = nullptr; } QuicConnectionContext* QuicConnectionContext::Current() { return current_context; } QuicConnectionContextSwitcher::QuicConnectionContextSwitcher( QuicConnectionContext* new_context) : old_context_(QuicConnectionContext::Current()) { current_context = new_context; if (new_context && new_context->listener) { new_context->listener->Activate(); } } QuicConnectionContextSwitcher::~QuicConnectionContextSwitcher() { QuicConnectionContext* current = QuicConnectionContext::Current(); if (current && current->listener) { current->listener->Deactivate(); } current_context = old_context_; } }
#include "quiche/quic/core/quic_connection_context.h" #include <memory> #include <string> #include <vector> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_thread.h" using testing::ElementsAre; namespace quic::test { namespace { class TraceCollector : public QuicConnectionTracer { public: ~TraceCollector() override = default; void PrintLiteral(const char* literal) override { trace_.push_back(literal); } void PrintString(absl::string_view s) override { trace_.push_back(std::string(s)); } const std::vector<std::string>& trace() const { return trace_; } private: std::vector<std::string> trace_; }; struct FakeConnection { FakeConnection() { context.tracer = std::make_unique<TraceCollector>(); } const std::vector<std::string>& trace() const { return static_cast<const TraceCollector*>(context.tracer.get())->trace(); } QuicConnectionContext context; }; void SimpleSwitch() { FakeConnection connection; EXPECT_EQ(QuicConnectionContext::Current(), nullptr); QUIC_TRACELITERAL("before switch: literal"); QUIC_TRACESTRING(std::string("before switch: string")); QUIC_TRACEPRINTF("%s: %s", "before switch", "printf"); { QuicConnectionContextSwitcher switcher(&connection.context); QUIC_TRACELITERAL("literal"); QUIC_TRACESTRING(std::string("string")); QUIC_TRACEPRINTF("%s", "printf"); } EXPECT_EQ(QuicConnectionContext::Current(), nullptr); QUIC_TRACELITERAL("after switch: literal"); QUIC_TRACESTRING(std::string("after switch: string")); QUIC_TRACEPRINTF("%s: %s", "after switch", "printf"); EXPECT_THAT(connection.trace(), ElementsAre("literal", "string", "printf")); } void NestedSwitch() { FakeConnection outer, inner; { QuicConnectionContextSwitcher switcher(&outer.context); QUIC_TRACELITERAL("outer literal 0"); QUIC_TRACESTRING(std::string("outer string 0")); QUIC_TRACEPRINTF("%s %s %d", "outer", "printf", 0); { QuicConnectionContextSwitcher nested_switcher(&inner.context); QUIC_TRACELITERAL("inner literal"); QUIC_TRACESTRING(std::string("inner string")); QUIC_TRACEPRINTF("%s %s", "inner", "printf"); } QUIC_TRACELITERAL("outer literal 1"); QUIC_TRACESTRING(std::string("outer string 1")); QUIC_TRACEPRINTF("%s %s %d", "outer", "printf", 1); } EXPECT_THAT(outer.trace(), ElementsAre("outer literal 0", "outer string 0", "outer printf 0", "outer literal 1", "outer string 1", "outer printf 1")); EXPECT_THAT(inner.trace(), ElementsAre("inner literal", "inner string", "inner printf")); } void AlternatingSwitch() { FakeConnection zero, one, two; for (int i = 0; i < 15; ++i) { FakeConnection* connection = ((i % 3) == 0) ? &zero : (((i % 3) == 1) ? &one : &two); QuicConnectionContextSwitcher switcher(&connection->context); QUIC_TRACEPRINTF("%d", i); } EXPECT_THAT(zero.trace(), ElementsAre("0", "3", "6", "9", "12")); EXPECT_THAT(one.trace(), ElementsAre("1", "4", "7", "10", "13")); EXPECT_THAT(two.trace(), ElementsAre("2", "5", "8", "11", "14")); } typedef void (*ThreadFunction)(); template <ThreadFunction func> class TestThread : public QuicThread { public: TestThread() : QuicThread("TestThread") {} ~TestThread() override = default; protected: void Run() override { func(); } }; template <ThreadFunction func> void RunInThreads(size_t n_threads) { using ThreadType = TestThread<func>; std::vector<ThreadType> threads(n_threads); for (ThreadType& t : threads) { t.Start(); } for (ThreadType& t : threads) { t.Join(); } } class QuicConnectionContextTest : public QuicTest { protected: }; TEST_F(QuicConnectionContextTest, NullTracerOK) { FakeConnection connection; std::unique_ptr<QuicConnectionTracer> tracer; { QuicConnectionContextSwitcher switcher(&connection.context); QUIC_TRACELITERAL("msg 1 recorded"); } connection.context.tracer.swap(tracer); { QuicConnectionContextSwitcher switcher(&connection.context); QUIC_TRACELITERAL("msg 2 ignored"); } EXPECT_THAT(static_cast<TraceCollector*>(tracer.get())->trace(), ElementsAre("msg 1 recorded")); } TEST_F(QuicConnectionContextTest, TestSimpleSwitch) { RunInThreads<SimpleSwitch>(10); } TEST_F(QuicConnectionContextTest, TestNestedSwitch) { RunInThreads<NestedSwitch>(10); } TEST_F(QuicConnectionContextTest, TestAlternatingSwitch) { RunInThreads<AlternatingSwitch>(10); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_connection_context.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_connection_context_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
bbbc2413-3f9b-4c5e-b2d4-176041d08ebe
cpp
tensorflow/tensorflow
parameterized_truncated_normal_op
tensorflow/core/kernels/parameterized_truncated_normal_op.cc
tensorflow/core/kernels/parameterized_truncated_normal_op_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/kernels/parameterized_truncated_normal_op.h" #include <algorithm> #include <cmath> #include <memory> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/kernels/stateless_random_ops.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/guarded_philox_random.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; namespace functor { using random::PhiloxRandom; static constexpr int kMaxIterations = 1000; template <typename T> struct TruncatedNormalFunctor<CPUDevice, T> { void operator()(OpKernelContext* ctx, const CPUDevice& d, int64_t num_batches, int64_t samples_per_batch, int64_t num_elements, typename TTypes<T>::ConstFlat means, typename TTypes<T>::ConstFlat stddevs, typename TTypes<T>::ConstFlat minvals, typename TTypes<T>::ConstFlat maxvals, const random::PhiloxRandom& gen, typename TTypes<T>::Flat output) { const T kStdDevsInsideBoundsToUseRandnSampler = T(1.3); auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads()); auto do_work = [samples_per_batch, num_elements, &ctx, &means, &stddevs, &minvals, &maxvals, &gen, &output, kStdDevsInsideBoundsToUseRandnSampler]( int64_t start_batch, int64_t limit_batch) { random::PhiloxRandom gen_copy = gen; gen_copy.Skip(start_batch * 2 * kMaxIterations * (samples_per_batch + 3) / 4); using Uniform = random::UniformDistribution<random::PhiloxRandom, T>; Uniform dist; using Normal = random::NormalDistribution<random::PhiloxRandom, T>; Normal normal_dist; Eigen::array<T, 4> z; Eigen::array<T, 4> g; for (int64_t b = start_batch; b < limit_batch; ++b) { T mean = means((means.dimension(0) == 1) ? 0 : b); T stddev = stddevs((stddevs.dimension(0) == 1) ? 0 : b); T minval = minvals((minvals.dimension(0) == 1) ? 0 : b); T maxval = maxvals((maxvals.dimension(0) == 1) ? 0 : b); const int64_t limit_sample = std::min((b + 1) * samples_per_batch, num_elements); int64_t sample = b * samples_per_batch; OP_REQUIRES(ctx, stddev > T(0) && minval < maxval && (Eigen::numext::isfinite(minval) || Eigen::numext::isfinite(maxval)), errors::InvalidArgument("Invalid parameters")); int num_iterations = 0; if ((Eigen::numext::isinf(minval) && minval < T(0)) || maxval < mean) { std::swap(minval, maxval); stddev = -stddev; } const T normMin = (minval - mean) / stddev; const T normMax = (maxval - mean) / stddev; const T sqrtFactor = Eigen::numext::sqrt((normMin * normMin) + T(4)); const T cutoff = T(2) * Eigen::numext::exp(T(0.5) + (normMin * (normMin - sqrtFactor)) / T(4)) / (normMin + sqrtFactor); const T diff = normMax - normMin; if (((normMin < -kStdDevsInsideBoundsToUseRandnSampler) && (normMax >= T(0.))) || ((normMax > kStdDevsInsideBoundsToUseRandnSampler) && (normMin <= T(0.)))) { while (sample < limit_sample) { const auto randn_sample = normal_dist(&gen_copy); const int size = randn_sample.size(); for (int i = 0; i < size; i++) { if ((randn_sample[i] >= normMin) && (randn_sample[i] <= normMax)) { output(sample) = randn_sample[i] * stddev + mean; sample++; if (sample >= limit_sample) { break; } num_iterations = 0; } else { num_iterations++; if (num_iterations > kMaxIterations) { LOG(ERROR) << "TruncatedNormal randn rejection sampler " << "exceeded maximum iterations for " << "normMin=" << normMin << " normMax=" << normMax << " kMaxIterations=" << kMaxIterations; ctx->SetStatus(errors::Internal( "TruncatedNormal randn rejection sampler failed to accept" " a sample.")); return; } } } } } else if (diff < cutoff) { const T plusFactor = (normMin < T(0)) ? T(0) : normMin * normMin; while (sample < limit_sample) { const auto rand = dist(&gen_copy); const int size = rand.size(); for (int i = 0; i < size; i++) { z[i] = rand[i] * diff + normMin; } for (int i = 0; i < size; i++) { g[i] = (plusFactor - z[i] * z[i]) / T(2.0); } const auto u = dist(&gen_copy); for (int i = 0; i < size; i++) { auto accept = u[i] <= Eigen::numext::exp(g[i]); if (accept || num_iterations + 1 >= kMaxIterations) { if (!accept) { LOG(ERROR) << "TruncatedNormal uniform rejection sampler " << "exceeded max iterations. Sample may contain " << "outliers."; ctx->SetStatus(errors::Internal( "TruncatedNormal uniform rejection sampler failed to " " accept a sample.")); return; } output(sample) = z[i] * stddev + mean; sample++; if (sample >= limit_sample) { break; } num_iterations = 0; } else { num_iterations++; } } } } else { const T alpha = (normMin + Eigen::numext::sqrt((normMin * normMin) + T(4))) / T(2); while (sample < limit_sample) { auto rand = dist(&gen_copy); const int size = rand.size(); int i = 0; while (i < size) { const T z = -Eigen::numext::log(rand[i]) / alpha + normMin; i++; const T x = normMin < alpha ? alpha - z : normMin - alpha; const T g = Eigen::numext::exp(-x * x / T(2.0)); const T u = rand[i]; i++; auto accept = (u <= g && z < normMax); if (accept || num_iterations + 1 >= kMaxIterations) { if (!accept) { LOG(ERROR) << "TruncatedNormal exponential distribution " << "rejection sampler exceeds max iterations. " << "Sample may contain outliers."; ctx->SetStatus(errors::Internal( "TruncatedNormal exponential distribution rejection" " sampler failed to accept a sample.")); return; } output(sample) = z * stddev + mean; sample++; if (sample >= limit_sample) { break; } num_iterations = 0; } else { num_iterations++; } } } } } }; const int64_t batchInitCost = (Eigen::TensorOpCost::AddCost<T>() + Eigen::TensorOpCost::MulCost<T>()) * 2 + Eigen::TensorOpCost::AddCost<T>() + Eigen::TensorOpCost::MulCost<T>() + Eigen::internal::functor_traits< Eigen::internal::scalar_sqrt_op<T>>::Cost + Eigen::TensorOpCost::MulCost<T>() * 4 + Eigen::internal::functor_traits<Eigen::internal::scalar_exp_op<T>>::Cost + Eigen::TensorOpCost::AddCost<T>(); const int64_t uniformSampleCost = random::PhiloxRandom::kElementCost + random::UniformDistribution<random::PhiloxRandom, T>::kElementCost; const int64_t uniformRejectionSamplingCost = uniformSampleCost + Eigen::TensorOpCost::MulCost<T>() + Eigen::TensorOpCost::AddCost<T>() + Eigen::TensorOpCost::MulCost<T>() * 2 + Eigen::TensorOpCost::AddCost<T>() + uniformSampleCost + Eigen::internal::functor_traits< Eigen::internal::scalar_exp_op<T>>::Cost + Eigen::TensorOpCost::MulCost<T>() + Eigen::TensorOpCost::AddCost<T>(); const int64_t batchCost = batchInitCost + uniformRejectionSamplingCost * 2 * samples_per_batch; Shard(worker_threads.num_threads, worker_threads.workers, num_batches, batchCost, do_work); } }; template <typename T> struct TruncatedNormalFunctorV2<CPUDevice, T> { void operator()(OpKernelContext* ctx, const CPUDevice& d, int64_t num_batches, int64_t samples_per_batch, int64_t num_elements, const BCastList<4>& bcast, typename TTypes<T>::ConstFlat means, typename TTypes<T>::ConstFlat stddevs, typename TTypes<T>::ConstFlat minvals, typename TTypes<T>::ConstFlat maxvals, const random::PhiloxRandom& gen, typename TTypes<T>::Flat output) { const T kStdDevsInsideBoundsToUseRandnSampler = T(1.3); auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads()); auto do_work = [num_batches, samples_per_batch, &ctx, &bcast, &means, &stddevs, &minvals, &maxvals, &gen, &output, kStdDevsInsideBoundsToUseRandnSampler]( int64_t start_output, int64_t limit_output) { random::PhiloxRandom gen_copy = gen; using Uniform = random::UniformDistribution<random::PhiloxRandom, T>; Uniform dist; using Normal = random::NormalDistribution<random::PhiloxRandom, T>; Normal normal_dist; gen_copy.Skip((start_output * 2 * kMaxIterations + Uniform::kResultElementCount - 1) / Uniform::kResultElementCount); Eigen::array<T, Uniform::kResultElementCount> z; Eigen::array<T, Uniform::kResultElementCount> g; const bool should_bcast = bcast.IsBroadcastingRequired(); const auto& means_batch_indices = bcast.batch_indices(0); const auto& stddevs_batch_indices = bcast.batch_indices(1); const auto& minvals_batch_indices = bcast.batch_indices(2); const auto& maxvals_batch_indices = bcast.batch_indices(3); auto output_flat = output.data(); for (int64_t output_idx = start_output; output_idx < limit_output; ) { int64_t batch_idx = output_idx / samples_per_batch; T* const output_batch_offset = output_flat + batch_idx; T mean, stddev, minval, maxval; if (should_bcast) { mean = means(means_batch_indices[batch_idx]); stddev = stddevs(stddevs_batch_indices[batch_idx]); minval = minvals(minvals_batch_indices[batch_idx]); maxval = maxvals(maxvals_batch_indices[batch_idx]); } else { mean = means(batch_idx); stddev = stddevs(batch_idx); minval = minvals(batch_idx); maxval = maxvals(batch_idx); } OP_REQUIRES(ctx, stddev > T(0) && minval < maxval && (Eigen::numext::isfinite(minval) || Eigen::numext::isfinite(maxval)), errors::InvalidArgument("Invalid parameters")); int num_iterations = 0; if ((Eigen::numext::isinf(minval) && minval < T(0)) || maxval < mean) { std::swap(minval, maxval); stddev = -stddev; } const T normMin = (minval - mean) / stddev; const T normMax = (maxval - mean) / stddev; const T sqrtFactor = Eigen::numext::sqrt((normMin * normMin) + T(4)); const T cutoff = T(2) * Eigen::numext::exp(T(0.5) + (normMin * (normMin - sqrtFactor)) / T(4)) / (normMin + sqrtFactor); const T diff = normMax - normMin; if (((normMin < -kStdDevsInsideBoundsToUseRandnSampler) && (normMax >= T(0.))) || ((normMax > kStdDevsInsideBoundsToUseRandnSampler) && (normMin <= T(0.)))) { for (int64_t sample_idx = output_idx % samples_per_batch; sample_idx < samples_per_batch && output_idx < limit_output;) { const auto randn_sample = normal_dist(&gen_copy); const int size = randn_sample.size(); for (int i = 0; i < size; ++i) { if ((randn_sample[i] >= normMin) && (randn_sample[i] <= normMax)) { output_batch_offset[sample_idx * num_batches] = randn_sample[i] * stddev + mean; ++sample_idx; ++output_idx; if (sample_idx >= samples_per_batch || output_idx >= limit_output) { break; } num_iterations = 0; } else { ++num_iterations; if (num_iterations > kMaxIterations) { LOG(ERROR) << "TruncatedNormal randn rejection sampler " << "exceeded maximum iterations for " << "normMin=" << normMin << " normMax=" << normMax << " kMaxIterations=" << kMaxIterations; ctx->SetStatus(errors::Internal( "TruncatedNormal randn rejection sampler failed to accept" " a sample.")); return; } } } } } else if (diff < cutoff) { const T plusFactor = (normMin < T(0)) ? T(0) : normMin * normMin; for (int64_t sample_idx = output_idx % samples_per_batch; sample_idx < samples_per_batch && output_idx < limit_output;) { const auto rand = dist(&gen_copy); const int size = rand.size(); for (int i = 0; i < size; i++) { z[i] = rand[i] * diff + normMin; g[i] = (plusFactor - z[i] * z[i]) / T(2.0); } const auto u = dist(&gen_copy); for (int i = 0; i < size; i++) { auto accept = u[i] <= Eigen::numext::exp(g[i]); if (accept || num_iterations + 1 >= kMaxIterations) { if (!accept) { LOG(ERROR) << "TruncatedNormal uniform rejection sampler " << "exceeded max iterations. Sample may contain " << "outliers."; ctx->SetStatus(errors::Internal( "TruncatedNormal uniform rejection sampler failed to " " accept a sample.")); return; } output_batch_offset[sample_idx * num_batches] = z[i] * stddev + mean; ++sample_idx; ++output_idx; if (sample_idx >= samples_per_batch || output_idx >= limit_output) { break; } num_iterations = 0; } else { num_iterations++; } } } } else { const T alpha = (normMin + Eigen::numext::sqrt((normMin * normMin) + T(4))) / T(2); for (int64_t sample_idx = output_idx % samples_per_batch; sample_idx < samples_per_batch && output_idx < limit_output;) { auto rand = dist(&gen_copy); const int size = rand.size(); int i = 0; while (i < size) { const T z = -Eigen::numext::log(rand[i]) / alpha + normMin; i++; const T x = normMin < alpha ? alpha - z : normMin - alpha; const T g = Eigen::numext::exp(-x * x / T(2.0)); const T u = rand[i]; i++; auto accept = (u <= g && z < normMax); if (accept || num_iterations + 1 >= kMaxIterations) { if (!accept) { LOG(ERROR) << "TruncatedNormal exponential distribution " << "rejection sampler exceeds max iterations. " << "Sample may contain outliers."; ctx->SetStatus(errors::Internal( "TruncatedNormal exponential distribution rejection" " sampler failed to accept a sample.")); return; } output_batch_offset[sample_idx * num_batches] = z * stddev + mean; ++sample_idx; ++output_idx; if (sample_idx >= samples_per_batch || output_idx >= limit_output) { break; } num_iterations = 0; } else { num_iterations++; } } } } } }; const int64_t batchInitCost = (Eigen::TensorOpCost::AddCost<T>() + Eigen::TensorOpCost::MulCost<T>()) * 2 + Eigen::TensorOpCost::AddCost<T>() + Eigen::TensorOpCost::MulCost<T>() + Eigen::internal::functor_traits< Eigen::internal::scalar_sqrt_op<T>>::Cost + Eigen::TensorOpCost::MulCost<T>() * 4 + Eigen::internal::functor_traits<Eigen::internal::scalar_exp_op<T>>::Cost + Eigen::TensorOpCost::AddCost<T>(); const int64_t uniformSampleCost = random::PhiloxRandom::kElementCost + random::UniformDistribution<random::PhiloxRandom, T>::kElementCost; const int64_t uniformRejectionSamplingCost = uniformSampleCost + Eigen::TensorOpCost::MulCost<T>() + Eigen::TensorOpCost::AddCost<T>() + Eigen::TensorOpCost::MulCost<T>() * 2 + Eigen::TensorOpCost::AddCost<T>() + uniformSampleCost + Eigen::internal::functor_traits< Eigen::internal::scalar_exp_op<T>>::Cost + Eigen::TensorOpCost::MulCost<T>() + Eigen::TensorOpCost::AddCost<T>(); const int64_t batchCost = batchInitCost + uniformRejectionSamplingCost * 2; Shard(worker_threads.num_threads, worker_threads.workers, num_elements, batchCost, do_work); } }; } namespace { template <typename Device, typename T> class ParameterizedTruncatedNormalOp : public OpKernel { static constexpr int32_t kDesiredBatchSize = 100; public: explicit ParameterizedTruncatedNormalOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, generator_.Init(context)); } void Compute(OpKernelContext* ctx) override { const Tensor& shape_tensor = ctx->input(0); const Tensor& means_tensor = ctx->input(1); const Tensor& stddevs_tensor = ctx->input(2); const Tensor& minvals_tensor = ctx->input(3); const Tensor& maxvals_tensor = ctx->input(4); OP_REQUIRES( ctx, TensorShapeUtils::IsVector(shape_tensor.shape()), errors::InvalidArgument("Input shape should be a vector, got shape: ", shape_tensor.shape().DebugString())); OP_REQUIRES(ctx, shape_tensor.NumElements() > 0, errors::InvalidArgument("Shape tensor must not be empty, got ", shape_tensor.DebugString())); TensorShape tensor_shape; OP_REQUIRES_OK(ctx, tensor::MakeShape(shape_tensor, &tensor_shape)); int32_t num_batches = tensor_shape.dim_size(0); int32_t samples_per_batch = 1; const int32_t num_dims = tensor_shape.dims(); for (int32_t i = 1; i < num_dims; i++) { samples_per_batch *= tensor_shape.dim_size(i); } const int32_t num_elements = num_batches * samples_per_batch; Tensor* samples_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, tensor_shape, &samples_tensor)); OP_REQUIRES(ctx, means_tensor.dims() <= 1, errors::InvalidArgument( "Input means should be a scalar or vector, got shape: ", means_tensor.shape().DebugString())); OP_REQUIRES(ctx, stddevs_tensor.dims() <= 1, errors::InvalidArgument( "Input stddevs should be a scalar or vector, got shape: ", stddevs_tensor.shape().DebugString())); OP_REQUIRES(ctx, minvals_tensor.dims() <= 1, errors::InvalidArgument( "Input minvals should be a scalar or vector, got shape: ", minvals_tensor.shape().DebugString())); OP_REQUIRES(ctx, maxvals_tensor.dims() <= 1, errors::InvalidArgument( "Input maxvals should be a scalar or vector, got shape: ", maxvals_tensor.shape().DebugString())); if ((means_tensor.dims() == 0 || means_tensor.dim_size(0) == 1) && (stddevs_tensor.dims() == 0 || stddevs_tensor.dim_size(0) == 1) && minvals_tensor.dims() == 0 && maxvals_tensor.dims() == 0) { int32_t size = num_batches * samples_per_batch; int32_t adjusted_samples = kDesiredBatchSize; int32_t adjusted_batches = Eigen::divup(size, adjusted_samples); num_batches = adjusted_batches; samples_per_batch = adjusted_samples; } else { OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(means_tensor.shape()) || means_tensor.dim_size(0) == 1 || means_tensor.dim_size(0) == num_batches, errors::InvalidArgument( "Input means should have length 1 or shape[0], got shape: ", means_tensor.shape().DebugString())); OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(stddevs_tensor.shape()) || stddevs_tensor.dim_size(0) == 1 || stddevs_tensor.dim_size(0) == num_batches, errors::InvalidArgument( "Input stddevs should have length 1 or shape[0], got shape: ", stddevs_tensor.shape().DebugString())); OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(minvals_tensor.shape()) || minvals_tensor.dim_size(0) == 1 || minvals_tensor.dim_size(0) == num_batches, errors::InvalidArgument( "Input minvals should have length 1 or shape[0], got shape: ", minvals_tensor.shape().DebugString())); OP_REQUIRES( ctx, TensorShapeUtils::IsScalar(maxvals_tensor.shape()) || maxvals_tensor.dim_size(0) == 1 || maxvals_tensor.dim_size(0) == num_batches, errors::InvalidArgument( "Input maxvals should have length 1 or shape[0], got shape: ", maxvals_tensor.shape().DebugString())); } auto truncFunctor = functor::TruncatedNormalFunctor<Device, T>(); random::PhiloxRandom rng = generator_.ReserveSamples128(num_batches * 2 * functor::kMaxIterations * (samples_per_batch + 3) / 4); truncFunctor(ctx, ctx->eigen_device<Device>(), num_batches, samples_per_batch, num_elements, means_tensor.flat<T>(), stddevs_tensor.flat<T>(), minvals_tensor.flat<T>(), maxvals_tensor.flat<T>(), rng, samples_tensor->flat<T>()); } private: GuardedPhiloxRandom generator_; ParameterizedTruncatedNormalOp(const ParameterizedTruncatedNormalOp&) = delete; void operator=(const ParameterizedTruncatedNormalOp&) = delete; }; template <typename Device, typename T> class StatelessParameterizedTruncatedNormal : public OpKernel { static const int32_t kDesiredBatchSize = 100; public: explicit StatelessParameterizedTruncatedNormal(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { const Tensor& shape_tensor = ctx->input(0); const Tensor& seed_tensor = ctx->input(1); const Tensor& means_tensor = ctx->input(2); const Tensor& stddevs_tensor = ctx->input(3); const Tensor& minvals_tensor = ctx->input(4); const Tensor& maxvals_tensor = ctx->input(5); OP_REQUIRES(ctx, seed_tensor.dims() == 1 && seed_tensor.dim_size(0) == 2, errors::InvalidArgument("seed must have shape [2], not ", seed_tensor.shape().DebugString())); tensorflow::BCastList<4> bcast( {means_tensor.shape().dim_sizes(), stddevs_tensor.shape().dim_sizes(), minvals_tensor.shape().dim_sizes(), maxvals_tensor.shape().dim_sizes()}, false, true); OP_REQUIRES(ctx, bcast.IsValid(), errors::InvalidArgument( "means, stddevs, minvals, maxvals must have compatible " "batch dimensions: ", means_tensor.shape().DebugString(), " vs. ", stddevs_tensor.shape().DebugString(), " vs. ", minvals_tensor.shape().DebugString(), " vs. ", maxvals_tensor.shape().DebugString())); TensorShape bcast_shape = BCast::ToShape(bcast.output_shape()); OP_REQUIRES( ctx, TensorShapeUtils::IsVector(shape_tensor.shape()), errors::InvalidArgument("Input shape should be a vector, got shape: ", shape_tensor.shape().DebugString())); TensorShape output_shape; if (shape_tensor.dtype() == DataType::DT_INT32) { OP_REQUIRES_OK(ctx, TensorShapeUtils::MakeShape(shape_tensor.vec<int32>(), &output_shape)); } else { OP_REQUIRES_OK(ctx, TensorShapeUtils::MakeShape( shape_tensor.vec<int64_t>(), &output_shape)); } OP_REQUIRES(ctx, TensorShapeUtils::EndsWith(output_shape, bcast_shape), errors::InvalidArgument( "Shape passed in must end with broadcasted shape.")); int64_t samples_per_batch = 1; const int64_t num_sample_dims = (shape_tensor.dim_size(0) - bcast.output_shape().size()); for (int64_t i = 0; i < num_sample_dims; ++i) { samples_per_batch *= output_shape.dim_size(i); } int64_t num_batches = 1; for (int64_t i = num_sample_dims; i < shape_tensor.dim_size(0); ++i) { num_batches *= output_shape.dim_size(i); } const int64_t num_elements = num_batches * samples_per_batch; Tensor* samples_tensor; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, output_shape, &samples_tensor)); auto truncFunctor = functor::TruncatedNormalFunctorV2<Device, T>(); random::PhiloxRandom::Key key; random::PhiloxRandom::ResultType counter; OP_REQUIRES_OK(ctx, GenerateKey(seed_tensor, &key, &counter)); auto philox = random::PhiloxRandom(counter, key); truncFunctor(ctx, ctx->eigen_device<Device>(), num_batches, samples_per_batch, num_elements, bcast, means_tensor.flat<T>(), stddevs_tensor.flat<T>(), minvals_tensor.flat<T>(), maxvals_tensor.flat<T>(), philox, samples_tensor->flat<T>()); } private: StatelessParameterizedTruncatedNormal( const StatelessParameterizedTruncatedNormal&) = delete; void operator=(const StatelessParameterizedTruncatedNormal&) = delete; }; } #define REGISTER(TYPE) \ REGISTER_KERNEL_BUILDER(Name("ParameterizedTruncatedNormal") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("dtype"), \ ParameterizedTruncatedNormalOp<CPUDevice, TYPE>) \ REGISTER_KERNEL_BUILDER( \ Name("StatelessParameterizedTruncatedNormal") \ .HostMemory("shape") \ .HostMemory("seed") \ .HostMemory("means") \ .HostMemory("stddevs") \ .HostMemory("minvals") \ .HostMemory("maxvals") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("dtype"), \ StatelessParameterizedTruncatedNormal<CPUDevice, TYPE>) TF_CALL_half(REGISTER); TF_CALL_float(REGISTER); TF_CALL_double(REGISTER); #undef REGISTER #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER(TYPE) \ REGISTER_KERNEL_BUILDER(Name("ParameterizedTruncatedNormal") \ .Device(DEVICE_GPU) \ .HostMemory("shape") \ .TypeConstraint<TYPE>("dtype"), \ ParameterizedTruncatedNormalOp<GPUDevice, TYPE>) TF_CALL_half(REGISTER); TF_CALL_float(REGISTER); TF_CALL_double(REGISTER); #undef REGISTER #endif }
#include <functional> #include <memory> #include <vector> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { static Graph* PTruncatedNormal(int num_batches, int samples_per_batch) { Graph* g = new Graph(OpRegistry::Global()); Tensor shape_t(DT_INT32, TensorShape({2})); shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); Tensor means_t(DT_FLOAT, TensorShape({num_batches})); means_t.flat<float>().setConstant(0.0); Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); stdevs_t.flat<float>().setConstant(1.0); Tensor minvals_t(DT_FLOAT, TensorShape({num_batches})); minvals_t.flat<float>().setRandom(); Tensor maxvals_t(DT_FLOAT, TensorShape({num_batches})); maxvals_t.flat<float>().setConstant(5.0); Node* ret; TF_CHECK_OK( NodeBuilder(g->NewName("truncatednormal"), "ParameterizedTruncatedNormal") .Input(test::graph::Constant(g, shape_t)) .Input(test::graph::Constant(g, means_t)) .Input(test::graph::Constant(g, stdevs_t)) .Input(test::graph::Constant(g, minvals_t)) .Input(test::graph::Constant(g, maxvals_t)) .Attr("dtype", DT_FLOAT) .Finalize(g, &ret)); return g; } static Graph* PTruncatedNormal2SD(int num_batches, int samples_per_batch) { Graph* g = new Graph(OpRegistry::Global()); Tensor shape_t(DT_INT32, TensorShape({2})); shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); Tensor means_t(DT_FLOAT, TensorShape({num_batches})); means_t.flat<float>().setConstant(0.0); Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); stdevs_t.flat<float>().setConstant(1.0); Tensor minvals_t(DT_FLOAT, TensorShape({num_batches})); minvals_t.flat<float>().setConstant(-2.0); Tensor maxvals_t(DT_FLOAT, TensorShape({num_batches})); maxvals_t.flat<float>().setConstant(2.0); Node* ret; TF_CHECK_OK( NodeBuilder(g->NewName("truncatednormal"), "ParameterizedTruncatedNormal") .Input(test::graph::Constant(g, shape_t)) .Input(test::graph::Constant(g, means_t)) .Input(test::graph::Constant(g, stdevs_t)) .Input(test::graph::Constant(g, minvals_t)) .Input(test::graph::Constant(g, maxvals_t)) .Attr("dtype", DT_FLOAT) .Finalize(g, &ret)); return g; } static Graph* PTruncatedNormalOneTail(int num_batches, int samples_per_batch) { Graph* g = new Graph(OpRegistry::Global()); Tensor shape_t(DT_INT32, TensorShape({2})); shape_t.flat<int32>().setValues({num_batches, samples_per_batch}); Tensor means_t(DT_FLOAT, TensorShape({num_batches})); means_t.flat<float>().setConstant(0.0); Tensor stdevs_t(DT_FLOAT, TensorShape({num_batches})); stdevs_t.flat<float>().setConstant(1.0); Tensor minvals_t(DT_FLOAT, TensorShape({num_batches})); minvals_t.flat<float>().setConstant(2.0); Tensor maxvals_t(DT_FLOAT, TensorShape({num_batches})); maxvals_t.flat<float>().setConstant(std::numeric_limits<float>::infinity()); Node* ret; TF_CHECK_OK( NodeBuilder(g->NewName("truncatednormal"), "ParameterizedTruncatedNormal") .Input(test::graph::Constant(g, shape_t)) .Input(test::graph::Constant(g, means_t)) .Input(test::graph::Constant(g, stdevs_t)) .Input(test::graph::Constant(g, minvals_t)) .Input(test::graph::Constant(g, maxvals_t)) .Attr("dtype", DT_FLOAT) .Finalize(g, &ret)); return g; } #define BM_PTruncatedNormalDev(DEVICE, B, S) \ static void BM_PTruncatedNormal_##DEVICE##_##B##_##S( \ ::testing::benchmark::State& state) { \ test::Benchmark(#DEVICE, PTruncatedNormal(B, S), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(B) * S * state.iterations()); \ } \ BENCHMARK(BM_PTruncatedNormal_##DEVICE##_##B##_##S); #define BM_PTruncatedNormalDev_2SD(DEVICE, B, S) \ static void BM_PTruncatedNormal_2SD_##DEVICE##_##B##_##S( \ ::testing::benchmark::State& state) { \ test::Benchmark(#DEVICE, PTruncatedNormal2SD(B, S), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(B) * S * state.iterations()); \ } \ BENCHMARK(BM_PTruncatedNormal_2SD_##DEVICE##_##B##_##S); #define BM_PTruncatedNormalDev_OneTail(DEVICE, B, S) \ static void BM_PTruncatedNormal_OneTail_##DEVICE##_##B##_##S( \ ::testing::benchmark::State& state) { \ test::Benchmark(#DEVICE, PTruncatedNormalOneTail(B, S), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(B) * S * state.iterations()); \ } \ BENCHMARK(BM_PTruncatedNormal_OneTail_##DEVICE##_##B##_##S); BM_PTruncatedNormalDev(cpu, 1000, 1000); BM_PTruncatedNormalDev_2SD(cpu, 10000, 100); BM_PTruncatedNormalDev_OneTail(cpu, 10000, 100); BM_PTruncatedNormalDev(gpu, 1000, 1000); BM_PTruncatedNormalDev_2SD(gpu, 10000, 100); BM_PTruncatedNormalDev_OneTail(gpu, 10000, 100); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/parameterized_truncated_normal_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/parameterized_truncated_normal_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
124ce3af-8573-40e2-9097-e788f3cff240
cpp
abseil/abseil-cpp
usage_config
absl/flags/usage_config.cc
absl/flags/usage_config_test.cc
#include "absl/flags/usage_config.h" #include <functional> #include <iostream> #include <string> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/flags/internal/path_util.h" #include "absl/flags/internal/program_name.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/synchronization/mutex.h" extern "C" { ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL( AbslInternalReportFatalUsageError)(absl::string_view) {} } namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { namespace { bool ContainsHelpshortFlags(absl::string_view filename) { auto suffix = flags_internal::Basename(filename); auto program_name = flags_internal::ShortProgramInvocationName(); absl::string_view program_name_ref = program_name; #if defined(_WIN32) absl::ConsumeSuffix(&program_name_ref, ".exe"); #endif if (!absl::ConsumePrefix(&suffix, program_name_ref)) return false; return absl::StartsWith(suffix, ".") || absl::StartsWith(suffix, "-main.") || absl::StartsWith(suffix, "_main."); } bool ContainsHelppackageFlags(absl::string_view filename) { return ContainsHelpshortFlags(filename); } std::string VersionString() { std::string version_str(flags_internal::ShortProgramInvocationName()); version_str += "\n"; #if !defined(NDEBUG) version_str += "Debug build (NDEBUG not #defined)\n"; #endif return version_str; } std::string NormalizeFilename(absl::string_view filename) { auto pos = filename.find_first_not_of("\\/"); if (pos == absl::string_view::npos) return ""; filename.remove_prefix(pos); return std::string(filename); } ABSL_CONST_INIT absl::Mutex custom_usage_config_guard(absl::kConstInit); ABSL_CONST_INIT FlagsUsageConfig* custom_usage_config ABSL_GUARDED_BY(custom_usage_config_guard) = nullptr; } FlagsUsageConfig GetUsageConfig() { absl::MutexLock l(&custom_usage_config_guard); if (custom_usage_config) return *custom_usage_config; FlagsUsageConfig default_config; default_config.contains_helpshort_flags = &ContainsHelpshortFlags; default_config.contains_help_flags = &ContainsHelppackageFlags; default_config.contains_helppackage_flags = &ContainsHelppackageFlags; default_config.version_string = &VersionString; default_config.normalize_filename = &NormalizeFilename; return default_config; } void ReportUsageError(absl::string_view msg, bool is_fatal) { std::cerr << "ERROR: " << msg << std::endl; if (is_fatal) { ABSL_INTERNAL_C_SYMBOL(AbslInternalReportFatalUsageError)(msg); } } } void SetFlagsUsageConfig(FlagsUsageConfig usage_config) { absl::MutexLock l(&flags_internal::custom_usage_config_guard); if (!usage_config.contains_helpshort_flags) usage_config.contains_helpshort_flags = flags_internal::ContainsHelpshortFlags; if (!usage_config.contains_help_flags) usage_config.contains_help_flags = flags_internal::ContainsHelppackageFlags; if (!usage_config.contains_helppackage_flags) usage_config.contains_helppackage_flags = flags_internal::ContainsHelppackageFlags; if (!usage_config.version_string) usage_config.version_string = flags_internal::VersionString; if (!usage_config.normalize_filename) usage_config.normalize_filename = flags_internal::NormalizeFilename; if (flags_internal::custom_usage_config) *flags_internal::custom_usage_config = usage_config; else flags_internal::custom_usage_config = new FlagsUsageConfig(usage_config); } ABSL_NAMESPACE_END }
#include "absl/flags/usage_config.h" #include <string> #include "gtest/gtest.h" #include "absl/flags/internal/path_util.h" #include "absl/flags/internal/program_name.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" namespace { class FlagsUsageConfigTest : public testing::Test { protected: void SetUp() override { absl::FlagsUsageConfig default_config; absl::SetFlagsUsageConfig(default_config); } }; namespace flags = absl::flags_internal; bool TstContainsHelpshortFlags(absl::string_view f) { return absl::StartsWith(flags::Basename(f), "progname."); } bool TstContainsHelppackageFlags(absl::string_view f) { return absl::EndsWith(flags::Package(f), "aaa/"); } bool TstContainsHelpFlags(absl::string_view f) { return absl::EndsWith(flags::Package(f), "zzz/"); } std::string TstVersionString() { return "program 1.0.0"; } std::string TstNormalizeFilename(absl::string_view filename) { return std::string(filename.substr(2)); } void TstReportUsageMessage(absl::string_view msg) {} TEST_F(FlagsUsageConfigTest, TestGetSetFlagsUsageConfig) { EXPECT_TRUE(flags::GetUsageConfig().contains_helpshort_flags); EXPECT_TRUE(flags::GetUsageConfig().contains_help_flags); EXPECT_TRUE(flags::GetUsageConfig().contains_helppackage_flags); EXPECT_TRUE(flags::GetUsageConfig().version_string); EXPECT_TRUE(flags::GetUsageConfig().normalize_filename); absl::FlagsUsageConfig empty_config; empty_config.contains_helpshort_flags = &TstContainsHelpshortFlags; empty_config.contains_help_flags = &TstContainsHelpFlags; empty_config.contains_helppackage_flags = &TstContainsHelppackageFlags; empty_config.version_string = &TstVersionString; empty_config.normalize_filename = &TstNormalizeFilename; absl::SetFlagsUsageConfig(empty_config); EXPECT_TRUE(flags::GetUsageConfig().contains_helpshort_flags); EXPECT_TRUE(flags::GetUsageConfig().contains_help_flags); EXPECT_TRUE(flags::GetUsageConfig().contains_helppackage_flags); EXPECT_TRUE(flags::GetUsageConfig().version_string); EXPECT_TRUE(flags::GetUsageConfig().normalize_filename); } TEST_F(FlagsUsageConfigTest, TestContainsHelpshortFlags) { #if defined(_WIN32) flags::SetProgramInvocationName("usage_config_test.exe"); #else flags::SetProgramInvocationName("usage_config_test"); #endif auto config = flags::GetUsageConfig(); EXPECT_TRUE(config.contains_helpshort_flags("adir/cd/usage_config_test.cc")); EXPECT_TRUE( config.contains_helpshort_flags("aaaa/usage_config_test-main.cc")); EXPECT_TRUE(config.contains_helpshort_flags("abc/usage_config_test_main.cc")); EXPECT_FALSE(config.contains_helpshort_flags("usage_config_main.cc")); absl::FlagsUsageConfig empty_config; empty_config.contains_helpshort_flags = &TstContainsHelpshortFlags; absl::SetFlagsUsageConfig(empty_config); EXPECT_TRUE( flags::GetUsageConfig().contains_helpshort_flags("aaa/progname.cpp")); EXPECT_FALSE( flags::GetUsageConfig().contains_helpshort_flags("aaa/progmane.cpp")); } TEST_F(FlagsUsageConfigTest, TestContainsHelpFlags) { flags::SetProgramInvocationName("usage_config_test"); auto config = flags::GetUsageConfig(); EXPECT_TRUE(config.contains_help_flags("zzz/usage_config_test.cc")); EXPECT_TRUE( config.contains_help_flags("bdir/a/zzz/usage_config_test-main.cc")); EXPECT_TRUE( config.contains_help_flags(" EXPECT_FALSE(config.contains_help_flags("zzz/aa/usage_config_main.cc")); absl::FlagsUsageConfig empty_config; empty_config.contains_help_flags = &TstContainsHelpFlags; absl::SetFlagsUsageConfig(empty_config); EXPECT_TRUE(flags::GetUsageConfig().contains_help_flags("zzz/main-body.c")); EXPECT_FALSE( flags::GetUsageConfig().contains_help_flags("zzz/dir/main-body.c")); } TEST_F(FlagsUsageConfigTest, TestContainsHelppackageFlags) { flags::SetProgramInvocationName("usage_config_test"); auto config = flags::GetUsageConfig(); EXPECT_TRUE(config.contains_helppackage_flags("aaa/usage_config_test.cc")); EXPECT_TRUE( config.contains_helppackage_flags("bbdir/aaa/usage_config_test-main.cc")); EXPECT_TRUE(config.contains_helppackage_flags( " EXPECT_FALSE(config.contains_helppackage_flags("aadir/usage_config_main.cc")); absl::FlagsUsageConfig empty_config; empty_config.contains_helppackage_flags = &TstContainsHelppackageFlags; absl::SetFlagsUsageConfig(empty_config); EXPECT_TRUE( flags::GetUsageConfig().contains_helppackage_flags("aaa/main-body.c")); EXPECT_FALSE( flags::GetUsageConfig().contains_helppackage_flags("aadir/main-body.c")); } TEST_F(FlagsUsageConfigTest, TestVersionString) { flags::SetProgramInvocationName("usage_config_test"); #ifdef NDEBUG std::string expected_output = "usage_config_test\n"; #else std::string expected_output = "usage_config_test\nDebug build (NDEBUG not #defined)\n"; #endif EXPECT_EQ(flags::GetUsageConfig().version_string(), expected_output); absl::FlagsUsageConfig empty_config; empty_config.version_string = &TstVersionString; absl::SetFlagsUsageConfig(empty_config); EXPECT_EQ(flags::GetUsageConfig().version_string(), "program 1.0.0"); } TEST_F(FlagsUsageConfigTest, TestNormalizeFilename) { EXPECT_EQ(flags::GetUsageConfig().normalize_filename("a/a.cc"), "a/a.cc"); EXPECT_EQ(flags::GetUsageConfig().normalize_filename("/a/a.cc"), "a/a.cc"); EXPECT_EQ(flags::GetUsageConfig().normalize_filename(" EXPECT_EQ(flags::GetUsageConfig().normalize_filename("/"), ""); absl::FlagsUsageConfig empty_config; empty_config.normalize_filename = &TstNormalizeFilename; absl::SetFlagsUsageConfig(empty_config); EXPECT_EQ(flags::GetUsageConfig().normalize_filename("a/a.cc"), "a.cc"); EXPECT_EQ(flags::GetUsageConfig().normalize_filename("aaa/a.cc"), "a/a.cc"); empty_config.normalize_filename = nullptr; absl::SetFlagsUsageConfig(empty_config); EXPECT_EQ(flags::GetUsageConfig().normalize_filename("a/a.cc"), "a/a.cc"); EXPECT_EQ(flags::GetUsageConfig().normalize_filename("/a/a.cc"), "a/a.cc"); EXPECT_EQ(flags::GetUsageConfig().normalize_filename(" EXPECT_EQ(flags::GetUsageConfig().normalize_filename("\\a\\a.cc"), "a\\a.cc"); EXPECT_EQ(flags::GetUsageConfig().normalize_filename(" EXPECT_EQ(flags::GetUsageConfig().normalize_filename("\\\\"), ""); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/usage_config.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/usage_config_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
cfb1aa9b-3c0d-4dc7-a715-a854d74496a6
cpp
google/tensorstore
chunk_layout
tensorstore/chunk_layout.cc
tensorstore/chunk_layout_test.cc
#include "tensorstore/chunk_layout.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <atomic> #include <cassert> #include <cstdlib> #include <cstring> #include <limits> #include <memory> #include <ostream> #include <string_view> #include <type_traits> #include <utility> #include "absl/base/optimization.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/json.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/json_bindable.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/division.h" #include "tensorstore/util/maybe_hard_constraint.h" #include "tensorstore/util/result.h" #include "tensorstore/util/small_bit_set.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace { using Usage = ChunkLayout::Usage; using Storage = ChunkLayout::Storage; using StoragePtr = ChunkLayout::StoragePtr; constexpr auto kNumUsages = ChunkLayout::kNumUsages; namespace jb = tensorstore::internal_json_binding; enum class HardConstraintBit { inner_order, write_chunk_elements, read_chunk_elements, codec_chunk_elements, }; struct OriginValueTraits { using Element = Index; constexpr static Index kDefaultValue = kImplicit; constexpr static bool IsSoftConstraintValue(Index value) { return false; } constexpr static bool IsValid(Index x) { return x == kImplicit || IsFiniteIndex(x); } static Result<Index> TransformInputValue(Index value, Index offset, Index stride) { if (stride < 0) value = value - 1; Index new_value; if (internal::MulOverflow(stride, value, &new_value) || internal::AddOverflow(new_value, offset, &new_value) || !IsFiniteIndex(new_value)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow transforming input origin ", value, " by offset ", offset, " and stride ", stride)); } return new_value; } static Result<Index> TransformOutputValue(Index value, Index offset, Index stride) { Index new_value; if (internal::SubOverflow(value, offset, &new_value) || !IsFiniteIndex(new_value)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow transforming output origin ", value, " by offset ", offset, " and stride ", stride)); } new_value = CeilOfRatio(((stride > 0) ? new_value : new_value - 1), stride); return new_value; } }; struct ShapeValueTraits { using Element = Index; constexpr static Index kDefaultValue = ChunkLayout::kDefaultShapeValue; constexpr static bool IsSoftConstraintValue(Index value) { return value == -1; } constexpr static bool IsValid(Index x) { return x == -1 || x >= 0; } static Result<Index> TransformInputValue(Index value, Index offset, Index stride) { Index new_value; if (stride == std::numeric_limits<Index>::min() || internal::MulOverflow(std::abs(stride), value, &new_value)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing abs(", stride, ") * ", value)); } return new_value; } static Result<Index> TransformOutputValue(Index value, Index offset, Index stride) { assert(stride != 0); const Index gcd = tensorstore::GreatestCommonDivisor(stride, value); return value / gcd; } }; struct AspectRatioValueTraits { using Element = double; constexpr static double kDefaultValue = ChunkLayout::kDefaultAspectRatioValue; constexpr static bool IsSoftConstraintValue(double value) { return false; } constexpr static bool IsValid(double x) { return x >= 0; } static Result<double> TransformInputValue(double value, Index offset, Index stride) { return value * std::abs(static_cast<double>(stride)); } static Result<double> TransformOutputValue(double value, Index offset, Index stride) { return value / std::abs(static_cast<double>(stride)); } }; struct ChunkLayoutData { int8_t rank_; SmallBitSet<8> hard_constraint_ = false; DimensionSet grid_origin_hard_constraint_; DimensionSet chunk_shape_hard_constraint_[kNumUsages]; DimensionSet chunk_aspect_ratio_hard_constraint_[kNumUsages]; Index chunk_elements_[kNumUsages] = {kImplicit, kImplicit, kImplicit}; }; bool IsHardConstraint(const ChunkLayoutData& impl, HardConstraintBit bit) { return impl.hard_constraint_[static_cast<int>(bit)]; } void SetHardConstraintBit(ChunkLayoutData& impl, HardConstraintBit bit) { impl.hard_constraint_[static_cast<int>(bit)] = true; } } struct ChunkLayout::Storage : public ChunkLayoutData { explicit Storage(DimensionIndex rank) : ChunkLayoutData{static_cast<int8_t>(rank)} { Initialize(); } Storage(const Storage& other) : ChunkLayoutData(other) { std::memcpy(static_cast<void*>(this + 1), static_cast<const void*>(&other + 1), TotalBytesAfterHeader( std::max(DimensionIndex(0), DimensionIndex(rank_)))); } Storage(const Storage& other, DimensionIndex new_rank) : ChunkLayoutData(other) { rank_ = new_rank; Initialize(); } void Initialize() { if (DimensionIndex rank = rank_; rank > 0) { std::fill_n(this->grid_origin(), NumOriginElements(rank), OriginValueTraits::kDefaultValue); std::fill_n(this->chunk_shapes(), NumShapeElements(rank), ShapeValueTraits::kDefaultValue); std::fill_n(this->chunk_aspect_ratios(), NumAspectRatioElements(rank), AspectRatioValueTraits::kDefaultValue); std::fill_n(this->inner_order(), NumInnerOrderElements(rank), static_cast<DimensionIndex>(-1)); } } constexpr static size_t NumOriginElements(DimensionIndex rank) { return rank; } constexpr static size_t NumShapeElements(DimensionIndex rank) { return kNumUsages * rank; } constexpr static size_t NumAspectRatioElements(DimensionIndex rank) { return kNumUsages * rank; } constexpr static size_t NumInnerOrderElements(DimensionIndex rank) { return rank; } constexpr static size_t TotalBytesAfterHeader(DimensionIndex rank) { return sizeof(Index) * NumOriginElements(rank) + sizeof(Index) * NumShapeElements(rank) + sizeof(double) * NumAspectRatioElements(rank) + sizeof(DimensionIndex) * NumInnerOrderElements(rank); } Index* grid_origin() { return reinterpret_cast<Index*>(this + 1); } Index* chunk_shapes() { return grid_origin() + rank_; } tensorstore::span<Index> chunk_shape(size_t usage_index) { return {chunk_shapes() + rank_ * usage_index, rank_}; } double* chunk_aspect_ratios() { return reinterpret_cast<double*>(chunk_shapes() + NumShapeElements(rank_)); } tensorstore::span<double> chunk_aspect_ratio(size_t usage_index) { return {chunk_aspect_ratios() + rank_ * usage_index, rank_}; } DimensionIndex* inner_order() { return reinterpret_cast<DimensionIndex*>(chunk_aspect_ratios() + NumAspectRatioElements(rank_)); } static StoragePtr Allocate(DimensionIndex rank) { rank = std::max(rank, DimensionIndex(0)); assert(rank < kMaxRank); const size_t total_bytes = sizeof(Storage) + TotalBytesAfterHeader(rank); StoragePtr ptr(static_cast<Storage*>(std::malloc(total_bytes)), internal::adopt_object_ref); return ptr; } static Storage& EnsureUnique(StoragePtr& ptr, DimensionIndex rank, StoragePtr& storage_to_be_destroyed) { if (!ptr) { ptr = Allocate(rank); new (ptr.get()) Storage(rank); } else if (ptr->ref_count_.load(std::memory_order_acquire) != 1) { auto new_ptr = Allocate(ptr->rank_); new (new_ptr.get()) Storage(*ptr); storage_to_be_destroyed = std::move(ptr); ptr = std::move(new_ptr); } return *ptr; } std::atomic<size_t> ref_count_{1}; }; void intrusive_ptr_increment(Storage* p) { p->ref_count_.fetch_add(1, std::memory_order_acq_rel); } void intrusive_ptr_decrement(Storage* p) { if (p->ref_count_.fetch_sub(1, std::memory_order_acq_rel) == 1) { std::free(p); } } namespace { void ClearHardConstraintBits(Storage& impl) { impl.hard_constraint_ = false; impl.grid_origin_hard_constraint_ = false; for (int i = 0; i < kNumUsages; ++i) { impl.chunk_shape_hard_constraint_[i] = false; impl.chunk_aspect_ratio_hard_constraint_[i] = false; } } bool HasAnyHardConstraints(const Storage& impl) { if (IsHardConstraint(impl, HardConstraintBit::inner_order)) return true; if (impl.grid_origin_hard_constraint_) return true; for (int i = 0; i < kNumUsages; ++i) { if (impl.chunk_shape_hard_constraint_[i]) return true; } return false; } absl::Status RankMismatchError(DimensionIndex new_rank, DimensionIndex existing_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Rank ", new_rank, " does not match existing rank ", existing_rank)); } absl::Status EnsureRank(StoragePtr& ptr, DimensionIndex rank, StoragePtr& storage_to_be_destroyed) { TENSORSTORE_RETURN_IF_ERROR(tensorstore::ValidateRank(rank)); if (!ptr || ptr->rank_ == rank) { Storage::EnsureUnique(ptr, rank, storage_to_be_destroyed); return absl::OkStatus(); } if (ptr->rank_ == dynamic_rank) { auto new_ptr = Storage::Allocate(rank); new (new_ptr.get()) Storage(*ptr, rank); storage_to_be_destroyed = std::move(ptr); ptr = std::move(new_ptr); return absl::OkStatus(); } return RankMismatchError(rank, ptr->rank_); } template <typename T, typename U> absl::Status MismatchError(const T& existing_value, const U& new_value) { return absl::InvalidArgumentError(tensorstore::StrCat( "New hard constraint (", new_value, ") does not match existing hard constraint (", existing_value, ")")); } template <typename Traits> absl::Status MergeVectorInto( MaybeHardConstraintSpan<typename Traits::Element> in_vector, typename Traits::Element* out_vector, DimensionSet& out_hard_constraint) { using Element = typename Traits::Element; DimensionIndex rank = in_vector.size(); if (DimensionSet dims_to_check = in_vector.hard_constraint & out_hard_constraint; dims_to_check) { for (DimensionIndex i = 0; i < rank; ++i) { if (!dims_to_check[i]) continue; Element x = in_vector[i]; if (x != Traits::kDefaultValue && out_vector[i] != x) { return absl::InvalidArgumentError(tensorstore::StrCat( "New hard constraint (", x, ") for dimension ", i, " does not match existing hard constraint (", out_vector[i], ")")); } } } for (DimensionIndex i = 0; i < rank; ++i) { Element x = in_vector[i]; if (x == Traits::kDefaultValue) continue; const bool in_hard_constraint_value = in_vector.hard_constraint[i]; if (in_hard_constraint_value || out_vector[i] == Traits::kDefaultValue) { out_vector[i] = x; out_hard_constraint[i] = out_hard_constraint[i] || in_hard_constraint_value; } } return absl::OkStatus(); } template <typename Traits> absl::Status ValidateAndMergeVectorInto( MaybeHardConstraintSpan<typename Traits::Element> in_vector, typename Traits::Element* out_vector, DimensionSet& out_hard_constraint) { using Element = typename Traits::Element; DimensionIndex rank = in_vector.size(); if (rank == 0) return absl::OkStatus(); for (DimensionIndex i = 0; i < in_vector.size(); ++i) { const Element value = in_vector[i]; if (!Traits::IsValid(value)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid value for dimension ", i, ": ", in_vector)); } if (Traits::IsSoftConstraintValue(value)) { in_vector.hard_constraint[i] = false; } } return MergeVectorInto<Traits>(in_vector, out_vector, out_hard_constraint); } ChunkLayout::ChunkShapeBase GetChunkShape(const ChunkLayout& self, Usage usage) { auto* storage = self.storage_.get(); if (!storage || storage->rank_ <= 0) { return ChunkLayout::ChunkShapeBase(); } const size_t usage_index = static_cast<size_t>(usage); return ChunkLayout::ChunkShapeBase( storage->chunk_shape(usage_index), storage->chunk_shape_hard_constraint_[usage_index]); } ChunkLayout::ChunkAspectRatioBase GetChunkAspectRatio(const ChunkLayout& self, Usage usage) { auto* storage = self.storage_.get(); if (!storage || storage->rank_ <= 0) { return ChunkLayout::ChunkAspectRatioBase(); } const size_t usage_index = static_cast<size_t>(usage); return ChunkLayout::ChunkAspectRatioBase( storage->chunk_aspect_ratio(usage_index), storage->chunk_aspect_ratio_hard_constraint_[usage_index]); } constexpr inline HardConstraintBit GetChunkElementsHardConstraintBit( Usage usage) { return static_cast<HardConstraintBit>( static_cast<int>(HardConstraintBit::write_chunk_elements) + static_cast<int>(usage)); } ChunkLayout::ChunkElementsBase GetChunkElements(const ChunkLayout& self, Usage usage) { auto* storage = self.storage_.get(); if (!storage) return ChunkLayout::ChunkElementsBase(); const size_t usage_index = static_cast<size_t>(usage); return ChunkLayout::ChunkElementsBase( storage->chunk_elements_[usage_index], IsHardConstraint(*storage, GetChunkElementsHardConstraintBit(usage))); } ChunkLayout::GridView GetGridConstraints(const ChunkLayout& self, Usage usage) { return ChunkLayout::GridView(GetChunkShape(self, usage), GetChunkAspectRatio(self, usage), GetChunkElements(self, usage)); } absl::Status SetInnerOrderInternal(ChunkLayout& self, ChunkLayout::InnerOrder value, StoragePtr& storage_to_be_destroyed) { if (!IsValidPermutation(value)) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid permutation: ", value)); } const DimensionIndex rank = value.size(); TENSORSTORE_RETURN_IF_ERROR( EnsureRank(self.storage_, rank, storage_to_be_destroyed)); auto& impl = *self.storage_; DimensionIndex* inner_order = impl.inner_order(); if (inner_order[0] != -1) { if (!value.hard_constraint) return absl::OkStatus(); if (IsHardConstraint(impl, HardConstraintBit::inner_order)) { if (!std::equal(value.data(), value.data() + rank, inner_order)) { return MismatchError( tensorstore::span<const DimensionIndex>(inner_order, rank), tensorstore::span<const DimensionIndex>(value)); } return absl::OkStatus(); } } std::copy_n(value.begin(), rank, inner_order); if (value.hard_constraint) { SetHardConstraintBit(impl, HardConstraintBit::inner_order); } return absl::OkStatus(); } absl::Status SetGridOriginInternal(ChunkLayout& self, MaybeHardConstraintSpan<Index> value, StoragePtr& storage_to_be_destroyed) { const DimensionIndex rank = value.size(); TENSORSTORE_RETURN_IF_ERROR( EnsureRank(self.storage_, rank, storage_to_be_destroyed)); return ValidateAndMergeVectorInto<OriginValueTraits>( value, self.storage_->grid_origin(), self.storage_->grid_origin_hard_constraint_); } absl::Status SetChunkShapeInternal(ChunkLayout& self, MaybeHardConstraintSpan<Index> value, Usage usage, StoragePtr& storage_to_be_destroyed) { const size_t usage_index = static_cast<size_t>(usage); const DimensionIndex rank = value.size(); TENSORSTORE_RETURN_IF_ERROR( EnsureRank(self.storage_, rank, storage_to_be_destroyed)); return ValidateAndMergeVectorInto<ShapeValueTraits>( value, self.storage_->chunk_shape(usage_index).data(), self.storage_->chunk_shape_hard_constraint_[usage_index]); } absl::Status SetChunkShape(ChunkLayout& self, MaybeHardConstraintSpan<Index> value, Usage usage, StoragePtr& storage_to_be_destroyed) { TENSORSTORE_RETURN_IF_ERROR( SetChunkShapeInternal(self, value, usage, storage_to_be_destroyed), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Error setting ", usage, "_chunk shape"))); return absl::OkStatus(); } absl::Status SetChunkAspectRatioInternal(ChunkLayout& self, MaybeHardConstraintSpan<double> value, Usage usage, StoragePtr& storage_to_be_destroyed) { const size_t usage_index = static_cast<size_t>(usage); const DimensionIndex rank = value.size(); TENSORSTORE_RETURN_IF_ERROR( EnsureRank(self.storage_, rank, storage_to_be_destroyed)); return ValidateAndMergeVectorInto<AspectRatioValueTraits>( value, self.storage_->chunk_aspect_ratio(usage_index).data(), self.storage_->chunk_aspect_ratio_hard_constraint_[usage_index]); } absl::Status SetChunkAspectRatio(ChunkLayout& self, MaybeHardConstraintSpan<double> value, Usage usage, StoragePtr& storage_to_be_destroyed) { TENSORSTORE_RETURN_IF_ERROR( SetChunkAspectRatioInternal(self, value, usage, storage_to_be_destroyed), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Error setting ", usage, "_chunk aspect_ratio"))); return absl::OkStatus(); } template <typename HardConstraintRef> absl::Status SetChunkElementsInternal(Index& elements, HardConstraintRef is_hard_constraint, ChunkLayout::ChunkElementsBase value) { if (value.valid()) { if (value < 0) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid value: ", value.value)); } if (elements != kImplicit) { if (!value.hard_constraint) return absl::OkStatus(); if (is_hard_constraint && elements != value.value) { return MismatchError(elements, value.value); } } elements = value.value; if (value.hard_constraint) { is_hard_constraint = true; } } return absl::OkStatus(); } absl::Status SetChunkElementsInternal(ChunkLayout& self, ChunkLayout::ChunkElementsBase value, Usage usage, StoragePtr& storage_to_be_destroyed) { if (!value.valid()) return absl::OkStatus(); auto& impl = Storage::EnsureUnique(self.storage_, dynamic_rank, storage_to_be_destroyed); return SetChunkElementsInternal( impl.chunk_elements_[static_cast<size_t>(usage)], impl.hard_constraint_[static_cast<size_t>( GetChunkElementsHardConstraintBit(usage))], value); } absl::Status SetChunkElements(ChunkLayout& self, ChunkLayout::ChunkElementsBase value, Usage usage, StoragePtr& storage_to_be_destroyed) { TENSORSTORE_RETURN_IF_ERROR( SetChunkElementsInternal(self, value, usage, storage_to_be_destroyed), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Error setting ", usage, "_chunk elements"))); return absl::OkStatus(); } absl::Status SetGridConstraints(ChunkLayout& self, const ChunkLayout::GridView& value, Usage usage, StoragePtr& storage_to_be_destroyed) { if (value.shape().valid()) { TENSORSTORE_RETURN_IF_ERROR( SetChunkShape(self, value.shape(), usage, storage_to_be_destroyed)); } if (value.aspect_ratio().valid()) { TENSORSTORE_RETURN_IF_ERROR(SetChunkAspectRatio( self, value.aspect_ratio(), usage, storage_to_be_destroyed)); } if (value.elements().valid()) { TENSORSTORE_RETURN_IF_ERROR(SetChunkElements(self, value.elements(), usage, storage_to_be_destroyed)); } return absl::OkStatus(); } absl::Status SetChunkLayout(ChunkLayout& self, ChunkLayout other, bool hard_constraint) { if (!other.storage_) return absl::OkStatus(); if (!self.storage_) { self.storage_ = std::move(other.storage_); if (!hard_constraint) { StoragePtr storage_to_be_destroyed; ClearHardConstraintBits(Storage::EnsureUnique( self.storage_, self.storage_->rank_, storage_to_be_destroyed)); } return absl::OkStatus(); } { auto inner_order = other.inner_order(); if (!hard_constraint) inner_order.hard_constraint = false; TENSORSTORE_RETURN_IF_ERROR(self.Set(inner_order)); } { auto grid_origin = other.grid_origin(); if (!hard_constraint) grid_origin.hard_constraint = false; TENSORSTORE_RETURN_IF_ERROR(self.Set(grid_origin)); } StoragePtr storage_to_be_destroyed; for (Usage usage : ChunkLayout::kUsages) { TENSORSTORE_RETURN_IF_ERROR(SetGridConstraints( self, ChunkLayout::GridView(GetGridConstraints(other, usage), hard_constraint), usage, storage_to_be_destroyed)); } return absl::OkStatus(); } } DimensionIndex ChunkLayout::rank() const { if (storage_) return storage_->rank_; return dynamic_rank; } bool ChunkLayout::HasHardConstraints() const { if (!storage_) return false; return HasAnyHardConstraints(*storage_); } absl::Status ChunkLayout::Set(RankConstraint value) { if (value.rank == dynamic_rank) return absl::OkStatus(); StoragePtr storage_to_be_destroyed; return EnsureRank(storage_, value.rank, storage_to_be_destroyed); } ChunkLayout::InnerOrder ChunkLayout::inner_order() const { if (storage_) { const DimensionIndex rank = storage_->rank_; if (rank > 0) { const DimensionIndex* inner_order = storage_->inner_order(); if (inner_order[0] != -1) { return InnerOrder( tensorstore::span(inner_order, rank), IsHardConstraint(*storage_, HardConstraintBit::inner_order)); } } } return InnerOrder(); } absl::Status ChunkLayout::Set(InnerOrder value) { if (!value.valid()) return absl::OkStatus(); StoragePtr storage_to_be_destroyed; TENSORSTORE_RETURN_IF_ERROR( SetInnerOrderInternal(*this, value, storage_to_be_destroyed), tensorstore::MaybeAnnotateStatus(_, "Error setting inner_order")); return absl::OkStatus(); } ChunkLayout::GridOrigin ChunkLayout::grid_origin() const { if (storage_) { const DimensionIndex rank = storage_->rank_; if (rank > 0) { return GridOrigin(tensorstore::span<const Index>(storage_->grid_origin(), storage_->rank_), storage_->grid_origin_hard_constraint_); } } return GridOrigin(); } absl::Status ChunkLayout::Set(GridOrigin value) { if (!value.valid()) return absl::OkStatus(); StoragePtr storage_to_be_destroyed; TENSORSTORE_RETURN_IF_ERROR( SetGridOriginInternal(*this, value, storage_to_be_destroyed), tensorstore::MaybeAnnotateStatus(_, "Error setting grid_origin")); return absl::OkStatus(); } #define TENSORSTORE_INTERNAL_DO_DEFINE_FOR_USAGE(NAME, USAGE) \ template <> \ absl::Status ChunkLayout::Set<USAGE>(const GridViewFor<USAGE>& value) { \ StoragePtr storage_to_be_destroyed; \ return SetGridConstraints(*this, value, USAGE, storage_to_be_destroyed); \ } \ ChunkLayout::GridViewFor<USAGE> ChunkLayout::NAME##_chunk() const { \ return ChunkLayout::GridViewFor<USAGE>(GetGridConstraints(*this, USAGE)); \ } \ ChunkLayout::ChunkShapeFor<USAGE> ChunkLayout::NAME##_chunk_shape() const { \ return ChunkLayout::ChunkShapeFor<USAGE>(GetChunkShape(*this, USAGE)); \ } \ ChunkLayout::ChunkAspectRatioFor<USAGE> \ ChunkLayout::NAME##_chunk_aspect_ratio() const { \ return ChunkLayout::ChunkAspectRatioFor<USAGE>( \ GetChunkAspectRatio(*this, USAGE)); \ } \ ChunkLayout::ChunkElementsFor<USAGE> ChunkLayout::NAME##_chunk_elements() \ const { \ return ChunkLayout::ChunkElementsFor<USAGE>( \ GetChunkElements(*this, USAGE)); \ } \ TENSORSTORE_INTERNAL_DO_DEFINE_FOR_USAGE(write, Usage::kWrite) TENSORSTORE_INTERNAL_DO_DEFINE_FOR_USAGE(read, Usage::kRead) TENSORSTORE_INTERNAL_DO_DEFINE_FOR_USAGE(codec, Usage::kCodec) #undef TENSORSTORE_INTERNAL_DO_DEFINE_FOR_USAGE template <> absl::Status ChunkLayout::Set<ChunkLayout::kUnspecifiedUsage>( const GridViewFor<ChunkLayout::kUnspecifiedUsage>& value) { StoragePtr storage_to_be_destroyed; if (value.usage() == kUnspecifiedUsage) { TENSORSTORE_RETURN_IF_ERROR(SetGridConstraints(*this, value, Usage::kWrite, storage_to_be_destroyed)); TENSORSTORE_RETURN_IF_ERROR(SetGridConstraints(*this, value, Usage::kRead, storage_to_be_destroyed)); TENSORSTORE_RETURN_IF_ERROR( SetGridConstraints(*this, CodecChunk(value.aspect_ratio()), Usage::kCodec, storage_to_be_destroyed)); return absl::OkStatus(); } return SetGridConstraints(*this, value, value.usage(), storage_to_be_destroyed); } ChunkLayout::GridView ChunkLayout::operator[](Usage usage) const { assert(usage != kUnspecifiedUsage); return GetGridConstraints(*this, usage); } ChunkLayout::ChunkLayout(ChunkLayout layout, bool hard_constraint) { storage_ = std::move(layout.storage_); if (!hard_constraint && storage_) { StoragePtr storage_to_be_destroyed; ClearHardConstraintBits(Storage::EnsureUnique(storage_, storage_->rank_, storage_to_be_destroyed)); } } absl::Status ChunkLayout::Set(ChunkLayout value) { return SetChunkLayout(*this, value, true); } namespace { template <typename BaseBinder> constexpr auto HardSoftMemberPairJsonBinder(const char* name, const char* soft_constraint_name, BaseBinder base_binder) { return jb::Sequence( jb::Member(name, base_binder(true)), jb::Member(soft_constraint_name, base_binder(false))); } template <typename ElementBinder> constexpr auto DimensionIndexedFixedArrayJsonBinder( DimensionIndex& rank, ElementBinder element_binder) { return jb::DimensionIndexedVector( &rank, [](auto& x) -> size_t { ABSL_UNREACHABLE(); }, [](auto& x, size_t n) { return absl::OkStatus(); }, [](auto& x, size_t i) -> decltype(auto) { return (&x)[i]; }, element_binder); } template <typename Traits> bool VectorIsDefault(tensorstore::span<const typename Traits::Element> vec) { return std::all_of(vec.begin(), vec.end(), [](typename Traits::Element x) { return x == Traits::kDefaultValue; }); } bool GridConstraintsUnset(const ChunkLayout& self, Usage usage) { return VectorIsDefault<ShapeValueTraits>(GetChunkShape(self, usage)) && VectorIsDefault<AspectRatioValueTraits>( GetChunkAspectRatio(self, usage)) && !GetChunkElements(self, usage).valid(); } bool AllRankDependentConstraintsUnset(Storage& storage) { const DimensionIndex rank = storage.rank_; if (rank <= 0) return true; if (storage.inner_order()[0] != -1) return false; if (auto* origin = storage.grid_origin(); std::any_of(origin, origin + rank, [](auto x) { return x != OriginValueTraits::kDefaultValue; })) { return false; } if (auto* shapes = storage.chunk_shapes(); std::any_of(shapes, shapes + Storage::NumShapeElements(rank), [](auto x) { return x != ShapeValueTraits::kDefaultValue; })) { return false; } if (auto* aspect_ratios = storage.chunk_aspect_ratios(); std::any_of( aspect_ratios, aspect_ratios + Storage::NumAspectRatioElements(rank), [](auto x) { return x != AspectRatioValueTraits::kDefaultValue; })) { return false; } return true; } bool AllConstraintsUnset(const ChunkLayout& self) { if (!self.storage_) return true; auto& storage = *self.storage_; if (storage.rank_ != dynamic_rank) return false; if (std::any_of(storage.chunk_elements_, storage.chunk_elements_ + kNumUsages, [](Index x) { return x != kImplicit; })) { return false; } const DimensionIndex rank = storage.rank_; if (rank <= 0) return true; return AllRankDependentConstraintsUnset(storage); } template <typename Wrapper, typename Traits, typename Getter, typename Setter> constexpr auto VectorJsonBinder(Getter getter, Setter setter) { using ElementType = typename Wrapper::value_type; return [=](bool hard_constraint) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) { constexpr auto element_binder = jb::MapValue( jb::DefaultBinder<>, std::pair(Traits::kDefaultValue, nullptr)); if constexpr (is_loading) { if (j->is_discarded()) return absl::OkStatus(); ElementType value[kMaxRank]; DimensionIndex rank = dynamic_rank; TENSORSTORE_RETURN_IF_ERROR(DimensionIndexedFixedArrayJsonBinder( rank, element_binder)(is_loading, options, &value[0], j)); return setter(*obj, Wrapper(tensorstore::span<const ElementType>(value, rank), hard_constraint)); } else { auto vec = getter(*obj); if (!vec.valid()) { return absl::OkStatus(); } ElementType new_vec[kMaxRank]; bool has_value = false; for (DimensionIndex i = 0; i < vec.size(); ++i) { if (vec.hard_constraint[i] == hard_constraint && vec[i] != Traits::kDefaultValue) { new_vec[i] = vec[i]; has_value = true; } else { new_vec[i] = Traits::kDefaultValue; } } if (!has_value) return absl::OkStatus(); tensorstore::span<const ElementType> new_span(new_vec, vec.size()); return jb::Array(element_binder)(is_loading, options, &new_span, j); } }; }; } constexpr auto InnerOrderJsonBinder(bool hard_constraint) { return [=](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (j->is_discarded() || j->is_null()) { return absl::OkStatus(); } DimensionIndex value[kMaxRank]; DimensionIndex rank = dynamic_rank; TENSORSTORE_RETURN_IF_ERROR(DimensionIndexedFixedArrayJsonBinder( rank, jb::Integer<DimensionIndex>(0, kMaxRank - 1))( is_loading, options, &value[0], j)); StoragePtr storage_to_be_destroyed; return SetInnerOrderInternal( *obj, ChunkLayout::InnerOrder( tensorstore::span<const DimensionIndex>(value, rank), hard_constraint), storage_to_be_destroyed); } else { auto vec = obj->inner_order(); if (vec.valid() && vec.hard_constraint == hard_constraint) { *j = static_cast<::nlohmann::json>(vec); } return absl::OkStatus(); } }; } constexpr auto StandaloneGridJsonBinder() { return jb::Object( HardSoftMemberPairJsonBinder( "shape", "shape_soft_constraint", VectorJsonBinder<ChunkLayout::ChunkShapeBase, ShapeValueTraits>( [](auto& self) { return self.shape(); }, [](auto& self, ChunkLayout::ChunkShapeBase value) { return self.Set(value); })), HardSoftMemberPairJsonBinder( "aspect_ratio", "aspect_ratio_soft_constraint", VectorJsonBinder<ChunkLayout::ChunkAspectRatioBase, AspectRatioValueTraits>( [](auto& self) { return self.aspect_ratio(); }, [](auto& self, ChunkLayout::ChunkAspectRatioBase value) { return self.Set(value); })), HardSoftMemberPairJsonBinder( "elements", "elements_soft_constraint", [](bool hard_constraint) { return jb::GetterSetter( [=](auto& self) -> Index { auto value = self.elements(); if (value.hard_constraint != hard_constraint) return kImplicit; return value.value; }, [=](auto& self, Index value) { return self.Set( ChunkLayout::ChunkElementsBase(value, hard_constraint)); }, jb::DefaultPredicate<jb::kNeverIncludeDefaults>( [](auto* obj) { *obj = kImplicit; }, [](auto* obj) { return *obj == kImplicit; })); })); } constexpr auto GridConstraintsJsonBinder(Usage usage) { return jb::Object( HardSoftMemberPairJsonBinder( "shape", "shape_soft_constraint", VectorJsonBinder<ChunkLayout::ChunkShapeBase, ShapeValueTraits>( [=](auto& self) { return GetChunkShape(self, usage); }, [=](auto& self, ChunkLayout::ChunkShapeBase value) { StoragePtr storage_to_be_destroyed; if (usage != ChunkLayout::kUnspecifiedUsage) { return SetChunkShapeInternal(self, value, usage, storage_to_be_destroyed); } TENSORSTORE_RETURN_IF_ERROR(SetChunkShapeInternal( self, value, Usage::kWrite, storage_to_be_destroyed)); TENSORSTORE_RETURN_IF_ERROR(SetChunkShapeInternal( self, value, Usage::kRead, storage_to_be_destroyed)); return absl::OkStatus(); })), HardSoftMemberPairJsonBinder( "aspect_ratio", "aspect_ratio_soft_constraint", VectorJsonBinder<ChunkLayout::ChunkAspectRatioBase, AspectRatioValueTraits>( [=](auto& self) { return GetChunkAspectRatio(self, usage); }, [=](auto& self, ChunkLayout::ChunkAspectRatioBase value) { StoragePtr storage_to_be_destroyed; if (usage != ChunkLayout::kUnspecifiedUsage) { return SetChunkAspectRatioInternal(self, value, usage, storage_to_be_destroyed); } TENSORSTORE_RETURN_IF_ERROR(SetChunkAspectRatioInternal( self, value, Usage::kWrite, storage_to_be_destroyed)); TENSORSTORE_RETURN_IF_ERROR(SetChunkAspectRatioInternal( self, value, Usage::kRead, storage_to_be_destroyed)); TENSORSTORE_RETURN_IF_ERROR(SetChunkAspectRatioInternal( self, value, Usage::kCodec, storage_to_be_destroyed)); return absl::OkStatus(); })), HardSoftMemberPairJsonBinder( "elements", "elements_soft_constraint", [=](bool hard_constraint) { return jb::GetterSetter( [=](auto& self) -> Index { auto value = GetChunkElements(self, usage); if (value.hard_constraint != hard_constraint) return kImplicit; return value.value; }, [=](auto& self, Index value) { ChunkLayout::ChunkElementsBase elements(value, hard_constraint); StoragePtr storage_to_be_destroyed; if (usage != ChunkLayout::kUnspecifiedUsage) { return SetChunkElementsInternal(self, elements, usage, storage_to_be_destroyed); } TENSORSTORE_RETURN_IF_ERROR(SetChunkElementsInternal( self, elements, Usage::kWrite, storage_to_be_destroyed)); TENSORSTORE_RETURN_IF_ERROR(SetChunkElementsInternal( self, elements, Usage::kRead, storage_to_be_destroyed)); return absl::OkStatus(); }, jb::DefaultPredicate<jb::kNeverIncludeDefaults>( [](auto* obj) { *obj = kImplicit; }, [](auto* obj) { return *obj == kImplicit; })); })); } constexpr auto DefaultableGridConstraintsJsonBinder(Usage usage) { return jb::DefaultPredicate<jb::kNeverIncludeDefaults>( [](auto* obj) {}, [=](auto* obj) { if (!obj->storage_) return true; return GridConstraintsUnset(*obj, usage); }, GridConstraintsJsonBinder(usage)); } } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( ChunkLayout, jb::Object(jb::Member("rank", jb::Compose<DimensionIndex>( [](auto is_loading, const auto& options, auto* obj, auto* rank) { if constexpr (is_loading) { return obj->Set(RankConstraint{*rank}); } else { const DimensionIndex rank_value = obj->rank(); *rank = (rank_value == dynamic_rank || !AllRankDependentConstraintsUnset( *obj->storage_)) ? dynamic_rank : rank_value; return absl::OkStatus(); } }, jb::ConstrainedRankJsonBinder)), HardSoftMemberPairJsonBinder("inner_order", "inner_order_soft_constraint", InnerOrderJsonBinder), HardSoftMemberPairJsonBinder( "grid_origin", "grid_origin_soft_constraint", VectorJsonBinder<ChunkLayout::GridOrigin, OriginValueTraits>( [](auto& self) { return self.grid_origin(); }, [](auto& self, ChunkLayout::GridOrigin value) { StoragePtr storage_to_be_destroyed; return SetGridOriginInternal(self, value, storage_to_be_destroyed); })), jb::LoadSave(jb::Member("chunk", DefaultableGridConstraintsJsonBinder( ChunkLayout::kUnspecifiedUsage))), jb::Member("write_chunk", DefaultableGridConstraintsJsonBinder(Usage::kWrite)), jb::Member("read_chunk", DefaultableGridConstraintsJsonBinder(Usage::kRead)), jb::Member("codec_chunk", DefaultableGridConstraintsJsonBinder(Usage::kCodec)))) TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ChunkLayout::Grid, StandaloneGridJsonBinder()) namespace { template <typename Traits> static absl::Status TransformInputVector( IndexTransformView<> transform, tensorstore::span<const typename Traits::Element> in_vec, DimensionSet in_hard_constraint, tensorstore::span<typename Traits::Element> out_vec, DimensionSet& out_hard_constraint) { using Element = typename Traits::Element; const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); assert(input_rank == in_vec.size()); assert(output_rank == out_vec.size()); Element in_vec_copy[kMaxRank]; std::copy_n(in_vec.begin(), input_rank, in_vec_copy); std::fill_n(out_vec.begin(), output_rank, Traits::kDefaultValue); out_hard_constraint = false; DimensionSet remaining_in_hard_constraint = in_hard_constraint; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension || map.stride() == 0) { continue; } const DimensionIndex input_dim = map.input_dimension(); Element value = in_vec_copy[input_dim]; remaining_in_hard_constraint[input_dim] = false; if (value == Traits::kDefaultValue) continue; TENSORSTORE_ASSIGN_OR_RETURN( value, Traits::TransformInputValue(value, map.offset(), map.stride()), MaybeAnnotateStatus( _, tensorstore::StrCat("Error transforming input dimension ", input_dim, " -> output dimension ", output_dim))); out_vec[output_dim] = value; if (in_hard_constraint[input_dim] && value != Traits::kDefaultValue) { out_hard_constraint[output_dim] = true; } } for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (in_vec[input_dim] == Traits::kDefaultValue) continue; if (!remaining_in_hard_constraint[input_dim]) continue; return absl::InvalidArgumentError(tensorstore::StrCat( "No output dimension corresponds to input dimension ", input_dim)); } return absl::OkStatus(); } template <typename Traits> static absl::Status TransformOutputVector( IndexTransformView<> transform, DimensionSet one_to_one_input_dims, tensorstore::span<const typename Traits::Element> out_vec, DimensionSet out_hard_constraint, tensorstore::span<typename Traits::Element> in_vec, DimensionSet& in_hard_constraint) { using Element = typename Traits::Element; const DimensionIndex input_rank = transform.input_rank(); const DimensionIndex output_rank = transform.output_rank(); assert(output_rank == out_vec.size()); assert(input_rank == in_vec.size()); Element out_vec_copy[kMaxRank]; std::copy_n(out_vec.begin(), output_rank, out_vec_copy); std::fill_n(in_vec.begin(), input_rank, Traits::kDefaultValue); in_hard_constraint = false; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension || map.stride() == 0) { continue; } const DimensionIndex input_dim = map.input_dimension(); if (!one_to_one_input_dims[input_dim]) continue; Element value = out_vec_copy[output_dim]; if (value == Traits::kDefaultValue) continue; TENSORSTORE_ASSIGN_OR_RETURN( value, Traits::TransformOutputValue(value, map.offset(), map.stride()), MaybeAnnotateStatus( _, tensorstore::StrCat("Error transforming output dimension ", output_dim, " -> input dimension ", input_dim))); in_vec[input_dim] = value; if (value != Traits::kDefaultValue) { in_hard_constraint[input_dim] = out_hard_constraint[output_dim]; } } return absl::OkStatus(); } absl::Status TransformOutputGridConstraints(Storage& output_storage, Storage& input_storage, DimensionSet one_to_one_input_dims, IndexTransformView<> transform, size_t usage_index) { input_storage.chunk_elements_[usage_index] = output_storage.chunk_elements_[usage_index]; TENSORSTORE_RETURN_IF_ERROR( TransformOutputVector<ShapeValueTraits>( transform, one_to_one_input_dims, output_storage.chunk_shape(usage_index), output_storage.chunk_shape_hard_constraint_[usage_index], input_storage.chunk_shape(usage_index), input_storage.chunk_shape_hard_constraint_[usage_index]), tensorstore::MaybeAnnotateStatus(_, "Error transforming shape")); TENSORSTORE_RETURN_IF_ERROR( TransformOutputVector<AspectRatioValueTraits>( transform, one_to_one_input_dims, output_storage.chunk_aspect_ratio(usage_index), output_storage.chunk_aspect_ratio_hard_constraint_[usage_index], input_storage.chunk_aspect_ratio(usage_index), input_storage.chunk_aspect_ratio_hard_constraint_[usage_index]), tensorstore::MaybeAnnotateStatus(_, "Error transforming aspect_ratio")); return absl::OkStatus(); } absl::Status TransformInputGridConstraints(Storage& input_storage, Storage& output_storage, IndexTransformView<> transform, size_t usage_index) { output_storage.chunk_elements_[usage_index] = input_storage.chunk_elements_[usage_index]; TENSORSTORE_RETURN_IF_ERROR( TransformInputVector<ShapeValueTraits>( transform, input_storage.chunk_shape(usage_index), input_storage.chunk_shape_hard_constraint_[usage_index], output_storage.chunk_shape(usage_index), output_storage.chunk_shape_hard_constraint_[usage_index]), tensorstore::MaybeAnnotateStatus(_, "Error transforming shape")); TENSORSTORE_RETURN_IF_ERROR( TransformInputVector<AspectRatioValueTraits>( transform, input_storage.chunk_aspect_ratio(usage_index), input_storage.chunk_aspect_ratio_hard_constraint_[usage_index], output_storage.chunk_aspect_ratio(usage_index), output_storage.chunk_aspect_ratio_hard_constraint_[usage_index]), tensorstore::MaybeAnnotateStatus(_, "Error transforming aspect_ratio")); return absl::OkStatus(); } } Result<ChunkLayout> ApplyIndexTransform(IndexTransformView<> transform, ChunkLayout output_constraints) { if (!transform.valid() || !output_constraints.storage_) { return output_constraints; } const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); const DimensionIndex output_constraints_rank = output_constraints.rank(); if (!RankConstraint::EqualOrUnspecified(output_constraints_rank, transform.output_rank())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot transform constraints of rank ", output_constraints_rank, " by index transform of rank ", input_rank, " -> ", output_rank)); } if (output_constraints_rank <= 0) return output_constraints; ChunkLayout input_constraints; Storage* output_storage; if (output_rank == input_rank) { StoragePtr storage_to_be_destroyed; input_constraints = std::move(output_constraints); output_storage = &Storage::EnsureUnique( input_constraints.storage_, input_rank, storage_to_be_destroyed); } else { input_constraints.storage_ = Storage::Allocate(input_rank); new (input_constraints.storage_.get()) Storage(input_rank); output_storage = output_constraints.storage_.get(); } input_constraints.storage_->hard_constraint_ = output_storage->hard_constraint_; if (auto* inner_order = output_storage->inner_order(); inner_order[0] != -1) { TransformOutputDimensionOrder( transform, {inner_order, output_rank}, {input_constraints.storage_->inner_order(), input_rank}); } DimensionSet one_to_one_input_dims = internal::GetOneToOneInputDimensions(transform).one_to_one; TENSORSTORE_RETURN_IF_ERROR( TransformOutputVector<OriginValueTraits>( transform, one_to_one_input_dims, tensorstore::span<const Index>(output_storage->grid_origin(), output_rank), output_storage->grid_origin_hard_constraint_, tensorstore::span<Index>(input_constraints.storage_->grid_origin(), input_rank), input_constraints.storage_->grid_origin_hard_constraint_), tensorstore::MaybeAnnotateStatus(_, "Error transforming grid_origin")); for (size_t usage_index = 0; usage_index < kNumUsages; ++usage_index) { TENSORSTORE_RETURN_IF_ERROR( TransformOutputGridConstraints( *output_storage, *input_constraints.storage_, one_to_one_input_dims, transform, usage_index), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Error transforming ", static_cast<Usage>(usage_index), "_chunk"))); } return input_constraints; } Result<ChunkLayout> ApplyInverseIndexTransform(IndexTransformView<> transform, ChunkLayout input_constraints) { if (!transform.valid() || !input_constraints.storage_) { return input_constraints; } const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); const DimensionIndex input_constraints_rank = input_constraints.rank(); if (!RankConstraint::EqualOrUnspecified(input_constraints_rank, transform.input_rank())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot transform constraints of rank ", input_constraints_rank, " by index transform of rank ", input_rank, " -> ", output_rank)); } if (input_constraints_rank <= 0) return input_constraints; ChunkLayout output_constraints; Storage* input_storage; if (output_rank == input_rank) { StoragePtr storage_to_be_destroyed; output_constraints = std::move(input_constraints); input_storage = &Storage::EnsureUnique( output_constraints.storage_, output_rank, storage_to_be_destroyed); } else { output_constraints.storage_ = Storage::Allocate(output_rank); new (output_constraints.storage_.get()) Storage(output_rank); input_storage = input_constraints.storage_.get(); } output_constraints.storage_->hard_constraint_ = input_storage->hard_constraint_; if (auto* inner_order = input_storage->inner_order(); inner_order[0] != -1) { TransformInputDimensionOrder( transform, {inner_order, input_rank}, {output_constraints.storage_->inner_order(), output_rank}); } TENSORSTORE_RETURN_IF_ERROR( TransformInputVector<OriginValueTraits>( transform, tensorstore::span<const Index>(input_storage->grid_origin(), input_rank), input_storage->grid_origin_hard_constraint_, tensorstore::span<Index>(output_constraints.storage_->grid_origin(), output_rank), output_constraints.storage_->grid_origin_hard_constraint_), tensorstore::MaybeAnnotateStatus(_, "Error transforming grid_origin")); for (size_t usage_index = 0; usage_index < kNumUsages; ++usage_index) { TENSORSTORE_RETURN_IF_ERROR( TransformInputGridConstraints(*input_storage, *output_constraints.storage_, transform, usage_index), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Error transforming ", static_cast<Usage>(usage_index), "_chunk"))); } return output_constraints; } bool operator==(const ChunkLayout& a, const ChunkLayout& b) { if (!a.storage_) { if (!b.storage_) return true; return AllConstraintsUnset(b); } if (!b.storage_) { return AllConstraintsUnset(a); } auto& a_storage = *a.storage_; auto& b_storage = *b.storage_; if (a_storage.hard_constraint_ != b_storage.hard_constraint_ || a_storage.grid_origin_hard_constraint_ != b_storage.grid_origin_hard_constraint_ || !internal::RangesEqual( tensorstore::span(a_storage.chunk_shape_hard_constraint_), tensorstore::span(b_storage.chunk_shape_hard_constraint_)) || !internal::RangesEqual( tensorstore::span(a_storage.chunk_aspect_ratio_hard_constraint_), tensorstore::span(b_storage.chunk_aspect_ratio_hard_constraint_)) || !std::equal(a_storage.chunk_elements_, a_storage.chunk_elements_ + kNumUsages, b_storage.chunk_elements_)) { return false; } const DimensionIndex rank = a_storage.rank_; if (rank <= 0 || rank != b_storage.rank_) { return AllRankDependentConstraintsUnset(a_storage) && AllRankDependentConstraintsUnset(b_storage); } if (auto* a_inner_order = a_storage.inner_order(); !std::equal( a_inner_order, a_inner_order + rank, b_storage.inner_order())) { return false; } if (auto* a_origin = a_storage.grid_origin(); !std::equal(a_origin, a_origin + rank, b_storage.grid_origin())) { return false; } if (auto* a_shapes = a_storage.chunk_shapes(); !std::equal(a_shapes, a_shapes + Storage::NumShapeElements(rank), b_storage.chunk_shapes())) { return false; } if (auto* a_aspect_ratios = a_storage.chunk_aspect_ratios(); !std::equal(a_aspect_ratios, a_aspect_ratios + Storage::NumAspectRatioElements(rank), b_storage.chunk_aspect_ratios())) { return false; } return true; } std::ostream& operator<<(std::ostream& os, const ChunkLayout& x) { return os << ::nlohmann::json(x).dump(); } namespace internal { constexpr Index kDefaultChunkElements = 1024 * 1024; namespace { void ChooseChunkSizeFromAspectRatio( tensorstore::span<const double> aspect_ratio, tensorstore::span<Index> chunk_shape, Index target_chunk_elements, BoxView<> domain, absl::FunctionRef<Index(DimensionIndex dim, Index value)> map_size) { const DimensionIndex rank = chunk_shape.size(); assert(aspect_ratio.size() == rank); assert(domain.rank() == rank); double max_chunk_shape[kMaxRank]; for (DimensionIndex i = 0; i < rank; ++i) { double max_size = target_chunk_elements; if (IndexInterval bounds = domain[i]; IsFinite(bounds)) { max_size = std::min(max_size, std::max(1.0, static_cast<double>(bounds.size()))); } max_size = std::min(max_size, 0x1.0p62); max_chunk_shape[i] = max_size; } const auto get_chunk_size = [&](DimensionIndex i, double factor) -> Index { if (const Index size = chunk_shape[i]; size != 0) return size; Index size = std::max(Index(1), static_cast<Index>(std::min(aspect_ratio[i] * factor, max_chunk_shape[i]))); size = map_size(i, size); return size; }; const auto get_total_elements = [&](double factor) -> Index { Index total = 1; #ifdef TENSORSTORE_INTERNAL_CHUNK_LAYOUT_DEBUG Index cur_chunk_shape[kMaxRank]; #endif for (DimensionIndex i = 0; i < rank; ++i) { const Index size = get_chunk_size(i, factor); #ifdef TENSORSTORE_INTERNAL_CHUNK_LAYOUT_DEBUG cur_chunk_shape[i] = size; #endif if (internal::MulOverflow(size, total, &total)) { total = std::numeric_limits<Index>::max(); break; } } #ifdef TENSORSTORE_INTERNAL_CHUNK_LAYOUT_DEBUG ABSL_LOG(INFO) << "factor=" << factor << ", chunk_shape=" << tensorstore::span<const Index>(&cur_chunk_shape[0], rank) << ", total=" << total; #endif return total; }; double min_factor_increment = std::numeric_limits<double>::infinity(); double max_factor = 0; for (DimensionIndex i = 0; i < rank; ++i) { if (chunk_shape[i] != 0) continue; const double factor = aspect_ratio[i]; min_factor_increment = std::min(min_factor_increment, 1.0 / factor); max_factor = std::max(max_factor, max_chunk_shape[i] / factor); } min_factor_increment /= 2; max_factor *= 2; double min_factor = min_factor_increment; Index max_factor_elements = get_total_elements(max_factor); while (min_factor + min_factor_increment < max_factor) { double mid_factor = min_factor + (max_factor - min_factor) / 2.0; Index mid_factor_elements = get_total_elements(mid_factor); if (mid_factor_elements >= target_chunk_elements) { max_factor = mid_factor; max_factor_elements = mid_factor_elements; } if (mid_factor_elements <= target_chunk_elements) { min_factor = mid_factor; } } const double factor = max_factor_elements == target_chunk_elements ? max_factor : min_factor; for (DimensionIndex i = 0; i < rank; ++i) { chunk_shape[i] = get_chunk_size(i, factor); } } absl::Status ChooseChunkGridOrigin( tensorstore::span<const Index> origin_constraints, tensorstore::span<const Index> domain_origin, tensorstore::span<const Index> chunk_shape, tensorstore::span<Index> grid_origin) { const DimensionIndex rank = grid_origin.size(); if (!origin_constraints.empty()) { if (origin_constraints.size() != rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Rank of constraints (", origin_constraints.size(), ") does not match rank of domain (", rank, ")")); } std::copy_n(origin_constraints.begin(), rank, grid_origin.begin()); } else { std::fill_n(grid_origin.begin(), rank, kImplicit); } for (DimensionIndex i = 0; i < rank; ++i) { Index& origin_value = grid_origin[i]; if (origin_value == kImplicit) { const Index domain_origin_value = domain_origin[i]; if (domain_origin_value == -kInfIndex) { origin_value = 0; } else { origin_value = NonnegativeMod(domain_origin_value, chunk_shape[i]); } } TENSORSTORE_ASSIGN_OR_RETURN( auto interval, IndexInterval::Sized(origin_value, chunk_shape[i]), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Invalid chunk constraints for dimension ", i))); grid_origin[i] = interval.inclusive_min(); } return absl::OkStatus(); } absl::Status InitializeChunkShape(ChunkLayout::ChunkShapeBase shape_constraints, BoxView<> domain, tensorstore::span<Index> chunk_shape, DimensionSet& shape_hard_constraint) { const DimensionIndex rank = chunk_shape.size(); DimensionSet hard_constraint = false; if (shape_constraints.valid()) { if (shape_constraints.size() != rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Rank of constraints (", shape_constraints.size(), ") does not match rank of domain (", rank, ")")); } std::copy_n(shape_constraints.begin(), rank, chunk_shape.begin()); hard_constraint = shape_constraints.hard_constraint; } else { std::fill_n(chunk_shape.begin(), rank, 0); } for (DimensionIndex i = 0; i < rank; ++i) { Index& chunk_size = chunk_shape[i]; if (chunk_size == 0) { hard_constraint[i] = false; continue; } if (chunk_size == -1) { IndexInterval bounds = domain[i]; if (!IsFinite(bounds)) { return absl::InvalidArgumentError( tensorstore::StrCat("Cannot match chunk size for dimension ", i, " to unbounded domain ", bounds)); } chunk_size = std::max(Index(1), bounds.size()); } } shape_hard_constraint = hard_constraint; return absl::OkStatus(); } absl::Status CompleteChunkShapeFromAspectRatio( BoxView<> domain, ChunkLayout::ChunkAspectRatioBase aspect_ratio_constraints, ChunkLayout::ChunkElementsBase elements_constraint, absl::FunctionRef<Index(DimensionIndex dim, Index value)> map_size, tensorstore::span<Index> chunk_shape) { const DimensionIndex rank = chunk_shape.size(); if (std::any_of(chunk_shape.begin(), chunk_shape.end(), [](Index x) { return x == 0; })) { double aspect_ratio[kMaxRank]; if (aspect_ratio_constraints.valid()) { if (aspect_ratio_constraints.size() != rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Rank of constraints (", aspect_ratio_constraints.size(), ") does not match rank of domain (", rank, ")")); } std::copy_n(aspect_ratio_constraints.begin(), rank, aspect_ratio); for (DimensionIndex i = 0; i < rank; ++i) { if (aspect_ratio[i] == 0) { aspect_ratio[i] = 1; } } } else { std::fill_n(aspect_ratio, rank, 1); } Index target_chunk_elements = kDefaultChunkElements; if (elements_constraint.valid()) { target_chunk_elements = elements_constraint; } ChooseChunkSizeFromAspectRatio( tensorstore::span<const double>(aspect_ratio, rank), chunk_shape, target_chunk_elements, domain, map_size); } return absl::OkStatus(); } } absl::Status ChooseChunkShape(ChunkLayout::GridView shape_constraints, BoxView<> domain, tensorstore::span<Index> chunk_shape) { assert(domain.rank() == chunk_shape.size()); DimensionSet shape_hard_constraint; TENSORSTORE_RETURN_IF_ERROR(InitializeChunkShape( shape_constraints.shape(), domain, chunk_shape, shape_hard_constraint)); constexpr auto map_size = [](DimensionIndex dim, Index size) { return size; }; return CompleteChunkShapeFromAspectRatio( domain, shape_constraints.aspect_ratio(), shape_constraints.elements(), map_size, chunk_shape); } absl::Status ChooseChunkGrid(tensorstore::span<const Index> origin_constraints, ChunkLayout::GridView shape_constraints, BoxView<> domain, MutableBoxView<> chunk_template) { TENSORSTORE_RETURN_IF_ERROR( ChooseChunkShape(shape_constraints, domain, chunk_template.shape())); return ChooseChunkGridOrigin(origin_constraints, domain.origin(), chunk_template.shape(), chunk_template.origin()); } absl::Status ChooseReadWriteChunkGrid(const ChunkLayout& constraints, BoxView<> domain, MutableBoxView<> chunk_template) { ChunkLayout combined_constraints = constraints; TENSORSTORE_RETURN_IF_ERROR( combined_constraints.Set( ChunkLayout::ReadChunk(constraints.write_chunk())), tensorstore::MaybeAnnotateStatus(_, "write_chunk constraints not compatible " "with existing read_chunk constraints")); return ChooseChunkGrid(combined_constraints.grid_origin(), combined_constraints.read_chunk(), domain, chunk_template); } Index FindNearestDivisor(Index dividend, Index target, Index max_search_distance = 1000000) { if (target >= dividend) { return dividend; } if ((dividend % target) == 0) { return target; } for (Index offset = 1; offset < max_search_distance; ++offset) { if (target > offset && (dividend % (target - offset)) == 0) { return target - offset; } if ((dividend % (target + offset)) == 0) { return target + offset; } } return dividend; } Index FindNearestMultiple(Index divisor, Index target) { if (target < divisor) { return divisor; } const Index lower = target / divisor * divisor; const Index upper = lower + divisor; if (target - lower <= upper - target) { return lower; } else { return upper; } } absl::Status ChooseReadWriteChunkShapes( ChunkLayout::GridView read_constraints, ChunkLayout::GridView write_constraints, BoxView<> domain, tensorstore::span<Index> read_chunk_shape, tensorstore::span<Index> write_chunk_shape) { DimensionIndex rank = write_chunk_shape.size(); assert(read_chunk_shape.size() == rank); assert(domain.rank() == rank); DimensionSet write_shape_hard_constraint; DimensionSet read_shape_hard_constraint; TENSORSTORE_RETURN_IF_ERROR( InitializeChunkShape(write_constraints.shape(), domain, write_chunk_shape, write_shape_hard_constraint)); TENSORSTORE_RETURN_IF_ERROR(InitializeChunkShape(read_constraints.shape(), domain, read_chunk_shape, read_shape_hard_constraint)); for (DimensionIndex i = 0; i < rank; ++i) { Index& read_size = read_chunk_shape[i]; Index& write_size = write_chunk_shape[i]; if (read_size == 0 || write_size == 0 || ((write_size % read_size) == 0)) { continue; } const bool read_hard_constraint = read_shape_hard_constraint[i]; const bool write_hard_constraint = write_shape_hard_constraint[i]; if (read_hard_constraint && write_hard_constraint) { return absl::InvalidArgumentError(tensorstore::StrCat( "Incompatible chunk size constraints for dimension ", i, ": read size of ", read_size, ", write size of ", write_size)); } if (read_hard_constraint && !write_hard_constraint) { write_size = FindNearestMultiple(read_size, write_size); continue; } if (!read_hard_constraint) { read_size = FindNearestDivisor(write_size, read_size, 1000000); continue; } } const auto map_read_size = [&](DimensionIndex i, Index size) { const Index write_size = write_chunk_shape[i]; if (write_size != 0) { size = FindNearestDivisor(write_size, size, 1000000); } return size; }; TENSORSTORE_RETURN_IF_ERROR(CompleteChunkShapeFromAspectRatio( domain, read_constraints.aspect_ratio(), read_constraints.elements(), map_read_size, read_chunk_shape)); const auto map_write_size = [&](DimensionIndex i, Index size) { const Index read_size = read_chunk_shape[i]; return FindNearestMultiple(read_size, size); }; TENSORSTORE_RETURN_IF_ERROR(CompleteChunkShapeFromAspectRatio( domain, write_constraints.aspect_ratio(), write_constraints.elements(), map_write_size, write_chunk_shape)); return absl::OkStatus(); } } absl::Status ChunkLayout::Finalize() { const DimensionIndex rank = this->rank(); if (rank == dynamic_rank) { return absl::InvalidArgumentError("rank must be specified"); } { StoragePtr storage_to_be_destroyed; Storage::EnsureUnique(storage_, rank, storage_to_be_destroyed); } auto& impl = *storage_; auto origin = impl.grid_origin(); for (DimensionIndex dim = 0; dim < rank; ++dim) { if (!impl.grid_origin_hard_constraint_[dim]) { return absl::InvalidArgumentError(tensorstore::StrCat( "No grid_origin hard constraint for dimension ", dim)); } if (!IsFiniteIndex(origin[dim])) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid grid_origin: ", origin)); } } for (Usage usage : ChunkLayout::kUsages) { const size_t usage_index = static_cast<size_t>(usage); auto status = [&]() -> absl::Status { auto shape = impl.chunk_shape(usage_index); auto& shape_hard_constraint = impl.chunk_shape_hard_constraint_[usage_index]; for (DimensionIndex dim = 0; dim < rank; ++dim) { const Index origin_value = origin[dim]; Index& size_value = shape[dim]; if (!shape_hard_constraint[dim]) { size_value = 0; } if (!IndexInterval::ValidSized(origin_value, size_value) || !IsFiniteIndex(origin_value + size_value)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid origin/shape: origin=", origin, ", shape=", shape)); } if (size_value == 0 && usage == Usage::kRead) { auto write_shape = impl.chunk_shape(static_cast<size_t>(Usage::kWrite)); size_value = write_shape[dim]; shape_hard_constraint[dim] = impl.chunk_shape_hard_constraint_[static_cast<size_t>( Usage::kWrite)][dim]; } } impl.chunk_aspect_ratio_hard_constraint_[usage_index] = false; impl.hard_constraint_[static_cast<size_t>( GetChunkElementsHardConstraintBit(usage))] = false; impl.chunk_elements_[usage_index] = kImplicit; std::fill_n(impl.chunk_aspect_ratio(usage_index).begin(), rank, 0); return absl::OkStatus(); }(); if (!status.ok()) { return tensorstore::MaybeAnnotateStatus( status, tensorstore::StrCat("Invalid ", usage, " chunk grid")); } } auto write_chunk_shape = impl.chunk_shape(static_cast<size_t>(Usage::kWrite)); auto read_chunk_shape = impl.chunk_shape(static_cast<size_t>(Usage::kRead)); for (DimensionIndex dim = 0; dim < rank; ++dim) { const Index read_size = read_chunk_shape[dim]; const Index write_size = write_chunk_shape[dim]; if (read_size == 0) continue; if ((write_size % read_size) != 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "write chunk shape ", write_chunk_shape, " is not a multiple of read chunk shape ", read_chunk_shape)); } } return absl::OkStatus(); } namespace { constexpr auto UsageJsonBinder() { return jb::Enum<ChunkLayout::Usage, std::string_view>({ {ChunkLayout::Usage::kWrite, "write"}, {ChunkLayout::Usage::kRead, "read"}, {ChunkLayout::Usage::kCodec, "codec"}, }); } } std::ostream& operator<<(std::ostream& os, ChunkLayout::Usage usage) { std::string_view s; UsageJsonBinder()(std::false_type{}, jb::NoOptions{}, &usage, &s) .IgnoreError(); return os << s; } Result<ChunkLayout::Usage> ChunkLayout::ParseUsage(std::string_view s) { Usage usage; TENSORSTORE_RETURN_IF_ERROR(UsageJsonBinder()(std::true_type{}, jb::NoOptions{}, &usage, &s)); return usage; } ChunkLayout::Grid::Grid(const Grid& other) : rank_(other.rank_), elements_hard_constraint_(other.elements_hard_constraint_), shape_hard_constraint_(other.shape_hard_constraint_), aspect_ratio_hard_constraint_(other.aspect_ratio_hard_constraint_), elements_(other.elements_) { const DimensionIndex rank = other.rank_; if (rank > 0) { shape_.reset(new Index[rank]); std::copy_n(other.shape_.get(), rank, shape_.get()); aspect_ratio_.reset(new double[rank]); std::copy_n(other.aspect_ratio_.get(), rank, aspect_ratio_.get()); } } ChunkLayout::Grid& ChunkLayout::Grid::operator=(const Grid& other) { const DimensionIndex new_rank = other.rank_; if (new_rank <= 0) { shape_.reset(); aspect_ratio_.reset(); } else { if (new_rank != rank_) { shape_.reset(new Index[new_rank]); aspect_ratio_.reset(new double[new_rank]); } std::copy_n(other.shape_.get(), new_rank, shape_.get()); std::copy_n(other.aspect_ratio_.get(), new_rank, aspect_ratio_.get()); } rank_ = new_rank; elements_hard_constraint_ = other.elements_hard_constraint_; shape_hard_constraint_ = other.shape_hard_constraint_; aspect_ratio_hard_constraint_ = other.aspect_ratio_hard_constraint_; elements_ = other.elements_; return *this; } ChunkLayout::Grid::~Grid() = default; absl::Status ChunkLayout::Grid::Set(RankConstraint value) { const DimensionIndex rank = value.rank; if (rank == dynamic_rank || rank == rank_) { return absl::OkStatus(); } TENSORSTORE_RETURN_IF_ERROR(ValidateRank(rank)); if (!RankConstraint::EqualOrUnspecified(rank_, rank)) { return RankMismatchError(rank, rank_); } rank_ = rank; if (rank > 0) { shape_.reset(new Index[rank]); std::fill_n(shape_.get(), rank, ShapeValueTraits::kDefaultValue); aspect_ratio_.reset(new double[rank]); std::fill_n(aspect_ratio_.get(), rank, AspectRatioValueTraits::kDefaultValue); } return absl::OkStatus(); } namespace { template <typename Traits> absl::Status SetVectorProperty( ChunkLayout::Grid& self, std::unique_ptr<typename Traits::Element[]>& vec, DimensionSet& hard_constraint, MaybeHardConstraintSpan<typename Traits::Element> value) { if (!value.valid()) return absl::OkStatus(); const DimensionIndex rank = value.size(); TENSORSTORE_RETURN_IF_ERROR(self.Set(RankConstraint(rank))); return ValidateAndMergeVectorInto<Traits>(value, vec.get(), hard_constraint); } } absl::Status ChunkLayout::Grid::Set(Shape value) { return SetVectorProperty<ShapeValueTraits>(*this, shape_, shape_hard_constraint_, value); } absl::Status ChunkLayout::Grid::Set(AspectRatio value) { return SetVectorProperty<AspectRatioValueTraits>( *this, aspect_ratio_, aspect_ratio_hard_constraint_, value); } absl::Status ChunkLayout::Grid::Set(Elements value) { return SetChunkElementsInternal<bool&>(elements_, elements_hard_constraint_, value); } absl::Status ChunkLayout::Grid::Set(const GridView& value) { TENSORSTORE_RETURN_IF_ERROR(Set(value.shape())); TENSORSTORE_RETURN_IF_ERROR(Set(value.aspect_ratio())); TENSORSTORE_RETURN_IF_ERROR(Set(value.elements())); return absl::OkStatus(); } bool operator==(const ChunkLayout::Grid& a, const ChunkLayout::Grid& b) { const DimensionIndex rank = a.rank_; if (rank != b.rank_ || a.elements_hard_constraint_ != b.elements_hard_constraint_ || a.shape_hard_constraint_ != b.shape_hard_constraint_ || a.aspect_ratio_hard_constraint_ != b.aspect_ratio_hard_constraint_ || a.elements_ != b.elements_) { return false; } return rank <= 0 || (std::equal(a.shape_.get(), a.shape_.get() + rank, b.shape_.get()) && std::equal(a.aspect_ratio_.get(), a.aspect_ratio_.get() + rank, b.aspect_ratio_.get())); } absl::Status ChunkLayout::GetChunkTemplate(Usage usage, MutableBoxView<> box) const { assert(usage == kRead || usage == kWrite); const DimensionIndex rank = this->rank(); if (rank == dynamic_rank) { box.Fill(); return absl::OkStatus(); } if (rank != box.rank()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Rank of chunk layout (", rank, ") does not match expected rank (", box.rank(), ")")); } auto grid_origin = this->grid_origin(); auto shape = (*this)[usage].shape(); for (DimensionIndex i = 0; i < rank; ++i) { if (grid_origin[i] == kImplicit || !grid_origin.hard_constraint[i] || shape[i] == 0 || !shape.hard_constraint[i]) { box[i] = IndexInterval::Infinite(); continue; } TENSORSTORE_ASSIGN_OR_RETURN( box[i], IndexInterval::Sized(grid_origin[i], shape[i]), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat( "Incompatible grid origin/chunk shape for dimension ", i))); } return absl::OkStatus(); } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::ChunkLayout, tensorstore::serialization::JsonBindableSerializer< tensorstore::ChunkLayout>()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::ChunkLayout::Grid, tensorstore::serialization::JsonBindableSerializer< tensorstore::ChunkLayout::Grid>())
#include "tensorstore/chunk_layout.h" #include <stddef.h> #include <algorithm> #include <array> #include <cstdlib> #include <random> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/random/bit_gen_ref.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/division.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::ChunkLayout; using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionSet; using ::tensorstore::Dims; using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kMaxRank; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal::ChooseChunkGrid; using ::tensorstore::internal::ChooseChunkShape; using ::tensorstore::internal::ChooseReadWriteChunkShapes; using ::tensorstore::internal::MakeRandomDimensionOrder; using ::testing::Optional; using Usage = ChunkLayout::Usage; TEST(ChunkLayoutTest, SingleLevelRank0) { ChunkLayout layout; TENSORSTORE_ASSERT_OK(layout.Set(tensorstore::RankConstraint(0))); TENSORSTORE_ASSERT_OK(layout.Finalize()); ASSERT_EQ(0, layout.rank()); EXPECT_THAT(layout.inner_order(), ::testing::ElementsAre()); EXPECT_THAT(layout | tensorstore::IdentityTransform(0), Optional(layout)); EXPECT_THAT(layout.read_chunk().shape(), ::testing::ElementsAre()); } TEST(ChunkLayoutTest, SingleLevelRank1) { ChunkLayout layout; TENSORSTORE_ASSERT_OK(layout.Set(ChunkLayout::GridOrigin({0}))); TENSORSTORE_ASSERT_OK(layout.Set(ChunkLayout::WriteChunkShape({5}))); TENSORSTORE_ASSERT_OK(layout.Finalize()); ASSERT_EQ(1, layout.rank()); EXPECT_THAT(layout.inner_order(), ::testing::ElementsAre()); EXPECT_THAT(layout.grid_origin(), ::testing::ElementsAre(0)); EXPECT_THAT(layout.read_chunk_shape(), ::testing::ElementsAre(5)); EXPECT_THAT(layout.write_chunk_shape(), ::testing::ElementsAre(5)); EXPECT_THAT(layout | tensorstore::IdentityTransform(1), Optional(layout)); } using HierarchicalGridCell = std::array<std::vector<Index>, 3>; HierarchicalGridCell GetHierarchicalGridCell( const ChunkLayout& layout, tensorstore::span<const Index> position) { const DimensionIndex rank = layout.rank(); auto origin = layout.grid_origin(); HierarchicalGridCell hier_grid_cell; for (Usage usage : ChunkLayout::kUsages) { auto& grid_cell = hier_grid_cell[static_cast<int>(usage)]; grid_cell.resize(rank); auto grid = layout[usage]; for (DimensionIndex i = 0; i < rank; ++i) { const Index size = grid.shape()[i]; if (size == 0) { grid_cell[i] = 0; continue; } const Index x = position[i] - origin[i]; grid_cell[i] = tensorstore::FloorOfRatio(x, size); } } return hier_grid_cell; } void TestGridCorrespondence(absl::BitGenRef gen, const ChunkLayout& output_layout, const ChunkLayout& input_layout, IndexTransformView<> transform) { const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); ASSERT_EQ(output_layout.rank(), output_rank); ASSERT_EQ(input_layout.rank(), input_rank); HierarchicalGridCell output_chunk_divisors; for (Usage usage : ChunkLayout::kUsages) { auto& divisors = output_chunk_divisors[static_cast<size_t>(usage)]; divisors.resize(output_rank, 1); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != tensorstore::OutputIndexMethod::single_input_dimension) { continue; } auto size = output_layout[usage].shape()[output_dim]; if (size == 0) continue; divisors[output_dim] = std::abs(map.stride()) / tensorstore::GreatestCommonDivisor(map.stride(), size); } } SCOPED_TRACE(tensorstore::StrCat("output_layout=", output_layout)); SCOPED_TRACE(tensorstore::StrCat("input_layout=", input_layout)); SCOPED_TRACE( tensorstore::StrCat("output_chunk_divisors=", ::testing::PrintToString(output_chunk_divisors))); absl::flat_hash_map<HierarchicalGridCell, HierarchicalGridCell> output_to_input_cell_map; absl::flat_hash_map<HierarchicalGridCell, HierarchicalGridCell> input_to_output_cell_map; std::vector<Index> input_pos(input_rank); std::vector<Index> output_pos(output_rank); const auto test_point = [&] { TENSORSTORE_ASSERT_OK(transform.TransformIndices(input_pos, output_pos)); auto input_cell = GetHierarchicalGridCell(input_layout, input_pos); auto output_cell = GetHierarchicalGridCell(output_layout, output_pos); SCOPED_TRACE(tensorstore::StrCat("orig_output_cell=", ::testing::PrintToString(output_cell))); for (Usage usage : ChunkLayout::kUsages) { const size_t usage_index = static_cast<size_t>(usage); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& out_cell = output_cell[usage_index][output_dim]; out_cell = tensorstore::FloorOfRatio( out_cell, output_chunk_divisors[usage_index][output_dim]); } } SCOPED_TRACE( tensorstore::StrCat("input_pos=", tensorstore::span(input_pos))); SCOPED_TRACE( tensorstore::StrCat("output_pos=", tensorstore::span(output_pos))); SCOPED_TRACE(tensorstore::StrCat("input_cell=", ::testing::PrintToString(input_cell))); SCOPED_TRACE(tensorstore::StrCat("output_cell=", ::testing::PrintToString(output_cell))); auto input_it = output_to_input_cell_map.emplace(output_cell, input_cell).first; auto output_it = input_to_output_cell_map.emplace(input_cell, output_cell).first; EXPECT_EQ(input_it->second, input_cell); EXPECT_EQ(output_it->second, output_cell); }; constexpr size_t kNumSamplePoints = 10; for (size_t sample_i = 0; sample_i < kNumSamplePoints; ++sample_i) { for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { input_pos[input_dim] = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, -40, 40); } for (DimensionIndex dir_input_dim = 0; dir_input_dim < input_rank; ++dir_input_dim) { const Index initial_pos = input_pos[dir_input_dim]; for (Index i = -20; i <= 20; ++i) { input_pos[dir_input_dim] = initial_pos + i; test_point(); } input_pos[dir_input_dim] = initial_pos; } } } template <typename Expr> void TestApplyIndexTransform(::nlohmann::json a, const Expr& expr, ::nlohmann::json b) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto a_layout, ChunkLayout::FromJson(a)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto b_layout, ChunkLayout::FromJson(b)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(a_layout.rank()) | expr); EXPECT_THAT(a_layout | transform, ::testing::Optional(b_layout)); } struct MakeRandomChunkLayoutParameters { DimensionIndex min_rank = 1; DimensionIndex max_rank = 3; }; ChunkLayout MakeRandomChunkLayout( absl::BitGenRef gen, const MakeRandomChunkLayoutParameters& p = {}) { const DimensionIndex rank = absl::Uniform<DimensionIndex>( absl::IntervalClosedClosed, gen, p.min_rank, p.max_rank); ChunkLayout layout; TENSORSTORE_CHECK_OK(layout.Set(tensorstore::RankConstraint(rank))); if (absl::Bernoulli(gen, 0.5)) { DimensionIndex inner_order[kMaxRank]; MakeRandomDimensionOrder(gen, tensorstore::span(inner_order, rank)); TENSORSTORE_CHECK_OK(layout.Set( ChunkLayout::InnerOrder(tensorstore::span(inner_order, rank)))); } else { } Index grid_origin[kMaxRank]; for (DimensionIndex dim = 0; dim < rank; ++dim) { grid_origin[dim] = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, -5, 5); } TENSORSTORE_CHECK_OK(layout.Set( ChunkLayout::GridOrigin(tensorstore::span(grid_origin, rank)))); const auto set_grid = [&](Usage usage) { if (absl::Bernoulli(gen, 0.3)) { return; } Index shape[kMaxRank]; std::fill_n(shape, rank, 0); for (DimensionIndex dim = 0; dim < rank; ++dim) { if (absl::Bernoulli(gen, 0.3)) { continue; } Index size; if (usage == Usage::kWrite && layout.read_chunk_shape()[dim] != 0) { const Index read_size = layout.read_chunk_shape()[dim]; size = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, 1, 5) * read_size; } else { size = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, 1, usage == Usage::kCodec ? 5 : 10); } shape[dim] = size; } TENSORSTORE_CHECK_OK(layout.Set( ChunkLayout::Chunk(ChunkLayout::ChunkShapeBase( tensorstore::span<const Index>(shape, rank)), usage))); }; set_grid(Usage::kCodec); set_grid(Usage::kRead); set_grid(Usage::kWrite); TENSORSTORE_CHECK_OK(layout.Finalize()); return layout; } TEST(ChunkLayoutTest, Json) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout>( { { {"rank", 0}, }, { {"rank", 2}, }, { {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order", {1, 0}}, }, }, tensorstore::internal_json_binding::DefaultBinder<>, tensorstore::IncludeDefaults{false}); } TEST(ChunkLayoutTest, JsonExcludeDefaults) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout>( {{ {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order", {1, 0}}, }}, tensorstore::internal_json_binding::DefaultBinder<>, tensorstore::IncludeDefaults{false}); } TEST(ChunkLayoutTest, Rank2Translate) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }, Dims(0, 1).TranslateBy(5), { {"grid_origin", {5, 6}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }); } TEST(ChunkLayoutTest, Rank2Transpose) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }, Dims(1, 0).Transpose(), { {"grid_origin", {1, 0}}, {"write_chunk", { {"shape", {20, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2TransposeWithGridOrder) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }, Dims(1, 0).Transpose(), { {"grid_origin", {1, 0}}, {"write_chunk", { {"shape", {20, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2Stride) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).Stride(2), { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2StrideNotEvenlyDisibile) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).Stride(6), { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2StrideNegative) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).Stride(-2), { {"grid_origin", {1, 0}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2TwoLevelStrideNegative) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"read_chunk", { {"shape", {5, 5}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).TranslateBy({2, 3}).Stride(-2), { {"grid_origin", {0, -1}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"read_chunk", { {"shape", {5, 5}}, }}, {"inner_order", {0, 1}}, }); } TEST(ApplyIndexTransformTest, RandomInvertible) { constexpr size_t kNumIterations = 10; for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_TEST_SEED")}; MakeRandomChunkLayoutParameters layout_p; auto output_layout = MakeRandomChunkLayout(gen, layout_p); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters transform_p; transform_p.new_dims_are_singleton = false; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IdentityTransform(output_layout.rank()).domain(), transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_layout, output_layout | transform); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto new_output_layout, ApplyInverseIndexTransform(transform, input_layout)); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); EXPECT_EQ(output_layout, new_output_layout) << "input_layout=" << input_layout; TestGridCorrespondence(gen, output_layout, input_layout, transform); } } TEST(ApplyIndexTransformTest, RandomNonInvertibleUnaligned) { constexpr size_t kNumIterations = 10; for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_TEST_SEED")}; MakeRandomChunkLayoutParameters layout_p; auto output_layout = MakeRandomChunkLayout(gen, layout_p); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters transform_p; transform_p.new_dims_are_singleton = false; transform_p.max_stride = 3; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IdentityTransform(output_layout.rank()).domain(), transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_layout, output_layout | transform); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); TestGridCorrespondence(gen, output_layout, input_layout, transform); } } TEST(ApplyIndexTransformTest, RandomNonInvertibleAligned) { constexpr size_t kNumIterations = 10; for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_TEST_SEED")}; MakeRandomChunkLayoutParameters layout_p; auto input_layout = MakeRandomChunkLayout(gen, layout_p); tensorstore::internal::MakeStridedIndexTransformForInputSpaceParameters transform_p; transform_p.max_stride = 3; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForInputSpace( gen, tensorstore::IdentityTransform(input_layout.rank()).domain(), transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto output_layout, ApplyInverseIndexTransform(transform, input_layout)); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto new_input_layout, ApplyIndexTransform(transform, output_layout)); EXPECT_EQ(input_layout, new_input_layout) << "output_layout=" << output_layout; TestGridCorrespondence(gen, output_layout, input_layout, transform); } } TEST(ChunkLayoutTest, DefaultConstruct) { ChunkLayout x; EXPECT_EQ(dynamic_rank, x.rank()); EXPECT_FALSE(x.inner_order().valid()); EXPECT_FALSE(x.grid_origin().valid()); EXPECT_FALSE(x.read_chunk().aspect_ratio().valid()); } TEST(ChunkLayoutTest, ConstraintsJson) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout>({ { {"write_chunk", { {"elements_soft_constraint", 5}, }}, }, { {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order", {1, 0}}, }, { {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order_soft_constraint", {1, 0}}, }, { {"grid_origin", {nullptr, nullptr, 3}}, {"grid_origin_soft_constraint", {4, nullptr, nullptr}}, {"write_chunk", {{"elements_soft_constraint", 1000}, {"shape", {5, nullptr, 6}}}}, {"read_chunk", {{"elements", 100}, {"shape_soft_constraint", {nullptr, 10, nullptr}}, {"aspect_ratio", {nullptr, 1, 2}}}}, {"codec_chunk", {{"aspect_ratio_soft_constraint", {nullptr, 2, 1}}}}, {"inner_order", {2, 1, 0}}, }, }); } TEST(ChunkLayoutTest, JsonRoundTripInexact) { tensorstore::TestJsonBinderRoundTripJsonOnlyInexact<ChunkLayout>({ {{ {"chunk", {{"elements", 50}}}, }, { {"read_chunk", {{"elements", 50}}}, {"write_chunk", {{"elements", 50}}}, }}, {{ {"chunk", {{"elements_soft_constraint", 50}}}, }, { {"read_chunk", {{"elements_soft_constraint", 50}}}, {"write_chunk", {{"elements_soft_constraint", 50}}}, }}, {{ {"read_chunk", {{"shape", {-1, 2, 3}}}}, }, { {"read_chunk", {{"shape", {nullptr, 2, 3}}, {"shape_soft_constraint", {-1, nullptr, nullptr}}}}, }}, {{ {"chunk", {{"elements_soft_constraint", 50}}}, {"read_chunk", {{"elements_soft_constraint", 60}}}, }, { {"read_chunk", {{"elements_soft_constraint", 50}}}, {"write_chunk", {{"elements_soft_constraint", 50}}}, }}, {{ {"chunk", {{"elements_soft_constraint", 50}}}, {"read_chunk", {{"elements", 60}}}, }, { {"read_chunk", {{"elements", 60}}}, {"write_chunk", {{"elements_soft_constraint", 50}}}, }}, {{ {"chunk", {{"aspect_ratio", {2, 3}}}}, }, { {"codec_chunk", {{"aspect_ratio", {2, 3}}}}, {"read_chunk", {{"aspect_ratio", {2, 3}}}}, {"write_chunk", {{"aspect_ratio", {2, 3}}}}, }}, {{ {"chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, }, { {"codec_chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, {"read_chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, {"write_chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, }}, {{ {"chunk", {{"shape", {2, 3}}}}, }, { {"read_chunk", {{"shape", {2, 3}}}}, {"write_chunk", {{"shape", {2, 3}}}}, }}, {{ {"chunk", {{"shape_soft_constraint", {2, 3}}}}, }, { {"read_chunk", {{"shape_soft_constraint", {2, 3}}}}, {"write_chunk", {{"shape_soft_constraint", {2, 3}}}}, }}, {{ {"chunk", {{"shape_soft_constraint", {2, 3}}}}, {"read_chunk", {{"shape", {4, nullptr}}}}, }, { {"read_chunk", { {"shape_soft_constraint", {nullptr, 3}}, {"shape", {4, nullptr}}, }}, {"write_chunk", {{"shape_soft_constraint", {2, 3}}}}, }}, }); } TEST(ChunkLayoutTest, CompareAllUnset) { ChunkLayout a; ChunkLayout b; EXPECT_FALSE(b.Set(ChunkLayout::InnerOrder({2, 3, 4})).ok()); EXPECT_EQ(a, b); EXPECT_EQ(b, a); } TEST(ChunkLayoutTest, CompareInnerOrder) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{"inner_order", {0, 1}}}, {{"inner_order", {0, 1, 2}}}, {{"inner_order", {0, 2, 1}}}, {{"inner_order_soft_constraint", {0, 2, 1}}}, }); } TEST(ChunkLayoutTest, CompareChunkElements) { for (std::string prefix : {"codec", "read", "write"}) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{prefix + "_chunk", {{"elements", 42}}}}, {{prefix + "_chunk", {{"elements", 43}}}}, {{prefix + "_chunk", {{"elements_soft_constraint", 42}}}}, }); } } TEST(ChunkLayoutTest, CompareChunkAspectRatio) { for (std::string prefix : {"codec", "read", "write"}) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{prefix + "_chunk", {{"aspect_ratio", {1, 2, nullptr}}}}}, {{prefix + "_chunk", {{"aspect_ratio", {1, 1, nullptr}}}}}, {{prefix + "_chunk", { {"aspect_ratio", {1, 1, nullptr}}, {"aspect_ratio_soft_constraint", {nullptr, nullptr, 4}}, }}}, {{prefix + "_chunk", {{"aspect_ratio_soft_constraint", {1, 2, nullptr}}}}}, }); } } TEST(ChunkLayoutTest, CompareGridOrigin) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{"grid_origin", {1, 2, nullptr}}}, {{"grid_origin", {1, 1, nullptr}}}, { {"grid_origin", {1, 1, nullptr}}, {"grid_origin_soft_constraint", {nullptr, nullptr, 4}}, }, {{"grid_origin_soft_constraint", {1, 2, nullptr}}}, }); } TEST(ChunkLayoutTest, CompareChunkShape) { for (std::string prefix : {"codec", "read", "write"}) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{prefix + "_chunk", {{"shape", {1, 2, nullptr}}}}}, {{prefix + "_chunk", {{"shape", {1, 1, nullptr}}}}}, {{prefix + "_chunk", { {"shape", {1, 1, nullptr}}, {"shape_soft_constraint", {nullptr, nullptr, 4}}, }}}, {{prefix + "_chunk", {{"shape_soft_constraint", {1, 2, nullptr}}}}}, }); } } TEST(ChunkLayoutTest, SetUnspecifiedUsage) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::Chunk(ChunkLayout::ChunkShape({5, 6, 0}), ChunkLayout::ChunkAspectRatio({2, 1, 0}), ChunkLayout::ChunkElements(42)))); EXPECT_THAT(constraints.ToJson(), ::testing::Optional(MatchesJson({ {"write_chunk", {{"shape", {5, 6, nullptr}}, {"aspect_ratio", {2, 1, nullptr}}, {"elements", 42}}}, {"read_chunk", {{"shape", {5, 6, nullptr}}, {"aspect_ratio", {2, 1, nullptr}}, {"elements", 42}}}, {"codec_chunk", {{"aspect_ratio", {2, 1, nullptr}}}}, }))); } TEST(ChunkLayoutConstraintsTest, ApplyIndexTransformRandomInvertible) { constexpr size_t kNumIterations = 10; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto output_constraints, ChunkLayout::FromJson({ {"codec_chunk", {{"elements_soft_constraint", 20}, {"aspect_ratio", {1, 2, 3}}, {"shape", {nullptr, 4, 5}}}}, {"read_chunk", {{"elements", 30}, {"aspect_ratio", {4, 5, 6}}, {"shape_soft_constraint", {6, nullptr, 7}}}}, {"write_chunk", {{"elements", 40}, {"aspect_ratio_soft_constraint", {7, 8, 9}}, {"shape", {8, 9, nullptr}}}}, {"grid_origin", {nullptr, nullptr, 11}}, {"inner_order_soft_constraint", {2, 0, 1}}, })); for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_CONSTRAINTS_TEST_SEED")}; tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters transform_p; transform_p.new_dims_are_singleton = true; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder(output_constraints.rank()).Finalize()); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inverse_transform, InverseTransform(transform)); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); SCOPED_TRACE(tensorstore::StrCat("inverse_transform=", inverse_transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_constraints, output_constraints | transform); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto input_constraints2, ApplyInverseIndexTransform(inverse_transform, output_constraints)); EXPECT_EQ(input_constraints, input_constraints2) << "output_constraints=" << output_constraints; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto output_constraints2, ApplyInverseIndexTransform(transform, input_constraints)); EXPECT_EQ(output_constraints, output_constraints2) << "input_constraints=" << input_constraints; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_output_constraints, input_constraints | inverse_transform); EXPECT_EQ(output_constraints, new_output_constraints) << "input_constraints=" << input_constraints; } } TEST(ChunkLayoutTest, ApplyIndexTransformNoRank) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto new_constraints, constraints | tensorstore::Dims(0, 1).TranslateBy(5)); EXPECT_EQ(constraints, new_constraints); } TEST(ChunkLayoutTest, ApplyIndexTransform) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"inner_order", {0, 1, 2}}, {"grid_origin", {1, 2, 3}}, {"read_chunk", {{"shape", {4, 5, 6}}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_new_constraints, ChunkLayout::FromJson({ {"inner_order", {2, 1, 0}}, {"grid_origin", {8, 7, 6}}, {"read_chunk", {{"shape", {6, 5, 4}}}}, })); EXPECT_THAT( constraints | tensorstore::Dims(2, 1, 0).TranslateBy(5).Transpose(), ::testing::Optional(expected_new_constraints)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_new_inverse_constraints, ChunkLayout::FromJson({ {"inner_order", {2, 1, 0}}, {"grid_origin", {-2, -3, -4}}, {"read_chunk", {{"shape", {6, 5, 4}}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(3) | tensorstore::Dims(2, 1, 0).TranslateBy(5).Transpose()); EXPECT_THAT(ApplyInverseIndexTransform(transform, constraints), ::testing::Optional(expected_new_inverse_constraints)); } TEST(ChunkLayoutTest, ApplyIndexTransformOverflow) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"grid_origin", {0, 0, 0}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(3) | tensorstore::Dims(0).TranslateBy(kInfIndex)); EXPECT_THAT(constraints | transform, MatchesStatus( absl::StatusCode::kOutOfRange, "Error transforming grid_origin: " "Error transforming output dimension 0 -> input dimension 0: " "Integer overflow transforming output origin 0 by offset .* " "and stride 1")); EXPECT_THAT(ApplyInverseIndexTransform(transform, constraints), MatchesStatus( absl::StatusCode::kOutOfRange, "Error transforming grid_origin: " "Error transforming input dimension 0 -> output dimension 0: " "Integer overflow transforming input origin 0 by offset .* " "and stride 1")); } TEST(ChunkLayoutTest, ApplyInverseIndexTransformMissingInputDimensionRequired) { ChunkLayout input_constraints; TENSORSTORE_ASSERT_OK(input_constraints.Set(ChunkLayout::GridOrigin({5, 6}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(2, 1) .output_single_input_dimension(0, 1) .Finalize()); EXPECT_THAT( ApplyInverseIndexTransform(transform, input_constraints), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error transforming grid_origin: " "No output dimension corresponds to input dimension 0")); } TEST(ChunkLayoutTest, ApplyInverseIndexTransformMissingInputDimensionNotRequired) { ChunkLayout input_constraints; TENSORSTORE_ASSERT_OK(input_constraints.Set( ChunkLayout::GridOrigin({5, 6}, false))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(2, 1) .output_single_input_dimension(0, 1) .Finalize()); ChunkLayout output_constraints; TENSORSTORE_ASSERT_OK(output_constraints.Set( ChunkLayout::GridOrigin({6}, false))); EXPECT_THAT(ApplyInverseIndexTransform(transform, input_constraints), ::testing::Optional(output_constraints)); } TEST(ChunkLayoutTest, ApplyIndexTransformKnownRankNullTransform) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"inner_order", {2, 1, 0}}, })); EXPECT_THAT(constraints | tensorstore::IndexTransform<>(), ::testing::Optional(constraints)); EXPECT_THAT( ApplyInverseIndexTransform(tensorstore::IndexTransform<>(), constraints), ::testing::Optional(constraints)); } TEST(ChunkLayoutTest, ApplyIndexTransformRankMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"inner_order", {2, 1, 0}}, })); EXPECT_THAT(constraints | tensorstore::IdentityTransform(2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot transform constraints of rank 3 by index " "transform of rank 2 -> 2")); EXPECT_THAT(ApplyInverseIndexTransform(tensorstore::IdentityTransform(2), constraints), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot transform constraints of rank 3 by index " "transform of rank 2 -> 2")); } TEST(ChunkLayoutTest, ApplyIndexTransformUnknownRankNullTransform) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"read_chunk", {{"elements", 42}}}, })); EXPECT_THAT(constraints | tensorstore::IndexTransform<>(), ::testing::Optional(constraints)); EXPECT_THAT( ApplyInverseIndexTransform(tensorstore::IndexTransform<>(), constraints), ::testing::Optional(constraints)); } TEST(ChunkLayoutTest, InnerOrder) { ChunkLayout constraints; EXPECT_FALSE(constraints.inner_order().valid()); EXPECT_FALSE(constraints.inner_order().hard_constraint); EXPECT_FALSE(constraints.inner_order().valid()); EXPECT_THAT(constraints.inner_order(), ::testing::ElementsAre()); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::InnerOrder({0, 2, 1}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_FALSE(constraints.inner_order().hard_constraint); EXPECT_THAT(constraints.inner_order(), ::testing::ElementsAre(0, 2, 1)); EXPECT_THAT( constraints.Set(ChunkLayout::InnerOrder({0, 2, 2})), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error setting inner_order: Invalid permutation: \\{0, 2, 2\\}")); EXPECT_THAT( constraints.Set( ChunkLayout::InnerOrder({0, 2, 2}, false)), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error setting inner_order: Invalid permutation: \\{0, 2, 2\\}")); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::InnerOrder({1, 2, 0}, false))); EXPECT_FALSE(constraints.inner_order().hard_constraint); EXPECT_THAT(constraints.inner_order(), ::testing::ElementsAre(0, 2, 1)); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::InnerOrder({2, 1, 0}))); EXPECT_TRUE(constraints.inner_order().hard_constraint); EXPECT_THAT(constraints.inner_order(), ::testing::ElementsAre(2, 1, 0)); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::InnerOrder({2, 1, 0}))); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::InnerOrder({0, 2, 1}, false))); EXPECT_TRUE(constraints.inner_order().hard_constraint); EXPECT_THAT(constraints.inner_order(), ::testing::ElementsAre(2, 1, 0)); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::InnerOrder())); EXPECT_THAT( constraints.Set(ChunkLayout::InnerOrder({0, 1, 2})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting inner_order: " "New hard constraint \\(\\{0, 1, 2\\}\\) does not match " "existing hard constraint \\(\\{2, 1, 0\\}\\)")); EXPECT_TRUE(constraints.inner_order().hard_constraint); EXPECT_THAT(constraints.inner_order(), ::testing::ElementsAre(2, 1, 0)); } TEST(ChunkLayoutTest, GridOrigin) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::GridOrigin( {1, kImplicit, kImplicit}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_THAT(constraints.grid_origin(), ::testing::ElementsAre(1, kImplicit, kImplicit)); EXPECT_EQ(0, constraints.grid_origin().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::GridOrigin({2, 3, kImplicit}, false))); EXPECT_THAT(constraints.grid_origin(), ::testing::ElementsAre(1, 3, kImplicit)); EXPECT_EQ(0, constraints.grid_origin().hard_constraint.to_uint()); EXPECT_THAT(constraints.Set(ChunkLayout::GridOrigin({kInfIndex, 2, 3})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting grid_origin: " "Invalid value for dimension 0: .*")); EXPECT_THAT(constraints.Set( ChunkLayout::GridOrigin({2, 3}, false)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting grid_origin: " "Rank 2 does not match existing rank 3")); TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout::GridOrigin({kImplicit, 4, kImplicit}))); EXPECT_THAT(constraints.grid_origin(), ::testing::ElementsAre(1, 4, kImplicit)); EXPECT_EQ(0b10, constraints.grid_origin().hard_constraint.to_uint()); EXPECT_THAT(constraints.Set(ChunkLayout::GridOrigin({3, 5, kImplicit})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting grid_origin: " "New hard constraint \\(5\\) for dimension 1 " "does not match existing hard constraint \\(4\\)")); EXPECT_THAT(constraints.grid_origin(), ::testing::ElementsAre(1, 4, kImplicit)); EXPECT_EQ(0b10, constraints.grid_origin().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::GridOrigin({1, 4, 5}))); EXPECT_THAT(constraints.grid_origin(), ::testing::ElementsAre(1, 4, 5)); EXPECT_EQ(0b111, constraints.grid_origin().hard_constraint.to_uint()); } TEST(ChunkLayoutTest, ReadChunkShape) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::ReadChunkShape({100, 0, 0}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_THAT(constraints.read_chunk_shape(), ::testing::ElementsAre(100, 0, 0)); EXPECT_THAT(constraints.read_chunk().shape(), ::testing::ElementsAre(100, 0, 0)); EXPECT_EQ(0, constraints.read_chunk_shape().hard_constraint.to_uint()); EXPECT_EQ(0, constraints.read_chunk().shape().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::ReadChunkShape({2, 300, 0}, false))); EXPECT_THAT(constraints.read_chunk().shape(), ::testing::ElementsAre(100, 300, 0)); EXPECT_EQ(0, constraints.read_chunk_shape().hard_constraint.to_uint()); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkShape({-5, 300, 3})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk shape: " "Invalid value for dimension 0: .*")); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkShape( {2, 3}, false)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk shape: " "Rank 2 does not match existing rank 3")); TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout::ReadChunkShape({0, 4, 0}))); EXPECT_THAT(constraints.read_chunk_shape(), ::testing::ElementsAre(100, 4, 0)); EXPECT_EQ(0b10, constraints.read_chunk_shape().hard_constraint.to_uint()); EXPECT_EQ(0b10, constraints.read_chunk().shape().hard_constraint.to_uint()); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkShape({100, 5, 0})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk shape: " "New hard constraint \\(5\\) for dimension 1 " "does not match existing hard constraint \\(4\\)")); EXPECT_THAT(constraints.read_chunk_shape(), ::testing::ElementsAre(100, 4, 0)); EXPECT_EQ(0b10, constraints.read_chunk_shape().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout::ReadChunkShape({100, 4, 5}))); EXPECT_THAT(constraints.read_chunk_shape(), ::testing::ElementsAre(100, 4, 5)); EXPECT_EQ(0b111, constraints.read_chunk_shape().hard_constraint.to_uint()); } TEST(ChunkLayoutTest, WriteChunkShape) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::WriteChunkShape({100, 0, 0}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_THAT(constraints.write_chunk_shape(), ::testing::ElementsAre(100, 0, 0)); EXPECT_THAT(constraints.write_chunk().shape(), ::testing::ElementsAre(100, 0, 0)); EXPECT_EQ(0, constraints.write_chunk_shape().hard_constraint.to_uint()); EXPECT_EQ(0, constraints.write_chunk().shape().hard_constraint.to_uint()); } TEST(ChunkLayoutTest, ReadChunkAspectRatio) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::ReadChunkAspectRatio({2, 0, 0}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_THAT(constraints.read_chunk_aspect_ratio(), ::testing::ElementsAre(2, 0, 0)); EXPECT_THAT(constraints.read_chunk().aspect_ratio(), ::testing::ElementsAre(2, 0, 0)); EXPECT_EQ(0, constraints.read_chunk_aspect_ratio().hard_constraint.to_uint()); EXPECT_EQ(0, constraints.read_chunk().aspect_ratio().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::ReadChunkAspectRatio( {3, 1.5, 0}, false))); EXPECT_THAT(constraints.read_chunk().aspect_ratio(), ::testing::ElementsAre(2, 1.5, 0)); EXPECT_EQ(0, constraints.read_chunk_aspect_ratio().hard_constraint.to_uint()); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkAspectRatio({-5, 1.5, 3})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk aspect_ratio: " "Invalid value for dimension 0: .*")); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkAspectRatio( {2, 3}, false)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk aspect_ratio: " "Rank 2 does not match existing rank 3")); TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout::ReadChunkAspectRatio({0, 4, 0}))); EXPECT_THAT(constraints.read_chunk_aspect_ratio(), ::testing::ElementsAre(2, 4, 0)); EXPECT_EQ(0b10, constraints.read_chunk_aspect_ratio().hard_constraint.to_uint()); EXPECT_EQ(0b10, constraints.read_chunk().aspect_ratio().hard_constraint.to_uint()); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkAspectRatio({2, 5, 0})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk aspect_ratio: " "New hard constraint \\(5\\) for dimension 1 " "does not match existing hard constraint \\(4\\)")); EXPECT_THAT(constraints.read_chunk_aspect_ratio(), ::testing::ElementsAre(2, 4, 0)); EXPECT_EQ(0b10, constraints.read_chunk_aspect_ratio().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout::ReadChunkAspectRatio({2, 4, 5}))); EXPECT_THAT(constraints.read_chunk_aspect_ratio(), ::testing::ElementsAre(2, 4, 5)); EXPECT_EQ(0b111, constraints.read_chunk_aspect_ratio().hard_constraint.to_uint()); } TEST(ChunkLayoutTest, WriteChunkAspectRatio) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::WriteChunkAspectRatio( {2, 0, 0}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_THAT(constraints.write_chunk_aspect_ratio(), ::testing::ElementsAre(2, 0, 0)); EXPECT_THAT(constraints.write_chunk().aspect_ratio(), ::testing::ElementsAre(2, 0, 0)); EXPECT_EQ(0, constraints.write_chunk_aspect_ratio().hard_constraint.to_uint()); EXPECT_EQ(0, constraints.write_chunk().aspect_ratio().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::WriteChunkAspectRatio( {3, 1.5, 0}, false))); EXPECT_THAT(constraints.write_chunk().aspect_ratio(), ::testing::ElementsAre(2, 1.5, 0)); EXPECT_EQ(0, constraints.write_chunk_aspect_ratio().hard_constraint.to_uint()); } TEST(ChunkLayoutTest, CodecChunkAspectRatio) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::CodecChunkAspectRatio( {2, 0, 0}, false))); EXPECT_EQ(3, constraints.rank()); EXPECT_THAT(constraints.codec_chunk_aspect_ratio(), ::testing::ElementsAre(2, 0, 0)); EXPECT_THAT(constraints.codec_chunk().aspect_ratio(), ::testing::ElementsAre(2, 0, 0)); EXPECT_EQ(0, constraints.codec_chunk_aspect_ratio().hard_constraint.to_uint()); EXPECT_EQ(0, constraints.codec_chunk().aspect_ratio().hard_constraint.to_uint()); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::CodecChunkAspectRatio( {3, 1.5, 0}, false))); EXPECT_THAT(constraints.codec_chunk().aspect_ratio(), ::testing::ElementsAre(2, 1.5, 0)); EXPECT_EQ(0, constraints.codec_chunk_aspect_ratio().hard_constraint.to_uint()); } TEST(ChunkLayoutTest, ReadChunkElements) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::ReadChunkElements(kImplicit, false))); EXPECT_EQ(kImplicit, constraints.read_chunk_elements()); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::ReadChunkElements(42, false))); EXPECT_EQ(42, constraints.read_chunk_elements()); EXPECT_EQ(42, constraints.read_chunk().elements()); EXPECT_EQ(false, constraints.read_chunk_elements().hard_constraint); EXPECT_EQ(false, constraints.read_chunk().elements().hard_constraint); TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::ReadChunkElements(43, false))); EXPECT_EQ(42, constraints.read_chunk().elements()); EXPECT_EQ(false, constraints.read_chunk_elements().hard_constraint); EXPECT_THAT(constraints.Set(ChunkLayout::ReadChunkElements(-5)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk elements: " "Invalid value: -5")); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::ReadChunkElements(45))); EXPECT_EQ(45, constraints.read_chunk_elements()); EXPECT_EQ(true, constraints.read_chunk_elements().hard_constraint); EXPECT_EQ(true, constraints.read_chunk().elements().hard_constraint); EXPECT_THAT( constraints.Set(ChunkLayout::ReadChunkElements(46)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error setting read_chunk elements: " "New hard constraint \\(46\\) " "does not match existing hard constraint \\(45\\)")); EXPECT_EQ(45, constraints.read_chunk_elements()); EXPECT_EQ(true, constraints.read_chunk_elements().hard_constraint); TENSORSTORE_ASSERT_OK(constraints.Set(ChunkLayout::ReadChunkElements(45))); EXPECT_EQ(45, constraints.read_chunk_elements()); EXPECT_EQ(true, constraints.read_chunk_elements().hard_constraint); } TEST(ChunkLayoutTest, SetPreciseChunkLayout) { ::nlohmann::json layout_json{ {"inner_order", {0, 1, 2}}, {"grid_origin", {1, 2, 3}}, {"write_chunk", {{"shape", {100, 200, 300}}}}, {"read_chunk", {{"shape", {10, 20, 30}}}}, {"codec_chunk", {{"shape", {4, 5, 6}}}}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto layout, ChunkLayout::FromJson(layout_json)); ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set(layout)); EXPECT_THAT(constraints.ToJson(), ::testing::Optional(MatchesJson(layout_json))); EXPECT_EQ(ChunkLayout(layout), constraints); } TEST(ChunkLayoutTest, SetPreciseChunkLayoutAsSoftConstraints) { ::nlohmann::json layout_json{ {"inner_order", {0, 1, 2}}, {"grid_origin", {1, 2, 3}}, {"write_chunk", {{"shape", {100, 200, 300}}}}, {"read_chunk", {{"shape", {10, 20, 30}}}}, {"codec_chunk", {{"shape", {4, 5, 6}}}}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto layout, ChunkLayout::FromJson(layout_json)); ChunkLayout constraints; TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout(layout, false))); EXPECT_THAT(constraints.ToJson(), ::testing::Optional(MatchesJson({ {"inner_order_soft_constraint", {0, 1, 2}}, {"grid_origin_soft_constraint", {1, 2, 3}}, {"write_chunk", {{"shape_soft_constraint", {100, 200, 300}}}}, {"read_chunk", {{"shape_soft_constraint", {10, 20, 30}}}}, {"codec_chunk", {{"shape_soft_constraint", {4, 5, 6}}}}, }))); EXPECT_EQ(constraints, ChunkLayout(ChunkLayout(layout), false)); ChunkLayout constraints2; TENSORSTORE_ASSERT_OK( constraints2.Set(ChunkLayout(layout, false))); EXPECT_EQ(constraints, constraints2); } TEST(ChunkLayoutTest, SetChunkLayout) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto layout_a, ChunkLayout::FromJson({ {"inner_order", {0, 1, 2}}, {"grid_origin_soft_constraint", {1, 2, 3}}, {"write_chunk", { {"shape_soft_constraint", {100, 200, 300}}, {"elements", 42}, }}, {"read_chunk", { {"shape", {nullptr, 20, 30}}, {"shape_soft_constraint", {100, nullptr, nullptr}}, {"elements_soft_constraint", 50}, }}, {"codec_chunk", {{"aspect_ratio", {4, 5, 6}}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto layout_b, ChunkLayout::FromJson({ {"inner_order_soft_constraint", {2, 0, 1}}, {"grid_origin", {4, 5, 6}}, {"write_chunk", { {"shape", {200, 400, 900}}, {"elements", 42}, }}, {"read_chunk", { {"shape", {10, nullptr, 30}}, {"elements", 50}, }}, })); ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set(layout_a)); TENSORSTORE_ASSERT_OK(constraints.Set(layout_b)); EXPECT_THAT(constraints.ToJson(), ::testing::Optional(MatchesJson({ {"inner_order", {0, 1, 2}}, {"grid_origin", {4, 5, 6}}, {"write_chunk", { {"shape", {200, 400, 900}}, {"elements", 42}, }}, {"read_chunk", { {"shape", {10, 20, 30}}, {"elements", 50}, }}, {"codec_chunk", { {"aspect_ratio", {4, 5, 6}}, }}, }))); constraints = layout_a; TENSORSTORE_ASSERT_OK( constraints.Set(ChunkLayout(layout_b, false))); EXPECT_THAT(constraints.ToJson(), ::testing::Optional(MatchesJson({ {"inner_order", {0, 1, 2}}, {"grid_origin_soft_constraint", {1, 2, 3}}, {"write_chunk", { {"shape_soft_constraint", {100, 200, 300}}, {"elements", 42}, }}, {"read_chunk", { {"shape", {nullptr, 20, 30}}, {"shape_soft_constraint", {100, nullptr, nullptr}}, {"elements_soft_constraint", 50}, }}, {"codec_chunk", { {"aspect_ratio", {4, 5, 6}}, }}, }))); } TEST(ChunkLayoutTest, CopyOnWriteWithRankSet) { ChunkLayout a; TENSORSTORE_ASSERT_OK(a.Set(ChunkLayout::InnerOrder({0, 1, 2}))); EXPECT_THAT(a.ToJson(), ::testing::Optional(MatchesJson({{"inner_order", {0, 1, 2}}}))); ChunkLayout b = a; TENSORSTORE_ASSERT_OK(b.Set(ChunkLayout::GridOrigin({1, 2, 3}))); EXPECT_THAT(a.ToJson(), ::testing::Optional(MatchesJson({{"inner_order", {0, 1, 2}}}))); EXPECT_THAT(b.ToJson(), ::testing::Optional(MatchesJson({ {"inner_order", {0, 1, 2}}, {"grid_origin", {1, 2, 3}}, }))); } TEST(ChunkLayoutTest, CopyOnWriteWithRankNotSet) { ChunkLayout a; TENSORSTORE_ASSERT_OK(a.Set(ChunkLayout::ReadChunkElements(5))); EXPECT_THAT( a.ToJson(), ::testing::Optional(MatchesJson({{"read_chunk", {{"elements", 5}}}}))); ChunkLayout b = a; TENSORSTORE_ASSERT_OK(b.Set(ChunkLayout::GridOrigin({1, 2, 3}))); EXPECT_THAT( a.ToJson(), ::testing::Optional(MatchesJson({{"read_chunk", {{"elements", 5}}}}))); EXPECT_THAT(b.ToJson(), ::testing::Optional(MatchesJson({ {"read_chunk", {{"elements", 5}}}, {"grid_origin", {1, 2, 3}}, }))); } TEST(ChunkLayoutTest, Ostream) { ChunkLayout a; EXPECT_EQ("{}", tensorstore::StrCat(a)); } TEST(ChooseChunkGridTest, Rank0) { Box box(0); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(), BoxView(0), box)); } TEST(ChooseChunkGridTest, Rank1Unconstrained) { Box box(1); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(), BoxView(1), box)); EXPECT_EQ(Box<1>({1024 * 1024}), box); } TEST(ChooseChunkGridTest, Rank2Unconstrained) { Box box(2); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(), BoxView(2), box)); EXPECT_EQ(Box({1024, 1024}), box); } TEST(ChooseChunkGridTest, Rank3Unconstrained) { Box box(3); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(), BoxView(3), box)); EXPECT_EQ(Box({101, 101, 101}), box); } TEST(ChooseChunkGridTest, Rank4Unconstrained) { Box box(4); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(), BoxView(4), box)); EXPECT_EQ(Box({32, 32, 32, 32}), box); } TEST(ChooseChunkGridTest, Rank1ElementsConstrained) { Box box(1); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( tensorstore::span<const Index>({42}), ChunkLayout::GridView(ChunkLayout::ChunkElementsBase(9000)), BoxView(1), box)); EXPECT_EQ(Box<1>({42}, {9000}), box); } TEST(ChooseChunkGridTest, Rank1ShapeConstrained) { Box box(1); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( tensorstore::span<const Index>({42}), ChunkLayout::GridView(ChunkLayout::ChunkShape({55})), BoxView(1), box)); EXPECT_EQ(Box<1>({42}, {55}), box); } TEST(ChooseChunkGridTest, Rank1ShapeFullExtent) { Box box(1); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( tensorstore::span<const Index>({42}), ChunkLayout::GridView( ChunkLayout::ChunkShape({-1}), ChunkLayout::ChunkAspectRatio(), ChunkLayout::ChunkElements(10)), BoxView<1>({100}), box)); EXPECT_EQ(Box<1>({42}, {100}), box); EXPECT_THAT( ChooseChunkGrid( tensorstore::span<const Index>({42}), ChunkLayout::GridView( ChunkLayout::ChunkShape({-1}), ChunkLayout::ChunkAspectRatio(), ChunkLayout::ChunkElements(10)), BoxView(1), box), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot match chunk size for dimension 0 to " "unbounded domain \\(-inf, \\+inf\\)")); } TEST(ChooseChunkGridTest, Rank1BoundedDomain) { Box box(1); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkElementsBase(9000)), BoxView<1>({42}, {1000}), box)); EXPECT_EQ(Box<1>({42}, {1000}), box); } TEST(ChunkLayoutTest, ChooseChunkGridRank1BoundedDomainOriginConstrained) { Box box(1); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( tensorstore::span<const Index>({45}), ChunkLayout::GridView(ChunkLayout::ChunkElementsBase(9000)), BoxView<1>({42}, {1000}), box)); EXPECT_EQ(Box<1>({45}, {1000}), box); } TEST(ChooseChunkGridTest, Rank2AspectRatio) { Box box(2); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape(), ChunkLayout::ChunkAspectRatio({1.0, 2.0}), ChunkLayout::ChunkElements(200)), BoxView(2), box)); EXPECT_EQ(Box({10, 20}), box); } TEST(ChooseChunkGridTest, Rank3AspectRatio) { Box box(3); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape(), ChunkLayout::ChunkAspectRatio({1.0, 0, 2.0}), ChunkLayout::ChunkElements(2000)), BoxView(3), box)); EXPECT_EQ(Box({10, 10, 20}), box); } TEST(ChooseChunkGridTest, Rank3AspectRatioWithChunkShapeConstraint) { Box box(3); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape({0, 1, 0}), ChunkLayout::ChunkAspectRatio({1.0, 0, 2.0}), ChunkLayout::ChunkElements(200)), BoxView(3), box)); EXPECT_EQ(Box({10, 1, 20}), box); } TEST(ChooseChunkGridTest, Rank3AspectRatioLarge1) { Box box(3); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape(), ChunkLayout::ChunkAspectRatio({1.0, 1.0, 1e30}), ChunkLayout::ChunkElements(200)), BoxView(3), box)); EXPECT_EQ(Box({1, 1, 200}), box); } TEST(ChooseChunkGridTest, Rank3AspectRatioLarge2) { Box box(3); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape(), ChunkLayout::ChunkAspectRatio({1.0, 1e30, 1e30}), ChunkLayout::ChunkElements(100)), BoxView(3), box)); EXPECT_EQ(Box({1, 10, 10}), box); } TEST(ChooseChunkGridTest, Rank3AspectRatioLarge3) { Box box(3); TENSORSTORE_ASSERT_OK(ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape(), ChunkLayout::ChunkAspectRatio({1.0, 1e30, 1e30}), ChunkLayout::ChunkElements(Index(1) << 40)), BoxView(3), box)); EXPECT_EQ(Box({1, Index(1) << 20, Index(1) << 20}), box); } TEST(ChooseChunkGridTest, GridOriginRankMismatch) { Box box(3); EXPECT_THAT( ChooseChunkGrid( tensorstore::span<const Index>({1, 2}), ChunkLayout::GridView(), BoxView(3), box), MatchesStatus( absl::StatusCode::kInvalidArgument, "Rank of constraints \\(2\\) does not match rank of domain \\(3\\)")); } TEST(ChooseChunkGridTest, ShapeConstraintRankMismatch) { Box box(3); EXPECT_THAT( ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkShape({1, 2})), BoxView(3), box), MatchesStatus( absl::StatusCode::kInvalidArgument, "Rank of constraints \\(2\\) does not match rank of domain \\(3\\)")); } TEST(ChooseChunkGridTest, AspectRatioConstraintRankMismatch) { Box box(3); EXPECT_THAT( ChooseChunkGrid( {}, ChunkLayout::GridView(ChunkLayout::ChunkAspectRatio({1, 2})), BoxView(3), box), MatchesStatus( absl::StatusCode::kInvalidArgument, "Rank of constraints \\(2\\) does not match rank of domain \\(3\\)")); } TEST(ChunkLayoutGridTest, Basic) { ChunkLayout::Grid grid; TENSORSTORE_EXPECT_OK(grid.Set(ChunkLayout::ChunkShape({10, 11}))); EXPECT_EQ(2, grid.rank()); EXPECT_THAT(grid.shape(), ::testing::ElementsAre(10, 11)); } TEST(ChunkLayoutGridTest, Json) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout::Grid>( { { {"shape", {10, 11}}, {"aspect_ratio", {2, nullptr}}, {"aspect_ratio_soft_constraint", {nullptr, 3}}, {"elements_soft_constraint", 10000}, }, }, tensorstore::internal_json_binding::DefaultBinder<>, tensorstore::IncludeDefaults{false}); } TEST(ChunkLayoutSerializationTest, SerializationRoundTrip) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto chunk_layout, ChunkLayout::FromJson({ {"grid_origin", {nullptr, nullptr, 3}}, {"grid_origin_soft_constraint", {4, nullptr, nullptr}}, {"write_chunk", {{"elements_soft_constraint", 1000}, {"shape", {5, nullptr, 6}}}}, {"read_chunk", {{"elements", 100}, {"shape_soft_constraint", {nullptr, 10, nullptr}}, {"aspect_ratio", {nullptr, 1, 2}}}}, {"codec_chunk", {{"aspect_ratio_soft_constraint", {nullptr, 2, 1}}}}, {"inner_order", {2, 1, 0}}, })); tensorstore::serialization::TestSerializationRoundTrip(chunk_layout); } TEST(ChooseChunkShapeTest, Elements) { Index chunk_shape[kMaxRank] = {0}; TENSORSTORE_ASSERT_OK(ChooseChunkShape( ChunkLayout::GridView( ChunkLayout::ChunkElementsBase(1000, false)), BoxView({0, 0, 0}, {2000, 2000, 2000}), tensorstore::span<Index>(chunk_shape, 3))); EXPECT_THAT(tensorstore::span<Index>(chunk_shape, 3), testing::ElementsAre(10, 10, 10)); TENSORSTORE_ASSERT_OK(ChooseChunkShape( ChunkLayout::GridView( ChunkLayout::ChunkElementsBase(1000, true)), BoxView({0, 0, 0}, {2000, 2000, 1}), tensorstore::span<Index>(chunk_shape, 3))); EXPECT_THAT(tensorstore::span<Index>(chunk_shape, 3), testing::ElementsAre(31, 31, 1)); } TEST(ChooseChunkShapeTest, AspectRatio) { Index chunk_shape[kMaxRank] = {0}; TENSORSTORE_ASSERT_OK(ChooseChunkShape( ChunkLayout::GridView( ChunkLayout::ChunkAspectRatioBase({3, 2, 1}, true)), BoxView({0, 0, 0}, {2000, 2000, 2000}), tensorstore::span<Index>(chunk_shape, 3))); EXPECT_THAT(tensorstore::span<Index>(chunk_shape, 3), testing::ElementsAre(167, 111, 55)); TENSORSTORE_ASSERT_OK(ChooseChunkShape( ChunkLayout::GridView( ChunkLayout::ChunkAspectRatioBase({3, 2, 1}, false)), BoxView({0, 0, 0}, {2000, 2000, 1}), tensorstore::span<Index>(chunk_shape, 3))); EXPECT_THAT(tensorstore::span<Index>(chunk_shape, 3), testing::ElementsAre(1254, 836, 1)); } TEST(ChooseChunkShapeTest, Shape) { Index chunk_shape[kMaxRank] = {0}; TENSORSTORE_ASSERT_OK(ChooseChunkShape( ChunkLayout::GridView( ChunkLayout::ChunkShapeBase({30, 20, 10}, false)), BoxView({0, 0, 0}, {2000, 2000, 2000}), tensorstore::span<Index>(chunk_shape, 3))); EXPECT_THAT(tensorstore::span<Index>(chunk_shape, 3), testing::ElementsAre(30, 20, 10)); TENSORSTORE_ASSERT_OK(ChooseChunkShape( ChunkLayout::GridView( ChunkLayout::ChunkShapeBase({30, 20, 10}, false)), BoxView({0, 0, 0}, {2000, 2000, 1}), tensorstore::span<Index>(chunk_shape, 3))); EXPECT_THAT(tensorstore::span<Index>(chunk_shape, 3), testing::ElementsAre(30, 20, 10)); } TEST(ChooseReadWriteChunkShapesTest, Unconstrained) { Index read_chunk_shape[3]; Index write_chunk_shape[3]; TENSORSTORE_ASSERT_OK(ChooseReadWriteChunkShapes( ChunkLayout::GridView(), ChunkLayout::GridView(), BoxView(3), read_chunk_shape, write_chunk_shape)); EXPECT_THAT(read_chunk_shape, ::testing::ElementsAre(101, 101, 101)); EXPECT_THAT(write_chunk_shape, ::testing::ElementsAre(101, 101, 101)); } TEST(ChooseReadWriteChunkShapesTest, ShapeNonMultiple) { Index read_chunk_shape[4]; Index write_chunk_shape[4]; TENSORSTORE_ASSERT_OK(ChooseReadWriteChunkShapes( ChunkLayout::GridView(ChunkLayout::ChunkShapeBase( {5, 11, 20, 8}, DimensionSet::FromBools({false, false, true, true}))), ChunkLayout::GridView(ChunkLayout::ChunkShapeBase( {6, 30, 41, 16}, DimensionSet::FromBools({false, true, false, true}))), BoxView(4), read_chunk_shape, write_chunk_shape)); EXPECT_THAT(read_chunk_shape, ::testing::ElementsAre(6, 10, 20, 8)); EXPECT_THAT(write_chunk_shape, ::testing::ElementsAre(6, 30, 40, 16)); } TEST(ChooseReadWriteChunkShapesTest, ShapeIncompatible) { Index read_chunk_shape[1]; Index write_chunk_shape[1]; EXPECT_THAT(ChooseReadWriteChunkShapes( ChunkLayout::GridView( ChunkLayout::ChunkShapeBase({5}, true)), ChunkLayout::GridView(ChunkLayout::ChunkShapeBase({6}, true)), BoxView(1), read_chunk_shape, write_chunk_shape), MatchesStatus(absl::StatusCode::kInvalidArgument, "Incompatible chunk size constraints for dimension " "0: read size of 5, write size of 6")); } TEST(ChooseReadWriteChunkShapesTest, ReadShapeConstrained) { Index read_chunk_shape[2]; Index write_chunk_shape[2]; TENSORSTORE_ASSERT_OK(ChooseReadWriteChunkShapes( ChunkLayout::GridView( ChunkLayout::ChunkShapeBase({5, 7})), ChunkLayout::GridView(ChunkLayout::ChunkElementsBase(100)), BoxView(2), read_chunk_shape, write_chunk_shape)); EXPECT_THAT(read_chunk_shape, ::testing::ElementsAre(5, 7)); EXPECT_THAT(write_chunk_shape, ::testing::ElementsAre(10, 7)); } TEST(ChooseReadWriteChunkShapesTest, WriteShapeConstrained) { Index read_chunk_shape[2]; Index write_chunk_shape[2]; TENSORSTORE_ASSERT_OK(ChooseReadWriteChunkShapes( ChunkLayout::GridView( ChunkLayout::ChunkElementsBase(36)), ChunkLayout::GridView(ChunkLayout::ChunkShapeBase({10, 14})), BoxView(2), read_chunk_shape, write_chunk_shape)); EXPECT_THAT(read_chunk_shape, ::testing::ElementsAre(5, 7)); EXPECT_THAT(write_chunk_shape, ::testing::ElementsAre(10, 14)); } TEST(HasHardConstraints, Basic) { ChunkLayout layout; EXPECT_FALSE(layout.HasHardConstraints()); TENSORSTORE_ASSERT_OK(layout.Set(tensorstore::RankConstraint{2})); EXPECT_FALSE(layout.HasHardConstraints()); { auto layout1 = layout; TENSORSTORE_ASSERT_OK(layout1.Set( tensorstore::ChunkLayout::InnerOrder({0, 1}, false))); EXPECT_FALSE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK(layout1.Set( tensorstore::ChunkLayout::InnerOrder({0, 1}, true))); EXPECT_TRUE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK(layout1.Set( tensorstore::ChunkLayout::GridOrigin({100, 200}, false))); EXPECT_FALSE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK( layout1.Set(tensorstore::ChunkLayout::GridOrigin({100, 200}))); EXPECT_TRUE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK(layout1.Set( tensorstore::ChunkLayout::ReadChunkShape({100, 200}, false))); EXPECT_FALSE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK( layout1.Set(tensorstore::ChunkLayout::ReadChunkShape({100, 200}))); EXPECT_TRUE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK( layout1.Set(tensorstore::ChunkLayout::ReadChunkAspectRatio({1, 1}))); EXPECT_FALSE(layout1.HasHardConstraints()); } { auto layout1 = layout; TENSORSTORE_ASSERT_OK( layout1.Set(tensorstore::ChunkLayout::ReadChunkElements(200))); EXPECT_FALSE(layout1.HasHardConstraints()); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/chunk_layout.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/chunk_layout_test.cc
4f887a6430414cd6088e1743555015b10f116d50
00a55dbb-ab9f-464d-a180-889b68767656
cpp
google/quiche
aes_128_gcm_12_encrypter
quiche/quic/core/crypto/aes_128_gcm_12_encrypter.cc
quiche/quic/core/crypto/aes_128_gcm_12_encrypter_test.cc
#include "quiche/quic/core/crypto/aes_128_gcm_12_encrypter.h" #include "openssl/evp.h" namespace quic { namespace { const size_t kKeySize = 16; const size_t kNonceSize = 12; } Aes128Gcm12Encrypter::Aes128Gcm12Encrypter() : AesBaseEncrypter(EVP_aead_aes_128_gcm, kKeySize, kAuthTagSize, kNonceSize, false) { static_assert(kKeySize <= kMaxKeySize, "key size too big"); static_assert(kNonceSize <= kMaxNonceSize, "nonce size too big"); } Aes128Gcm12Encrypter::~Aes128Gcm12Encrypter() {} }
#include "quiche/quic/core/crypto/aes_128_gcm_12_encrypter.h" #include <memory> #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace { struct TestGroupInfo { size_t key_len; size_t iv_len; size_t pt_len; size_t aad_len; size_t tag_len; }; struct TestVector { const char* key; const char* iv; const char* pt; const char* aad; const char* ct; const char* tag; }; const TestGroupInfo test_group_info[] = { {128, 96, 0, 0, 128}, {128, 96, 0, 128, 128}, {128, 96, 128, 0, 128}, {128, 96, 408, 160, 128}, {128, 96, 408, 720, 128}, {128, 96, 104, 0, 128}, }; const TestVector test_group_0[] = { {"11754cd72aec309bf52f7687212e8957", "3c819d9a9bed087615030b65", "", "", "", "250327c674aaf477aef2675748cf6971"}, {"ca47248ac0b6f8372a97ac43508308ed", "ffd2b598feabc9019262d2be", "", "", "", "60d20404af527d248d893ae495707d1a"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_1[] = { {"77be63708971c4e240d1cb79e8d77feb", "e0e00f19fed7ba0136a797f3", "", "7a43ec1d9c0a5a78a0b16533a6213cab", "", "209fcc8d3675ed938e9c7166709dd946"}, {"7680c5d3ca6154758e510f4d25b98820", "f8f105f9c3df4965780321f8", "", "c94c410194c765e3dcc7964379758ed3", "", "94dca8edfcf90bb74b153c8d48a17930"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_2[] = { {"7fddb57453c241d03efbed3ac44e371c", "ee283a3fc75575e33efd4887", "d5de42b461646c255c87bd2962d3b9a2", "", "2ccda4a5415cb91e135c2a0f78c9b2fd", "b36d1df9b9d5e596f83e8b7f52971cb3"}, {"ab72c77b97cb5fe9a382d9fe81ffdbed", "54cc7dc2c37ec006bcc6d1da", "007c5e5b3e59df24a7c355584fc1518d", "", "0e1bde206a07a9c2c1b65300f8c64997", "2b4401346697138c7a4891ee59867d0c"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_3[] = { {"fe47fcce5fc32665d2ae399e4eec72ba", "5adb9609dbaeb58cbd6e7275", "7c0e88c88899a779228465074797cd4c2e1498d259b54390b85e3eef1c02df60e743f1" "b840382c4bccaf3bafb4ca8429bea063", "88319d6e1d3ffa5f987199166c8a9b56c2aeba5a", "98f4826f05a265e6dd2be82db241c0fbbbf9ffb1c173aa83964b7cf539304373636525" "3ddbc5db8778371495da76d269e5db3e", "291ef1982e4defedaa2249f898556b47"}, {"ec0c2ba17aa95cd6afffe949da9cc3a8", "296bce5b50b7d66096d627ef", "b85b3753535b825cbe5f632c0b843c741351f18aa484281aebec2f45bb9eea2d79d987" "b764b9611f6c0f8641843d5d58f3a242", "f8d00f05d22bf68599bcdeb131292ad6e2df5d14", "a7443d31c26bdf2a1c945e29ee4bd344a99cfaf3aa71f8b3f191f83c2adfc7a0716299" "5506fde6309ffc19e716eddf1a828c5a", "890147971946b627c40016da1ecf3e77"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_4[] = { {"2c1f21cf0f6fb3661943155c3e3d8492", "23cb5ff362e22426984d1907", "42f758836986954db44bf37c6ef5e4ac0adaf38f27252a1b82d02ea949c8a1a2dbc0d6" "8b5615ba7c1220ff6510e259f06655d8", "5d3624879d35e46849953e45a32a624d6a6c536ed9857c613b572b0333e701557a713e" "3f010ecdf9a6bd6c9e3e44b065208645aff4aabee611b391528514170084ccf587177f" "4488f33cfb5e979e42b6e1cfc0a60238982a7aec", "81824f0e0d523db30d3da369fdc0d60894c7a0a20646dd015073ad2732bd989b14a222" "b6ad57af43e1895df9dca2a5344a62cc", "57a3ee28136e94c74838997ae9823f3a"}, {"d9f7d2411091f947b4d6f1e2d1f0fb2e", "e1934f5db57cc983e6b180e7", "73ed042327f70fe9c572a61545eda8b2a0c6e1d6c291ef19248e973aee6c312012f490" "c2c6f6166f4a59431e182663fcaea05a", "0a8a18a7150e940c3d87b38e73baee9a5c049ee21795663e264b694a949822b639092d" "0e67015e86363583fcf0ca645af9f43375f05fdb4ce84f411dcbca73c2220dea03a201" "15d2e51398344b16bee1ed7c499b353d6c597af8", "aaadbd5c92e9151ce3db7210b8714126b73e43436d242677afa50384f2149b831f1d57" "3c7891c2a91fbc48db29967ec9542b23", "21b51ca862cb637cdd03b99a0f93b134"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_5[] = { {"fe9bb47deb3a61e423c2231841cfd1fb", "4d328eb776f500a2f7fb47aa", "f1cc3818e421876bb6b8bbd6c9", "", "b88c5c1977b35b517b0aeae967", "43fd4727fe5cdb4b5b42818dea7ef8c9"}, {"6703df3701a7f54911ca72e24dca046a", "12823ab601c350ea4bc2488c", "793cd125b0b84a043e3ac67717", "", "b2051c80014f42f08735a7b0cd", "38e6bcd29962e5f2c13626b85a877101"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector* const test_group_array[] = { test_group_0, test_group_1, test_group_2, test_group_3, test_group_4, test_group_5, }; } namespace quic { namespace test { QuicData* EncryptWithNonce(Aes128Gcm12Encrypter* encrypter, absl::string_view nonce, absl::string_view associated_data, absl::string_view plaintext) { size_t ciphertext_size = encrypter->GetCiphertextSize(plaintext.length()); std::unique_ptr<char[]> ciphertext(new char[ciphertext_size]); if (!encrypter->Encrypt(nonce, associated_data, plaintext, reinterpret_cast<unsigned char*>(ciphertext.get()))) { return nullptr; } return new QuicData(ciphertext.release(), ciphertext_size, true); } class Aes128Gcm12EncrypterTest : public QuicTest {}; TEST_F(Aes128Gcm12EncrypterTest, Encrypt) { for (size_t i = 0; i < ABSL_ARRAYSIZE(test_group_array); i++) { SCOPED_TRACE(i); const TestVector* test_vectors = test_group_array[i]; const TestGroupInfo& test_info = test_group_info[i]; for (size_t j = 0; test_vectors[j].key != nullptr; j++) { std::string key; std::string iv; std::string pt; std::string aad; std::string ct; std::string tag; ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].key, &key)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].iv, &iv)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].pt, &pt)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].aad, &aad)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].ct, &ct)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].tag, &tag)); EXPECT_EQ(test_info.key_len, key.length() * 8); EXPECT_EQ(test_info.iv_len, iv.length() * 8); EXPECT_EQ(test_info.pt_len, pt.length() * 8); EXPECT_EQ(test_info.aad_len, aad.length() * 8); EXPECT_EQ(test_info.pt_len, ct.length() * 8); EXPECT_EQ(test_info.tag_len, tag.length() * 8); Aes128Gcm12Encrypter encrypter; ASSERT_TRUE(encrypter.SetKey(key)); std::unique_ptr<QuicData> encrypted( EncryptWithNonce(&encrypter, iv, aad.length() ? aad : absl::string_view(), pt)); ASSERT_TRUE(encrypted.get()); ASSERT_LE(static_cast<size_t>(Aes128Gcm12Encrypter::kAuthTagSize), tag.length()); tag.resize(Aes128Gcm12Encrypter::kAuthTagSize); ASSERT_EQ(ct.length() + tag.length(), encrypted->length()); quiche::test::CompareCharArraysWithHexError( "ciphertext", encrypted->data(), ct.length(), ct.data(), ct.length()); quiche::test::CompareCharArraysWithHexError( "authentication tag", encrypted->data() + ct.length(), tag.length(), tag.data(), tag.length()); } } } TEST_F(Aes128Gcm12EncrypterTest, GetMaxPlaintextSize) { Aes128Gcm12Encrypter encrypter; EXPECT_EQ(1000u, encrypter.GetMaxPlaintextSize(1012)); EXPECT_EQ(100u, encrypter.GetMaxPlaintextSize(112)); EXPECT_EQ(10u, encrypter.GetMaxPlaintextSize(22)); EXPECT_EQ(0u, encrypter.GetMaxPlaintextSize(11)); } TEST_F(Aes128Gcm12EncrypterTest, GetCiphertextSize) { Aes128Gcm12Encrypter encrypter; EXPECT_EQ(1012u, encrypter.GetCiphertextSize(1000)); EXPECT_EQ(112u, encrypter.GetCiphertextSize(100)); EXPECT_EQ(22u, encrypter.GetCiphertextSize(10)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/aes_128_gcm_12_encrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/aes_128_gcm_12_encrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
b741e8e8-2745-4bf2-ba11-cb07d8f3a0b0
cpp
abseil/abseil-cpp
charconv_parse
absl/strings/internal/charconv_parse.cc
absl/strings/internal/charconv_parse_test.cc
#include "absl/strings/internal/charconv_parse.h" #include "absl/strings/charconv.h" #include <cassert> #include <cstdint> #include <limits> #include "absl/strings/internal/memutil.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace { constexpr int kDecimalMantissaDigitsMax = 19; static_assert(std::numeric_limits<uint64_t>::digits10 == kDecimalMantissaDigitsMax, "(a) above"); static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed"); static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact"); static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact"); static_assert(1000000000000000000u > (uint64_t{1} << (53 + 3)), "(b) above"); constexpr int kHexadecimalMantissaDigitsMax = 15; constexpr int kGuaranteedHexadecimalMantissaBitPrecision = 4 * kHexadecimalMantissaDigitsMax - 3; static_assert(kGuaranteedHexadecimalMantissaBitPrecision > std::numeric_limits<double>::digits + 2, "kHexadecimalMantissaDigitsMax too small"); constexpr int kDecimalExponentDigitsMax = 9; static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax, "int type too small"); constexpr int kDecimalDigitLimit = 50000000; constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4; static_assert(999999999 + 2 * kDecimalDigitLimit < std::numeric_limits<int>::max(), "int type too small"); static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) < std::numeric_limits<int>::max(), "int type too small"); bool AllowExponent(chars_format flags) { bool fixed = (flags & chars_format::fixed) == chars_format::fixed; bool scientific = (flags & chars_format::scientific) == chars_format::scientific; return scientific || !fixed; } bool RequireExponent(chars_format flags) { bool fixed = (flags & chars_format::fixed) == chars_format::fixed; bool scientific = (flags & chars_format::scientific) == chars_format::scientific; return scientific && !fixed; } const int8_t kAsciiToInt[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; template <int base> bool IsDigit(char ch); template <int base> unsigned ToDigit(char ch); template <int base> bool IsExponentCharacter(char ch); template <int base> constexpr int MantissaDigitsMax(); template <int base> constexpr int DigitLimit(); template <int base> constexpr int DigitMagnitude(); template <> bool IsDigit<10>(char ch) { return ch >= '0' && ch <= '9'; } template <> bool IsDigit<16>(char ch) { return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0; } template <> unsigned ToDigit<10>(char ch) { return static_cast<unsigned>(ch - '0'); } template <> unsigned ToDigit<16>(char ch) { return static_cast<unsigned>(kAsciiToInt[static_cast<unsigned char>(ch)]); } template <> bool IsExponentCharacter<10>(char ch) { return ch == 'e' || ch == 'E'; } template <> bool IsExponentCharacter<16>(char ch) { return ch == 'p' || ch == 'P'; } template <> constexpr int MantissaDigitsMax<10>() { return kDecimalMantissaDigitsMax; } template <> constexpr int MantissaDigitsMax<16>() { return kHexadecimalMantissaDigitsMax; } template <> constexpr int DigitLimit<10>() { return kDecimalDigitLimit; } template <> constexpr int DigitLimit<16>() { return kHexadecimalDigitLimit; } template <> constexpr int DigitMagnitude<10>() { return 1; } template <> constexpr int DigitMagnitude<16>() { return 4; } template <int base, typename T> int ConsumeDigits(const char* begin, const char* end, int max_digits, T* out, bool* dropped_nonzero_digit) { if (base == 10) { assert(max_digits <= std::numeric_limits<T>::digits10); } else if (base == 16) { assert(max_digits * 4 <= std::numeric_limits<T>::digits); } const char* const original_begin = begin; while (!*out && end != begin && *begin == '0') ++begin; T accumulator = *out; const char* significant_digits_end = (end - begin > max_digits) ? begin + max_digits : end; while (begin < significant_digits_end && IsDigit<base>(*begin)) { auto digit = static_cast<T>(ToDigit<base>(*begin)); assert(accumulator * base >= accumulator); accumulator *= base; assert(accumulator + digit >= accumulator); accumulator += digit; ++begin; } bool dropped_nonzero = false; while (begin < end && IsDigit<base>(*begin)) { dropped_nonzero = dropped_nonzero || (*begin != '0'); ++begin; } if (dropped_nonzero && dropped_nonzero_digit != nullptr) { *dropped_nonzero_digit = true; } *out = accumulator; return static_cast<int>(begin - original_begin); } bool IsNanChar(char v) { return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') || (v >= 'A' && v <= 'Z'); } bool ParseInfinityOrNan(const char* begin, const char* end, strings_internal::ParsedFloat* out) { if (end - begin < 3) { return false; } switch (*begin) { case 'i': case 'I': { if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) { return false; } out->type = strings_internal::FloatType::kInfinity; if (end - begin >= 8 && strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) { out->end = begin + 8; } else { out->end = begin + 3; } return true; } case 'n': case 'N': { if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) { return false; } out->type = strings_internal::FloatType::kNan; out->end = begin + 3; begin += 3; if (begin < end && *begin == '(') { const char* nan_begin = begin + 1; while (nan_begin < end && IsNanChar(*nan_begin)) { ++nan_begin; } if (nan_begin < end && *nan_begin == ')') { out->subrange_begin = begin + 1; out->subrange_end = nan_begin; out->end = nan_begin + 1; } } return true; } default: return false; } } } namespace strings_internal { template <int base> strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end, chars_format format_flags) { strings_internal::ParsedFloat result; if (begin == end) return result; if (ParseInfinityOrNan(begin, end, &result)) { return result; } const char* const mantissa_begin = begin; while (begin < end && *begin == '0') { ++begin; } uint64_t mantissa = 0; int exponent_adjustment = 0; bool mantissa_is_inexact = false; int pre_decimal_digits = ConsumeDigits<base>( begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact); begin += pre_decimal_digits; int digits_left; if (pre_decimal_digits >= DigitLimit<base>()) { return result; } else if (pre_decimal_digits > MantissaDigitsMax<base>()) { exponent_adjustment = static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>()); digits_left = 0; } else { digits_left = static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits); } if (begin < end && *begin == '.') { ++begin; if (mantissa == 0) { const char* begin_zeros = begin; while (begin < end && *begin == '0') { ++begin; } int zeros_skipped = static_cast<int>(begin - begin_zeros); if (zeros_skipped >= DigitLimit<base>()) { return result; } exponent_adjustment -= static_cast<int>(zeros_skipped); } int post_decimal_digits = ConsumeDigits<base>( begin, end, digits_left, &mantissa, &mantissa_is_inexact); begin += post_decimal_digits; if (post_decimal_digits >= DigitLimit<base>()) { return result; } else if (post_decimal_digits > digits_left) { exponent_adjustment -= digits_left; } else { exponent_adjustment -= post_decimal_digits; } } if (mantissa_begin == begin) { return result; } if (begin - mantissa_begin == 1 && *mantissa_begin == '.') { return result; } if (mantissa_is_inexact) { if (base == 10) { result.subrange_begin = mantissa_begin; result.subrange_end = begin; } else if (base == 16) { mantissa |= 1; } } result.mantissa = mantissa; const char* const exponent_begin = begin; result.literal_exponent = 0; bool found_exponent = false; if (AllowExponent(format_flags) && begin < end && IsExponentCharacter<base>(*begin)) { bool negative_exponent = false; ++begin; if (begin < end && *begin == '-') { negative_exponent = true; ++begin; } else if (begin < end && *begin == '+') { ++begin; } const char* const exponent_digits_begin = begin; begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax, &result.literal_exponent, nullptr); if (begin == exponent_digits_begin) { found_exponent = false; begin = exponent_begin; } else { found_exponent = true; if (negative_exponent) { result.literal_exponent = -result.literal_exponent; } } } if (!found_exponent && RequireExponent(format_flags)) { return result; } result.type = strings_internal::FloatType::kNumber; if (result.mantissa > 0) { result.exponent = result.literal_exponent + (DigitMagnitude<base>() * exponent_adjustment); } else { result.exponent = 0; } result.end = begin; return result; } template ParsedFloat ParseFloat<10>(const char* begin, const char* end, chars_format format_flags); template ParsedFloat ParseFloat<16>(const char* begin, const char* end, chars_format format_flags); } ABSL_NAMESPACE_END }
#include "absl/strings/internal/charconv_parse.h" #include <string> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" using absl::chars_format; using absl::strings_internal::FloatType; using absl::strings_internal::ParsedFloat; using absl::strings_internal::ParseFloat; namespace { template <int base> void ExpectParsedFloat(std::string s, absl::chars_format format_flags, FloatType expected_type, uint64_t expected_mantissa, int expected_exponent, int expected_literal_exponent = -999) { SCOPED_TRACE(s); int begin_subrange = -1; int end_subrange = -1; std::string::size_type open_bracket_pos = s.find('['); if (open_bracket_pos != std::string::npos) { begin_subrange = static_cast<int>(open_bracket_pos); s.replace(open_bracket_pos, 1, ""); std::string::size_type close_bracket_pos = s.find(']'); CHECK_NE(close_bracket_pos, absl::string_view::npos) << "Test input contains [ without matching ]"; end_subrange = static_cast<int>(close_bracket_pos); s.replace(close_bracket_pos, 1, ""); } const std::string::size_type expected_characters_matched = s.find('$'); CHECK_NE(expected_characters_matched, std::string::npos) << "Input string must contain $"; s.replace(expected_characters_matched, 1, ""); ParsedFloat parsed = ParseFloat<base>(s.data(), s.data() + s.size(), format_flags); EXPECT_NE(parsed.end, nullptr); if (parsed.end == nullptr) { return; } EXPECT_EQ(parsed.type, expected_type); if (begin_subrange == -1) { EXPECT_EQ(parsed.subrange_begin, nullptr); EXPECT_EQ(parsed.subrange_end, nullptr); } else { EXPECT_EQ(parsed.subrange_begin, s.data() + begin_subrange); EXPECT_EQ(parsed.subrange_end, s.data() + end_subrange); } if (parsed.type == FloatType::kNumber) { EXPECT_EQ(parsed.mantissa, expected_mantissa); EXPECT_EQ(parsed.exponent, expected_exponent); if (expected_literal_exponent != -999) { EXPECT_EQ(parsed.literal_exponent, expected_literal_exponent); } } auto characters_matched = static_cast<int>(parsed.end - s.data()); EXPECT_EQ(characters_matched, expected_characters_matched); } template <int base> void ExpectNumber(std::string s, absl::chars_format format_flags, uint64_t expected_mantissa, int expected_exponent, int expected_literal_exponent = -999) { ExpectParsedFloat<base>(std::move(s), format_flags, FloatType::kNumber, expected_mantissa, expected_exponent, expected_literal_exponent); } void ExpectSpecial(const std::string& s, absl::chars_format format_flags, FloatType type) { ExpectParsedFloat<10>(s, format_flags, type, 0, 0); ExpectParsedFloat<16>(s, format_flags, type, 0, 0); } template <int base> void ExpectFailedParse(absl::string_view s, absl::chars_format format_flags) { ParsedFloat parsed = ParseFloat<base>(s.data(), s.data() + s.size(), format_flags); EXPECT_EQ(parsed.end, nullptr); } TEST(ParseFloat, SimpleValue) { ExpectNumber<10>("1.23456789e5$", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789e+5$", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789E5$", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789e05$", chars_format::general, 123456789, -3); ExpectNumber<10>("123.456789e3$", chars_format::general, 123456789, -3); ExpectNumber<10>("0.000123456789e9$", chars_format::general, 123456789, -3); ExpectNumber<10>("123456.789$", chars_format::general, 123456789, -3); ExpectNumber<10>("123456789e-3$", chars_format::general, 123456789, -3); ExpectNumber<16>("1.234abcdefp28$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234abcdefp+28$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234ABCDEFp28$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234AbCdEfP0028$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("123.4abcdefp20$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("0.0001234abcdefp44$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1234abcd.ef$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1234abcdefp-8$", chars_format::general, 0x1234abcdef, -8); ExpectNumber<10>("0001.2345678900e005$", chars_format::general, 12345678900, -5); ExpectNumber<16>("0001.234abcdef000p28$", chars_format::general, 0x1234abcdef000, -20); ExpectNumber<10>("1.23456789e5$ ", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789e5$e5e5", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789e5$.25", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789e5$-", chars_format::general, 123456789, -3); ExpectNumber<10>("1.23456789e5$PUPPERS!!!", chars_format::general, 123456789, -3); ExpectNumber<10>("123456.789$efghij", chars_format::general, 123456789, -3); ExpectNumber<10>("123456.789$e", chars_format::general, 123456789, -3); ExpectNumber<10>("123456.789$p5", chars_format::general, 123456789, -3); ExpectNumber<10>("123456.789$.10", chars_format::general, 123456789, -3); ExpectNumber<16>("1.234abcdefp28$ ", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234abcdefp28$p28", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234abcdefp28$.125", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234abcdefp28$-", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1.234abcdefp28$KITTEHS!!!", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1234abcd.ef$ghijk", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1234abcd.ef$p", chars_format::general, 0x1234abcdef, -8); ExpectNumber<16>("1234abcd.ef$.10", chars_format::general, 0x1234abcdef, -8); ExpectNumber<10>("9999999999999999999$", chars_format::general, 9999999999999999999u, 0); ExpectNumber<16>("fffffffffffffff$", chars_format::general, 0xfffffffffffffffu, 0); ExpectNumber<10>("0$", chars_format::general, 0, 0); ExpectNumber<16>("0$", chars_format::general, 0, 0); ExpectNumber<10>("000000000000000000000000000000000000000$", chars_format::general, 0, 0); ExpectNumber<16>("000000000000000000000000000000000000000$", chars_format::general, 0, 0); ExpectNumber<10>("0000000000000000000000.000000000000000000$", chars_format::general, 0, 0); ExpectNumber<16>("0000000000000000000000.000000000000000000$", chars_format::general, 0, 0); ExpectNumber<10>("0.00000000000000000000000000000000e123456$", chars_format::general, 0, 0); ExpectNumber<16>("0.00000000000000000000000000000000p123456$", chars_format::general, 0, 0); } TEST(ParseFloat, LargeDecimalMantissa) { ExpectNumber<10>("100000000000000000000000000$", chars_format::general, 1000000000000000000, 8); ExpectNumber<10>("123456789123456789100000000$", chars_format::general, 1234567891234567891, 8); ExpectNumber<10>("[123456789123456789123456789]$", chars_format::general, 1234567891234567891, 8, 0); ExpectNumber<10>("[123456789123456789100000009]$", chars_format::general, 1234567891234567891, 8, 0); ExpectNumber<10>("[123456789123456789120000000]$", chars_format::general, 1234567891234567891, 8, 0); ExpectNumber<10>("[00000000123456789123456789123456789]$", chars_format::general, 1234567891234567891, 8, 0); ExpectNumber<10>("00000000123456789123456789100000000$", chars_format::general, 1234567891234567891, 8); ExpectNumber<10>("1.234567891234567891e123$", chars_format::general, 1234567891234567891, 105); ExpectNumber<10>("[1.23456789123456789123456789]e123$", chars_format::general, 1234567891234567891, 105, 123); ExpectNumber<10>("[1999999999999999999999]$", chars_format::general, 1999999999999999999, 3, 0); } TEST(ParseFloat, LargeHexadecimalMantissa) { ExpectNumber<16>("123456789abcdef123456789abcdef$", chars_format::general, 0x123456789abcdef, 60); ExpectNumber<16>("000000123456789abcdef123456789abcdef$", chars_format::general, 0x123456789abcdef, 60); ExpectNumber<16>("1.23456789abcdefp100$", chars_format::general, 0x123456789abcdef, 44); ExpectNumber<16>("1.23456789abcdef123456789abcdefp100$", chars_format::general, 0x123456789abcdef, 44); ExpectNumber<16>("123456789abcdee123456789abcdee$", chars_format::general, 0x123456789abcdef, 60); ExpectNumber<16>("123456789abcdee000000000000001$", chars_format::general, 0x123456789abcdef, 60); ExpectNumber<16>("123456789abcdee000000000000000$", chars_format::general, 0x123456789abcdee, 60); } TEST(ParseFloat, ScientificVsFixed) { ExpectNumber<10>("1.23456789$e5", chars_format::fixed, 123456789, -8); ExpectNumber<10>("123456.789$", chars_format::fixed, 123456789, -3); ExpectNumber<16>("1.234abcdef$p28", chars_format::fixed, 0x1234abcdef, -36); ExpectNumber<16>("1234abcd.ef$", chars_format::fixed, 0x1234abcdef, -8); ExpectNumber<10>("1.23456789e5$", chars_format::scientific, 123456789, -3); ExpectFailedParse<10>("-123456.789$", chars_format::scientific); ExpectNumber<16>("1.234abcdefp28$", chars_format::scientific, 0x1234abcdef, -8); ExpectFailedParse<16>("1234abcd.ef$", chars_format::scientific); } TEST(ParseFloat, Infinity) { ExpectFailedParse<10>("in", chars_format::general); ExpectFailedParse<16>("in", chars_format::general); ExpectFailedParse<10>("inx", chars_format::general); ExpectFailedParse<16>("inx", chars_format::general); ExpectSpecial("inf$", chars_format::general, FloatType::kInfinity); ExpectSpecial("Inf$", chars_format::general, FloatType::kInfinity); ExpectSpecial("INF$", chars_format::general, FloatType::kInfinity); ExpectSpecial("inf$inite", chars_format::general, FloatType::kInfinity); ExpectSpecial("iNfInItY$", chars_format::general, FloatType::kInfinity); ExpectSpecial("infinity$!!!", chars_format::general, FloatType::kInfinity); } TEST(ParseFloat, NaN) { ExpectFailedParse<10>("na", chars_format::general); ExpectFailedParse<16>("na", chars_format::general); ExpectFailedParse<10>("nah", chars_format::general); ExpectFailedParse<16>("nah", chars_format::general); ExpectSpecial("nan$", chars_format::general, FloatType::kNan); ExpectSpecial("NaN$", chars_format::general, FloatType::kNan); ExpectSpecial("nAn$", chars_format::general, FloatType::kNan); ExpectSpecial("NAN$", chars_format::general, FloatType::kNan); ExpectSpecial("NaN$aNaNaNaNaBatman!", chars_format::general, FloatType::kNan); ExpectSpecial("nan([0xabcdef])$", chars_format::general, FloatType::kNan); ExpectSpecial("nan([0xabcdef])$...", chars_format::general, FloatType::kNan); ExpectSpecial("nan([0xabcdef])$)...", chars_format::general, FloatType::kNan); ExpectSpecial("nan([])$", chars_format::general, FloatType::kNan); ExpectSpecial("nan([aAzZ09_])$", chars_format::general, FloatType::kNan); ExpectSpecial("nan$(bad-char)", chars_format::general, FloatType::kNan); ExpectSpecial("nan$(0xabcdef", chars_format::general, FloatType::kNan); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/charconv_parse.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/charconv_parse_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
e4f7969a-884d-459f-a3f8-7c48d3440123
cpp
google/cel-cpp
error_value
common/values/error_value.cc
common/values/error_value_test.cc
#include <string> #include "absl/base/no_destructor.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "common/json.h" #include "common/type.h" #include "common/value.h" namespace cel { namespace { std::string ErrorDebugString(const absl::Status& value) { ABSL_DCHECK(!value.ok()) << "use of moved-from ErrorValue"; return value.ToString(absl::StatusToStringMode::kWithEverything); } const absl::Status& DefaultErrorValue() { static const absl::NoDestructor<absl::Status> value( absl::UnknownError("unknown error")); return *value; } } ErrorValue::ErrorValue() : ErrorValue(DefaultErrorValue()) {} ErrorValue NoSuchFieldError(absl::string_view field) { return ErrorValue(absl::NotFoundError( absl::StrCat("no_such_field", field.empty() ? "" : " : ", field))); } ErrorValue NoSuchKeyError(absl::string_view key) { return ErrorValue( absl::NotFoundError(absl::StrCat("Key not found in map : ", key))); } ErrorValue NoSuchTypeError(absl::string_view type) { return ErrorValue( absl::NotFoundError(absl::StrCat("type not found: ", type))); } ErrorValue DuplicateKeyError() { return ErrorValue(absl::AlreadyExistsError("duplicate key in map")); } ErrorValue TypeConversionError(absl::string_view from, absl::string_view to) { return ErrorValue(absl::InvalidArgumentError( absl::StrCat("type conversion error from '", from, "' to '", to, "'"))); } ErrorValue TypeConversionError(const Type& from, const Type& to) { return TypeConversionError(from.DebugString(), to.DebugString()); } bool IsNoSuchField(const ErrorValue& value) { return absl::IsNotFound(value.NativeValue()) && absl::StartsWith(value.NativeValue().message(), "no_such_field"); } bool IsNoSuchKey(const ErrorValue& value) { return absl::IsNotFound(value.NativeValue()) && absl::StartsWith(value.NativeValue().message(), "Key not found in map"); } std::string ErrorValue::DebugString() const { return ErrorDebugString(value_); } absl::Status ErrorValue::SerializeTo(AnyToJsonConverter&, absl::Cord&) const { return absl::FailedPreconditionError( absl::StrCat(GetTypeName(), " is unserializable")); } absl::StatusOr<Json> ErrorValue::ConvertToJson(AnyToJsonConverter&) const { return absl::FailedPreconditionError( absl::StrCat(GetTypeName(), " is not convertable to JSON")); } absl::Status ErrorValue::Equal(ValueManager&, const Value&, Value& result) const { result = BoolValue{false}; return absl::OkStatus(); } }
#include <sstream> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/native_type.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::StatusIs; using ::testing::_; using ::testing::An; using ::testing::IsEmpty; using ::testing::Ne; using ::testing::Not; using ErrorValueTest = common_internal::ThreadCompatibleValueTest<>; TEST_P(ErrorValueTest, Default) { ErrorValue value; EXPECT_THAT(value.NativeValue(), StatusIs(absl::StatusCode::kUnknown)); } TEST_P(ErrorValueTest, OkStatus) { EXPECT_DEBUG_DEATH(static_cast<void>(ErrorValue(absl::OkStatus())), _); } TEST_P(ErrorValueTest, Kind) { EXPECT_EQ(ErrorValue(absl::CancelledError()).kind(), ErrorValue::kKind); EXPECT_EQ(Value(ErrorValue(absl::CancelledError())).kind(), ErrorValue::kKind); } TEST_P(ErrorValueTest, DebugString) { { std::ostringstream out; out << ErrorValue(absl::CancelledError()); EXPECT_THAT(out.str(), Not(IsEmpty())); } { std::ostringstream out; out << Value(ErrorValue(absl::CancelledError())); EXPECT_THAT(out.str(), Not(IsEmpty())); } } TEST_P(ErrorValueTest, SerializeTo) { absl::Cord value; EXPECT_THAT(ErrorValue().SerializeTo(value_manager(), value), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(ErrorValueTest, ConvertToJson) { EXPECT_THAT(ErrorValue().ConvertToJson(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(ErrorValueTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of(ErrorValue(absl::CancelledError())), NativeTypeId::For<ErrorValue>()); EXPECT_EQ(NativeTypeId::Of(Value(ErrorValue(absl::CancelledError()))), NativeTypeId::For<ErrorValue>()); } TEST_P(ErrorValueTest, InstanceOf) { EXPECT_TRUE(InstanceOf<ErrorValue>(ErrorValue(absl::CancelledError()))); EXPECT_TRUE( InstanceOf<ErrorValue>(Value(ErrorValue(absl::CancelledError())))); } TEST_P(ErrorValueTest, Cast) { EXPECT_THAT(Cast<ErrorValue>(ErrorValue(absl::CancelledError())), An<ErrorValue>()); EXPECT_THAT(Cast<ErrorValue>(Value(ErrorValue(absl::CancelledError()))), An<ErrorValue>()); } TEST_P(ErrorValueTest, As) { EXPECT_THAT(As<ErrorValue>(Value(ErrorValue(absl::CancelledError()))), Ne(absl::nullopt)); } INSTANTIATE_TEST_SUITE_P( ErrorValueTest, ErrorValueTest, ::testing::Combine(::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting)), ErrorValueTest::ToString); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/error_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/error_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
ffee8254-4227-43c8-9032-3f027718dad1
cpp
google/cel-cpp
duration_type
common/types/duration_type.h
common/types/duration_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_DURATION_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_DURATION_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class DurationType final { public: static constexpr TypeKind kKind = TypeKind::kDuration; static constexpr absl::string_view kName = "google.protobuf.Duration"; DurationType() = default; DurationType(const DurationType&) = default; DurationType(DurationType&&) = default; DurationType& operator=(const DurationType&) = default; DurationType& operator=(DurationType&&) = default; static TypeKind kind() { return kKind; } static absl::string_view name() { return kName; } static TypeParameters GetParameters(); static std::string DebugString() { return std::string(name()); } constexpr void swap(DurationType&) noexcept {} }; inline constexpr void swap(DurationType& lhs, DurationType& rhs) noexcept { lhs.swap(rhs); } inline constexpr bool operator==(DurationType, DurationType) { return true; } inline constexpr bool operator!=(DurationType lhs, DurationType rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, DurationType) { return std::move(state); } inline std::ostream& operator<<(std::ostream& out, const DurationType& type) { return out << type.DebugString(); } } #endif
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { TEST(DurationType, Kind) { EXPECT_EQ(DurationType().kind(), DurationType::kKind); EXPECT_EQ(Type(DurationType()).kind(), DurationType::kKind); } TEST(DurationType, Name) { EXPECT_EQ(DurationType().name(), DurationType::kName); EXPECT_EQ(Type(DurationType()).name(), DurationType::kName); } TEST(DurationType, DebugString) { { std::ostringstream out; out << DurationType(); EXPECT_EQ(out.str(), DurationType::kName); } { std::ostringstream out; out << Type(DurationType()); EXPECT_EQ(out.str(), DurationType::kName); } } TEST(DurationType, Hash) { EXPECT_EQ(absl::HashOf(DurationType()), absl::HashOf(DurationType())); } TEST(DurationType, Equal) { EXPECT_EQ(DurationType(), DurationType()); EXPECT_EQ(Type(DurationType()), DurationType()); EXPECT_EQ(DurationType(), Type(DurationType())); EXPECT_EQ(Type(DurationType()), Type(DurationType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/duration_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/duration_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
5dcd7ac0-6bda-4243-81e7-3c128c6e2b43
cpp
tensorflow/tensorflow
cast
tensorflow/lite/delegates/gpu/common/tasks/cast.cc
tensorflow/lite/delegates/gpu/cl/kernels/cast_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/cast.h" #include <map> #include <string> #include <utility> #include <vector> #include "absl/strings/substitute.h" #include "tensorflow/lite/delegates/gpu/common/task/util.h" namespace tflite { namespace gpu { GPUOperation CreateCast(const OperationDef& definition, const GpuInfo& gpu_info) { ElementwiseDescriptor op_desc; const std::string conversion = GetTypeConversion(gpu_info, definition.src_tensors[0].GetDataType(), definition.dst_tensors[0].GetDataType(), 4); op_desc.code = "out_value = " + absl::Substitute(conversion, "in_value") + ";\n"; return CreateGpuOperation(definition, std::move(op_desc)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/cast_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, Cast) { auto status = CastTests(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, CastToBool) { auto status = CastToBoolTests(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, CastFromBool) { auto status = CastFromBoolTests(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/cast.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/cast_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
17e61239-1dca-4b8b-a5dd-20c400f1ed09
cpp
google/libphonenumber
phonenumberutil
cpp/src/phonenumbers/phonenumberutil.cc
cpp/test/phonenumbers/phonenumberutil_test.cc
#include "phonenumbers/phonenumberutil.h" #include <algorithm> #include <cctype> #include <cstring> #include <iterator> #include <map> #include <utility> #include <vector> #include <unicode/uchar.h> #include <unicode/utf8.h> #include "phonenumbers/asyoutypeformatter.h" #include "phonenumbers/base/basictypes.h" #include "phonenumbers/base/logging.h" #include "phonenumbers/base/memory/singleton.h" #include "phonenumbers/default_logger.h" #include "phonenumbers/encoding_utils.h" #include "phonenumbers/matcher_api.h" #include "phonenumbers/metadata.h" #include "phonenumbers/normalize_utf8.h" #include "phonenumbers/phonemetadata.pb.h" #include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumber.pb.h" #include "phonenumbers/regex_based_matcher.h" #include "phonenumbers/regexp_adapter.h" #include "phonenumbers/regexp_cache.h" #include "phonenumbers/regexp_factory.h" #include "phonenumbers/region_code.h" #include "phonenumbers/stl_util.h" #include "phonenumbers/stringutil.h" #include "phonenumbers/utf/unicodetext.h" #include "phonenumbers/utf/utf.h" namespace i18n { namespace phonenumbers { using google::protobuf::RepeatedField; using gtl::OrderByFirst; const size_t PhoneNumberUtil::kMinLengthForNsn; const size_t PhoneNumberUtil::kMaxLengthForNsn; const size_t PhoneNumberUtil::kMaxLengthCountryCode; const int PhoneNumberUtil::kNanpaCountryCode; const char PhoneNumberUtil::kPlusChars[] = "+\xEF\xBC\x8B"; const char PhoneNumberUtil::kValidPunctuation[] = "-x\xE2\x80\x90-\xE2\x80\x95\xE2\x88\x92\xE3\x83\xBC\xEF\xBC\x8D-\xEF\xBC" "\x8F \xC2\xA0\xC2\xAD\xE2\x80\x8B\xE2\x81\xA0\xE3\x80\x80()\xEF\xBC\x88" "\xEF\xBC\x89\xEF\xBC\xBB\xEF\xBC\xBD.\\[\\]/~\xE2\x81\x93\xE2\x88\xBC"; const char PhoneNumberUtil::kCaptureUpToSecondNumberStart[] = "(.*)[\\\\/] *x"; const char PhoneNumberUtil::kRegionCodeForNonGeoEntity[] = "001"; namespace { const char kPlusSign[] = "+"; const char kStarSign[] = "*"; const char kRfc3966ExtnPrefix[] = ";ext="; const char kRfc3966Prefix[] = "tel:"; const char kRfc3966PhoneContext[] = ";phone-context="; const char kRfc3966IsdnSubaddress[] = ";isub="; const char kRfc3966VisualSeparator[] = "[\\-\\.\\(\\)]?"; const char kDigits[] = "\\p{Nd}"; const char kValidAlpha[] = "a-z"; const char kValidAlphaInclUppercase[] = "A-Za-z"; const char kDefaultExtnPrefix[] = " ext. "; const char kPossibleSeparatorsBetweenNumberAndExtLabel[] = "[ \xC2\xA0\\t,]*"; const char kPossibleCharsAfterExtLabel[] = "[:\\.\xEF\xBC\x8E]?[ \xC2\xA0\\t,-]*"; const char kOptionalExtSuffix[] = "#?"; bool LoadCompiledInMetadata(PhoneMetadataCollection* metadata) { if (!metadata->ParseFromArray(metadata_get(), metadata_size())) { LOG(ERROR) << "Could not parse binary data."; return false; } return true; } const PhoneNumberDesc* GetNumberDescByType( const PhoneMetadata& metadata, PhoneNumberUtil::PhoneNumberType type) { switch (type) { case PhoneNumberUtil::PREMIUM_RATE: return &metadata.premium_rate(); case PhoneNumberUtil::TOLL_FREE: return &metadata.toll_free(); case PhoneNumberUtil::MOBILE: return &metadata.mobile(); case PhoneNumberUtil::FIXED_LINE: case PhoneNumberUtil::FIXED_LINE_OR_MOBILE: return &metadata.fixed_line(); case PhoneNumberUtil::SHARED_COST: return &metadata.shared_cost(); case PhoneNumberUtil::VOIP: return &metadata.voip(); case PhoneNumberUtil::PERSONAL_NUMBER: return &metadata.personal_number(); case PhoneNumberUtil::PAGER: return &metadata.pager(); case PhoneNumberUtil::UAN: return &metadata.uan(); case PhoneNumberUtil::VOICEMAIL: return &metadata.voicemail(); default: return &metadata.general_desc(); } } void PrefixNumberWithCountryCallingCode( int country_calling_code, PhoneNumberUtil::PhoneNumberFormat number_format, std::string* formatted_number) { switch (number_format) { case PhoneNumberUtil::E164: formatted_number->insert(0, StrCat(kPlusSign, country_calling_code)); return; case PhoneNumberUtil::INTERNATIONAL: formatted_number->insert(0, StrCat(kPlusSign, country_calling_code, " ")); return; case PhoneNumberUtil::RFC3966: formatted_number->insert(0, StrCat(kRfc3966Prefix, kPlusSign, country_calling_code, "-")); return; case PhoneNumberUtil::NATIONAL: default: return; } } bool IsNationalNumberSuffixOfTheOther(const PhoneNumber& first_number, const PhoneNumber& second_number) { const std::string& first_number_national_number = SimpleItoa(static_cast<uint64>(first_number.national_number())); const std::string& second_number_national_number = SimpleItoa(static_cast<uint64>(second_number.national_number())); return HasSuffixString(first_number_national_number, second_number_national_number) || HasSuffixString(second_number_national_number, first_number_national_number); } char32 ToUnicodeCodepoint(const char* unicode_char) { char32 codepoint; EncodingUtils::DecodeUTF8Char(unicode_char, &codepoint); return codepoint; } std::string ExtnDigits(int max_length) { return StrCat("([", kDigits, "]{1,", max_length, "})"); } std::string CreateExtnPattern(bool for_parsing) { int ext_limit_after_explicit_label = 20; int ext_limit_after_likely_label = 15; int ext_limit_after_ambiguous_char = 9; int ext_limit_when_not_sure = 6; std::string explicit_ext_labels = "(?:e?xt(?:ensi(?:o\xCC\x81?|\xC3\xB3))?n?|(?:\xEF\xBD\x85)?" "\xEF\xBD\x98\xEF\xBD\x94(?:\xEF\xBD\x8E)?|\xD0\xB4\xD0\xBE\xD0\xB1|" "anexo)"; std::string ambiguous_ext_labels = "(?:[x\xEF\xBD\x98#\xEF\xBC\x83~\xEF\xBD\x9E]|int|" "\xEF\xBD\x89\xEF\xBD\x8E\xEF\xBD\x94)"; std::string ambiguous_separator = "[- ]+"; std::string rfc_extn = StrCat( kRfc3966ExtnPrefix, ExtnDigits(ext_limit_after_explicit_label)); std::string explicit_extn = StrCat( kPossibleSeparatorsBetweenNumberAndExtLabel, explicit_ext_labels, kPossibleCharsAfterExtLabel, ExtnDigits(ext_limit_after_explicit_label), kOptionalExtSuffix); std::string ambiguous_extn = StrCat( kPossibleSeparatorsBetweenNumberAndExtLabel, ambiguous_ext_labels, kPossibleCharsAfterExtLabel, ExtnDigits(ext_limit_after_ambiguous_char), kOptionalExtSuffix); std::string american_style_extn_with_suffix = StrCat( ambiguous_separator, ExtnDigits(ext_limit_when_not_sure), "#"); std::string extension_pattern = StrCat(rfc_extn, "|", explicit_extn, "|", ambiguous_extn, "|", american_style_extn_with_suffix); if (for_parsing) { std::string auto_dialling_and_ext_labels_found = "(?:,{2}|;)"; std::string possible_separators_number_extLabel_no_comma = "[ \xC2\xA0\\t]*"; std::string auto_dialling_extn = StrCat( possible_separators_number_extLabel_no_comma, auto_dialling_and_ext_labels_found, kPossibleCharsAfterExtLabel, ExtnDigits(ext_limit_after_likely_label), kOptionalExtSuffix); std::string only_commas_extn = StrCat( possible_separators_number_extLabel_no_comma, "(?:,)+", kPossibleCharsAfterExtLabel, ExtnDigits(ext_limit_after_ambiguous_char), kOptionalExtSuffix); return StrCat(extension_pattern, "|", auto_dialling_extn, "|", only_commas_extn); } return extension_pattern; } void NormalizeHelper(const std::map<char32, char>& normalization_replacements, bool remove_non_matches, string* number) { DCHECK(number); UnicodeText number_as_unicode; number_as_unicode.PointToUTF8(number->data(), static_cast<int>(number->size())); if (!number_as_unicode.UTF8WasValid()) { number->clear(); return; } std::string normalized_number; char unicode_char[5]; for (UnicodeText::const_iterator it = number_as_unicode.begin(); it != number_as_unicode.end(); ++it) { std::map<char32, char>::const_iterator found_glyph_pair = normalization_replacements.find(*it); if (found_glyph_pair != normalization_replacements.end()) { normalized_number.push_back(found_glyph_pair->second); } else if (!remove_non_matches) { int char_len = it.get_utf8(unicode_char); normalized_number.append(unicode_char, char_len); } } number->assign(normalized_number); } bool DescHasPossibleNumberData(const PhoneNumberDesc& desc) { return desc.possible_length_size() != 1 || desc.possible_length(0) != -1; } bool DescHasData(const PhoneNumberDesc& desc) { return desc.has_example_number() || DescHasPossibleNumberData(desc) || desc.has_national_number_pattern(); } void GetSupportedTypesForMetadata( const PhoneMetadata& metadata, std::set<PhoneNumberUtil::PhoneNumberType>* types) { DCHECK(types); for (int i = 0; i <= static_cast<int>(PhoneNumberUtil::kMaxNumberType); ++i) { PhoneNumberUtil::PhoneNumberType type = static_cast<PhoneNumberUtil::PhoneNumberType>(i); if (type == PhoneNumberUtil::FIXED_LINE_OR_MOBILE || type == PhoneNumberUtil::UNKNOWN) { continue; } if (DescHasData(*GetNumberDescByType(metadata, type))) { types->insert(type); } } } PhoneNumberUtil::ValidationResult TestNumberLength( const std::string& number, const PhoneMetadata& metadata, PhoneNumberUtil::PhoneNumberType type) { const PhoneNumberDesc* desc_for_type = GetNumberDescByType(metadata, type); RepeatedField<int> possible_lengths = desc_for_type->possible_length_size() == 0 ? metadata.general_desc().possible_length() : desc_for_type->possible_length(); RepeatedField<int> local_lengths = desc_for_type->possible_length_local_only(); if (type == PhoneNumberUtil::FIXED_LINE_OR_MOBILE) { const PhoneNumberDesc* fixed_line_desc = GetNumberDescByType(metadata, PhoneNumberUtil::FIXED_LINE); if (!DescHasPossibleNumberData(*fixed_line_desc)) { return TestNumberLength(number, metadata, PhoneNumberUtil::MOBILE); } else { const PhoneNumberDesc* mobile_desc = GetNumberDescByType(metadata, PhoneNumberUtil::MOBILE); if (DescHasPossibleNumberData(*mobile_desc)) { possible_lengths.MergeFrom( mobile_desc->possible_length_size() == 0 ? metadata.general_desc().possible_length() : mobile_desc->possible_length()); std::sort(possible_lengths.begin(), possible_lengths.end()); if (local_lengths.size() == 0) { local_lengths = mobile_desc->possible_length_local_only(); } else { local_lengths.MergeFrom(mobile_desc->possible_length_local_only()); std::sort(local_lengths.begin(), local_lengths.end()); } } } } if (possible_lengths.Get(0) == -1) { return PhoneNumberUtil::INVALID_LENGTH; } int actual_length = static_cast<int>(number.length()); if (std::find(local_lengths.begin(), local_lengths.end(), actual_length) != local_lengths.end()) { return PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY; } int minimum_length = possible_lengths.Get(0); if (minimum_length == actual_length) { return PhoneNumberUtil::IS_POSSIBLE; } else if (minimum_length > actual_length) { return PhoneNumberUtil::TOO_SHORT; } else if (*(possible_lengths.end() - 1) < actual_length) { return PhoneNumberUtil::TOO_LONG; } return std::find(possible_lengths.begin() + 1, possible_lengths.end(), actual_length) != possible_lengths.end() ? PhoneNumberUtil::IS_POSSIBLE : PhoneNumberUtil::INVALID_LENGTH; } PhoneNumberUtil::ValidationResult TestNumberLength( const std::string& number, const PhoneMetadata& metadata) { return TestNumberLength(number, metadata, PhoneNumberUtil::UNKNOWN); } void CopyCoreFieldsOnly(const PhoneNumber& number, PhoneNumber* pruned_number) { pruned_number->set_country_code(number.country_code()); pruned_number->set_national_number(number.national_number()); if (!number.extension().empty()) { pruned_number->set_extension(number.extension()); } if (number.italian_leading_zero()) { pruned_number->set_italian_leading_zero(true); pruned_number->set_number_of_leading_zeros( number.number_of_leading_zeros()); } } bool IsMatch(const MatcherApi& matcher_api, const std::string& number, const PhoneNumberDesc& desc) { return matcher_api.MatchNationalNumber(number, desc, false); } } void PhoneNumberUtil::SetLogger(Logger* logger) { logger_.reset(logger); Logger::set_logger_impl(logger_.get()); } class PhoneNumberRegExpsAndMappings { private: void InitializeMapsAndSets() { diallable_char_mappings_.insert(std::make_pair('+', '+')); diallable_char_mappings_.insert(std::make_pair('*', '*')); diallable_char_mappings_.insert(std::make_pair('#', '#')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("-"), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xEF\xBC\x8D" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x80\x90" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x80\x91" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x80\x92" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x80\x93" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x80\x94" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x80\x95" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x88\x92" ), '-')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("/"), '/')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xEF\xBC\x8F" ), '/')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint(" "), ' ')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE3\x80\x80" ), ' ')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xE2\x81\xA0"), ' ')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("."), '.')); all_plus_number_grouping_symbols_.insert( std::make_pair(ToUnicodeCodepoint("\xEF\xBC\x8E" ), '.')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("A"), '2')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("B"), '2')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("C"), '2')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("D"), '3')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("E"), '3')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("F"), '3')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("G"), '4')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("H"), '4')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("I"), '4')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("J"), '5')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("K"), '5')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("L"), '5')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("M"), '6')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("N"), '6')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("O"), '6')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("P"), '7')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("Q"), '7')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("R"), '7')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("S"), '7')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("T"), '8')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("U"), '8')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("V"), '8')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("W"), '9')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("X"), '9')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("Y"), '9')); alpha_mappings_.insert(std::make_pair(ToUnicodeCodepoint("Z"), '9')); std::map<char32, char> lower_case_mappings; std::map<char32, char> alpha_letters; for (std::map<char32, char>::const_iterator it = alpha_mappings_.begin(); it != alpha_mappings_.end(); ++it) { if (it->first < 128) { char letter_as_upper = static_cast<char>(it->first); char32 letter_as_lower = static_cast<char32>(tolower(letter_as_upper)); lower_case_mappings.insert(std::make_pair(letter_as_lower, it->second)); alpha_letters.insert(std::make_pair(letter_as_lower, letter_as_upper)); alpha_letters.insert(std::make_pair(it->first, letter_as_upper)); } } alpha_mappings_.insert(lower_case_mappings.begin(), lower_case_mappings.end()); alpha_phone_mappings_.insert(alpha_mappings_.begin(), alpha_mappings_.end()); all_plus_number_grouping_symbols_.insert(alpha_letters.begin(), alpha_letters.end()); for (char c = '0'; c <= '9'; ++c) { diallable_char_mappings_.insert(std::make_pair(c, c)); alpha_phone_mappings_.insert(std::make_pair(c, c)); all_plus_number_grouping_symbols_.insert(std::make_pair(c, c)); } mobile_token_mappings_.insert(std::make_pair(54, '9')); countries_without_national_prefix_with_area_codes_.insert(52); geo_mobile_countries_without_mobile_area_codes_.insert(86); geo_mobile_countries_.insert(52); geo_mobile_countries_.insert(54); geo_mobile_countries_.insert(55); geo_mobile_countries_.insert(62); geo_mobile_countries_.insert( geo_mobile_countries_without_mobile_area_codes_.begin(), geo_mobile_countries_without_mobile_area_codes_.end()); } const std::string valid_phone_number_; const std::string extn_patterns_for_parsing_; const std::string rfc3966_phone_digit_; const std::string alphanum_; const std::string rfc3966_domainlabel_; const std::string rfc3966_toplabel_; public: scoped_ptr<const AbstractRegExpFactory> regexp_factory_; scoped_ptr<RegExpCache> regexp_cache_; std::map<char32, char> diallable_char_mappings_; std::map<char32, char> alpha_mappings_; std::map<char32, char> alpha_phone_mappings_; std::map<char32, char> all_plus_number_grouping_symbols_; std::map<int, char> mobile_token_mappings_; std::set<int> countries_without_national_prefix_with_area_codes_; std::set<int> geo_mobile_countries_without_mobile_area_codes_; std::set<int> geo_mobile_countries_; scoped_ptr<const RegExp> single_international_prefix_; scoped_ptr<const RegExp> digits_pattern_; scoped_ptr<const RegExp> capturing_digit_pattern_; scoped_ptr<const RegExp> capturing_ascii_digits_pattern_; scoped_ptr<const RegExp> valid_start_char_pattern_; scoped_ptr<const RegExp> capture_up_to_second_number_start_pattern_; scoped_ptr<const RegExp> unwanted_end_char_pattern_; scoped_ptr<const RegExp> separator_pattern_; const std::string extn_patterns_for_matching_; scoped_ptr<const RegExp> extn_pattern_; scoped_ptr<const RegExp> valid_phone_number_pattern_; scoped_ptr<const RegExp> valid_alpha_phone_pattern_; scoped_ptr<const RegExp> first_group_capturing_pattern_; scoped_ptr<const RegExp> carrier_code_pattern_; scoped_ptr<const RegExp> plus_chars_pattern_; std::unique_ptr<const RegExp> rfc3966_global_number_digits_pattern_; std::unique_ptr<const RegExp> rfc3966_domainname_pattern_; PhoneNumberRegExpsAndMappings() : valid_phone_number_( StrCat(kDigits, "{", PhoneNumberUtil::kMinLengthForNsn, "}|[", PhoneNumberUtil::kPlusChars, "]*(?:[", PhoneNumberUtil::kValidPunctuation, kStarSign, "]*", kDigits, "){3,}[", PhoneNumberUtil::kValidPunctuation, kStarSign, kValidAlpha, kDigits, "]*")), extn_patterns_for_parsing_(CreateExtnPattern( true)), rfc3966_phone_digit_( StrCat("(", kDigits, "|", kRfc3966VisualSeparator, ")")), alphanum_(StrCat(kValidAlphaInclUppercase, kDigits)), rfc3966_domainlabel_( StrCat("[", alphanum_, "]+((\\-)*[", alphanum_, "])*")), rfc3966_toplabel_(StrCat("[", kValidAlphaInclUppercase, "]+((\\-)*[", alphanum_, "])*")), regexp_factory_(new RegExpFactory()), regexp_cache_(new RegExpCache(*regexp_factory_.get(), 128)), diallable_char_mappings_(), alpha_mappings_(), alpha_phone_mappings_(), all_plus_number_grouping_symbols_(), mobile_token_mappings_(), countries_without_national_prefix_with_area_codes_(), geo_mobile_countries_without_mobile_area_codes_(), geo_mobile_countries_(), single_international_prefix_(regexp_factory_->CreateRegExp( "[\\d]+(?:[~\xE2\x81\x93\xE2\x88\xBC\xEF\xBD\x9E][\\d]+)?")), digits_pattern_( regexp_factory_->CreateRegExp(StrCat("[", kDigits, "]*"))), capturing_digit_pattern_( regexp_factory_->CreateRegExp(StrCat("([", kDigits, "])"))), capturing_ascii_digits_pattern_( regexp_factory_->CreateRegExp("(\\d+)")), valid_start_char_pattern_(regexp_factory_->CreateRegExp( StrCat("[", PhoneNumberUtil::kPlusChars, kDigits, "]"))), capture_up_to_second_number_start_pattern_( regexp_factory_->CreateRegExp( PhoneNumberUtil::kCaptureUpToSecondNumberStart)), unwanted_end_char_pattern_( regexp_factory_->CreateRegExp("[^\\p{N}\\p{L}#]")), separator_pattern_(regexp_factory_->CreateRegExp( StrCat("[", PhoneNumberUtil::kValidPunctuation, "]+"))), extn_patterns_for_matching_( CreateExtnPattern( false)), extn_pattern_(regexp_factory_->CreateRegExp( StrCat("(?i)(?:", extn_patterns_for_parsing_, ")$"))), valid_phone_number_pattern_(regexp_factory_->CreateRegExp( StrCat("(?i)", valid_phone_number_, "(?:", extn_patterns_for_parsing_, ")?"))), valid_alpha_phone_pattern_(regexp_factory_->CreateRegExp( StrCat("(?i)(?:.*?[", kValidAlpha, "]){3}"))), first_group_capturing_pattern_( regexp_factory_->CreateRegExp("(\\$\\d)")), carrier_code_pattern_(regexp_factory_->CreateRegExp("\\$CC")), plus_chars_pattern_(regexp_factory_->CreateRegExp( StrCat("[", PhoneNumberUtil::kPlusChars, "]+"))), rfc3966_global_number_digits_pattern_(regexp_factory_->CreateRegExp( StrCat("^\\", kPlusSign, rfc3966_phone_digit_, "*", kDigits, rfc3966_phone_digit_, "*$"))), rfc3966_domainname_pattern_(regexp_factory_->CreateRegExp(StrCat( "^(", rfc3966_domainlabel_, "\\.)*", rfc3966_toplabel_, "\\.?$"))) { InitializeMapsAndSets(); } PhoneNumberRegExpsAndMappings(const PhoneNumberRegExpsAndMappings&) = delete; PhoneNumberRegExpsAndMappings& operator=( const PhoneNumberRegExpsAndMappings&) = delete; }; PhoneNumberUtil::PhoneNumberUtil() : logger_(Logger::set_logger_impl(new NullLogger())), matcher_api_(new RegexBasedMatcher()), reg_exps_(new PhoneNumberRegExpsAndMappings), country_calling_code_to_region_code_map_( new std::vector<IntRegionsPair>()), nanpa_regions_(new absl::node_hash_set<std::string>()), region_to_metadata_map_(new absl::node_hash_map<std::string, PhoneMetadata>()), country_code_to_non_geographical_metadata_map_( new absl::node_hash_map<int, PhoneMetadata>) { Logger::set_logger_impl(logger_.get()); PhoneMetadataCollection metadata_collection; if (!LoadCompiledInMetadata(&metadata_collection)) { LOG(DFATAL) << "Could not parse compiled-in metadata."; return; } std::map<int, std::list<std::string>* > country_calling_code_to_region_map; for (RepeatedPtrField<PhoneMetadata>::const_iterator it = metadata_collection.metadata().begin(); it != metadata_collection.metadata().end(); ++it) { const std::string& region_code = it->id(); if (region_code == RegionCode::GetUnknown()) { continue; } int country_calling_code = it->country_code(); if (kRegionCodeForNonGeoEntity == region_code) { country_code_to_non_geographical_metadata_map_->insert( std::make_pair(country_calling_code, *it)); } else { region_to_metadata_map_->insert(std::make_pair(region_code, *it)); } std::map<int, std::list<std::string>* >::iterator calling_code_in_map = country_calling_code_to_region_map.find(country_calling_code); if (calling_code_in_map != country_calling_code_to_region_map.end()) { if (it->main_country_for_code()) { calling_code_in_map->second->push_front(region_code); } else { calling_code_in_map->second->push_back(region_code); } } else { std::list<std::string>* list_with_region_code = new std::list<std::string>(); list_with_region_code->push_back(region_code); country_calling_code_to_region_map.insert( std::make_pair(country_calling_code, list_with_region_code)); } if (country_calling_code == kNanpaCountryCode) { nanpa_regions_->insert(region_code); } } country_calling_code_to_region_code_map_->insert( country_calling_code_to_region_code_map_->begin(), country_calling_code_to_region_map.begin(), country_calling_code_to_region_map.end()); std::sort(country_calling_code_to_region_code_map_->begin(), country_calling_code_to_region_code_map_->end(), OrderByFirst()); } PhoneNumberUtil::~PhoneNumberUtil() { gtl::STLDeleteContainerPairSecondPointers( country_calling_code_to_region_code_map_->begin(), country_calling_code_to_region_code_map_->end()); } void PhoneNumberUtil::GetSupportedRegions(std::set<std::string>* regions) const { DCHECK(regions); for (absl::node_hash_map<std::string, PhoneMetadata>::const_iterator it = region_to_metadata_map_->begin(); it != region_to_metadata_map_->end(); ++it) { regions->insert(it->first); } } void PhoneNumberUtil::GetSupportedGlobalNetworkCallingCodes( std::set<int>* calling_codes) const { DCHECK(calling_codes); for (absl::node_hash_map<int, PhoneMetadata>::const_iterator it = country_code_to_non_geographical_metadata_map_->begin(); it != country_code_to_non_geographical_metadata_map_->end(); ++it) { calling_codes->insert(it->first); } } void PhoneNumberUtil::GetSupportedCallingCodes( std::set<int>* calling_codes) const { DCHECK(calling_codes); for (std::vector<IntRegionsPair>::const_iterator it = country_calling_code_to_region_code_map_->begin(); it != country_calling_code_to_region_code_map_->end(); ++it) { calling_codes->insert(it->first); } } void PhoneNumberUtil::GetSupportedTypesForRegion( const std::string& region_code, std::set<PhoneNumberType>* types) const { DCHECK(types); if (!IsValidRegionCode(region_code)) { LOG(WARNING) << "Invalid or unknown region code provided: " << region_code; return; } const PhoneMetadata* metadata = GetMetadataForRegion(region_code); GetSupportedTypesForMetadata(*metadata, types); } void PhoneNumberUtil::GetSupportedTypesForNonGeoEntity( int country_calling_code, std::set<PhoneNumberType>* types) const { DCHECK(types); const PhoneMetadata* metadata = GetMetadataForNonGeographicalRegion(country_calling_code); if (metadata == NULL) { LOG(WARNING) << "Unknown country calling code for a non-geographical " << "entity provided: " << country_calling_code; return; } GetSupportedTypesForMetadata(*metadata, types); } PhoneNumberUtil* PhoneNumberUtil::GetInstance() { return Singleton<PhoneNumberUtil>::GetInstance(); } const std::string& PhoneNumberUtil::GetExtnPatternsForMatching() const { return reg_exps_->extn_patterns_for_matching_; } bool PhoneNumberUtil::StartsWithPlusCharsPattern( const std::string& number) const { const scoped_ptr<RegExpInput> number_string_piece( reg_exps_->regexp_factory_->CreateInput(number)); return reg_exps_->plus_chars_pattern_->Consume(number_string_piece.get()); } bool PhoneNumberUtil::ContainsOnlyValidDigits(const std::string& s) const { return reg_exps_->digits_pattern_->FullMatch(s); } void PhoneNumberUtil::TrimUnwantedEndChars(std::string* number) const { DCHECK(number); UnicodeText number_as_unicode; number_as_unicode.PointToUTF8(number->data(), static_cast<int>(number->size())); if (!number_as_unicode.UTF8WasValid()) { number->clear(); return; } char current_char[5]; int len; UnicodeText::const_reverse_iterator reverse_it(number_as_unicode.end()); for (; reverse_it.base() != number_as_unicode.begin(); ++reverse_it) { len = reverse_it.get_utf8(current_char); current_char[len] = '\0'; if (!reg_exps_->unwanted_end_char_pattern_->FullMatch(current_char)) { break; } } number->assign(UnicodeText::UTF8Substring(number_as_unicode.begin(), reverse_it.base())); } bool PhoneNumberUtil::IsFormatEligibleForAsYouTypeFormatter( const std::string& format) const { const RegExp& eligible_format_pattern = reg_exps_->regexp_cache_->GetRegExp( StrCat("[", kValidPunctuation, "]*", "\\$1", "[", kValidPunctuation, "]*", "(\\$\\d", "[", kValidPunctuation, "]*)*")); return eligible_format_pattern.FullMatch(format); } bool PhoneNumberUtil::FormattingRuleHasFirstGroupOnly( const std::string& national_prefix_formatting_rule) const { const RegExp& first_group_only_prefix_pattern = reg_exps_->regexp_cache_->GetRegExp("\\(?\\$1\\)?"); return national_prefix_formatting_rule.empty() || first_group_only_prefix_pattern.FullMatch( national_prefix_formatting_rule); } void PhoneNumberUtil::GetNddPrefixForRegion( const std::string& region_code, bool strip_non_digits, std::string* national_prefix) const { DCHECK(national_prefix); const PhoneMetadata* metadata = GetMetadataForRegion(region_code); if (!metadata) { LOG(WARNING) << "Invalid or unknown region code (" << region_code << ") provided."; return; } national_prefix->assign(metadata->national_prefix()); if (strip_non_digits) { strrmm(national_prefix, "~"); } } bool PhoneNumberUtil::IsValidRegionCode(const std::string& region_code) const { return (region_to_metadata_map_->find(region_code) != region_to_metadata_map_->end()); } bool PhoneNumberUtil::HasValidCountryCallingCode( int country_calling_code) const { IntRegionsPair target_pair; target_pair.first = country_calling_code; return (std::binary_search(country_calling_code_to_region_code_map_->begin(), country_calling_code_to_region_code_map_->end(), target_pair, OrderByFirst())); } const PhoneMetadata* PhoneNumberUtil::GetMetadataForRegion( const std::string& region_code) const { absl::node_hash_map<std::string, PhoneMetadata>::const_iterator it = region_to_metadata_map_->find(region_code); if (it != region_to_metadata_map_->end()) { return &it->second; } return NULL; } const PhoneMetadata* PhoneNumberUtil::GetMetadataForNonGeographicalRegion( int country_calling_code) const { absl::node_hash_map<int, PhoneMetadata>::const_iterator it = country_code_to_non_geographical_metadata_map_->find( country_calling_code); if (it != country_code_to_non_geographical_metadata_map_->end()) { return &it->second; } return NULL; } void PhoneNumberUtil::Format(const PhoneNumber& number, PhoneNumberFormat number_format, std::string* formatted_number) const { DCHECK(formatted_number); if (number.national_number() == 0) { const std::string& raw_input = number.raw_input(); if (!raw_input.empty()) { formatted_number->assign(raw_input); return; } } int country_calling_code = number.country_code(); std::string national_significant_number; GetNationalSignificantNumber(number, &national_significant_number); if (number_format == E164) { formatted_number->assign(national_significant_number); PrefixNumberWithCountryCallingCode(country_calling_code, E164, formatted_number); return; } if (!HasValidCountryCallingCode(country_calling_code)) { formatted_number->assign(national_significant_number); return; } std::string region_code; GetRegionCodeForCountryCode(country_calling_code, &region_code); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(country_calling_code, region_code); FormatNsn(national_significant_number, *metadata, number_format, formatted_number); MaybeAppendFormattedExtension(number, *metadata, number_format, formatted_number); PrefixNumberWithCountryCallingCode(country_calling_code, number_format, formatted_number); } void PhoneNumberUtil::FormatByPattern( const PhoneNumber& number, PhoneNumberFormat number_format, const RepeatedPtrField<NumberFormat>& user_defined_formats, std::string* formatted_number) const { DCHECK(formatted_number); int country_calling_code = number.country_code(); std::string national_significant_number; GetNationalSignificantNumber(number, &national_significant_number); if (!HasValidCountryCallingCode(country_calling_code)) { formatted_number->assign(national_significant_number); return; } std::string region_code; GetRegionCodeForCountryCode(country_calling_code, &region_code); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(country_calling_code, region_code); const NumberFormat* formatting_pattern = ChooseFormattingPatternForNumber(user_defined_formats, national_significant_number); if (!formatting_pattern) { formatted_number->assign(national_significant_number); } else { NumberFormat num_format_copy; num_format_copy.MergeFrom(*formatting_pattern); std::string national_prefix_formatting_rule( formatting_pattern->national_prefix_formatting_rule()); if (!national_prefix_formatting_rule.empty()) { const std::string& national_prefix = metadata->national_prefix(); if (!national_prefix.empty()) { GlobalReplaceSubstring("$NP", national_prefix, &national_prefix_formatting_rule); GlobalReplaceSubstring("$FG", "$1", &national_prefix_formatting_rule); num_format_copy.set_national_prefix_formatting_rule( national_prefix_formatting_rule); } else { num_format_copy.clear_national_prefix_formatting_rule(); } } FormatNsnUsingPattern(national_significant_number, num_format_copy, number_format, formatted_number); } MaybeAppendFormattedExtension(number, *metadata, NATIONAL, formatted_number); PrefixNumberWithCountryCallingCode(country_calling_code, number_format, formatted_number); } void PhoneNumberUtil::FormatNationalNumberWithCarrierCode( const PhoneNumber& number, const std::string& carrier_code, std::string* formatted_number) const { int country_calling_code = number.country_code(); std::string national_significant_number; GetNationalSignificantNumber(number, &national_significant_number); if (!HasValidCountryCallingCode(country_calling_code)) { formatted_number->assign(national_significant_number); return; } std::string region_code; GetRegionCodeForCountryCode(country_calling_code, &region_code); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(country_calling_code, region_code); FormatNsnWithCarrier(national_significant_number, *metadata, NATIONAL, carrier_code, formatted_number); MaybeAppendFormattedExtension(number, *metadata, NATIONAL, formatted_number); PrefixNumberWithCountryCallingCode(country_calling_code, NATIONAL, formatted_number); } const PhoneMetadata* PhoneNumberUtil::GetMetadataForRegionOrCallingCode( int country_calling_code, const std::string& region_code) const { return kRegionCodeForNonGeoEntity == region_code ? GetMetadataForNonGeographicalRegion(country_calling_code) : GetMetadataForRegion(region_code); } void PhoneNumberUtil::FormatNationalNumberWithPreferredCarrierCode( const PhoneNumber& number, const std::string& fallback_carrier_code, std::string* formatted_number) const { FormatNationalNumberWithCarrierCode( number, !number.preferred_domestic_carrier_code().empty() ? number.preferred_domestic_carrier_code() : fallback_carrier_code, formatted_number); } void PhoneNumberUtil::FormatNumberForMobileDialing( const PhoneNumber& number, const std::string& calling_from, bool with_formatting, std::string* formatted_number) const { int country_calling_code = number.country_code(); if (!HasValidCountryCallingCode(country_calling_code)) { formatted_number->assign(number.has_raw_input() ? number.raw_input() : ""); return; } formatted_number->assign(""); PhoneNumber number_no_extension(number); number_no_extension.clear_extension(); std::string region_code; GetRegionCodeForCountryCode(country_calling_code, &region_code); PhoneNumberType number_type = GetNumberType(number_no_extension); bool is_valid_number = (number_type != UNKNOWN); if (calling_from == region_code) { bool is_fixed_line_or_mobile = (number_type == FIXED_LINE) || (number_type == MOBILE) || (number_type == FIXED_LINE_OR_MOBILE); if ((region_code == "BR") && (is_fixed_line_or_mobile)) { if (!number_no_extension.preferred_domestic_carrier_code().empty()) { FormatNationalNumberWithPreferredCarrierCode(number_no_extension, "", formatted_number); } else { formatted_number->assign(""); } } else if (country_calling_code == kNanpaCountryCode) { const PhoneMetadata* region_metadata = GetMetadataForRegion(calling_from); std::string national_number; GetNationalSignificantNumber(number_no_extension, &national_number); if (CanBeInternationallyDialled(number_no_extension) && TestNumberLength(national_number, *region_metadata) != TOO_SHORT) { Format(number_no_extension, INTERNATIONAL, formatted_number); } else { Format(number_no_extension, NATIONAL, formatted_number); } } else { if ((region_code == kRegionCodeForNonGeoEntity || ((region_code == "MX" || region_code == "CL" || region_code == "UZ") && is_fixed_line_or_mobile)) && CanBeInternationallyDialled(number_no_extension)) { Format(number_no_extension, INTERNATIONAL, formatted_number); } else { Format(number_no_extension, NATIONAL, formatted_number); } } } else if (is_valid_number && CanBeInternationallyDialled(number_no_extension)) { with_formatting ? Format(number_no_extension, INTERNATIONAL, formatted_number) : Format(number_no_extension, E164, formatted_number); return; } if (!with_formatting) { NormalizeDiallableCharsOnly(formatted_number); } } void PhoneNumberUtil::FormatOutOfCountryCallingNumber( const PhoneNumber& number, const std::string& calling_from, std::string* formatted_number) const { DCHECK(formatted_number); if (!IsValidRegionCode(calling_from)) { VLOG(1) << "Trying to format number from invalid region " << calling_from << ". International formatting applied."; Format(number, INTERNATIONAL, formatted_number); return; } int country_code = number.country_code(); std::string national_significant_number; GetNationalSignificantNumber(number, &national_significant_number); if (!HasValidCountryCallingCode(country_code)) { formatted_number->assign(national_significant_number); return; } if (country_code == kNanpaCountryCode) { if (IsNANPACountry(calling_from)) { Format(number, NATIONAL, formatted_number); formatted_number->insert(0, StrCat(country_code, " ")); return; } } else if (country_code == GetCountryCodeForValidRegion(calling_from)) { Format(number, NATIONAL, formatted_number); return; } const PhoneMetadata* metadata_calling_from = GetMetadataForRegion(calling_from); const std::string& international_prefix = metadata_calling_from->international_prefix(); std::string international_prefix_for_formatting; if (metadata_calling_from->has_preferred_international_prefix()) { international_prefix_for_formatting = metadata_calling_from->preferred_international_prefix(); } else if (reg_exps_->single_international_prefix_->FullMatch( international_prefix)) { international_prefix_for_formatting = international_prefix; } std::string region_code; GetRegionCodeForCountryCode(country_code, &region_code); const PhoneMetadata* metadata_for_region = GetMetadataForRegionOrCallingCode(country_code, region_code); FormatNsn(national_significant_number, *metadata_for_region, INTERNATIONAL, formatted_number); MaybeAppendFormattedExtension(number, *metadata_for_region, INTERNATIONAL, formatted_number); if (!international_prefix_for_formatting.empty()) { formatted_number->insert( 0, StrCat(international_prefix_for_formatting, " ", country_code, " ")); } else { PrefixNumberWithCountryCallingCode(country_code, INTERNATIONAL, formatted_number); } } void PhoneNumberUtil::FormatInOriginalFormat( const PhoneNumber& number, const std::string& region_calling_from, std::string* formatted_number) const { DCHECK(formatted_number); if (number.has_raw_input() && !HasFormattingPatternForNumber(number)) { formatted_number->assign(number.raw_input()); return; } if (!number.has_country_code_source()) { Format(number, NATIONAL, formatted_number); return; } switch (number.country_code_source()) { case PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN: Format(number, INTERNATIONAL, formatted_number); break; case PhoneNumber::FROM_NUMBER_WITH_IDD: FormatOutOfCountryCallingNumber(number, region_calling_from, formatted_number); break; case PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN: Format(number, INTERNATIONAL, formatted_number); formatted_number->erase(formatted_number->begin()); break; case PhoneNumber::FROM_DEFAULT_COUNTRY: default: std::string region_code; GetRegionCodeForCountryCode(number.country_code(), &region_code); std::string national_prefix; GetNddPrefixForRegion(region_code, true , &national_prefix); if (national_prefix.empty()) { Format(number, NATIONAL, formatted_number); break; } if (RawInputContainsNationalPrefix(number.raw_input(), national_prefix, region_code)) { Format(number, NATIONAL, formatted_number); break; } const PhoneMetadata* metadata = GetMetadataForRegion(region_code); std::string national_number; GetNationalSignificantNumber(number, &national_number); const NumberFormat* format_rule = ChooseFormattingPatternForNumber(metadata->number_format(), national_number); if (!format_rule) { Format(number, NATIONAL, formatted_number); break; } std::string candidate_national_prefix_rule( format_rule->national_prefix_formatting_rule()); if (!candidate_national_prefix_rule.empty()) { size_t index_of_first_group = candidate_national_prefix_rule.find("$1"); if (index_of_first_group == std::string::npos) { LOG(ERROR) << "First group missing in national prefix rule: " << candidate_national_prefix_rule; Format(number, NATIONAL, formatted_number); break; } candidate_national_prefix_rule.erase(index_of_first_group); NormalizeDigitsOnly(&candidate_national_prefix_rule); } if (candidate_national_prefix_rule.empty()) { Format(number, NATIONAL, formatted_number); break; } RepeatedPtrField<NumberFormat> number_formats; NumberFormat* number_format = number_formats.Add(); number_format->MergeFrom(*format_rule); number_format->clear_national_prefix_formatting_rule(); FormatByPattern(number, NATIONAL, number_formats, formatted_number); break; } if (!formatted_number->empty() && !number.raw_input().empty()) { std::string normalized_formatted_number(*formatted_number); NormalizeDiallableCharsOnly(&normalized_formatted_number); std::string normalized_raw_input(number.raw_input()); NormalizeDiallableCharsOnly(&normalized_raw_input); if (normalized_formatted_number != normalized_raw_input) { formatted_number->assign(number.raw_input()); } } } bool PhoneNumberUtil::RawInputContainsNationalPrefix( const std::string& raw_input, const std::string& national_prefix, const std::string& region_code) const { std::string normalized_national_number(raw_input); NormalizeDigitsOnly(&normalized_national_number); if (HasPrefixString(normalized_national_number, national_prefix)) { PhoneNumber number_without_national_prefix; if (Parse(normalized_national_number.substr(national_prefix.length()), region_code, &number_without_national_prefix) == NO_PARSING_ERROR) { return IsValidNumber(number_without_national_prefix); } } return false; } bool PhoneNumberUtil::HasFormattingPatternForNumber( const PhoneNumber& number) const { int country_calling_code = number.country_code(); std::string region_code; GetRegionCodeForCountryCode(country_calling_code, &region_code); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(country_calling_code, region_code); if (!metadata) { return false; } std::string national_number; GetNationalSignificantNumber(number, &national_number); const NumberFormat* format_rule = ChooseFormattingPatternForNumber(metadata->number_format(), national_number); return format_rule; } void PhoneNumberUtil::FormatOutOfCountryKeepingAlphaChars( const PhoneNumber& number, const std::string& calling_from, std::string* formatted_number) const { if (number.raw_input().empty()) { FormatOutOfCountryCallingNumber(number, calling_from, formatted_number); return; } int country_code = number.country_code(); if (!HasValidCountryCallingCode(country_code)) { formatted_number->assign(number.raw_input()); return; } std::string raw_input_copy(number.raw_input()); NormalizeHelper(reg_exps_->all_plus_number_grouping_symbols_, true, &raw_input_copy); std::string national_number; GetNationalSignificantNumber(number, &national_number); if (national_number.length() > 3) { size_t first_national_number_digit = raw_input_copy.find(national_number.substr(0, 3)); if (first_national_number_digit != std::string::npos) { raw_input_copy = raw_input_copy.substr(first_national_number_digit); } } const PhoneMetadata* metadata = GetMetadataForRegion(calling_from); if (country_code == kNanpaCountryCode) { if (IsNANPACountry(calling_from)) { StrAppend(formatted_number, country_code, " ", raw_input_copy); return; } } else if (metadata && country_code == GetCountryCodeForValidRegion(calling_from)) { const NumberFormat* formatting_pattern = ChooseFormattingPatternForNumber(metadata->number_format(), national_number); if (!formatting_pattern) { formatted_number->assign(raw_input_copy); return; } NumberFormat new_format; new_format.MergeFrom(*formatting_pattern); new_format.set_pattern("(\\d+)(.*)"); new_format.set_format("$1$2"); FormatNsnUsingPattern(raw_input_copy, new_format, NATIONAL, formatted_number); return; } std::string international_prefix_for_formatting; if (metadata) { const std::string& international_prefix = metadata->international_prefix(); international_prefix_for_formatting = reg_exps_->single_international_prefix_->FullMatch(international_prefix) ? international_prefix : metadata->preferred_international_prefix(); } if (!international_prefix_for_formatting.empty()) { StrAppend(formatted_number, international_prefix_for_formatting, " ", country_code, " ", raw_input_copy); } else { if (!IsValidRegionCode(calling_from)) { VLOG(1) << "Trying to format number from invalid region " << calling_from << ". International formatting applied."; } formatted_number->assign(raw_input_copy); PrefixNumberWithCountryCallingCode(country_code, INTERNATIONAL, formatted_number); } } const NumberFormat* PhoneNumberUtil::ChooseFormattingPatternForNumber( const RepeatedPtrField<NumberFormat>& available_formats, const std::string& national_number) const { for (RepeatedPtrField<NumberFormat>::const_iterator it = available_formats.begin(); it != available_formats.end(); ++it) { int size = it->leading_digits_pattern_size(); if (size > 0) { const scoped_ptr<RegExpInput> number_copy( reg_exps_->regexp_factory_->CreateInput(national_number)); if (!reg_exps_->regexp_cache_->GetRegExp( it->leading_digits_pattern(size - 1)).Consume( number_copy.get())) { continue; } } const RegExp& pattern_to_match( reg_exps_->regexp_cache_->GetRegExp(it->pattern())); if (pattern_to_match.FullMatch(national_number)) { return &(*it); } } return NULL; } void PhoneNumberUtil::FormatNsnUsingPatternWithCarrier( const std::string& national_number, const NumberFormat& formatting_pattern, PhoneNumberUtil::PhoneNumberFormat number_format, const std::string& carrier_code, std::string* formatted_number) const { DCHECK(formatted_number); std::string number_format_rule(formatting_pattern.format()); if (number_format == PhoneNumberUtil::NATIONAL && carrier_code.length() > 0 && formatting_pattern.domestic_carrier_code_formatting_rule().length() > 0) { std::string carrier_code_formatting_rule = formatting_pattern.domestic_carrier_code_formatting_rule(); reg_exps_->carrier_code_pattern_->Replace(&carrier_code_formatting_rule, carrier_code); reg_exps_->first_group_capturing_pattern_-> Replace(&number_format_rule, carrier_code_formatting_rule); } else { std::string national_prefix_formatting_rule = formatting_pattern.national_prefix_formatting_rule(); if (number_format == PhoneNumberUtil::NATIONAL && national_prefix_formatting_rule.length() > 0) { reg_exps_->first_group_capturing_pattern_->Replace( &number_format_rule, national_prefix_formatting_rule); } } formatted_number->assign(national_number); const RegExp& pattern_to_match( reg_exps_->regexp_cache_->GetRegExp(formatting_pattern.pattern())); pattern_to_match.GlobalReplace(formatted_number, number_format_rule); if (number_format == RFC3966) { const scoped_ptr<RegExpInput> number( reg_exps_->regexp_factory_->CreateInput(*formatted_number)); if (reg_exps_->separator_pattern_->Consume(number.get())) { formatted_number->assign(number->ToString()); } reg_exps_->separator_pattern_->GlobalReplace(formatted_number, "-"); } } void PhoneNumberUtil::FormatNsnUsingPattern( const std::string& national_number, const NumberFormat& formatting_pattern, PhoneNumberUtil::PhoneNumberFormat number_format, std::string* formatted_number) const { DCHECK(formatted_number); FormatNsnUsingPatternWithCarrier(national_number, formatting_pattern, number_format, "", formatted_number); } void PhoneNumberUtil::FormatNsn(const std::string& number, const PhoneMetadata& metadata, PhoneNumberFormat number_format, std::string* formatted_number) const { DCHECK(formatted_number); FormatNsnWithCarrier(number, metadata, number_format, "", formatted_number); } void PhoneNumberUtil::FormatNsnWithCarrier( const std::string& number, const PhoneMetadata& metadata, PhoneNumberFormat number_format, const std::string& carrier_code, std::string* formatted_number) const { DCHECK(formatted_number); const RepeatedPtrField<NumberFormat> available_formats = (metadata.intl_number_format_size() == 0 || number_format == NATIONAL) ? metadata.number_format() : metadata.intl_number_format(); const NumberFormat* formatting_pattern = ChooseFormattingPatternForNumber(available_formats, number); if (!formatting_pattern) { formatted_number->assign(number); } else { FormatNsnUsingPatternWithCarrier(number, *formatting_pattern, number_format, carrier_code, formatted_number); } } void PhoneNumberUtil::MaybeAppendFormattedExtension( const PhoneNumber& number, const PhoneMetadata& metadata, PhoneNumberFormat number_format, std::string* formatted_number) const { DCHECK(formatted_number); if (number.has_extension() && number.extension().length() > 0) { if (number_format == RFC3966) { StrAppend(formatted_number, kRfc3966ExtnPrefix, number.extension()); } else { if (metadata.has_preferred_extn_prefix()) { StrAppend(formatted_number, metadata.preferred_extn_prefix(), number.extension()); } else { StrAppend(formatted_number, kDefaultExtnPrefix, number.extension()); } } } } bool PhoneNumberUtil::IsNANPACountry(const std::string& region_code) const { return nanpa_regions_->find(region_code) != nanpa_regions_->end(); } void PhoneNumberUtil::GetRegionCodesForCountryCallingCode( int country_calling_code, std::list<std::string>* region_codes) const { DCHECK(region_codes); IntRegionsPair target_pair; target_pair.first = country_calling_code; typedef std::vector<IntRegionsPair>::const_iterator ConstIterator; std::pair<ConstIterator, ConstIterator> range = std::equal_range(country_calling_code_to_region_code_map_->begin(), country_calling_code_to_region_code_map_->end(), target_pair, OrderByFirst()); if (range.first != range.second) { region_codes->insert(region_codes->begin(), range.first->second->begin(), range.first->second->end()); } } void PhoneNumberUtil::GetRegionCodeForCountryCode( int country_calling_code, std::string* region_code) const { DCHECK(region_code); std::list<std::string> region_codes; GetRegionCodesForCountryCallingCode(country_calling_code, &region_codes); *region_code = (region_codes.size() > 0) ? region_codes.front() : RegionCode::GetUnknown(); } void PhoneNumberUtil::GetRegionCodeForNumber( const PhoneNumber& number, std::string* region_code) const { DCHECK(region_code); int country_calling_code = number.country_code(); std::list<std::string> region_codes; GetRegionCodesForCountryCallingCode(country_calling_code, &region_codes); if (region_codes.size() == 0) { VLOG(1) << "Missing/invalid country calling code (" << country_calling_code << ")"; *region_code = RegionCode::GetUnknown(); return; } if (region_codes.size() == 1) { *region_code = region_codes.front(); } else { GetRegionCodeForNumberFromRegionList(number, region_codes, region_code); } } void PhoneNumberUtil::GetRegionCodeForNumberFromRegionList( const PhoneNumber& number, const std::list<std::string>& region_codes, std::string* region_code) const { DCHECK(region_code); std::string national_number; GetNationalSignificantNumber(number, &national_number); for (std::list<std::string>::const_iterator it = region_codes.begin(); it != region_codes.end(); ++it) { const PhoneMetadata* metadata = GetMetadataForRegion(*it); if (metadata->has_leading_digits()) { const scoped_ptr<RegExpInput> number( reg_exps_->regexp_factory_->CreateInput(national_number)); if (reg_exps_->regexp_cache_-> GetRegExp(metadata->leading_digits()).Consume(number.get())) { *region_code = *it; return; } } else if (GetNumberTypeHelper(national_number, *metadata) != UNKNOWN) { *region_code = *it; return; } } *region_code = RegionCode::GetUnknown(); } int PhoneNumberUtil::GetCountryCodeForRegion(const std::string& region_code) const { if (!IsValidRegionCode(region_code)) { LOG(WARNING) << "Invalid or unknown region code (" << region_code << ") provided."; return 0; } return GetCountryCodeForValidRegion(region_code); } int PhoneNumberUtil::GetCountryCodeForValidRegion( const std::string& region_code) const { const PhoneMetadata* metadata = GetMetadataForRegion(region_code); return metadata->country_code(); } bool PhoneNumberUtil::GetExampleNumber(const std::string& region_code, PhoneNumber* number) const { DCHECK(number); return GetExampleNumberForType(region_code, FIXED_LINE, number); } bool PhoneNumberUtil::GetInvalidExampleNumber(const std::string& region_code, PhoneNumber* number) const { DCHECK(number); if (!IsValidRegionCode(region_code)) { LOG(WARNING) << "Invalid or unknown region code (" << region_code << ") provided."; return false; } const PhoneMetadata* region_metadata = GetMetadataForRegion(region_code); const PhoneNumberDesc* desc = GetNumberDescByType(*region_metadata, FIXED_LINE); if (!desc->has_example_number()) { return false; } const std::string& example_number = desc->example_number(); for (size_t phone_number_length = example_number.length() - 1; phone_number_length >= kMinLengthForNsn; phone_number_length--) { std::string number_to_try = example_number.substr(0, phone_number_length); PhoneNumber possibly_valid_number; Parse(number_to_try, region_code, &possibly_valid_number); if (!IsValidNumber(possibly_valid_number)) { number->MergeFrom(possibly_valid_number); return true; } } return false; } bool PhoneNumberUtil::GetExampleNumberForType( const std::string& region_code, PhoneNumberUtil::PhoneNumberType type, PhoneNumber* number) const { DCHECK(number); if (!IsValidRegionCode(region_code)) { LOG(WARNING) << "Invalid or unknown region code (" << region_code << ") provided."; return false; } const PhoneMetadata* region_metadata = GetMetadataForRegion(region_code); const PhoneNumberDesc* desc = GetNumberDescByType(*region_metadata, type); if (desc && desc->has_example_number()) { ErrorType success = Parse(desc->example_number(), region_code, number); if (success == NO_PARSING_ERROR) { return true; } else { LOG(ERROR) << "Error parsing example number (" << static_cast<int>(success) << ")"; } } return false; } bool PhoneNumberUtil::GetExampleNumberForType( PhoneNumberUtil::PhoneNumberType type, PhoneNumber* number) const { DCHECK(number); std::set<std::string> regions; GetSupportedRegions(&regions); for (const std::string& region_code : regions) { if (GetExampleNumberForType(region_code, type, number)) { return true; } } std::set<int> global_network_calling_codes; GetSupportedGlobalNetworkCallingCodes(&global_network_calling_codes); for (std::set<int>::const_iterator it = global_network_calling_codes.begin(); it != global_network_calling_codes.end(); ++it) { int country_calling_code = *it; const PhoneMetadata* metadata = GetMetadataForNonGeographicalRegion(country_calling_code); const PhoneNumberDesc* desc = GetNumberDescByType(*metadata, type); if (desc->has_example_number()) { ErrorType success = Parse(StrCat(kPlusSign, country_calling_code, desc->example_number()), RegionCode::GetUnknown(), number); if (success == NO_PARSING_ERROR) { return true; } else { LOG(ERROR) << "Error parsing example number (" << static_cast<int>(success) << ")"; } } } return false; } bool PhoneNumberUtil::GetExampleNumberForNonGeoEntity( int country_calling_code, PhoneNumber* number) const { DCHECK(number); const PhoneMetadata* metadata = GetMetadataForNonGeographicalRegion(country_calling_code); if (metadata) { const int kNumberTypes = 7; PhoneNumberDesc types[kNumberTypes] = { metadata->mobile(), metadata->toll_free(), metadata->shared_cost(), metadata->voip(), metadata->voicemail(), metadata->uan(), metadata->premium_rate()}; for (int i = 0; i < kNumberTypes; ++i) { if (types[i].has_example_number()) { ErrorType success = Parse(StrCat(kPlusSign, SimpleItoa(country_calling_code), types[i].example_number()), RegionCode::GetUnknown(), number); if (success == NO_PARSING_ERROR) { return true; } else { LOG(ERROR) << "Error parsing example number (" << static_cast<int>(success) << ")"; } } } } else { LOG(WARNING) << "Invalid or unknown country calling code provided: " << country_calling_code; } return false; } PhoneNumberUtil::ErrorType PhoneNumberUtil::Parse( absl::string_view number_to_parse, const std::string& default_region, PhoneNumber* number) const { DCHECK(number); return ParseHelper(number_to_parse, default_region, false, true, number); } PhoneNumberUtil::ErrorType PhoneNumberUtil::ParseAndKeepRawInput( absl::string_view number_to_parse, const std::string& default_region, PhoneNumber* number) const { DCHECK(number); return ParseHelper(number_to_parse, default_region, true, true, number); } bool PhoneNumberUtil::CheckRegionForParsing( const std::string& number_to_parse, const std::string& default_region) const { if (!IsValidRegionCode(default_region) && !number_to_parse.empty()) { const scoped_ptr<RegExpInput> number( reg_exps_->regexp_factory_->CreateInput(number_to_parse)); if (!reg_exps_->plus_chars_pattern_->Consume(number.get())) { return false; } } return true; } absl::optional<absl::string_view> PhoneNumberUtil::ExtractPhoneContext( const absl::string_view number_to_extract_from, const size_t index_of_phone_context) const { if (index_of_phone_context == std::string::npos) { return absl::nullopt; } size_t phone_context_start = index_of_phone_context + strlen(kRfc3966PhoneContext); if (phone_context_start >= number_to_extract_from.length()) { return ""; } size_t phone_context_end = number_to_extract_from.find(';', phone_context_start); if (phone_context_end != std::string::npos) { return number_to_extract_from.substr( phone_context_start, phone_context_end - phone_context_start); } else { return number_to_extract_from.substr(phone_context_start); } } bool PhoneNumberUtil::IsPhoneContextValid( const absl::optional<absl::string_view> phone_context) const { if (!phone_context.has_value()) { return true; } if (phone_context.value().empty()) { return false; } return reg_exps_->rfc3966_global_number_digits_pattern_->FullMatch( std::string{phone_context.value()}) || reg_exps_->rfc3966_domainname_pattern_->FullMatch( std::string{phone_context.value()}); } PhoneNumberUtil::ErrorType PhoneNumberUtil::BuildNationalNumberForParsing( absl::string_view number_to_parse, std::string* national_number) const { size_t index_of_phone_context = number_to_parse.find(kRfc3966PhoneContext); absl::optional<absl::string_view> phone_context = ExtractPhoneContext(number_to_parse, index_of_phone_context); if (!IsPhoneContextValid(phone_context)) { VLOG(2) << "The phone-context value is invalid."; return NOT_A_NUMBER; } if (phone_context.has_value()) { if (phone_context.value().at(0) == kPlusSign[0]) { StrAppend(national_number, phone_context.value()); } size_t index_of_rfc_prefix = number_to_parse.find(kRfc3966Prefix); int index_of_national_number = (index_of_rfc_prefix != std::string::npos) ? static_cast<int>(index_of_rfc_prefix + strlen(kRfc3966Prefix)) : 0; StrAppend( national_number, number_to_parse.substr( index_of_national_number, index_of_phone_context - index_of_national_number)); } else { ExtractPossibleNumber(number_to_parse, national_number); } size_t index_of_isdn = national_number->find(kRfc3966IsdnSubaddress); if (index_of_isdn != std::string::npos) { national_number->erase(index_of_isdn); } return NO_PARSING_ERROR; } PhoneNumberUtil::ErrorType PhoneNumberUtil::ParseHelper( absl::string_view number_to_parse, const std::string& default_region, bool keep_raw_input, bool check_region, PhoneNumber* phone_number) const { DCHECK(phone_number); std::string national_number; PhoneNumberUtil::ErrorType build_national_number_for_parsing_return = BuildNationalNumberForParsing(number_to_parse, &national_number); if (build_national_number_for_parsing_return != NO_PARSING_ERROR) { return build_national_number_for_parsing_return; } if (!IsViablePhoneNumber(national_number)) { VLOG(2) << "The string supplied did not seem to be a phone number."; return NOT_A_NUMBER; } if (check_region && !CheckRegionForParsing(national_number, default_region)) { VLOG(1) << "Missing or invalid default country."; return INVALID_COUNTRY_CODE_ERROR; } PhoneNumber temp_number; if (keep_raw_input) { temp_number.set_raw_input(number_to_parse.data(), number_to_parse.size()); } std::string extension; MaybeStripExtension(&national_number, &extension); if (!extension.empty()) { temp_number.set_extension(extension); } const PhoneMetadata* country_metadata = GetMetadataForRegion(default_region); std::string normalized_national_number(national_number); ErrorType country_code_error = MaybeExtractCountryCode(country_metadata, keep_raw_input, &normalized_national_number, &temp_number); if (country_code_error != NO_PARSING_ERROR) { const scoped_ptr<RegExpInput> number_string_piece( reg_exps_->regexp_factory_->CreateInput(national_number)); if ((country_code_error == INVALID_COUNTRY_CODE_ERROR) && (reg_exps_->plus_chars_pattern_->Consume(number_string_piece.get()))) { normalized_national_number.assign(number_string_piece->ToString()); MaybeExtractCountryCode(country_metadata, keep_raw_input, &normalized_national_number, &temp_number); if (temp_number.country_code() == 0) { return INVALID_COUNTRY_CODE_ERROR; } } else { return country_code_error; } } int country_code = temp_number.country_code(); if (country_code != 0) { std::string phone_number_region; GetRegionCodeForCountryCode(country_code, &phone_number_region); if (phone_number_region != default_region) { country_metadata = GetMetadataForRegionOrCallingCode(country_code, phone_number_region); } } else if (country_metadata) { country_code = country_metadata->country_code(); } if (normalized_national_number.length() < kMinLengthForNsn) { VLOG(2) << "The string supplied is too short to be a phone number."; return TOO_SHORT_NSN; } if (country_metadata) { std::string carrier_code; std::string potential_national_number(normalized_national_number); MaybeStripNationalPrefixAndCarrierCode(*country_metadata, &potential_national_number, &carrier_code); ValidationResult validation_result = TestNumberLength(potential_national_number, *country_metadata); if (validation_result != TOO_SHORT && validation_result != IS_POSSIBLE_LOCAL_ONLY && validation_result != INVALID_LENGTH) { normalized_national_number.assign(potential_national_number); if (keep_raw_input && !carrier_code.empty()) { temp_number.set_preferred_domestic_carrier_code(carrier_code); } } } size_t normalized_national_number_length = normalized_national_number.length(); if (normalized_national_number_length < kMinLengthForNsn) { VLOG(2) << "The string supplied is too short to be a phone number."; return TOO_SHORT_NSN; } if (normalized_national_number_length > kMaxLengthForNsn) { VLOG(2) << "The string supplied is too long to be a phone number."; return TOO_LONG_NSN; } temp_number.set_country_code(country_code); SetItalianLeadingZerosForPhoneNumber(normalized_national_number, &temp_number); uint64 number_as_int; safe_strtou64(normalized_national_number, &number_as_int); temp_number.set_national_number(number_as_int); phone_number->Swap(&temp_number); return NO_PARSING_ERROR; } void PhoneNumberUtil::ExtractPossibleNumber( absl::string_view number, std::string* extracted_number) const { DCHECK(extracted_number); UnicodeText number_as_unicode; number_as_unicode.PointToUTF8(number.data(), static_cast<int>(number.size())); if (!number_as_unicode.UTF8WasValid()) { extracted_number->clear(); return; } char current_char[5]; int len; UnicodeText::const_iterator it; for (it = number_as_unicode.begin(); it != number_as_unicode.end(); ++it) { len = it.get_utf8(current_char); current_char[len] = '\0'; if (reg_exps_->valid_start_char_pattern_->FullMatch(current_char)) { break; } } if (it == number_as_unicode.end()) { extracted_number->clear(); return; } extracted_number->assign( UnicodeText::UTF8Substring(it, number_as_unicode.end())); TrimUnwantedEndChars(extracted_number); if (extracted_number->length() == 0) { return; } reg_exps_->capture_up_to_second_number_start_pattern_-> PartialMatch(*extracted_number, extracted_number); } bool PhoneNumberUtil::IsPossibleNumber(const PhoneNumber& number) const { ValidationResult result = IsPossibleNumberWithReason(number); return result == IS_POSSIBLE || result == IS_POSSIBLE_LOCAL_ONLY; } bool PhoneNumberUtil::IsPossibleNumberForType( const PhoneNumber& number, const PhoneNumberType type) const { ValidationResult result = IsPossibleNumberForTypeWithReason(number, type); return result == IS_POSSIBLE || result == IS_POSSIBLE_LOCAL_ONLY; } bool PhoneNumberUtil::IsPossibleNumberForString( absl::string_view number, const std::string& region_dialing_from) const { PhoneNumber number_proto; if (Parse(number, region_dialing_from, &number_proto) == NO_PARSING_ERROR) { return IsPossibleNumber(number_proto); } else { return false; } } PhoneNumberUtil::ValidationResult PhoneNumberUtil::IsPossibleNumberWithReason( const PhoneNumber& number) const { return IsPossibleNumberForTypeWithReason(number, PhoneNumberUtil::UNKNOWN); } PhoneNumberUtil::ValidationResult PhoneNumberUtil::IsPossibleNumberForTypeWithReason(const PhoneNumber& number, PhoneNumberType type) const { std::string national_number; GetNationalSignificantNumber(number, &national_number); int country_code = number.country_code(); if (!HasValidCountryCallingCode(country_code)) { return INVALID_COUNTRY_CODE; } std::string region_code; GetRegionCodeForCountryCode(country_code, &region_code); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(country_code, region_code); return TestNumberLength(national_number, *metadata, type); } bool PhoneNumberUtil::TruncateTooLongNumber(PhoneNumber* number) const { if (IsValidNumber(*number)) { return true; } PhoneNumber number_copy(*number); uint64 national_number = number->national_number(); do { national_number /= 10; number_copy.set_national_number(national_number); if (IsPossibleNumberWithReason(number_copy) == TOO_SHORT || national_number == 0) { return false; } } while (!IsValidNumber(number_copy)); number->set_national_number(national_number); return true; } PhoneNumberUtil::PhoneNumberType PhoneNumberUtil::GetNumberType( const PhoneNumber& number) const { std::string region_code; GetRegionCodeForNumber(number, &region_code); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(number.country_code(), region_code); if (!metadata) { return UNKNOWN; } std::string national_significant_number; GetNationalSignificantNumber(number, &national_significant_number); return GetNumberTypeHelper(national_significant_number, *metadata); } bool PhoneNumberUtil::IsValidNumber(const PhoneNumber& number) const { std::string region_code; GetRegionCodeForNumber(number, &region_code); return IsValidNumberForRegion(number, region_code); } bool PhoneNumberUtil::IsValidNumberForRegion(const PhoneNumber& number, const std::string& region_code) const { int country_code = number.country_code(); const PhoneMetadata* metadata = GetMetadataForRegionOrCallingCode(country_code, region_code); if (!metadata || ((kRegionCodeForNonGeoEntity != region_code) && country_code != GetCountryCodeForValidRegion(region_code))) { return false; } std::string national_number; GetNationalSignificantNumber(number, &national_number); return GetNumberTypeHelper(national_number, *metadata) != UNKNOWN; } bool PhoneNumberUtil::IsNumberGeographical( const PhoneNumber& phone_number) const { return IsNumberGeographical(GetNumberType(phone_number), phone_number.country_code()); } bool PhoneNumberUtil::IsNumberGeographical( PhoneNumberType phone_number_type, int country_calling_code) const { return phone_number_type == PhoneNumberUtil::FIXED_LINE || phone_number_type == PhoneNumberUtil::FIXED_LINE_OR_MOBILE || (reg_exps_->geo_mobile_countries_.find(country_calling_code) != reg_exps_->geo_mobile_countries_.end() && phone_number_type == PhoneNumberUtil::MOBILE); } void PhoneNumberUtil::SetItalianLeadingZerosForPhoneNumber( const std::string& national_number, PhoneNumber* phone_number) const { if (national_number.length() > 1 && national_number[0] == '0') { phone_number->set_italian_leading_zero(true); size_t number_of_leading_zeros = 1; while (number_of_leading_zeros < national_number.length() - 1 && national_number[number_of_leading_zeros] == '0') { number_of_leading_zeros++; } if (number_of_leading_zeros != 1) { phone_number->set_number_of_leading_zeros(static_cast<int32_t>(number_of_leading_zeros)); } } } bool PhoneNumberUtil::IsNumberMatchingDesc( const std::string& national_number, const PhoneNumberDesc& number_desc) const { int actual_length = static_cast<int>(national_number.length()); if (number_desc.possible_length_size() > 0 && std::find(number_desc.possible_length().begin(), number_desc.possible_length().end(), actual_length) == number_desc.possible_length().end()) { return false; } return IsMatch(*matcher_api_, national_number, number_desc); } PhoneNumberUtil::PhoneNumberType PhoneNumberUtil::GetNumberTypeHelper( const std::string& national_number, const PhoneMetadata& metadata) const { if (!IsNumberMatchingDesc(national_number, metadata.general_desc())) { VLOG(4) << "Number type unknown - doesn't match general national number" << " pattern."; return PhoneNumberUtil::UNKNOWN; } if (IsNumberMatchingDesc(national_number, metadata.premium_rate())) { VLOG(4) << "Number is a premium number."; return PhoneNumberUtil::PREMIUM_RATE; } if (IsNumberMatchingDesc(national_number, metadata.toll_free())) { VLOG(4) << "Number is a toll-free number."; return PhoneNumberUtil::TOLL_FREE; } if (IsNumberMatchingDesc(national_number, metadata.shared_cost())) { VLOG(4) << "Number is a shared cost number."; return PhoneNumberUtil::SHARED_COST; } if (IsNumberMatchingDesc(national_number, metadata.voip())) { VLOG(4) << "Number is a VOIP (Voice over IP) number."; return PhoneNumberUtil::VOIP; } if (IsNumberMatchingDesc(national_number, metadata.personal_number())) { VLOG(4) << "Number is a personal number."; return PhoneNumberUtil::PERSONAL_NUMBER; } if (IsNumberMatchingDesc(national_number, metadata.pager())) { VLOG(4) << "Number is a pager number."; return PhoneNumberUtil::PAGER; } if (IsNumberMatchingDesc(national_number, metadata.uan())) { VLOG(4) << "Number is a UAN."; return PhoneNumberUtil::UAN; } if (IsNumberMatchingDesc(national_number, metadata.voicemail())) { VLOG(4) << "Number is a voicemail number."; return PhoneNumberUtil::VOICEMAIL; } bool is_fixed_line = IsNumberMatchingDesc(national_number, metadata.fixed_line()); if (is_fixed_line) { if (metadata.same_mobile_and_fixed_line_pattern()) { VLOG(4) << "Fixed-line and mobile patterns equal, number is fixed-line" << " or mobile"; return PhoneNumberUtil::FIXED_LINE_OR_MOBILE; } else if (IsNumberMatchingDesc(national_number, metadata.mobile())) { VLOG(4) << "Fixed-line and mobile patterns differ, but number is " << "still fixed-line or mobile"; return PhoneNumberUtil::FIXED_LINE_OR_MOBILE; } VLOG(4) << "Number is a fixed line number."; return PhoneNumberUtil::FIXED_LINE; } if (!metadata.same_mobile_and_fixed_line_pattern() && IsNumberMatchingDesc(national_number, metadata.mobile())) { VLOG(4) << "Number is a mobile number."; return PhoneNumberUtil::MOBILE; } VLOG(4) << "Number type unknown - doesn\'t match any specific number type" << " pattern."; return PhoneNumberUtil::UNKNOWN; } void PhoneNumberUtil::GetNationalSignificantNumber( const PhoneNumber& number, std::string* national_number) const { DCHECK(national_number); StrAppend(national_number, number.italian_leading_zero() ? std::string(std::max(number.number_of_leading_zeros(), 0), '0') : ""); StrAppend(national_number, number.national_number()); } int PhoneNumberUtil::GetLengthOfGeographicalAreaCode( const PhoneNumber& number) const { std::string region_code; GetRegionCodeForNumber(number, &region_code); const PhoneMetadata* metadata = GetMetadataForRegion(region_code); if (!metadata) { return 0; } PhoneNumberType type = GetNumberType(number); int country_calling_code = number.country_code(); if (!metadata->has_national_prefix() && !number.italian_leading_zero() && reg_exps_->countries_without_national_prefix_with_area_codes_.find( country_calling_code) == reg_exps_->countries_without_national_prefix_with_area_codes_.end()) { return 0; } if (type == PhoneNumberUtil::MOBILE && reg_exps_->geo_mobile_countries_without_mobile_area_codes_.find( country_calling_code) != reg_exps_->geo_mobile_countries_without_mobile_area_codes_.end()) { return 0; } if (!IsNumberGeographical(type, country_calling_code)) { return 0; } return GetLengthOfNationalDestinationCode(number); } int PhoneNumberUtil::GetLengthOfNationalDestinationCode( const PhoneNumber& number) const { PhoneNumber copied_proto(number); if (number.has_extension()) { copied_proto.clear_extension(); } std::string formatted_number; Format(copied_proto, INTERNATIONAL, &formatted_number); const scoped_ptr<RegExpInput> i18n_number( reg_exps_->regexp_factory_->CreateInput(formatted_number)); std::string digit_group; std::string ndc; std::string third_group; for (int i = 0; i < 3; ++i) { if (!reg_exps_->capturing_ascii_digits_pattern_->FindAndConsume( i18n_number.get(), &digit_group)) { return 0; } if (i == 1) { ndc = digit_group; } else if (i == 2) { third_group = digit_group; } } if (GetNumberType(number) == MOBILE) { std::string mobile_token; GetCountryMobileToken(number.country_code(), &mobile_token); if (!mobile_token.empty()) { return static_cast<int>(third_group.size() + mobile_token.size()); } } return static_cast<int>(ndc.size()); } void PhoneNumberUtil::GetCountryMobileToken(int country_calling_code, std::string* mobile_token) const { DCHECK(mobile_token); std::map<int, char>::iterator it = reg_exps_->mobile_token_mappings_.find( country_calling_code); if (it != reg_exps_->mobile_token_mappings_.end()) { *mobile_token = it->second; } else { mobile_token->assign(""); } } void PhoneNumberUtil::NormalizeDigitsOnly(std::string* number) const { DCHECK(number); const RegExp& non_digits_pattern = reg_exps_->regexp_cache_->GetRegExp( StrCat("[^", kDigits, "]")); non_digits_pattern.GlobalReplace(number, ""); number->assign(NormalizeUTF8::NormalizeDecimalDigits(*number)); } void PhoneNumberUtil::NormalizeDiallableCharsOnly(std::string* number) const { DCHECK(number); NormalizeHelper(reg_exps_->diallable_char_mappings_, true , number); } bool PhoneNumberUtil::IsAlphaNumber(const std::string& number) const { if (!IsViablePhoneNumber(number)) { return false; } std::string number_copy(number); std::string extension; MaybeStripExtension(&number_copy, &extension); return reg_exps_->valid_alpha_phone_pattern_->FullMatch(number_copy); } void PhoneNumberUtil::ConvertAlphaCharactersInNumber( std::string* number) const { DCHECK(number); NormalizeHelper(reg_exps_->alpha_phone_mappings_, false, number); } void PhoneNumberUtil::Normalize(std::string* number) const { DCHECK(number); if (reg_exps_->valid_alpha_phone_pattern_->PartialMatch(*number)) { NormalizeHelper(reg_exps_->alpha_phone_mappings_, true, number); } NormalizeDigitsOnly(number); } bool PhoneNumberUtil::IsViablePhoneNumber(const std::string& number) const { if (number.length() < kMinLengthForNsn) { return false; } return reg_exps_->valid_phone_number_pattern_->FullMatch(number); } bool PhoneNumberUtil::ParsePrefixAsIdd(const RegExp& idd_pattern, std::string* number) const { DCHECK(number); const scoped_ptr<RegExpInput> number_copy( reg_exps_->regexp_factory_->CreateInput(*number)); if (idd_pattern.Consume(number_copy.get())) { std::string extracted_digit; if (reg_exps_->capturing_digit_pattern_->PartialMatch( number_copy->ToString(), &extracted_digit)) { NormalizeDigitsOnly(&extracted_digit); if (extracted_digit == "0") { return false; } } number->assign(number_copy->ToString()); return true; } return false; } PhoneNumber::CountryCodeSource PhoneNumberUtil::MaybeStripInternationalPrefixAndNormalize( const std::string& possible_idd_prefix, std::string* number) const { DCHECK(number); if (number->empty()) { return PhoneNumber::FROM_DEFAULT_COUNTRY; } const scoped_ptr<RegExpInput> number_string_piece( reg_exps_->regexp_factory_->CreateInput(*number)); if (reg_exps_->plus_chars_pattern_->Consume(number_string_piece.get())) { number->assign(number_string_piece->ToString()); Normalize(number); return PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN; } const RegExp& idd_pattern = reg_exps_->regexp_cache_->GetRegExp(possible_idd_prefix); Normalize(number); return ParsePrefixAsIdd(idd_pattern, number) ? PhoneNumber::FROM_NUMBER_WITH_IDD : PhoneNumber::FROM_DEFAULT_COUNTRY; } bool PhoneNumberUtil::MaybeStripNationalPrefixAndCarrierCode( const PhoneMetadata& metadata, std::string* number, std::string* carrier_code) const { DCHECK(number); std::string carrier_code_temp; const std::string& possible_national_prefix = metadata.national_prefix_for_parsing(); if (number->empty() || possible_national_prefix.empty()) { return false; } const scoped_ptr<RegExpInput> number_copy( reg_exps_->regexp_factory_->CreateInput(*number)); const scoped_ptr<RegExpInput> number_copy_without_transform( reg_exps_->regexp_factory_->CreateInput(*number)); std::string number_string_copy(*number); std::string captured_part_of_prefix; const PhoneNumberDesc& general_desc = metadata.general_desc(); bool is_viable_original_number = IsMatch(*matcher_api_, *number, general_desc); const std::string& transform_rule = metadata.national_prefix_transform_rule(); const RegExp& possible_national_prefix_pattern = reg_exps_->regexp_cache_->GetRegExp(possible_national_prefix); if (!transform_rule.empty() && (possible_national_prefix_pattern.Consume( number_copy.get(), &carrier_code_temp, &captured_part_of_prefix) || possible_national_prefix_pattern.Consume( number_copy.get(), &captured_part_of_prefix)) && !captured_part_of_prefix.empty()) { possible_national_prefix_pattern.Replace(&number_string_copy, transform_rule); if (is_viable_original_number && !IsMatch(*matcher_api_, number_string_copy, general_desc)) { return false; } number->assign(number_string_copy); if (carrier_code) { carrier_code->assign(carrier_code_temp); } } else if (possible_national_prefix_pattern.Consume( number_copy_without_transform.get(), &carrier_code_temp) || possible_national_prefix_pattern.Consume( number_copy_without_transform.get())) { VLOG(4) << "Parsed the first digits as a national prefix."; const std::string number_copy_as_string = number_copy_without_transform->ToString(); if (is_viable_original_number && !IsMatch(*matcher_api_, number_copy_as_string, general_desc)) { return false; } number->assign(number_copy_as_string); if (carrier_code) { carrier_code->assign(carrier_code_temp); } } else { return false; VLOG(4) << "The first digits did not match the national prefix."; } return true; } bool PhoneNumberUtil::MaybeStripExtension(std::string* number, std::string* extension) const { DCHECK(number); DCHECK(extension); std::string possible_extension_one; std::string possible_extension_two; std::string possible_extension_three; std::string possible_extension_four; std::string possible_extension_five; std::string possible_extension_six; std::string number_copy(*number); const scoped_ptr<RegExpInput> number_copy_as_regexp_input( reg_exps_->regexp_factory_->CreateInput(number_copy)); if (reg_exps_->extn_pattern_->Consume( number_copy_as_regexp_input.get(), false, &possible_extension_one, &possible_extension_two, &possible_extension_three, &possible_extension_four, &possible_extension_five, &possible_extension_six)) { reg_exps_->extn_pattern_->Replace(&number_copy, ""); if ((!possible_extension_one.empty() || !possible_extension_two.empty() || !possible_extension_three.empty() || !possible_extension_four.empty() || !possible_extension_five.empty() || !possible_extension_six.empty()) && IsViablePhoneNumber(number_copy)) { number->assign(number_copy); if (!possible_extension_one.empty()) { extension->assign(possible_extension_one); } else if (!possible_extension_two.empty()) { extension->assign(possible_extension_two); } else if (!possible_extension_three.empty()) { extension->assign(possible_extension_three); } else if (!possible_extension_four.empty()) { extension->assign(possible_extension_four); } else if (!possible_extension_five.empty()) { extension->assign(possible_extension_five); } else if (!possible_extension_six.empty()) { extension->assign(possible_extension_six); } return true; } } return false; } int PhoneNumberUtil::ExtractCountryCode(std::string* national_number) const { int potential_country_code; if (national_number->empty() || (national_number->at(0) == '0')) { return 0; } for (size_t i = 1; i <= kMaxLengthCountryCode; ++i) { safe_strto32(national_number->substr(0, i), &potential_country_code); std::string region_code; GetRegionCodeForCountryCode(potential_country_code, &region_code); if (region_code != RegionCode::GetUnknown()) { national_number->erase(0, i); return potential_country_code; } } return 0; } PhoneNumberUtil::ErrorType PhoneNumberUtil::MaybeExtractCountryCode( const PhoneMetadata* default_region_metadata, bool keep_raw_input, std::string* national_number, PhoneNumber* phone_number) const { DCHECK(national_number); DCHECK(phone_number); std::string possible_country_idd_prefix = default_region_metadata ? default_region_metadata->international_prefix() : "NonMatch"; PhoneNumber::CountryCodeSource country_code_source = MaybeStripInternationalPrefixAndNormalize(possible_country_idd_prefix, national_number); if (keep_raw_input) { phone_number->set_country_code_source(country_code_source); } if (country_code_source != PhoneNumber::FROM_DEFAULT_COUNTRY) { if (national_number->length() <= kMinLengthForNsn) { VLOG(2) << "Phone number had an IDD, but after this was not " << "long enough to be a viable phone number."; return TOO_SHORT_AFTER_IDD; } int potential_country_code = ExtractCountryCode(national_number); if (potential_country_code != 0) { phone_number->set_country_code(potential_country_code); return NO_PARSING_ERROR; } return INVALID_COUNTRY_CODE_ERROR; } else if (default_region_metadata) { int default_country_code = default_region_metadata->country_code(); std::string default_country_code_string(SimpleItoa(default_country_code)); VLOG(4) << "Possible country calling code: " << default_country_code_string; std::string potential_national_number; if (TryStripPrefixString(*national_number, default_country_code_string, &potential_national_number)) { const PhoneNumberDesc& general_num_desc = default_region_metadata->general_desc(); MaybeStripNationalPrefixAndCarrierCode(*default_region_metadata, &potential_national_number, NULL); VLOG(4) << "Number without country calling code prefix"; if ((!IsMatch(*matcher_api_, *national_number, general_num_desc) && IsMatch( *matcher_api_, potential_national_number, general_num_desc)) || TestNumberLength(*national_number, *default_region_metadata) == TOO_LONG) { national_number->assign(potential_national_number); if (keep_raw_input) { phone_number->set_country_code_source( PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN); } phone_number->set_country_code(default_country_code); return NO_PARSING_ERROR; } } } phone_number->set_country_code(0); return NO_PARSING_ERROR; } PhoneNumberUtil::MatchType PhoneNumberUtil::IsNumberMatch( const PhoneNumber& first_number_in, const PhoneNumber& second_number_in) const { PhoneNumber first_number; CopyCoreFieldsOnly(first_number_in, &first_number); PhoneNumber second_number; CopyCoreFieldsOnly(second_number_in, &second_number); if (first_number.has_extension() && second_number.has_extension() && first_number.extension() != second_number.extension()) { return NO_MATCH; } int first_number_country_code = first_number.country_code(); int second_number_country_code = second_number.country_code(); if (first_number_country_code != 0 && second_number_country_code != 0) { if (ExactlySameAs(first_number, second_number)) { return EXACT_MATCH; } else if (first_number_country_code == second_number_country_code && IsNationalNumberSuffixOfTheOther(first_number, second_number)) { return SHORT_NSN_MATCH; } return NO_MATCH; } first_number.set_country_code(second_number_country_code); if (ExactlySameAs(first_number, second_number)) { return NSN_MATCH; } if (IsNationalNumberSuffixOfTheOther(first_number, second_number)) { return SHORT_NSN_MATCH; } return NO_MATCH; } PhoneNumberUtil::MatchType PhoneNumberUtil::IsNumberMatchWithTwoStrings( absl::string_view first_number, absl::string_view second_number) const { PhoneNumber first_number_as_proto; ErrorType error_type = Parse(first_number, RegionCode::GetUnknown(), &first_number_as_proto); if (error_type == NO_PARSING_ERROR) { return IsNumberMatchWithOneString(first_number_as_proto, second_number); } if (error_type == INVALID_COUNTRY_CODE_ERROR) { PhoneNumber second_number_as_proto; ErrorType error_type = Parse(second_number, RegionCode::GetUnknown(), &second_number_as_proto); if (error_type == NO_PARSING_ERROR) { return IsNumberMatchWithOneString(second_number_as_proto, first_number); } if (error_type == INVALID_COUNTRY_CODE_ERROR) { error_type = ParseHelper(first_number, RegionCode::GetUnknown(), false, false, &first_number_as_proto); if (error_type == NO_PARSING_ERROR) { error_type = ParseHelper(second_number, RegionCode::GetUnknown(), false, false, &second_number_as_proto); if (error_type == NO_PARSING_ERROR) { return IsNumberMatch(first_number_as_proto, second_number_as_proto); } } } } return INVALID_NUMBER; } PhoneNumberUtil::MatchType PhoneNumberUtil::IsNumberMatchWithOneString( const PhoneNumber& first_number, absl::string_view second_number) const { PhoneNumber second_number_as_proto; ErrorType error_type = Parse(second_number, RegionCode::GetUnknown(), &second_number_as_proto); if (error_type == NO_PARSING_ERROR) { return IsNumberMatch(first_number, second_number_as_proto); } if (error_type == INVALID_COUNTRY_CODE_ERROR) { std::string first_number_region; GetRegionCodeForCountryCode(first_number.country_code(), &first_number_region); if (first_number_region != RegionCode::GetUnknown()) { PhoneNumber second_number_with_first_number_region; Parse(second_number, first_number_region, &second_number_with_first_number_region); MatchType match = IsNumberMatch(first_number, second_number_with_first_number_region); if (match == EXACT_MATCH) { return NSN_MATCH; } return match; } else { error_type = ParseHelper(second_number, RegionCode::GetUnknown(), false, false, &second_number_as_proto); if (error_type == NO_PARSING_ERROR) { return IsNumberMatch(first_number, second_number_as_proto); } } } return INVALID_NUMBER; } AsYouTypeFormatter* PhoneNumberUtil::GetAsYouTypeFormatter( const std::string& region_code) const { return new AsYouTypeFormatter(region_code); } bool PhoneNumberUtil::CanBeInternationallyDialled( const PhoneNumber& number) const { std::string region_code; GetRegionCodeForNumber(number, &region_code); const PhoneMetadata* metadata = GetMetadataForRegion(region_code); if (!metadata) { return true; } std::string national_significant_number; GetNationalSignificantNumber(number, &national_significant_number); return !IsNumberMatchingDesc( national_significant_number, metadata->no_international_dialling()); } } }
#include "phonenumbers/phonenumberutil.h" #include <algorithm> #include <iostream> #include <list> #include <set> #include <string> #include <gtest/gtest.h> #include <unicode/uchar.h> #include "phonenumbers/default_logger.h" #include "phonenumbers/normalize_utf8.h" #include "phonenumbers/phonemetadata.pb.h" #include "phonenumbers/phonenumber.h" #include "phonenumbers/phonenumber.pb.h" #include "phonenumbers/test_util.h" namespace i18n { namespace phonenumbers { using std::find; using std::ostream; using google::protobuf::RepeatedPtrField; static const int kInvalidCountryCode = 2; class PhoneNumberUtilTest : public testing::Test { public: PhoneNumberUtilTest(const PhoneNumberUtilTest&) = delete; PhoneNumberUtilTest& operator=(const PhoneNumberUtilTest&) = delete; protected: PhoneNumberUtilTest() : phone_util_(*PhoneNumberUtil::GetInstance()) { PhoneNumberUtil::GetInstance()->SetLogger(new StdoutLogger()); } const PhoneMetadata* GetPhoneMetadata(const string& region_code) const { return phone_util_.GetMetadataForRegion(region_code); } const PhoneMetadata* GetMetadataForNonGeographicalRegion( int country_code) const { return phone_util_.GetMetadataForNonGeographicalRegion(country_code); } void ExtractPossibleNumber(const string& number, string* extracted_number) const { phone_util_.ExtractPossibleNumber(number, extracted_number); } bool IsViablePhoneNumber(const string& number) const { return phone_util_.IsViablePhoneNumber(number); } void Normalize(string* number) const { phone_util_.Normalize(number); } PhoneNumber::CountryCodeSource MaybeStripInternationalPrefixAndNormalize( const string& possible_idd_prefix, string* number) const { return phone_util_.MaybeStripInternationalPrefixAndNormalize( possible_idd_prefix, number); } void MaybeStripNationalPrefixAndCarrierCode(const PhoneMetadata& metadata, string* number, string* carrier_code) const { phone_util_.MaybeStripNationalPrefixAndCarrierCode(metadata, number, carrier_code); } bool MaybeStripExtension(string* number, string* extension) const { return phone_util_.MaybeStripExtension(number, extension); } PhoneNumberUtil::ErrorType MaybeExtractCountryCode( const PhoneMetadata* default_region_metadata, bool keep_raw_input, string* national_number, PhoneNumber* phone_number) const { return phone_util_.MaybeExtractCountryCode(default_region_metadata, keep_raw_input, national_number, phone_number); } bool ContainsOnlyValidDigits(const string& s) const { return phone_util_.ContainsOnlyValidDigits(s); } void AssertThrowsForInvalidPhoneContext(const string number_to_parse) { PhoneNumber actual_number; EXPECT_EQ( PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse(number_to_parse, RegionCode::ZZ(), &actual_number)); } const PhoneNumberUtil& phone_util_; }; TEST_F(PhoneNumberUtilTest, ContainsOnlyValidDigits) { EXPECT_TRUE(ContainsOnlyValidDigits("")); EXPECT_TRUE(ContainsOnlyValidDigits("2")); EXPECT_TRUE(ContainsOnlyValidDigits("25")); EXPECT_TRUE(ContainsOnlyValidDigits("\xEF\xBC\x96" )); EXPECT_FALSE(ContainsOnlyValidDigits("a")); EXPECT_FALSE(ContainsOnlyValidDigits("2a")); } TEST_F(PhoneNumberUtilTest, InterchangeInvalidCodepoints) { PhoneNumber phone_number; std::vector<string> valid_inputs = { "+44" "\xE2\x80\x93" "2087654321", }; for (auto input : valid_inputs) { EXPECT_EQ(input, NormalizeUTF8::NormalizeDecimalDigits(input)); EXPECT_TRUE(IsViablePhoneNumber(input)); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse(input, RegionCode::GB(), &phone_number)); } std::vector<string> invalid_inputs = { "+44" "\x96" "2087654321", "+44" "\xC2\x96" "2087654321", "+44" "\xEF\xBF\xBE" "2087654321", }; for (auto input : invalid_inputs) { EXPECT_TRUE(NormalizeUTF8::NormalizeDecimalDigits(input).empty()); EXPECT_FALSE(IsViablePhoneNumber(input)); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse(input, RegionCode::GB(), &phone_number)); } } TEST_F(PhoneNumberUtilTest, GetSupportedRegions) { std::set<string> regions; phone_util_.GetSupportedRegions(&regions); EXPECT_GT(regions.size(), 0U); } TEST_F(PhoneNumberUtilTest, GetSupportedGlobalNetworkCallingCodes) { std::set<int> calling_codes; phone_util_.GetSupportedGlobalNetworkCallingCodes(&calling_codes); EXPECT_GT(calling_codes.size(), 0U); for (std::set<int>::const_iterator it = calling_codes.begin(); it != calling_codes.end(); ++it) { EXPECT_GT(*it, 0); string region_code; phone_util_.GetRegionCodeForCountryCode(*it, &region_code); EXPECT_EQ(RegionCode::UN001(), region_code); } } TEST_F(PhoneNumberUtilTest, GetSupportedCallingCodes) { std::set<int> calling_codes; phone_util_.GetSupportedCallingCodes(&calling_codes); EXPECT_GT(calling_codes.size(), 0U); for (std::set<int>::const_iterator it = calling_codes.begin(); it != calling_codes.end(); ++it) { EXPECT_GT(*it, 0); string region_code; phone_util_.GetRegionCodeForCountryCode(*it, &region_code); EXPECT_NE(RegionCode::ZZ(), region_code); } std::set<int> supported_global_network_calling_codes; phone_util_.GetSupportedGlobalNetworkCallingCodes( &supported_global_network_calling_codes); EXPECT_GT(calling_codes.size(), supported_global_network_calling_codes.size()); EXPECT_NE(calling_codes.find(979), calling_codes.end()); } TEST_F(PhoneNumberUtilTest, GetSupportedTypesForRegion) { std::set<PhoneNumberUtil::PhoneNumberType> types; phone_util_.GetSupportedTypesForRegion(RegionCode::BR(), &types); EXPECT_NE(types.find(PhoneNumberUtil::FIXED_LINE), types.end()); EXPECT_EQ(types.find(PhoneNumberUtil::MOBILE), types.end()); EXPECT_EQ(types.find(PhoneNumberUtil::UNKNOWN), types.end()); types.clear(); phone_util_.GetSupportedTypesForRegion(RegionCode::US(), &types); EXPECT_NE(types.find(PhoneNumberUtil::FIXED_LINE), types.end()); EXPECT_NE(types.find(PhoneNumberUtil::MOBILE), types.end()); EXPECT_EQ(types.find(PhoneNumberUtil::FIXED_LINE_OR_MOBILE), types.end()); types.clear(); phone_util_.GetSupportedTypesForRegion(RegionCode::ZZ(), &types); EXPECT_EQ(0u, types.size()); } TEST_F(PhoneNumberUtilTest, GetSupportedTypesForNonGeoEntity) { std::set<PhoneNumberUtil::PhoneNumberType> types; phone_util_.GetSupportedTypesForNonGeoEntity(999, &types); EXPECT_EQ(0u, types.size()); types.clear(); phone_util_.GetSupportedTypesForNonGeoEntity(979, &types); EXPECT_NE(types.find(PhoneNumberUtil::PREMIUM_RATE), types.end()); EXPECT_EQ(types.find(PhoneNumberUtil::MOBILE), types.end()); EXPECT_EQ(types.find(PhoneNumberUtil::UNKNOWN), types.end()); } TEST_F(PhoneNumberUtilTest, GetRegionCodesForCountryCallingCode) { std::list<string> regions; phone_util_.GetRegionCodesForCountryCallingCode(1, &regions); EXPECT_TRUE(find(regions.begin(), regions.end(), RegionCode::US()) != regions.end()); EXPECT_TRUE(find(regions.begin(), regions.end(), RegionCode::BS()) != regions.end()); regions.clear(); phone_util_.GetRegionCodesForCountryCallingCode(44, &regions); EXPECT_TRUE(find(regions.begin(), regions.end(), RegionCode::GB()) != regions.end()); regions.clear(); phone_util_.GetRegionCodesForCountryCallingCode(49, &regions); EXPECT_TRUE(find(regions.begin(), regions.end(), RegionCode::DE()) != regions.end()); regions.clear(); phone_util_.GetRegionCodesForCountryCallingCode(800, &regions); EXPECT_TRUE(find(regions.begin(), regions.end(), RegionCode::UN001()) != regions.end()); regions.clear(); phone_util_.GetRegionCodesForCountryCallingCode( kInvalidCountryCode, &regions); EXPECT_TRUE(regions.empty()); } TEST_F(PhoneNumberUtilTest, GetInstanceLoadUSMetadata) { const PhoneMetadata* metadata = GetPhoneMetadata(RegionCode::US()); EXPECT_EQ("US", metadata->id()); EXPECT_EQ(1, metadata->country_code()); EXPECT_EQ("011", metadata->international_prefix()); EXPECT_TRUE(metadata->has_national_prefix()); ASSERT_EQ(2, metadata->number_format_size()); EXPECT_EQ("(\\d{3})(\\d{3})(\\d{4})", metadata->number_format(1).pattern()); EXPECT_EQ("$1 $2 $3", metadata->number_format(1).format()); EXPECT_EQ("[13-689]\\d{9}|2[0-35-9]\\d{8}", metadata->general_desc().national_number_pattern()); EXPECT_EQ("[13-689]\\d{9}|2[0-35-9]\\d{8}", metadata->fixed_line().national_number_pattern()); EXPECT_EQ(1, metadata->general_desc().possible_length_size()); EXPECT_EQ(10, metadata->general_desc().possible_length(0)); EXPECT_EQ(0, metadata->toll_free().possible_length_size()); EXPECT_EQ("900\\d{7}", metadata->premium_rate().national_number_pattern()); EXPECT_FALSE(metadata->shared_cost().has_national_number_pattern()); } TEST_F(PhoneNumberUtilTest, GetInstanceLoadDEMetadata) { const PhoneMetadata* metadata = GetPhoneMetadata(RegionCode::DE()); EXPECT_EQ("DE", metadata->id()); EXPECT_EQ(49, metadata->country_code()); EXPECT_EQ("00", metadata->international_prefix()); EXPECT_EQ("0", metadata->national_prefix()); ASSERT_EQ(6, metadata->number_format_size()); EXPECT_EQ(1, metadata->number_format(5).leading_digits_pattern_size()); EXPECT_EQ("900", metadata->number_format(5).leading_digits_pattern(0)); EXPECT_EQ("(\\d{3})(\\d{3,4})(\\d{4})", metadata->number_format(5).pattern()); EXPECT_EQ(2, metadata->general_desc().possible_length_local_only_size()); EXPECT_EQ(8, metadata->general_desc().possible_length_size()); EXPECT_EQ(0, metadata->fixed_line().possible_length_size()); EXPECT_EQ(2, metadata->mobile().possible_length_size()); EXPECT_EQ("$1 $2 $3", metadata->number_format(5).format()); EXPECT_EQ("(?:[24-6]\\d{2}|3[03-9]\\d|[789](?:0[2-9]|[1-9]\\d))\\d{1,8}", metadata->fixed_line().national_number_pattern()); EXPECT_EQ("30123456", metadata->fixed_line().example_number()); EXPECT_EQ(10, metadata->toll_free().possible_length(0)); EXPECT_EQ("900([135]\\d{6}|9\\d{7})", metadata->premium_rate().national_number_pattern()); } TEST_F(PhoneNumberUtilTest, GetInstanceLoadARMetadata) { const PhoneMetadata* metadata = GetPhoneMetadata(RegionCode::AR()); EXPECT_EQ("AR", metadata->id()); EXPECT_EQ(54, metadata->country_code()); EXPECT_EQ("00", metadata->international_prefix()); EXPECT_EQ("0", metadata->national_prefix()); EXPECT_EQ("0(?:(11|343|3715)15)?", metadata->national_prefix_for_parsing()); EXPECT_EQ("9$1", metadata->national_prefix_transform_rule()); ASSERT_EQ(5, metadata->number_format_size()); EXPECT_EQ("$2 15 $3-$4", metadata->number_format(2).format()); EXPECT_EQ("(\\d)(\\d{4})(\\d{2})(\\d{4})", metadata->number_format(3).pattern()); EXPECT_EQ("(\\d)(\\d{4})(\\d{2})(\\d{4})", metadata->intl_number_format(3).pattern()); EXPECT_EQ("$1 $2 $3 $4", metadata->intl_number_format(3).format()); } TEST_F(PhoneNumberUtilTest, GetInstanceLoadInternationalTollFreeMetadata) { const PhoneMetadata* metadata = GetMetadataForNonGeographicalRegion(800); EXPECT_FALSE(metadata == NULL); EXPECT_EQ("001", metadata->id()); EXPECT_EQ(800, metadata->country_code()); EXPECT_EQ("$1 $2", metadata->number_format(0).format()); EXPECT_EQ("(\\d{4})(\\d{4})", metadata->number_format(0).pattern()); EXPECT_EQ(0, metadata->general_desc().possible_length_local_only_size()); EXPECT_EQ(1, metadata->general_desc().possible_length_size()); EXPECT_EQ("12345678", metadata->toll_free().example_number()); } TEST_F(PhoneNumberUtilTest, GetNationalSignificantNumber) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{6502530000}); string national_significant_number; phone_util_.GetNationalSignificantNumber(number, &national_significant_number); EXPECT_EQ("6502530000", national_significant_number); national_significant_number.clear(); number.set_country_code(39); number.set_national_number(uint64{312345678}); phone_util_.GetNationalSignificantNumber(number, &national_significant_number); EXPECT_EQ("312345678", national_significant_number); national_significant_number.clear(); number.set_country_code(39); number.set_national_number(uint64{236618300}); number.set_italian_leading_zero(true); phone_util_.GetNationalSignificantNumber(number, &national_significant_number); EXPECT_EQ("0236618300", national_significant_number); national_significant_number.clear(); number.Clear(); number.set_country_code(800); number.set_national_number(uint64{12345678}); phone_util_.GetNationalSignificantNumber(number, &national_significant_number); EXPECT_EQ("12345678", national_significant_number); } TEST_F(PhoneNumberUtilTest, GetNationalSignificantNumber_ManyLeadingZeros) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{650}); number.set_italian_leading_zero(true); number.set_number_of_leading_zeros(2); string national_significant_number; phone_util_.GetNationalSignificantNumber(number, &national_significant_number); EXPECT_EQ("00650", national_significant_number); number.set_number_of_leading_zeros(-3); national_significant_number.clear(); phone_util_.GetNationalSignificantNumber(number, &national_significant_number); EXPECT_EQ("650", national_significant_number); } TEST_F(PhoneNumberUtilTest, GetExampleNumber) { PhoneNumber de_number; de_number.set_country_code(49); de_number.set_national_number(uint64{30123456}); PhoneNumber test_number; bool success = phone_util_.GetExampleNumber(RegionCode::DE(), &test_number); EXPECT_TRUE(success); EXPECT_EQ(de_number, test_number); success = phone_util_.GetExampleNumberForType( RegionCode::DE(), PhoneNumberUtil::FIXED_LINE, &test_number); EXPECT_TRUE(success); EXPECT_EQ(de_number, test_number); success = phone_util_.GetExampleNumberForType( RegionCode::DE(), PhoneNumberUtil::FIXED_LINE_OR_MOBILE, &test_number); EXPECT_EQ(de_number, test_number); success = phone_util_.GetExampleNumberForType( RegionCode::DE(), PhoneNumberUtil::MOBILE, &test_number); success = phone_util_.GetExampleNumberForType( RegionCode::US(), PhoneNumberUtil::VOICEMAIL, &test_number); test_number.Clear(); EXPECT_FALSE(success); EXPECT_EQ(PhoneNumber::default_instance(), test_number); success = phone_util_.GetExampleNumberForType( RegionCode::US(), PhoneNumberUtil::FIXED_LINE, &test_number); EXPECT_TRUE(success); EXPECT_NE(PhoneNumber::default_instance(), test_number); success = phone_util_.GetExampleNumberForType( RegionCode::US(), PhoneNumberUtil::MOBILE, &test_number); EXPECT_TRUE(success); EXPECT_NE(PhoneNumber::default_instance(), test_number); test_number.Clear(); EXPECT_FALSE(phone_util_.GetExampleNumberForType( RegionCode::CS(), PhoneNumberUtil::MOBILE, &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_FALSE(phone_util_.GetExampleNumber(RegionCode::UN001(), &test_number)); } TEST_F(PhoneNumberUtilTest, GetInvalidExampleNumber) { PhoneNumber test_number; EXPECT_FALSE(phone_util_.GetInvalidExampleNumber(RegionCode::UN001(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_FALSE(phone_util_.GetInvalidExampleNumber(RegionCode::CS(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_TRUE(phone_util_.GetInvalidExampleNumber(RegionCode::US(), &test_number)); EXPECT_EQ(1, test_number.country_code()); EXPECT_NE(0u, test_number.national_number()); } TEST_F(PhoneNumberUtilTest, GetExampleNumberForNonGeoEntity) { PhoneNumber toll_free_number; toll_free_number.set_country_code(800); toll_free_number.set_national_number(uint64{12345678}); PhoneNumber test_number; bool success = phone_util_.GetExampleNumberForNonGeoEntity(800 , &test_number); EXPECT_TRUE(success); EXPECT_EQ(toll_free_number, test_number); PhoneNumber universal_premium_rate; universal_premium_rate.set_country_code(979); universal_premium_rate.set_national_number(uint64{123456789}); success = phone_util_.GetExampleNumberForNonGeoEntity(979 , &test_number); EXPECT_TRUE(success); EXPECT_EQ(universal_premium_rate, test_number); } TEST_F(PhoneNumberUtilTest, GetExampleNumberWithoutRegion) { PhoneNumber test_number; bool success = phone_util_.GetExampleNumberForType( PhoneNumberUtil::FIXED_LINE, &test_number); EXPECT_TRUE(success); EXPECT_NE(PhoneNumber::default_instance(), test_number); test_number.Clear(); success = phone_util_.GetExampleNumberForType(PhoneNumberUtil::MOBILE, &test_number); EXPECT_TRUE(success); EXPECT_NE(PhoneNumber::default_instance(), test_number); test_number.Clear(); success = phone_util_.GetExampleNumberForType(PhoneNumberUtil::PREMIUM_RATE, &test_number); EXPECT_TRUE(success); EXPECT_NE(PhoneNumber::default_instance(), test_number); } TEST_F(PhoneNumberUtilTest, FormatUSNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(1); test_number.set_national_number(uint64{6502530000}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("650 253 0000", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+1 650 253 0000", formatted_number); test_number.set_national_number(uint64{8002530000}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("800 253 0000", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+1 800 253 0000", formatted_number); test_number.set_national_number(uint64{9002530000}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("900 253 0000", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+1 900 253 0000", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::RFC3966, &formatted_number); EXPECT_EQ("tel:+1-900-253-0000", formatted_number); test_number.set_national_number(uint64{0}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("0", formatted_number); test_number.set_raw_input("000-000-0000"); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("000-000-0000", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatBSNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(1); test_number.set_national_number(uint64{2421234567}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("242 123 4567", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+1 242 123 4567", formatted_number); test_number.set_national_number(uint64{8002530000}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("800 253 0000", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+1 800 253 0000", formatted_number); test_number.set_national_number(uint64{9002530000}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("900 253 0000", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+1 900 253 0000", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatGBNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(44); test_number.set_national_number(uint64{2087389353}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("(020) 8738 9353", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+44 20 8738 9353", formatted_number); test_number.set_national_number(uint64{7912345678}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("(07912) 345 678", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+44 7912 345 678", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatDENumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(49); test_number.set_national_number(uint64{301234}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("030/1234", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+49 30/1234", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::RFC3966, &formatted_number); EXPECT_EQ("tel:+49-30-1234", formatted_number); test_number.set_national_number(uint64{291123}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("0291 123", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+49 291 123", formatted_number); test_number.set_national_number(uint64{29112345678}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("0291 12345678", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+49 291 12345678", formatted_number); test_number.set_national_number(uint64{9123123}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("09123 123", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+49 9123 123", formatted_number); test_number.set_national_number(uint64{80212345}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("08021 2345", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+49 8021 2345", formatted_number); test_number.set_national_number(uint64{1234}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("1234", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+49 1234", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatITNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(39); test_number.set_national_number(uint64{236618300}); test_number.set_italian_leading_zero(true); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("02 3661 8300", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+39 02 3661 8300", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+390236618300", formatted_number); test_number.set_national_number(uint64{345678901}); test_number.set_italian_leading_zero(false); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("345 678 901", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+39 345 678 901", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+39345678901", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatAUNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(61); test_number.set_national_number(uint64{236618300}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("02 3661 8300", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+61 2 3661 8300", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+61236618300", formatted_number); test_number.set_national_number(uint64{1800123456}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("1800 123 456", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+61 1800 123 456", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+611800123456", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatARNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(54); test_number.set_national_number(uint64{1187654321}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("011 8765-4321", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+54 11 8765-4321", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+541187654321", formatted_number); test_number.set_national_number(uint64{91187654321}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("011 15 8765-4321", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+54 9 11 8765 4321", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+5491187654321", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatMXNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(52); test_number.set_national_number(uint64{12345678900}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("045 234 567 8900", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+52 1 234 567 8900", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+5212345678900", formatted_number); test_number.set_national_number(uint64{15512345678}); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("045 55 1234 5678", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+52 1 55 1234 5678", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+5215512345678", formatted_number); test_number.set_national_number(3312345678LL); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("01 33 1234 5678", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+52 33 1234 5678", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+523312345678", formatted_number); test_number.set_national_number(8211234567LL); phone_util_.Format(test_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("01 821 123 4567", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+52 821 123 4567", formatted_number); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+528211234567", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatOutOfCountryCallingNumber) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(1); test_number.set_national_number(uint64{9002530000}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::DE(), &formatted_number); EXPECT_EQ("00 1 900 253 0000", formatted_number); test_number.set_national_number(uint64{6502530000}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::BS(), &formatted_number); EXPECT_EQ("1 650 253 0000", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::PL(), &formatted_number); EXPECT_EQ("00 1 650 253 0000", formatted_number); test_number.set_country_code(44); test_number.set_national_number(uint64{7912345678}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 44 7912 345 678", formatted_number); test_number.set_country_code(49); test_number.set_national_number(uint64{1234}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("00 49 1234", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::DE(), &formatted_number); EXPECT_EQ("1234", formatted_number); test_number.set_country_code(39); test_number.set_national_number(uint64{236618300}); test_number.set_italian_leading_zero(true); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 39 02 3661 8300", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::IT(), &formatted_number); EXPECT_EQ("02 3661 8300", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::SG(), &formatted_number); EXPECT_EQ("+39 02 3661 8300", formatted_number); test_number.set_country_code(65); test_number.set_national_number(uint64{94777892}); test_number.set_italian_leading_zero(false); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::SG(), &formatted_number); EXPECT_EQ("9477 7892", formatted_number); test_number.set_country_code(800); test_number.set_national_number(uint64{12345678}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 800 1234 5678", formatted_number); test_number.set_country_code(54); test_number.set_national_number(uint64{91187654321}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 54 9 11 8765 4321", formatted_number); test_number.set_extension("1234"); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 54 9 11 8765 4321 ext. 1234", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 54 9 11 8765 4321 ext. 1234", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::AR(), &formatted_number); EXPECT_EQ("011 15 8765-4321 ext. 1234", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatOutOfCountryWithInvalidRegion) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(1); test_number.set_national_number(uint64{6502530000}); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::AQ(), &formatted_number); EXPECT_EQ("+1 650 253 0000", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::UN001(), &formatted_number); EXPECT_EQ("+1 650 253 0000", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatOutOfCountryWithPreferredIntlPrefix) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(39); test_number.set_national_number(uint64{236618300}); test_number.set_italian_leading_zero(true); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 39 02 3661 8300", formatted_number); phone_util_.FormatOutOfCountryCallingNumber(test_number, RegionCode::UZ(), &formatted_number); EXPECT_EQ("8~10 39 02 3661 8300", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatOutOfCountryKeepingAlphaChars) { PhoneNumber alpha_numeric_number; string formatted_number; alpha_numeric_number.set_country_code(1); alpha_numeric_number.set_national_number(uint64{8007493524}); alpha_numeric_number.set_raw_input("1800 six-flag"); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 1 800 SIX-FLAG", formatted_number); formatted_number.clear(); alpha_numeric_number.set_raw_input("1-800-SIX-flag"); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 1 800-SIX-FLAG", formatted_number); formatted_number.clear(); alpha_numeric_number.set_raw_input("Call us from UK: 00 1 800 SIX-flag"); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 1 800 SIX-FLAG", formatted_number); formatted_number.clear(); alpha_numeric_number.set_raw_input("800 SIX-flag"); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 1 800 SIX-FLAG", formatted_number); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::US(), &formatted_number); EXPECT_EQ("1 800 SIX-FLAG", formatted_number); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::BS(), &formatted_number); EXPECT_EQ("1 800 SIX-FLAG", formatted_number); alpha_numeric_number.clear_raw_input(); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::DE(), &formatted_number); EXPECT_EQ("00 1 800 749 3524", formatted_number); alpha_numeric_number.set_country_code(61); alpha_numeric_number.set_national_number(uint64{827493524}); alpha_numeric_number.set_raw_input("+61 82749-FLAG"); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("082749-FLAG", formatted_number); alpha_numeric_number.set_raw_input("082749-FLAG"); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("082749-FLAG", formatted_number); alpha_numeric_number.set_national_number(uint64{18007493524}); alpha_numeric_number.set_raw_input("1-800-SIX-flag"); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("1-800-SIX-FLAG", formatted_number); formatted_number.clear(); alpha_numeric_number.set_national_number(uint64{1800749352}); phone_util_.FormatOutOfCountryCallingNumber(alpha_numeric_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("1800 749 352", formatted_number); formatted_number.clear(); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::SG(), &formatted_number); EXPECT_EQ("+61 1-800-SIX-FLAG", formatted_number); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AQ(), &formatted_number); EXPECT_EQ("+61 1-800-SIX-FLAG", formatted_number); formatted_number.clear(); alpha_numeric_number.set_country_code(0); alpha_numeric_number.set_national_number(uint64{18007493524}); alpha_numeric_number.set_raw_input("1-800-SIX-flag"); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::DE(), &formatted_number); EXPECT_EQ("1-800-SIX-flag", formatted_number); formatted_number.clear(); alpha_numeric_number.set_country_code(1); alpha_numeric_number.set_national_number(uint64{80749}); alpha_numeric_number.set_raw_input("180-SIX"); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::DE(), &formatted_number); EXPECT_EQ("00 1 180-SIX", formatted_number); phone_util_.FormatOutOfCountryKeepingAlphaChars(alpha_numeric_number, RegionCode::AQ(), &formatted_number); EXPECT_EQ("+1 180-SIX", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatWithCarrierCode) { PhoneNumber ar_number; string formatted_number; ar_number.set_country_code(54); ar_number.set_national_number(uint64{91234125678}); phone_util_.Format(ar_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("01234 12-5678", formatted_number); phone_util_.FormatNationalNumberWithCarrierCode(ar_number, "15", &formatted_number); EXPECT_EQ("01234 15 12-5678", formatted_number); phone_util_.FormatNationalNumberWithCarrierCode(ar_number, "", &formatted_number); EXPECT_EQ("01234 12-5678", formatted_number); phone_util_.Format(ar_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+5491234125678", formatted_number); PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{4241231234}); phone_util_.Format(us_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("424 123 1234", formatted_number); phone_util_.FormatNationalNumberWithCarrierCode(us_number, "15", &formatted_number); EXPECT_EQ("424 123 1234", formatted_number); PhoneNumber invalid_number; invalid_number.set_country_code(kInvalidCountryCode); invalid_number.set_national_number(uint64{12345}); phone_util_.FormatNationalNumberWithCarrierCode(invalid_number, "89", &formatted_number); EXPECT_EQ("12345", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatWithPreferredCarrierCode) { PhoneNumber ar_number; string formatted_number; ar_number.set_country_code(54); ar_number.set_national_number(uint64{91234125678}); phone_util_.FormatNationalNumberWithPreferredCarrierCode(ar_number, "15", &formatted_number); EXPECT_EQ("01234 15 12-5678", formatted_number); phone_util_.FormatNationalNumberWithPreferredCarrierCode(ar_number, "", &formatted_number); EXPECT_EQ("01234 12-5678", formatted_number); ar_number.set_preferred_domestic_carrier_code("19"); phone_util_.Format(ar_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("01234 12-5678", formatted_number); phone_util_.FormatNationalNumberWithPreferredCarrierCode(ar_number, "15", &formatted_number); EXPECT_EQ("01234 19 12-5678", formatted_number); phone_util_.FormatNationalNumberWithPreferredCarrierCode(ar_number, "", &formatted_number); EXPECT_EQ("01234 19 12-5678", formatted_number); ar_number.set_preferred_domestic_carrier_code(" "); phone_util_.FormatNationalNumberWithPreferredCarrierCode(ar_number, "15", &formatted_number); EXPECT_EQ("01234 12-5678", formatted_number); ar_number.set_preferred_domestic_carrier_code(""); phone_util_.FormatNationalNumberWithPreferredCarrierCode(ar_number, "15", &formatted_number); EXPECT_EQ("01234 15 12-5678", formatted_number); PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{4241231234}); us_number.set_preferred_domestic_carrier_code("99"); phone_util_.Format(us_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("424 123 1234", formatted_number); phone_util_.FormatNationalNumberWithPreferredCarrierCode(us_number, "15", &formatted_number); EXPECT_EQ("424 123 1234", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatNumberForMobileDialing) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(57); test_number.set_national_number(uint64{6012345678}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CO(), false, &formatted_number); EXPECT_EQ("6012345678", formatted_number); test_number.set_country_code(49); test_number.set_national_number(uint64{30123456}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::DE(), false, &formatted_number); EXPECT_EQ("030123456", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CH(), false, &formatted_number); EXPECT_EQ("+4930123456", formatted_number); test_number.set_extension("1234"); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::DE(), false, &formatted_number); EXPECT_EQ("030123456", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CH(), false, &formatted_number); EXPECT_EQ("+4930123456", formatted_number); test_number.set_country_code(1); test_number.clear_extension(); test_number.set_national_number(uint64{8002530000}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), true, &formatted_number); EXPECT_EQ("800 253 0000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CN(), true, &formatted_number); EXPECT_EQ("", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("8002530000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CN(), false, &formatted_number); EXPECT_EQ("", formatted_number); test_number.set_national_number(uint64{6502530000}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), true, &formatted_number); EXPECT_EQ("+1 650 253 0000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+16502530000", formatted_number); test_number.set_extension("1234"); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), true, &formatted_number); EXPECT_EQ("+1 650 253 0000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+16502530000", formatted_number); test_number.set_national_number(uint64{65025300001}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), true, &formatted_number); EXPECT_EQ("+1 65025300001", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+165025300001", formatted_number); test_number.set_country_code(81); test_number.set_national_number(uint64{2345}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::JP(), true, &formatted_number); EXPECT_EQ("*2345", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::JP(), false, &formatted_number); EXPECT_EQ("*2345", formatted_number); test_number.set_country_code(800); test_number.set_national_number(uint64{12345678}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::JP(), false, &formatted_number); EXPECT_EQ("+80012345678", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::JP(), true, &formatted_number); EXPECT_EQ("+800 1234 5678", formatted_number); test_number.set_country_code(971); test_number.set_national_number(uint64{600123456}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::JP(), false, &formatted_number); EXPECT_EQ("+971600123456", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::AE(), true, &formatted_number); EXPECT_EQ("600123456", formatted_number); test_number.set_country_code(52); test_number.set_national_number(uint64{3312345678}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::MX(), false, &formatted_number); EXPECT_EQ("+523312345678", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+523312345678", formatted_number); test_number.set_country_code(998); test_number.set_national_number(uint64{612201234}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::UZ(), false, &formatted_number); EXPECT_EQ("+998612201234", formatted_number); test_number.set_country_code(998); test_number.set_national_number(uint64{950123456}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::UZ(), false, &formatted_number); EXPECT_EQ("+998950123456", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+998950123456", formatted_number); test_number.set_country_code(800); test_number.set_national_number(uint64{12345678}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+80012345678", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::UN001(), false, &formatted_number); EXPECT_EQ("+80012345678", formatted_number); test_number.set_country_code(49); test_number.set_national_number(123L); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::DE(), false, &formatted_number); EXPECT_EQ("123", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::IT(), false, &formatted_number); EXPECT_EQ("", formatted_number); test_number.set_country_code(1); test_number.set_national_number(uint64{6502530000}); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("+16502530000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CA(), false, &formatted_number); EXPECT_EQ("+16502530000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::BR(), false, &formatted_number); EXPECT_EQ("+16502530000", formatted_number); test_number.set_national_number(911L); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::US(), false, &formatted_number); EXPECT_EQ("911", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::CA(), false, &formatted_number); EXPECT_EQ("", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::BR(), false, &formatted_number); EXPECT_EQ("", formatted_number); test_number.set_country_code(61); test_number.set_national_number(0L); test_number.set_italian_leading_zero(true); test_number.set_number_of_leading_zeros(2); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::AU(), false, &formatted_number); EXPECT_EQ("000", formatted_number); phone_util_.FormatNumberForMobileDialing( test_number, RegionCode::NZ(), false, &formatted_number); EXPECT_EQ("", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatByPattern) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(1); test_number.set_national_number(uint64{6502530000}); RepeatedPtrField<NumberFormat> number_formats; NumberFormat* number_format = number_formats.Add(); number_format->set_pattern("(\\d{3})(\\d{3})(\\d{4})"); number_format->set_format("($1) $2-$3"); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::NATIONAL, number_formats, &formatted_number); EXPECT_EQ("(650) 253-0000", formatted_number); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::INTERNATIONAL, number_formats, &formatted_number); EXPECT_EQ("+1 (650) 253-0000", formatted_number); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::RFC3966, number_formats, &formatted_number); EXPECT_EQ("tel:+1-650-253-0000", formatted_number); number_format->set_national_prefix_formatting_rule("$NP ($FG)"); number_format->set_format("$1 $2-$3"); test_number.set_country_code(1); test_number.set_national_number(uint64{4168819999}); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::NATIONAL, number_formats, &formatted_number); EXPECT_EQ("1 (416) 881-9999", formatted_number); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::INTERNATIONAL, number_formats, &formatted_number); EXPECT_EQ("+1 416 881-9999", formatted_number); test_number.set_country_code(39); test_number.set_national_number(uint64{236618300}); test_number.set_italian_leading_zero(true); number_format->set_pattern("(\\d{2})(\\d{5})(\\d{3})"); number_format->set_format("$1-$2 $3"); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::NATIONAL, number_formats, &formatted_number); EXPECT_EQ("02-36618 300", formatted_number); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::INTERNATIONAL, number_formats, &formatted_number); EXPECT_EQ("+39 02-36618 300", formatted_number); test_number.set_country_code(44); test_number.set_national_number(uint64{2012345678}); test_number.set_italian_leading_zero(false); number_format->set_national_prefix_formatting_rule("$NP$FG"); number_format->set_pattern("(\\d{2})(\\d{4})(\\d{4})"); number_format->set_format("$1 $2 $3"); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::NATIONAL, number_formats, &formatted_number); EXPECT_EQ("020 1234 5678", formatted_number); number_format->set_national_prefix_formatting_rule("($NP$FG)"); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::NATIONAL, number_formats, &formatted_number); EXPECT_EQ("(020) 1234 5678", formatted_number); number_format->set_national_prefix_formatting_rule(""); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::NATIONAL, number_formats, &formatted_number); EXPECT_EQ("20 1234 5678", formatted_number); number_format->set_national_prefix_formatting_rule(""); phone_util_.FormatByPattern(test_number, PhoneNumberUtil::INTERNATIONAL, number_formats, &formatted_number); EXPECT_EQ("+44 20 1234 5678", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatE164Number) { PhoneNumber test_number; string formatted_number; test_number.set_country_code(1); test_number.set_national_number(uint64{6502530000}); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+16502530000", formatted_number); test_number.set_country_code(49); test_number.set_national_number(uint64{301234}); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+49301234", formatted_number); test_number.set_country_code(800); test_number.set_national_number(uint64{12345678}); phone_util_.Format(test_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+80012345678", formatted_number); } TEST_F(PhoneNumberUtilTest, FormatNumberWithExtension) { PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{33316005}); nz_number.set_extension("1234"); string formatted_number; phone_util_.Format(nz_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("03-331 6005 ext. 1234", formatted_number); phone_util_.Format(nz_number, PhoneNumberUtil::RFC3966, &formatted_number); EXPECT_EQ("tel:+64-3-331-6005;ext=1234", formatted_number); PhoneNumber us_number_with_extension; us_number_with_extension.set_country_code(1); us_number_with_extension.set_national_number(uint64{6502530000}); us_number_with_extension.set_extension("4567"); phone_util_.Format(us_number_with_extension, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("650 253 0000 extn. 4567", formatted_number); } TEST_F(PhoneNumberUtilTest, GetLengthOfGeographicalAreaCode) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{6502530000}); EXPECT_EQ(3, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(1); number.set_national_number(uint64{8002530000}); EXPECT_EQ(0, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(1); number.set_national_number(uint64{650253000}); EXPECT_EQ(0, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(44); number.set_national_number(uint64{2070313000}); EXPECT_EQ(2, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(44); number.set_national_number(uint64{7912345678}); EXPECT_EQ(0, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(54); number.set_national_number(uint64{1155303000}); EXPECT_EQ(2, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(54); number.set_national_number(uint64{91187654321}); EXPECT_EQ(3, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(61); number.set_national_number(uint64{293744000}); EXPECT_EQ(1, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(52); number.set_national_number(uint64_t{3312345678}); EXPECT_EQ(2, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(39); number.set_national_number(uint64{236618300}); number.set_italian_leading_zero(true); EXPECT_EQ(2, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(65); number.set_national_number(uint64{65218000}); number.set_italian_leading_zero(false); EXPECT_EQ(0, phone_util_.GetLengthOfGeographicalAreaCode(number)); number.set_country_code(800); number.set_national_number(uint64{12345678}); EXPECT_EQ(0, phone_util_.GetLengthOfGeographicalAreaCode(number)); PhoneNumber cn_mobile; cn_mobile.set_country_code(86); cn_mobile.set_national_number(uint64{18912341234}); EXPECT_EQ(0, phone_util_.GetLengthOfGeographicalAreaCode(cn_mobile)); } TEST_F(PhoneNumberUtilTest, GetLengthOfNationalDestinationCode) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{6502530000}); EXPECT_EQ(3, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(1); number.set_national_number(uint64{8002530000}); EXPECT_EQ(3, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(44); number.set_national_number(uint64{2070313000}); EXPECT_EQ(2, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(44); number.set_national_number(uint64{7912345678}); EXPECT_EQ(4, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(54); number.set_national_number(uint64{1155303000}); EXPECT_EQ(2, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(54); number.set_national_number(uint64{91187654321}); EXPECT_EQ(3, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(61); number.set_national_number(uint64{293744000}); EXPECT_EQ(1, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(65); number.set_national_number(uint64{65218000}); EXPECT_EQ(4, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(1); number.set_national_number(uint64{650253000}); EXPECT_EQ(0, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(123); number.set_national_number(uint64{650253000}); EXPECT_EQ(0, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(376); number.set_national_number(uint64{12345}); EXPECT_EQ(0, phone_util_.GetLengthOfNationalDestinationCode(number)); number.set_country_code(376); number.set_national_number(uint64{12345}); number.set_extension("321"); EXPECT_EQ(0, phone_util_.GetLengthOfNationalDestinationCode(number)); number.Clear(); number.set_country_code(800); number.set_national_number(uint64{12345678}); EXPECT_EQ(4, phone_util_.GetLengthOfNationalDestinationCode(number)); PhoneNumber cn_mobile; cn_mobile.set_country_code(86); cn_mobile.set_national_number(uint64{18912341234}); EXPECT_EQ(3, phone_util_.GetLengthOfNationalDestinationCode(cn_mobile)); } TEST_F(PhoneNumberUtilTest, GetCountryMobileToken) { int country_calling_code; string mobile_token; country_calling_code = phone_util_.GetCountryCodeForRegion(RegionCode::AR()); phone_util_.GetCountryMobileToken(country_calling_code, &mobile_token); EXPECT_EQ("9", mobile_token); country_calling_code = phone_util_.GetCountryCodeForRegion(RegionCode::SE()); phone_util_.GetCountryMobileToken(country_calling_code, &mobile_token); EXPECT_EQ("", mobile_token); } TEST_F(PhoneNumberUtilTest, ExtractPossibleNumber) { string extracted_number; ExtractPossibleNumber("Tel:0800-345-600", &extracted_number); EXPECT_EQ("0800-345-600", extracted_number); ExtractPossibleNumber("Tel:0800 FOR PIZZA", &extracted_number); EXPECT_EQ("0800 FOR PIZZA", extracted_number); ExtractPossibleNumber("Tel:+800-345-600", &extracted_number); EXPECT_EQ("+800-345-600", extracted_number); ExtractPossibleNumber("\xEF\xBC\x90\xEF\xBC\x92\xEF\xBC\x93" , &extracted_number); EXPECT_EQ("\xEF\xBC\x90\xEF\xBC\x92\xEF\xBC\x93" , extracted_number); ExtractPossibleNumber("Num-\xEF\xBC\x91\xEF\xBC\x92\xEF\xBC\x93" , &extracted_number); EXPECT_EQ("\xEF\xBC\x91\xEF\xBC\x92\xEF\xBC\x93" , extracted_number); ExtractPossibleNumber("Num-....", &extracted_number); EXPECT_EQ("", extracted_number); ExtractPossibleNumber("(650) 253-0000", &extracted_number); EXPECT_EQ("650) 253-0000", extracted_number); ExtractPossibleNumber("(650) 253-0000..- ..", &extracted_number); EXPECT_EQ("650) 253-0000", extracted_number); ExtractPossibleNumber("(650) 253-0000.", &extracted_number); EXPECT_EQ("650) 253-0000", extracted_number); ExtractPossibleNumber("(650) 253-0000\xE2\x80\x8F" , &extracted_number); EXPECT_EQ("650) 253-0000", extracted_number); } TEST_F(PhoneNumberUtilTest, IsNANPACountry) { EXPECT_TRUE(phone_util_.IsNANPACountry(RegionCode::US())); EXPECT_TRUE(phone_util_.IsNANPACountry(RegionCode::BS())); EXPECT_FALSE(phone_util_.IsNANPACountry(RegionCode::DE())); EXPECT_FALSE(phone_util_.IsNANPACountry(RegionCode::GetUnknown())); EXPECT_FALSE(phone_util_.IsNANPACountry(RegionCode::UN001())); } TEST_F(PhoneNumberUtilTest, IsValidNumber) { PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{6502530000}); EXPECT_TRUE(phone_util_.IsValidNumber(us_number)); PhoneNumber it_number; it_number.set_country_code(39); it_number.set_national_number(uint64{236618300}); it_number.set_italian_leading_zero(true); EXPECT_TRUE(phone_util_.IsValidNumber(it_number)); PhoneNumber gb_number; gb_number.set_country_code(44); gb_number.set_national_number(uint64{7912345678}); EXPECT_TRUE(phone_util_.IsValidNumber(gb_number)); PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{21387835}); EXPECT_TRUE(phone_util_.IsValidNumber(nz_number)); PhoneNumber intl_toll_free_number; intl_toll_free_number.set_country_code(800); intl_toll_free_number.set_national_number(uint64{12345678}); EXPECT_TRUE(phone_util_.IsValidNumber(intl_toll_free_number)); PhoneNumber universal_premium_rate; universal_premium_rate.set_country_code(979); universal_premium_rate.set_national_number(uint64{123456789}); EXPECT_TRUE(phone_util_.IsValidNumber(universal_premium_rate)); } TEST_F(PhoneNumberUtilTest, IsValidForRegion) { PhoneNumber bs_number; bs_number.set_country_code(1); bs_number.set_national_number(uint64{2423232345}); EXPECT_TRUE(phone_util_.IsValidNumber(bs_number)); EXPECT_TRUE(phone_util_.IsValidNumberForRegion(bs_number, RegionCode::BS())); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(bs_number, RegionCode::US())); bs_number.set_national_number(uint64{2421232345}); EXPECT_FALSE(phone_util_.IsValidNumber(bs_number)); PhoneNumber re_number; re_number.set_country_code(262); re_number.set_national_number(uint64{262123456}); EXPECT_TRUE(phone_util_.IsValidNumber(re_number)); EXPECT_TRUE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::RE())); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::YT())); re_number.set_national_number(uint64{269601234}); EXPECT_TRUE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::YT())); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::RE())); re_number.set_national_number(uint64{269123456}); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::YT())); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::RE())); EXPECT_FALSE(phone_util_.IsValidNumber(re_number)); string region_code; phone_util_.GetRegionCodeForNumber(re_number, &region_code); EXPECT_EQ(RegionCode::YT(), region_code); re_number.set_national_number(uint64{800123456}); EXPECT_TRUE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::YT())); EXPECT_TRUE(phone_util_.IsValidNumberForRegion(re_number, RegionCode::RE())); PhoneNumber intl_toll_free_number; intl_toll_free_number.set_country_code(800); intl_toll_free_number.set_national_number(uint64{12345678}); EXPECT_TRUE(phone_util_.IsValidNumberForRegion(intl_toll_free_number, RegionCode::UN001())); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(intl_toll_free_number, RegionCode::US())); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(intl_toll_free_number, RegionCode::ZZ())); PhoneNumber invalid_number; invalid_number.set_country_code(3923); invalid_number.set_national_number(uint64{2366}); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(invalid_number, RegionCode::ZZ())); invalid_number.set_country_code(3923); invalid_number.set_national_number(uint64{2366}); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(invalid_number, RegionCode::UN001())); invalid_number.set_country_code(0); invalid_number.set_national_number(uint64{2366}); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(invalid_number, RegionCode::UN001())); invalid_number.set_country_code(0); EXPECT_FALSE(phone_util_.IsValidNumberForRegion(invalid_number, RegionCode::ZZ())); } TEST_F(PhoneNumberUtilTest, IsNotValidNumber) { PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{2530000}); EXPECT_FALSE(phone_util_.IsValidNumber(us_number)); PhoneNumber it_number; it_number.set_country_code(39); it_number.set_national_number(uint64{23661830000}); it_number.set_italian_leading_zero(true); EXPECT_FALSE(phone_util_.IsValidNumber(it_number)); PhoneNumber gb_number; gb_number.set_country_code(44); gb_number.set_national_number(uint64{791234567}); EXPECT_FALSE(phone_util_.IsValidNumber(gb_number)); PhoneNumber de_number; de_number.set_country_code(49); de_number.set_national_number(uint64{1234}); EXPECT_FALSE(phone_util_.IsValidNumber(de_number)); PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{3316005}); EXPECT_FALSE(phone_util_.IsValidNumber(nz_number)); PhoneNumber invalid_number; invalid_number.set_country_code(3923); invalid_number.set_national_number(uint64{2366}); EXPECT_FALSE(phone_util_.IsValidNumber(invalid_number)); invalid_number.set_country_code(0); EXPECT_FALSE(phone_util_.IsValidNumber(invalid_number)); PhoneNumber intl_toll_free_number_too_long; intl_toll_free_number_too_long.set_country_code(800); intl_toll_free_number_too_long.set_national_number(uint64{123456789}); EXPECT_FALSE(phone_util_.IsValidNumber(intl_toll_free_number_too_long)); } TEST_F(PhoneNumberUtilTest, GetRegionCodeForCountryCode) { string region_code; phone_util_.GetRegionCodeForCountryCode(1, &region_code); EXPECT_EQ(RegionCode::US(), region_code); phone_util_.GetRegionCodeForCountryCode(44, &region_code); EXPECT_EQ(RegionCode::GB(), region_code); phone_util_.GetRegionCodeForCountryCode(49, &region_code); EXPECT_EQ(RegionCode::DE(), region_code); phone_util_.GetRegionCodeForCountryCode(800, &region_code); EXPECT_EQ(RegionCode::UN001(), region_code); phone_util_.GetRegionCodeForCountryCode(979, &region_code); EXPECT_EQ(RegionCode::UN001(), region_code); } TEST_F(PhoneNumberUtilTest, GetRegionCodeForNumber) { string region_code; PhoneNumber bs_number; bs_number.set_country_code(1); bs_number.set_national_number(uint64{2423232345}); phone_util_.GetRegionCodeForNumber(bs_number, &region_code); EXPECT_EQ(RegionCode::BS(), region_code); PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{4241231234}); phone_util_.GetRegionCodeForNumber(us_number, &region_code); EXPECT_EQ(RegionCode::US(), region_code); PhoneNumber gb_mobile; gb_mobile.set_country_code(44); gb_mobile.set_national_number(uint64{7912345678}); phone_util_.GetRegionCodeForNumber(gb_mobile, &region_code); EXPECT_EQ(RegionCode::GB(), region_code); PhoneNumber intl_toll_free_number; intl_toll_free_number.set_country_code(800); intl_toll_free_number.set_national_number(uint64{12345678}); phone_util_.GetRegionCodeForNumber(intl_toll_free_number, &region_code); EXPECT_EQ(RegionCode::UN001(), region_code); PhoneNumber universal_premium_rate; universal_premium_rate.set_country_code(979); universal_premium_rate.set_national_number(uint64{123456789}); phone_util_.GetRegionCodeForNumber(universal_premium_rate, &region_code); EXPECT_EQ(RegionCode::UN001(), region_code); } TEST_F(PhoneNumberUtilTest, IsPossibleNumber) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{6502530000}); EXPECT_TRUE(phone_util_.IsPossibleNumber(number)); number.set_country_code(1); number.set_national_number(uint64{2530000}); EXPECT_TRUE(phone_util_.IsPossibleNumber(number)); number.set_country_code(44); number.set_national_number(uint64{2070313000}); EXPECT_TRUE(phone_util_.IsPossibleNumber(number)); number.set_country_code(800); number.set_national_number(uint64{12345678}); EXPECT_TRUE(phone_util_.IsPossibleNumber(number)); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("+1 650 253 0000", RegionCode::US())); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("+1 650 GOO OGLE", RegionCode::US())); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("(650) 253-0000", RegionCode::US())); EXPECT_TRUE( phone_util_.IsPossibleNumberForString("253-0000", RegionCode::US())); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("+1 650 253 0000", RegionCode::GB())); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("+44 20 7031 3000", RegionCode::GB())); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("(020) 7031 300", RegionCode::GB())); EXPECT_TRUE( phone_util_.IsPossibleNumberForString("7031 3000", RegionCode::GB())); EXPECT_TRUE( phone_util_.IsPossibleNumberForString("3331 6005", RegionCode::NZ())); EXPECT_TRUE(phone_util_.IsPossibleNumberForString("+800 1234 5678", RegionCode::UN001())); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForType_DifferentTypeLengths) { PhoneNumber number; number.set_country_code(54); number.set_national_number(uint64{12345}); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); number.set_national_number(uint64{123456}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::TOLL_FREE)); number.set_national_number(uint64{123456789}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::TOLL_FREE)); number.set_national_number(uint64{1234567890}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::TOLL_FREE)); number.set_national_number(uint64{12345678901}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::TOLL_FREE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForType_LocalOnly) { PhoneNumber number; number.set_country_code(49); number.set_national_number(uint64{12}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForType_DataMissingForSizeReasons) { PhoneNumber number; number.set_country_code(55); number.set_national_number(uint64{12345678}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); number.set_national_number(uint64{1234567890}); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::UNKNOWN)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForType_NumberTypeNotSupportedForRegion) { PhoneNumber number; number.set_country_code(55); number.set_national_number(12345678L); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); EXPECT_TRUE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_TRUE(phone_util_.IsPossibleNumberForType( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); number.set_country_code(979); number.set_national_number(123456789L); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::MOBILE)); EXPECT_FALSE( phone_util_.IsPossibleNumberForType(number, PhoneNumberUtil::FIXED_LINE)); EXPECT_FALSE(phone_util_.IsPossibleNumberForType( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); EXPECT_TRUE(phone_util_.IsPossibleNumberForType( number, PhoneNumberUtil::PREMIUM_RATE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberWithReason) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{6502530000}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(1); number.set_national_number(uint64{2530000}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(0); number.set_national_number(uint64{2530000}); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(1); number.set_national_number(uint64{253000}); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(1); number.set_national_number(uint64{65025300000}); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(44); number.set_national_number(uint64{2070310000}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(49); number.set_national_number(uint64{30123456}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(65); number.set_national_number(uint64{1234567890}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberWithReason(number)); number.set_country_code(800); number.set_national_number(uint64{123456789}); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberWithReason(number)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForTypeWithReason_DifferentTypeLengths) { PhoneNumber number; number.set_country_code(54); number.set_national_number(uint64{12345}); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); number.set_national_number(uint64{123456}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::TOLL_FREE)); number.set_national_number(uint64{123456789}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::TOLL_FREE)); number.set_national_number(uint64{1234567890}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::TOLL_FREE)); number.set_national_number(uint64{12345678901}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::TOLL_FREE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForTypeWithReason_LocalOnly) { PhoneNumber number; number.set_country_code(49); number.set_national_number(uint64{12}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForTypeWithReason_DataMissingForSizeReasons) { PhoneNumber number; number.set_country_code(55); number.set_national_number(uint64{12345678}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); number.set_national_number(uint64{1234567890}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::UNKNOWN)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForTypeWithReason_NumberTypeNotSupportedForRegion) { PhoneNumber number; number.set_country_code(55); number.set_national_number(uint64{12345678}); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE_LOCAL_ONLY, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); number.set_national_number(uint64{1234567}); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); number.set_country_code(882); number.set_national_number(uint64{1234567}); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); number.set_country_code(979); number.set_national_number(uint64{123456789}); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::PREMIUM_RATE)); } TEST_F(PhoneNumberUtilTest, IsPossibleNumberForTypeWithReason_FixedLineOrMobile) { PhoneNumber number; number.set_country_code(290); number.set_national_number(uint64{1234}); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); number.set_national_number(uint64{12345}); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::INVALID_LENGTH, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); number.set_national_number(uint64{123456}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); number.set_national_number(uint64{1234567}); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::MOBILE)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); number.set_national_number(uint64{12345678}); EXPECT_EQ(PhoneNumberUtil::IS_POSSIBLE, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::TOLL_FREE)); EXPECT_EQ(PhoneNumberUtil::TOO_LONG, phone_util_.IsPossibleNumberForTypeWithReason( number, PhoneNumberUtil::FIXED_LINE_OR_MOBILE)); } TEST_F(PhoneNumberUtilTest, IsNotPossibleNumber) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{65025300000}); EXPECT_FALSE(phone_util_.IsPossibleNumber(number)); number.set_country_code(800); number.set_national_number(uint64{123456789}); EXPECT_FALSE(phone_util_.IsPossibleNumber(number)); number.set_country_code(1); number.set_national_number(uint64{253000}); EXPECT_FALSE(phone_util_.IsPossibleNumber(number)); number.set_country_code(44); number.set_national_number(uint64{300}); EXPECT_FALSE(phone_util_.IsPossibleNumber(number)); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("+1 650 253 00000", RegionCode::US())); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("(650) 253-00000", RegionCode::US())); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("I want a Pizza", RegionCode::US())); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("253-000", RegionCode::US())); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("1 3000", RegionCode::GB())); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("+44 300", RegionCode::GB())); EXPECT_FALSE(phone_util_.IsPossibleNumberForString("+800 1234 5678 9", RegionCode::UN001())); } TEST_F(PhoneNumberUtilTest, TruncateTooLongNumber) { PhoneNumber too_long_number; too_long_number.set_country_code(1); too_long_number.set_national_number(uint64{65025300001}); PhoneNumber valid_number; valid_number.set_country_code(1); valid_number.set_national_number(uint64{6502530000}); EXPECT_TRUE(phone_util_.TruncateTooLongNumber(&too_long_number)); EXPECT_EQ(valid_number, too_long_number); too_long_number.set_country_code(800); too_long_number.set_national_number(uint64{123456789}); valid_number.set_country_code(800); valid_number.set_national_number(uint64{12345678}); EXPECT_TRUE(phone_util_.TruncateTooLongNumber(&too_long_number)); EXPECT_EQ(valid_number, too_long_number); too_long_number.set_country_code(44); too_long_number.set_national_number(uint64{80123456780123}); valid_number.set_country_code(44); valid_number.set_national_number(uint64{8012345678}); EXPECT_TRUE(phone_util_.TruncateTooLongNumber(&too_long_number)); EXPECT_EQ(valid_number, too_long_number); too_long_number.set_country_code(39); too_long_number.set_national_number(uint64{2234567890123}); too_long_number.set_italian_leading_zero(true); valid_number.set_country_code(39); valid_number.set_national_number(uint64{2234567890}); valid_number.set_italian_leading_zero(true); EXPECT_TRUE(phone_util_.TruncateTooLongNumber(&too_long_number)); EXPECT_EQ(valid_number, too_long_number); PhoneNumber valid_number_copy(valid_number); EXPECT_TRUE(phone_util_.TruncateTooLongNumber(&valid_number)); EXPECT_EQ(valid_number_copy, valid_number); PhoneNumber number_with_invalid_prefix; number_with_invalid_prefix.set_country_code(1); number_with_invalid_prefix.set_national_number(uint64{2401234567}); PhoneNumber invalid_number_copy(number_with_invalid_prefix); EXPECT_FALSE(phone_util_.TruncateTooLongNumber(&number_with_invalid_prefix)); EXPECT_EQ(invalid_number_copy, number_with_invalid_prefix); PhoneNumber too_short_number; too_short_number.set_country_code(1); too_short_number.set_national_number(uint64{1234}); PhoneNumber too_short_number_copy(too_short_number); EXPECT_FALSE(phone_util_.TruncateTooLongNumber(&too_short_number)); EXPECT_EQ(too_short_number_copy, too_short_number); } TEST_F(PhoneNumberUtilTest, IsNumberGeographical) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{2423570000}); EXPECT_FALSE(phone_util_.IsNumberGeographical(number)); number.set_country_code(61); number.set_national_number(uint64{236618300}); EXPECT_TRUE(phone_util_.IsNumberGeographical(number)); number.set_country_code(800); number.set_national_number(uint64{12345678}); EXPECT_FALSE(phone_util_.IsNumberGeographical(number)); number.set_country_code(54); number.set_national_number(uint64{91187654321}); EXPECT_TRUE(phone_util_.IsNumberGeographical(number)); number.set_country_code(52); number.set_national_number(uint64{12345678900}); EXPECT_TRUE(phone_util_.IsNumberGeographical(number)); number.set_country_code(52); number.set_national_number(uint64{15512345678}); EXPECT_TRUE(phone_util_.IsNumberGeographical(number)); } TEST_F(PhoneNumberUtilTest, FormatInOriginalFormat) { PhoneNumber phone_number; string formatted_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("+442087654321", RegionCode::GB(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("+44 20 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("02087654321", RegionCode::GB(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("(020) 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("011442087654321", RegionCode::US(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 44 20 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("442087654321", RegionCode::GB(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("44 20 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+442087654321", RegionCode::GB(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("(020) 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("7345678901", RegionCode::US(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("734 567 8901", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("0734567 8901", RegionCode::US(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("0734567 8901", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("02-4567-8900", RegionCode::KR(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::KR(), &formatted_number); EXPECT_EQ("02-4567-8900", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("01180012345678", RegionCode::US(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("011 800 1234 5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("+80012345678", RegionCode::KR(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::KR(), &formatted_number); EXPECT_EQ("+800 1234 5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("2530000", RegionCode::US(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("253 0000", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("18003456789", RegionCode::US(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("1 800 345 6789", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("2087654321", RegionCode::GB(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("20 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+442087654321", RegionCode::GB(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::GB(), &formatted_number); EXPECT_EQ("(020) 8765 4321", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("013312345678", RegionCode::MX(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::MX(), &formatted_number); EXPECT_EQ("01 33 1234 5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("3312345678", RegionCode::MX(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::MX(), &formatted_number); EXPECT_EQ("33 1234 5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("0212345678", RegionCode::IT(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::IT(), &formatted_number); EXPECT_EQ("02 1234 5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("00777012", RegionCode::JP(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::JP(), &formatted_number); EXPECT_EQ("0077-7012", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("0777012", RegionCode::JP(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::JP(), &formatted_number); EXPECT_EQ("0777012", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("012 3121286979", RegionCode::BR(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::BR(), &formatted_number); EXPECT_EQ("012 3121286979", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("044(33)1234-5678", RegionCode::MX(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::MX(), &formatted_number); EXPECT_EQ("044(33)1234-5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("045(33)1234-5678", RegionCode::MX(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::MX(), &formatted_number); EXPECT_EQ("045 33 1234 5678", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("0012 16502530000", RegionCode::AU(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0012 16502530000", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("0011 16502530000", RegionCode::AU(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::AU(), &formatted_number); EXPECT_EQ("0011 1 650 253 0000", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("*1234", RegionCode::JP(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::JP(), &formatted_number); EXPECT_EQ("*1234", formatted_number); phone_number.Clear(); formatted_number.clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("1234", RegionCode::JP(), &phone_number)); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::JP(), &formatted_number); EXPECT_EQ("1234", formatted_number); phone_number.Clear(); formatted_number.clear(); phone_number.set_country_code_source(PhoneNumber::FROM_DEFAULT_COUNTRY); phone_number.set_country_code(1); phone_number.set_national_number(uint64{650253000}); phone_util_.FormatInOriginalFormat(phone_number, RegionCode::US(), &formatted_number); EXPECT_EQ("650253000", formatted_number); } TEST_F(PhoneNumberUtilTest, IsPremiumRate) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{9004433030}); EXPECT_EQ(PhoneNumberUtil::PREMIUM_RATE, phone_util_.GetNumberType(number)); number.set_country_code(39); number.set_national_number(uint64{892123}); EXPECT_EQ(PhoneNumberUtil::PREMIUM_RATE, phone_util_.GetNumberType(number)); number.set_country_code(44); number.set_national_number(uint64{9187654321}); EXPECT_EQ(PhoneNumberUtil::PREMIUM_RATE, phone_util_.GetNumberType(number)); number.set_country_code(49); number.set_national_number(uint64{9001654321}); EXPECT_EQ(PhoneNumberUtil::PREMIUM_RATE, phone_util_.GetNumberType(number)); number.set_country_code(49); number.set_national_number(uint64{90091234567}); EXPECT_EQ(PhoneNumberUtil::PREMIUM_RATE, phone_util_.GetNumberType(number)); number.set_country_code(979); number.set_national_number(uint64{123456789}); EXPECT_EQ(PhoneNumberUtil::PREMIUM_RATE, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsTollFree) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{8881234567}); EXPECT_EQ(PhoneNumberUtil::TOLL_FREE, phone_util_.GetNumberType(number)); number.set_country_code(39); number.set_national_number(uint64{803123}); EXPECT_EQ(PhoneNumberUtil::TOLL_FREE, phone_util_.GetNumberType(number)); number.set_country_code(44); number.set_national_number(uint64{8012345678}); EXPECT_EQ(PhoneNumberUtil::TOLL_FREE, phone_util_.GetNumberType(number)); number.set_country_code(49); number.set_national_number(uint64{8001234567}); EXPECT_EQ(PhoneNumberUtil::TOLL_FREE, phone_util_.GetNumberType(number)); number.set_country_code(800); number.set_national_number(uint64{12345678}); EXPECT_EQ(PhoneNumberUtil::TOLL_FREE, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsMobile) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{2423570000}); EXPECT_EQ(PhoneNumberUtil::MOBILE, phone_util_.GetNumberType(number)); number.set_country_code(39); number.set_national_number(uint64{312345678}); EXPECT_EQ(PhoneNumberUtil::MOBILE, phone_util_.GetNumberType(number)); number.set_country_code(44); number.set_national_number(uint64{7912345678}); EXPECT_EQ(PhoneNumberUtil::MOBILE, phone_util_.GetNumberType(number)); number.set_country_code(49); number.set_national_number(uint64{15123456789}); EXPECT_EQ(PhoneNumberUtil::MOBILE, phone_util_.GetNumberType(number)); number.set_country_code(54); number.set_national_number(uint64{91187654321}); EXPECT_EQ(PhoneNumberUtil::MOBILE, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsFixedLine) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{2423651234}); EXPECT_EQ(PhoneNumberUtil::FIXED_LINE, phone_util_.GetNumberType(number)); number.Clear(); number.set_country_code(39); number.set_national_number(uint64{236618300}); number.set_italian_leading_zero(true); EXPECT_EQ(PhoneNumberUtil::FIXED_LINE, phone_util_.GetNumberType(number)); number.Clear(); number.set_country_code(44); number.set_national_number(uint64{2012345678}); EXPECT_EQ(PhoneNumberUtil::FIXED_LINE, phone_util_.GetNumberType(number)); number.set_country_code(49); number.set_national_number(uint64{301234}); EXPECT_EQ(PhoneNumberUtil::FIXED_LINE, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsFixedLineAndMobile) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{6502531111}); EXPECT_EQ(PhoneNumberUtil::FIXED_LINE_OR_MOBILE, phone_util_.GetNumberType(number)); number.set_country_code(54); number.set_national_number(uint64{1987654321}); EXPECT_EQ(PhoneNumberUtil::FIXED_LINE_OR_MOBILE, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsSharedCost) { PhoneNumber number; number.set_country_code(44); number.set_national_number(uint64{8431231234}); EXPECT_EQ(PhoneNumberUtil::SHARED_COST, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsVoip) { PhoneNumber number; number.set_country_code(44); number.set_national_number(uint64{5631231234}); EXPECT_EQ(PhoneNumberUtil::VOIP, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsPersonalNumber) { PhoneNumber number; number.set_country_code(44); number.set_national_number(uint64{7031231234}); EXPECT_EQ(PhoneNumberUtil::PERSONAL_NUMBER, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, IsUnknown) { PhoneNumber number; number.set_country_code(1); number.set_national_number(uint64{65025311111}); EXPECT_EQ(PhoneNumberUtil::UNKNOWN, phone_util_.GetNumberType(number)); } TEST_F(PhoneNumberUtilTest, GetCountryCodeForRegion) { EXPECT_EQ(1, phone_util_.GetCountryCodeForRegion(RegionCode::US())); EXPECT_EQ(64, phone_util_.GetCountryCodeForRegion(RegionCode::NZ())); EXPECT_EQ(0, phone_util_.GetCountryCodeForRegion(RegionCode::GetUnknown())); EXPECT_EQ(0, phone_util_.GetCountryCodeForRegion(RegionCode::UN001())); EXPECT_EQ(0, phone_util_.GetCountryCodeForRegion(RegionCode::CS())); } TEST_F(PhoneNumberUtilTest, GetNationalDiallingPrefixForRegion) { string ndd_prefix; phone_util_.GetNddPrefixForRegion(RegionCode::US(), false, &ndd_prefix); EXPECT_EQ("1", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::BS(), false, &ndd_prefix); EXPECT_EQ("1", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::NZ(), false, &ndd_prefix); EXPECT_EQ("0", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::AO(), false, &ndd_prefix); EXPECT_EQ("0~0", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::AO(), true, &ndd_prefix); EXPECT_EQ("00", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::GetUnknown(), false, &ndd_prefix); EXPECT_EQ("", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::UN001(), false, &ndd_prefix); EXPECT_EQ("", ndd_prefix); ndd_prefix.clear(); phone_util_.GetNddPrefixForRegion(RegionCode::CS(), false, &ndd_prefix); EXPECT_EQ("", ndd_prefix); } TEST_F(PhoneNumberUtilTest, IsViablePhoneNumber) { EXPECT_FALSE(IsViablePhoneNumber("1")); EXPECT_FALSE(IsViablePhoneNumber("1+1+1")); EXPECT_FALSE(IsViablePhoneNumber("80+0")); EXPECT_TRUE(IsViablePhoneNumber("00")); EXPECT_TRUE(IsViablePhoneNumber("111")); EXPECT_TRUE(IsViablePhoneNumber("0800-4-pizza")); EXPECT_TRUE(IsViablePhoneNumber("0800-4-PIZZA")); EXPECT_FALSE(IsViablePhoneNumber("08-PIZZA")); EXPECT_FALSE(IsViablePhoneNumber("8-PIZZA")); EXPECT_FALSE(IsViablePhoneNumber("12. March")); } TEST_F(PhoneNumberUtilTest, IsViablePhoneNumberNonAscii) { EXPECT_TRUE(IsViablePhoneNumber("1\xE3\x80\x80" "34" )); EXPECT_FALSE(IsViablePhoneNumber("1\xE3\x80\x80" "3+4" )); EXPECT_TRUE(IsViablePhoneNumber("\xEF\xBC\x88" "1\xEF\xBC\x89\xE3\x80\x80" "3456789" )); EXPECT_TRUE(IsViablePhoneNumber("+1\xEF\xBC\x89\xE3\x80\x80" "3456789" )); } TEST_F(PhoneNumberUtilTest, ConvertAlphaCharactersInNumber) { string input("1800-ABC-DEF"); phone_util_.ConvertAlphaCharactersInNumber(&input); static const string kExpectedOutput = "1800-222-333"; EXPECT_EQ(kExpectedOutput, input); input.assign("1\xE3\x80\x80\xEF\xBC\x88" "800) ABC-DEF" ); static const string kExpectedFullwidthOutput = "1\xE3\x80\x80\xEF\xBC\x88" "800) 222-333" ; phone_util_.ConvertAlphaCharactersInNumber(&input); EXPECT_EQ(kExpectedFullwidthOutput, input); } TEST_F(PhoneNumberUtilTest, NormaliseRemovePunctuation) { string input_number("034-56&+#2" "\xC2\xAD" "34"); Normalize(&input_number); static const string kExpectedOutput("03456234"); EXPECT_EQ(kExpectedOutput, input_number) << "Conversion did not correctly remove punctuation"; } TEST_F(PhoneNumberUtilTest, NormaliseReplaceAlphaCharacters) { string input_number("034-I-am-HUNGRY"); Normalize(&input_number); static const string kExpectedOutput("034426486479"); EXPECT_EQ(kExpectedOutput, input_number) << "Conversion did not correctly replace alpha characters"; } TEST_F(PhoneNumberUtilTest, NormaliseOtherDigits) { string input_number("\xEF\xBC\x92" "5\xD9\xA5" ); Normalize(&input_number); static const string kExpectedOutput("255"); EXPECT_EQ(kExpectedOutput, input_number) << "Conversion did not correctly replace non-latin digits"; string eastern_arabic_input_number("\xDB\xB5" "2\xDB\xB0" ); Normalize(&eastern_arabic_input_number); static const string kExpectedOutput2("520"); EXPECT_EQ(kExpectedOutput2, eastern_arabic_input_number) << "Conversion did not correctly replace non-latin digits"; } TEST_F(PhoneNumberUtilTest, NormaliseStripAlphaCharacters) { string input_number("034-56&+a#234"); phone_util_.NormalizeDigitsOnly(&input_number); static const string kExpectedOutput("03456234"); EXPECT_EQ(kExpectedOutput, input_number) << "Conversion did not correctly remove alpha characters"; } TEST_F(PhoneNumberUtilTest, NormaliseStripNonDiallableCharacters) { string input_number("03*4-56&+1a#234"); phone_util_.NormalizeDiallableCharsOnly(&input_number); static const string kExpectedOutput("03*456+1#234"); EXPECT_EQ(kExpectedOutput, input_number) << "Conversion did not correctly remove non-diallable characters"; } TEST_F(PhoneNumberUtilTest, MaybeStripInternationalPrefix) { string international_prefix("00[39]"); string number_to_strip("0034567700-3898003"); string stripped_number("45677003898003"); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_IDD, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); EXPECT_EQ(stripped_number, number_to_strip) << "The number was not stripped of its international prefix."; EXPECT_EQ(PhoneNumber::FROM_DEFAULT_COUNTRY, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); number_to_strip.assign("00945677003898003"); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_IDD, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); EXPECT_EQ(stripped_number, number_to_strip) << "The number was not stripped of its international prefix."; number_to_strip.assign("00 9 45677003898003"); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_IDD, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); EXPECT_EQ(stripped_number, number_to_strip) << "The number was not stripped of its international prefix."; EXPECT_EQ(PhoneNumber::FROM_DEFAULT_COUNTRY, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); number_to_strip.assign("+45677003898003"); stripped_number.assign("45677003898003"); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); EXPECT_EQ(stripped_number, number_to_strip) << "The number supplied was not stripped of the plus symbol."; number_to_strip.assign("0090112-3123"); stripped_number.assign("00901123123"); EXPECT_EQ(PhoneNumber::FROM_DEFAULT_COUNTRY, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); EXPECT_EQ(stripped_number, number_to_strip) << "The number had a 0 after the match so shouldn't be stripped."; number_to_strip.assign("009 0-112-3123"); EXPECT_EQ(PhoneNumber::FROM_DEFAULT_COUNTRY, MaybeStripInternationalPrefixAndNormalize(international_prefix, &number_to_strip)); } TEST_F(PhoneNumberUtilTest, MaybeStripNationalPrefixAndCarrierCode) { PhoneMetadata metadata; metadata.set_national_prefix_for_parsing("34"); metadata.mutable_general_desc()->set_national_number_pattern("\\d{4,8}"); string number_to_strip("34356778"); string stripped_number("356778"); string carrier_code; MaybeStripNationalPrefixAndCarrierCode(metadata, &number_to_strip, &carrier_code); EXPECT_EQ(stripped_number, number_to_strip) << "Should have had national prefix stripped."; EXPECT_EQ("", carrier_code) << "Should have had no carrier code stripped."; MaybeStripNationalPrefixAndCarrierCode(metadata, &number_to_strip, &carrier_code); EXPECT_EQ(stripped_number, number_to_strip) << "Should have had no change - no national prefix present."; metadata.clear_national_prefix_for_parsing(); MaybeStripNationalPrefixAndCarrierCode(metadata, &number_to_strip, &carrier_code); EXPECT_EQ(stripped_number, number_to_strip) << "Should have had no change - empty national prefix."; metadata.set_national_prefix_for_parsing("3"); number_to_strip.assign("3123"); stripped_number.assign("3123"); MaybeStripNationalPrefixAndCarrierCode(metadata, &number_to_strip, &carrier_code); EXPECT_EQ(stripped_number, number_to_strip) << "Should have had no change - after stripping, it wouldn't have " << "matched the national rule."; metadata.set_national_prefix_for_parsing("0(81)?"); number_to_strip.assign("08122123456"); stripped_number.assign("22123456"); MaybeStripNationalPrefixAndCarrierCode(metadata, &number_to_strip, &carrier_code); EXPECT_EQ("81", carrier_code) << "Should have had carrier code stripped."; EXPECT_EQ(stripped_number, number_to_strip) << "Should have had national prefix and carrier code stripped."; metadata.set_national_prefix_transform_rule("5$15"); metadata.set_national_prefix_for_parsing("0(\\d{2})"); number_to_strip.assign("031123"); string transformed_number("5315123"); MaybeStripNationalPrefixAndCarrierCode(metadata, &number_to_strip, &carrier_code); EXPECT_EQ(transformed_number, number_to_strip) << "Was not successfully transformed."; } TEST_F(PhoneNumberUtilTest, MaybeStripExtension) { string number("1234576 ext. 1234"); string extension; string expected_extension("1234"); string stripped_number("1234576"); EXPECT_TRUE(MaybeStripExtension(&number, &extension)); EXPECT_EQ(stripped_number, number); EXPECT_EQ(expected_extension, extension); number.assign("1234-576"); extension.clear(); stripped_number.assign("1234-576"); EXPECT_FALSE(MaybeStripExtension(&number, &extension)); EXPECT_EQ(stripped_number, number); EXPECT_TRUE(extension.empty()); number.assign("1234576-123#"); extension.clear(); expected_extension.assign("123"); stripped_number.assign("1234576"); EXPECT_TRUE(MaybeStripExtension(&number, &extension)); EXPECT_EQ(stripped_number, number); EXPECT_EQ(expected_extension, extension); number.assign("1234576 ext.123#"); extension.clear(); EXPECT_TRUE(MaybeStripExtension(&number, &extension)); EXPECT_EQ(stripped_number, number); EXPECT_EQ(expected_extension, extension); } TEST_F(PhoneNumberUtilTest, MaybeExtractCountryCode) { PhoneNumber number; const PhoneMetadata* metadata = GetPhoneMetadata(RegionCode::US()); string phone_number("011112-3456789"); string stripped_number("123456789"); int expected_country_code = 1; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_IDD, number.country_code_source()); EXPECT_EQ(stripped_number, phone_number); number.Clear(); phone_number.assign("+80012345678"); stripped_number.assign("12345678"); expected_country_code = 800; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN, number.country_code_source()); EXPECT_EQ(stripped_number, phone_number); number.Clear(); phone_number.assign("+6423456789"); stripped_number.assign("23456789"); expected_country_code = 64; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN, number.country_code_source()); EXPECT_EQ(stripped_number, phone_number); number.Clear(); expected_country_code = 0; phone_number.assign("2345-6789"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_EQ(PhoneNumber::FROM_DEFAULT_COUNTRY, number.country_code_source()); EXPECT_EQ(stripped_number, phone_number); expected_country_code = 0; phone_number.assign("0119991123456789"); stripped_number.assign(phone_number); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); number.Clear(); phone_number.assign("(1 610) 619 4466"); stripped_number.assign("6106194466"); expected_country_code = 1; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_EQ(PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN, number.country_code_source()); EXPECT_EQ(stripped_number, phone_number); number.Clear(); phone_number.assign("(1 610) 619 4466"); stripped_number.assign("6106194466"); expected_country_code = 1; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, false, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_FALSE(number.has_country_code_source()); EXPECT_EQ(stripped_number, phone_number); number.Clear(); phone_number.assign("(1 610) 619 446"); stripped_number.assign("1610619446"); expected_country_code = 0; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, false, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_FALSE(number.has_country_code_source()); EXPECT_EQ(stripped_number, phone_number); number.Clear(); phone_number.assign("(1 610) 619"); stripped_number.assign("1610619"); expected_country_code = 0; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, MaybeExtractCountryCode(metadata, true, &phone_number, &number)); EXPECT_EQ(expected_country_code, number.country_code()); EXPECT_EQ(PhoneNumber::FROM_DEFAULT_COUNTRY, number.country_code_source()); EXPECT_EQ(stripped_number, phone_number); } TEST_F(PhoneNumberUtilTest, CountryWithNoNumberDesc) { string formatted_number; PhoneNumber ad_number; ad_number.set_country_code(376); ad_number.set_national_number(uint64{12345}); phone_util_.Format(ad_number, PhoneNumberUtil::INTERNATIONAL, &formatted_number); EXPECT_EQ("+376 12345", formatted_number); phone_util_.Format(ad_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+37612345", formatted_number); phone_util_.Format(ad_number, PhoneNumberUtil::NATIONAL, &formatted_number); EXPECT_EQ("12345", formatted_number); EXPECT_EQ(PhoneNumberUtil::UNKNOWN, phone_util_.GetNumberType(ad_number)); EXPECT_FALSE(phone_util_.IsValidNumber(ad_number)); PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{6502530000}); phone_util_.FormatOutOfCountryCallingNumber(us_number, RegionCode::AD(), &formatted_number); EXPECT_EQ("00 1 650 253 0000", formatted_number); } TEST_F(PhoneNumberUtilTest, UnknownCountryCallingCode) { PhoneNumber invalid_number; invalid_number.set_country_code(kInvalidCountryCode); invalid_number.set_national_number(uint64{12345}); EXPECT_FALSE(phone_util_.IsValidNumber(invalid_number)); string formatted_number; phone_util_.Format(invalid_number, PhoneNumberUtil::E164, &formatted_number); EXPECT_EQ("+212345", formatted_number); } TEST_F(PhoneNumberUtilTest, IsNumberMatchMatches) { EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331 6005", "+64 03 331 6005")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+800 1234 5678", "+80012345678")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 03 331-6005", "+64 03331 6005")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+643 331-6005", "+64033316005")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+643 331-6005", "+6433316005")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005", "+6433316005")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+64 3 331-6005", "tel:+64-3-331-6005;isub=123")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+1800 siX-Flags", "+1 800 7493 5247")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005 extn 1234", "+6433316005#1234")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005 extn 1234", "+6433316005;1234")); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+7 423 202-25-11 ext 100", "+7 4232022511 \xd0\xb4\xd0\xbe\xd0\xb1. 100")); PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{33316005}); nz_number.set_extension("3456"); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithOneString(nz_number, "+643 331 6005 ext 3456")); nz_number.clear_extension(); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithOneString(nz_number, "+643 331 6005")); nz_number.set_extension(""); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatchWithOneString(nz_number, "+643 331 6005")); PhoneNumber nz_number_2; nz_number_2.set_country_code(64); nz_number_2.set_national_number(uint64{33316005}); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatch(nz_number, nz_number_2)); } TEST_F(PhoneNumberUtilTest, IsNumberMatchShortMatchIfDiffNumLeadingZeros) { PhoneNumber nz_number_one; nz_number_one.set_country_code(64); nz_number_one.set_national_number(uint64{33316005}); nz_number_one.set_italian_leading_zero(true); PhoneNumber nz_number_two; nz_number_two.set_country_code(64); nz_number_two.set_national_number(uint64{33316005}); nz_number_two.set_italian_leading_zero(true); nz_number_two.set_number_of_leading_zeros(2); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatch(nz_number_one, nz_number_two)); nz_number_one.set_italian_leading_zero(false); nz_number_one.set_number_of_leading_zeros(1); nz_number_two.set_italian_leading_zero(true); nz_number_two.set_number_of_leading_zeros(1); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatch(nz_number_one, nz_number_two)); } TEST_F(PhoneNumberUtilTest, IsNumberMatchAcceptsProtoDefaultsAsMatch) { PhoneNumber nz_number_one; nz_number_one.set_country_code(64); nz_number_one.set_national_number(uint64{33316005}); nz_number_one.set_italian_leading_zero(true); PhoneNumber nz_number_two; nz_number_two.set_country_code(64); nz_number_two.set_national_number(uint64{33316005}); nz_number_two.set_italian_leading_zero(true); nz_number_two.set_number_of_leading_zeros(1); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatch(nz_number_one, nz_number_two)); } TEST_F(PhoneNumberUtilTest, IsNumberMatchMatchesDiffLeadingZerosIfItalianLeadingZeroFalse) { PhoneNumber nz_number_one; nz_number_one.set_country_code(64); nz_number_one.set_national_number(uint64{33316005}); PhoneNumber nz_number_two; nz_number_two.set_country_code(64); nz_number_two.set_national_number(uint64{33316005}); nz_number_two.set_number_of_leading_zeros(1); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatch(nz_number_one, nz_number_two)); nz_number_two.set_number_of_leading_zeros(10); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatch(nz_number_one, nz_number_two)); } TEST_F(PhoneNumberUtilTest, IsNumberMatchIgnoresSomeFields) { PhoneNumber br_number_1; PhoneNumber br_number_2; br_number_1.set_country_code(55); br_number_1.set_national_number(uint64{3121286979}); br_number_1.set_country_code_source(PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN); br_number_1.set_preferred_domestic_carrier_code("12"); br_number_1.set_raw_input("012 3121286979"); br_number_2.set_country_code(55); br_number_2.set_national_number(uint64{3121286979}); br_number_2.set_country_code_source(PhoneNumber::FROM_DEFAULT_COUNTRY); br_number_2.set_preferred_domestic_carrier_code("14"); br_number_2.set_raw_input("143121286979"); EXPECT_EQ(PhoneNumberUtil::EXACT_MATCH, phone_util_.IsNumberMatch(br_number_1, br_number_2)); } TEST_F(PhoneNumberUtilTest, IsNumberMatchNonMatches) { EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings("03 331 6005", "03 331 6006")); EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+800 1234 5678", "+1 800 1234 5678")); EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005", "+16433316005")); EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005", "+6133316005")); EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005 extn 1234", "+0116433316005#1235")); EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+64 3 331-6005 extn 1234", "tel:+64-3-331-6005;ext=1235")); EXPECT_EQ(PhoneNumberUtil::NO_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005 ext.1235", "3 331 6005#1234")); EXPECT_EQ(PhoneNumberUtil::INVALID_NUMBER, phone_util_.IsNumberMatchWithTwoStrings("4", "3 331 6043")); EXPECT_EQ(PhoneNumberUtil::INVALID_NUMBER, phone_util_.IsNumberMatchWithTwoStrings("+43", "+64 3 331 6005")); EXPECT_EQ(PhoneNumberUtil::INVALID_NUMBER, phone_util_.IsNumberMatchWithTwoStrings("+43", "64 3 331 6005")); EXPECT_EQ(PhoneNumberUtil::INVALID_NUMBER, phone_util_.IsNumberMatchWithTwoStrings("Dog", "64 3 331 6005")); } TEST_F(PhoneNumberUtilTest, IsNumberMatchNsnMatches) { EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005", "03 331 6005")); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+64 3 331-6005", "tel:03-331-6005;isub=1234;phone-context=abc.nz")); PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{33316005}); nz_number.set_extension(""); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithOneString(nz_number, "03 331 6005")); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithOneString(nz_number, "(64-3) 331 6005")); PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{2345678901}); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithOneString(us_number, "1-234-567-8901")); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithOneString(us_number, "2345678901")); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+1 234-567 8901", "1 234 567 8901")); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("1 234-567 8901", "1 234 567 8901")); EXPECT_EQ(PhoneNumberUtil::NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("1 234-567 8901", "+1 234 567 8901")); PhoneNumber random_number; random_number.set_country_code(41); random_number.set_national_number(uint64{2345678901}); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithOneString(random_number, "1-234-567-8901")); } TEST_F(PhoneNumberUtilTest, IsNumberMatchShortNsnMatches) { EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005", "331 6005")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+64 3 331-6005", "tel:331-6005;phone-context=abc.nz")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+64 3 331-6005", "tel:331-6005;isub=1234;phone-context=abc.nz")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "+64 3 331-6005", "tel:331-6005;isub=1234;phone-context=abc.nz;a=%A1")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("3 331-6005", "03 331 6005")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("3 331-6005", "331 6005")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings( "3 331-6005", "tel:331-6005;phone-context=abc.nz")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("3 331-6005", "+64 331 6005")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("03 331-6005", "331 6005")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("1 234 345 6789", "345 6789")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+1 (234) 345 6789", "345 6789")); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatchWithTwoStrings("+64 3 331-6005", "3 331 6005#1234")); PhoneNumber it_number_1, it_number_2; it_number_1.set_country_code(39); it_number_1.set_national_number(uint64{1234}); it_number_1.set_italian_leading_zero(true); it_number_2.set_country_code(39); it_number_2.set_national_number(uint64{1234}); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatch(it_number_1, it_number_2)); it_number_1.set_extension("1234"); it_number_1.clear_italian_leading_zero(); it_number_2.set_extension(""); EXPECT_EQ(PhoneNumberUtil::SHORT_NSN_MATCH, phone_util_.IsNumberMatch(it_number_1, it_number_2)); } TEST_F(PhoneNumberUtilTest, ParseNationalNumber) { PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{33316005}); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("033316005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_FALSE(nz_number.has_country_code_source()); EXPECT_EQ(PhoneNumber::UNSPECIFIED, nz_number.country_code_source()); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("33316005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03-331 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 331 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:03-331-6005;phone-context=+64", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:331-6005;phone-context=+64-3", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:331-6005;phone-context=+64-3", RegionCode::US(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("My number is tel:03-331-6005;phone-context=+64", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:03-331-6005;phone-context=+64;a=%A1", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:03-331-6005;isub=12345;phone-context=+64", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:+64-3-331-6005;isub=12345", RegionCode::US(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03-331-6005;phone-context=+64", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0064 3 331 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("01164 3 331 6005", RegionCode::US(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+64 3 331 6005", RegionCode::US(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+01164 3 331 6005", RegionCode::US(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+0064 3 331 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+ 00 64 3 331 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); PhoneNumber us_local_number; us_local_number.set_country_code(1); us_local_number.set_national_number(uint64{2530000}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:253-0000;phone-context=www.google.com", RegionCode::US(), &test_number)); EXPECT_EQ(us_local_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "tel:253-0000;isub=12345;phone-context=www.google.com", RegionCode::US(), &test_number)); EXPECT_EQ(us_local_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:2530000;isub=12345;phone-context=1234.com", RegionCode::US(), &test_number)); EXPECT_EQ(us_local_number, test_number); nz_number.Clear(); nz_number.set_country_code(64); nz_number.set_national_number(uint64{64123456}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+64(0)64123456", RegionCode::US(), &test_number)); EXPECT_EQ(nz_number, test_number); PhoneNumber de_number; de_number.set_country_code(49); de_number.set_national_number(uint64{12345678}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("123/45678", RegionCode::DE(), &test_number)); EXPECT_EQ(de_number, test_number); PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{1234567890}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("123-456-7890", RegionCode::US(), &test_number)); EXPECT_EQ(us_number, test_number); PhoneNumber star_number; star_number.set_country_code(81); star_number.set_national_number(uint64{2345}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+81 *2345", RegionCode::JP(), &test_number)); EXPECT_EQ(star_number, test_number); PhoneNumber short_number; short_number.set_country_code(64); short_number.set_national_number(uint64{12}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("12", RegionCode::NZ(), &test_number)); EXPECT_EQ(short_number, test_number); short_number.set_country_code(44); short_number.set_national_number(123456); short_number.set_italian_leading_zero(true); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0123456", RegionCode::GB(), &test_number)); EXPECT_EQ(short_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseNumberWithAlphaCharacters) { PhoneNumber test_number; PhoneNumber tollfree_number; tollfree_number.set_country_code(64); tollfree_number.set_national_number(uint64{800332005}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0800 DDA 005", RegionCode::NZ(), &test_number)); EXPECT_EQ(tollfree_number, test_number); PhoneNumber premium_number; premium_number.set_country_code(64); premium_number.set_national_number(uint64{9003326005}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0900 DDA 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(premium_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0900 332 6005a", RegionCode::NZ(), &test_number)); EXPECT_EQ(premium_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0900 332 600a5", RegionCode::NZ(), &test_number)); EXPECT_EQ(premium_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0900 332 600A5", RegionCode::NZ(), &test_number)); EXPECT_EQ(premium_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0900 a332 600A5", RegionCode::NZ(), &test_number)); EXPECT_EQ(premium_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseWithInternationalPrefixes) { PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(uint64{6503336000}); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+1 (650) 333-6000", RegionCode::US(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+1-650-333-6000", RegionCode::US(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0011-650-333-6000", RegionCode::SG(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0081-650-333-6000", RegionCode::SG(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0191-650-333-6000", RegionCode::SG(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0~01-650-333-6000", RegionCode::PL(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("++1 (650) 333-6000", RegionCode::PL(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("\xEF\xBC\x8B" "1 (650) 333-6000", RegionCode::SG(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("1 (650) 333" "\xC2\xAD" "-6000", RegionCode::US(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("\xEF\xBC\x8B\xEF\xBC\x91\xE3\x80\x80\xEF\xBC\x88" "\xEF\xBC\x96\xEF\xBC\x95\xEF\xBC\x90\xEF\xBC\x89" "\xE3\x80\x80\xEF\xBC\x93\xEF\xBC\x93\xEF\xBC\x93" "\xEF\xBC\x8D\xEF\xBC\x96\xEF\xBC\x90\xEF\xBC\x90" "\xEF\xBC\x90", RegionCode::SG(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("\xEF\xBC\x8B\xEF\xBC\x91\xE3\x80\x80\xEF\xBC\x88" "\xEF\xBC\x96\xEF\xBC\x95\xEF\xBC\x90\xEF\xBC\x89" "\xE3\x80\x80\xEF\xBC\x93\xEF\xBC\x93\xEF\xBC\x93" "\xE3\x83\xBC\xEF\xBC\x96\xEF\xBC\x90\xEF\xBC\x90" "\xEF\xBC\x90", RegionCode::SG(), &test_number)); EXPECT_EQ(us_number, test_number); PhoneNumber toll_free_number; toll_free_number.set_country_code(800); toll_free_number.set_national_number(uint64{12345678}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("011 800 1234 5678", RegionCode::US(), &test_number)); EXPECT_EQ(toll_free_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseWithLeadingZero) { PhoneNumber it_number; it_number.set_country_code(39); it_number.set_national_number(uint64{236618300}); it_number.set_italian_leading_zero(true); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+39 02-36618 300", RegionCode::NZ(), &test_number)); EXPECT_EQ(it_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("02-36618 300", RegionCode::IT(), &test_number)); EXPECT_EQ(it_number, test_number); it_number.Clear(); it_number.set_country_code(39); it_number.set_national_number(uint64{312345678}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("312 345 678", RegionCode::IT(), &test_number)); EXPECT_EQ(it_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseNationalNumberArgentina) { PhoneNumber ar_number; ar_number.set_country_code(54); ar_number.set_national_number(uint64{93435551212}); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+54 9 343 555 1212", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0343 15 555 1212", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); ar_number.set_national_number(uint64{93715654320}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+54 9 3715 65 4320", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03715 15 65 4320", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); ar_number.set_national_number(uint64{1137970000}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+54 11 3797 0000", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("011 3797 0000", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); ar_number.set_national_number(uint64{3715654321}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+54 3715 65 4321", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03715 65 4321", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); ar_number.set_national_number(uint64{2312340000}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+54 23 1234 0000", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("023 1234 0000", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseWithXInNumber) { PhoneNumber ar_number; ar_number.set_country_code(54); ar_number.set_national_number(uint64{123456789}); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0123456789", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(0) 123456789", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0 123456789", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(0xx) 123456789", RegionCode::AR(), &test_number)); EXPECT_EQ(ar_number, test_number); PhoneNumber ar_from_us; ar_from_us.set_country_code(54); ar_from_us.set_national_number(uint64{81429712}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("011xx5481429712", RegionCode::US(), &test_number)); EXPECT_EQ(ar_from_us, test_number); } TEST_F(PhoneNumberUtilTest, ParseNumbersMexico) { PhoneNumber mx_number; mx_number.set_country_code(52); mx_number.set_national_number(uint64{4499780001}); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+52 (449)978-0001", RegionCode::MX(), &test_number)); EXPECT_EQ(mx_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("01 (449)978-0001", RegionCode::MX(), &test_number)); EXPECT_EQ(mx_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(449)978-0001", RegionCode::MX(), &test_number)); EXPECT_EQ(mx_number, test_number); mx_number.Clear(); mx_number.set_country_code(52); mx_number.set_national_number(uint64{13312345678}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+52 1 33 1234-5678", RegionCode::MX(), &test_number)); EXPECT_EQ(mx_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("044 (33) 1234-5678", RegionCode::MX(), &test_number)); EXPECT_EQ(mx_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("045 33 1234-5678", RegionCode::MX(), &test_number)); EXPECT_EQ(mx_number, test_number); } TEST_F(PhoneNumberUtilTest, FailedParseOnInvalidNumbers) { PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("This is not a phone number", RegionCode::NZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("1 Still not a number", RegionCode::NZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("1 MICROSOFT", RegionCode::NZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("12 MICROSOFT", RegionCode::NZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::TOO_LONG_NSN, phone_util_.Parse("01495 72553301873 810104", RegionCode::GB(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("+---", RegionCode::DE(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("+***", RegionCode::DE(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("+*******91", RegionCode::DE(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT_NSN, phone_util_.Parse("+49 0", RegionCode::DE(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, phone_util_.Parse("+210 3456 56789", RegionCode::NZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, phone_util_.Parse("+ 00 210 3 331 6005", RegionCode::NZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, phone_util_.Parse("123 456 7890", RegionCode::GetUnknown(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, phone_util_.Parse("123 456 7890", RegionCode::CS(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT_AFTER_IDD, phone_util_.Parse("0044-----", RegionCode::GB(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT_AFTER_IDD, phone_util_.Parse("0044", RegionCode::GB(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT_AFTER_IDD, phone_util_.Parse("011", RegionCode::US(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::TOO_SHORT_AFTER_IDD, phone_util_.Parse("0119", RegionCode::US(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, phone_util_.Parse("tel:555-1234;phone-context=www.google.com", RegionCode::ZZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("tel:555-1234;phone-context=1-331", RegionCode::ZZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse(";phone-context=", RegionCode::ZZ(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); } TEST_F(PhoneNumberUtilTest, ParseNumbersWithPlusWithNoRegion) { PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{33316005}); PhoneNumber result_proto; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+64 3 331 6005", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("\xEF\xBC\x8B" "64 3 331 6005", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse(" +64 3 331 6005", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); PhoneNumber toll_free_number; toll_free_number.set_country_code(800); toll_free_number.set_national_number(uint64{12345678}); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+800 1234 5678", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(toll_free_number, result_proto); PhoneNumber universal_premium_rate; universal_premium_rate.set_country_code(979); universal_premium_rate.set_national_number(uint64{123456789}); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+979 123 456 789", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(universal_premium_rate, result_proto); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:03-331-6005;phone-context=+64", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse(" tel:03-331-6005;phone-context=+64", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:03-331-6005;isub=12345;phone-context=+64", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); nz_number.set_raw_input("+64 3 331 6005"); nz_number.set_country_code_source(PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN); result_proto.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("+64 3 331 6005", RegionCode::GetUnknown(), &result_proto)); EXPECT_EQ(nz_number, result_proto); } TEST_F(PhoneNumberUtilTest, ParseNumberTooShortIfNationalPrefixStripped) { PhoneNumber test_number; PhoneNumber by_number; by_number.set_country_code(375); by_number.set_national_number(8123L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("8123", RegionCode::BY(), &test_number)); EXPECT_EQ(by_number, test_number); by_number.set_national_number(81234L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("81234", RegionCode::BY(), &test_number)); EXPECT_EQ(by_number, test_number); by_number.set_national_number(812345L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("812345", RegionCode::BY(), &test_number)); EXPECT_EQ(by_number, test_number); by_number.set_national_number(123456L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("8123456", RegionCode::BY(), &test_number)); EXPECT_EQ(by_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseExtensions) { PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(uint64{33316005}); nz_number.set_extension("3456"); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 331 6005 ext 3456", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 331 6005x3456", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03-331 6005 int.3456", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 331 6005 #3456", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); PhoneNumber non_extn_number; non_extn_number.set_country_code(1); non_extn_number.set_national_number(uint64{80074935247}); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("1800 six-flags", RegionCode::US(), &test_number)); EXPECT_EQ(non_extn_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("1800 SIX-FLAGS", RegionCode::US(), &test_number)); EXPECT_EQ(non_extn_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0~0 1800 7493 5247", RegionCode::PL(), &test_number)); EXPECT_EQ(non_extn_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(1800) 7493.5247", RegionCode::US(), &test_number)); EXPECT_EQ(non_extn_number, test_number); PhoneNumber extn_number; extn_number.set_country_code(1); extn_number.set_national_number(uint64{80074935247}); extn_number.set_extension("1234"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0~0 1800 7493 5247 ~1234", RegionCode::PL(), &test_number)); EXPECT_EQ(extn_number, test_number); PhoneNumber uk_number; uk_number.set_country_code(44); uk_number.set_national_number(uint64{2034567890}); uk_number.set_extension("456"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890x456", RegionCode::NZ(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890x456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890 x456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890 X456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890 X 456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890 X 456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890 x 456 ", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44 2034567890 X 456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44-2034567890;ext=456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:2034567890;ext=456;phone-context=+44", RegionCode::ZZ(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "+442034567890\xEF\xBD\x85\xEF\xBD\x98\xEF\xBD\x94\xEF\xBD\x8E" "456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "+44-2034567890\xEF\xBD\x98\xEF\xBD\x94\xEF\xBD\x8E""456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+44-2034567890\xEF\xBD\x98\xEF\xBD\x94""456", RegionCode::GB(), &test_number)); EXPECT_EQ(uk_number, test_number); PhoneNumber us_with_extension; us_with_extension.set_country_code(1); us_with_extension.set_national_number(uint64{8009013355}); us_with_extension.set_extension("7246433"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 x 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 , ext 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 ; 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355;7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 ,extension 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 ,extensi\xC3\xB3n 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 ,extensio\xCC\x81n 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 , 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(800) 901-3355 ext: 7246433", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); PhoneNumber ru_with_extension; ru_with_extension.set_country_code(7); ru_with_extension.set_national_number(4232022511L); ru_with_extension.set_extension("100"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "8 (423) 202-25-11, \xd0\xb4\xd0\xbe\xd0\xb1. 100", RegionCode::RU(), &test_number)); EXPECT_EQ(ru_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "8 (423) 202-25-11 \xd0\xb4\xd0\xbe\xd0\xb1. 100", RegionCode::RU(), &test_number)); EXPECT_EQ(ru_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "8 (423) 202-25-11, \xd0\xb4\xd0\xbe\xd0\xb1 100", RegionCode::RU(), &test_number)); EXPECT_EQ(ru_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "8 (423) 202-25-11 \xd0\xb4\xd0\xbe\xd0\xb1 100", RegionCode::RU(), &test_number)); EXPECT_EQ(ru_with_extension, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "8 (423) 202-25-11\xd0\xb4\xd0\xbe\xd0\xb1 100", RegionCode::RU(), &test_number)); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse( "8 (423) 202-25-11 \xd0\x94\xd0\x9e\xd0\x91 100", RegionCode::RU(), &test_number)); EXPECT_EQ(ru_with_extension, test_number); PhoneNumber us_with_two_extensions_number; us_with_two_extensions_number.set_country_code(1); us_with_two_extensions_number.set_national_number(uint64{2121231234}); us_with_two_extensions_number.set_extension("508"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(212)123-1234 x508/x1234", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_two_extensions_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(212)123-1234 x508/ x1234", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_two_extensions_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("(212)123-1234 x508\\x1234", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_two_extensions_number, test_number); us_with_extension.Clear(); us_with_extension.set_country_code(1); us_with_extension.set_national_number(uint64{6451231234}); us_with_extension.set_extension("910"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+1 (645) 123 1234-910#", RegionCode::US(), &test_number)); EXPECT_EQ(us_with_extension, test_number); } TEST_F(PhoneNumberUtilTest, TestParseHandlesLongExtensionsWithExplicitLabels) { PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(33316005ULL); PhoneNumber test_number; nz_number.set_extension("0"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:+6433316005;ext=0", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); nz_number.set_extension("01234567890123456789"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:+6433316005;ext=01234567890123456789", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("tel:+6433316005;ext=012345678901234567890", RegionCode::NZ(), &test_number)); nz_number.set_extension("1"); EXPECT_EQ( PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005ext:1", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); nz_number.set_extension("12345678901234567890"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 xtn:12345678901234567890", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 extension\t12345678901234567890", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 xtensio:12345678901234567890", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 xtensión, 12345678901234567890#", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005extension.12345678901234567890", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 доб:12345678901234567890", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::TOO_LONG_NSN, phone_util_.Parse("03 3316005 extension 123456789012345678901", RegionCode::NZ(), &test_number)); } TEST_F(PhoneNumberUtilTest, TestParseHandlesLongExtensionsWithAutoDiallingLabels) { PhoneNumber us_number_user_input; us_number_user_input.set_country_code(1); us_number_user_input.set_national_number(2679000000ULL); PhoneNumber test_number; us_number_user_input.set_extension("123456789012345"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+12679000000,,123456789012345#", RegionCode::US(), &test_number)); EXPECT_EQ(us_number_user_input, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+12679000000;123456789012345#", RegionCode::US(), &test_number)); EXPECT_EQ(us_number_user_input, test_number); PhoneNumber uk_number_user_input; uk_number_user_input.set_country_code(44); uk_number_user_input.set_national_number(2034000000ULL); uk_number_user_input.set_extension("123456789"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+442034000000,,123456789#", RegionCode::GB(), &test_number)); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("+12679000000,,1234567890123456#", RegionCode::US(), &test_number)); } TEST_F(PhoneNumberUtilTest, TestParseHandlesShortExtensionsWithAmbiguousChar) { PhoneNumber nz_number; nz_number.set_country_code(64); nz_number.set_national_number(33316005ULL); PhoneNumber test_number; nz_number.set_extension("123456789"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 x 123456789", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 x. 123456789", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 #123456789#", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("03 3316005 ~ 123456789", RegionCode::NZ(), &test_number)); EXPECT_EQ(nz_number, test_number); EXPECT_EQ(PhoneNumberUtil::TOO_LONG_NSN, phone_util_.Parse("03 3316005 ~ 1234567890", RegionCode::NZ(), &test_number)); } TEST_F(PhoneNumberUtilTest, TestParseHandlesShortExtensionsWhenNotSureOfLabel) { PhoneNumber us_number; us_number.set_country_code(1); us_number.set_national_number(1234567890ULL); PhoneNumber test_number; us_number.set_extension("666666"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+1123-456-7890 666666#", RegionCode::US(), &test_number)); EXPECT_EQ(us_number, test_number); us_number.set_extension("6"); EXPECT_EQ( PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("+11234567890-6#", RegionCode::US(), &test_number)); EXPECT_EQ(us_number, test_number); EXPECT_EQ(PhoneNumberUtil::NOT_A_NUMBER, phone_util_.Parse("+1123-456-7890 7777777#", RegionCode::US(), &test_number)); } TEST_F(PhoneNumberUtilTest, ParseAndKeepRaw) { PhoneNumber alpha_numeric_number; alpha_numeric_number.set_country_code(1); alpha_numeric_number.set_national_number(uint64{80074935247}); alpha_numeric_number.set_raw_input("800 six-flags"); alpha_numeric_number.set_country_code_source( PhoneNumber::FROM_DEFAULT_COUNTRY); PhoneNumber test_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("800 six-flags", RegionCode::US(), &test_number)); EXPECT_EQ(alpha_numeric_number, test_number); alpha_numeric_number.set_national_number(uint64{8007493524}); alpha_numeric_number.set_raw_input("1800 six-flag"); alpha_numeric_number.set_country_code_source( PhoneNumber::FROM_NUMBER_WITHOUT_PLUS_SIGN); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("1800 six-flag", RegionCode::US(), &test_number)); EXPECT_EQ(alpha_numeric_number, test_number); alpha_numeric_number.set_raw_input("+1800 six-flag"); alpha_numeric_number.set_country_code_source( PhoneNumber::FROM_NUMBER_WITH_PLUS_SIGN); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("+1800 six-flag", RegionCode::CN(), &test_number)); EXPECT_EQ(alpha_numeric_number, test_number); alpha_numeric_number.set_raw_input("001800 six-flag"); alpha_numeric_number.set_country_code_source( PhoneNumber::FROM_NUMBER_WITH_IDD); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("001800 six-flag", RegionCode::NZ(), &test_number)); EXPECT_EQ(alpha_numeric_number, test_number); test_number.Clear(); EXPECT_EQ(PhoneNumberUtil::INVALID_COUNTRY_CODE_ERROR, phone_util_.Parse("123 456 7890", RegionCode::CS(), &test_number)); EXPECT_EQ(PhoneNumber::default_instance(), test_number); PhoneNumber korean_number; korean_number.set_country_code(82); korean_number.set_national_number(22123456); korean_number.set_raw_input("08122123456"); korean_number.set_country_code_source(PhoneNumber::FROM_DEFAULT_COUNTRY); korean_number.set_preferred_domestic_carrier_code("81"); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.ParseAndKeepRawInput("08122123456", RegionCode::KR(), &test_number)); EXPECT_EQ(korean_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseItalianLeadingZeros) { PhoneNumber zeros_number; zeros_number.set_country_code(61); PhoneNumber test_number; zeros_number.set_national_number(11L); zeros_number.set_italian_leading_zero(true); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("011", RegionCode::AU(), &test_number)); EXPECT_EQ(zeros_number, test_number); zeros_number.set_national_number(1L); zeros_number.set_italian_leading_zero(true); zeros_number.set_number_of_leading_zeros(2); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("001", RegionCode::AU(), &test_number)); EXPECT_EQ(zeros_number, test_number); zeros_number.set_national_number(0L); zeros_number.set_italian_leading_zero(true); zeros_number.set_number_of_leading_zeros(2); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("000", RegionCode::AU(), &test_number)); EXPECT_EQ(zeros_number, test_number); zeros_number.set_national_number(0L); zeros_number.set_italian_leading_zero(true); zeros_number.set_number_of_leading_zeros(3); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("0000", RegionCode::AU(), &test_number)); EXPECT_EQ(zeros_number, test_number); } TEST_F(PhoneNumberUtilTest, ParseWithPhoneContext) { PhoneNumber expected_number; expected_number.set_country_code(64); expected_number.set_national_number(33316005L); PhoneNumber actual_number; EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=+64", RegionCode::ZZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=+64;{this isn't " "part of phone-context anymore!}", RegionCode::ZZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); expected_number.set_national_number(3033316005L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=+64-3", RegionCode::ZZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); expected_number.set_country_code(55); expected_number.set_national_number(5033316005L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=+(555)", RegionCode::ZZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); expected_number.set_country_code(1); expected_number.set_national_number(23033316005L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=+-1-2.3()", RegionCode::ZZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); expected_number.set_country_code(64); expected_number.set_national_number(33316005L); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=abc.nz", RegionCode::NZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); EXPECT_EQ( PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=www.PHONE-numb3r.com", RegionCode::NZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=a", RegionCode::NZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=3phone.J.", RegionCode::NZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); actual_number.Clear(); EXPECT_EQ(PhoneNumberUtil::NO_PARSING_ERROR, phone_util_.Parse("tel:033316005;phone-context=a--z", RegionCode::NZ(), &actual_number)); EXPECT_EQ(expected_number, actual_number); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context="); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=+"); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=64"); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=++64"); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=+abc"); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=."); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=3phone"); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=a-.nz"); AssertThrowsForInvalidPhoneContext("tel:033316005;phone-context=a{b}c"); } TEST_F(PhoneNumberUtilTest, CanBeInternationallyDialled) { PhoneNumber test_number; test_number.set_country_code(1); test_number.set_national_number(uint64{8002530000}); EXPECT_FALSE(phone_util_.CanBeInternationallyDialled(test_number)); test_number.set_national_number(uint64{6502530000}); EXPECT_TRUE(phone_util_.CanBeInternationallyDialled(test_number)); test_number.set_national_number(uint64{2530000}); EXPECT_TRUE(phone_util_.CanBeInternationallyDialled(test_number)); test_number.set_country_code(64); test_number.set_national_number(uint64{33316005}); EXPECT_TRUE(phone_util_.CanBeInternationallyDialled(test_number)); test_number.set_country_code(800); test_number.set_national_number(uint64{12345678}); EXPECT_TRUE(phone_util_.CanBeInternationallyDialled(test_number)); } TEST_F(PhoneNumberUtilTest, IsAlphaNumber) { EXPECT_TRUE(phone_util_.IsAlphaNumber("1800 six-flags")); EXPECT_TRUE(phone_util_.IsAlphaNumber("1800 six-flags ext. 1234")); EXPECT_TRUE(phone_util_.IsAlphaNumber("+800 six-flags")); EXPECT_TRUE(phone_util_.IsAlphaNumber("180 six-flags")); EXPECT_FALSE(phone_util_.IsAlphaNumber("1800 123-1234")); EXPECT_FALSE(phone_util_.IsAlphaNumber("1 six-flags")); EXPECT_FALSE(phone_util_.IsAlphaNumber("18 six-flags")); EXPECT_FALSE(phone_util_.IsAlphaNumber("1800 123-1234 extension: 1234")); EXPECT_FALSE(phone_util_.IsAlphaNumber("+800 1234-1234")); } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/phonenumberutil.cc
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/phonenumberutil_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
99f5a28d-e886-4282-beb8-9ab9d5c4ff0d
cpp
tensorflow/tensorflow
optimize_function_graph_utils
tensorflow/core/common_runtime/optimize_function_graph_utils.cc
tensorflow/core/common_runtime/optimize_function_graph_utils_test.cc
#include "tensorflow/core/common_runtime/optimize_function_graph_utils.h" #include <algorithm> #include <cstdlib> #include <iterator> #include <memory> #include <string> #include <type_traits> #include <unordered_map> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/function_optimization_registry.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/local_device.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/optimized_function_graph_info.h" #include "tensorflow/core/common_runtime/partitioning_utils.h" #include "tensorflow/core/common_runtime/placer.h" #include "tensorflow/core/common_runtime/replicate_per_replica_nodes.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/optimized_function_graph.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/host_info.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { Status ValidateNoListArguments( const protobuf::RepeatedPtrField<OpDef::ArgDef>& args, const char* arg_type, const string& function_name) { for (const OpDef::ArgDef& arg : args) { if (!arg.number_attr().empty() || !arg.type_list_attr().empty()) { return errors::InvalidArgument( "Function ", function_name, " has an ", arg_type, " named \"", arg.name(), "\" that is a list of tensors." " Multi-device functions support only single-tensor inputs " " and outputs"); } } return absl::OkStatus(); } Status ValidateMultiDeviceOptions( const FunctionDef& fdef, const FunctionLibraryRuntime::InstantiateOptions& options) { const OpDef& signature = fdef.signature(); TF_RETURN_IF_ERROR(ValidateNoListArguments(signature.input_arg(), "input", signature.name())); TF_RETURN_IF_ERROR(ValidateNoListArguments(signature.output_arg(), "output", signature.name())); if (fdef.attr().count(FunctionLibraryDefinition::kIntsOnDeviceAttr) != 0 && fdef.attr().at(FunctionLibraryDefinition::kIntsOnDeviceAttr).b()) { return errors::Unimplemented( "Function '", signature.name(), "' has `", FunctionLibraryDefinition::kIntsOnDeviceAttr, "` attribute set. This attribute is not currently supported by " "multi-device functions."); } if (options.input_devices.size() != signature.input_arg_size()) { return errors::InvalidArgument( "InstantiateOptions.input_devices must have the same length " "as the number of arguments: input_devices length = ", options.input_devices.size(), " number of arguments = ", signature.input_arg_size()); } if (!options.output_devices.empty() && options.output_devices.size() != signature.output_arg_size()) { return errors::InvalidArgument( "InstantiateOptions.output_devices must either be empty or have the " "same length as the number of arguments: output_devices length = ", options.output_devices.size(), " number of arguments = ", signature.output_arg_size()); } return absl::OkStatus(); } Status SetArgShape(const std::unordered_map<int, DtypeAndPartialTensorShape>& input_resource_dtypes_and_shapes, const std::vector<Node*>& arg_nodes) { for (Node* n : arg_nodes) { int index; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "index", &index)); DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(n->def(), "T", &dtype)); if (dtype == DT_RESOURCE) { auto dtype_and_shape_iter = input_resource_dtypes_and_shapes.find(index); if (dtype_and_shape_iter != input_resource_dtypes_and_shapes.end()) { AttrValue dtype_attr_value; dtype_attr_value.mutable_list()->add_type( dtype_and_shape_iter->second.dtype); n->AddAttr("_handle_dtypes", dtype_attr_value); TensorShapeProto shape_proto; dtype_and_shape_iter->second.shape.AsProto(&shape_proto); AttrValue shape_attr_value; *shape_attr_value.mutable_list()->add_shape() = shape_proto; n->AddAttr("_handle_shapes", shape_attr_value); } } } return absl::OkStatus(); } const string* AssignedOrRequestedDeviceName(const Node& node) { if (node.has_assigned_device_name()) { return &node.assigned_device_name(); } return &node.requested_device(); } void GetColocationGroup(const Node* node, string* group) { static const StringPiece kColocationAttrNameStringPiece(kColocationAttrName); const AttrValue* attr_value = node->attrs().Find(kColocationAttrNameStringPiece); if (attr_value != nullptr && attr_value->has_list() && attr_value->list().s_size() > 0) { *group = attr_value->list().s(0); } } Status WriteToCache(const std::string& dir_name, const std::string& file_name, OptimizedFunctionGraphInfo& optimized_function_graph_info, Env* env) { const absl::Time cache_writing_start_time = absl::Now(); OptimizedFunctionGraph optimized_function_graph_proto; string optimized_function_graph_proto_str; optimized_function_graph_proto = OptimizedFunctionGraphInfo::ToProto(optimized_function_graph_info); optimized_function_graph_proto.SerializeToString( &optimized_function_graph_proto_str); if (!env->FileExists(dir_name).ok()) { TF_RETURN_IF_ERROR(env->RecursivelyCreateDir(dir_name)); } { bool has_atomic_move = false; TF_RETURN_IF_ERROR(env->HasAtomicMove(dir_name, &has_atomic_move)); if (!has_atomic_move) { LOG_EVERY_POW_2(WARNING) << "Filesystem for OptimizedFunctionGraphInfo persistent cache at " << dir_name << " does not support atomic moves. Therefore the " "persistent cache is racy if you have multiple optimizations " "occurring simultaneously!"; } } std::string temp_file_name = file_name; if (!env->CreateUniqueFileName(&temp_file_name, ".pb.tmp")) { return absl::UnavailableError( absl::StrCat("Could not create a unique file inside ", dir_name)); } TF_RETURN_IF_ERROR(tsl::WriteStringToFile( env, temp_file_name, optimized_function_graph_proto_str)); TF_RETURN_IF_ERROR(env->RenameFile(temp_file_name, file_name)); const absl::Duration cache_writing_duration = absl::Now() - cache_writing_start_time; VLOG(3) << "Finished writing Tensorflow optimized graph into cache; took " << absl::ToInt64Milliseconds(cache_writing_duration) << " msecs, file name: " << file_name; return absl::OkStatus(); } absl::StatusOr<OptimizedFunctionGraphInfo> ReadFromCache( const string& file_name, Env* env) { absl::Time cache_reading_start_time = absl::Now(); OptimizedFunctionGraph optimized_function_graph_proto; string optimized_function_graph_proto_str; TF_RETURN_IF_ERROR(tsl::ReadFileToString( env, file_name, &optimized_function_graph_proto_str)); optimized_function_graph_proto.ParseFromString( optimized_function_graph_proto_str); TF_ASSIGN_OR_RETURN(absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info_restored, OptimizedFunctionGraphInfo::FromProto( std::move(optimized_function_graph_proto))); const absl::Duration cache_reading_duration = absl::Now() - cache_reading_start_time; VLOG(3) << "Finished reading Tensorflow optimized graph from cache; took " << absl::ToInt64Milliseconds(cache_reading_duration) << " msecs"; return optimized_function_graph_info_restored; } string GetFileCacheName(const string& dir_name, const string& function_name, const FunctionDef* fdef) { string plain_func_name = function_name; if (absl::StrContains(function_name, "_")) { std::vector<string> func_name_tokens = absl::StrSplit(function_name, '_'); func_name_tokens.pop_back(); plain_func_name = absl::StrJoin(func_name_tokens, "_"); } return absl::StrCat(dir_name, "/", tsl::port::JobName(), "_", tsl::port::TaskId(), "_", plain_func_name, "_", fdef->node_def_size()); } Status GetGraphAndArgRets(const string& function_name, AttrSlice attrs, core::RefCountPtr<FunctionRecord>&& fdef, const FunctionLibraryDefinition* lib_def, std::unique_ptr<Graph>* graph, std::vector<Node*>* arg_nodes, std::vector<Node*>* ret_nodes, std::vector<string>* ret_node_names, DataTypeVector* ret_types, std::vector<string>* control_ret_node_names) { std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR( FunctionDefToBodyHelper(std::move(fdef), attrs, lib_def, &fbody)); if (!fbody) { LOG(ERROR) << "Failed to get FunctionBody for \"" << function_name << "\""; return errors::Internal("Failed to construct FunctionBody for ", function_name); } *graph = std::unique_ptr<Graph>(fbody->graph); arg_nodes->reserve(fbody->arg_nodes.size()); std::copy(fbody->arg_nodes.begin(), fbody->arg_nodes.end(), std::back_inserter(*arg_nodes)); ret_nodes->reserve(fbody->ret_nodes.size()); std::copy(fbody->ret_nodes.begin(), fbody->ret_nodes.end(), std::back_inserter(*ret_nodes)); fbody->graph = nullptr; ret_node_names->reserve(fbody->ret_nodes.size()); for (const Node* node : fbody->ret_nodes) { ret_node_names->push_back(node->name()); } for (const auto& ret_type : fbody->ret_types) { ret_types->push_back(ret_type); } control_ret_node_names->reserve(fbody->control_ret_nodes.size()); for (const Node* node : fbody->control_ret_nodes) { control_ret_node_names->push_back(node->name()); } return absl::OkStatus(); } } Status PinArgsAndRets(const std::vector<string>& input_devices, const std::vector<string>& output_devices, const DeviceSet& device_set, const std::vector<Node*>& arg_nodes, const std::vector<Node*>& ret_nodes, const FunctionLibraryDefinition* lib_def, Device* default_device) { for (Node* node : arg_nodes) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value)); int64_t index = attr_value->i(); node->set_assigned_device_name(input_devices[index]); VLOG(3) << "Setting device to " << input_devices[index] << " for node " << node->name(); } for (Node* node : ret_nodes) { if (output_devices.empty()) { DataType dtype; TF_RETURN_IF_ERROR(GetNodeAttr(node->attrs(), "T", &dtype)); VLOG(3) << "Trying to determine device for node " << node->name() << "[T=" << DataTypeString(dtype) << "]"; for (const auto& it : node->in_edges()) { if (it->IsControlEdge()) continue; Node* src_node = it->src(); const string* src_device = AssignedOrRequestedDeviceName(*src_node); string colocation_group = ""; GetColocationGroup(src_node, &colocation_group); VLOG(3) << "Considering src: " << src_node->name() << " src_device: " << *src_device << " colo group: " << colocation_group; while (src_device->empty() && colocation_group.empty() && src_node->IsIdentity()) { Node* input_node; TF_RETURN_IF_ERROR(src_node->input_node(0, &input_node)); src_node = input_node; src_device = AssignedOrRequestedDeviceName(*src_node); GetColocationGroup(src_node, &colocation_group); VLOG(3) << "Considering src: " << src_node->name() << " src_device: " << *src_device << " colo group: " << colocation_group; } const bool can_use_src_node_device = !(dtype == DT_RESOURCE && IsFunctionCall(*lib_def, *src_node)); if (!colocation_group.empty()) { AttrValue::ListValue colo_attr; colo_attr.add_s(colocation_group); std::vector<string> colo_slice = {colocation_group}; node->AddAttr(kColocationAttrName, colo_slice); } else if (!src_device->empty() && can_use_src_node_device) { if (dtype == DT_VARIANT && !src_node->IsArg()) { continue; } DeviceNameUtils::ParsedName parsed; if (!DeviceNameUtils::ParseFullName(*src_device, &parsed)) { return errors::InvalidArgument( "Failed to parse explicit device specification ", *src_device); } std::vector<Device*> matching_devices; device_set.FindMatchingDevices(parsed, &matching_devices); if (matching_devices.empty()) { if (default_device != nullptr) { matching_devices.push_back(default_device); } else { return errors::InvalidArgument( "Unable to find any devices for spec ", *src_device); } } else if (matching_devices.size() != 1) { bool on_same_task = true; for (int i = 1; i < matching_devices.size(); ++i) { if (!DeviceNameUtils::IsSameAddressSpace( matching_devices.at(0)->parsed_name(), matching_devices.at(i)->parsed_name())) { on_same_task = false; break; } } if (on_same_task) { continue; } if (default_device != nullptr) { int colocated_on_default_device = 0; for (int i = 0; i < matching_devices.size(); ++i) { if (DeviceNameUtils::IsSameAddressSpace( default_device->parsed_name(), matching_devices.at(i)->parsed_name())) { colocated_on_default_device++; } } if (colocated_on_default_device == 1) { continue; } } string devices = "["; for (Device* device : matching_devices) { devices.append(device->name()); devices.append(", "); } if (devices.size() > 2) { devices.resize(devices.size() - 2); } devices.append("]"); return errors::InvalidArgument( *src_device, "When FunctionLibraryRuntime::Options.output_devices are " "not specified for a multi-device function, the device " "specification on the output node must match exactly one " "device. Matched devices are ", devices); } VLOG(3) << "Setting output device to " << matching_devices[0]->name() << " for node " << SummarizeNode(*node); node->set_assigned_device_name(matching_devices[0]->name()); } else if (!src_device->empty() && !can_use_src_node_device) { VLOG(3) << "Did not set device for a resource output node " << SummarizeNode(*node); } } } else { const AttrValue* attr_value; TF_RETURN_IF_ERROR(node->attrs().Find("index", &attr_value)); int64_t index = attr_value->i(); DCHECK_GT(output_devices.size(), index); VLOG(3) << "Setting output device to " << output_devices[index] << " for return at index " << index; node->set_assigned_device_name(output_devices[index]); } } return absl::OkStatus(); } absl::StatusOr<OptimizedFunctionGraphInfo> OptimizeFunctionGraph( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, const DeviceSet& dev_set, const FunctionLibraryDefinition* input_lib_def, const std::vector<CompositeDevice*>& composite_devices, Device* cpu_device, Device* default_device, Env* env, OptimizedFunctionGraph::OptimizationSource optimization_source) { const uint64_t graph_optimization_start_time_usecs = env->NowMicros(); const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? input_lib_def : options.lib_def; core::RefCountPtr<FunctionRecord> fdef = lib_def->FindRecord(function_name); if (fdef == nullptr) { return errors::InvalidArgument("Failed to find function \"", function_name, "\" in function library: ", lib_def); } TF_RETURN_IF_ERROR(ValidateMultiDeviceOptions(fdef->fdef(), options)); std::unique_ptr<Graph> graph; std::vector<Node*> arg_nodes, ret_nodes; std::vector<string> ret_node_names; DataTypeVector ret_types; std::vector<string> control_ret_node_names; TF_RETURN_IF_ERROR(GetGraphAndArgRets( function_name, attrs, fdef.GetNewRef(), lib_def, &graph, &arg_nodes, &ret_nodes, &ret_node_names, &ret_types, &control_ret_node_names)); DEBUG_DATA_DUMPER()->DumpOpCreationStackTraces( function_name, kDebugGroupOpStacktrace, "before_opt", graph.get()); GraphDef graph_def; graph->ToGraphDef(&graph_def); FunctionLibraryDefinition reachable_lib_def = lib_def->ReachableDefinitions(graph_def); *graph_def.mutable_library() = reachable_lib_def.ToProto(); if (options.graph_collector != nullptr) { options.graph_collector->CollectRawGraph(graph_def); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "initial", graph.get(), &reachable_lib_def, false); if (!options.xla_compile_device_type.empty()) { for (Node* node : graph->op_nodes()) { node->AddAttr("_xla_compile_device_type", options.xla_compile_device_type); if (default_device) { node->set_assigned_device_name(default_device->name()); } } } TF_RETURN_IF_ERROR( SetArgShape(options.input_resource_dtypes_and_shapes, arg_nodes)); TF_RETURN_IF_ERROR(PinArgsAndRets( options.input_devices, options.output_devices, dev_set, arg_nodes, ret_nodes, lib_def, options.config_proto.allow_soft_placement() ? default_device : nullptr)); DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_bridge", graph.get(), &reachable_lib_def, false); graph->mutable_flib_def()->set_default_registry(&reachable_lib_def); graph->mutable_flib_def()->Clear(); const bool should_run_optimization_passes = !options.is_component_function; if (!should_run_optimization_passes) { VLOG(1) << "Skipping function/graph optimization passes when instantiating " "component function " << function_name; } std::unordered_map<string, string> node_name_to_control_ret; bool control_rets_updated = false; if (should_run_optimization_passes) { FunctionOptimizationPass::FunctionOptions function_options{ options.xla_compile_device_type, options.allow_soft_placement}; TF_RETURN_IF_ERROR(FunctionOptimizationPassRegistry::Global().Run( function_name, dev_set, options.config_proto, function_options, &graph, &reachable_lib_def, &control_ret_node_names, &control_rets_updated)); } if (control_rets_updated) { for (const auto& control_ret : control_ret_node_names) { node_name_to_control_ret.emplace(control_ret, control_ret); } } else { for (const auto& control_ret : fdef->fdef().control_ret()) { node_name_to_control_ret.emplace(control_ret.second, control_ret.first); } } GraphOptimizationPassOptions optimization_options; SessionOptions session_options; session_options.env = env; session_options.config = options.config_proto; optimization_options.session_options = &session_options; optimization_options.graph = &graph; optimization_options.flib_def = &reachable_lib_def; optimization_options.device_set = &dev_set; optimization_options.is_function_graph = true; optimization_options.composite_devices = &composite_devices; optimization_options.default_function_device = default_device; optimization_options.function_def = &fdef->fdef(); optimization_options.shape_inference_on_tfe_dialect_import = options.shape_inference_on_tfe_dialect_import; optimization_options.debug_filename_prefix = function_name; DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_pre_placement_passes", graph.get(), &reachable_lib_def, false); if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::PRE_PLACEMENT, optimization_options)); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_placer", graph.get(), &reachable_lib_def, false); Placer placer(graph.get(), function_name, optimization_options.flib_def, &dev_set, default_device, options.config_proto.allow_soft_placement(), options.config_proto.log_device_placement()); TF_RETURN_IF_ERROR(placer.Run(optimization_options)); DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_post_placement_passes", graph.get(), &reachable_lib_def, false); if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_PLACEMENT, optimization_options)); } if (options.optimize_graph_fn) { DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_graph_optimization", graph.get(), &reachable_lib_def, false); Status status = options.optimize_graph_fn( std::move(ret_node_names), std::move(control_ret_node_names), &reachable_lib_def, dev_set, cpu_device, &graph); if (!status.ok()) { LOG(WARNING) << "Ignoring multi-device function optimization failure: " << status; } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "after_graph_optimization", graph.get(), &reachable_lib_def, false); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_post_rewrite_for_exec_passes", graph.get(), &reachable_lib_def, false); if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, optimization_options)); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "after_post_rewrite_for_exec_passes", graph.get(), &reachable_lib_def, false); graph->mutable_flib_def()->set_default_registry(nullptr); graph->mutable_flib_def()->Clear(); FunctionLibraryDefinition pruned_lib_def = reachable_lib_def.ReachableDefinitions(*graph); return OptimizedFunctionGraphInfo( function_name, std::move(graph), std::move(pruned_lib_def), node_name_to_control_ret, ret_types, ret_nodes.size(), env->NowMicros() - graph_optimization_start_time_usecs, optimization_source); } absl::StatusOr<OptimizedFunctionGraphInfo> OptimizeFunctionGraphOrReadFromFileCache( const string& function_name, AttrSlice attrs, const FunctionLibraryRuntime::InstantiateOptions& options, const DeviceSet& dev_set, const FunctionLibraryDefinition* input_lib_def, const std::vector<CompositeDevice*>& composite_devices, Device* cpu_device, Device* default_device, Env* env, absl::Duration caching_threshold_duration) { const string dir_name = absl::StrCat(getenv(kGraphCachingEnvVariableName)); if (dir_name.empty() || options.is_component_function) { return OptimizeFunctionGraph(function_name, attrs, options, dev_set, input_lib_def, composite_devices, cpu_device, default_device, env, OptimizedFunctionGraph::JIT); } const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? input_lib_def : options.lib_def; const FunctionDef* fdef = lib_def->Find(function_name); if (fdef == nullptr) { return absl::AbortedError(absl::StrCat( "Failed to find function ", function_name, " in function library: ", lib_def->ToProto().DebugString())); } const string file_name = GetFileCacheName(dir_name, function_name, fdef); if (env->FileExists(file_name).ok()) { LOG(INFO) << "TensorFlow graph cache existed; reading from cache; function name: " << function_name << ", full cache file path: " << file_name; absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info = ReadFromCache(file_name, env); if (optimized_function_graph_info.ok()) { metrics::UpdateFunctionGraphOptimizationSavingTime( optimized_function_graph_info->optimization_duration_usecs, metrics::GraphOptimizationSource::kJit); metrics::IncrementFunctionGraphOptimizationCacheHitCount( 1, metrics::GraphOptimizationSource::kJit); LOG(INFO) << "Successfully restored the Tensorflow optimized graph from " "the cache for the function: " << function_name << ", saved optimized time: " << absl::ToInt64Milliseconds(absl::Microseconds( optimized_function_graph_info->optimization_duration_usecs)) << " msecs"; return optimized_function_graph_info; } metrics::IncrementFunctionGraphOptimizationCacheFailureCount( 1, metrics::GraphOptimizationSource::kJit); LOG(ERROR) << "Reading from Tensorflow graph optimization cache failed. Continue " "to run the Tensorflow graph optimization passes instead. Error: " << optimized_function_graph_info.status(); return OptimizeFunctionGraph(function_name, attrs, options, dev_set, input_lib_def, composite_devices, cpu_device, default_device, env, OptimizedFunctionGraph::JIT); } metrics::IncrementFunctionGraphOptimizationCacheMissCount( 1, metrics::GraphOptimizationSource::kJit); VLOG(3) << "No cache existed; run the optimization passes. function name:" << " " << function_name; absl::Time optimization_start_time = absl::Now(); TF_ASSIGN_OR_RETURN( absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info, OptimizeFunctionGraph(function_name, attrs, options, dev_set, input_lib_def, composite_devices, cpu_device, default_device, env, OptimizedFunctionGraph::JIT)); const absl::Duration graph_optimization_duration = absl::Now() - optimization_start_time; VLOG(3) << "Finished running the optimization passes; took " << absl::ToInt64Seconds(graph_optimization_duration) << " secs; function name: " << function_name; if (graph_optimization_duration >= caching_threshold_duration) { LOG(INFO) << "Writing the optimized TensorFlow graph into cache: function name: " << function_name << ", full cache file path: " << file_name; Status s = WriteToCache(dir_name, file_name, optimized_function_graph_info.value(), env); if (!s.ok()) { LOG(ERROR) << "Caching the Tensorflow graph optimization results failed; " "cotinue without caching. Error message: " << s; } LOG(INFO) << "Successfully wrote the optimized Tensorflow graph into cache " "for the function: " << function_name << ", graph optimization time ( / threshold): " << absl::ToInt64Milliseconds(graph_optimization_duration) << " / (" << absl::ToInt64Milliseconds(caching_threshold_duration) << ") msecs"; } return optimized_function_graph_info; } absl::StatusOr< std::unique_ptr<std::unordered_map<string, std::unique_ptr<Graph>>>> PreprocessAndPartitionGraph( const std::string& function_name, OptimizedFunctionGraphInfo& input_optimized_graph, const FunctionLibraryRuntime::InstantiateOptions& options, const DeviceSet& dev_set, const FunctionLibraryDefinition* input_lib_def, const std::vector<CompositeDevice*>& composite_devices, Device* cpu_device, Env* env) { std::unique_ptr<Graph>& graph = input_optimized_graph.function_graph; TF_RETURN_IF_ERROR(ReplicatePerReplicaNodesInFunctionGraph( options.composite_devices, graph.get())); const FunctionLibraryDefinition* lib_def = options.lib_def == nullptr ? input_lib_def : options.lib_def; if (options.graph_collector != nullptr) { GraphDef def; graph->ToGraphDef(&def); *def.mutable_library() = lib_def->ReachableDefinitions(def).ToProto(); options.graph_collector->CollectOptimizedGraph(def); } DEBUG_DATA_DUMPER()->DumpGraph(function_name, kDebugGroupMain, "before_partition", graph.get(), &input_optimized_graph.lib_def, VLOG_IS_ON(4)); auto device_name_to_subgraphs = std::make_unique<std::unordered_map<string, std::unique_ptr<Graph>>>(); TF_RETURN_IF_ERROR(PartitionFunctionGraph(dev_set, std::move(graph), device_name_to_subgraphs.get())); for (const auto& pair : *device_name_to_subgraphs) { std::string partitioned_func_name = absl::StrCat(function_name, "_partition_" + pair.first); const auto* optimized_subgraph = pair.second.get(); DEBUG_DATA_DUMPER()->DumpGraph( partitioned_func_name, kDebugGroupMain, "before_partition_passes", optimized_subgraph, &input_optimized_graph.lib_def, false); } GraphOptimizationPassOptions optimization_options; SessionOptions session_options; session_options.env = env; session_options.config = options.config_proto; optimization_options.session_options = &session_options; optimization_options.flib_def = &(input_optimized_graph.lib_def); optimization_options.is_function_graph = true; optimization_options.graph = nullptr; optimization_options.device_set = nullptr; optimization_options.partition_graphs = device_name_to_subgraphs.get(); optimization_options.debug_filename_prefix = function_name; if (cpu_device && std::is_same<decltype(cpu_device), LocalDevice>::value && cpu_device->tensorflow_cpu_worker_threads() != nullptr) { session_options.config.set_intra_op_parallelism_threads( cpu_device->tensorflow_cpu_worker_threads()->num_threads); } const bool should_run_optimization_passes = !options.is_component_function; if (should_run_optimization_passes) { TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_PARTITIONING, optimization_options)); } for (const auto& pair : *device_name_to_subgraphs) { std::string partitioned_func_name = absl::StrCat(function_name, "_partition_" + pair.first); const auto* optimized_subgraph = pair.second.get(); DEBUG_DATA_DUMPER()->DumpGraph(partitioned_func_name, kDebugGroupMain, "after_partition_passes", optimized_subgraph, &input_optimized_graph.lib_def, false); } return std::move(device_name_to_subgraphs); } }
#include "tensorflow/core/common_runtime/optimize_function_graph_utils.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/device_set.h" #include "tensorflow/core/common_runtime/function_testlib.h" #include "tensorflow/core/common_runtime/optimized_function_graph_info.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/env.h" #include "tsl/platform/status.h" namespace tensorflow { namespace { using ::testing::ElementsAre; constexpr absl::string_view kDevicePrefix = "/job:a/replica:0/task:0/device:"; void CreateCpuDeviceList(absl::string_view name_prefix, int num_devices, std::vector<std::unique_ptr<Device>>& devices) { SessionOptions options; auto* device_count = options.config.mutable_device_count(); device_count->insert({"CPU", num_devices}); TF_ASSERT_OK( DeviceFactory::AddDevices(options, "/job:a/replica:0/task:0", &devices)); } void TestOptimizeFunctionGraphWithFunctionNotFound(bool load_from_cache) { FunctionLibraryRuntime::InstantiateOptions opts; opts.is_multi_device_function = true; auto lib_def = std::make_unique<FunctionLibraryDefinition>(OpRegistry::Global()); std::vector<std::unique_ptr<Device>> devices; CreateCpuDeviceList(kDevicePrefix, 1, devices); DeviceSet device_set; for (const auto& device : devices) { device_set.AddDevice(device.get()); } absl::StatusOr<OptimizedFunctionGraphInfo> optimized_function_graph_info; if (load_from_cache) { optimized_function_graph_info = OptimizeFunctionGraphOrReadFromFileCache( "FindDevice", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[0].get(), Env::Default(), absl::ZeroDuration()); } else { optimized_function_graph_info = OptimizeFunctionGraph( "FindDevice", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[0].get(), Env::Default(), OptimizedFunctionGraph::AOT); } EXPECT_TRUE(absl::IsInvalidArgument(optimized_function_graph_info.status())) << "Actual status: " << optimized_function_graph_info.status(); EXPECT_TRUE( absl::StrContains(optimized_function_graph_info.status().message(), "Failed to find function")) << "Actual error message: " << optimized_function_graph_info.status().message(); } TEST(OptimizeFunctionGraphTest, OptimizeFunctionGraphReturnsErrorIfNoFunctionFound) { TestOptimizeFunctionGraphWithFunctionNotFound(false); } TEST(OptimizeFunctionGraphTest, OptimizeFunctionGraphReturnsCorrectResult) { FunctionLibraryRuntime::InstantiateOptions opts; opts.is_multi_device_function = true; FunctionDefLibrary proto; *(proto.add_function()) = test::function::FindDevice(); auto lib_def = std::make_unique<FunctionLibraryDefinition>(OpRegistry::Global(), proto); std::vector<std::unique_ptr<Device>> devices; CreateCpuDeviceList(kDevicePrefix, 3, devices); DeviceSet device_set; for (const auto& device : devices) { device_set.AddDevice(device.get()); } const absl::StatusOr<OptimizedFunctionGraphInfo> aot_result = OptimizeFunctionGraph("FindDevice", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[1].get(), Env::Default(), OptimizedFunctionGraph::AOT); TF_EXPECT_OK(aot_result.status()); EXPECT_EQ(aot_result->name, "FindDevice"); EXPECT_EQ(aot_result->num_return_nodes, 1); EXPECT_THAT(aot_result->ret_types, ElementsAre(DT_STRING)); EXPECT_GT(aot_result->optimization_duration_usecs, 0); EXPECT_EQ(aot_result->optimization_source, OptimizedFunctionGraph::AOT); } TEST(OptimizeFunctionGraphTest, ReloadFromCacheReturnsErrorIfNoFunctionFound) { TestOptimizeFunctionGraphWithFunctionNotFound(true); } TEST(OptimizeFunctionGraphTest, OptimizeFunctionGraphAndWriteToCache) { Env* env = Env::Default(); const string temp_dir = "/tmp/testing_cache_direcroty"; EXPECT_TRUE(env->RecursivelyCreateDir(temp_dir).ok()); setenv(kGraphCachingEnvVariableName, temp_dir.c_str(), 1); std::vector<string> empty_file_list; TF_ASSERT_OK( env->GetMatchingPaths(absl::StrCat(temp_dir, "{}, devices[0].get(), devices[1].get(), Env::Default(), absl::Hours(48)); TF_ASSERT_OK(optimized_info.status()); std::vector<string> file_list; TF_ASSERT_OK(env->GetMatchingPaths(absl::StrCat(temp_dir, "{}, devices[0].get(), devices[1].get(), Env::Default(), absl::ZeroDuration()); TF_ASSERT_OK(optimized_info.status()); file_list.clear(); TF_ASSERT_OK(env->GetMatchingPaths( absl::StrCat(temp_dir, "/_-1_FindDevice_1"), &file_list)); EXPECT_EQ(file_list.size(), 1); EXPECT_EQ(metrics::GetFunctionGraphOptimizationSavingTimeUsecs( metrics::GraphOptimizationSource::kJit), 0); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheHitCount( metrics::GraphOptimizationSource::kJit), 0); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheMissCount( metrics::GraphOptimizationSource::kJit), 2); optimized_info = OptimizeFunctionGraphOrReadFromFileCache( "FindDevice_1234", {}, opts, device_set, lib_def.get(), {}, devices[0].get(), devices[1].get(), Env::Default(), absl::ZeroDuration()); TF_ASSERT_OK(optimized_info.status()); file_list.clear(); TF_ASSERT_OK(env->GetMatchingPaths( absl::StrCat(temp_dir, "/_-1_FindDevice_1"), &file_list)); EXPECT_EQ(file_list.size(), 1); EXPECT_GT(metrics::GetFunctionGraphOptimizationSavingTimeUsecs( metrics::GraphOptimizationSource::kJit), 0); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheHitCount( metrics::GraphOptimizationSource::kJit), 1); EXPECT_EQ(metrics::GetFunctionGraphOptimizationCacheMissCount( metrics::GraphOptimizationSource::kJit), 2); EXPECT_EQ(optimized_info->name, "FindDevice_1234"); EXPECT_EQ(optimized_info->num_return_nodes, 1); EXPECT_THAT(optimized_info->ret_types, ElementsAre(DT_STRING)); int64_t undeleted_files; int64_t undeleted_dirs; TF_EXPECT_OK( env->DeleteRecursively(temp_dir, &undeleted_files, &undeleted_dirs)); EXPECT_EQ(undeleted_files, 0); EXPECT_EQ(undeleted_dirs, 0); TF_ASSERT_OK( env->GetMatchingPaths(absl::StrCat(temp_dir, "/*"), &empty_file_list)); ASSERT_TRUE(empty_file_list.empty()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimize_function_graph_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/optimize_function_graph_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e065e452-5515-4f94-a09b-a7f41b0f0597
cpp
tensorflow/tensorflow
gemv_rewriter
third_party/xla/xla/service/gpu/transforms/gemv_rewriter.cc
third_party/xla/xla/service/gpu/transforms/gemv_rewriter_test.cc
#include "xla/service/gpu/transforms/gemv_rewriter.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/shape.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { absl::StatusOr<Layout> GetLayoutWithNewMinorMostDimension( const Layout& layout) { if (!LayoutUtil::IsMonotonicWithDim0Major(layout)) { return absl::InvalidArgumentError("Layout is not normalized."); } return LayoutUtil::MakeDescendingLayout(layout.minor_to_major_size() + 1); } class GemvRewriterVisitor : public DfsHloRewriteVisitor { public: absl::Status HandleDot(HloInstruction* instr) override { HloDotInstruction* dot = Cast<HloDotInstruction>(instr); const DotDimensionNumbers& dim_numbers = dot->dot_dimension_numbers(); HloInstruction* lhs = dot->mutable_operand(0); HloInstruction* rhs = dot->mutable_operand(1); bool lhs_has_non_contracting_dim = lhs->shape().rank() == dim_numbers.lhs_batch_dimensions_size() + dim_numbers.lhs_contracting_dimensions_size() + 1; bool rhs_has_non_contracting_dim = rhs->shape().rank() == dim_numbers.rhs_batch_dimensions_size() + dim_numbers.rhs_contracting_dimensions_size() + 1; if (lhs_has_non_contracting_dim && rhs_has_non_contracting_dim) { return absl::OkStatus(); } if (!lhs_has_non_contracting_dim && !rhs_has_non_contracting_dim) { return absl::OkStatus(); } if (dot->shape().is_dynamic()) { return absl::OkStatus(); } changed_ = true; HloComputation* computation = dot->parent(); HloInstruction* new_lhs = lhs; if (!lhs_has_non_contracting_dim) { const Shape& lhs_shape = lhs->shape(); absl::Span<const int64_t> lhs_dimensions = lhs_shape.dimensions(); std::vector<int64_t> new_lhs_dimensions(lhs_dimensions.begin(), lhs_dimensions.end()); new_lhs_dimensions.push_back(1); Shape new_lhs_shape( lhs_shape.element_type(), new_lhs_dimensions, absl::InlinedVector<bool, 4>(new_lhs_dimensions.size(), false), {}); TF_ASSIGN_OR_RETURN( *new_lhs_shape.mutable_layout(), GetLayoutWithNewMinorMostDimension(lhs_shape.layout())); new_lhs = computation->AddInstruction( HloInstruction::CreateBitcast(new_lhs_shape, lhs)); } HloInstruction* new_rhs = rhs; if (!rhs_has_non_contracting_dim) { const Shape& rhs_shape = rhs->shape(); absl::Span<const int64_t> rhs_dimensions = rhs_shape.dimensions(); std::vector<int64_t> new_rhs_dimensions(rhs_dimensions.begin(), rhs_dimensions.end()); new_rhs_dimensions.push_back(1); Shape new_rhs_shape( rhs_shape.element_type(), new_rhs_dimensions, absl::InlinedVector<bool, 4>(new_rhs_dimensions.size(), false), {}); TF_ASSIGN_OR_RETURN( *new_rhs_shape.mutable_layout(), GetLayoutWithNewMinorMostDimension(rhs_shape.layout())); new_rhs = computation->AddInstruction( HloInstruction::CreateBitcast(new_rhs_shape, rhs)); } std::vector<int64_t> new_out_dimensions; new_out_dimensions.reserve(dot->shape().dimensions().size() + 1); for (int64_t dim_size : dot->shape().dimensions()) { new_out_dimensions.push_back(dim_size); } if (!lhs_has_non_contracting_dim) { int non_contracting_dim_size = new_out_dimensions.back(); new_out_dimensions[new_out_dimensions.size() - 1] = 1; new_out_dimensions.push_back(non_contracting_dim_size); } else { new_out_dimensions.push_back(1); } Shape new_out_shape( dot->shape().element_type(), new_out_dimensions, absl::InlinedVector<bool, 4>(new_out_dimensions.size(), false), {}); TF_ASSIGN_OR_RETURN( *new_out_shape.mutable_layout(), GetLayoutWithNewMinorMostDimension(dot->shape().layout())); HloInstruction* new_dot = computation->AddInstruction(HloInstruction::CreateDot( new_out_shape, new_lhs, new_rhs, dot->dot_dimension_numbers(), dot->precision_config())); HloInstruction* bitcast = computation->AddInstruction( HloInstruction::CreateBitcast(dot->shape(), new_dot)); return computation->ReplaceInstruction(dot, bitcast); } bool changed() const { return changed_; } private: bool changed_ = false; }; } absl::StatusOr<bool> GemvRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { GemvRewriterVisitor gemv_rewriter; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_RETURN_IF_ERROR(computation->Accept(&gemv_rewriter)); } return gemv_rewriter.changed(); } } }
#include "xla/service/gpu/transforms/gemv_rewriter.h" #include <memory> #include <optional> #include <gtest/gtest.h> #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class GemvRewriterTest : public HloTestBase {}; TEST_F(GemvRewriterTest, RewriteMatrixVectorMultiplicationToGemm) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[32,7] parameter(0) p1 = f32[7] parameter(1) ROOT d = f32[32] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), expected); } TEST_F(GemvRewriterTest, RewriteVectorMatrixMultiplicationToGemm) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[7] parameter(0) p1 = f32[7,32] parameter(1) ROOT d = f32[32] dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), expected); } TEST_F(GemvRewriterTest, RewriteMatrixVectorMultiplicationWithBatch) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[2,5,32,7] parameter(0) p1 = f32[2,5,7] parameter(1) ROOT d = f32[2,5,32] dot(p0, p1), lhs_batch_dims={0,1}, rhs_batch_dims={0,1}, lhs_contracting_dims={3}, rhs_contracting_dims={2} })"; const char* expected = R"() })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), expected); } TEST_F(GemvRewriterTest, DotNotRewriteVectorVectorMultiplication) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[7] parameter(0) p1 = f32[7] parameter(1) ROOT d = f32[] dot(p0, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), std::nullopt); } TEST_F(GemvRewriterTest, DotNotRewriteMatrixMatrixMultiplication) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[5,7] parameter(0) p1 = f32[7,32] parameter(1) ROOT d = f32[5,32] dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; RunAndFilecheckHloRewrite(hlo, GemvRewriter(), std::nullopt); } TEST_F(GemvRewriterTest, DoNotRewriteDotsWithNonNormalizedLayout) { const char* hlo = R"( HloModule m ENTRY e { p0 = f32[5,32,7]{2,1,0} parameter(0) p1 = f32[5,7]{0,1} parameter(1) ROOT d = f32[5,32]{0,1} dot(p0, p1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo)); GemvRewriter rewriter; absl::StatusOr<bool> result = this->RunHloPass(&rewriter, module.get()); EXPECT_FALSE(result.ok()); EXPECT_EQ(result.status().message(), "Layout is not normalized."); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/gemv_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/gemv_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e9184746-8b58-4033-bae2-5a7c164051b9
cpp
tensorflow/tensorflow
copy_insertion
third_party/xla/xla/service/copy_insertion.cc
third_party/xla/xla/service/copy_insertion_test.cc
#include "xla/service/copy_insertion.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/frontend_attributes.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_input_output_alias_config.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_reachability.h" #include "xla/map_util.h" #include "xla/service/call_graph.h" #include "xla/service/compile_time_cap.h" #include "xla/service/dump.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_ordering.h" #include "xla/service/hlo_value.h" #include "xla/service/tuple_simplifier.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using absl::StrAppend; bool IsReadonlyEntryParameterValue(const HloValue& value) { const HloComputation* computation = value.defining_instruction()->parent(); return value.defining_instruction()->opcode() == HloOpcode::kParameter && computation == computation->parent()->entry_computation() && !computation->parent()->input_output_alias_config().ParameterHasAlias( value.defining_instruction()->parameter_number(), value.index()); } bool IsConstantValue(const HloValue& value) { return value.defining_instruction()->opcode() == HloOpcode::kConstant; } bool ValueIsReadOnly(const HloValue& value) { return IsConstantValue(value) || IsReadonlyEntryParameterValue(value); } struct SpecialCaseCopyPolicy { bool copy_root_replicated_buffers = false; bool copy_parameters_and_constants = false; }; SpecialCaseCopyPolicy GetSpecialCaseCopyPolicy(const CallGraphNode& node, HloModule* module, HloComputation* computation) { SpecialCaseCopyPolicy policy; if (computation == module->entry_computation()) { policy.copy_parameters_and_constants = true; policy.copy_root_replicated_buffers = true; } return policy; } bool ShouldCopyRootValue(const HloValue& value, const SpecialCaseCopyPolicy& policy) { if (policy.copy_parameters_and_constants) { return ValueIsReadOnly(value); } return false; } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> DeepCopyAndAddControlEdges(HloInstruction* from, HloInstruction* to, const ShapeTree<bool>& indices_to_copy) { DCHECK(ShapeUtil::Compatible(from->shape(), to->shape())); ShapeTree<HloInstruction*> from_copy_tree(from->shape(), nullptr); TF_ASSIGN_OR_RETURN(HloInstruction * from_deep_copy, from->parent()->DeepCopyInstruction( from, &indices_to_copy, &from_copy_tree)); ShapeTree<HloInstruction*> to_copy_tree(to->shape(), nullptr); TF_ASSIGN_OR_RETURN( HloInstruction * to_deep_copy, to->parent()->DeepCopyInstruction(to, &indices_to_copy, &to_copy_tree)); for (const auto& pair : from_copy_tree) { const ShapeIndex& index = pair.first; HloInstruction* from_copy = pair.second; HloInstruction* to_copy = to_copy_tree.element(index); if (from_copy == nullptr) { TF_RET_CHECK(to_copy == nullptr); continue; } TF_RET_CHECK(to_copy != nullptr); TF_RETURN_IF_ERROR(from_copy->AddControlDependencyTo(to_copy)); } return std::make_pair(from_deep_copy, to_deep_copy); } bool IndicesToCopyForWhile(const HloDataflowAnalysis& dataflow, const HloInstruction* xla_while, ShapeTree<bool>* indices_to_copy) { DCHECK(ShapeUtil::Compatible(indices_to_copy->shape(), xla_while->shape())); bool any_copies = false; const HloInstruction* init = xla_while->operand(0); for (auto& pair : *indices_to_copy) { const ShapeIndex& index = pair.first; bool& should_copy = pair.second; if (dataflow.GetValueSet(init, index).values().size() > 1 || dataflow.GetValueSet(xla_while, index).values().size() > 1) { should_copy = true; } else { should_copy = dataflow.GetUniqueValueAt(xla_while, index) != dataflow.GetUniqueValueAt(init, index); } any_copies |= should_copy; } return any_copies; } bool IndicesToCopyForConditional(const HloDataflowAnalysis& dataflow, const HloInstruction* xla_conditional, ShapeTree<bool>* indices_to_copy) { DCHECK(ShapeUtil::Compatible(indices_to_copy->shape(), xla_conditional->shape())); bool any_copies = false; for (auto& pair : *indices_to_copy) { const ShapeIndex& index = pair.first; bool& should_copy = pair.second; CHECK_EQ(dataflow.GetValueSet(xla_conditional, index).values().size(), 1); auto value = dataflow.GetValueSet(xla_conditional, index).values()[0]; should_copy = value->is_phi() && value->defining_instruction() == xla_conditional; any_copies |= should_copy; } return any_copies; } absl::Status AddCopiesForWhile(const HloAliasAnalysis& alias_analysis, HloInstruction* xla_while) { VLOG(2) << "Adding copies for kWhile instruction " << xla_while->name(); TF_RET_CHECK(xla_while->opcode() == HloOpcode::kWhile); ShapeTree<bool> indices_to_copy(xla_while->shape()); if (!IndicesToCopyForWhile(alias_analysis.dataflow_analysis(), xla_while, &indices_to_copy)) { VLOG(2) << "No copies necessary for kWhile instruction " << xla_while->name(); return absl::OkStatus(); } VLOG(2) << "Adding copies for " << xla_while->name() << " at indices:"; for (auto& pair : indices_to_copy) { if (pair.second) { VLOG(2) << " " << pair.first; } } HloInstruction* while_init = xla_while->mutable_operand(0); TF_ASSIGN_OR_RETURN( HloInstruction * while_init_copy, xla_while->parent()->DeepCopyInstruction(while_init, &indices_to_copy)); TF_RETURN_IF_ERROR(while_init->ReplaceUseWith(xla_while, while_init_copy)); HloComputation* body = xla_while->while_body(); HloInstruction* param = body->parameter_instruction(0); HloInstruction* root = body->root_instruction(); TF_RET_CHECK(param != root); std::vector<HloInstruction*> param_users = param->users(); TF_ASSIGN_OR_RETURN(auto pair, DeepCopyAndAddControlEdges(param, root, indices_to_copy)); HloInstruction* param_copy = pair.first; HloInstruction* root_copy = pair.second; for (HloInstruction* user : param_users) { TF_RETURN_IF_ERROR(param->ReplaceUseWith(user, param_copy)); } body->set_root_instruction(root_copy); return absl::OkStatus(); } absl::Status AddCopiesForInPlaceOperation( const HloAliasAnalysis& alias_analysis, HloInstruction* in_place_op, int64_t operand_number) { VLOG(2) << "Adding copies for in-place operation " << in_place_op->name(); HloInstruction* operand = in_place_op->mutable_operand(operand_number); TF_ASSIGN_OR_RETURN(HloInstruction * deep_copy, in_place_op->parent()->DeepCopyInstruction(operand)); TF_RETURN_IF_ERROR( operand->ReplaceUseWith(in_place_op, operand_number, deep_copy)); return absl::OkStatus(); } absl::Status AddCopiesForAliasedInputOutputs( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HloComputation* entry = module->entry_computation(); if (!HloInstruction::IsThreadIncluded(entry->execution_thread(), execution_threads)) { return absl::OkStatus(); } HloInstruction* root = entry->root_instruction(); ShapeTree<bool> output_indices_to_copy(root->shape()); std::vector<std::optional<ShapeTree<HloInstruction*>>> copied_parameters( entry->num_parameters()); bool has_alias = false; for (auto* param : entry->parameter_instructions()) { bool param_has_alias = false; ShapeTree<bool> param_indices_to_copy(param->shape()); module->input_output_alias_config().ForEachAlias( [&](const ShapeIndex& output_index, const HloInputOutputAliasConfig::Alias& alias) { if (alias.parameter_number == param->parameter_number()) { param_has_alias = true; *(param_indices_to_copy.mutable_element(alias.parameter_index)) = true; *(output_indices_to_copy.mutable_element(output_index)) = true; } }); if (!param_has_alias) { continue; } TF_RET_CHECK(param->parameter_number() < entry->num_parameters()); TF_RET_CHECK(!copied_parameters[param->parameter_number()]); has_alias = true; std::vector<HloInstruction*> users = param->users(); ShapeTree<HloInstruction*> param_copy_tree(param->shape(), nullptr); TF_ASSIGN_OR_RETURN(HloInstruction * copied, entry->DeepCopyInstruction( param, &param_indices_to_copy, &param_copy_tree)); if (param == root) { entry->set_root_instruction(copied); root = copied; } for (HloInstruction* user : users) { TF_RETURN_IF_ERROR(param->ReplaceUseWith(user, copied)); } copied_parameters[param->parameter_number()] = param_copy_tree; } if (!has_alias) { return absl::OkStatus(); } ShapeTree<HloInstruction*> output_copy_tree(root->shape(), nullptr); TF_ASSIGN_OR_RETURN(HloInstruction * root_copied, root->parent()->DeepCopyInstruction( root, &output_indices_to_copy, &output_copy_tree)); TF_RETURN_IF_ERROR(module->input_output_alias_config().ForEachAliasWithStatus( [&](const ShapeIndex& output_index, const HloInputOutputAliasConfig::Alias& alias) -> absl::Status { if (!copied_parameters[alias.parameter_number]) { return absl::OkStatus(); } HloInstruction* from = copied_parameters[alias.parameter_number]->element( alias.parameter_index); HloInstruction* to = output_copy_tree.element(output_index); TF_RET_CHECK(from != nullptr); TF_RET_CHECK(to != nullptr); TF_RETURN_IF_ERROR(from->AddControlDependencyTo(to)); return absl::OkStatus(); })); entry->set_root_instruction(root_copied); return absl::OkStatus(); } absl::Status StripControlDependenciesFrom(HloInstruction* instruction) { while (!instruction->control_successors().empty()) { TF_RETURN_IF_ERROR(instruction->RemoveControlDependencyTo( instruction->control_successors().front())); } while (!instruction->control_predecessors().empty()) { TF_RETURN_IF_ERROR( instruction->control_predecessors().front()->RemoveControlDependencyTo( instruction)); } return absl::OkStatus(); } class LiveRangeRegions { public: struct InstructionInfo { InstructionInfo() : value_definition(nullptr), is_definition(false) {} HloInstruction* value_definition; bool is_definition; std::string ToString() const { return absl::StrCat( "is_definition: ", std::to_string(is_definition), ", value_definition: ", value_definition ? value_definition->name() : "nullptr"); } }; typedef HloInstructionMap<InstructionInfo> InstructionMap; typedef std::pair<HloInstruction*, InstructionInfo> InstructionEntry; typedef absl::flat_hash_map<const HloComputation*, InstructionMap> ComputationMap; InstructionMap& operator[](const HloComputation* computation) { if (computation_map_.find(computation) == computation_map_.end()) { computation_vector_.push_back(computation); } return computation_map_[computation]; } const InstructionMap& operator[](const HloComputation* computation) const { ComputationMap::const_iterator p = computation_map_.find(computation); CHECK(p != computation_map_.end()); return p->second; } absl::InlinedVector<const HloComputation*, 5>::const_iterator begin() const { return computation_vector_.begin(); } absl::InlinedVector<const HloComputation*, 5>::const_iterator end() const { return computation_vector_.end(); } int64_t size() const { CHECK_EQ(computation_vector_.size(), computation_map_.size()); return computation_vector_.size(); } bool empty() const { return size() == 0; } const HloComputation* Computation(int64_t index) const { return computation_vector_[index]; } bool contains(HloInstruction* instr) const { CHECK_NE(instr, nullptr); auto* computation = instr->parent(); auto p = computation_map_.find(computation); if (p == computation_map_.end()) { return false; } auto instr_map = (*p).second; return instr_map.find(instr) != instr_map.end(); } std::string ToString() const { std::string result; for (const auto* computation : computation_vector_) { StrAppend(&result, "computation: ", computation->name(), "\n"); for (const auto& entry : computation_map_.at(computation)) { StrAppend(&result, " entry: ", entry.first->name(), ", ", entry.second.ToString(), "\n"); } } return result; } private: ComputationMap computation_map_; absl::InlinedVector<const HloComputation*, 5> computation_vector_; }; namespace { class Relation { public: enum RuntimeOrder { kNoOverlap = 0, kSameInstr = 1, kBeforeStart = 2, kBeforeStartOrSameInstr = kBeforeStart | kSameInstr, kAfterEnd = 4, kAfterEndOrSameInstr = kAfterEnd | kSameInstr, kBeforeStartOrAfterEnd = kBeforeStart | kAfterEnd, kBeforeOrAfterOrOverlap = kBeforeStart | kAfterEnd | kSameInstr, }; Relation() : intercept_def_use_(false) {} explicit Relation(RuntimeOrder order, bool intercept_def_use = false) : intercept_def_use_(intercept_def_use) { orders_.push_back(order); } Relation(const Relation& that) : intercept_def_use_(that.intercept_def_use_), orders_(that.orders_) {} bool operator==(const Relation& that) const { return intercept_def_use_ == that.intercept_def_use_ && absl::c_equal(orders_, that.orders_); } bool UseImpliesInterception() const { CHECK_EQ(orders_.size(), 1); return UseImpliesInterception(orders_[0]); } bool DefinitionImpliesInterception() const { CHECK_EQ(orders_.size(), 1); return DefinitionImpliesInterception(orders_[0]); } bool InterceptDefUse() const { return intercept_def_use_; } void UpdateInterception(bool value) { CHECK_EQ(orders_.size(), 1); intercept_def_use_ = value; } Relation::RuntimeOrder GetRuntimeOrder() const { if (orders_.empty()) { return Relation::kNoOverlap; } CHECK_EQ(orders_.size(), 1); return orders_[0]; } bool RuntimeOrderOverlap() const { return absl::c_any_of(orders_, ImpliesOverlap); } bool RuntimeOrderIsUnordered() const { return orders_.size() == 1 && orders_[0] == kBeforeStartOrAfterEnd; } bool RuntimeOrderIsNoOverlap() const { return orders_.empty() || (orders_.size() == 1 && orders_[0] == kNoOverlap); } bool RuntimeOrderIsRunBefore() const { return orders_.size() == 1 && orders_[0] == kBeforeStart; } bool RuntimeOrderIsRunAfter() const { return orders_.size() == 1 && orders_[0] == kAfterEnd; } std::string ToString() const { return absl::StrCat("Interception = ", intercept_def_use_, ";", absl::StrJoin(orders_, ",")); } static bool DefinitionImpliesInterception(RuntimeOrder definition) { return (definition == kAfterEnd || definition == kBeforeStartOrAfterEnd); } static bool UseImpliesInterception(RuntimeOrder use) { return (use == kBeforeStart || use == kBeforeStartOrAfterEnd); } void UnionRelationFromSameSource(const Relation& rel) { CHECK_LE(orders_.size(), 1); CHECK_EQ(rel.orders_.size(), 1); if (orders_.empty()) { orders_.push_back(rel.orders_[0]); } else { orders_[0] = Union(orders_[0], rel.orders_[0]); } intercept_def_use_ = intercept_def_use_ || rel.intercept_def_use_; } void UnionRelationFromDifferentSource(const Relation& rel) { if (rel.orders_.empty()) { return; } CHECK_EQ(rel.orders_.size(), 1); intercept_def_use_ = intercept_def_use_ || rel.intercept_def_use_; for (auto& local_order : orders_) { if (OverwriteIfSubsume(rel.orders_[0], &local_order)) { return; } } orders_.push_back(rel.orders_[0]); } static Relation::RuntimeOrder ReverseRuntimeOrder(RuntimeOrder order) { switch (order) { case kNoOverlap: case kSameInstr: case kBeforeStartOrAfterEnd: case kBeforeOrAfterOrOverlap: return order; case kBeforeStart: return kAfterEnd; case kBeforeStartOrSameInstr: return kAfterEndOrSameInstr; case kAfterEnd: return kBeforeStart; case kAfterEndOrSameInstr: return kBeforeStartOrSameInstr; } } private: bool intercept_def_use_; absl::InlinedVector<RuntimeOrder, 4> orders_; static RuntimeOrder Union(RuntimeOrder o1, RuntimeOrder o2) { return static_cast<Relation::RuntimeOrder>(o1 | o2); } static bool ImpliesOverlap(RuntimeOrder o) { return o >= RuntimeOrder::kBeforeStartOrAfterEnd; } static bool Subsume(RuntimeOrder o1, RuntimeOrder o2) { return Union(o1, o2) == o1; } static bool OverwriteIfSubsume(RuntimeOrder o2, RuntimeOrder* o1) { if (*o1 == o2) { return true; } CHECK_NE(o1, nullptr); if (Subsume(o2, *o1)) { *o1 = o2; return true; } else if (Subsume(*o1, o2)) { return true; } return false; } }; class ComputeRelativeLocation { public: typedef LiveRangeRegions::InstructionEntry InstructionEntry; explicit ComputeRelativeLocation(HloOrdering* ordering) : ordering_(ordering) { VLOG(3) << "New analysis"; } Relation Compute(const InstructionEntry& entry1, const InstructionEntry& entry2, bool instr2_can_modify) { auto def = entry1.second.value_definition; auto use = entry1.first; Relation::RuntimeOrder order = ComputeRuntimeOrdering(entry2.first, entry1.first); if (order == Relation::kSameInstr && entry1.second.is_definition != entry2.second.is_definition) { if (entry1.second.is_definition) { order = Relation::kBeforeStart; } else { order = Relation::kAfterEnd; } } bool intercept = AlwaysForceInterception(entry2.first); if (def == nullptr || !instr2_can_modify) { return Relation(order, intercept); } if (def->opcode() == HloOpcode::kParameter && use == use->parent()->root_instruction()) { VLOG(3) << "Setting interception due to parameter/root relation"; return Relation(order, true); } if (use->parent() == def->parent() && ComputeRuntimeOrdering(use, entry2.first) == Relation::kAfterEnd && def->opcode() == HloOpcode::kWhile && entry2.first->parent() == def->while_body()) { return Relation(order, false); } if (use->parent() == def->parent() && ComputeRuntimeOrdering(def, entry2.first) == Relation::kBeforeStart && use->opcode() == HloOpcode::kWhile && entry2.first->parent() == use->while_body()) { return Relation(order, false); } if (use->parent() == def->parent() && def->parent()->IsConditionalBranchComputation() && def == entry2.first && def->shape().IsTuple()) { VLOG(3) << "Setting interception for multi-output instruction inside " "conditional branch: " << def->name(); return Relation(order, true); } if (Relation::UseImpliesInterception(order)) { auto order2 = ComputeRuntimeOrdering(entry2.first, def); if (Relation::DefinitionImpliesInterception(order2)) { VLOG(3) << "Setting interception for " << def->ToString() << " with use: " << entry1.first->ToString(); intercept = true; } } return Relation(order, intercept); } Relation Compute(const LiveRangeRegions& range1, const LiveRangeRegions& range2) { Relation dir_src_dest; for (const auto* computation1 : range1) { for (const auto* computation2 : range2) { for (auto instr_entry2 : range2[computation2]) { if (!ordering_->call_graph().Dominates(computation1, computation2)) { continue; } VLOG(3) << "Locationing " << instr_entry2.first->ToString(); bool instr2_can_modify = InstructionCanIntercept(instr_entry2, range1); Relation instr2_relation; std::vector<InstructionEntry> unordered_ops; bool unordered_intercept = false; for (auto instr_entry1 : range1[computation1]) { auto rel = Compute(instr_entry1, instr_entry2, instr2_can_modify); VLOG(3) << "New relation with " << instr_entry1.first->name() << ": " << rel.ToString(); if (!rel.RuntimeOrderIsUnordered()) { instr2_relation.UnionRelationFromSameSource(rel); } else { unordered_ops.push_back(instr_entry1); unordered_intercept |= rel.InterceptDefUse(); } VLOG(3) << "instr2 relation: " << instr2_relation.ToString(); } if (!ForceRuntimeOrder(unordered_ops, instr_entry2, instr2_relation.GetRuntimeOrder())) { VLOG(3) << "Unable to force ordering of unordered ops"; instr2_relation.UnionRelationFromSameSource(Relation( Relation::kBeforeStartOrAfterEnd, unordered_intercept)); } dir_src_dest.UnionRelationFromDifferentSource(instr2_relation); VLOG(3) << "Resulting relation: " << dir_src_dest.ToString(); } } } return dir_src_dest; } bool AddControlDependenceForUnorderedOps() { if (ctrl_deps_.empty()) { return true; } PredecessorHloOrdering* ordering = dynamic_cast<PredecessorHloOrdering*>(ordering_); if (ordering == nullptr) { return false; } for (const auto& comp_it : ctrl_deps_) { HloComputation* parent = comp_it.first; HloReachabilityMap& reachability_map = ordering->reachability_map(parent); for (const auto& instr_it : comp_it.second) { HloInstruction* entry1 = instr_it.first; for (HloInstruction* entry2 : instr_it.second) { VLOG(3) << "Add control dependence between " << entry2->name() << " vs " << entry1->name(); TF_CHECK_OK(entry2->AddControlDependencyTo(entry1)); } reachability_map.UpdateReachabilityThroughInstruction(entry1); for (HloInstruction* entry2 : instr_it.second) { DCHECK(ordering_->GetExecutionConstraint(entry1, entry2) == HloOrdering::ExecutionConstraint::kRunAfter); } } } return true; } private: enum ComputeStatus { kFullyComputed, kPartiallyComputed, kNotComputed, }; typedef std::pair<ComputeStatus, Relation::RuntimeOrder> SavedRelation; bool ForceRuntimeOrder(absl::Span<const InstructionEntry> unordered_ops, const InstructionEntry entry2, Relation::RuntimeOrder desired_relation) { if (unordered_ops.empty()) { return true; } if (desired_relation != Relation::kBeforeStart && desired_relation != Relation::kAfterEnd) { return false; } auto ModifiesNonCopy = [](HloInstruction* instr, const HloInstruction* op) { auto in_place = HloDataflowAnalysis::GetInPlaceInputOutputPairs(instr); if (in_place.empty()) { return false; } return absl::c_any_of( in_place, [&](const std::pair<HloOperandIndex, ShapeIndex>& operand_and_output_index) { auto* op2 = instr->operand(operand_and_output_index.first.operand_number); return (op == nullptr) ? (op2->opcode() == HloOpcode::kCopy) : (op2 == op); }); }; for (const InstructionEntry& entry1 : unordered_ops) { if (entry1.first->parent() != entry2.first->parent()) { return false; } HloInstruction* pred = (desired_relation == Relation::kBeforeStart) ? entry2.first : entry1.first; HloInstruction* succ = (desired_relation == Relation::kBeforeStart) ? entry1.first : entry2.first; if (pred == pred->parent()->root_instruction()) { return false; } if (succ->opcode() == HloOpcode::kCopy && ModifiesNonCopy(pred, succ->operand(0))) { VLOG(3) << "Failed to force unordered op ordering due to copy ordering " << " between " << pred->name() << " vs " << succ->name(); return false; } } for (const InstructionEntry& entry1 : unordered_ops) { Save(entry2.first, entry1.first, desired_relation, true); } return true; } static bool AlwaysForceInterception(HloInstruction* instr) { if (HloDataflowAnalysis::IsAsynchronousOperationStart(instr->opcode()) || HloDataflowAnalysis::IsAsynchronousOperationDone(instr->opcode())) { return true; } switch (instr->opcode()) { case HloOpcode::kCollectivePermute: return true; default: return false; } } bool InstructionCanIntercept(const InstructionEntry& entry, const LiveRangeRegions& region) { auto instr = entry.first; if (!entry.second.is_definition) { for (const auto& operand_and_output_index : HloDataflowAnalysis::GetInPlaceInputOutputPairs(instr)) { const HloOperandIndex& operand_index = operand_and_output_index.first; if (region.contains( instr->mutable_operand(operand_index.operand_number))) { return true; } } return false; } switch (instr->opcode()) { case HloOpcode::kCopy: { HloInstruction* operand = instr->mutable_operand(0); if (operand->opcode() == HloOpcode::kGetTupleElement) { operand = operand->mutable_operand(0); } if (region.contains(operand) && ShapeUtil::Equal(instr->shape(), instr->operand(0)->shape())) { return false; } return true; } case HloOpcode::kParameter: case HloOpcode::kTuple: case HloOpcode::kGetTupleElement: case HloOpcode::kWhile: case HloOpcode::kCall: case HloOpcode::kConditional: return false; default: return true; } return true; } SavedRelation AlreadyComputed(HloInstruction* op1, HloInstruction* op2) { auto p2 = saved_relations_.find(op2); if (p2 != saved_relations_.end()) { auto p1 = (*p2).second.find(op1); if (p1 != (*p2).second.end()) { return SavedRelation(kFullyComputed, (*p1).second); } } p2 = saved_relations_.find(op1); if (p2 != saved_relations_.end()) { auto p1 = (*p2).second.find(op2); if (p1 != (*p2).second.end()) { return SavedRelation(kPartiallyComputed, Relation::ReverseRuntimeOrder((*p1).second)); } } return SavedRelation(kNotComputed, Relation::kNoOverlap); } Relation::RuntimeOrder Save(HloInstruction* entry1, HloInstruction* entry2, const Relation::RuntimeOrder relation, bool is_unordered_originally = false) { CHECK_EQ(AlreadyComputed(entry1, entry2).first, kNotComputed); CHECK_NE(relation, Relation::kBeforeStartOrAfterEnd); saved_relations_[entry2][entry1] = relation; if (is_unordered_originally) { CHECK(relation == Relation::kBeforeStart || relation == Relation::kAfterEnd) << relation; HloInstruction* pred = (relation == Relation::kBeforeStart) ? entry1 : entry2; HloInstruction* succ = (relation == Relation::kBeforeStart) ? entry2 : entry1; VLOG(3) << "Save unordered relation: " << pred->name() << " vs " << succ->name(); CHECK_EQ(succ->parent(), pred->parent()); auto& dep_vec = ctrl_deps_[succ->parent()][succ]; for (HloInstruction*& op : dep_vec) { auto rel = AlreadyComputed(pred, op); if (rel.first != kNotComputed) { if (rel.second == Relation::kAfterEnd) { op = pred; } else { CHECK(rel.second == Relation::kBeforeStart); } return relation; } } VLOG(2) << "Forcing unordered: " << pred->name() << " vs " << succ->name(); dep_vec.push_back(pred); } return relation; } Relation::RuntimeOrder ComputeRuntimeOrdering(HloInstruction* instr1, HloInstruction* instr2) { auto saved_relation = AlreadyComputed(instr1, instr2); if (saved_relation.first != kNotComputed) { VLOG(3) << "Already computed between " << instr1->name() << " vs " << instr2->name(); return saved_relation.second; } auto constraint = ordering_->GetExecutionConstraint(instr1, instr2); switch (constraint) { case HloOrdering::ExecutionConstraint::kIsSame: return Save(instr1, instr2, Relation::kSameInstr); case HloOrdering::ExecutionConstraint::kRunBeforeEnd: return Save(instr1, instr2, Relation::kBeforeStartOrSameInstr); case HloOrdering::ExecutionConstraint::kRunBeforeStart: return Save(instr1, instr2, Relation::kBeforeStart); case HloOrdering::ExecutionConstraint::kRunAfter: return Save(instr1, instr2, Relation::kAfterEnd); case HloOrdering::ExecutionConstraint::kRunExclusiveBefore: case HloOrdering::ExecutionConstraint::kRunExclusiveAfter: return Save(instr1, instr2, Relation::kNoOverlap); case HloOrdering::ExecutionConstraint::kUnordered: { if (instr1->parent() != instr2->parent()) { return Relation::kBeforeStartOrAfterEnd; } auto ControlDependenceBefore = [&](HloInstruction* op1, HloInstruction* op2) { auto constraint = ComputeRuntimeOrdering(op1, op2); if (constraint == Relation::kBeforeStart || constraint == Relation::kSameInstr || constraint == Relation::kBeforeStartOrSameInstr) { return true; } else { return false; } }; if (!ctrl_deps_.empty()) { auto ctrl_deps = ctrl_deps_[instr1->parent()]; if (absl::c_any_of(ctrl_deps[instr2], [&](HloInstruction* pred2) { return ControlDependenceBefore(instr1, pred2); })) { VLOG(2) << "control-dependent: " << instr1->name() << " vs " << instr2->name(); return Save(instr1, instr2, Relation::kBeforeStart); } else if (absl::c_any_of( ctrl_deps[instr1], [&](HloInstruction* pred1) { return ControlDependenceBefore(instr2, pred1); })) { VLOG(2) << "control-dependent: " << instr2->name() << " vs " << instr1->name(); return Save(instr1, instr2, Relation::kAfterEnd); } } return Relation::kBeforeStartOrAfterEnd; } } } HloOrdering* ordering_; absl::flat_hash_map< HloInstruction*, absl::flat_hash_map<HloInstruction*, Relation::RuntimeOrder>> saved_relations_; absl::flat_hash_map< HloComputation*, absl::flat_hash_map<HloInstruction*, std::vector<HloInstruction*>>> ctrl_deps_; }; } class CopyRemover { public: struct ValueNode { explicit ValueNode(const HloValue* v) : value(v) {} const HloValue* value; std::vector<const HloUse*> uses; ValueNode* prev = nullptr; ValueNode* next = nullptr; }; CopyRemover(const HloModule& module, const HloAliasAnalysis& alias_analysis, HloOrdering* ordering, bool check_live_range_ordering, const absl::flat_hash_set<absl::string_view>& execution_threads) : dataflow_(alias_analysis.dataflow_analysis()), ordering_(ordering) { absl::flat_hash_map<int, int64_t> instruction_ids; int64_t id = 0; for (HloComputation* computation : module.MakeComputationPostOrder()) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { instruction_ids[instruction->unique_id()] = id++; } } absl::flat_hash_map<const HloValue*, ValueNode*> value_to_node; for (const HloBuffer& buffer : alias_analysis.buffers()) { if (buffer.values().at(0)->defining_instruction()->IsFused()) { continue; } if (check_live_range_ordering) { auto should_skip_value = [&execution_threads](const HloValue* value) { return value->defining_instruction()->parent() != nullptr && !HloInstruction::IsThreadIncluded(value->defining_instruction() ->parent() ->execution_thread(), execution_threads); }; for (const HloValue* value_a : buffer.values()) { if (value_a->shape().IsToken()) { continue; } if (should_skip_value(value_a)) { continue; } for (const HloValue* value_b : buffer.values()) { if (!should_skip_value(value_b) && value_a != value_b) { DCHECK(ordering_->LiveRangeStrictlyBefore( *value_a, *value_b, dataflow_, true) || ordering_->LiveRangeStrictlyBefore( *value_b, *value_a, dataflow_, true)) << value_a->ToString() << " and " << value_b->ToString() << " are not ordered"; } } } } std::vector<const HloValue*> values = buffer.values(); absl::c_sort(values, [this, &instruction_ids](const HloValue* a, const HloValue* b) { if (a == b) { return false; } const bool a_has_smaller_id = instruction_ids.at(a->defining_instruction()->unique_id()) < instruction_ids.at(b->defining_instruction()->unique_id()); if (a_has_smaller_id) { if (ordering_->IsDefinedBefore(*a, *b)) { return true; } if (ordering_->IsDefinedBefore(*b, *a)) { return false; } } else { if (ordering_->IsDefinedBefore(*b, *a)) { return false; } if (ordering_->IsDefinedBefore(*a, *b)) { return true; } } return a_has_smaller_id; }); AddValueList(values, &value_to_node); } CreateCopyMap(module, value_to_node); XLA_VLOG_LINES(3, ToString()); TF_DCHECK_OK(Verify()); } void AddValueList( absl::Span<const HloValue* const> values, absl::flat_hash_map<const HloValue*, ValueNode*>* value_to_node) { ValueNode* tail = nullptr; ValueNode* head = nullptr; for (const HloValue* value : values) { auto new_node = new ValueNode(value); (*value_to_node)[value] = new_node; new_node->uses.reserve(value->GetUses().size()); for (const HloUse& use : value->GetUses()) { new_node->uses.push_back(&use); } if (tail == nullptr) { head = new_node; } else { tail->next = new_node; new_node->prev = tail; } tail = new_node; } tail->next = head; head->prev = tail; value_lists_.insert(head); } void CreateCopyMap( const HloModule& module, const absl::flat_hash_map<const HloValue*, ValueNode*>& value_to_node) { for (HloComputation* computation : module.MakeNonfusionComputations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { const HloValueSet& src_value_set = dataflow_.GetValueSet(instruction->operand(0)); if (src_value_set.values().size() == 1) { CopyNodes& copy_node = copy_map_[instruction]; copy_node.dest = value_to_node.at(&dataflow_.GetUniqueValueAt(instruction)); copy_node.src = value_to_node.at(&src_value_set.GetUniqueValue()); } } } } } ~CopyRemover() { for (const ValueNode* head : value_lists_) { const ValueNode* p = head; do { const ValueNode* tmp = p->next; delete p; p = tmp; } while (p != head); } } absl::Status Verify() const { for (const ValueNode* head : value_lists_) { const ValueNode* p = head; do { TF_RET_CHECK(p->prev->next == p); TF_RET_CHECK(p->next->prev == p); const HloInstruction* def = p->value->defining_instruction(); if (def->opcode() == HloOpcode::kCopy && ContainsKey(copy_map_, def)) { TF_RET_CHECK(copy_map_.at(def).dest == p); } for (const HloUse* use : p->uses) { if (use->instruction->opcode() == HloOpcode::kCopy && ContainsKey(copy_map_, use->instruction)) { TF_RET_CHECK(copy_map_.at(use->instruction).src == p); } } p = p->next; } while (p != head); } return absl::OkStatus(); } LiveRangeRegions ComputeLiveRangeRegions(const ValueNode* head) { LiveRangeRegions live_range; auto VisitValueNode = [&](const ValueNode* node) { HloInstruction* def_op = node->value->instruction(); HloComputation* def_parent = def_op->parent(); live_range[def_parent][def_op].is_definition = true; for (const auto& use : node->uses) { auto* use_op = use->instruction; HloComputation* use_parent = use_op->parent(); live_range[use_parent][use_op].value_definition = def_op; } }; ForEachValueInRange(head, VisitValueNode); return live_range; } bool TryElideCopy(const HloInstruction* copy, int64_t* region_analysis_limit) { VLOG(2) << "Trying to remove " << copy->name(); CHECK_NE(region_analysis_limit, nullptr); if (!ContainsKey(copy_map_, copy)) { VLOG(2) << copy->name() << " is not removable"; return false; } if (!ShapeUtil::Equal(copy->shape(), copy->operand(0)->shape())) { VLOG(2) << copy->name() << " is not removable (shape mismatch)"; return false; } const CopyNodes& copy_node = copy_map_.at(copy); DCHECK(copy_node.src != nullptr); DCHECK(copy_node.dest != nullptr); int64_t live_range_size1 = 0, live_range_size2 = 0; ForEachValueInRange(copy_node.src, [&](const ValueNode* node) { live_range_size1 += 1 + node->uses.size(); }); ForEachValueInRange(copy_node.dest, [&](const ValueNode* node) { live_range_size2 += 1 + node->uses.size(); }); bool use_region_analysis = copy->operand(0)->opcode() != HloOpcode::kBroadcast && (*region_analysis_limit < 0 || live_range_size1 * live_range_size2 <= *region_analysis_limit); *region_analysis_limit = 0; VLOG(3) << copy->name() << " copies value " << copy_node.src->value->ToShortString(); VLOG(3) << "Source buffer values: " << ValueListToString(copy_node.src); VLOG(3) << "Dest buffer values: " << ValueListToString(copy_node.dest); auto CheckLiveRangeBefore = [&](ValueNode* src, ValueNode* dest) { for (ValueNode* next_dest = dest; next_dest != nullptr; next_dest = Next(*next_dest)) { for (ValueNode* prev_src = src; prev_src != nullptr; prev_src = Prev(*prev_src)) { if (!LiveRangeBefore(*prev_src, *next_dest)) { VLOG(2) << "Live range of " << prev_src->value->ToShortString() << " is not before " << next_dest->value->ToShortString(); return false; } } } return true; }; auto CheckLiveRangeInterference = [&](ValueNode* src, ValueNode* dest, const CombineLiveRangeOption option) { CHECK_NE(src, nullptr); CHECK_NE(dest, nullptr); if (!use_region_analysis) { VLOG(2) << "Configured to not use region-based analysis."; return true; } *region_analysis_limit += live_range_size1 * live_range_size2; if (ValuesInterfere(src, dest, option)) { VLOG(2) << "Region-based interference is true."; return true; } VLOG(2) << "Region-based interference is false."; return false; }; if (copy_node.src->next == copy_node.dest) { VLOG(2) << copy->name() << " source and destination buffers are same."; } else if (IsHead(*copy_node.dest)) { VLOG(2) << copy->name() << " defines the first value in its buffer"; bool live_range_before = CheckLiveRangeBefore(copy_node.src, Next(*copy_node.dest)) && CheckLiveRangeBefore(copy_node.dest->prev, Next(*copy_node.src)); VLOG(2) << "LiveRangeBefore result: " << live_range_before; if (!live_range_before && CheckLiveRangeInterference(copy_node.src, copy_node.dest, kMergeFirstDestInSource)) { return false; } VLOG(2) << "Splice dest after source."; SpliceAfter(copy_node.dest, copy_node.src); } else if (IsTail(*copy_node.src)) { VLOG(2) << copy->name() << " copies the last value (" << copy_node.src->value->ToShortString() << ") in its buffer"; bool live_range_before = CheckLiveRangeBefore(Prev(*copy_node.dest), copy_node.src->next) && CheckLiveRangeBefore(copy_node.src, Next(*copy_node.dest)); VLOG(2) << "LiveRangeBefore result: " << live_range_before; if (!live_range_before && CheckLiveRangeInterference(copy_node.src, copy_node.dest, kMergeLastSourceInDest)) { VLOG(2) << "Region-based analysis concludes interference."; return false; } VLOG(2) << "Splice src after prev of dest."; SpliceAfter(copy_node.src->next, Prev(*copy_node.dest)); } else { VLOG(2) << copy->name() << " copies value in middle of source buffer to value in middle " "of destination buffer"; return false; } RemoveCopyValue(copy_node.dest); XLA_VLOG_LINES(4, ToString()); TF_DCHECK_OK(Verify()); return true; } void RemoveCopyValue(ValueNode* copy_value_node) { CHECK_EQ(copy_value_node->value->defining_instruction()->opcode(), HloOpcode::kCopy); ValueNode* operand_node = copy_value_node->prev; CHECK(operand_node != copy_value_node); VLOG(2) << "Removing copy " << operand_node->value->ToShortString() << " => " << copy_value_node->value->ToShortString(); operand_node->next = copy_value_node->next; copy_value_node->next->prev = operand_node; auto it = absl::c_find_if(operand_node->uses, [copy_value_node]( const HloUse* use) { return use->instruction == copy_value_node->value->defining_instruction(); }); CHECK(it != operand_node->uses.end()); operand_node->uses.erase(it); for (const HloUse* copy_use : copy_value_node->uses) { operand_node->uses.push_back(copy_use); if (copy_use->instruction->opcode() == HloOpcode::kCopy && ContainsKey(copy_map_, copy_use->instruction)) { copy_map_.at(copy_use->instruction).src = operand_node; } } copy_map_.erase(copy_value_node->value->defining_instruction()); delete copy_value_node; } bool LiveRangeBefore(const ValueNode& a, const ValueNode& b) { if (a.uses.empty()) { VLOG(2) << "Empty uses for " << *a.value; return ordering_->IsDefinedBefore(*a.value, *b.value); } VLOG(3) << "Checking live ranges before: " << ValueListToString(&a) << " vs " << ValueListToString(&b); if (a.value->IsRootOf(b.value->defining_instruction()->parent())) { VLOG(3) << "Value is root of the same computation"; return false; } return ordering_->UsesBeforeValueDefinition( a.uses, *b.value, dataflow_, false); } bool IsTail(const ValueNode& node) const { return ContainsKey(value_lists_, node.next); } bool IsHead(const ValueNode& node) const { return ContainsKey(value_lists_, &node); } ValueNode* Next(const ValueNode& node) const { if (IsTail(node)) { return nullptr; } else { return node.next; } } ValueNode* Prev(const ValueNode& node) const { if (IsHead(node)) { return nullptr; } else { return node.prev; } } void SpliceAfter(ValueNode* head, ValueNode* insert_after) { DCHECK(IsHead(*head)); value_lists_.erase(head); ValueNode* tail = head->prev; tail->next = insert_after->next; insert_after->next->prev = tail; insert_after->next = head; head->prev = insert_after; } enum CombineLiveRangeOption { kMergeFirstDestInSource = 1, kMergeLastSourceInDest = 2 }; bool ValuesInterfere(const ValueNode* src, const ValueNode* dest, CombineLiveRangeOption merge_location) { auto src_live_range = ComputeLiveRangeRegions(src); auto dest_live_range = ComputeLiveRangeRegions(dest); VLOG(5) << "src value: " << src->value->ToString(); VLOG(5) << "src live range:\n" << src_live_range.ToString(); VLOG(5) << "dest value: " << dest->value->ToString(); VLOG(5) << "dest live range:\n" << dest_live_range.ToString(); ComputeRelativeLocation relative_location_analysis(ordering_); auto rel1 = relative_location_analysis.Compute(src_live_range, dest_live_range); VLOG(3) << "Location of dest in relation to src: " << rel1.ToString() << " with interception set to " << rel1.InterceptDefUse(); auto rel2 = relative_location_analysis.Compute(dest_live_range, src_live_range); VLOG(3) << "Location of src in relation to dest: " << rel2.ToString() << " with interception set to " << rel2.InterceptDefUse(); if (rel1.RuntimeOrderOverlap() && rel2.RuntimeOrderOverlap()) { VLOG(3) << "Both relations are overlap."; return true; } if (rel1.RuntimeOrderOverlap() || rel2.RuntimeOrderOverlap()) { VLOG(3) << "At least one relation is overlap."; if (rel1.RuntimeOrderOverlap()) { VLOG(3) << "rel1 is overlap, with interception = " << rel1.InterceptDefUse(); if (rel1.InterceptDefUse() || (merge_location != kMergeFirstDestInSource && rel2.InterceptDefUse())) { return true; } } else { VLOG(3) << "rel2 is overlap, with interception = " << rel2.InterceptDefUse(); if (rel2.InterceptDefUse() || (merge_location != kMergeLastSourceInDest && rel1.InterceptDefUse())) { return true; } } } if (relative_location_analysis.AddControlDependenceForUnorderedOps()) { return false; } else { return true; } } void ForEachValueInRange(const ValueNode* element, absl::FunctionRef<void(const ValueNode*)> visitor) { const ValueNode* head = element; for (const ValueNode* p = head; p != nullptr; p = Next(*p)) { visitor(p); } while (!IsHead(*head)) { head = Prev(*head); } for (const ValueNode* p = head; p != element; p = Next(*p)) { visitor(p); } } std::string ValueListToString(const ValueNode* element) { std::string result = "{"; auto VisitValueNode = [&](const ValueNode* node) { if (result == "{") { StrAppend(&result, node->value->ToShortString()); } else { StrAppend(&result, ", ", node->value->ToShortString()); } }; ForEachValueInRange(element, VisitValueNode); StrAppend(&result, "}"); return result; } std::string ToString() const { std::string out = absl::StrCat("CopyRemover:\n"); StrAppend(&out, " Def-use chains in each buffer:\n"); for (const ValueNode* head : value_lists_) { StrAppend(&out, " Buffer defined by ", head->value->ToShortString(), ":\n"); const ValueNode* p = head; do { StrAppend(&out, " ", p->value->ToShortString(), ", uses: ", absl::StrJoin(p->uses, "; ", [](std::string* s, const HloUse* use) { StrAppend(s, use->ToString()); }), "\n"); p = p->next; } while (p != head); } StrAppend(&out, " Potentially removable copies:\n"); for (const auto& pair : copy_map_) { const HloInstruction* copy = pair.first; const CopyNodes& copy_info = pair.second; StrAppend(&out, " ", copy->name(), " : ", copy_info.src->value->ToShortString(), " => ", copy_info.dest->value->ToShortString(), "\n"); } return out; } private: const HloDataflowAnalysis& dataflow_; HloOrdering* ordering_; absl::flat_hash_set<const ValueNode*> value_lists_; struct CopyNodes { ValueNode* src = nullptr; ValueNode* dest = nullptr; }; absl::flat_hash_map<const HloInstruction*, CopyNodes> copy_map_; }; } absl::Status CopyInsertion::AddCopiesForConditional( const HloAliasAnalysis& alias_analysis, HloInstruction* conditional) { VLOG(2) << "Adding copies for kConditional instruction " << conditional->name(); ShapeTree<bool> indices_to_copy(conditional->shape()); TF_RET_CHECK(conditional->opcode() == HloOpcode::kConditional); if (!IndicesToCopyForConditional(alias_analysis.dataflow_analysis(), conditional, &indices_to_copy)) { VLOG(2) << "No copies necessary for kConditional instruction " << conditional->name(); return absl::OkStatus(); } for (HloComputation* computation : conditional->branch_computations()) { HloInstruction* root = computation->root_instruction(); std::vector<HloInstruction*> users = root->users(); TF_ASSIGN_OR_RETURN( HloInstruction * deep_copy, computation->DeepCopyInstruction(root, &indices_to_copy)); for (HloInstruction* user : users) { TF_RETURN_IF_ERROR(root->ReplaceUseWith(user, deep_copy)); } computation->set_root_instruction(deep_copy); } return absl::OkStatus(); } absl::Status CopyInsertion::AddCopiesToResolveInterference( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module, can_share_buffer_)); for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { if (computation->IsAsyncComputation()) { continue; } for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() == HloOpcode::kWhile) { TF_RETURN_IF_ERROR(AddCopiesForWhile(*alias_analysis, instruction)); } else if (instruction->opcode() == HloOpcode::kConditional) { TF_RETURN_IF_ERROR( AddCopiesForConditional(*alias_analysis, instruction)); } else { absl::flat_hash_set<int64_t> copied_operands; for (const auto& operand_and_output_index : HloDataflowAnalysis::GetInPlaceInputOutputPairs( instruction->opcode() == HloOpcode::kAsyncStart ? instruction->async_wrapped_instruction() : instruction)) { const HloOperandIndex& operand_index = operand_and_output_index.first; if (copied_operands.contains(operand_index.operand_number)) { continue; } bool can_share_buffer = false; if (can_share_buffer_ != nullptr) { auto maybe_can_share_buffer = can_share_buffer_( instruction, instruction->operand(operand_index.operand_number), operand_index.operand_index); if (maybe_can_share_buffer.has_value()) { can_share_buffer = maybe_can_share_buffer.value(); } } if (can_share_buffer && HasDisjointReadWriteRegionsAttr(instruction) && absl::c_all_of( instruction->operand(operand_index.operand_number)->users(), [&instruction](const HloInstruction* user) { return user == instruction; })) { continue; } copied_operands.insert(operand_index.operand_number); TF_RETURN_IF_ERROR(AddCopiesForInPlaceOperation( *alias_analysis, instruction, operand_index.operand_number)); } } } } TF_RETURN_IF_ERROR( AddCopiesForAliasedInputOutputs(module, execution_threads)); return absl::OkStatus(); } absl::Status CopyInsertion::AddSpecialCaseCopies( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); return AddSpecialCaseCopies(*call_graph, execution_threads, module); } absl::Status CopyInsertion::AddSpecialCaseCopies( const CallGraph& call_graph, const absl::flat_hash_set<absl::string_view>& execution_threads, HloModule* module) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module, can_share_buffer_)); HloInstructionMap<ShapeTree<bool>> instructions_to_copy; auto add_index_to_copy = [&instructions_to_copy](HloInstruction* instruction, const ShapeIndex& index) { auto it = instructions_to_copy.find(instruction); if (it == instructions_to_copy.end()) { auto it_added = instructions_to_copy.emplace( std::piecewise_construct, std::forward_as_tuple(instruction), std::forward_as_tuple(instruction->shape(), false)); it = it_added.first; } *it->second.mutable_element(index) = true; }; for (const HloValue* value : alias_analysis->dataflow_analysis().values()) { HloBuffer& buffer = alias_analysis->GetBufferContainingValue(*value); if (buffer.values().size() > 1 && ValueIsReadOnly(*value)) { VLOG(2) << "Value " << value->ToShortString() << " is read only, but its buffer contains more than one value. " "Copying."; add_index_to_copy(value->defining_instruction(), value->defining_index()); } for (const HloValue* value2 : buffer.values()) { if (value2 == value) { continue; } HloPosition position = value2->defining_position(); for (const HloUse& use : value->GetUses()) { if (use.instruction == position.instruction) { VLOG(3) << "Same instruction: " << position.instruction->ToString(); if (!alias_analysis->dataflow_analysis() .CanShareOperandBufferWithUser( use.instruction->mutable_operand( use.operand_number), use.operand_index, position.instruction, position.index)) { VLOG(2) << "Adding back copy: " << use.instruction->operand(use.operand_number)->ToString() << "@" << use.operand_index.ToString() << " instr: " << position.instruction->ToString() << "@" << position.index; add_index_to_copy( use.instruction->mutable_operand(use.operand_number), use.operand_index); } } } } } for (HloComputation* computation : module->computations(execution_threads)) { const CallGraphNode& node = call_graph.GetNode(computation); if (node.context() == CallContext::kEmbedded) { continue; } TF_RET_CHECK(node.context() == CallContext::kControlFlow); SpecialCaseCopyPolicy policy = GetSpecialCaseCopyPolicy(node, module, computation); HloInstruction* root = computation->root_instruction(); absl::flat_hash_map<const HloBuffer*, ShapeIndex> seen; ShapeUtil::ForEachSubshape( root->shape(), [&](const Shape& , const ShapeIndex& index) { std::vector<const HloBuffer*> buffers_at_index = alias_analysis->ComputeBuffersAt(root, index); bool buffer_seen_before = false; for (const HloBuffer* buffer : buffers_at_index) { buffer_seen_before |= !seen.emplace(buffer, index).second; } if (buffer_seen_before && policy.copy_root_replicated_buffers && computation == module->entry_computation() && module->input_output_alias_config().OutputHasAlias(index) && buffers_at_index.size() == 1) { std::optional<HloInputOutputAliasConfig::Alias> alias = module->input_output_alias_config().GetAliasedParameter(index); CHECK(alias) << "Alias does not exist"; const ShapeIndex& other_index = seen[buffers_at_index[0]]; VLOG(2) << "Output indices " << index.ToString() << " and " << other_index.ToString() << " are both aliased to " << alias->parameter_number << " copying " << other_index; add_index_to_copy(root, other_index); return; } if (buffers_at_index.size() > 1 || (buffer_seen_before && policy.copy_root_replicated_buffers)) { VLOG(2) << "Index " << index << " of computation " << computation->name() << " (" << root->name() << ") has ambiguous or non-distinct buffer. Copying."; add_index_to_copy(root, index); } }); for (const auto& pair : alias_analysis->dataflow_analysis().GetInstructionValueSet(root)) { const ShapeIndex& index = pair.first; const HloValueSet& value_set = pair.second; for (const HloValue* value : value_set.values()) { if (ShouldCopyRootValue(*value, policy)) { VLOG(2) << "Root of (" << root->name() << ") of computation(" << computation->name() << ") has constant or parameter value at index " << index << ". Copying."; add_index_to_copy(root, index); } } } } for (const auto& pair : instructions_to_copy) { HloInstruction* instruction = pair.first; const ShapeTree<bool>& indices_to_copy = pair.second; ShapeTree<HloInstruction*> copies_added(indices_to_copy.shape()); std::vector<HloInstruction*> users = instruction->users(); TF_ASSIGN_OR_RETURN(HloInstruction * deep_copy, instruction->parent()->DeepCopyInstruction( instruction, &indices_to_copy, &copies_added)); for (HloInstruction* user : users) { TF_RETURN_IF_ERROR(instruction->ReplaceUseWith(user, deep_copy)); } if (instruction == instruction->parent()->root_instruction()) { instruction->parent()->set_root_instruction(deep_copy); } } return absl::OkStatus(); } static int64_t GetNumExistingCopies( const HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { int64_t num_existing_copies = 0; for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { ++num_existing_copies; } } } return num_existing_copies; } absl::Status CopyInsertion::RemoveUnnecessaryCopies( HloModule* module, bool check_live_range_ordering, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 4, module->ToString(HloPrintOptions().set_syntax_sugar_async_ops(false))); std::unique_ptr<HloOrdering> ordering; if (module->has_schedule()) { ordering = std::make_unique<SequentialHloOrdering>(module->schedule()); } else { ordering = std::make_unique<DependencyHloOrdering>(module); } TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module, can_share_buffer_)); CopyRemover copy_remover(*module, *alias_analysis, ordering.get(), check_live_range_ordering, execution_threads); if (VLOG_IS_ON(3)) { LOG(INFO) << "Removing unnecessary copies in " << module->name(); LOG(INFO) << "Buffer values, in dependency order: "; for (const HloBuffer& buffer : alias_analysis->buffers()) { LOG(INFO) << " HloBuffer " << buffer.id(); } } std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); int64_t num_existing_copies = GetNumExistingCopies(module, execution_threads); bool changed = true; int64_t num_iterations = -1; VLOG(6) << "Copy Insertion analyzing module with instruction count = " << module->instruction_count(); BoundNonLinearCompilerAnalysis allowance(module, name(), 10); while (changed) { CHECK_LE(++num_iterations, num_existing_copies); changed = false; VLOG(2) << "Running fixpoint iteration " << num_iterations << " of copy elision"; for (HloComputation* computation : module->computations(execution_threads)) { VLOG(2) << "computation:" << computation->name(); for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kCopy) continue; int64_t region_analysis_cost_now = (use_region_based_live_range_analysis_ == 0) ? 0 : std::min(allowance.analysis_allowance(), use_region_based_live_range_analysis_); if (copy_remover.TryElideCopy(instruction, &region_analysis_cost_now)) { changed = true; TF_RETURN_IF_ERROR(StripControlDependenciesFrom(instruction)); TF_RETURN_IF_ERROR( instruction->ReplaceAllUsesWith(instruction->mutable_operand(0))); VLOG(6) << "succeeded in eliminating copy."; } if (allowance.ContinueAnalysis() && region_analysis_cost_now > 0) { VLOG(6) << "Copy Insertion analyzing module cost: " << region_analysis_cost_now; VLOG(6) << "instruction:" << instruction->ToString(); allowance.DeductCost(region_analysis_cost_now); VLOG(6) << "allowance:" << allowance.analysis_allowance(); } } } } return absl::OkStatus(); } absl::StatusOr<bool> CopyInsertion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::unique_ptr<CallGraph> call_graph = CallGraph::Build(module); if (!call_graph->IsFlattened()) { return FailedPrecondition( "Call graph must be flattened before copy insertion."); } int64_t num_copies_before = GetNumExistingCopies(module, execution_threads); TF_RETURN_IF_ERROR(AddCopiesToResolveInterference(module, execution_threads)); TupleSimplifier tuple_simplifier; HloDCE dce; TF_RETURN_IF_ERROR(tuple_simplifier.Run(module, execution_threads).status()); TF_RETURN_IF_ERROR(dce.Run(module, execution_threads).status()); DumpHloModuleDuringPassIfEnabled( name(), "after adding copies to resolve interference", *module); TF_RETURN_IF_ERROR(RemoveUnnecessaryCopies(module, true, execution_threads)); DumpHloModuleDuringPassIfEnabled(name(), "after removing unnecessary copies", *module); TF_RETURN_IF_ERROR( AddSpecialCaseCopies(*call_graph, execution_threads, module)); DumpHloModuleDuringPassIfEnabled(name(), "after adding special-case copies", *module); TF_RETURN_IF_ERROR(tuple_simplifier.Run(module, execution_threads).status()); TF_RETURN_IF_ERROR(dce.Run(module, execution_threads).status()); VLOG(1) << "Num copies before copy-insertion: " << num_copies_before; VLOG(1) << "Num copies after copy-insertion: " << GetNumExistingCopies(module, execution_threads); return true; } }
#include "xla/service/copy_insertion.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { using ::testing::NotNull; using ::testing::UnorderedElementsAre; int64_t CountCopies(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { if (instruction->opcode() == HloOpcode::kCopy) { count++; } } return count; } int64_t CountCopies(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountCopies(*computation); } return count; } int64_t CountControlEdges(const HloComputation& computation) { int64_t count = 0; for (const auto& instruction : computation.instructions()) { count += instruction->control_successors().size(); } return count; } int64_t CountControlEdges(const HloModule& module) { int64_t count = 0; for (const auto& computation : module.computations()) { count += CountControlEdges(*computation); } return count; } class CopyInsertionTest : public HloTestBase { protected: void InsertCopies(HloModule* module) { CopyInsertion copy_insertion; VLOG(3) << "Before copy inser: " << module->ToString(); ASSERT_IS_OK(copy_insertion.Run(module).status()); VLOG(2) << "After copy inser: " << module->ToString(); } const Shape scalar_shape_ = ShapeUtil::MakeShape(F32, {}); }; TEST_F(CopyInsertionTest, SingleParameter) { auto builder = HloComputation::Builder(TestName()); HloInstruction* x = builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "x")); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({x})); EXPECT_THAT(x->users(), UnorderedElementsAre(tuple)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Copy(x))); } TEST_F(CopyInsertionTest, SingleConstant) { auto builder = HloComputation::Builder(TestName()); HloInstruction* constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant})); EXPECT_THAT(constant->users(), UnorderedElementsAre(tuple)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Copy(constant))); } TEST_F(CopyInsertionTest, ExistingCopiesNotRemoved) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); HloInstruction* constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}))); auto minor_to_major = LayoutUtil::MinorToMajor(constant->shape()); Layout reversed_layout = LayoutUtil::MakeLayoutFromMajorToMinor(minor_to_major); Shape copy_shape = constant->shape(); *copy_shape.mutable_layout() = reversed_layout; HloInstruction* copy_1 = builder.AddInstruction( HloInstruction::CreateUnary(copy_shape, HloOpcode::kCopy, constant)); HloInstruction* copy_2 = builder.AddInstruction( HloInstruction::CreateUnary(copy_shape, HloOpcode::kCopy, constant)); HloInstruction* add = builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, copy_1, copy_2)); builder.AddInstruction( HloInstruction::CreateUnary(add->shape(), HloOpcode::kCopy, add)); module->AddEntryComputation(builder.Build()); EXPECT_EQ(CountCopies(*module), 3); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 2); EXPECT_EQ(module->entry_computation()->root_instruction(), add); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Add(op::Copy(op::Constant()), op::Copy(op::Constant()))); } TEST_F(CopyInsertionTest, MultipleConstantsAndParameters) { auto builder = HloComputation::Builder(TestName()); HloInstruction* constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); HloInstruction* constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); HloInstruction* x = builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "x")); HloInstruction* y = builder.AddInstruction( HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {}), "y")); HloInstruction* add = builder.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, constant1, y)); builder.AddInstruction(HloInstruction::CreateTuple({constant2, x, add})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 2); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::Copy(constant2), op::Copy(x), op::Add(constant1, y))); } TEST_F(CopyInsertionTest, BitcastParameter) { auto builder = HloComputation::Builder(TestName()); HloInstruction* x = builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {4}), "x")); HloInstruction* bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(ShapeUtil::MakeShape(F32, {2, 2}), x)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_THAT(x->users(), UnorderedElementsAre(bitcast)); HloInstruction* old_root = module->entry_computation()->root_instruction(); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Copy(old_root)); } TEST_F(CopyInsertionTest, BitcastConstant) { auto builder = HloComputation::Builder(TestName()); HloInstruction* constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1.0, 42.0}))); HloInstruction* bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(ShapeUtil::MakeShape(F32, {2}), constant)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_THAT(constant->users(), UnorderedElementsAre(bitcast)); HloInstruction* old_root = module->entry_computation()->root_instruction(); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Copy(old_root)); } TEST_F(CopyInsertionTest, BitcastTupleElementParameter) { auto builder = HloComputation::Builder(TestName()); HloInstruction* x = builder.AddInstruction( HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {4}), "x")); HloInstruction* bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(ShapeUtil::MakeShape(F32, {2, 2}), x)); builder.AddInstruction(HloInstruction::CreateTuple({bitcast})); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_THAT(x->users(), UnorderedElementsAre(bitcast)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Copy(bitcast))); } TEST_F(CopyInsertionTest, NestedTupleParameter) { auto builder = HloComputation::Builder(TestName()); builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeShape(S32, {1, 2, 3})}), ShapeUtil::MakeShape(F32, {42})}), "param0")); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(HloOpcode::kParameter, module->entry_computation()->root_instruction()->opcode()); HloInstruction* old_root = module->entry_computation()->root_instruction(); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 3); HloInstruction* new_root = module->entry_computation()->root_instruction(); EXPECT_NE(old_root, new_root); EXPECT_THAT( new_root, op::Tuple( op::Tuple( op::Copy(op::GetTupleElement(op::GetTupleElement(old_root))), op::Copy(op::GetTupleElement(op::GetTupleElement(old_root)))), op::Copy(op::GetTupleElement(old_root)))); } TEST_F(CopyInsertionTest, ElementOfNestedTupleParameter) { auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeTupleShape( {ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {}), ShapeUtil::MakeShape(S32, {1, 2, 3})}), ShapeUtil::MakeShape(F32, {42})}), "param0")); auto gte = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(param->shape(), {0}), param, 0)); auto module = CreateNewVerifiedModule(); module->AddEntryComputation(builder.Build()); EXPECT_EQ(gte, module->entry_computation()->root_instruction()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 2); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::Copy(op::GetTupleElement(op::GetTupleElement(param))), op::Copy(op::GetTupleElement(op::GetTupleElement(param))))); } class WhileCopyInsertionTest : public CopyInsertionTest { protected: WhileCopyInsertionTest() : module_(CreateNewVerifiedModule()) {} std::unique_ptr<HloComputation> BuildConditionComputation( const Shape& loop_state_shape) { auto builder = HloComputation::Builder(TestName() + ".Condition"); auto limit_const = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(10))); auto loop_state = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "loop_state")); auto induction_variable = builder.AddInstruction(HloInstruction::CreateGetTupleElement( limit_const->shape(), loop_state, 0)); builder.AddInstruction(HloInstruction::CreateCompare( condition_result_shape_, induction_variable, limit_const, ComparisonDirection::kLt)); return builder.Build(); } std::unique_ptr<HloComputation> BuildDependentBodyComputation() { auto builder = HloComputation::Builder(TestName() + ".Body"); auto loop_state = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape_, "loop_state")); auto induction_variable = builder.AddInstruction(HloInstruction::CreateGetTupleElement( induction_variable_shape_, loop_state, 0)); auto inc = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto add0 = builder.AddInstruction(HloInstruction::CreateBinary( induction_variable->shape(), HloOpcode::kAdd, induction_variable, inc)); auto data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 1)); Shape f32_scalar_shape = ShapeUtil::MakeShape(F32, {}); auto convert = builder.AddInstruction( HloInstruction::CreateConvert(f32_scalar_shape, induction_variable)); auto update = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, convert, {})); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kAdd, data, update)); builder.AddInstruction(HloInstruction::CreateTuple({add0, add1})); return builder.Build(); } std::unique_ptr<HloComputation> BuildDependentBodyComputation2() { auto builder = HloComputation::Builder(TestName() + ".Body"); const Shape& loop_state_shape = ShapeUtil::MakeTupleShape( {induction_variable_shape_, data_shape_, data_shape_}); auto loop_state = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "loop_state")); auto induction_variable = builder.AddInstruction(HloInstruction::CreateGetTupleElement( induction_variable_shape_, loop_state, 0)); auto inc = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto add0 = builder.AddInstruction(HloInstruction::CreateBinary( induction_variable->shape(), HloOpcode::kAdd, induction_variable, inc)); HloInstruction* data1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 1)); HloInstruction* data2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 2)); builder.AddInstruction(HloInstruction::CreateTuple({add0, data1, data2})); return builder.Build(); } std::unique_ptr<HloComputation> BuildDependentBodyOneReadOnlyComputation() { auto builder = HloComputation::Builder(TestName() + ".Body"); auto loop_state = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape_, "loop_state")); auto induction_variable = builder.AddInstruction(HloInstruction::CreateGetTupleElement( induction_variable_shape_, loop_state, 0)); auto data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 1)); Shape f32_scalar_shape = ShapeUtil::MakeShape(F32, {}); auto convert = builder.AddInstruction( HloInstruction::CreateConvert(f32_scalar_shape, induction_variable)); auto update = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, convert, {})); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kAdd, data, update)); builder.AddInstruction( HloInstruction::CreateTuple({induction_variable, add1})); return builder.Build(); } std::unique_ptr<HloComputation> BuildIndependentBodyComputation( bool nested = false) { auto builder = HloComputation::Builder(TestName() + ".Body"); const Shape& loop_state_shape = nested ? nested_loop_state_shape_ : loop_state_shape_; auto loop_state = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "loop_state")); auto induction_variable = builder.AddInstruction(HloInstruction::CreateGetTupleElement( induction_variable_shape_, loop_state, 0)); auto inc = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto add0 = builder.AddInstruction(HloInstruction::CreateBinary( induction_variable->shape(), HloOpcode::kAdd, induction_variable, inc)); HloInstruction* data = nullptr; if (nested) { data = builder.AddInstruction(HloInstruction::CreateGetTupleElement( nested_tuple_shape_, loop_state, 1)); data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, data, 0)); } else { data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, loop_state, 1)); } auto update = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>( {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}))); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kAdd, data, update)); if (nested) { auto nested_tuple = builder.AddInstruction(HloInstruction::CreateTuple({add1, add1})); builder.AddInstruction(HloInstruction::CreateTuple({add0, nested_tuple})); } else { builder.AddInstruction(HloInstruction::CreateTuple({add0, add1})); } return builder.Build(); } std::unique_ptr<HloComputation> BuildNestedBodyComputation() { auto builder = HloComputation::Builder(TestName() + ".Body"); auto loop_state = builder.AddInstruction(HloInstruction::CreateParameter( 0, nested_loop_state_shape_, "loop_state")); auto gte0 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( induction_variable_shape_, loop_state, 0)); auto inc = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto add0 = builder.AddInstruction(HloInstruction::CreateBinary( gte0->shape(), HloOpcode::kAdd, gte0, inc)); auto gte1 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( nested_tuple_shape_, loop_state, 1)); auto gte10 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, gte1, 0)); auto update10 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>( {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}))); auto add10 = builder.AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kAdd, gte10, update10)); auto gte11 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(data_shape_, gte1, 1)); auto rev11 = builder.AddInstruction( HloInstruction::CreateReverse(data_shape_, gte11, {0})); auto inner_tuple = builder.AddInstruction(HloInstruction::CreateTuple({add10, rev11})); builder.AddInstruction(HloInstruction::CreateTuple({add0, inner_tuple})); return builder.Build(); } HloInstruction* BuildWhileInstruction(HloComputation* condition, HloComputation* body, bool nested = false) { auto builder = HloComputation::Builder(TestName() + ".While"); auto induction_var_init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto data_init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>( {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}))); if (nested) { auto inner_init = builder.AddInstruction( HloInstruction::CreateTuple({data_init, data_init})); auto loop_state_init = builder.AddInstruction( HloInstruction::CreateTuple({induction_var_init, inner_init})); auto while_hlo = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_init->shape(), condition, body, loop_state_init)); module_->AddEntryComputation(builder.Build()); return while_hlo; } auto loop_state_init = builder.AddInstruction( HloInstruction::CreateTuple({induction_var_init, data_init})); auto while_hlo = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape_, condition, body, loop_state_init)); module_->AddEntryComputation(builder.Build()); return while_hlo; } HloInstruction* BuildWhileInstruction_InitPointsToConstant() { auto builder = HloComputation::Builder(TestName() + ".While"); auto data_init = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>( {0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}))); return BuildWhileInstructionWithCustomInit(loop_state_shape_, data_init, &builder); } HloInstruction* BuildWhileInstruction_InitPointsToParameter() { auto builder = HloComputation::Builder(TestName() + ".While"); auto data_init = builder.AddInstruction( HloInstruction::CreateParameter(0, data_shape_, "data_init")); return BuildWhileInstructionWithCustomInit(loop_state_shape_, data_init, &builder); } HloInstruction* BuildWhileInstruction_InitPointsToNonDistinct() { auto builder = HloComputation::Builder(TestName() + ".While"); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto one_vec = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, one, {})); auto data_init = builder.AddInstruction(HloInstruction::CreateTuple({one_vec, one_vec})); return BuildWhileInstructionWithCustomInit(nested_loop_state_shape_, data_init, &builder); } HloInstruction* BuildWhileInstruction_InitPointsToInterfering() { auto builder = HloComputation::Builder(TestName() + ".While"); auto one = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto data_init = builder.AddInstruction( HloInstruction::CreateBroadcast(data_shape_, one, {})); auto one_vec = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>( {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kAdd, data_init, one_vec)); auto xla_while = BuildWhileInstructionWithCustomInit(loop_state_shape_, data_init, &builder); auto gte = xla_while->parent()->AddInstruction( HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(xla_while->shape(), {1}), xla_while, 1)); auto sub = xla_while->parent()->AddInstruction(HloInstruction::CreateBinary( data_shape_, HloOpcode::kSubtract, add, gte)); auto gte0 = xla_while->parent()->AddInstruction( HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(xla_while->shape(), {0}), xla_while, 0)); auto tuple = xla_while->parent()->AddInstruction( HloInstruction::CreateTuple({gte0, sub})); xla_while->parent()->set_root_instruction(tuple); return xla_while; } HloInstruction* BuildWhileInstructionWithCustomInit( const Shape& loop_state_shape, HloInstruction* data_init, HloComputation::Builder* builder) { const bool nested = ShapeUtil::Equal(loop_state_shape, nested_loop_state_shape_); auto induction_var_init = builder->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto condition = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape)); auto body = module_->AddEmbeddedComputation( BuildIndependentBodyComputation(nested)); auto loop_state_init = builder->AddInstruction( HloInstruction::CreateTuple({induction_var_init, data_init})); auto while_hlo = builder->AddInstruction(HloInstruction::CreateWhile( loop_state_shape, condition, body, loop_state_init)); module_->AddEntryComputation(builder->Build()); return while_hlo; } std::unique_ptr<HloModule> module_; Shape induction_variable_shape_ = ShapeUtil::MakeShape(S32, {}); Shape data_shape_ = ShapeUtil::MakeShape(F32, {8}); Shape loop_state_shape_ = ShapeUtil::MakeTupleShape({induction_variable_shape_, data_shape_}); Shape nested_tuple_shape_ = ShapeUtil::MakeTupleShape({data_shape_, data_shape_}); Shape nested_loop_state_shape_ = ShapeUtil::MakeTupleShape( {induction_variable_shape_, nested_tuple_shape_}); Shape condition_result_shape_ = ShapeUtil::MakeShape(PRED, {}); }; TEST_F(WhileCopyInsertionTest, IndependentTupleElements) { auto condition = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto body = module_->AddEmbeddedComputation(BuildIndependentBodyComputation()); auto while_hlo = BuildWhileInstruction(condition, body); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*body), 0); EXPECT_EQ(CountControlEdges(*module_), 0); EXPECT_THAT(while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Copy(op::Constant()))); } TEST_F(WhileCopyInsertionTest, WhileFeedingWhileThruParameterWithCopies) { const std::string& hlo_string = R"( HloModule DependentTupleElements %DependentTupleElements.Body (loop_state.1: (s32[], f32[8])) -> (s32[], f32[8]) { %loop_state.1 = (s32[], f32[8]{0}) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], f32[8]{0}) %loop_state.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = f32[8]{0} get-tuple-element((s32[], f32[8]{0}) %loop_state.1), index=1 %convert = f32[] convert(s32[] %get-tuple-element.1) %broadcast = f32[8]{0} broadcast(f32[] %convert), dimensions={} %add.1 = f32[8]{0} add(f32[8]{0} %get-tuple-element.2, f32[8]{0} %broadcast) ROOT %tuple = (s32[], f32[8]{0}) tuple(s32[] %add, f32[8]{0} %add.1) } %DependentTupleElements.Condition (loop_state: (s32[], f32[8])) -> pred[] { %loop_state = (s32[], f32[8]{0}) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], f32[8]{0}) %loop_state), index=0 %constant = s32[] constant(10) ROOT %compare = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %DependentTupleElements.While () -> (s32[], f32[8]) { %constant.2 = s32[] constant(0) %constant.3 = f32[8]{0} constant({0, 0, 0, 0, 0, 0, 0, 0}) %tuple.1 = (s32[], f32[8]{0}) tuple(s32[] %constant.2, f32[8]{0} %constant.3) ROOT %while.1 = (s32[], f32[8]{0}) while((s32[], f32[8]{0}) %tuple.1), condition=%DependentTupleElements.Condition, body=%DependentTupleElements.Body } )"; auto module_ = ParseAndReturnVerifiedModule(hlo_string).value(); auto while_hlo = module_->entry_computation()->root_instruction(); HloComputation* outer_while_condition = module_->AddEmbeddedComputation(while_hlo->while_condition()->Clone()); HloComputation* outer_while_body = module_->AddEmbeddedComputation(while_hlo->while_body()->Clone()); HloInstruction* outer_while = while_hlo->parent()->AddInstruction(HloInstruction::CreateWhile( while_hlo->shape(), outer_while_condition, outer_while_body, while_hlo->mutable_operand(0))); HloInstruction* outer_param = outer_while_body->parameter_instruction(0); std::vector<HloInstruction*> materialized_gtes; for (int i = 0; i < outer_param->shape().tuple_shapes_size(); ++i) { materialized_gtes.push_back( outer_while_body->AddInstruction(HloInstruction::CreateGetTupleElement( outer_param->shape().tuple_shapes(i), outer_param, i))); } HloInstruction* dual_init = outer_while_body->AddInstruction( HloInstruction::CreateTuple(materialized_gtes)); HloInstruction* dual_while = outer_while_body->AddInstruction(HloInstruction::CreateWhile( while_hlo->shape(), while_hlo->while_condition(), while_hlo->while_body(), dual_init)); TF_CHECK_OK(outer_while_body->ReplaceInstruction( outer_while_body->root_instruction(), dual_while)); TF_CHECK_OK(while_hlo->parent()->ReplaceInstruction(while_hlo, outer_while)); InsertCopies(module_.get()); } TEST_F(WhileCopyInsertionTest, WhileFeedingWhileThruParameterNoCopies) { const std::string& hlo_string = R"( HloModule DependentTupleElements %DependentTupleElements.Body (loop_state.1: (s32[], f32[8])) -> (s32[], f32[8]) { %loop_state.1 = (s32[], f32[8]{0}) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], f32[8]{0}) %loop_state.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = f32[8]{0} get-tuple-element((s32[], f32[8]{0}) %loop_state.1), index=1 %convert = f32[] convert(s32[] %get-tuple-element.1) %broadcast = f32[8]{0} broadcast(f32[] %convert), dimensions={} %add.1 = f32[8]{0} add(f32[8]{0} %get-tuple-element.2, f32[8]{0} %broadcast) ROOT %tuple = (s32[], f32[8]{0}) tuple(s32[] %add, f32[8]{0} %add.1) } %DependentTupleElements.Condition (loop_state: (s32[], f32[8])) -> pred[] { %loop_state = (s32[], f32[8]{0}) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], f32[8]{0}) %loop_state), index=0 %constant = s32[] constant(10) ROOT %compare = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %DependentTupleElements.While () -> (s32[], f32[8]) { %constant.2 = s32[] constant(0) %constant.3 = f32[8]{0} constant({0, 0, 0, 0, 0, 0, 0, 0}) %tuple.1 = (s32[], f32[8]{0}) tuple(s32[] %constant.2, f32[8]{0} %constant.3) ROOT %while.1 = (s32[], f32[8]{0}) while((s32[], f32[8]{0}) %tuple.1), condition=%DependentTupleElements.Condition, body=%DependentTupleElements.Body } )"; auto module_ = ParseAndReturnVerifiedModule(hlo_string).value(); auto while_hlo = module_->entry_computation()->root_instruction(); HloComputation* outer_while_condition = module_->AddEmbeddedComputation(while_hlo->while_condition()->Clone()); HloComputation* outer_while_body = module_->AddEmbeddedComputation(while_hlo->while_body()->Clone()); HloInstruction* outer_while = while_hlo->parent()->AddInstruction(HloInstruction::CreateWhile( while_hlo->shape(), outer_while_condition, outer_while_body, while_hlo->mutable_operand(0))); HloInstruction* outer_param = outer_while_body->parameter_instruction(0); HloInstruction* dual_while = outer_while_body->AddInstruction(HloInstruction::CreateWhile( while_hlo->shape(), while_hlo->while_condition(), while_hlo->while_body(), outer_param)); TF_CHECK_OK(outer_while_body->ReplaceInstruction( outer_while_body->root_instruction(), dual_while)); TF_CHECK_OK(while_hlo->parent()->ReplaceInstruction(while_hlo, outer_while)); InsertCopies(module_.get()); } TEST_F(WhileCopyInsertionTest, WhileFeedingWhileThruParameterBig) { const std::string& hlo_string = R"( HloModule DependentTupleElements %DependentTupleElements.Body (loop_state.1: (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0})) -> (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) { %loop_state.1 = (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) %loop_state.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = f32[8]{0} get-tuple-element((s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) %loop_state.1), index=1 %convert = f32[] convert(s32[] %get-tuple-element.1) %broadcast = f32[8]{0} broadcast(f32[] %convert), dimensions={} %add.1 = f32[8]{0} add(f32[8]{0} %get-tuple-element.2, f32[8]{0} %broadcast) ROOT %tuple = (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) tuple(s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1, s32[] %add, f32[8]{0} %add.1) } %DependentTupleElements.Condition (loop_state: (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0})) -> pred[] { %loop_state = (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) %loop_state), index=0 %constant = s32[] constant(10) ROOT %compare = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %DependentTupleElements.While () -> (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) { %constant.2 = s32[] constant(0) %constant.3 = f32[8]{0} constant({0, 0, 0, 0, 0, 0, 0, 0}) %tuple.1 = (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) tuple(s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3, s32[] %constant.2, f32[8]{0} %constant.3) ROOT %while.1 = (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) while( (s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}, s32[], f32[8]{0}) %tuple.1), condition=%DependentTupleElements.Condition, body=%DependentTupleElements.Body } )"; auto module_ = ParseAndReturnVerifiedModule(hlo_string).value(); auto while_hlo = module_->entry_computation()->root_instruction(); HloComputation* outer_while_condition = module_->AddEmbeddedComputation(while_hlo->while_condition()->Clone()); HloComputation* outer_while_body = module_->AddEmbeddedComputation(while_hlo->while_body()->Clone()); HloInstruction* outer_while = while_hlo->parent()->AddInstruction(HloInstruction::CreateWhile( while_hlo->shape(), outer_while_condition, outer_while_body, while_hlo->mutable_operand(0))); HloInstruction* outer_param = outer_while_body->parameter_instruction(0); std::vector<HloInstruction*> materialized_gtes; for (int i = 0; i < outer_param->shape().tuple_shapes_size(); ++i) { materialized_gtes.push_back( outer_while_body->AddInstruction(HloInstruction::CreateGetTupleElement( outer_param->shape().tuple_shapes(i), outer_param, i))); } HloInstruction* dual_init = outer_while_body->AddInstruction( HloInstruction::CreateTuple(materialized_gtes)); HloInstruction* dual_while = outer_while_body->AddInstruction(HloInstruction::CreateWhile( while_hlo->shape(), while_hlo->while_condition(), while_hlo->while_body(), dual_init)); TF_CHECK_OK(outer_while_body->ReplaceInstruction( outer_while_body->root_instruction(), dual_while)); TF_CHECK_OK(while_hlo->parent()->ReplaceInstruction(while_hlo, outer_while)); InsertCopies(module_.get()); } TEST_F(WhileCopyInsertionTest, DependentTupleElements) { auto condition = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto body = module_->AddEmbeddedComputation(BuildDependentBodyComputation()); auto while_hlo = BuildWhileInstruction(condition, body); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*body), 1); EXPECT_EQ(CountControlEdges(*body), 0); EXPECT_THAT( body->root_instruction(), op::Tuple(op::Add(), op::Add(op::GetTupleElement(), op::Broadcast()))); auto add = body->root_instruction()->operand(0); auto bcast = body->root_instruction()->operand(1)->operand(1); ASSERT_EQ(add->opcode(), HloOpcode::kAdd); ASSERT_EQ(bcast->opcode(), HloOpcode::kBroadcast); EXPECT_THAT(while_hlo->while_body()->root_instruction(), op::Tuple(op::Add(op::Copy(), op::Constant()), op::Add(op::GetTupleElement(), op::Broadcast(op::Convert(op::Copy()))))); EXPECT_THAT(while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Copy(op::Constant()))); } TEST_F(WhileCopyInsertionTest, DependentTupleElements_OneReadOnly) { auto condition = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto body = module_->AddEmbeddedComputation( BuildDependentBodyOneReadOnlyComputation()); BuildWhileInstruction(condition, body); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*body), 0); EXPECT_EQ(CountControlEdges(*body), 0); } TEST_F(WhileCopyInsertionTest, DependentTupleElements_OneReadOnly_TwoLoops_EntryParams) { auto condition1 = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto condition2 = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto body1 = module_->AddEmbeddedComputation( BuildDependentBodyOneReadOnlyComputation()); auto body2 = module_->AddEmbeddedComputation( BuildDependentBodyOneReadOnlyComputation()); auto builder = HloComputation::Builder(TestName() + ".While"); auto iter_param = builder.AddInstruction( HloInstruction::CreateParameter(0, induction_variable_shape_, "iter")); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "data")); auto loop_init = builder.AddInstruction( HloInstruction::CreateTuple({iter_param, data_param})); auto while_hlo1 = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape_, condition1, body1, loop_init)); auto while_hlo2 = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape_, condition2, body2, loop_init)); auto gte1 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(while_hlo1->shape(), {0}), while_hlo1, 0)); auto gte2 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(while_hlo2->shape(), {0}), while_hlo2, 0)); builder.AddInstruction( HloInstruction::CreateBinary(gte1->shape(), HloOpcode::kAdd, gte1, gte2)); auto entry = module_->AddEntryComputation(builder.Build()); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*body1), 0); EXPECT_EQ(CountCopies(*body2), 0); EXPECT_EQ(CountControlEdges(*body1), 0); EXPECT_EQ(CountControlEdges(*body2), 0); EXPECT_EQ(CountCopies(*entry), 2); EXPECT_EQ(while_hlo1->operand(0)->operand(1)->opcode(), HloOpcode::kCopy); EXPECT_EQ(while_hlo2->operand(0)->operand(1)->opcode(), HloOpcode::kCopy); EXPECT_NE(while_hlo1->operand(0)->operand(1), while_hlo2->operand(0)->operand(1)); } TEST_F(WhileCopyInsertionTest, DependentTupleElements_OneReadOnly_TwoLoops_NonParams) { auto condition1 = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto condition2 = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape_)); auto body1 = module_->AddEmbeddedComputation( BuildDependentBodyOneReadOnlyComputation()); auto body2 = module_->AddEmbeddedComputation( BuildDependentBodyOneReadOnlyComputation()); auto builder = HloComputation::Builder(TestName() + ".While"); auto iter_param = builder.AddInstruction( HloInstruction::CreateParameter(0, induction_variable_shape_, "iter")); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "data")); Shape f32_scalar_shape = ShapeUtil::MakeShape(F32, {}); auto convert = builder.AddInstruction( HloInstruction::CreateConvert(f32_scalar_shape, iter_param)); auto iter_value = builder.AddInstruction( HloInstruction::CreateUnary(convert->shape(), HloOpcode::kExp, convert)); auto convert2 = builder.AddInstruction( HloInstruction::CreateConvert(induction_variable_shape_, iter_value)); auto data_value = builder.AddInstruction(HloInstruction::CreateUnary( data_param->shape(), HloOpcode::kExp, data_param)); auto loop_init = builder.AddInstruction( HloInstruction::CreateTuple({convert2, data_value})); auto while_hlo1 = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape_, condition1, body1, loop_init)); auto while_hlo2 = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape_, condition2, body2, loop_init)); auto gte1 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(while_hlo1->shape(), {0}), while_hlo1, 0)); auto gte2 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(while_hlo2->shape(), {0}), while_hlo2, 0)); builder.AddInstruction( HloInstruction::CreateBinary(gte1->shape(), HloOpcode::kAdd, gte1, gte2)); auto entry = module_->AddEntryComputation(builder.Build()); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*entry), 2); EXPECT_THAT(while_hlo1->operand(0), op::Tuple(op::Convert(op::Exp()), op::Copy(op::Exp()))); EXPECT_THAT(while_hlo2->operand(0), op::Tuple(op::Convert(op::Exp()), op::Copy(op::Exp()))); } TEST_F(WhileCopyInsertionTest, NestedTupleElements) { auto condition = module_->AddEmbeddedComputation( BuildConditionComputation(nested_loop_state_shape_)); auto body = module_->AddEmbeddedComputation(BuildNestedBodyComputation()); BuildWhileInstruction(condition, body, true); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*body), 1); EXPECT_EQ(CountCopies(*module_), 4); if (body->root_instruction()->operand(1)->operand(1)->opcode() == HloOpcode::kCopy) { EXPECT_THAT( body->root_instruction(), op::Tuple(op::Add(), op::Tuple(op::Add(), op::Copy(op::Reverse())))); } else { EXPECT_THAT( body->root_instruction(), op::Tuple(op::Add(), op::Tuple(op::Add(), op::Reverse(op::Copy())))); } } TEST_F(WhileCopyInsertionTest, InitPointsToConstant) { auto while_hlo = BuildWhileInstruction_InitPointsToConstant(); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*while_hlo->while_body()), 0); EXPECT_EQ(CountCopies(*module_), 2); EXPECT_THAT(while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Copy(op::Constant()))); } TEST_F(WhileCopyInsertionTest, InitPointsToParameter) { auto while_hlo = BuildWhileInstruction_InitPointsToParameter(); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*while_hlo->while_body()), 0); EXPECT_EQ(CountCopies(*module_), 2); EXPECT_THAT(while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Copy(op::Parameter()))); } TEST_F(WhileCopyInsertionTest, InitPointsToNonDistinct) { auto while_hlo = BuildWhileInstruction_InitPointsToNonDistinct(); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*module_->entry_computation()), 2); if (while_hlo->operand(0)->operand(1)->operand(0)->opcode() == HloOpcode::kCopy) { EXPECT_THAT( while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Tuple(op::Copy(op::Broadcast()), op::Broadcast()))); } else { EXPECT_THAT( while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Tuple(op::Broadcast(), op::Copy(op::Broadcast())))); } EXPECT_EQ(CountCopies(*while_hlo->while_body()), 1); if (while_hlo->while_body() ->root_instruction() ->operand(1) ->operand(0) ->opcode() == HloOpcode::kCopy) { EXPECT_THAT( while_hlo->while_body()->root_instruction(), op::Tuple(op::Add(), op::Tuple(op::Copy(op::Add()), op::Add()))); } else { EXPECT_THAT( while_hlo->while_body()->root_instruction(), op::Tuple(op::Add(), op::Tuple(op::Add(), op::Copy(op::Add())))); } } TEST_F(WhileCopyInsertionTest, InitPointsToInterfering) { auto while_hlo = BuildWhileInstruction_InitPointsToInterfering(); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*module_), 2); EXPECT_EQ(CountCopies(*while_hlo->while_body()), 0); EXPECT_THAT(while_hlo->operand(0), op::Tuple(op::Copy(op::Constant()), op::Copy(op::Broadcast()))); } TEST_F(WhileCopyInsertionTest, InitPointsToNonDistinctUsedByTwoWhileLoops) { const Shape& loop_state_shape = ShapeUtil::MakeTupleShape( {induction_variable_shape_, data_shape_, data_shape_}); auto condition1 = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape)); auto condition2 = module_->AddEmbeddedComputation( BuildConditionComputation(loop_state_shape)); auto body1 = module_->AddEmbeddedComputation(BuildDependentBodyComputation2()); auto body2 = module_->AddEmbeddedComputation(BuildDependentBodyComputation2()); auto builder = HloComputation::Builder(TestName() + ".While"); auto iter_param = builder.AddInstruction( HloInstruction::CreateParameter(0, induction_variable_shape_, "iter")); auto data_param = builder.AddInstruction( HloInstruction::CreateParameter(1, data_shape_, "data")); auto loop_init = builder.AddInstruction( HloInstruction::CreateTuple({iter_param, data_param, data_param})); auto while_hlo1 = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape, condition1, body1, loop_init)); auto while_hlo2 = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape, condition2, body2, loop_init)); auto gte1 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(while_hlo1->shape(), {0}), while_hlo1, 0)); auto gte2 = builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::GetSubshape(while_hlo1->shape(), {0}), while_hlo2, 0)); builder.AddInstruction( HloInstruction::CreateBinary(gte1->shape(), HloOpcode::kAdd, gte1, gte2)); module_->AddEntryComputation(builder.Build()); InsertCopies(module_.get()); EXPECT_EQ(CountCopies(*body1), 0); EXPECT_EQ(CountCopies(*body2), 0); EXPECT_EQ(CountCopies(*module_->entry_computation()), 2); EXPECT_THAT(while_hlo1->operand(0), op::Tuple(op::Copy(), op::Parameter(), op::Parameter())); EXPECT_THAT(while_hlo2->operand(0), op::Tuple(op::Copy(), op::Parameter(), op::Parameter())); } TEST_F(CopyInsertionTest, SwizzlingWhile) { auto module = CreateNewVerifiedModule(); const Shape loop_state_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_1, body_element_0})); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto cond_constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); cond_builder.AddInstruction(HloInstruction::CreateUnary( cond_constant->shape(), HloOpcode::kNot, cond_constant)); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape, condition, body, tuple)); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 6); EXPECT_EQ(CountCopies(*body), 4); EXPECT_EQ(CountControlEdges(*body), 2); EXPECT_THAT(body->root_instruction(), op::Tuple(op::Copy(op::Copy()), op::Copy(op::Copy()))); EXPECT_EQ(CountCopies(*module->entry_computation()), 2); EXPECT_THAT(xla_while->operand(0), op::Tuple(op::Copy(), op::Copy())); } TEST_F(CopyInsertionTest, CrossingParameters) { auto module = CreateNewVerifiedModule(); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); builder.AddInstruction(HloInstruction::CreateTuple({gte1, gte0})); module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {0}, 0, {0})); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {1}, 0, {1})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 4); } TEST_F(CopyInsertionTest, ParametersAliasing) { auto module = CreateNewVerifiedModule(); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {0}, 0, {0})); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {1}, 0, {1})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, ParameterWithNoAliasing) { auto module = CreateNewVerifiedModule(); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Copy(op::GetTupleElement(param, 0)), op::Copy(op::GetTupleElement(param, 1)))); EXPECT_EQ(CountCopies(*module), 2); } TEST_F(CopyInsertionTest, ParameterWithPartialAliasing) { auto module = CreateNewVerifiedModule(); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {0}, 0, {0})); InsertCopies(module.get()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::GetTupleElement(param, 0), op::Copy(op::GetTupleElement(param, 1)))); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, ParameterAndParallelOpsWithPartialAliasing) { auto module = CreateNewVerifiedModule(); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto negate0 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte0)); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte1)); builder.AddInstruction(HloInstruction::CreateTuple({negate0, negate1})); module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {0}, 0, {0})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, ParameterAndOpsWithPartialAliasing) { auto module = CreateNewVerifiedModule(); const Shape tuple_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto builder = HloComputation::Builder(TestName()); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, param, 1)); auto negate0 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte0)); auto negate1 = builder.AddInstruction( HloInstruction::CreateUnary(scalar_shape_, HloOpcode::kNegate, gte1)); auto add = builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape_, HloOpcode::kAdd, negate0, negate1)); builder.AddInstruction(HloInstruction::CreateTuple({add, negate1})); module->AddEntryComputation(builder.Build()); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {0}, 0, {0})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, SwizzlingWhileWithOneOp) { auto module = CreateNewVerifiedModule(); const Shape loop_state_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); auto negate = body_builder.AddInstruction(HloInstruction::CreateUnary( scalar_shape_, HloOpcode::kNegate, body_element_1)); body_builder.AddInstruction( HloInstruction::CreateTuple({negate, body_element_0})); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto cond_constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); cond_builder.AddInstruction(HloInstruction::CreateUnary( cond_constant->shape(), HloOpcode::kNot, cond_constant)); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.0))); auto tuple = builder.AddInstruction( HloInstruction::CreateTuple({constant1, constant2})); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape, condition, body, tuple)); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 6); EXPECT_EQ(CountCopies(*body), 4); EXPECT_EQ(CountControlEdges(*body), 2); EXPECT_THAT( body->root_instruction(), op::Tuple(op::Copy(op::Negate(op::Copy())), op::Copy(op::Copy()))); EXPECT_EQ(CountCopies(*module->entry_computation()), 2); EXPECT_THAT(xla_while->operand(0), op::Tuple(op::Copy(), op::Copy())); } TEST_F(CopyInsertionTest, SwizzlingWhileSharedInput) { auto module = CreateNewVerifiedModule(); const Shape loop_state_shape = ShapeUtil::MakeTupleShape({scalar_shape_, scalar_shape_}); auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape_, body_param, 1)); body_builder.AddInstruction( HloInstruction::CreateTuple({body_element_1, body_element_0})); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto cond_constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); cond_builder.AddInstruction(HloInstruction::CreateUnary( cond_constant->shape(), HloOpcode::kNot, cond_constant)); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({constant, constant})); builder.AddInstruction( HloInstruction::CreateWhile(loop_state_shape, condition, body, tuple)); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 2); EXPECT_EQ(CountCopies(*body), 0); EXPECT_EQ(CountCopies(*module->entry_computation()), 2); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Copy(), op::Copy())); } TEST_F(CopyInsertionTest, SequentialWhiles) { const Shape element_shape = ShapeUtil::MakeShape(F32, {42}); const Shape loop_state_shape = ShapeUtil::MakeTupleShape( {element_shape, element_shape, element_shape, element_shape}); auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param_0 = builder.AddInstruction( HloInstruction::CreateParameter(0, element_shape, "param_0")); auto param_1 = builder.AddInstruction( HloInstruction::CreateParameter(1, element_shape, "param_1")); auto param_2 = builder.AddInstruction( HloInstruction::CreateParameter(2, element_shape, "param_2")); auto param_3 = builder.AddInstruction( HloInstruction::CreateParameter(3, element_shape, "param_3")); const int kNumWhiles = 3; HloInstruction* prev_element_1 = param_1; HloInstruction* prev_element_2 = param_2; HloInstruction* prev_element_3 = param_3; std::vector<const HloInstruction*> whiles; for (int i = 0; i < kNumWhiles; ++i) { auto body_builder = HloComputation::Builder("body"); auto body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto body_element_0 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, body_param, 0)); auto body_element_1 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, body_param, 1)); auto body_element_2 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, body_param, 2)); auto body_element_3 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, body_param, 3)); auto negate = body_builder.AddInstruction(HloInstruction::CreateUnary( element_shape, HloOpcode::kNegate, body_element_2)); auto reverse = body_builder.AddInstruction( HloInstruction::CreateReverse(element_shape, body_element_3, {0})); body_builder.AddInstruction(HloInstruction::CreateTuple( {body_element_0, body_element_1, negate, reverse})); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "param")); auto cond_constant = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); cond_builder.AddInstruction(HloInstruction::CreateUnary( cond_constant->shape(), HloOpcode::kNot, cond_constant)); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto while_init = builder.AddInstruction(HloInstruction::CreateTuple( {param_0, prev_element_1, prev_element_2, prev_element_3})); auto xla_while = builder.AddInstruction(HloInstruction::CreateWhile( loop_state_shape, condition, body, while_init)); whiles.push_back(xla_while); if (i != kNumWhiles - 1) { prev_element_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, xla_while, 1)); prev_element_2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, xla_while, 2)); prev_element_3 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, xla_while, 3)); } } module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 4 + kNumWhiles); for (const HloInstruction* xla_while : whiles) { EXPECT_EQ(CountCopies(*xla_while->while_body()), 1); } EXPECT_THAT(whiles[0]->operand(0), op::Tuple(op::Parameter(), op::Parameter(), op::Copy(), op::Copy())); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Copy(), op::Copy(), op::GetTupleElement(), op::GetTupleElement())); } TEST_F(CopyInsertionTest, WhileBodyWithConstantRoot) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); auto param_0 = builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param_0")); auto body_builder = HloComputation::Builder("body"); body_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(123.0))); HloComputation* body = module->AddEmbeddedComputation(body_builder.Build()); auto cond_builder = HloComputation::Builder("condition"); cond_builder.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape_, "param")); cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); HloComputation* condition = module->AddEmbeddedComputation(cond_builder.Build()); auto xla_while = builder.AddInstruction( HloInstruction::CreateWhile(scalar_shape_, condition, body, param_0)); module->AddEntryComputation(builder.Build()); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 2); EXPECT_THAT(xla_while->operand(0), op::Copy(op::Parameter())); EXPECT_THAT(body->root_instruction(), op::Copy(op::Constant())); EXPECT_THAT(condition->root_instruction(), op::Constant()); } TEST_F(CopyInsertionTest, TokensShouldNotBeCopied) { std::string module_string = R"( HloModule TokensShouldNotBeCopied %Body (param.1: (s32[], token[])) -> (s32[], token[]) { %param.1 = (s32[], token[]) parameter(0) %get-tuple-element.1 = s32[] get-tuple-element((s32[], token[]) %param.1), index=0 %constant.1 = s32[] constant(1) %add = s32[] add(s32[] %get-tuple-element.1, s32[] %constant.1) %get-tuple-element.2 = token[] get-tuple-element((s32[], token[]) %param.1), index=1 %after-all = token[] after-all(token[] %get-tuple-element.2) ROOT %tuple = (s32[], token[]) tuple(s32[] %add, token[] %after-all) } %Cond (param: (s32[], token[])) -> pred[] { %param = (s32[], token[]) parameter(0) %get-tuple-element = s32[] get-tuple-element((s32[], token[]) %param), index=0 %constant = s32[] constant(42) ROOT %less-than = pred[] compare(s32[] %get-tuple-element, s32[] %constant), direction=LT } ENTRY %TokensShouldNotBeCopied () -> s32[] { %one = s32[] constant(1) %negative_one = s32[] negate(%one) %init_token = token[] after-all() %init_tuple = (s32[], token[]) tuple(s32[] %negative_one, token[] %init_token) %while = (s32[], token[]) while((s32[], token[]) %init_tuple), condition=%Cond, body=%Body ROOT %root = s32[] get-tuple-element((s32[], token[]) %while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } std::unique_ptr<HloComputation> MakeTrivialCondition(const Shape& shape) { auto builder = HloComputation::Builder("trivial_condition"); builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "loop_state")); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(false))); builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNot, constant)); return builder.Build(); } std::unique_ptr<HloComputation> MakeBenchmarkWhileBody() { auto builder = HloComputation::Builder("benchmark_loop_body"); const Shape element_shape = ShapeUtil::MakeShape(F32, {42}); const Shape loop_state_shape = ShapeUtil::MakeTupleShape({element_shape, element_shape, element_shape}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "loop_state")); HloInstruction* element_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, param, 0)); HloInstruction* element_1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, param, 1)); HloInstruction* element_2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, param, 2)); HloInstruction* rev_1 = builder.AddInstruction( HloInstruction::CreateReverse(element_shape, element_1, {0})); HloInstruction* add_1_2 = builder.AddInstruction(HloInstruction::CreateBinary( element_shape, HloOpcode::kAdd, element_1, element_2)); builder.AddInstruction( HloInstruction::CreateTuple({element_0, rev_1, add_1_2})); return builder.Build(); } void BM_SequentialWhiles(::testing::benchmark::State& state) { const int num_whiles = state.range(0); for (auto s : state) { state.PauseTiming(); HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); HloModule module("BM_SequentialWhiles", config); auto builder = HloComputation::Builder("BM_SequentialWhiles"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {42}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {42}), "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeShape(F32, {42}), "z")); HloInstruction* init = builder.AddInstruction(HloInstruction::CreateTuple({x, y, z})); HloInstruction* prev_loop_state = init; for (int w = 0; w < num_whiles; ++w) { HloComputation* condition = module.AddEmbeddedComputation(MakeTrivialCondition(init->shape())); HloComputation* body = module.AddEmbeddedComputation(MakeBenchmarkWhileBody()); prev_loop_state = builder.AddInstruction(HloInstruction::CreateWhile( init->shape(), condition, body, prev_loop_state)); } module.AddEntryComputation(builder.Build()); CopyInsertion copy_insertion; state.ResumeTiming(); ASSERT_IS_OK(copy_insertion.Run(&module).status()); state.PauseTiming(); ASSERT_EQ(CountCopies(module), 3 + num_whiles); state.ResumeTiming(); } } void BM_ParallelWhiles(::testing::benchmark::State& state) { const int num_whiles = state.range(0); for (auto s : state) { state.PauseTiming(); HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); HloModule module("BM_SequentialWhiles", config); auto builder = HloComputation::Builder("BM_ParallelWhiles"); HloInstruction* x = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {42}), "x")); HloInstruction* y = builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {42}), "y")); HloInstruction* z = builder.AddInstruction(HloInstruction::CreateParameter( 2, ShapeUtil::MakeShape(F32, {42}), "z")); HloInstruction* init = builder.AddInstruction(HloInstruction::CreateTuple({x, y, z})); HloInstruction* sum = nullptr; for (int w = 0; w < num_whiles; ++w) { HloComputation* condition = module.AddEmbeddedComputation(MakeTrivialCondition(init->shape())); HloComputation* body = module.AddEmbeddedComputation(MakeBenchmarkWhileBody()); HloInstruction* xla_while = builder.AddInstruction( HloInstruction::CreateWhile(init->shape(), condition, body, init)); if (sum == nullptr) { sum = builder.AddInstruction( HloInstruction::CreateGetTupleElement(x->shape(), xla_while, 0)); } else { HloInstruction* element_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(x->shape(), xla_while, 0)); sum = builder.AddInstruction(HloInstruction::CreateBinary( x->shape(), HloOpcode::kAdd, sum, element_0)); } } module.AddEntryComputation(builder.Build()); CopyInsertion copy_insertion; state.ResumeTiming(); ASSERT_IS_OK(copy_insertion.Run(&module).status()); state.PauseTiming(); ASSERT_EQ(CountCopies(module), 3 * num_whiles); } } std::unique_ptr<HloComputation> MakeBenchmarkWhileBody( const int num_tuple_inputs) { auto builder = HloComputation::Builder("benchmark_loop_body"); const Shape element_shape = ShapeUtil::MakeShape(F32, {}); std::vector<Shape> input_shape(num_tuple_inputs, element_shape); const Shape loop_state_shape = ShapeUtil::MakeTupleShape(input_shape); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, loop_state_shape, "loop_state")); std::vector<HloInstruction*> gte_nodes(num_tuple_inputs); for (int i = 0; i < num_tuple_inputs; ++i) { gte_nodes[i] = builder.AddInstruction( HloInstruction::CreateGetTupleElement(element_shape, param, i)); } builder.AddInstruction(HloInstruction::CreateTuple(gte_nodes)); return builder.Build(); } void BM_ManyElementTuple(::testing::benchmark::State& state) { const int num_tuple_inputs = state.range(0); HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); CopyInsertion copy_insertion; const Shape element_shape = ShapeUtil::MakeShape(F32, {}); std::vector<HloInstruction*> tuple_params(num_tuple_inputs); for (auto s : state) { state.PauseTiming(); auto builder = HloComputation::Builder("BM_ParallelWhiles"); HloModule module("BM_ManyElementTuple", config); for (int j = 0; j < num_tuple_inputs; ++j) { tuple_params[j] = builder.AddInstruction( HloInstruction::CreateParameter(j, element_shape, "")); } HloInstruction* init = builder.AddInstruction(HloInstruction::CreateTuple(tuple_params)); HloComputation* condition = module.AddEmbeddedComputation(MakeTrivialCondition(init->shape())); HloComputation* body = module.AddEmbeddedComputation(MakeBenchmarkWhileBody(num_tuple_inputs)); HloInstruction* xla_while = builder.AddInstruction( HloInstruction::CreateWhile(init->shape(), condition, body, init)); builder.AddInstruction(HloInstruction::CreateGetTupleElement( ShapeUtil::MakeShape(F32, {}), xla_while, 0)); module.AddEntryComputation(builder.Build()); state.ResumeTiming(); ASSERT_IS_OK(copy_insertion.Run(&module).status()); } } BENCHMARK(BM_SequentialWhiles)->Arg(512)->Arg(1024)->Arg(2048)->Arg(4096); BENCHMARK(BM_ParallelWhiles)->Arg(512)->Arg(1024)->Arg(2048)->Arg(4096); BENCHMARK(BM_ManyElementTuple)->Arg(1024)->Arg(12288); TEST_F(CopyInsertionTest, SimpleControlFlowTest) { const std::string& hlo_string = R"( HloModule TestModule if-body.v5 { constant.3 = s32[] constant(-1) p.1 = (s32[], (s32[], s32[], s32[]), (s32[])) parameter(0) get-tuple-element.18 = (s32[], s32[], s32[]) get-tuple-element(p.1), index=1 get-tuple-element.65 = s32[] get-tuple-element(get-tuple-element.18), index=0 get-tuple-element.66 = s32[] get-tuple-element(get-tuple-element.18), index=1 add.3 = s32[] add(get-tuple-element.65, get-tuple-element.66) tuple.33 = (s32[]) tuple(add.3) ROOT tuple.34 = (s32[], (s32[], s32[], s32[]), (s32[])) tuple(constant.3, get-tuple-element.18, tuple.33) } if-condition.v4 { p.2 = (s32[], (s32[], s32[], s32[]), (s32[])) parameter(0) get-tuple-element.67 = s32[] get-tuple-element(p.2), index=0 constant.4 = s32[] constant(0) ROOT equal-to = pred[] compare(get-tuple-element.67, constant.4), direction=EQ } _functionalize_body_1__.v28 { arg_tuple.4 = (s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.68 = s32[] get-tuple-element(arg_tuple.4), index=0 constant.7 = s32[] constant(1) add.4 = s32[] add(get-tuple-element.68, constant.7) get-tuple-element.69 = s32[] get-tuple-element(arg_tuple.4), index=1 get-tuple-element.70 = s32[] get-tuple-element(arg_tuple.4), index=2 less-than-or-equal-to = pred[] compare(get-tuple-element.69, get-tuple-element.70), direction=LE constant.8 = s32[] constant(0) select = s32[] select(less-than-or-equal-to, constant.8, constant.7) get-tuple-element.71 = s32[] get-tuple-element(arg_tuple.4), index=3 tuple.35 = (s32[], s32[], s32[]) tuple(get-tuple-element.69, get-tuple-element.71, get-tuple-element.70) tuple.36 = (s32[]) tuple(constant.8) tuple.37 = (s32[], (s32[], s32[], s32[]), (s32[])) tuple(select, tuple.35, tuple.36) while = (s32[], (s32[], s32[], s32[]), (s32[])) while(tuple.37), condition=if-condition.v4, body=if-body.v5 get-tuple-element.72 = (s32[]) get-tuple-element(while), index=2 get-tuple-element.73 = s32[] get-tuple-element(get-tuple-element.72), index=0 ROOT tuple.38 = (s32[], s32[], s32[], s32[]) tuple(add.4, get-tuple-element.69, get-tuple-element.70, get-tuple-element.73) } cond_wrapper.v3.1 { inputs.1 = (s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.75 = s32[] get-tuple-element(inputs.1), index=0 constant.11 = s32[] constant(7) ROOT less-than.2 = pred[] compare(get-tuple-element.75, constant.11), direction=LT } _functionalize_body_2__.v25 { arg_tuple.5 = (s32[], s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.76 = s32[] get-tuple-element(arg_tuple.5), index=0 get-tuple-element.77 = s32[] get-tuple-element(arg_tuple.5), index=2 get-tuple-element.78 = s32[] get-tuple-element(arg_tuple.5), index=3 get-tuple-element.79 = s32[] get-tuple-element(arg_tuple.5), index=4 tuple.39 = (s32[], s32[], s32[], s32[]) tuple(get-tuple-element.76, get-tuple-element.77, get-tuple-element.78, get-tuple-element.79) while.2 = (s32[], s32[], s32[], s32[]) while(tuple.39), condition=cond_wrapper.v3.1, body=_functionalize_body_1__.v28 get-tuple-element.80 = s32[] get-tuple-element(while.2), index=0 get-tuple-element.81 = s32[] get-tuple-element(arg_tuple.5), index=1 constant.12 = s32[] constant(1) add.5 = s32[] add(get-tuple-element.81, constant.12) get-tuple-element.82 = s32[] get-tuple-element(while.2), index=3 ROOT tuple.40 = (s32[], s32[], s32[], s32[], s32[]) tuple(get-tuple-element.80, add.5, get-tuple-element.77, get-tuple-element.78, get-tuple-element.82) } cond_wrapper.v3.2 { inputs.2 = (s32[], s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.83 = s32[] get-tuple-element(inputs.2), index=1 constant.13 = s32[] constant(5) ROOT less-than.3 = pred[] compare(get-tuple-element.83, constant.13), direction=LT } ENTRY TestComputation { arg_tuple.6 = (s32[], s32[], s32[], s32[], s32[]) parameter(0) ROOT while.3 = (s32[], s32[], s32[], s32[], s32[]) while(arg_tuple.6), condition=cond_wrapper.v3.2, body=_functionalize_body_2__.v25 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); InsertCopies(module.get()); } TEST_F(CopyInsertionTest, ControlFlowTest) { const std::string& hlo_string = R"( HloModule TestModule if-body.v5 { constant.3 = s32[] constant(-1) p.1 = (s32[], (s32[], s32[], s32[]), (s32[])) parameter(0) get-tuple-element.18 = (s32[], s32[], s32[]) get-tuple-element(p.1), index=1 get-tuple-element.65 = s32[] get-tuple-element(get-tuple-element.18), index=0 get-tuple-element.66 = s32[] get-tuple-element(get-tuple-element.18), index=1 add.3 = s32[] add(get-tuple-element.65, get-tuple-element.66) tuple.33 = (s32[]) tuple(add.3) ROOT tuple.34 = (s32[], (s32[], s32[], s32[]), (s32[])) tuple(constant.3, get-tuple-element.18, tuple.33) } if-condition.v4 { p.2 = (s32[], (s32[], s32[], s32[]), (s32[])) parameter(0) get-tuple-element.67 = s32[] get-tuple-element(p.2), index=0 constant.4 = s32[] constant(0) ROOT equal-to = pred[] compare(get-tuple-element.67, constant.4), direction=EQ } if-body.v5.1 { constant.5 = s32[] constant(-1) p.3 = (s32[], (s32[], s32[], s32[]), (s32[])) parameter(0) get-tuple-element.68 = (s32[], s32[], s32[]) get-tuple-element(p.3), index=1 get-tuple-element.70 = s32[] get-tuple-element(get-tuple-element.68), index=2 multiply.1 = s32[] multiply(get-tuple-element.70, get-tuple-element.70) tuple.35 = (s32[]) tuple(multiply.1) ROOT tuple.36 = (s32[], (s32[], s32[], s32[]), (s32[])) tuple(constant.5, get-tuple-element.68, tuple.35) } if-condition.v4.1 { p.4 = (s32[], (s32[], s32[], s32[]), (s32[])) parameter(0) get-tuple-element.71 = s32[] get-tuple-element(p.4), index=0 constant.6 = s32[] constant(1) ROOT equal-to.1 = pred[] compare(get-tuple-element.71, constant.6), direction=EQ } _functionalize_body_1__.v28 { arg_tuple.4 = (s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.72 = s32[] get-tuple-element(arg_tuple.4), index=0 constant.7 = s32[] constant(1) add.4 = s32[] add(get-tuple-element.72, constant.7) get-tuple-element.73 = s32[] get-tuple-element(arg_tuple.4), index=1 get-tuple-element.74 = s32[] get-tuple-element(arg_tuple.4), index=2 less-than-or-equal-to = pred[] compare(get-tuple-element.73, get-tuple-element.74), direction=LE constant.8 = s32[] constant(0) select = s32[] select(less-than-or-equal-to, constant.8, constant.7) get-tuple-element.75 = s32[] get-tuple-element(arg_tuple.4), index=3 tuple.37 = (s32[], s32[], s32[]) tuple(get-tuple-element.73, get-tuple-element.75, get-tuple-element.74) tuple.38 = (s32[]) tuple(constant.8) tuple.39 = (s32[], (s32[], s32[], s32[]), (s32[])) tuple(select, tuple.37, tuple.38) while = (s32[], (s32[], s32[], s32[]), (s32[])) while(tuple.39), condition=if-condition.v4, body=if-body.v5 while.1 = (s32[], (s32[], s32[], s32[]), (s32[])) while(while), condition=if-condition.v4.1, body=if-body.v5.1 get-tuple-element.76 = (s32[]) get-tuple-element(while.1), index=2 get-tuple-element.77 = s32[] get-tuple-element(get-tuple-element.76), index=0 ROOT tuple.40 = (s32[], s32[], s32[], s32[]) tuple(add.4, get-tuple-element.73, get-tuple-element.74, get-tuple-element.77) } cond_wrapper.v3.1 { inputs.1 = (s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.78 = s32[] get-tuple-element(inputs.1), index=0 constant.11 = s32[] constant(7) ROOT less-than.2 = pred[] compare(get-tuple-element.78, constant.11), direction=LT } _functionalize_body_2__.v25 { arg_tuple.5 = (s32[], s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.79 = s32[] get-tuple-element(arg_tuple.5), index=0 get-tuple-element.80 = s32[] get-tuple-element(arg_tuple.5), index=2 get-tuple-element.81 = s32[] get-tuple-element(arg_tuple.5), index=3 get-tuple-element.82 = s32[] get-tuple-element(arg_tuple.5), index=4 tuple.41 = (s32[], s32[], s32[], s32[]) tuple(get-tuple-element.79, get-tuple-element.80, get-tuple-element.81, get-tuple-element.82) while.2 = (s32[], s32[], s32[], s32[]) while(tuple.41), condition=cond_wrapper.v3.1, body=_functionalize_body_1__.v28 get-tuple-element.83 = s32[] get-tuple-element(while.2), index=0 get-tuple-element.84 = s32[] get-tuple-element(arg_tuple.5), index=1 constant.12 = s32[] constant(1) add.5 = s32[] add(get-tuple-element.84, constant.12) get-tuple-element.85 = s32[] get-tuple-element(while.2), index=3 ROOT tuple.42 = (s32[], s32[], s32[], s32[], s32[]) tuple(get-tuple-element.83, add.5, get-tuple-element.80, get-tuple-element.81, get-tuple-element.85) } cond_wrapper.v3.2 { inputs.2 = (s32[], s32[], s32[], s32[], s32[]) parameter(0) get-tuple-element.86 = s32[] get-tuple-element(inputs.2), index=1 constant.13 = s32[] constant(5) ROOT less-than.3 = pred[] compare(get-tuple-element.86, constant.13), direction=LT } ENTRY TestComputation { arg_tuple.6 = (s32[], s32[], s32[], s32[], s32[]) parameter(0) ROOT while.3 = (s32[], s32[], s32[], s32[], s32[]) while(arg_tuple.6), condition=cond_wrapper.v3.2, body=_functionalize_body_2__.v25 } )"; auto module = ParseAndReturnVerifiedModule(hlo_string).value(); InsertCopies(module.get()); } TEST_F(CopyInsertionTest, NestedWhiles) { const std::string& hlo_string = R"( HloModule TestModule cond.inner { ROOT param.cond.inner = pred[] parameter(0) } body.inner { param.body.inner = pred[] parameter(0) ROOT not = pred[] not(param.body.inner) } cond.outer { ROOT param.cond.outer = pred[] parameter(0) } body.outer { param.cond.outer = pred[] parameter(0) ROOT while = pred[] while(param.cond.outer), condition=cond.inner, body=body.inner } ENTRY TestComputation { entry_param = pred[] parameter(0) ROOT while = pred[] while(entry_param), condition=cond.outer, body=body.outer } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::While(op::Copy(op::Parameter()))); } TEST_F(CopyInsertionTest, NestedWhilesWithParamRoot) { const std::string& hlo_string = R"( HloModule TestModule cond.inner { ROOT param.cond.inner = pred[] parameter(0) } body.inner { param.body.inner = pred[] parameter(0) ROOT not = pred[] not(param.body.inner) } cond.outer { ROOT param.cond.outer = pred[] parameter(0) } body.outer { ROOT param.cond.outer = pred[] parameter(0) while = pred[] while(param.cond.outer), condition=cond.inner, body=body.inner after-all = token[] after-all() outfeed = token[] outfeed(while, after-all) } ENTRY TestComputation { entry_param = pred[] parameter(0) while = pred[] while(entry_param), condition=cond.outer, body=body.outer ROOT not = pred[] not(while) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Not(op::While(op::Parameter()))); HloInstruction* outfeed = FindInstruction(module.get(), "outfeed"); EXPECT_THAT(outfeed, op::Outfeed(op::While(op::Copy(op::Parameter(0))), op::AfterAll())); } TEST_F(CopyInsertionTest, NestedWhilesWithParamRoot2) { const std::string& hlo_string = R"( HloModule TestModule cond.inner { param.cond.inner = (pred[], pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param.cond.inner), index=0 } body.inner { param.body.inner = (pred[], pred[]) parameter(0) gte.0 = pred[] get-tuple-element(param.body.inner), index=0 gte.1 = pred[] get-tuple-element(param.body.inner), index=1 and = pred[] and(gte.0, gte.1) not = pred[] not(gte.1) ROOT root = (pred[], pred[]) tuple(and, not) } cond.outer { param.cond.outer = (pred[], pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param.cond.outer), index=0 } body.outer { param.body.outer = (pred[], pred[]) parameter(0) gte.0 = pred[] get-tuple-element(param.body.outer), index=0 gte.1 = pred[] get-tuple-element(param.body.outer), index=1 while.inner = (pred[], pred[]) while(param.body.outer), condition=cond.inner, body=body.inner gte.2 = pred[] get-tuple-element(while.inner), index=0 after-all = token[] after-all() outfeed = token[] outfeed(gte.2, after-all) ROOT root = (pred[], pred[]) tuple(gte.0, gte.1) } ENTRY TestComputation { entry_param.1 = pred[] parameter(0) entry_param.2 = pred[] parameter(1) tuple = (pred[], pred[]) tuple(entry_param.1, entry_param.2) while.outer = (pred[], pred[]) while(tuple), condition=cond.outer, body=body.outer gte = pred[] get-tuple-element(while.outer), index=0 ROOT not = pred[] not(gte) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); HloInstruction* while_inner = FindInstruction(module.get(), "while.inner"); EXPECT_THAT( while_inner, op::While(op::Tuple(op::Copy(op::GetTupleElement(op::Parameter(0))), op::Copy(op::GetTupleElement(op::Parameter(0)))))); } TEST_F(CopyInsertionTest, NestedWhileAndConditional2) { const std::string& hlo_string = R"( HloModule TestModule on_true { v1 = f32[2] parameter(0) v2 = f32[2] add(v1,v1) ROOT t1 = (f32[2], f32[2]) tuple(v1,v2) } on_false { v1 = f32[2] parameter(0) v2 = f32[2] multiply(v1,v1) ROOT t2 = (f32[2], f32[2]) tuple(v1,v2) } cond.outer { param.1 = (pred[], f32[2], f32[2]) parameter(0) ROOT param.cond.outer = pred[] get-tuple-element(param.1), index=0 } body.outer { param.1 = (pred[], f32[2], f32[2]) parameter(0) pred.1 = pred[] get-tuple-element(param.1), index=0 arg_tuple.11 = f32[2] get-tuple-element(param.1), index=1 if = (f32[2], f32[2]) conditional(pred.1, arg_tuple.11, arg_tuple.11), true_computation=on_true, false_computation=on_false e1 = f32[2] get-tuple-element(if), index=0 e2 = f32[2] get-tuple-element(if), index=1 ROOT res = (pred[], f32[2], f32[2]) tuple(pred.1,e1, e2) } ENTRY TestComputation { entry_param.1 = pred[] parameter(0) float_param = f32[2] parameter(1) entry_param = (pred[], f32[2], f32[2]) tuple(entry_param.1, float_param, float_param) ROOT while = (pred[], f32[2], f32[2]) while(entry_param), condition=cond.outer, body=body.outer } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 3); } TEST_F(CopyInsertionTest, NestedWhileAndConditional) { const std::string& hlo_string = R"( HloModule TestModule on_true { v1 = f32[2] parameter(0) ROOT v2 = f32[2] add(v1,v1) } on_false { v1 = f32[2] parameter(0) ROOT v2 = f32[2] multiply(v1,v1) } cond.outer { param.1 = (pred[], f32[2]) parameter(0) ROOT param.cond.outer = pred[] get-tuple-element(param.1), index=0 } body.outer { param.1 = (pred[], f32[2]) parameter(0) pred.1 = pred[] get-tuple-element(param.1), index=0 arg_tuple.11 = f32[2] get-tuple-element(param.1), index=1 if = f32[2] conditional(pred.1, arg_tuple.11, arg_tuple.11), true_computation=on_true, false_computation=on_false ROOT res = (pred[], f32[2]) tuple(pred.1,if) } ENTRY TestComputation { entry_param.1 = pred[] parameter(0) float_param = f32[2] parameter(1) entry_param = (pred[], f32[2]) tuple(entry_param.1, float_param) ROOT while = (pred[], f32[2]) while(entry_param), condition=cond.outer, body=body.outer } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); VLOG(2) << module->ToString() << "\n"; EXPECT_EQ(CountCopies(*module), 2); } TEST_F(CopyInsertionTest, FixpointComputationRequired) { const std::string& hlo_string = R"( HloModule Module fused_computation { param0 = f32[3,3,96,1] parameter(0) param1 = f32[] parameter(1) broadcast = f32[3,3,96,1] broadcast(f32[] param1), dimensions={} ROOT %add.0 = f32[3,3,96,1] add(f32[3,3,96,1] param0, f32[3,3,96,1] broadcast) } ENTRY entry_computation { arg0 = f32[3,3,96,1] parameter(0) arg1 = f32[] parameter(1) fusion = f32[3,3,96,1] fusion(f32[3,3,96,1] arg0, f32[] arg1), kind=kLoop, calls=fused_computation negate = f32[] negate(f32[] arg1) ROOT tuple = (f32[3,3,96,1], f32[3,3,96,1], f32[], f32[]) tuple( f32[3,3,96,1] fusion, f32[3,3,96,1] arg0, f32[] negate, f32[] arg1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {1}, 0, {})); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {3}, 1, {})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, NoAliasCheckViolation) { const std::string& hlo_string = R"( HloModule cluster ENTRY Entry { %arg = f32[8,28,28,1] parameter(0) %bitcast.2 = f32[8,1,28,28] bitcast(f32[8,28,28,1] %arg) ROOT %tuple.1 = (f32[8,1,28,28], f32[8,28,28,1]) tuple(f32[8,1,28,28] %bitcast.2, f32[8,28,28,1] %arg) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {1}, 0, {})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, DynamicUpdateSliceNoCopy) { absl::string_view hlo_string = R"( HloModule Module ENTRY main { param = f32[1280,1,128] parameter(0) negate = f32[1280,1,128] negate(param) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(negate, broadcast.6, constant.3, constant.3, constant.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, FusedDynamicUpdateSliceNoCopy) { absl::string_view hlo_string = R"( HloModule Module fused_computation { param0 = f32[1280,1,128] parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param0, broadcast.6, constant.3, constant.3, constant.3) } ENTRY main { param = f32[1280,1,128] parameter(0) negate = f32[1280,1,128] negate(param) ROOT fusion = f32[1280,1,128] fusion(negate), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, DynamicUpdateSliceCopy) { absl::string_view hlo_string = R"( HloModule Module ENTRY main { param = f32[1280,1,128] parameter(0) negate = f32[1280,1,128] negate(param) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) add = f32[1280,1,128] add(negate, negate) dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(negate, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple = (f32[1280,1,128], f32[1280,1,128]) tuple(add, dynamic-update-slice.5) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, DynamicUpdateSliceParameterShareCopy) { absl::string_view hlo_string = R"( HloModule Module ENTRY main { param = f32[1280,1,128] parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param, broadcast.6, constant.3, constant.3, constant.3) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, FusedDynamicUpdateSliceCopy) { absl::string_view hlo_string = R"( HloModule Module fused_computation { param0 = f32[1280,1,128] parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param0, broadcast.6, constant.3, constant.3, constant.3) } ENTRY main { param = f32[1280,1,128] parameter(0) negate = f32[1280,1,128] negate(param) add = f32[1280,1,128] add(negate, negate) fusion = f32[1280,1,128] fusion(negate), kind=kLoop, calls=fused_computation ROOT tuple = (f32[1280,1,128], f32[1280,1,128]) tuple(negate, fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, ChainDynamicUpdateSliceCopy) { absl::string_view hlo_string = R"( HloModule Module ENTRY main { state = (s32[], f32[1280,1,128]{2,1,0}) parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128]{2,1,0} broadcast(constant.1), dimensions={} get-tuple-element.4 = f32[1280,1,128]{2,1,0} get-tuple-element(state), index=1 get-tuple-element.3 = s32[] get-tuple-element(state), index=0 constant.2 = s32[] constant(128) add.5 = s32[] add(get-tuple-element.3, constant.2) constant.3 = s32[] constant(0) dynamic-update-slice.5 = f32[1280,1,128]{2,1,0} dynamic-update-slice(get-tuple-element.4, broadcast.6, constant.3, constant.3, constant.3) dynamic-update-slice.9 = f32[1280,1,128]{2,1,0} dynamic-update-slice(dynamic-update-slice.5, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple.85 = (s32[], f32[1280,1,128]{2,1,0}) tuple(add.5, dynamic-update-slice.9) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, FusedDynamicUpdateSliceCopy2) { absl::string_view hlo_string = R"( HloModule Module fused_computation.1 { param0 = f32[1280,1,128] parameter(0) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param0, broadcast.6, constant.3, constant.3, constant.3) } fused_computation.2 { param0 = f32[1280,1,128] parameter(0) param1 = f32[1280,1,128] parameter(1) slice = f32[128,1,128] slice(param1), slice={[0:128], [0:1], [0:128]} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param0, slice, constant.3, constant.3, constant.3) } ENTRY main { param = f32[1280,1,128] parameter(0) negate = f32[1280,1,128] negate(param) add = f32[1280,1,128] add(negate, negate) fusion1 = f32[1280,1,128] fusion(negate), kind=kLoop, calls=fused_computation.1 ROOT fusion2 = f32[1280,1,128] fusion(fusion1, negate), kind=kLoop, calls=fused_computation.2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, MultiOutputFusedDynamicUpdateSliceCopy) { absl::string_view hlo_string = R"( HloModule Module fused_computation { param0 = f32[1280,1,128] parameter(0) param1 = f32[1280,1,128] parameter(1) param2 = f32[1280,1,128] parameter(2) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) add.1 = f32[1280,1,128] add(param0, param0) dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param1, broadcast.6, constant.3, constant.3, constant.3) dynamic-update-slice.6 = f32[1280,1,128] dynamic-update-slice(param2, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple.1 = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) tuple(add.1, dynamic-update-slice.5, dynamic-update-slice.6) } ENTRY main { param = f32[1280,1,128] parameter(0) negate0 = f32[1280,1,128] negate(param) negate1 = f32[1280,1,128] negate(param) negate2 = f32[1280,1,128] negate(param) fusion = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) fusion(negate0, negate1, negate2), kind=kLoop, calls=fused_computation gte0 = f32[1280,1,128] get-tuple-element(fusion), index=0 gte1 = f32[1280,1,128] get-tuple-element(fusion), index=1 gte2 = f32[1280,1,128] get-tuple-element(fusion), index=2 add0 = f32[1280,1,128] add(negate0, gte0) add1 = f32[1280,1,128] add(negate1, gte1) add2 = f32[1280,1,128] add(negate2, gte2) ROOT tuple = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 2); } TEST_F(CopyInsertionTest, MultiOutputFusedDynamicUpdateSliceNoCopy) { absl::string_view hlo_string = R"( HloModule Module fused_computation { param0 = f32[1280,1,128] parameter(0) param1 = f32[1280,1,128] parameter(1) param2 = f32[1280,1,128] parameter(2) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) add.1 = f32[1280,1,128] add(param0, param0) dynamic-update-slice.5 = f32[1280,1,128] dynamic-update-slice(param1, broadcast.6, constant.3, constant.3, constant.3) dynamic-update-slice.6 = f32[1280,1,128] dynamic-update-slice(param2, broadcast.6, constant.3, constant.3, constant.3) ROOT tuple.1 = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) tuple(add.1, dynamic-update-slice.5, dynamic-update-slice.6) } ENTRY main { param = f32[1280,1,128] parameter(0) negate0 = f32[1280,1,128] negate(param) negate1 = f32[1280,1,128] negate(param) negate2 = f32[1280,1,128] negate(param) fusion = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) fusion(negate0, negate1, negate2), kind=kLoop, calls=fused_computation gte0 = f32[1280,1,128] get-tuple-element(fusion), index=0 gte1 = f32[1280,1,128] get-tuple-element(fusion), index=1 gte2 = f32[1280,1,128] get-tuple-element(fusion), index=2 add0 = f32[1280,1,128] add(negate0, gte0) add1 = f32[1280,1,128] add(gte1, gte1) add2 = f32[1280,1,128] add(negate2, gte2) ROOT tuple = (f32[1280,1,128], f32[1280,1,128], f32[1280,1,128]) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, ScatterSharedOperand) { absl::string_view hlo_string = R"( HloModule Module update_s32 { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } fused_computation { iota.1 = s32[73729]{0} iota(), iota_dimension=0 ROOT indices.1 = s32[73729]{0} reverse(iota.1), dimensions={0} } ENTRY main { iota.2 = s32[73729]{0} iota(), iota_dimension=0 fusion = s32[73729]{0} fusion(), kind=kLoop, calls=fused_computation ROOT scatter = s32[73729]{0} scatter(iota.2, fusion, iota.2), update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1, to_apply=update_s32 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Scatter(op::Copy(op::Iota()), op::Fusion(), op::Iota())); } TEST_F(CopyInsertionTest, HorizontalLoopFusionNoCopy) { const std::string& hlo_string = R"( HloModule test fused_computation { p0 = f32[10,20] parameter(0) p1 = f32[10,20] parameter(1) p2 = f32[10,10] parameter(2) p3 = f32[10,10] parameter(3) add0 = f32[10, 20] add(p0, p1) sub0 = f32[10, 10] subtract(p2, p3) reshape0 = f32[200] reshape(add0) reshape1 = f32[100] reshape(sub0) concat0 = f32[300] concatenate(reshape0, reshape1), dimensions={0} slice0 = f32[200] slice(concat0), slice={[0:200]} slice1 = f32[100] slice(concat0), slice={[200:300]} ROOT tuple = (f32[200], f32[100]) tuple(slice0, slice1) } ENTRY test { p0 = f32[10,20] parameter(0) p1 = f32[10,20] parameter(1) p2 = f32[10,10] parameter(2) p3 = f32[10,10] parameter(3) fusion = (f32[200], f32[100]) fusion(p0, p1, p2, p3), kind=kInput, calls=fused_computation gte0 = f32[200] get-tuple-element(fusion), index=0 gte1 = f32[100] get-tuple-element(fusion), index=1 bitcast0 = f32[10,20] bitcast(gte0) bitcast1 = f32[10,10] bitcast(gte1) ROOT tuple = (f32[10,20], f32[10,10]) tuple(bitcast0, bitcast1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {0}, 0, {})); ASSERT_IS_OK(module->input_output_alias_config().SetUpAlias( {1}, 3, {})); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, NestedWhileAndConditional3) { const std::string& hlo_string = R"( HloModule TestModule on_true.1 { ROOT v1 = f32[2] parameter(0) } on_false.1 { v1 = f32[2] parameter(0) ROOT v2 = f32[2] multiply(v1,v1) } on_true { v1 = f32[2] parameter(0) v2 = f32[2] add(v1,v1) v3 = (f32[2],f32[2]) tuple(v1,v2) v4 = f32[2] get-tuple-element(v3), index=1 v5 = f32[2] multiply(v4,v2) ROOT t1 = (f32[2], f32[2]) tuple(v5,v2) } on_false { v1 = f32[2] parameter(0) v2 = f32[2] multiply(v1,v1) pred.1 = pred[] constant(true) v4 = f32[2] conditional(pred.1, v1, v2), true_computation=on_true.1, false_computation=on_false.1 v5 = f32[2] multiply(v4,v2) ROOT t2 = (f32[2], f32[2]) tuple(v2,v5) } cond.outer { param.1 = (pred[], f32[2], f32[2]) parameter(0) ROOT param.cond.outer = pred[] get-tuple-element(param.1), index=0 } body.outer { param.1 = (pred[], f32[2], f32[2]) parameter(0) pred.1 = pred[] get-tuple-element(param.1), index=0 arg_tuple.11 = f32[2] get-tuple-element(param.1), index=1 if = (f32[2], f32[2]) conditional(pred.1, arg_tuple.11, arg_tuple.11), true_computation=on_true, false_computation=on_false e1 = f32[2] get-tuple-element(if), index=0 e2 = f32[2] get-tuple-element(if), index=1 ROOT res = (pred[], f32[2], f32[2]) tuple(pred.1,e1, e2) } ENTRY TestComputation { entry_param.1 = pred[] parameter(0) float_param = f32[2] parameter(1) entry_param = (pred[], f32[2], f32[2]) tuple(entry_param.1, float_param, float_param) ROOT while = (pred[], f32[2], f32[2]) while(entry_param), condition=cond.outer, body=body.outer } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 4); } TEST_F(CopyInsertionTest, ConditionalBranchMustCopy1) { const std::string& hlo_string = R"( HloModule TestModule branch_0_comp.5.clone { %parameter.0 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.0), index=0 %negate = s32[2]{0:T(128)} negate(s32[2]{0:T(128)} %get-tuple-element) %copy = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %negate) ROOT tuple.5 = (s32[2]{0:T(128)}) tuple(%copy) } branch_1_comp.12.clone { %parameter.4 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element.5 = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.4), index=0 %copy.1 = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %get-tuple-element.5) ROOT tuple.6 = (s32[2]{0:T(128)}) tuple(%copy.1) } ENTRY TestComputation { %parameter.1 = s32[]{:T(128)} parameter(0), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.2 = s32[2]{0:T(128)} parameter(1), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.3 = s32[2]{0:T(128)} parameter(2), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %tuple.1 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.3) %tuple.3 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.2) %conditional.18 = (s32[2]{0:T(128)}) conditional(s32[]{:T(128)} %parameter.1, (s32[2]{0:T(128)}) %tuple.1, (s32[2]{0:T(128)}) %tuple.3), branch_computations={%branch_0_comp.5.clone, %branch_1_comp.12.clone}, metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %gte.1 = s32[2]{0:T(128)} get-tuple-element(conditional.18), index=0 ROOT tuple.4 = (s32[2]{0:T(128)},s32[2]{0:T(128)}) tuple(parameter.2, gte.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); auto conditional18 = FindInstruction(module.get(), "conditional.18"); CHECK_NE(conditional18, nullptr); auto tuple6 = conditional18->branch_computation(1)->root_instruction(); CHECK_EQ(tuple6->opcode(), HloOpcode::kTuple); auto copy1 = tuple6->operand(0); CHECK_EQ(copy1->opcode(), HloOpcode::kCopy); } TEST_F(CopyInsertionTest, ConditionalBranchMustCopy2) { const std::string& hlo_string = R"( HloModule TestModule branch_0_comp.5.clone { %parameter.0 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.0), index=0 %negate = s32[2]{0:T(128)} negate(s32[2]{0:T(128)} %get-tuple-element) %copy = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %negate) ROOT tuple.5 = (s32[2]{0:T(128)}) tuple(%copy) } branch_1_comp.12.clone { %parameter.4 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element.5 = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.4), index=0 %copy.1 = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %get-tuple-element.5) %constant.1 = s32[] constant(0) %broadcast.6 = s32[2] broadcast(constant.1), dimensions={} dynamic-update-slice.5 = s32[2]{0:T(128)} dynamic-update-slice(%copy.1, %broadcast.6, %constant.1) %add.1 = s32[2]{0:T(128)} add(dynamic-update-slice.5, %copy.1) ROOT tuple.6 = (s32[2]{0:T(128)}) tuple(%add.1) } ENTRY TestComputation { %parameter.1 = s32[]{:T(128)} parameter(0), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.2 = s32[2]{0:T(128)} parameter(1), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.3 = s32[2]{0:T(128)} parameter(2), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %tuple.1 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.3) %tuple.3 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.2) %conditional.18 = (s32[2]{0:T(128)}) conditional(s32[]{:T(128)} %parameter.1, (s32[2]{0:T(128)}) %tuple.1, (s32[2]{0:T(128)}) %tuple.3), branch_computations={%branch_0_comp.5.clone, %branch_1_comp.12.clone} %gte.1 = s32[2]{0:T(128)} get-tuple-element(conditional.18), index=0 ROOT tuple.4 = (s32[2]{0:T(128)},s32[2]{0:T(128)}) tuple(parameter.2, gte.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); auto conditional18 = FindInstruction(module.get(), "conditional.18"); CHECK_NE(conditional18, nullptr); auto tuple6 = conditional18->branch_computation(1)->root_instruction(); CHECK_EQ(tuple6->opcode(), HloOpcode::kTuple); auto add1 = tuple6->operand(0); CHECK_EQ(add1->opcode(), HloOpcode::kAdd); auto dus = add1->operand(0); auto copy1 = dus->operand(0); CHECK_EQ(copy1->opcode(), HloOpcode::kCopy); } TEST_F(CopyInsertionTest, ConditionalBranchMustCopy3) { const std::string& hlo_string = R"( HloModule primitive_computation_cond.19 %branch_0_comp.5.clone (parameter.0: (s32[2])) -> (s32[2]) { %parameter.0 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.0), index=0 %negate = s32[2]{0:T(128)} negate(s32[2]{0:T(128)} %get-tuple-element) %copy = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %negate) ROOT %tuple.5 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %copy) } %branch_1_comp.12.clone (parameter.4: (s32[2])) -> (s32[2]) { %parameter.4 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element.5 = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.4), index=0 %copy.1 = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %get-tuple-element.5) ROOT %tuple.6 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %copy.1) } ENTRY %primitive_computation_cond.19 (parameter.1: s32[], parameter.2: s32[2], parameter.3: s32[2]) -> (s32[2]) { %parameter.1 = s32[]{:T(128)} parameter(0), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.3 = s32[2]{0:T(128)} parameter(2), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %tuple.1 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.3) %parameter.2 = s32[2]{0:T(128)} parameter(1), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %tuple.3 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.2) ROOT %conditional.18 = (s32[2]{0:T(128)}) conditional(s32[]{:T(128)} %parameter.1, (s32[2]{0:T(128)}) %tuple.1, (s32[2]{0:T(128)}) %tuple.3), branch_computations={%branch_0_comp.5.clone, %branch_1_comp.12.clone}, metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); auto conditional18 = FindInstruction(module.get(), "conditional.18"); CHECK_NE(conditional18, nullptr); auto tuple6 = conditional18->branch_computation(1)->root_instruction(); CHECK_EQ(tuple6->opcode(), HloOpcode::kTuple); auto copy1 = tuple6->operand(0); CHECK_EQ(copy1->opcode(), HloOpcode::kCopy); } TEST_F(CopyInsertionTest, ConditionalBranchDoNotCopy1) { const std::string& hlo_string = R"( HloModule TestModule branch_0_comp.5.clone { %parameter.0 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.0), index=0 %negate = s32[2]{0:T(128)} negate(s32[2]{0:T(128)} %get-tuple-element) %copy = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %negate) ROOT tuple.5 = (s32[2]{0:T(128)}) tuple(%copy) } branch_1_comp.12.clone { %parameter.4 = (s32[2]{0:T(128)}) parameter(0) %get-tuple-element.5 = s32[2]{0:T(128)} get-tuple-element((s32[2]{0:T(128)}) %parameter.4), index=0 %copy.1 = s32[2]{0:T(128)} copy(s32[2]{0:T(128)} %get-tuple-element.5) ROOT tuple.6 = (s32[2]{0:T(128)}) tuple(%copy.1) } ENTRY TestComputation { %parameter.1 = s32[]{:T(128)} parameter(0), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.2 = s32[2]{0:T(128)} parameter(1), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %parameter.3 = s32[2]{0:T(128)} parameter(2), metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %tuple.1 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.3) %tuple.3 = (s32[2]{0:T(128)}) tuple(s32[2]{0:T(128)} %parameter.2) %conditional.18 = (s32[2]{0:T(128)}) conditional(s32[]{:T(128)} %parameter.1, (s32[2]{0:T(128)}) %tuple.1, (s32[2]{0:T(128)}) %tuple.3), branch_computations={%branch_0_comp.5.clone, %branch_1_comp.12.clone}, metadata={op_type="cond" op_name="cond[ linear=(False, False) ]"} %gte.1 = s32[2]{0:T(128)} get-tuple-element(conditional.18), index=0 ROOT tuple.4 = (s32[2]{0:T(128)},s32[2]{0:T(128)}) tuple(gte.1, gte.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString() << "\n"; auto conditional18 = FindInstruction(module.get(), "conditional.18"); CHECK_NE(conditional18, nullptr); auto tuple6 = conditional18->branch_computation(1)->root_instruction(); CHECK_EQ(tuple6->opcode(), HloOpcode::kParameter); } TEST_F(CopyInsertionTest, ConditionalWithMultiOutputFusion) { const std::string& hlo_string = R"( HloModule TestModule branch_0 { param_0 = f64[] parameter(0) negate.2 = f64[] negate(f64[] param_0) ROOT tuple = (f64[], f64[]) tuple(f64[] negate.2, f64[] negate.2) } fused_computation { param_0.1 = f64[] parameter(0) abs.2 = f64[] abs(f64[] param_0.1) negate.1 = f64[] negate(f64[] param_0.1) ROOT %tuple.2 = (f64[], f64[]) tuple(f64[] negate.1, f64[] abs.2) } branch_1 { param_0.2 = f64[] parameter(0) ROOT fusion = (f64[], f64[]) fusion(f64[] param_0.2), kind=kLoop, calls=%fused_computation } ENTRY main { pred.0 = s32[] parameter(0) param_1 = f64[] parameter(1) param_2 = f64[] parameter(2) ROOT conditional.0 = (f64[], f64[]) conditional(s32[] pred.0, f64[] param_1, f64[] param_2), branch_computations={%branch_0, %branch_1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); EXPECT_EQ(CountCopies(*module->GetComputationWithName("branch_0")), 1); EXPECT_EQ(CountCopies(*module->GetComputationWithName("branch_1")), 0); EXPECT_EQ(CountCopies(*module->GetComputationWithName("main")), 0); } TEST_F(CopyInsertionTest, ConditionalWithVariadicReduce) { const std::string& hlo_string = R"( HloModule TestModule branch_0 { empty_tuple.0 = () parameter(0) c_0 = f64[] constant(0) ROOT tuple.3 = (f64[], f64[]) tuple(c_0, c_0) } fused_computation { param_0.1 = f64[] parameter(0) abs.2 = f64[] abs(f64[] param_0.1) negate.1 = f64[] negate(f64[] param_0.1) ROOT %tuple.2 = (f64[], f64[]) tuple(f64[] negate.1, f64[] abs.2) } reduce_region { param_0.0 = f64[] parameter(0) param_2.0 = f64[] parameter(2) add.1.0 = f64[] add(param_0.0, param_2.0) param_1.0 = f64[] parameter(1) param_3.0 = f64[] parameter(3) multiply.1.0 = f64[] multiply(param_1.0, param_3.0) ROOT tuple.0.0 = (f64[], f64[]) tuple(add.1.0, multiply.1.0) } branch_1 { c_0 = f64[] constant(0) param_0.1 = f64[128]{0} parameter(0) ROOT reduce = (f64[], f64[]) reduce(param_0.1, param_0.1, c_0, c_0), dimensions={0}, to_apply=reduce_region } ENTRY main { pred.0 = s32[] parameter(0) empty_tuple = () tuple() param_2 = f64[128] parameter(1), sharding={replicated} ROOT conditional.0 = (f64[], f64[]) conditional(s32[] pred.0, () empty_tuple, f64[128] param_2), branch_computations={%branch_0, %branch_1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); EXPECT_EQ(CountCopies(*module->GetComputationWithName("branch_0")), 2); EXPECT_EQ(CountCopies(*module->GetComputationWithName("branch_1")), 0); EXPECT_EQ(CountCopies(*module->GetComputationWithName("main")), 0); } TEST_F(CopyInsertionTest, RootInstructionNotLast) { const std::string& hlo_string = R"( HloModule module, is_scheduled=true body2 { p_body2 = (f32[2]{0}) parameter(0) p_body2.1 = f32[2]{0} get-tuple-element(p_body2), index=0 add.3 = f32[2]{0} add(p_body2.1, p_body2.1) ROOT root2 = (f32[2]{0}) tuple(add.3) } condition2 { p_cond2 = (f32[2]{0}) parameter(0) ROOT result = pred[] constant(true) } body { p_body = (f32[2]{0}) parameter(0) p_body.1 = f32[2]{0} get-tuple-element(p_body), index=0 ROOT root = (f32[2]{0}) tuple(p_body.1) copy = f32[2]{0} copy(p_body.1) tuple = (f32[2]{0}) tuple(copy) while.1 = (f32[2]{0}) while(tuple), condition=condition2, body=body2 } condition { p_cond = (f32[2]{0}) parameter(0) ROOT result = pred[] constant(true) } ENTRY entry { const0 = f32[2]{0} constant({1, 2}) while_init = (f32[2]{0}) tuple(const0) ROOT while.0 = (f32[2]{0}) while(while_init), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.RemoveUnnecessaryCopies(module.get())); auto while_1 = FindInstruction(module.get(), "while.1"); EXPECT_THAT(while_1, op::While(op::Tuple(op::Copy()))); } TEST_F(CopyInsertionTest, InPlaceCollectivePermuteCopy) { absl::string_view hlo_string = R"( HloModule hlo_runner_test_0.1 ENTRY hlo_runner_test_0.1 { replica_id = u32[] replica-id() broadcast.0 = u32[2,8,128]{2,1,0:T(2,128)} broadcast(u32[] replica_id), dimensions={} constant.1 = u32[] constant(1000) broadcast.1 = u32[2,8,128]{2,1,0:T(2,128)} broadcast(u32[] constant.1), dimensions={} broadcast.2 = u32[4,8,128]{2,1,0:T(2,128)} broadcast(u32[] constant.1), dimensions={} constant.2 = s32[] constant(0) constant.3 = s32[] constant(1) tuple.input = (u32[2,8,128]{2,1,0:T(2,128)}, u32[2,8,128]{2,1,0:T(2,128)}) tuple(u32[2,8,128]{2,1,0:T(2,128)} broadcast.0, u32[2,8,128]{2,1,0:T(2,128)} broadcast.0) tuple.output = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) tuple(u32[2,8,128]{2,1,0:T(2,128)} broadcast.1, u32[4,8,128]{2,1,0:T(2,128)} broadcast.2) tuple.2 = (s32[],s32[],s32[]) tuple(constant.2, constant.2, constant.2) tuple.3 = (s32[],s32[],s32[]) tuple(constant.3, constant.2, constant.2) tuple.4 = ((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple((s32[],s32[],s32[]) tuple.2, (s32[],s32[],s32[]) tuple.3) constant.4 = s32[] constant(2) tuple.5 = (s32[],s32[],s32[]) tuple(constant.4, constant.2, constant.2) tuple.6 = ((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple((s32[],s32[],s32[]) tuple.2, (s32[],s32[],s32[]) tuple.5) tuple.7 = ((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple((s32[],s32[],s32[]) tuple.2, (s32[],s32[],s32[]) tuple.2) tuple.8 = (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple(((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple.4, ((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple.7) tuple.9 = (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple(((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple.4, ((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple.6) tuple.10 = (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple(((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple.4, ((s32[],s32[],s32[]), (s32[],s32[],s32[])) tuple.7) collective-permute.0 = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) collective-permute((u32[2,8,128]{2,1,0:T(2,128)}, u32[2,8,128]{2,1,0:T(2,128)}) tuple.input, (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) tuple.output, (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple.8, (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple.9), source_target_pairs={{0,1},{1,2},{2,3},{3,0},{0,3},{3,2},{2,1},{1,0}}, slice_sizes={{1,8,128},{1,8,128},{2,8,128},{2,8,128}} collective-permute.1 = (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) collective-permute((u32[2,8,128]{2,1,0:T(2,128)}, u32[2,8,128]{2,1,0:T(2,128)}) tuple.input, (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}) tuple.output, (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple.8, (((s32[],s32[],s32[]), (s32[],s32[],s32[])), ((s32[],s32[],s32[]), (s32[],s32[],s32[]))) tuple.10), source_target_pairs={{0,1},{1,2},{2,3},{3,0},{0,3},{3,2},{2,1},{1,0}}, slice_sizes={{1,8,128},{1,8,128},{2,8,128},{2,8,128}} ROOT tuple = ((u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)}), (u32[2,8,128]{2,1,0:T(2,128)}, u32[4,8,128]{2,1,0:T(2,128)})) tuple(collective-permute.0, collective-permute.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); InsertCopies(module.get()); EXPECT_EQ(CountCopies(*module), 4); } TEST_F(CopyInsertionTest, KeepCopyOfBroadcast) { absl::string_view hlo_string = R"( HloModule Module ENTRY main { param = f32[128,1,128] parameter(0) negate = f32[128,1,128] negate(param) constant.1 = f32[] constant(0) broadcast.6 = f32[128,1,128] broadcast(constant.1), dimensions={} broadcast.7 = f32[128,1,128] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) dynamic-update-slice.5 = f32[128,1,128] dynamic-update-slice(broadcast.6, broadcast.7, constant.3, constant.3, constant.3) add1 = f32[128,1,128] add(dynamic-update-slice.5, dynamic-update-slice.5) dynamic-update-slice.4 = f32[128,1,128] dynamic-update-slice(broadcast.6, broadcast.7, constant.3, constant.3, constant.3) add2 = f32[128,1,128] add(dynamic-update-slice.4, dynamic-update-slice.4) tuple = (f32[128,1,128], f32[128,1,128]) tuple(add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); EXPECT_EQ(CountCopies(*module), 2); } TEST_F(CopyInsertionTest, CustomCallAliasingCopyInsertedAliasedParam) { const char* const kModuleString = R"( HloModule xla_computation_f ENTRY xla_computation_f { parameter.1 = f32[2,3,4,5] parameter(0) parameter.2 = f32[2,3,4,5] parameter(1) ROOT custom-call = f32[2,3,4,5] custom-call(parameter.1, parameter.2), custom_call_target="dm_softmax", operand_layout_constraints={f32[2,3,4,5], f32[2,3,4,5]}, output_to_operand_aliasing={{}: (0, {})} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); InsertCopies(module.get()); HloInstruction* custom_call = module->entry_computation()->root_instruction(); EXPECT_THAT(custom_call->operand(0), op::Copy(op::Parameter(0))); } TEST_F(CopyInsertionTest, CustomCallAliasingCopyInsertedAliasedReuse) { const char* const kModuleString = R"( HloModule xla_computation_f ENTRY xla_computation_f { parameter.1 = f32[2,3,4,5] parameter(0) parameter.2 = f32[2,3,4,5] parameter(1) add.1 = f32[2,3,4,5] add(parameter.1, parameter.2) custom-call = f32[2,3,4,5] custom-call(add.1, parameter.2), custom_call_target="dm_softmax", operand_layout_constraints={f32[2,3,4,5], f32[2,3,4,5]}, output_to_operand_aliasing={{}: (0, {})} ROOT add.2 = f32[2,3,4,5] add(custom-call, add.1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); InsertCopies(module.get()); HloInstruction* custom_call = FindInstruction(module.get(), "custom-call"); CHECK_NE(custom_call, nullptr); EXPECT_THAT(custom_call->operand(0), op::Copy(op::Add())); } TEST_F(CopyInsertionTest, CustomCallAliasingCopyRemoved) { const char* const kModuleString = R"( HloModule xla_computation_f__1 ENTRY xla_computation_f { parameter.1 = f32[2,3,4,5] parameter(0) parameter.2 = f32[2,3,4,5] parameter(1) add = f32[2,3,4,5] add(parameter.1, parameter.2) ROOT custom-call = f32[2,3,4,5] custom-call(add, parameter.2), custom_call_target="dm_softmax", operand_layout_constraints={f32[2,3,4,5], f32[2,3,4,5]}, output_to_operand_aliasing={{}: (0, {})} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); InsertCopies(module.get()); HloInstruction* custom_call = module->entry_computation()->root_instruction(); EXPECT_THAT(custom_call->operand(0), op::Add()); } TEST_F(CopyInsertionTest, ReverseInConditional) { const char* const kModuleString = R"( HloModule jit_f.0 %region_0.4 (Arg_.5: u8[300,451,3]) -> (u8[300,451,3]) { %Arg_.5 = u8[300,451,3]{1,0,2:T(8,128)(4,1)} parameter(0) ROOT %tuple = (u8[300,451,3]{1,0,2:T(8,128)(4,1)}) tuple(u8[300,451,3]{1,0,2:T(8,128)(4,1)} %Arg_.5) } %region_1.9 (Arg_.10: u8[300,451,3]) -> (u8[300,451,3]) { %Arg_.10 = u8[300,451,3]{1,0,2:T(8,128)(4,1)} parameter(0) %reverse = u8[300,451,3]{1,0,2:T(8,128)(4,1)} reverse(u8[300,451,3]{1,0,2:T(8,128)(4,1)} %Arg_.10), dimensions={0} ROOT %tuple.1 = (u8[300,451,3]{1,0,2:T(8,128)(4,1)}) tuple(u8[300,451,3]{1,0,2:T(8,128)(4,1)} %reverse) } ENTRY %main.13 (Arg_0.1: pred[], Arg_1.2: u8[300,451,3]) -> u8[300,451,3] { %Arg_0.1 = pred[]{:T(1024)} parameter(0) %convert.3 = s32[]{:T(256)} convert(pred[]{:T(1024)} %Arg_0.1) %Arg_1.2 = u8[300,451,3]{1,0,2:T(8,128)(4,1)} parameter(1) %conditional.12.clone = (u8[300,451,3]{1,0,2:T(8,128)(4,1)}) conditional(s32[]{:T(256)} %convert.3, u8[300,451,3]{1,0,2:T(8,128)(4,1)} %Arg_1.2, u8[300,451,3]{1,0,2:T(8,128)(4,1)} %Arg_1.2), branch_computations={%region_0.4, %region_1.9} ROOT %get-tuple-element = u8[300,451,3]{1,0,2:T(8,128)(4,1)} get-tuple-element((u8[300,451,3]{1,0,2:T(8,128)(4,1)}) %conditional.12.clone), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(2) << module->ToString(); HloInstruction* reverse = FindInstruction(module.get(), "reverse"); EXPECT_THAT(reverse->operand(0), op::Copy()); } TEST_F(CopyInsertionTest, InputOutputAliasCopy) { const char* const kModuleString = R"( HloModule main_tf2xla.11, input_output_alias={ {0}: (0, {1}, may-alias) } ENTRY %main_tf2xla.11 (arg_tuple.1: (f32[], f32[])) -> (f32[], f32[]) { ROOT %arg_tuple.1 = (f32[]{:T(256)}, f32[]{:T(256)}) parameter(0), parameter_replication={false,false}, sharding={{replicated}, {replicated}} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(2) << module->ToString(); } TEST_F(CopyInsertionTest, AddControlDependencyForInputOutputAlias) { const char* const kModuleString = R"( HloModule test, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias) } ENTRY test { x = f32[3] parameter(0) y = f32[3] parameter(1) add = f32[3] add(x, y) mul = f32[3] multiply(x, y) ROOT result = (f32[3], f32[3]) tuple(add, mul) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); EXPECT_EQ(CountCopies(*module), 1); EXPECT_EQ(CountControlEdges(*module), 2); HloInstruction* add_instr = FindInstruction(module.get(), HloOpcode::kAdd); HloInstruction* mul_instr = FindInstruction(module.get(), HloOpcode::kMultiply); HloInstruction* copy_instr = FindInstruction(module.get(), HloOpcode::kCopy); EXPECT_TRUE(add_instr->control_predecessors()[0] == mul_instr); EXPECT_TRUE(copy_instr->control_predecessors()[0] == add_instr); } TEST_F(CopyInsertionTest, AsyncCallDUSNoCopy) { const char* const kModuleString = R"( HloModule async_call %called_computation { %out_param = s32[1024]{0} parameter(1) %input = s32[1024]{0} parameter(0) %size = s32[] constant(256) %index = s32[] custom-call(), custom_call_target="Baz" %start = s32[] multiply(s32[] %size, s32[] %index) %input2 = s32[256]{0} dynamic-slice(s32[1024]{0} %input, s32[] %start), dynamic_slice_sizes={256} %output = s32[256]{0} add(s32[256]{0} %input2, s32[256]{0} %input2) ROOT %output2 = s32[1024]{0} dynamic-update-slice(s32[1024]{0} %out_param, s32[256]{0} %output, s32[] %start) }, execution_thread="foobar" %async_wrapped { %async_param = s32[1024]{0} parameter(0) %async_param.1 = s32[1024]{0} parameter(1) ROOT %call = s32[1024]{0} call(s32[1024]{0} %async_param, s32[1024]{0} %async_param.1), to_apply=%called_computation }, execution_thread="foobar" ENTRY %main { %input.1 = s32[1024]{0} parameter(0) %buf = s32[1024]{0} custom-call(), custom_call_target="AllocateBuffer" %async-start = ((s32[1024]{0}, s32[1024]{0}), s32[1024]{0}, u32[]) async-start(s32[1024]{0} %input.1, s32[1024]{0} %buf), async_execution_thread="foobar", calls=%async_wrapped ROOT %async-done = s32[1024]{0} async-done(((s32[1024]{0}, s32[1024]{0}), s32[1024]{0}, u32[]) %async-start), async_execution_thread="foobar", calls=%async_wrapped } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get(), {"foobar"}).status()); VLOG(2) << module->ToString(); EXPECT_EQ(CountCopies(*module), 0); } TEST_F(CopyInsertionTest, AsyncCallDUSCopy) { const char* const kModuleString = R"( HloModule async_call %called_computation { %out_param = s32[1024]{0} parameter(1) %input = s32[1024]{0} parameter(0) %size = s32[] constant(256) %index = s32[] custom-call(), custom_call_target="Baz" %start = s32[] multiply(s32[] %size, s32[] %index) %input2 = s32[256]{0} dynamic-slice(s32[1024]{0} %input, s32[] %start), dynamic_slice_sizes={256} %output = s32[256]{0} add(s32[256]{0} %input2, s32[256]{0} %input2) ROOT %output2 = s32[1024]{0} dynamic-update-slice(s32[1024]{0} %out_param, s32[256]{0} %output, s32[] %start) }, execution_thread="foobar" %async_wrapped { %async_param = s32[1024]{0} parameter(0) %async_param.1 = s32[1024]{0} parameter(1) ROOT %call = s32[1024]{0} call(s32[1024]{0} %async_param, s32[1024]{0} %async_param.1), to_apply=%called_computation }, execution_thread="foobar" ENTRY %main { %input.1 = s32[1024]{0} parameter(0) %input.2 = s32[1024]{0} parameter(1) %async-start = ((s32[1024]{0}, s32[1024]{0}), s32[1024]{0}, u32[]) async-start(s32[1024]{0} %input.1, s32[1024]{0} %input.2), async_execution_thread="foobar", calls=%async_wrapped ROOT %async-done = s32[1024]{0} async-done(((s32[1024]{0}, s32[1024]{0}), s32[1024]{0}, u32[]) %async-start), async_execution_thread="foobar", calls=%async_wrapped } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get(), {"foobar"}).status()); VLOG(2) << module->ToString(); EXPECT_EQ(CountCopies(*module), 1); } TEST_F(CopyInsertionTest, RegionAnalysisDoesNotAddUnnecessaryCopyOfInputTupleElements) { const char* const kModuleString = R"( HloModule while_aliasing, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias), {2}: (2, {}, may-alias) } add { param_0 = f32[1,128] parameter(0) param_1 = f32[1,128] parameter(1) ROOT add = f32[1,128] add(param_0, param_1) } condition { input_tuple = (f32[1,128], f32[1,128], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=2 } body { input_tuple = (f32[1,128], f32[1,128], pred[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[1,128] get-tuple-element(input_tuple), index=1 cond = pred[] get-tuple-element(input_tuple), index=2 add = f32[1,128] add(param_0, param_1) c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} ROOT output_tuple = (f32[1,128], f32[1,128], pred[]) tuple(add, splat_c0, cond) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[1,128] parameter(1) param_2 = pred[] parameter(2) tuple = (f32[1,128], f32[1,128], pred[]) tuple(param_0, param_1, param_2) ROOT while = (f32[1,128], f32[1,128], pred[]) while(tuple), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); auto add = FindInstruction(module.get(), "add.1"); EXPECT_NE(add, nullptr); EXPECT_EQ(add->operand(0)->opcode(), HloOpcode::kGetTupleElement); EXPECT_EQ(add->operand(1)->opcode(), HloOpcode::kGetTupleElement); } TEST_F(CopyInsertionTest, RegionAnalysisDoesNotAddCopyForNonUpdateParameterOfDynamicSliceUpdate) { const char* const kModuleString = R"( HloModule while_aliasing, input_output_alias={ {0}: (0, {}, may-alias), {1}: (1, {}, may-alias), {2}: (2, {}, may-alias), {3}: (3, {}, may-alias) } fused_computation { param_0 = f32[4,2,128,512]{3,2,1,0} parameter(0) param_1 = f32[2,128,512]{2,1,0} parameter(1) bitcast.1 = f32[1,2,128,512]{3,2,1,0} bitcast(param_1) param_2 = s32[] parameter(2) constant.1 = s32[] constant(0) compare.1 = pred[] compare(param_2, constant.1), direction=LT constant.2 = s32[] constant(4) add.1 = s32[] add(param_2, constant.2) select.1 = s32[] select(compare.1, add.1, param_2) ROOT dynamic-update-slice.73 = f32[4,2,128,512]{3,2,1,0} dynamic-update-slice(param_0, bitcast.1, select.1, constant.1, constant.1, constant.1) } condition { input_tuple = (s32[], f32[2,128,512], f32[4,2,128,512], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=3 } body { input_tuple = (s32[], f32[2,128,512], f32[4,2,128,512], pred[]) parameter(0) get-tuple-element.0 = s32[] get-tuple-element(input_tuple), index=0 get-tuple-element.1 = f32[4,2,128,512]{3,2,1,0} get-tuple-element(input_tuple), index=2 get-tuple-element.2 = f32[2,128,512]{2,1,0} get-tuple-element(input_tuple), index=1 fusion = f32[4,2,128,512]{3,2,1,0} fusion(get-tuple-element.1, get-tuple-element.2, get-tuple-element.0), kind=kLoop, calls=fused_computation cond = pred[] get-tuple-element(input_tuple), index=3 c0 = f32[] constant(0) fusion.1 = f32[2,128,512]{2,1,0} broadcast(c0), dimensions={} ROOT output_tuple = (s32[], f32[2,128,512], f32[4,2,128,512], pred[]) tuple(get-tuple-element.0, fusion.1, fusion, cond) } ENTRY main { param_0 = f32[2,128,512] parameter(0) param_1 = f32[4,2,128,512] parameter(1) param_2 = pred[] parameter(2) param_3 = s32[] parameter(3) tuple = (s32[], f32[2,128,512], f32[4,2,128,512], pred[]) tuple(param_3, param_0, param_1, param_2) ROOT while = (s32[], f32[2,128,512], f32[4,2,128,512], pred[]) while(tuple), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); auto fusion = FindInstruction(module.get(), "fusion"); EXPECT_NE(fusion, nullptr); EXPECT_EQ(fusion->operand(1)->opcode(), HloOpcode::kGetTupleElement); } TEST_F(CopyInsertionTest, RegionAnalysisNoCopyOfAddOutputInsideWhileBody) { const char* const kModuleString = R"( HloModule while_aliasing condition { input_tuple = (f32[1,128], f32[1,128], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=2 } body { input_tuple = (f32[1,128], f32[1,128], pred[]) parameter(0) param_0 = f32[1,128] get-tuple-element(input_tuple), index=0 param_1 = f32[1,128] get-tuple-element(input_tuple), index=1 cond = pred[] get-tuple-element(input_tuple), index=2 c0 = f32[] constant(0) splat_c0 = f32[1,128] broadcast(c0), dimensions={} add = f32[1,128] add(splat_c0, param_1) add_1 = f32[1,128] add(splat_c0, splat_c0) ROOT output_tuple = (f32[1,128], f32[1,128], pred[]) tuple(add, add_1, cond) } ENTRY main { param_0 = f32[1,128] parameter(0) param_1 = f32[1,128] parameter(1) param_2 = pred[] parameter(2) tuple = (f32[1,128], f32[1,128], pred[]) tuple(param_0, param_1, param_2) ROOT while = (f32[1,128], f32[1,128], pred[]) while(tuple), condition=condition, body=body } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(3) << module->ToString(); auto root = FindInstruction(module.get(), "tuple.3"); EXPECT_NE(root, nullptr); EXPECT_EQ(root->operand(0)->opcode(), HloOpcode::kAdd); EXPECT_EQ(root->operand(1)->opcode(), HloOpcode::kAdd); EXPECT_EQ(root->operand(2)->opcode(), HloOpcode::kGetTupleElement); } TEST_F(CopyInsertionTest, DontInsertCopiesInAsyncComputation) { constexpr absl::string_view kModuleString = R"( HloModule test %async_computation { %param_0 = f32[10,32,512]{2,1,0:T(8,128)S(5)} parameter(0) %param_1 = f32[1,32,512]{2,1,0:T(8,128)} parameter(1) %param_2 = s32[]{:T(128)} parameter(2) %param_3 = s32[]{:T(128)} parameter(3) %param_4 = s32[]{:T(128)} parameter(4) ROOT %dynamic-update-slice.1 = f32[10,32,512]{2,1,0:T(8,128)S(5)} dynamic-update-slice(%param_0, %param_1, %param_2, %param_3, %param_4) } ENTRY %main { %param.1 = (s32[]{:T(128)}, f32[32,512]{1,0:T(8,128)}, f32[10,32,512]{2,1,0:T(8,128)S(5)}) parameter(0) %get-tuple-element.132 = f32[10,32,512]{2,1,0:T(8,128)S(5)} get-tuple-element( %param.1), index=2 %get-tuple-element.131 = f32[32,512]{1,0:T(8,128)} get-tuple-element( %param.1), index=1 %cosine.0 = f32[32,512]{1,0:T(8,128)} cosine(%get-tuple-element.131) %reshape.6 = f32[1,32,512]{2,1,0:T(8,128)} reshape(%cosine.0) %get-tuple-element.130 = s32[]{:T(128)} get-tuple-element(%param.1), index=0 %constant.49 = s32[]{:T(128)} constant(0) %compare.13 = pred[]{:T(512)} compare( %get-tuple-element.130, %constant.49), direction=LT %constant.50 = s32[]{:T(128)} constant(10) %add.22 = s32[]{:T(128)} add(%get-tuple-element.130, %constant.50) %select.6 = s32[]{:T(128)} select( %compare.13, %add.22, %get-tuple-element.130) %dynamic-update-slice-start = ( (f32[10,32,512]{2,1,0:T(8,128)S(5)}, f32[1,32,512]{2,1,0:T(8,128)}, s32[]{:T(128)}, s32[]{:T(128)}, s32[]{:T(128)}), f32[10,32,512]{2,1,0:T(8,128)S(5)}, u32[]) async-start( %get-tuple-element.132, %reshape.6, %select.6, %constant.49, %constant.49), calls=%async_computation ROOT %dynamic-update-slice-done = f32[10,32,512]{2,1,0:T(8,128)S(5)} async-done(%dynamic-update-slice-start), calls=%async_computation })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion; ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); LOG(INFO) << module->ToString(); auto* async_computation = module->GetComputationWithName("async_computation"); ASSERT_THAT(async_computation, NotNull()); EXPECT_EQ(CountCopies(*async_computation), 0); auto* main_computation = module->GetComputationWithName("main"); ASSERT_THAT(main_computation, NotNull()); EXPECT_EQ(CountCopies(*main_computation), 1); } TEST_F(CopyInsertionTest, AsyncDUSInLoop) { constexpr absl::string_view kModuleString = R"( HloModule module async_wrapped { async_param.1 = s32[1024]{0} parameter(0) async_param.2 = s32[256]{0} parameter(1) async_param.3 = s32[] parameter(2) ROOT dus = s32[1024]{0} dynamic-update-slice(async_param.1, async_param.2, async_param.3) } condition { input_tuple = (s32[1024]{0}, s32[256]{0}, s32[], pred[]) parameter(0) ROOT cond = pred[] get-tuple-element(input_tuple), index=3 } body { input_tuple = (s32[1024]{0}, s32[256]{0}, s32[], pred[]) parameter(0) input.1 = s32[1024]{0} get-tuple-element(input_tuple), index=0 input.2 = s32[256]{0} get-tuple-element(input_tuple), index=1 input.3 = s32[] get-tuple-element(input_tuple), index=2 input.4 = pred[] get-tuple-element(input_tuple), index=3 async-start = ((s32[1024]{0}, s32[256]{0}, s32[]), s32[1024]{0}, u32[]) async-start(input.1, input.2, input.3), calls=%async_wrapped async-done = s32[1024]{0} async-done(async-start), calls=async_wrapped ROOT tuple = (s32[1024]{0}, s32[256]{0}, s32[], pred[]) tuple(async-done, input.2, input.3, input.4) } ENTRY main { input.1 = s32[256]{0} parameter(0) input.2 = s32[] parameter(1) input.3 = pred[] parameter(2) broadcast = s32[1024]{0} broadcast(input.2), dimensions={} while_tuple = (s32[1024]{0}, s32[256]{0}, s32[], pred[]) tuple(broadcast, input.1, input.2, input.3) while = (s32[1024]{0}, s32[256]{0}, s32[], pred[]) while(while_tuple), condition=condition, body=body ROOT gte = s32[1024]{0} get-tuple-element(while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<xla::HloModule> module, ParseAndReturnVerifiedModule(kModuleString)); CopyInsertion copy_insertion(nullptr, -1); ASSERT_IS_OK(copy_insertion.Run(module.get()).status()); VLOG(2) << module->ToString(); EXPECT_EQ(CountCopies(*module), 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/copy_insertion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/copy_insertion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f478e72d-13d7-41bc-b552-c5d252f61f35
cpp
google/arolla
decision_forest_operator
arolla/decision_forest/expr_operator/decision_forest_operator.cc
arolla/decision_forest/expr_operator/decision_forest_operator_test.cc
#include "arolla/decision_forest/expr_operator/decision_forest_operator.h" #include <algorithm> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { std::vector<int> GetRequiredInputIds( const absl::flat_hash_map<int, QTypePtr>& required_types) { std::vector<int> result; result.reserve(required_types.size()); for (const auto& [id, _] : required_types) { result.push_back(id); } return result; } } DecisionForestOperator::DecisionForestOperator( DecisionForestPtr forest, std::vector<TreeFilter> tree_filters) : DecisionForestOperator(GetRequiredInputIds(forest->GetRequiredQTypes()), forest, std::move(tree_filters)) {} DecisionForestOperator::DecisionForestOperator( DecisionForestPtr forest, std::vector<TreeFilter> tree_filters, const absl::flat_hash_map<int, QTypePtr>& required_types) : DecisionForestOperator(GetRequiredInputIds(required_types), std::move(forest), std::move(tree_filters)) {} DecisionForestOperator::DecisionForestOperator( std::vector<int> required_input_ids, DecisionForestPtr forest, std::vector<TreeFilter> tree_filters) : BasicExprOperator( "anonymous.decision_forest_operator", expr::ExprOperatorSignature::MakeVariadicArgs(), "Evaluates decision forest stored in the operator state.", FingerprintHasher("::arolla::DecisionForestOperator") .Combine(forest->fingerprint()) .CombineSpan(tree_filters) .Finish()), forest_(std::move(forest)), tree_filters_(std::move(tree_filters)), required_input_ids_(std::move(required_input_ids)) { std::sort(required_input_ids_.begin(), required_input_ids_.end()); } absl::StatusOr<QTypePtr> DecisionForestOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { int last_forest_input_id = required_input_ids_.empty() ? -1 : required_input_ids_.back(); if (last_forest_input_id >= static_cast<int>(input_qtypes.size())) { return absl::InvalidArgumentError(absl::StrFormat( "not enough arguments for the decision forest: expected at least %d, " "got %d", last_forest_input_id + 1, input_qtypes.size())); } bool batched = !input_qtypes.empty() && !required_input_ids_.empty() && IsArrayLikeQType(input_qtypes[required_input_ids_[0]]); for (int id : required_input_ids_) { if (IsArrayLikeQType(input_qtypes[id]) != batched) { DCHECK(!required_input_ids_.empty()); return absl::InvalidArgumentError(absl::StrFormat( "either all forest inputs must be scalars or all forest inputs " "must be arrays, but arg[%d] is %s and arg[%d] is %s", required_input_ids_[0], input_qtypes[required_input_ids_[0]]->name(), id, input_qtypes[id]->name())); } } QTypePtr output_type; if (batched) { DCHECK(!required_input_ids_.empty()); ASSIGN_OR_RETURN(const ArrayLikeQType* array_type, ToArrayLikeQType(input_qtypes[required_input_ids_[0]])); ASSIGN_OR_RETURN(output_type, array_type->WithValueQType(GetQType<float>())); } else { output_type = GetQType<float>(); } return MakeTupleQType( std::vector<QTypePtr>(tree_filters_.size(), output_type)); } }
#include "arolla/decision_forest/expr_operator/decision_forest_operator.h" #include <cstdint> #include <limits> #include <memory> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" #include "arolla/decision_forest/split_conditions/set_of_values_split_condition.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/tuple_qtype.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::HasSubstr; constexpr float inf = std::numeric_limits<float>::infinity(); constexpr auto S = DecisionTreeNodeId::SplitNodeId; constexpr auto A = DecisionTreeNodeId::AdjustmentId; absl::StatusOr<DecisionForestPtr> CreateForest() { std::vector<DecisionTree> trees(2); trees[0].adjustments = {0.5, 1.5, 2.5, 3.5}; trees[0].tag.submodel_id = 0; trees[0].split_nodes = { {S(1), S(2), IntervalSplit(0, 1.5, inf)}, {A(0), A(1), SetOfValuesSplit<int64_t>(1, {5}, false)}, {A(2), A(3), IntervalSplit(0, -inf, 10)}}; trees[1].adjustments = {5}; trees[1].tag.submodel_id = 1; return DecisionForest::FromTrees(std::move(trees)); } TEST(DecisionForestOperatorTest, GetOutputQType) { ASSERT_OK_AND_ASSIGN(const DecisionForestPtr forest, CreateForest()); { auto forest_op = std::make_shared<DecisionForestOperator>( forest, std::vector<TreeFilter>{}); EXPECT_THAT(forest_op->GetOutputQType({GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("not enough arguments for the decision " "forest: expected at least 2, got 1"))); EXPECT_THAT( forest_op->GetOutputQType( {GetQType<float>(), GetDenseArrayQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("either all forest inputs must be scalars or all " "forest inputs must be arrays, but arg[0] is " "FLOAT32 and arg[1] is DENSE_ARRAY_FLOAT32"))); EXPECT_THAT( forest_op->GetOutputQType({GetQType<float>(), GetQType<float>()}), IsOkAndHolds(MakeTupleQType({}))); } { auto forest_op = std::make_shared<DecisionForestOperator>( forest, std::vector<TreeFilter>{TreeFilter{.submodels = {0}}, TreeFilter{.submodels = {1, 2}}}); EXPECT_THAT(forest_op->GetOutputQType({GetQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("not enough arguments for the decision " "forest: expected at least 2, got 1"))); EXPECT_THAT( forest_op->GetOutputQType( {GetQType<float>(), GetDenseArrayQType<float>()}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("either all forest inputs must be scalars or all " "forest inputs must be arrays, but arg[0] is " "FLOAT32 and arg[1] is DENSE_ARRAY_FLOAT32"))); EXPECT_THAT( forest_op->GetOutputQType({GetQType<float>(), GetQType<float>()}), IsOkAndHolds(MakeTupleQType({GetQType<float>(), GetQType<float>()}))); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/expr_operator/decision_forest_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/expr_operator/decision_forest_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
51570f0d-4ef4-48ce-8d82-5c34931cc933
cpp
google/quiche
array_output_buffer
quiche/http2/core/array_output_buffer.cc
quiche/http2/core/array_output_buffer_test.cc
#include "quiche/http2/core/array_output_buffer.h" #include <cstdint> namespace spdy { void ArrayOutputBuffer::Next(char** data, int* size) { *data = current_; *size = capacity_ > 0 ? capacity_ : 0; } void ArrayOutputBuffer::AdvanceWritePtr(int64_t count) { current_ += count; capacity_ -= count; } uint64_t ArrayOutputBuffer::BytesFree() const { return capacity_; } }
#include "quiche/http2/core/array_output_buffer.h" #include <cstdint> #include <cstring> #include "quiche/common/platform/api/quiche_test.h" namespace spdy { namespace test { TEST(ArrayOutputBufferTest, InitializedFromArray) { char array[100]; ArrayOutputBuffer buffer(array, sizeof(array)); EXPECT_EQ(sizeof(array), buffer.BytesFree()); EXPECT_EQ(0u, buffer.Size()); EXPECT_EQ(array, buffer.Begin()); } TEST(ArrayOutputBufferTest, WriteAndReset) { char array[100]; ArrayOutputBuffer buffer(array, sizeof(array)); char* dst; int size; buffer.Next(&dst, &size); ASSERT_GT(size, 1); ASSERT_NE(nullptr, dst); const int64_t written = size / 2; memset(dst, 'x', written); buffer.AdvanceWritePtr(written); EXPECT_EQ(static_cast<uint64_t>(size) - written, buffer.BytesFree()); EXPECT_EQ(static_cast<uint64_t>(written), buffer.Size()); buffer.Reset(); EXPECT_EQ(sizeof(array), buffer.BytesFree()); EXPECT_EQ(0u, buffer.Size()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/core/array_output_buffer.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/core/array_output_buffer_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
f5f375a3-9c49-4b88-aed3-8a4b684c5d55
cpp
tensorflow/tensorflow
sparse_tensor_slice_dataset_op
tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc
tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op_test.cc
#include <numeric> #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { namespace data { namespace { template <typename T> class Dataset : public DatasetBase { public: explicit Dataset(OpKernelContext* ctx, const sparse::SparseTensor& sparse_tensor) : DatasetBase(DatasetContext(ctx)), sparse_tensor_(sparse_tensor), dtypes_({DT_INT64, sparse_tensor.dtype(), DT_INT64}), shapes_({{-1, sparse_tensor.dims() - 1}, {-1}, {sparse_tensor.dims() - 1}}) {} std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(typename Iterator::Params{ this, strings::StrCat(prefix, "::SparseTensorSlice")}); } const DataTypeVector& output_dtypes() const override { return dtypes_; } const std::vector<PartialTensorShape>& output_shapes() const override { return shapes_; } string DebugString() const override { return "SparseTensorSliceDatasetOp::Dataset"; } int64_t CardinalityInternal(CardinalityOptions options) const override { return sparse_tensor_.shape()[0]; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { return absl::OkStatus(); } Status CheckExternalState() const override { return absl::OkStatus(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* indices_node; TF_RETURN_IF_ERROR(b->AddTensor(sparse_tensor_.indices(), &indices_node)); Node* value_node; TF_RETURN_IF_ERROR(b->AddTensor(sparse_tensor_.values(), &value_node)); Node* dense_shape_node; std::vector<int64_t> dense_shape; dense_shape.reserve(sparse_tensor_.shape().size()); for (int i = 0; i < sparse_tensor_.shape().size(); i++) dense_shape.emplace_back(sparse_tensor_.shape()[i]); TF_RETURN_IF_ERROR(b->AddVector(dense_shape, &dense_shape_node)); AttrValue val_dtype; b->BuildAttrValue(sparse_tensor_.dtype(), &val_dtype); TF_RETURN_IF_ERROR( b->AddDataset(this, {indices_node, value_node, dense_shape_node}, {{"Tvalues", val_dtype}}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset<T>> { public: explicit Iterator(const typename Iterator::Params& params) : DatasetIterator<Dataset<T>>(params), num_elements_(params.dataset->sparse_tensor_.shape()[0]), dense_shape_(DT_INT64, {params.dataset->sparse_tensor_.dims() - 1}), group_iterable_(params.dataset->sparse_tensor_.group({0})), iter_(group_iterable_.begin()) { for (size_t i = 0; i < dense_shape_.NumElements(); ++i) { dense_shape_.vec<int64_t>()(i) = params.dataset->sparse_tensor_.shape()[i + 1]; } } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); if (i_ == num_elements_) { *end_of_sequence = true; return absl::OkStatus(); } out_tensors->clear(); out_tensors->reserve(3); const int rank = Iterator::dataset()->sparse_tensor_.dims(); if (i_ > next_non_empty_i_ && iter_ != group_iterable_.end()) { sparse::Group group = *iter_; const auto indices = group.indices(); const auto values = group.values<T>(); const int64_t num_entries = values.size(); next_non_empty_i_ = indices(0, 0); next_indices_ = Tensor(DT_INT64, {num_entries, rank - 1}); next_values_ = Tensor(DataTypeToEnum<T>::value, {num_entries}); auto next_indices_t = next_indices_.matrix<int64_t>(); auto next_values_t = next_values_.vec<T>(); for (int64_t i = 0; i < num_entries; ++i) { for (int d = 1; d < rank; ++d) { next_indices_t(i, d - 1) = indices(i, d); } next_values_t(i) = values(i); } ++iter_; } if (i_ == next_non_empty_i_) { out_tensors->push_back(std::move(next_indices_)); out_tensors->push_back(std::move(next_values_)); out_tensors->push_back(dense_shape_); next_non_empty_i_ = kNextNonEmptyUnknown; } else { DCHECK(i_ < next_non_empty_i_ || iter_ == group_iterable_.end()); out_tensors->push_back(Tensor(DT_INT64, TensorShape({0, rank - 1}))); out_tensors->push_back(Tensor(DataTypeToEnum<T>::value, {0})); out_tensors->push_back(dense_shape_); } ++i_; *end_of_sequence = false; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeSourceNode(std::move(args)); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar(Iterator::prefix(), "i", i_)); TF_RETURN_IF_ERROR( writer->WriteScalar(Iterator::prefix(), "iter_loc", iter_.loc())); TF_RETURN_IF_ERROR(writer->WriteScalar( Iterator::prefix(), "next_non_empty_i_", next_non_empty_i_)); if (i_ <= next_non_empty_i_) { TF_RETURN_IF_ERROR(writer->WriteTensor(Iterator::prefix(), "next_indices_", next_indices_)); TF_RETURN_IF_ERROR(writer->WriteTensor(Iterator::prefix(), "next_values_", next_values_)); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(reader->ReadScalar(Iterator::prefix(), "i", &i_)); int64_t iter_loc; TF_RETURN_IF_ERROR( reader->ReadScalar(Iterator::prefix(), "iter_loc", &iter_loc)); iter_ = group_iterable_.at(iter_loc); TF_RETURN_IF_ERROR(reader->ReadScalar( Iterator::prefix(), "next_non_empty_i_", &next_non_empty_i_)); if (i_ <= next_non_empty_i_) { TF_RETURN_IF_ERROR(reader->ReadTensor(Iterator::prefix(), "next_indices_", &next_indices_)); TF_RETURN_IF_ERROR(reader->ReadTensor(Iterator::prefix(), "next_values_", &next_values_)); } return absl::OkStatus(); } private: const int64_t num_elements_; Tensor dense_shape_; mutex mu_; sparse::GroupIterable group_iterable_ TF_GUARDED_BY(mu_); sparse::GroupIterable::IteratorStep iter_ TF_GUARDED_BY(mu_); int64_t i_ TF_GUARDED_BY(mu_) = 0; const int64_t kNextNonEmptyUnknown = -1; int64_t next_non_empty_i_ TF_GUARDED_BY(mu_) = kNextNonEmptyUnknown; Tensor next_indices_ TF_GUARDED_BY(mu_); Tensor next_values_ TF_GUARDED_BY(mu_); }; const sparse::SparseTensor sparse_tensor_; const DataTypeVector dtypes_; const std::vector<PartialTensorShape> shapes_; }; template <typename T> class SparseTensorSliceDatasetOp : public DatasetOpKernel { public: explicit SparseTensorSliceDatasetOp(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) {} void MakeDataset(OpKernelContext* ctx, DatasetBase** output) override { const Tensor* indices; OP_REQUIRES_OK(ctx, ctx->input("indices", &indices)); const Tensor* values; OP_REQUIRES_OK(ctx, ctx->input("values", &values)); const Tensor* dense_shape; OP_REQUIRES_OK(ctx, ctx->input("dense_shape", &dense_shape)); OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(indices->shape()), errors::InvalidArgument("Input indices must be a matrix. Got: ", indices->shape().DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(values->shape()), errors::InvalidArgument("Input values must be a vector. Got: ", values->shape().DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(dense_shape->shape()), errors::InvalidArgument("Input shape must be a vector. Got: ", dense_shape->shape().DebugString())); OP_REQUIRES( ctx, values->shape().dim_size(0) == indices->shape().dim_size(0), errors::InvalidArgument( "Number of values must match first dimension of indices. ", "Got ", values->shape().dim_size(0), " values, indices shape: ", indices->shape().DebugString())); OP_REQUIRES( ctx, dense_shape->shape().dim_size(0) == indices->shape().dim_size(1), errors::InvalidArgument( "Number of dimensions must match second dimension of indices. ", "Got ", dense_shape->shape().dim_size(0), " dimensions, indices shape: ", indices->shape().DebugString())); OP_REQUIRES(ctx, dense_shape->NumElements() > 0, errors::InvalidArgument( "The shape argument requires at least one element.")); int64_t previous_batch_index = -1; for (int64_t i = 0; i < indices->dim_size(0); ++i) { int64_t next_batch_index = indices->matrix<int64_t>()(i, 0); OP_REQUIRES( ctx, next_batch_index >= previous_batch_index, errors::Unimplemented("The SparseTensor must be ordered in the batch " "dimension; handling arbitrarily ordered input " "is not currently supported.")); previous_batch_index = next_batch_index; } absl::InlinedVector<int64_t, 8UL> std_order(dense_shape->NumElements(), 0); TensorShape shape; OP_REQUIRES_OK(ctx, TensorShape::BuildTensorShape( dense_shape->vec<int64_t>(), &shape)); sparse::SparseTensor tensor; OP_REQUIRES_OK(ctx, sparse::SparseTensor::Create(*indices, *values, shape, std_order, &tensor)); *output = new Dataset<T>(ctx, std::move(tensor)); } private: }; #define REGISTER_DATASET_KERNEL(type) \ REGISTER_KERNEL_BUILDER(Name("SparseTensorSliceDataset") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("Tvalues"), \ SparseTensorSliceDatasetOp<type>); TF_CALL_DATASET_TYPES(REGISTER_DATASET_KERNEL); #undef REGISTER_DATASET_KERNEL } } }
#include <string> #include <utility> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "sparse_tensor_slice_dataset"; constexpr char kDatasetType[] = "SparseTensorSlice"; class SparseTensorSliceDatasetParams : public DatasetParams { public: SparseTensorSliceDatasetParams(Tensor indices, Tensor values, Tensor dense_shape, DataType tvalues, string node_name) : DatasetParams({tvalues}, {PartialTensorShape({})}, std::move(node_name)), indices_(std::move(indices)), values_(std::move(values)), dense_shape_(std::move(dense_shape)), tvalues_(tvalues) { iterator_prefix_ = "Iterator"; } std::vector<Tensor> GetInputTensors() const override { return {indices_, values_, dense_shape_}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back("indices"); input_names->emplace_back("values"); input_names->emplace_back("dense_shape"); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back("Tvalues", tvalues_); return absl::OkStatus(); } string dataset_type() const override { return kDatasetType; } private: Tensor indices_; Tensor values_; Tensor dense_shape_; DataType tvalues_; }; class SparseTensorSliceDatasetOpTest : public DatasetOpsTestBase {}; SparseTensorSliceDatasetParams TwoDimsSparseTensorSliceDatasetParams() { return SparseTensorSliceDatasetParams( CreateTensor<int64_t>({2, 2}, {0, 0, 1, 1}), CreateTensor<int32>({2}, {888, 999}), CreateTensor<int64_t>({2}, {2, 2}), DT_INT32, kNodeName); } SparseTensorSliceDatasetParams ThreeDimsSparseTensorSliceDatasetParams() { return SparseTensorSliceDatasetParams( CreateTensor<int64_t>({2, 3}, {0, 0, 0, 1, 1, 1}), CreateTensor<double>({2}, {888.0, 999.0}), CreateTensor<int64_t>({3}, {2, 2, 2}), DT_DOUBLE, kNodeName); } SparseTensorSliceDatasetParams FourDimsSparseTensorSliceDatasetParams() { return SparseTensorSliceDatasetParams( CreateTensor<int64_t>({2, 4}, {0, 0, 0, 0, 1, 1, 1, 1}), CreateTensor<tstring>({2}, {"a", "b"}), CreateTensor<int64_t>({4}, {3, 2, 2, 2}), DT_STRING, kNodeName); } SparseTensorSliceDatasetParams FiveDimsSparseTensorSliceDatasetParams() { return SparseTensorSliceDatasetParams( CreateTensor<int64_t>({2, 5}, {0, 0, 0, 0, 0, 1, 1, 1, 1, 1}), CreateTensor<int32>({2}, {888, 999}), CreateTensor<int64_t>({5}, {3, 2, 2, 2, 2}), DT_INT32, kNodeName); } template <typename T> struct GetNextTestCase { T dataset_params; std::vector<std::vector<Tensor>> expected_outputs; }; std::vector<GetNextTestCase<SparseTensorSliceDatasetParams>> GetNextTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), {{ CreateTensor<int64_t>({1, 1}, {0}), CreateTensor<int32>({1}, {888}), CreateTensor<int64_t>({1}, {2})}, { CreateTensor<int64_t>({1, 1}, {1}), CreateTensor<int32>({1}, {999}), CreateTensor<int64_t>({1}, {2})}}}, {ThreeDimsSparseTensorSliceDatasetParams(), {{ CreateTensor<int64_t>({1, 2}, {0, 0}), CreateTensor<double>({1}, {888.0}), CreateTensor<int64_t>({2}, {2, 2})}, {{ CreateTensor<int64_t>({1, 2}, {1, 1})}, { CreateTensor<double>({1}, {999.0})}, { CreateTensor<int64_t>({2}, {2, 2})}}}}, {FourDimsSparseTensorSliceDatasetParams(), {{ CreateTensor<int64_t>({1, 3}, {0, 0, 0}), CreateTensor<tstring>({1}, {"a"}), CreateTensor<int64_t>({3}, {2, 2, 2})}, { CreateTensor<int64_t>({1, 3}, {1, 1, 1}), CreateTensor<tstring>({1}, {"b"}), CreateTensor<int64_t>({3}, {2, 2, 2})}, { CreateTensor<int64_t>({0, 3}, {}), CreateTensor<tstring>({0}, {}), CreateTensor<int64_t>({3}, {2, 2, 2})}}}, {FiveDimsSparseTensorSliceDatasetParams(), { { CreateTensor<int64_t>({1, 4}, {0, 0, 0, 0}), CreateTensor<int32>({1}, {888}), CreateTensor<int64_t>({4}, {2, 2, 2, 2})}, { CreateTensor<int64_t>({1, 4}, {1, 1, 1, 1}), CreateTensor<int32>({1}, {999}), CreateTensor<int64_t>({4}, {2, 2, 2, 2})}, { CreateTensor<int64_t>({0, 4}, {}), CreateTensor<int32>({0}, {}), CreateTensor<int64_t>({4}, {2, 2, 2, 2})}}}}; } class ParameterizedGetNextTest : public SparseTensorSliceDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<SparseTensorSliceDatasetParams>> {}; TEST_P(ParameterizedGetNextTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; auto expected_outputs_it = test_case.expected_outputs.begin(); while (!end_of_sequence) { TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); if (!end_of_sequence) { TF_EXPECT_OK(ExpectEqual(out_tensors[0], expected_outputs_it->at(0))); TF_EXPECT_OK(ExpectEqual(out_tensors[1], expected_outputs_it->at(1))); TF_EXPECT_OK(ExpectEqual(out_tensors[2], expected_outputs_it->at(2))); expected_outputs_it++; } } EXPECT_EQ(expected_outputs_it, test_case.expected_outputs.end()); } INSTANTIATE_TEST_CASE_P(SparseTensorSliceDatasetOpTest, ParameterizedGetNextTest, ::testing::ValuesIn(GetNextTestCases())); TEST_F(SparseTensorSliceDatasetOpTest, DatasetTypeString) { auto dataset_params = TwoDimsSparseTensorSliceDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString(name_utils::OpName(kDatasetType))); } TEST_F(SparseTensorSliceDatasetOpTest, DatasetNodeName) { auto dataset_params = TwoDimsSparseTensorSliceDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } std::vector<DatasetOutputDtypesTestCase<SparseTensorSliceDatasetParams>> DatasetOutputDtypesTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_INT32, DT_INT64}}, {ThreeDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_DOUBLE, DT_INT64}}, {FourDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_STRING, DT_INT64}}, {FiveDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_INT32, DT_INT64}}}; } DATASET_OUTPUT_DTYPES_TEST_P(SparseTensorSliceDatasetOpTest, SparseTensorSliceDatasetParams, DatasetOutputDtypesTestCases()) std::vector<DatasetOutputShapesTestCase<SparseTensorSliceDatasetParams>> DatasetOutputShapesTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 1}), PartialTensorShape({1}), PartialTensorShape({1})}}, {ThreeDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 2}), PartialTensorShape({1}), PartialTensorShape({2})}}, {FourDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 3}), PartialTensorShape({1}), PartialTensorShape({3})}}, {FiveDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 4}), PartialTensorShape({1}), PartialTensorShape({4})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(SparseTensorSliceDatasetOpTest, SparseTensorSliceDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<SparseTensorSliceDatasetParams>> CardinalityTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), 2}, {ThreeDimsSparseTensorSliceDatasetParams(), 2}, {FourDimsSparseTensorSliceDatasetParams(), 3}, {FiveDimsSparseTensorSliceDatasetParams(), 3}}; } DATASET_CARDINALITY_TEST_P(SparseTensorSliceDatasetOpTest, SparseTensorSliceDatasetParams, CardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<SparseTensorSliceDatasetParams>> IteratorOutputDtypesTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_INT32, DT_INT64}}, {ThreeDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_DOUBLE, DT_INT64}}, {FourDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_STRING, DT_INT64}}, {FiveDimsSparseTensorSliceDatasetParams(), {DT_INT64, DT_INT32, DT_INT64}}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(SparseTensorSliceDatasetOpTest, SparseTensorSliceDatasetParams, IteratorOutputDtypesTestCases()) std::vector<IteratorOutputShapesTestCase<SparseTensorSliceDatasetParams>> IteratorOutputShapesTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 1}), PartialTensorShape({1}), PartialTensorShape({1})}}, {ThreeDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 2}), PartialTensorShape({1}), PartialTensorShape({2})}}, {FourDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 3}), PartialTensorShape({1}), PartialTensorShape({3})}}, {FiveDimsSparseTensorSliceDatasetParams(), {PartialTensorShape({1, 4}), PartialTensorShape({1}), PartialTensorShape({4})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(SparseTensorSliceDatasetOpTest, SparseTensorSliceDatasetParams, IteratorOutputShapesTestCases()) TEST_F(SparseTensorSliceDatasetOpTest, IteratorPrefix) { auto dataset_params = TwoDimsSparseTensorSliceDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( kDatasetType, dataset_params.iterator_prefix()))); } template <typename T> struct IteratorSaveAndRestoreTestCase { T dataset_params; std::vector<int> breakpoints; std::vector<std::vector<Tensor>> expected_outputs; }; std::vector<IteratorSaveAndRestoreTestCase<SparseTensorSliceDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{TwoDimsSparseTensorSliceDatasetParams(), {0, 1, 2}, {{ CreateTensor<int64_t>({1, 1}, {0}), CreateTensor<int32>({1}, {888}), CreateTensor<int64_t>({1}, {2})}, { CreateTensor<int64_t>({1, 1}, {1}), CreateTensor<int32>({1}, {999}), CreateTensor<int64_t>({1}, {2})}}}, {ThreeDimsSparseTensorSliceDatasetParams(), {0, 1, 2}, {{ CreateTensor<int64_t>({1, 2}, {0, 0}), CreateTensor<double>({1}, {888.0}), CreateTensor<int64_t>({2}, {2, 2})}, {{ CreateTensor<int64_t>({1, 2}, {1, 1})}, { CreateTensor<double>({1}, {999.0})}, { CreateTensor<int64_t>({2}, {2, 2})}}}}, {FourDimsSparseTensorSliceDatasetParams(), {0, 1, 3}, {{ CreateTensor<int64_t>({1, 3}, {0, 0, 0}), CreateTensor<tstring>({1}, {"a"}), CreateTensor<int64_t>({3}, {2, 2, 2})}, { CreateTensor<int64_t>({1, 3}, {1, 1, 1}), CreateTensor<tstring>({1}, {"b"}), CreateTensor<int64_t>({3}, {2, 2, 2})}, { CreateTensor<int64_t>({0, 3}, {}), CreateTensor<tstring>({0}, {}), CreateTensor<int64_t>({3}, {2, 2, 2})}}}, {FiveDimsSparseTensorSliceDatasetParams(), {0, 1, 2}, {{ CreateTensor<int64_t>({1, 4}, {0, 0, 0, 0}), CreateTensor<int32>({1}, {888}), CreateTensor<int64_t>({4}, {2, 2, 2, 2})}, { CreateTensor<int64_t>({1, 4}, {1, 1, 1, 1}), CreateTensor<int32>({1}, {999}), CreateTensor<int64_t>({4}, {2, 2, 2, 2})}, { CreateTensor<int64_t>({0, 4}, {}), CreateTensor<int32>({0}, {}), CreateTensor<int64_t>({4}, {2, 2, 2, 2})}}}}; } class ParameterizedIteratorSaveAndRestoreTest : public SparseTensorSliceDatasetOpTest, public ::testing::WithParamInterface< IteratorSaveAndRestoreTestCase<SparseTensorSliceDatasetParams>> {}; TEST_P(ParameterizedIteratorSaveAndRestoreTest, IteratorSaveAndRestore) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); std::unique_ptr<SerializationContext> serialization_ctx; TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx)); int cur_iteration = 0; bool end_of_sequence = false; int64_t num_slices = dataset_->Cardinality(); std::vector<Tensor> out_tensors; for (int breakpoint : test_case.breakpoints) { while (cur_iteration < breakpoint) { TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); cur_iteration++; } if (breakpoint == 0) { EXPECT_FALSE(end_of_sequence); } else if (breakpoint <= num_slices) { for (int i = 0; i < out_tensors.size(); ++i) { TF_EXPECT_OK(ExpectEqual( out_tensors[0], test_case.expected_outputs[cur_iteration - 1][0])); TF_EXPECT_OK(ExpectEqual( out_tensors[1], test_case.expected_outputs[cur_iteration - 1][1])); TF_EXPECT_OK(ExpectEqual( out_tensors[2], test_case.expected_outputs[cur_iteration - 1][2])); } } else { EXPECT_TRUE(end_of_sequence); } VariantTensorDataWriter writer; TF_ASSERT_OK(iterator_->Save(serialization_ctx.get(), &writer)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); TF_EXPECT_OK(RestoreIterator(iterator_ctx_.get(), &reader, test_case.dataset_params.iterator_prefix(), *dataset_, &iterator_)); } } INSTANTIATE_TEST_CASE_P(SparseTensorSliceDatasetOpTest, ParameterizedIteratorSaveAndRestoreTest, ::testing::ValuesIn(IteratorSaveAndRestoreTestCases())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8c0d2933-3526-4cfe-b392-f834ea6bc8ef
cpp
google/cel-cpp
regex_match_step
eval/eval/regex_match_step.cc
eval/eval/regex_match_step_test.cc
#include "eval/eval/regex_match_step.h" #include <cstdint> #include <cstdio> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "common/casting.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "internal/status_macros.h" #include "re2/re2.h" namespace google::api::expr::runtime { namespace { using ::cel::BoolValue; using ::cel::Cast; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::StringValue; using ::cel::UnknownValue; using ::cel::Value; inline constexpr int kNumRegexMatchArguments = 1; inline constexpr size_t kRegexMatchStepSubject = 0; struct MatchesVisitor final { const RE2& re; bool operator()(const absl::Cord& value) const { if (auto flat = value.TryFlat(); flat.has_value()) { return RE2::PartialMatch(*flat, re); } return RE2::PartialMatch(static_cast<std::string>(value), re); } bool operator()(absl::string_view value) const { return RE2::PartialMatch(value, re); } }; class RegexMatchStep final : public ExpressionStepBase { public: RegexMatchStep(int64_t expr_id, std::shared_ptr<const RE2> re2) : ExpressionStepBase(expr_id, true), re2_(std::move(re2)) {} absl::Status Evaluate(ExecutionFrame* frame) const override { if (!frame->value_stack().HasEnough(kNumRegexMatchArguments)) { return absl::Status(absl::StatusCode::kInternal, "Insufficient arguments supplied for regular " "expression match"); } auto input_args = frame->value_stack().GetSpan(kNumRegexMatchArguments); const auto& subject = input_args[kRegexMatchStepSubject]; if (!subject->Is<cel::StringValue>()) { return absl::Status(absl::StatusCode::kInternal, "First argument for regular " "expression match must be a string"); } bool match = subject.GetString().NativeValue(MatchesVisitor{*re2_}); frame->value_stack().Pop(kNumRegexMatchArguments); frame->value_stack().Push(frame->value_factory().CreateBoolValue(match)); return absl::OkStatus(); } private: const std::shared_ptr<const RE2> re2_; }; class RegexMatchDirectStep final : public DirectExpressionStep { public: RegexMatchDirectStep(int64_t expr_id, std::unique_ptr<DirectExpressionStep> subject, std::shared_ptr<const RE2> re2) : DirectExpressionStep(expr_id), subject_(std::move(subject)), re2_(std::move(re2)) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override { AttributeTrail subject_attr; CEL_RETURN_IF_ERROR(subject_->Evaluate(frame, result, subject_attr)); if (InstanceOf<ErrorValue>(result) || cel::InstanceOf<UnknownValue>(result)) { return absl::OkStatus(); } if (!InstanceOf<StringValue>(result)) { return absl::Status(absl::StatusCode::kInternal, "First argument for regular " "expression match must be a string"); } bool match = Cast<StringValue>(result).NativeValue(MatchesVisitor{*re2_}); result = BoolValue(match); return absl::OkStatus(); } private: std::unique_ptr<DirectExpressionStep> subject_; const std::shared_ptr<const RE2> re2_; }; } std::unique_ptr<DirectExpressionStep> CreateDirectRegexMatchStep( int64_t expr_id, std::unique_ptr<DirectExpressionStep> subject, std::shared_ptr<const RE2> re2) { return std::make_unique<RegexMatchDirectStep>(expr_id, std::move(subject), std::move(re2)); } absl::StatusOr<std::unique_ptr<ExpressionStep>> CreateRegexMatchStep( std::shared_ptr<const RE2> re2, int64_t expr_id) { return std::make_unique<RegexMatchStep>(expr_id, std::move(re2)); } }
#include "eval/eval/regex_match_step.h" #include "google/api/expr/v1alpha1/checked.pb.h" #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/arena.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "eval/public/activation.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_options.h" #include "internal/testing.h" #include "parser/parser.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using google::api::expr::v1alpha1::CheckedExpr; using google::api::expr::v1alpha1::Reference; using ::testing::Eq; using ::testing::HasSubstr; Reference MakeMatchesStringOverload() { Reference reference; reference.add_overload_id("matches_string"); return reference; } TEST(RegexMatchStep, Precompiled) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(auto parsed_expr, parser::Parse("foo.matches('hello')")); CheckedExpr checked_expr; *checked_expr.mutable_expr() = parsed_expr.expr(); *checked_expr.mutable_source_info() = parsed_expr.source_info(); checked_expr.mutable_reference_map()->insert( {checked_expr.expr().id(), MakeMatchesStringOverload()}); InterpreterOptions options; options.enable_regex_precompilation = true; auto expr_builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(expr_builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto expr, expr_builder->CreateExpression(&checked_expr)); activation.InsertValue("foo", CelValue::CreateStringView("hello world!")); ASSERT_OK_AND_ASSIGN(auto result, expr->Evaluate(activation, &arena)); EXPECT_TRUE(result.IsBool()); EXPECT_TRUE(result.BoolOrDie()); } TEST(RegexMatchStep, PrecompiledInvalidRegex) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(auto parsed_expr, parser::Parse("foo.matches('(')")); CheckedExpr checked_expr; *checked_expr.mutable_expr() = parsed_expr.expr(); *checked_expr.mutable_source_info() = parsed_expr.source_info(); checked_expr.mutable_reference_map()->insert( {checked_expr.expr().id(), MakeMatchesStringOverload()}); InterpreterOptions options; options.enable_regex_precompilation = true; auto expr_builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(expr_builder->GetRegistry(), options)); EXPECT_THAT(expr_builder->CreateExpression(&checked_expr), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid_argument"))); } TEST(RegexMatchStep, PrecompiledInvalidProgramTooLarge) { google::protobuf::Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(auto parsed_expr, parser::Parse("foo.matches('hello')")); CheckedExpr checked_expr; *checked_expr.mutable_expr() = parsed_expr.expr(); *checked_expr.mutable_source_info() = parsed_expr.source_info(); checked_expr.mutable_reference_map()->insert( {checked_expr.expr().id(), MakeMatchesStringOverload()}); InterpreterOptions options; options.regex_max_program_size = 1; options.enable_regex_precompilation = true; auto expr_builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterBuiltinFunctions(expr_builder->GetRegistry(), options)); EXPECT_THAT(expr_builder->CreateExpression(&checked_expr), StatusIs(absl::StatusCode::kInvalidArgument, Eq("exceeded RE2 max program size"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/regex_match_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/regex_match_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
b1461e3e-bfdf-4425-90cb-2c455821fae2
cpp
tensorflow/tensorflow
simple_delegate
tensorflow/lite/delegates/utils/simple_delegate.cc
tensorflow/lite/delegates/utils/simple_delegate_test.cc
#include "tensorflow/lite/delegates/utils/simple_delegate.h" #include <stddef.h> #include <stdint.h> #include <limits> #include <memory> #include <string> #include <vector> #include "tensorflow/lite/array.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/utils.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/logger.h" #include "tensorflow/lite/minimal_logging.h" namespace tflite { namespace { TfLiteRegistration GetDelegateKernelRegistration( SimpleDelegateInterface* delegate) { TfLiteRegistration kernel_registration{}; kernel_registration.profiling_string = nullptr; kernel_registration.builtin_code = kTfLiteBuiltinDelegate; kernel_registration.custom_name = delegate->Name(); kernel_registration.version = 1; kernel_registration.free = [](TfLiteContext* context, void* buffer) -> void { delete reinterpret_cast<SimpleDelegateKernelInterface*>(buffer); }; kernel_registration.init = [](TfLiteContext* context, const char* buffer, size_t length) -> void* { const TfLiteDelegateParams* params = reinterpret_cast<const TfLiteDelegateParams*>(buffer); if (params == nullptr) { TF_LITE_KERNEL_LOG(context, "NULL TfLiteDelegateParams passed."); return nullptr; } auto* delegate = reinterpret_cast<SimpleDelegateInterface*>(params->delegate->data_); std::unique_ptr<SimpleDelegateKernelInterface> delegate_kernel( delegate->CreateDelegateKernelInterface()); if (delegate_kernel->Init(context, params) != kTfLiteOk) { return nullptr; } return delegate_kernel.release(); }; kernel_registration.prepare = [](TfLiteContext* context, TfLiteNode* node) -> TfLiteStatus { if (node->user_data == nullptr) { TF_LITE_KERNEL_LOG(context, "Delegate kernel was not initialized"); return kTfLiteError; } SimpleDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleDelegateKernelInterface*>(node->user_data); return delegate_kernel->Prepare(context, node); }; kernel_registration.invoke = [](TfLiteContext* context, TfLiteNode* node) -> TfLiteStatus { SimpleDelegateKernelInterface* delegate_kernel = reinterpret_cast<SimpleDelegateKernelInterface*>(node->user_data); TFLITE_DCHECK(delegate_kernel != nullptr); return delegate_kernel->Eval(context, node); }; return kernel_registration; } TfLiteStatus DelegatePrepare(TfLiteContext* context, TfLiteDelegate* base_delegate) { auto* delegate = reinterpret_cast<SimpleDelegateInterface*>(base_delegate->data_); auto delegate_options = delegate->DelegateOptions(); if (delegate_options.max_delegated_partitions <= 0) delegate_options.max_delegated_partitions = std::numeric_limits<int>::max(); TF_LITE_ENSURE_STATUS(delegate->Initialize(context)); delegates::IsNodeSupportedFn node_supported_fn = [=](TfLiteContext* context, TfLiteNode* node, TfLiteRegistration* registration, std::string* unsupported_details) -> bool { return delegate->IsNodeSupportedByDelegate(registration, node, context); }; delegates::GraphPartitionHelper helper(context, node_supported_fn); TF_LITE_ENSURE_STATUS(helper.Partition(nullptr)); std::vector<int> supported_nodes = helper.GetNodesOfFirstNLargestPartitions( delegate_options.max_delegated_partitions, delegate_options.min_nodes_per_partition); TFLITE_LOG_PROD_ONCE(tflite::TFLITE_LOG_INFO, "%s delegate: %d nodes delegated out of %d nodes with " "%d partitions.\n", delegate->Name(), supported_nodes.size(), helper.num_total_nodes(), helper.num_partitions()); TfLiteRegistration delegate_kernel_registration = GetDelegateKernelRegistration(delegate); return context->ReplaceNodeSubsetsWithDelegateKernels( context, delegate_kernel_registration, BuildTfLiteArray(supported_nodes).get(), base_delegate); } } TfLiteDelegate* TfLiteDelegateFactory::CreateSimpleDelegate( std::unique_ptr<SimpleDelegateInterface> simple_delegate, int64_t flag) { if (simple_delegate == nullptr) { return nullptr; } auto delegate = new TfLiteDelegate{}; delegate->Prepare = &DelegatePrepare; delegate->flags = flag; delegate->data_ = simple_delegate.release(); delegate->CopyFromBufferHandle = [](TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) -> TfLiteStatus { auto* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); return simple_delegate->CopyFromBufferHandle(context, buffer_handle, tensor); }; delegate->CopyToBufferHandle = [](TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle buffer_handle, TfLiteTensor* tensor) -> TfLiteStatus { auto* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); return simple_delegate->CopyToBufferHandle(context, buffer_handle, tensor); }; delegate->FreeBufferHandle = [](TfLiteContext* context, TfLiteDelegate* delegate, TfLiteBufferHandle* buffer_handle) { auto* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); simple_delegate->FreeBufferHandle(context, buffer_handle); }; return delegate; } void TfLiteDelegateFactory::DeleteSimpleDelegate(TfLiteDelegate* delegate) { if (!delegate) return; SimpleDelegateInterface* simple_delegate = reinterpret_cast<SimpleDelegateInterface*>(delegate->data_); delete simple_delegate; delete delegate; } }
#include <stdlib.h> #include <memory> #include <utility> #include <gtest/gtest.h> #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/delegates/utils/dummy_delegate/dummy_delegate.h" #include "tensorflow/lite/interpreter.h" namespace tflite { namespace { class TestDelegate : public ::testing::Test { protected: void SetUp() override { interpreter_ = std::make_unique<Interpreter>(); interpreter_->AddTensors(5); interpreter_->SetInputs({0, 1}); interpreter_->SetOutputs({3, 4}); TfLiteQuantizationParams quant; interpreter_->SetTensorParametersReadWrite(0, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(1, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(2, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(3, kTfLiteFloat32, "", {3}, quant); interpreter_->SetTensorParametersReadWrite(4, kTfLiteFloat32, "", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); void* builtin_data_2 = malloc(sizeof(int)); void* builtin_data_3 = malloc(sizeof(int)); interpreter_->AddNodeWithParameters({0, 0}, {2}, nullptr, 0, builtin_data_1, reg); interpreter_->AddNodeWithParameters({1, 1}, {3}, nullptr, 0, builtin_data_2, reg); interpreter_->AddNodeWithParameters({2, 1}, {4}, nullptr, 0, builtin_data_3, reg); } void TearDown() override { interpreter_.reset(); } protected: std::unique_ptr<Interpreter> interpreter_; }; TEST_F(TestDelegate, BasicDelegate) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; auto delegate = TfLiteDummyDelegateCreateUnique(&options); interpreter_->ModifyGraphWithDelegate(std::move(delegate)); ASSERT_EQ(interpreter_->execution_plan().size(), 1); int node = interpreter_->execution_plan()[0]; const auto* node_and_reg = interpreter_->node_and_registration(node); EXPECT_STREQ("DummyDelegate", node_and_reg->second.custom_name); EXPECT_EQ(1, node_and_reg->second.version); const TfLiteDelegateParams* params = static_cast<const TfLiteDelegateParams*>( node_and_reg->first.builtin_data); ASSERT_EQ(params->nodes_to_replace->size, 3); EXPECT_EQ(params->nodes_to_replace->data[0], 0); EXPECT_EQ(params->nodes_to_replace->data[1], 1); EXPECT_EQ(params->nodes_to_replace->data[2], 2); ASSERT_EQ(params->input_tensors->size, 2); EXPECT_EQ(params->input_tensors->data[0], 0); EXPECT_EQ(params->input_tensors->data[1], 1); ASSERT_EQ(params->output_tensors->size, 2); EXPECT_EQ(params->output_tensors->data[0], 3); EXPECT_EQ(params->output_tensors->data[1], 4); } TEST_F(TestDelegate, NoNodesToDelegate) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinSub; auto delegate = TfLiteDummyDelegateCreateUnique(&options); interpreter_->ModifyGraphWithDelegate(std::move(delegate)); ASSERT_EQ(interpreter_->execution_plan().size(), 3); } TEST_F(TestDelegate, DelegateFailedPrepare) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; options.error_during_prepare = true; auto delegate = TfLiteDummyDelegateCreateUnique(&options); ASSERT_EQ(kTfLiteDelegateError, interpreter_->ModifyGraphWithDelegate(std::move(delegate))); } TEST_F(TestDelegate, DelegateFailedInvoke) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; options.error_during_invoke = true; auto delegate = TfLiteDummyDelegateCreateUnique(&options); ASSERT_EQ(kTfLiteOk, interpreter_->ModifyGraphWithDelegate(std::move(delegate))); ASSERT_EQ(kTfLiteError, interpreter_->Invoke()); } TEST_F(TestDelegate, DelegateFailedInit) { DummyDelegateOptions options = TfLiteDummyDelegateOptionsDefault(); options.allowed_builtin_code = kTfLiteBuiltinAdd; options.error_during_init = true; auto delegate = TfLiteDummyDelegateCreateUnique(&options); ASSERT_EQ(kTfLiteDelegateError, interpreter_->ModifyGraphWithDelegate(std::move(delegate))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/simple_delegate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/simple_delegate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1c360f4d-582c-463d-a680-29eb0516227f
cpp
google/arolla
iterator
arolla/util/iterator.h
arolla/util/iterator_test.cc
#ifndef AROLLA_UTIL_ITERATOR_H_ #define AROLLA_UTIL_ITERATOR_H_ #include <iterator> namespace arolla { template <typename Array> class ConstArrayIterator { public: using iterator_category = std::random_access_iterator_tag; using value_type = typename Array::value_type; using pointer = const value_type*; using reference = decltype(std::declval<const Array>()[0]); using size_type = typename Array::size_type; using difference_type = typename Array::difference_type; ConstArrayIterator() : arr_(nullptr), pos_(0) {} ConstArrayIterator(const Array* arr, size_type pos) : arr_(arr), pos_(pos) {} reference operator*() const { return (*arr_)[pos_]; } pointer operator->() const { return &**this; } reference operator[](size_type n) const { return *(*this + n); } ConstArrayIterator& operator+=(difference_type n) { pos_ += n; return *this; } ConstArrayIterator& operator-=(difference_type n) { return *this += -n; } ConstArrayIterator& operator++() { return *this += 1; } ConstArrayIterator& operator--() { return *this -= 1; } ConstArrayIterator operator++(int) { ConstArrayIterator t = *this; ++*this; return t; } ConstArrayIterator operator--(int) { ConstArrayIterator t = *this; --*this; return t; } friend ConstArrayIterator operator+(ConstArrayIterator v, difference_type n) { return v += n; } friend ConstArrayIterator operator+(difference_type n, ConstArrayIterator v) { return v += n; } friend ConstArrayIterator operator-(ConstArrayIterator v, difference_type n) { return v -= n; } friend difference_type operator-(const ConstArrayIterator& a, const ConstArrayIterator& b) { return static_cast<difference_type>(a.pos_) - static_cast<difference_type>(b.pos_); } friend bool operator==(ConstArrayIterator a, ConstArrayIterator b) { return a.pos_ == b.pos_; } friend bool operator!=(ConstArrayIterator a, ConstArrayIterator b) { return !(a == b); } friend bool operator<(ConstArrayIterator a, ConstArrayIterator b) { return b - a > 0; } friend bool operator>(ConstArrayIterator a, ConstArrayIterator b) { return b < a; } friend bool operator<=(ConstArrayIterator a, ConstArrayIterator b) { return !(a > b); } friend bool operator>=(ConstArrayIterator a, ConstArrayIterator b) { return !(a < b); } private: const Array* arr_; size_type pos_; }; } #endif
#include "arolla/util/iterator.h" #include <algorithm> #include <cstdint> #include <iterator> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" using ::testing::ElementsAre; namespace arolla { namespace { class FloatGeneratorArray { public: using value_type = float; using size_type = int64_t; using difference_type = int64_t; using const_iterator = ConstArrayIterator<FloatGeneratorArray>; explicit FloatGeneratorArray(int64_t size) : size_(size) {} float operator[](int64_t i) const { return i * 10.0f; } const_iterator begin() const { return const_iterator{this, 0}; } const_iterator end() const { return const_iterator{this, size_}; } private: int64_t size_; }; TEST(Iterator, IteratorOverFloatGeneratorArray) { FloatGeneratorArray array(10); auto iter1 = array.begin(); EXPECT_EQ(*(iter1++), 0.0f); EXPECT_EQ(*iter1, 10.0f); EXPECT_EQ(*(++iter1), 20.0f); EXPECT_EQ(*(iter1--), 20.0f); EXPECT_EQ(*(--iter1), 0.0f); EXPECT_EQ(iter1[5], 50.0f); EXPECT_EQ(iter1, array.begin()); EXPECT_NE(iter1, array.end()); EXPECT_LT(array.begin(), array.end()); EXPECT_GT(array.end(), array.begin()); EXPECT_EQ(*(iter1 += 9), 90.0f); EXPECT_EQ(*(iter1 -= 2), 70.0f); EXPECT_EQ(iter1, array.begin() + 7); EXPECT_EQ(iter1, 7 + array.begin()); EXPECT_EQ(iter1, array.end() - 3); EXPECT_EQ(iter1 - array.begin(), 7); EXPECT_LE(array.begin() + 10, array.end()); EXPECT_GE(array.end(), array.begin() + 10); EXPECT_THAT(array, ElementsAre(0.0f, 10.0f, 20.0f, 30.0f, 40.0f, 50.0f, 60.0f, 70.0f, 80.0f, 90.0f)); } TEST(Iterator, Algorithms) { FloatGeneratorArray array(5); std::vector<float> copy1(array.begin(), array.end()); EXPECT_THAT(copy1, ElementsAre(0.f, 10.f, 20.f, 30.f, 40.f)); std::vector<float> copy2; std::copy_if(array.begin(), array.end(), std::back_inserter(copy2), [](float value) { return value > 12.f; }); EXPECT_THAT(copy2, ElementsAre(20.f, 30.f, 40.f)); std::vector<float> copy3; for (float val : array) { copy3.push_back(val); } EXPECT_THAT(copy3, ElementsAre(0.f, 10.f, 20.f, 30.f, 40.f)); } TEST(Iterator, IteratorOverStdVector) { using StringContainer = std::vector<std::string>; StringContainer strings{"one", "two", "three"}; ConstArrayIterator<StringContainer> my_iter(&strings, 0); EXPECT_EQ(*my_iter, "one"); EXPECT_EQ(my_iter[2], "three"); EXPECT_EQ(my_iter->size(), 3); auto strings_copy = strings; EXPECT_TRUE(std::equal(strings_copy.begin(), strings_copy.end(), my_iter)); EXPECT_THAT(strings, ElementsAre("one", "two", "three")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/iterator.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/iterator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
2635ad77-cef5-4bfd-a7c1-071b30efa586
cpp
google/quiche
quic_utils
quiche/quic/core/quic_utils.cc
quiche/quic/core/quic_utils_test.cc
#include "quiche/quic/core/quic_utils.h" #include <algorithm> #include <cstdint> #include <cstring> #include <limits> #include <string> #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/numeric/int128.h" #include "absl/strings/string_view.h" #include "openssl/sha.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_mem_slice.h" #include "quiche/common/quiche_endian.h" namespace quic { namespace { #if defined(__x86_64__) && \ ((defined(__GNUC__) && \ (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))) || \ defined(__clang__)) #define QUIC_UTIL_HAS_UINT128 1 #endif #ifdef QUIC_UTIL_HAS_UINT128 absl::uint128 IncrementalHashFast(absl::uint128 uhash, absl::string_view data) { static const absl::uint128 kPrime = (static_cast<absl::uint128>(16777216) << 64) + 315; auto hi = absl::Uint128High64(uhash); auto lo = absl::Uint128Low64(uhash); absl::uint128 xhash = (static_cast<absl::uint128>(hi) << 64) + lo; const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); for (size_t i = 0; i < data.length(); ++i) { xhash = (xhash ^ static_cast<uint32_t>(octets[i])) * kPrime; } return absl::MakeUint128(absl::Uint128High64(xhash), absl::Uint128Low64(xhash)); } #endif #ifndef QUIC_UTIL_HAS_UINT128 absl::uint128 IncrementalHashSlow(absl::uint128 hash, absl::string_view data) { static const absl::uint128 kPrime = absl::MakeUint128(16777216, 315); const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); for (size_t i = 0; i < data.length(); ++i) { hash = hash ^ absl::MakeUint128(0, octets[i]); hash = hash * kPrime; } return hash; } #endif absl::uint128 IncrementalHash(absl::uint128 hash, absl::string_view data) { #ifdef QUIC_UTIL_HAS_UINT128 return IncrementalHashFast(hash, data); #else return IncrementalHashSlow(hash, data); #endif } } uint64_t QuicUtils::FNV1a_64_Hash(absl::string_view data) { static const uint64_t kOffset = UINT64_C(14695981039346656037); static const uint64_t kPrime = UINT64_C(1099511628211); const uint8_t* octets = reinterpret_cast<const uint8_t*>(data.data()); uint64_t hash = kOffset; for (size_t i = 0; i < data.length(); ++i) { hash = hash ^ octets[i]; hash = hash * kPrime; } return hash; } absl::uint128 QuicUtils::FNV1a_128_Hash(absl::string_view data) { return FNV1a_128_Hash_Three(data, absl::string_view(), absl::string_view()); } absl::uint128 QuicUtils::FNV1a_128_Hash_Two(absl::string_view data1, absl::string_view data2) { return FNV1a_128_Hash_Three(data1, data2, absl::string_view()); } absl::uint128 QuicUtils::FNV1a_128_Hash_Three(absl::string_view data1, absl::string_view data2, absl::string_view data3) { const absl::uint128 kOffset = absl::MakeUint128( UINT64_C(7809847782465536322), UINT64_C(7113472399480571277)); absl::uint128 hash = IncrementalHash(kOffset, data1); if (data2.empty()) { return hash; } hash = IncrementalHash(hash, data2); if (data3.empty()) { return hash; } return IncrementalHash(hash, data3); } void QuicUtils::SerializeUint128Short(absl::uint128 v, uint8_t* out) { const uint64_t lo = absl::Uint128Low64(v); const uint64_t hi = absl::Uint128High64(v); memcpy(out, &lo, sizeof(lo)); memcpy(out + sizeof(lo), &hi, sizeof(hi) / 2); } #define RETURN_STRING_LITERAL(x) \ case x: \ return #x; std::string QuicUtils::AddressChangeTypeToString(AddressChangeType type) { switch (type) { RETURN_STRING_LITERAL(NO_CHANGE); RETURN_STRING_LITERAL(PORT_CHANGE); RETURN_STRING_LITERAL(IPV4_SUBNET_CHANGE); RETURN_STRING_LITERAL(IPV4_TO_IPV6_CHANGE); RETURN_STRING_LITERAL(IPV6_TO_IPV4_CHANGE); RETURN_STRING_LITERAL(IPV6_TO_IPV6_CHANGE); RETURN_STRING_LITERAL(IPV4_TO_IPV4_CHANGE); } return "INVALID_ADDRESS_CHANGE_TYPE"; } const char* QuicUtils::SentPacketStateToString(SentPacketState state) { switch (state) { RETURN_STRING_LITERAL(OUTSTANDING); RETURN_STRING_LITERAL(NEVER_SENT); RETURN_STRING_LITERAL(ACKED); RETURN_STRING_LITERAL(UNACKABLE); RETURN_STRING_LITERAL(NEUTERED); RETURN_STRING_LITERAL(HANDSHAKE_RETRANSMITTED); RETURN_STRING_LITERAL(LOST); RETURN_STRING_LITERAL(PTO_RETRANSMITTED); RETURN_STRING_LITERAL(NOT_CONTRIBUTING_RTT); } return "INVALID_SENT_PACKET_STATE"; } const char* QuicUtils::QuicLongHeaderTypetoString(QuicLongHeaderType type) { switch (type) { RETURN_STRING_LITERAL(VERSION_NEGOTIATION); RETURN_STRING_LITERAL(INITIAL); RETURN_STRING_LITERAL(RETRY); RETURN_STRING_LITERAL(HANDSHAKE); RETURN_STRING_LITERAL(ZERO_RTT_PROTECTED); default: return "INVALID_PACKET_TYPE"; } } const char* QuicUtils::AckResultToString(AckResult result) { switch (result) { RETURN_STRING_LITERAL(PACKETS_NEWLY_ACKED); RETURN_STRING_LITERAL(NO_PACKETS_NEWLY_ACKED); RETURN_STRING_LITERAL(UNSENT_PACKETS_ACKED); RETURN_STRING_LITERAL(UNACKABLE_PACKETS_ACKED); RETURN_STRING_LITERAL(PACKETS_ACKED_IN_WRONG_PACKET_NUMBER_SPACE); } return "INVALID_ACK_RESULT"; } AddressChangeType QuicUtils::DetermineAddressChangeType( const QuicSocketAddress& old_address, const QuicSocketAddress& new_address) { if (!old_address.IsInitialized() || !new_address.IsInitialized() || old_address == new_address) { return NO_CHANGE; } if (old_address.host() == new_address.host()) { return PORT_CHANGE; } bool old_ip_is_ipv4 = old_address.host().IsIPv4() ? true : false; bool migrating_ip_is_ipv4 = new_address.host().IsIPv4() ? true : false; if (old_ip_is_ipv4 && !migrating_ip_is_ipv4) { return IPV4_TO_IPV6_CHANGE; } if (!old_ip_is_ipv4) { return migrating_ip_is_ipv4 ? IPV6_TO_IPV4_CHANGE : IPV6_TO_IPV6_CHANGE; } const int kSubnetMaskLength = 24; if (old_address.host().InSameSubnet(new_address.host(), kSubnetMaskLength)) { return IPV4_SUBNET_CHANGE; } return IPV4_TO_IPV4_CHANGE; } bool QuicUtils::IsAckable(SentPacketState state) { return state != NEVER_SENT && state != ACKED && state != UNACKABLE; } bool QuicUtils::IsRetransmittableFrame(QuicFrameType type) { switch (type) { case ACK_FRAME: case PADDING_FRAME: case STOP_WAITING_FRAME: case MTU_DISCOVERY_FRAME: case PATH_CHALLENGE_FRAME: case PATH_RESPONSE_FRAME: return false; default: return true; } } bool QuicUtils::IsHandshakeFrame(const QuicFrame& frame, QuicTransportVersion transport_version) { if (!QuicVersionUsesCryptoFrames(transport_version)) { return frame.type == STREAM_FRAME && frame.stream_frame.stream_id == GetCryptoStreamId(transport_version); } else { return frame.type == CRYPTO_FRAME; } } bool QuicUtils::ContainsFrameType(const QuicFrames& frames, QuicFrameType type) { for (const QuicFrame& frame : frames) { if (frame.type == type) { return true; } } return false; } SentPacketState QuicUtils::RetransmissionTypeToPacketState( TransmissionType retransmission_type) { switch (retransmission_type) { case ALL_ZERO_RTT_RETRANSMISSION: return UNACKABLE; case HANDSHAKE_RETRANSMISSION: return HANDSHAKE_RETRANSMITTED; case LOSS_RETRANSMISSION: return LOST; case PTO_RETRANSMISSION: return PTO_RETRANSMITTED; case PATH_RETRANSMISSION: return NOT_CONTRIBUTING_RTT; case ALL_INITIAL_RETRANSMISSION: return UNACKABLE; default: QUIC_BUG(quic_bug_10839_2) << retransmission_type << " is not a retransmission_type"; return UNACKABLE; } } bool QuicUtils::IsIetfPacketHeader(uint8_t first_byte) { return (first_byte & FLAGS_LONG_HEADER) || (first_byte & FLAGS_FIXED_BIT) || !(first_byte & FLAGS_DEMULTIPLEXING_BIT); } bool QuicUtils::IsIetfPacketShortHeader(uint8_t first_byte) { return IsIetfPacketHeader(first_byte) && !(first_byte & FLAGS_LONG_HEADER); } QuicStreamId QuicUtils::GetInvalidStreamId(QuicTransportVersion version) { return VersionHasIetfQuicFrames(version) ? std::numeric_limits<QuicStreamId>::max() : 0; } QuicStreamId QuicUtils::GetCryptoStreamId(QuicTransportVersion version) { QUIC_BUG_IF(quic_bug_12982_1, QuicVersionUsesCryptoFrames(version)) << "CRYPTO data aren't in stream frames; they have no stream ID."; return QuicVersionUsesCryptoFrames(version) ? GetInvalidStreamId(version) : 1; } bool QuicUtils::IsCryptoStreamId(QuicTransportVersion version, QuicStreamId stream_id) { if (QuicVersionUsesCryptoFrames(version)) { return false; } return stream_id == GetCryptoStreamId(version); } QuicStreamId QuicUtils::GetHeadersStreamId(QuicTransportVersion version) { QUICHE_DCHECK(!VersionUsesHttp3(version)); return GetFirstBidirectionalStreamId(version, Perspective::IS_CLIENT); } bool QuicUtils::IsClientInitiatedStreamId(QuicTransportVersion version, QuicStreamId id) { if (id == GetInvalidStreamId(version)) { return false; } return VersionHasIetfQuicFrames(version) ? id % 2 == 0 : id % 2 != 0; } bool QuicUtils::IsServerInitiatedStreamId(QuicTransportVersion version, QuicStreamId id) { if (id == GetInvalidStreamId(version)) { return false; } return VersionHasIetfQuicFrames(version) ? id % 2 != 0 : id % 2 == 0; } bool QuicUtils::IsOutgoingStreamId(ParsedQuicVersion version, QuicStreamId id, Perspective perspective) { const bool perspective_is_server = perspective == Perspective::IS_SERVER; const bool stream_is_server = QuicUtils::IsServerInitiatedStreamId(version.transport_version, id); return perspective_is_server == stream_is_server; } bool QuicUtils::IsBidirectionalStreamId(QuicStreamId id, ParsedQuicVersion version) { QUICHE_DCHECK(version.HasIetfQuicFrames()); return id % 4 < 2; } StreamType QuicUtils::GetStreamType(QuicStreamId id, Perspective perspective, bool peer_initiated, ParsedQuicVersion version) { QUICHE_DCHECK(version.HasIetfQuicFrames()); if (IsBidirectionalStreamId(id, version)) { return BIDIRECTIONAL; } if (peer_initiated) { if (perspective == Perspective::IS_SERVER) { QUICHE_DCHECK_EQ(2u, id % 4); } else { QUICHE_DCHECK_EQ(Perspective::IS_CLIENT, perspective); QUICHE_DCHECK_EQ(3u, id % 4); } return READ_UNIDIRECTIONAL; } if (perspective == Perspective::IS_SERVER) { QUICHE_DCHECK_EQ(3u, id % 4); } else { QUICHE_DCHECK_EQ(Perspective::IS_CLIENT, perspective); QUICHE_DCHECK_EQ(2u, id % 4); } return WRITE_UNIDIRECTIONAL; } QuicStreamId QuicUtils::StreamIdDelta(QuicTransportVersion version) { return VersionHasIetfQuicFrames(version) ? 4 : 2; } QuicStreamId QuicUtils::GetFirstBidirectionalStreamId( QuicTransportVersion version, Perspective perspective) { if (VersionHasIetfQuicFrames(version)) { return perspective == Perspective::IS_CLIENT ? 0 : 1; } else if (QuicVersionUsesCryptoFrames(version)) { return perspective == Perspective::IS_CLIENT ? 1 : 2; } return perspective == Perspective::IS_CLIENT ? 3 : 2; } QuicStreamId QuicUtils::GetFirstUnidirectionalStreamId( QuicTransportVersion version, Perspective perspective) { if (VersionHasIetfQuicFrames(version)) { return perspective == Perspective::IS_CLIENT ? 2 : 3; } else if (QuicVersionUsesCryptoFrames(version)) { return perspective == Perspective::IS_CLIENT ? 1 : 2; } return perspective == Perspective::IS_CLIENT ? 3 : 2; } QuicStreamId QuicUtils::GetMaxClientInitiatedBidirectionalStreamId( QuicTransportVersion version) { if (VersionHasIetfQuicFrames(version)) { return std::numeric_limits<QuicStreamId>::max() - 3; } return std::numeric_limits<QuicStreamId>::max(); } QuicConnectionId QuicUtils::CreateRandomConnectionId() { return CreateRandomConnectionId(kQuicDefaultConnectionIdLength, QuicRandom::GetInstance()); } QuicConnectionId QuicUtils::CreateRandomConnectionId(QuicRandom* random) { return CreateRandomConnectionId(kQuicDefaultConnectionIdLength, random); } QuicConnectionId QuicUtils::CreateRandomConnectionId( uint8_t connection_id_length) { return CreateRandomConnectionId(connection_id_length, QuicRandom::GetInstance()); } QuicConnectionId QuicUtils::CreateRandomConnectionId( uint8_t connection_id_length, QuicRandom* random) { QuicConnectionId connection_id; connection_id.set_length(connection_id_length); if (connection_id.length() > 0) { random->RandBytes(connection_id.mutable_data(), connection_id.length()); } return connection_id; } QuicConnectionId QuicUtils::CreateZeroConnectionId( QuicTransportVersion version) { if (!VersionAllowsVariableLengthConnectionIds(version)) { char connection_id_bytes[8] = {0, 0, 0, 0, 0, 0, 0, 0}; return QuicConnectionId(static_cast<char*>(connection_id_bytes), ABSL_ARRAYSIZE(connection_id_bytes)); } return EmptyQuicConnectionId(); } bool QuicUtils::IsConnectionIdLengthValidForVersion( size_t connection_id_length, QuicTransportVersion transport_version) { if (connection_id_length > static_cast<size_t>(std::numeric_limits<uint8_t>::max())) { return false; } if (transport_version == QUIC_VERSION_UNSUPPORTED || transport_version == QUIC_VERSION_RESERVED_FOR_NEGOTIATION) { return true; } const uint8_t connection_id_length8 = static_cast<uint8_t>(connection_id_length); if (!VersionAllowsVariableLengthConnectionIds(transport_version)) { return connection_id_length8 == kQuicDefaultConnectionIdLength; } return connection_id_length8 <= kQuicMaxConnectionIdWithLengthPrefixLength; } bool QuicUtils::IsConnectionIdValidForVersion( QuicConnectionId connection_id, QuicTransportVersion transport_version) { return IsConnectionIdLengthValidForVersion(connection_id.length(), transport_version); } StatelessResetToken QuicUtils::GenerateStatelessResetToken( QuicConnectionId connection_id) { static_assert(sizeof(absl::uint128) == sizeof(StatelessResetToken), "bad size"); static_assert(alignof(absl::uint128) >= alignof(StatelessResetToken), "bad alignment"); absl::uint128 hash = FNV1a_128_Hash( absl::string_view(connection_id.data(), connection_id.length())); return *reinterpret_cast<StatelessResetToken*>(&hash); } QuicStreamCount QuicUtils::GetMaxStreamCount() { return (kMaxQuicStreamCount >> 2) + 1; } PacketNumberSpace QuicUtils::GetPacketNumberSpace( EncryptionLevel encryption_level) { switch (encryption_level) { case ENCRYPTION_INITIAL: return INITIAL_DATA; case ENCRYPTION_HANDSHAKE: return HANDSHAKE_DATA; case ENCRYPTION_ZERO_RTT: case ENCRYPTION_FORWARD_SECURE: return APPLICATION_DATA; default: QUIC_BUG(quic_bug_10839_3) << "Try to get packet number space of encryption level: " << encryption_level; return NUM_PACKET_NUMBER_SPACES; } } EncryptionLevel QuicUtils::GetEncryptionLevelToSendAckofSpace( PacketNumberSpace packet_number_space) { switch (packet_number_space) { case INITIAL_DATA: return ENCRYPTION_INITIAL; case HANDSHAKE_DATA: return ENCRYPTION_HANDSHAKE; case APPLICATION_DATA: return ENCRYPTION_FORWARD_SECURE; default: QUICHE_DCHECK(false); return NUM_ENCRYPTION_LEVELS; } } bool QuicUtils::IsProbingFrame(QuicFrameType type) { switch (type) { case PATH_CHALLENGE_FRAME: case PATH_RESPONSE_FRAME: case NEW_CONNECTION_ID_FRAME: case PADDING_FRAME: return true; default: return false; } } bool QuicUtils::IsAckElicitingFrame(QuicFrameType type) { switch (type) { case PADDING_FRAME: case STOP_WAITING_FRAME: case ACK_FRAME: case CONNECTION_CLOSE_FRAME: return false; default: return true; } } bool QuicUtils::AreStatelessResetTokensEqual( const StatelessResetToken& token1, const StatelessResetToken& token2) { char byte = 0; for (size_t i = 0; i < kStatelessResetTokenLength; i++) { byte |= (token1[i] ^ token2[i]); } return byte == 0; } bool IsValidWebTransportSessionId(WebTransportSessionId id, ParsedQuicVersion version) { QUICHE_DCHECK(version.UsesHttp3()); return (id <= std::numeric_limits<QuicStreamId>::max()) && QuicUtils::IsBidirectionalStreamId(id, version) && QuicUtils::IsClientInitiatedStreamId(version.transport_version, id); } QuicByteCount MemSliceSpanTotalSize(absl::Span<quiche::QuicheMemSlice> span) { QuicByteCount total = 0; for (const quiche::QuicheMemSlice& slice : span) { total += slice.length(); } return total; } absl::string_view PosixBasename(absl::string_view path) { constexpr char kPathSeparator = '/'; size_t pos = path.find_last_of(kPathSeparator); if (pos == absl::string_view::npos) { return path; } if (pos == 0) { return absl::ClippedSubstr(path, 1); } return absl::ClippedSubstr(path, pos + 1); } std::string RawSha256(absl::string_view input) { std::string raw_hash; raw_hash.resize(SHA256_DIGEST_LENGTH); SHA256(reinterpret_cast<const uint8_t*>(input.data()), input.size(), reinterpret_cast<uint8_t*>(&raw_hash[0])); return raw_hash; } #undef RETURN_STRING_LITERAL }
#include "quiche/quic/core/quic_utils.h" #include <string> #include <vector> #include "absl/base/macros.h" #include "absl/numeric/int128.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { class QuicUtilsTest : public QuicTest {}; TEST_F(QuicUtilsTest, DetermineAddressChangeType) { const std::string kIPv4String1 = "1.2.3.4"; const std::string kIPv4String2 = "1.2.3.5"; const std::string kIPv4String3 = "1.1.3.5"; const std::string kIPv6String1 = "2001:700:300:1800::f"; const std::string kIPv6String2 = "2001:700:300:1800:1:1:1:f"; QuicSocketAddress old_address; QuicSocketAddress new_address; QuicIpAddress address; EXPECT_EQ(NO_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); ASSERT_TRUE(address.FromString(kIPv4String1)); old_address = QuicSocketAddress(address, 1234); EXPECT_EQ(NO_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); new_address = QuicSocketAddress(address, 1234); EXPECT_EQ(NO_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); new_address = QuicSocketAddress(address, 5678); EXPECT_EQ(PORT_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); ASSERT_TRUE(address.FromString(kIPv6String1)); old_address = QuicSocketAddress(address, 1234); new_address = QuicSocketAddress(address, 5678); EXPECT_EQ(PORT_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); ASSERT_TRUE(address.FromString(kIPv4String1)); old_address = QuicSocketAddress(address, 1234); ASSERT_TRUE(address.FromString(kIPv6String1)); new_address = QuicSocketAddress(address, 1234); EXPECT_EQ(IPV4_TO_IPV6_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); old_address = QuicSocketAddress(address, 1234); ASSERT_TRUE(address.FromString(kIPv4String1)); new_address = QuicSocketAddress(address, 1234); EXPECT_EQ(IPV6_TO_IPV4_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); ASSERT_TRUE(address.FromString(kIPv6String2)); new_address = QuicSocketAddress(address, 1234); EXPECT_EQ(IPV6_TO_IPV6_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); ASSERT_TRUE(address.FromString(kIPv4String1)); old_address = QuicSocketAddress(address, 1234); ASSERT_TRUE(address.FromString(kIPv4String2)); new_address = QuicSocketAddress(address, 1234); EXPECT_EQ(IPV4_SUBNET_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); ASSERT_TRUE(address.FromString(kIPv4String3)); new_address = QuicSocketAddress(address, 1234); EXPECT_EQ(IPV4_TO_IPV4_CHANGE, QuicUtils::DetermineAddressChangeType(old_address, new_address)); } absl::uint128 IncrementalHashReference(const void* data, size_t len) { absl::uint128 hash = absl::MakeUint128(UINT64_C(7809847782465536322), UINT64_C(7113472399480571277)); const absl::uint128 kPrime = absl::MakeUint128(16777216, 315); const uint8_t* octets = reinterpret_cast<const uint8_t*>(data); for (size_t i = 0; i < len; ++i) { hash = hash ^ absl::MakeUint128(0, octets[i]); hash = hash * kPrime; } return hash; } TEST_F(QuicUtilsTest, ReferenceTest) { std::vector<uint8_t> data(32); for (size_t i = 0; i < data.size(); ++i) { data[i] = i % 255; } EXPECT_EQ(IncrementalHashReference(data.data(), data.size()), QuicUtils::FNV1a_128_Hash(absl::string_view( reinterpret_cast<const char*>(data.data()), data.size()))); } TEST_F(QuicUtilsTest, IsUnackable) { for (size_t i = FIRST_PACKET_STATE; i <= LAST_PACKET_STATE; ++i) { if (i == NEVER_SENT || i == ACKED || i == UNACKABLE) { EXPECT_FALSE(QuicUtils::IsAckable(static_cast<SentPacketState>(i))); } else { EXPECT_TRUE(QuicUtils::IsAckable(static_cast<SentPacketState>(i))); } } } TEST_F(QuicUtilsTest, RetransmissionTypeToPacketState) { for (size_t i = FIRST_TRANSMISSION_TYPE; i <= LAST_TRANSMISSION_TYPE; ++i) { if (i == NOT_RETRANSMISSION) { continue; } SentPacketState state = QuicUtils::RetransmissionTypeToPacketState( static_cast<TransmissionType>(i)); if (i == HANDSHAKE_RETRANSMISSION) { EXPECT_EQ(HANDSHAKE_RETRANSMITTED, state); } else if (i == LOSS_RETRANSMISSION) { EXPECT_EQ(LOST, state); } else if (i == ALL_ZERO_RTT_RETRANSMISSION) { EXPECT_EQ(UNACKABLE, state); } else if (i == PTO_RETRANSMISSION) { EXPECT_EQ(PTO_RETRANSMITTED, state); } else if (i == PATH_RETRANSMISSION) { EXPECT_EQ(NOT_CONTRIBUTING_RTT, state); } else if (i == ALL_INITIAL_RETRANSMISSION) { EXPECT_EQ(UNACKABLE, state); } else { QUICHE_DCHECK(false) << "No corresponding packet state according to transmission type: " << i; } } } TEST_F(QuicUtilsTest, IsIetfPacketHeader) { uint8_t first_byte = 0; EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte)); EXPECT_TRUE(QuicUtils::IsIetfPacketShortHeader(first_byte)); first_byte |= (FLAGS_LONG_HEADER | FLAGS_DEMULTIPLEXING_BIT); EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte)); EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte)); first_byte = 0; first_byte |= FLAGS_LONG_HEADER; EXPECT_TRUE(QuicUtils::IsIetfPacketHeader(first_byte)); EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte)); first_byte = 0; first_byte |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; EXPECT_FALSE(QuicUtils::IsIetfPacketHeader(first_byte)); EXPECT_FALSE(QuicUtils::IsIetfPacketShortHeader(first_byte)); } TEST_F(QuicUtilsTest, RandomConnectionId) { MockRandom random(33); QuicConnectionId connection_id = QuicUtils::CreateRandomConnectionId(&random); EXPECT_EQ(connection_id.length(), sizeof(uint64_t)); char connection_id_bytes[sizeof(uint64_t)]; random.RandBytes(connection_id_bytes, ABSL_ARRAYSIZE(connection_id_bytes)); EXPECT_EQ(connection_id, QuicConnectionId(static_cast<char*>(connection_id_bytes), ABSL_ARRAYSIZE(connection_id_bytes))); EXPECT_NE(connection_id, EmptyQuicConnectionId()); EXPECT_NE(connection_id, TestConnectionId()); EXPECT_NE(connection_id, TestConnectionId(1)); EXPECT_NE(connection_id, TestConnectionIdNineBytesLong(1)); EXPECT_EQ(QuicUtils::CreateRandomConnectionId().length(), kQuicDefaultConnectionIdLength); } TEST_F(QuicUtilsTest, RandomConnectionIdVariableLength) { MockRandom random(1337); const uint8_t connection_id_length = 9; QuicConnectionId connection_id = QuicUtils::CreateRandomConnectionId(connection_id_length, &random); EXPECT_EQ(connection_id.length(), connection_id_length); char connection_id_bytes[connection_id_length]; random.RandBytes(connection_id_bytes, ABSL_ARRAYSIZE(connection_id_bytes)); EXPECT_EQ(connection_id, QuicConnectionId(static_cast<char*>(connection_id_bytes), ABSL_ARRAYSIZE(connection_id_bytes))); EXPECT_NE(connection_id, EmptyQuicConnectionId()); EXPECT_NE(connection_id, TestConnectionId()); EXPECT_NE(connection_id, TestConnectionId(1)); EXPECT_NE(connection_id, TestConnectionIdNineBytesLong(1)); EXPECT_EQ(QuicUtils::CreateRandomConnectionId(connection_id_length).length(), connection_id_length); } TEST_F(QuicUtilsTest, VariableLengthConnectionId) { EXPECT_FALSE(VersionAllowsVariableLengthConnectionIds(QUIC_VERSION_46)); EXPECT_TRUE(QuicUtils::IsConnectionIdValidForVersion( QuicUtils::CreateZeroConnectionId(QUIC_VERSION_46), QUIC_VERSION_46)); EXPECT_NE(QuicUtils::CreateZeroConnectionId(QUIC_VERSION_46), EmptyQuicConnectionId()); EXPECT_FALSE(QuicUtils::IsConnectionIdValidForVersion(EmptyQuicConnectionId(), QUIC_VERSION_46)); } TEST_F(QuicUtilsTest, StatelessResetToken) { QuicConnectionId connection_id1a = test::TestConnectionId(1); QuicConnectionId connection_id1b = test::TestConnectionId(1); QuicConnectionId connection_id2 = test::TestConnectionId(2); StatelessResetToken token1a = QuicUtils::GenerateStatelessResetToken(connection_id1a); StatelessResetToken token1b = QuicUtils::GenerateStatelessResetToken(connection_id1b); StatelessResetToken token2 = QuicUtils::GenerateStatelessResetToken(connection_id2); EXPECT_EQ(token1a, token1b); EXPECT_NE(token1a, token2); EXPECT_TRUE(QuicUtils::AreStatelessResetTokensEqual(token1a, token1b)); EXPECT_FALSE(QuicUtils::AreStatelessResetTokensEqual(token1a, token2)); } TEST_F(QuicUtilsTest, EcnCodepointToString) { EXPECT_EQ(EcnCodepointToString(ECN_NOT_ECT), "Not-ECT"); EXPECT_EQ(EcnCodepointToString(ECN_ECT0), "ECT(0)"); EXPECT_EQ(EcnCodepointToString(ECN_ECT1), "ECT(1)"); EXPECT_EQ(EcnCodepointToString(ECN_CE), "CE"); } TEST_F(QuicUtilsTest, PosixBasename) { EXPECT_EQ("", PosixBasename("/hello/")); EXPECT_EQ("hello", PosixBasename("/hello")); EXPECT_EQ("world", PosixBasename("hello/world")); EXPECT_EQ("", PosixBasename("hello/")); EXPECT_EQ("world", PosixBasename("world")); EXPECT_EQ("", PosixBasename("/")); EXPECT_EQ("", PosixBasename("")); EXPECT_EQ("C:\\hello", PosixBasename("C:\\hello")); EXPECT_EQ("world", PosixBasename("C:\\hello/world")); } enum class TestEnumClassBit : uint8_t { BIT_ZERO = 0, BIT_ONE, BIT_TWO, }; enum TestEnumBit { TEST_BIT_0 = 0, TEST_BIT_1, TEST_BIT_2, }; TEST(QuicBitMaskTest, EnumClass) { BitMask<TestEnumClassBit> mask( {TestEnumClassBit::BIT_ZERO, TestEnumClassBit::BIT_TWO}); EXPECT_TRUE(mask.IsSet(TestEnumClassBit::BIT_ZERO)); EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ONE)); EXPECT_TRUE(mask.IsSet(TestEnumClassBit::BIT_TWO)); mask.ClearAll(); EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ZERO)); EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_ONE)); EXPECT_FALSE(mask.IsSet(TestEnumClassBit::BIT_TWO)); } TEST(QuicBitMaskTest, Enum) { BitMask<TestEnumBit> mask({TEST_BIT_1, TEST_BIT_2}); EXPECT_FALSE(mask.IsSet(TEST_BIT_0)); EXPECT_TRUE(mask.IsSet(TEST_BIT_1)); EXPECT_TRUE(mask.IsSet(TEST_BIT_2)); mask.ClearAll(); EXPECT_FALSE(mask.IsSet(TEST_BIT_0)); EXPECT_FALSE(mask.IsSet(TEST_BIT_1)); EXPECT_FALSE(mask.IsSet(TEST_BIT_2)); } TEST(QuicBitMaskTest, Integer) { BitMask<int> mask({1, 3}); EXPECT_EQ(mask.Max(), 3); mask.Set(3); mask.Set({5, 7, 9}); EXPECT_EQ(mask.Max(), 9); EXPECT_FALSE(mask.IsSet(0)); EXPECT_TRUE(mask.IsSet(1)); EXPECT_FALSE(mask.IsSet(2)); EXPECT_TRUE(mask.IsSet(3)); EXPECT_FALSE(mask.IsSet(4)); EXPECT_TRUE(mask.IsSet(5)); EXPECT_FALSE(mask.IsSet(6)); EXPECT_TRUE(mask.IsSet(7)); EXPECT_FALSE(mask.IsSet(8)); EXPECT_TRUE(mask.IsSet(9)); } TEST(QuicBitMaskTest, NumBits) { EXPECT_EQ(64u, BitMask<int>::NumBits()); EXPECT_EQ(32u, (BitMask<int, uint32_t>::NumBits())); } TEST(QuicBitMaskTest, Constructor) { BitMask<int> empty_mask; for (size_t bit = 0; bit < empty_mask.NumBits(); ++bit) { EXPECT_FALSE(empty_mask.IsSet(bit)); } BitMask<int> mask({1, 3}); BitMask<int> mask2 = mask; BitMask<int> mask3(mask2); for (size_t bit = 0; bit < mask.NumBits(); ++bit) { EXPECT_EQ(mask.IsSet(bit), mask2.IsSet(bit)); EXPECT_EQ(mask.IsSet(bit), mask3.IsSet(bit)); } EXPECT_TRUE(std::is_trivially_copyable<BitMask<int>>::value); } TEST(QuicBitMaskTest, Any) { BitMask<int> mask; EXPECT_FALSE(mask.Any()); mask.Set(3); EXPECT_TRUE(mask.Any()); mask.Set(2); EXPECT_TRUE(mask.Any()); mask.ClearAll(); EXPECT_FALSE(mask.Any()); } TEST(QuicBitMaskTest, And) { using Mask = BitMask<int>; EXPECT_EQ(Mask({1, 3, 6}) & Mask({3, 5, 6}), Mask({3, 6})); EXPECT_EQ(Mask({1, 2, 4}) & Mask({3, 5}), Mask({})); EXPECT_EQ(Mask({1, 2, 3, 4, 5}) & Mask({}), Mask({})); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_utils.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_utils_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
c0b6a6bc-27ba-43e0-95f9-2ca9a301d851
cpp
abseil/abseil-cpp
format
absl/time/format.cc
absl/time/format_test.cc
#include <string.h> #include <cctype> #include <cstdint> #include <utility> #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "absl/time/internal/cctz/include/cctz/time_zone.h" #include "absl/time/time.h" namespace cctz = absl::time_internal::cctz; namespace absl { ABSL_NAMESPACE_BEGIN ABSL_DLL extern const char RFC3339_full[] = "%Y-%m-%d%ET%H:%M:%E*S%Ez"; ABSL_DLL extern const char RFC3339_sec[] = "%Y-%m-%d%ET%H:%M:%S%Ez"; ABSL_DLL extern const char RFC1123_full[] = "%a, %d %b %E4Y %H:%M:%S %z"; ABSL_DLL extern const char RFC1123_no_wday[] = "%d %b %E4Y %H:%M:%S %z"; namespace { const char kInfiniteFutureStr[] = "infinite-future"; const char kInfinitePastStr[] = "infinite-past"; struct cctz_parts { cctz::time_point<cctz::seconds> sec; cctz::detail::femtoseconds fem; }; inline cctz::time_point<cctz::seconds> unix_epoch() { return std::chrono::time_point_cast<cctz::seconds>( std::chrono::system_clock::from_time_t(0)); } cctz_parts Split(absl::Time t) { const auto d = time_internal::ToUnixDuration(t); const int64_t rep_hi = time_internal::GetRepHi(d); const int64_t rep_lo = time_internal::GetRepLo(d); const auto sec = unix_epoch() + cctz::seconds(rep_hi); const auto fem = cctz::detail::femtoseconds(rep_lo * (1000 * 1000 / 4)); return {sec, fem}; } absl::Time Join(const cctz_parts& parts) { const int64_t rep_hi = (parts.sec - unix_epoch()).count(); const uint32_t rep_lo = static_cast<uint32_t>(parts.fem.count() / (1000 * 1000 / 4)); const auto d = time_internal::MakeDuration(rep_hi, rep_lo); return time_internal::FromUnixDuration(d); } } std::string FormatTime(absl::string_view format, absl::Time t, absl::TimeZone tz) { if (t == absl::InfiniteFuture()) return std::string(kInfiniteFutureStr); if (t == absl::InfinitePast()) return std::string(kInfinitePastStr); const auto parts = Split(t); return cctz::detail::format(std::string(format), parts.sec, parts.fem, cctz::time_zone(tz)); } std::string FormatTime(absl::Time t, absl::TimeZone tz) { return FormatTime(RFC3339_full, t, tz); } std::string FormatTime(absl::Time t) { return absl::FormatTime(RFC3339_full, t, absl::LocalTimeZone()); } bool ParseTime(absl::string_view format, absl::string_view input, absl::Time* time, std::string* err) { return absl::ParseTime(format, input, absl::UTCTimeZone(), time, err); } bool ParseTime(absl::string_view format, absl::string_view input, absl::TimeZone tz, absl::Time* time, std::string* err) { auto strip_leading_space = [](absl::string_view* sv) { while (!sv->empty()) { if (!std::isspace(sv->front())) return; sv->remove_prefix(1); } }; struct Literal { const char* name; size_t size; absl::Time value; }; static Literal literals[] = { {kInfiniteFutureStr, strlen(kInfiniteFutureStr), InfiniteFuture()}, {kInfinitePastStr, strlen(kInfinitePastStr), InfinitePast()}, }; strip_leading_space(&input); for (const auto& lit : literals) { if (absl::StartsWith(input, absl::string_view(lit.name, lit.size))) { absl::string_view tail = input; tail.remove_prefix(lit.size); strip_leading_space(&tail); if (tail.empty()) { *time = lit.value; return true; } } } std::string error; cctz_parts parts; const bool b = cctz::detail::parse(std::string(format), std::string(input), cctz::time_zone(tz), &parts.sec, &parts.fem, &error); if (b) { *time = Join(parts); } else if (err != nullptr) { *err = std::move(error); } return b; } bool AbslParseFlag(absl::string_view text, absl::Time* t, std::string* error) { return absl::ParseTime(RFC3339_full, text, absl::UTCTimeZone(), t, error); } std::string AbslUnparseFlag(absl::Time t) { return absl::FormatTime(RFC3339_full, t, absl::UTCTimeZone()); } bool ParseFlag(const std::string& text, absl::Time* t, std::string* error) { return absl::ParseTime(RFC3339_full, text, absl::UTCTimeZone(), t, error); } std::string UnparseFlag(absl::Time t) { return absl::FormatTime(RFC3339_full, t, absl::UTCTimeZone()); } ABSL_NAMESPACE_END }
#include <cstdint> #include <limits> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/time/internal/test_util.h" #include "absl/time/time.h" using testing::HasSubstr; namespace { void TestFormatSpecifier(absl::Time t, absl::TimeZone tz, const std::string& fmt, const std::string& ans) { EXPECT_EQ(ans, absl::FormatTime(fmt, t, tz)); EXPECT_EQ("xxx " + ans, absl::FormatTime("xxx " + fmt, t, tz)); EXPECT_EQ(ans + " yyy", absl::FormatTime(fmt + " yyy", t, tz)); EXPECT_EQ("xxx " + ans + " yyy", absl::FormatTime("xxx " + fmt + " yyy", t, tz)); } TEST(FormatTime, Basics) { absl::TimeZone tz = absl::UTCTimeZone(); absl::Time t = absl::FromTimeT(0); EXPECT_EQ("", absl::FormatTime("", t, tz)); EXPECT_EQ(" ", absl::FormatTime(" ", t, tz)); EXPECT_EQ(" ", absl::FormatTime(" ", t, tz)); EXPECT_EQ("xxx", absl::FormatTime("xxx", t, tz)); std::string big(128, 'x'); EXPECT_EQ(big, absl::FormatTime(big, t, tz)); std::string bigger(100000, 'x'); EXPECT_EQ(bigger, absl::FormatTime(bigger, t, tz)); t += absl::Hours(13) + absl::Minutes(4) + absl::Seconds(5); t += absl::Milliseconds(6) + absl::Microseconds(7) + absl::Nanoseconds(8); EXPECT_EQ("1970-01-01", absl::FormatTime("%Y-%m-%d", t, tz)); EXPECT_EQ("13:04:05", absl::FormatTime("%H:%M:%S", t, tz)); EXPECT_EQ("13:04:05.006", absl::FormatTime("%H:%M:%E3S", t, tz)); EXPECT_EQ("13:04:05.006007", absl::FormatTime("%H:%M:%E6S", t, tz)); EXPECT_EQ("13:04:05.006007008", absl::FormatTime("%H:%M:%E9S", t, tz)); } TEST(FormatTime, LocaleSpecific) { const absl::TimeZone tz = absl::UTCTimeZone(); absl::Time t = absl::FromTimeT(0); TestFormatSpecifier(t, tz, "%a", "Thu"); TestFormatSpecifier(t, tz, "%A", "Thursday"); TestFormatSpecifier(t, tz, "%b", "Jan"); TestFormatSpecifier(t, tz, "%B", "January"); const std::string s = absl::FormatTime("%c", absl::FromTimeT(0), absl::UTCTimeZone()); EXPECT_THAT(s, HasSubstr("1970")); EXPECT_THAT(s, HasSubstr("00:00:00")); TestFormatSpecifier(t, tz, "%p", "AM"); TestFormatSpecifier(t, tz, "%x", "01/01/70"); TestFormatSpecifier(t, tz, "%X", "00:00:00"); } TEST(FormatTime, ExtendedSeconds) { const absl::TimeZone tz = absl::UTCTimeZone(); absl::Time t = absl::FromTimeT(0) + absl::Seconds(5); EXPECT_EQ("05", absl::FormatTime("%E*S", t, tz)); EXPECT_EQ("05.000000000000000", absl::FormatTime("%E15S", t, tz)); t += absl::Milliseconds(6) + absl::Microseconds(7) + absl::Nanoseconds(8); EXPECT_EQ("05.006007008", absl::FormatTime("%E*S", t, tz)); EXPECT_EQ("05", absl::FormatTime("%E0S", t, tz)); EXPECT_EQ("05.006007008000000", absl::FormatTime("%E15S", t, tz)); t = absl::FromUnixMicros(-1); EXPECT_EQ("1969-12-31 23:59:59.999999", absl::FormatTime("%Y-%m-%d %H:%M:%E*S", t, tz)); t = absl::FromUnixMicros(1395024427333304); EXPECT_EQ("2014-03-17 02:47:07.333304", absl::FormatTime("%Y-%m-%d %H:%M:%E*S", t, tz)); t += absl::Microseconds(1); EXPECT_EQ("2014-03-17 02:47:07.333305", absl::FormatTime("%Y-%m-%d %H:%M:%E*S", t, tz)); } TEST(FormatTime, RFC1123FormatPadsYear) { absl::TimeZone tz = absl::UTCTimeZone(); absl::Time t = absl::FromCivil(absl::CivilSecond(77, 6, 28, 9, 8, 7), tz); EXPECT_EQ("Mon, 28 Jun 0077 09:08:07 +0000", absl::FormatTime(absl::RFC1123_full, t, tz)); EXPECT_EQ("28 Jun 0077 09:08:07 +0000", absl::FormatTime(absl::RFC1123_no_wday, t, tz)); } TEST(FormatTime, InfiniteTime) { absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/Los_Angeles"); EXPECT_EQ("infinite-future", absl::FormatTime("%H:%M blah", absl::InfiniteFuture(), tz)); EXPECT_EQ("infinite-past", absl::FormatTime("%H:%M blah", absl::InfinitePast(), tz)); } TEST(ParseTime, Basics) { absl::Time t = absl::FromTimeT(1234567890); std::string err; EXPECT_TRUE(absl::ParseTime("", "", &t, &err)) << err; EXPECT_EQ(absl::UnixEpoch(), t); EXPECT_TRUE(absl::ParseTime(" ", " ", &t, &err)) << err; EXPECT_TRUE(absl::ParseTime(" ", " ", &t, &err)) << err; EXPECT_TRUE(absl::ParseTime("x", "x", &t, &err)) << err; EXPECT_TRUE(absl::ParseTime("xxx", "xxx", &t, &err)) << err; EXPECT_TRUE(absl::ParseTime("%Y-%m-%d %H:%M:%S %z", "2013-06-28 19:08:09 -0800", &t, &err)) << err; const auto ci = absl::FixedTimeZone(-8 * 60 * 60).At(t); EXPECT_EQ(absl::CivilSecond(2013, 6, 28, 19, 8, 9), ci.cs); EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); } TEST(ParseTime, NullErrorString) { absl::Time t; EXPECT_FALSE(absl::ParseTime("%Q", "invalid format", &t, nullptr)); EXPECT_FALSE(absl::ParseTime("%H", "12 trailing data", &t, nullptr)); EXPECT_FALSE( absl::ParseTime("%H out of range", "42 out of range", &t, nullptr)); } TEST(ParseTime, WithTimeZone) { const absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/Los_Angeles"); absl::Time t; std::string e; EXPECT_TRUE( absl::ParseTime("%Y-%m-%d %H:%M:%S", "2013-06-28 19:08:09", tz, &t, &e)) << e; auto ci = tz.At(t); EXPECT_EQ(absl::CivilSecond(2013, 6, 28, 19, 8, 9), ci.cs); EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); EXPECT_TRUE(absl::ParseTime("%Y-%m-%d %H:%M:%S %z", "2013-06-28 19:08:09 +0800", tz, &t, &e)) << e; ci = absl::FixedTimeZone(8 * 60 * 60).At(t); EXPECT_EQ(absl::CivilSecond(2013, 6, 28, 19, 8, 9), ci.cs); EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); } TEST(ParseTime, ErrorCases) { absl::Time t = absl::FromTimeT(0); std::string err; EXPECT_FALSE(absl::ParseTime("%S", "123", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); err.clear(); EXPECT_FALSE(absl::ParseTime("%Q", "x", &t, &err)) << err; EXPECT_FALSE(err.empty()); EXPECT_FALSE(absl::ParseTime("%m-%d", "2-3 blah", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); EXPECT_FALSE(absl::ParseTime("%m-%d", "2-31", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Out-of-range")); EXPECT_TRUE(absl::ParseTime("%z", "-0203", &t, &err)) << err; EXPECT_FALSE(absl::ParseTime("%z", "- 2 3", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_TRUE(absl::ParseTime("%Ez", "-02:03", &t, &err)) << err; EXPECT_FALSE(absl::ParseTime("%Ez", "- 2: 3", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%Ez", "+-08:00", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%Ez", "-+08:00", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%Y", "-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%E4Y", "-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%H", "-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%M", "-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%S", "-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%z", "+-000", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%Ez", "+-0:00", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%z", "-00-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); EXPECT_FALSE(absl::ParseTime("%Ez", "-00:-0", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); } TEST(ParseTime, ExtendedSeconds) { std::string err; absl::Time t; t = absl::UnixEpoch(); EXPECT_TRUE(absl::ParseTime("%E*S", "0.2147483647", &t, &err)) << err; EXPECT_EQ(absl::UnixEpoch() + absl::Nanoseconds(214748364) + absl::Nanoseconds(1) / 2, t); t = absl::UnixEpoch(); EXPECT_TRUE(absl::ParseTime("%E*S", "0.2147483648", &t, &err)) << err; EXPECT_EQ(absl::UnixEpoch() + absl::Nanoseconds(214748364) + absl::Nanoseconds(3) / 4, t); t = absl::UnixEpoch(); EXPECT_TRUE(absl::ParseTime( "%E*S", "0.214748364801234567890123456789012345678901234567890123456789", &t, &err)) << err; EXPECT_EQ(absl::UnixEpoch() + absl::Nanoseconds(214748364) + absl::Nanoseconds(3) / 4, t); } TEST(ParseTime, ExtendedOffsetErrors) { std::string err; absl::Time t; EXPECT_FALSE(absl::ParseTime("%z", "-123", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); EXPECT_FALSE(absl::ParseTime("%z", "-1", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); EXPECT_FALSE(absl::ParseTime("%Ez", "-12:3", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); EXPECT_FALSE(absl::ParseTime("%Ez", "-123", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Illegal trailing data")); EXPECT_FALSE(absl::ParseTime("%Ez", "-1", &t, &err)) << err; EXPECT_THAT(err, HasSubstr("Failed to parse")); } TEST(ParseTime, InfiniteTime) { absl::Time t; std::string err; EXPECT_TRUE(absl::ParseTime("%H:%M blah", "infinite-future", &t, &err)); EXPECT_EQ(absl::InfiniteFuture(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", " infinite-future", &t, &err)); EXPECT_EQ(absl::InfiniteFuture(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", "infinite-future ", &t, &err)); EXPECT_EQ(absl::InfiniteFuture(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", " infinite-future ", &t, &err)); EXPECT_EQ(absl::InfiniteFuture(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", "infinite-past", &t, &err)); EXPECT_EQ(absl::InfinitePast(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", " infinite-past", &t, &err)); EXPECT_EQ(absl::InfinitePast(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", "infinite-past ", &t, &err)); EXPECT_EQ(absl::InfinitePast(), t); EXPECT_TRUE(absl::ParseTime("%H:%M blah", " infinite-past ", &t, &err)); EXPECT_EQ(absl::InfinitePast(), t); absl::TimeZone tz = absl::UTCTimeZone(); EXPECT_TRUE(absl::ParseTime("infinite-future %H:%M", "infinite-future 03:04", &t, &err)); EXPECT_NE(absl::InfiniteFuture(), t); EXPECT_EQ(3, tz.At(t).cs.hour()); EXPECT_EQ(4, tz.At(t).cs.minute()); EXPECT_TRUE( absl::ParseTime("infinite-past %H:%M", "infinite-past 03:04", &t, &err)); EXPECT_NE(absl::InfinitePast(), t); EXPECT_EQ(3, tz.At(t).cs.hour()); EXPECT_EQ(4, tz.At(t).cs.minute()); EXPECT_FALSE(absl::ParseTime("infinite-future %H:%M", "03:04", &t, &err)); EXPECT_FALSE(absl::ParseTime("infinite-past %H:%M", "03:04", &t, &err)); } TEST(ParseTime, FailsOnUnrepresentableTime) { const absl::TimeZone utc = absl::UTCTimeZone(); absl::Time t; EXPECT_FALSE( absl::ParseTime("%Y-%m-%d", "-292277022657-01-27", utc, &t, nullptr)); EXPECT_TRUE( absl::ParseTime("%Y-%m-%d", "-292277022657-01-28", utc, &t, nullptr)); EXPECT_TRUE( absl::ParseTime("%Y-%m-%d", "292277026596-12-04", utc, &t, nullptr)); EXPECT_FALSE( absl::ParseTime("%Y-%m-%d", "292277026596-12-05", utc, &t, nullptr)); } TEST(FormatParse, RoundTrip) { const absl::TimeZone lax = absl::time_internal::LoadTimeZone("America/Los_Angeles"); const absl::Time in = absl::FromCivil(absl::CivilSecond(1977, 6, 28, 9, 8, 7), lax); const absl::Duration subseconds = absl::Nanoseconds(654321); std::string err; { absl::Time out; const std::string s = absl::FormatTime(absl::RFC3339_full, in + subseconds, lax); EXPECT_TRUE(absl::ParseTime(absl::RFC3339_full, s, &out, &err)) << s << ": " << err; EXPECT_EQ(in + subseconds, out); } { absl::Time out; const std::string s = absl::FormatTime(absl::RFC1123_full, in, lax); EXPECT_TRUE(absl::ParseTime(absl::RFC1123_full, s, &out, &err)) << s << ": " << err; EXPECT_EQ(in, out); } #if !defined(_MSC_VER) && !defined(__EMSCRIPTEN__) { absl::Time out; const std::string s = absl::FormatTime("%c", in, absl::UTCTimeZone()); EXPECT_TRUE(absl::ParseTime("%c", s, &out, &err)) << s << ": " << err; EXPECT_EQ(in, out); } #endif } TEST(FormatParse, RoundTripDistantFuture) { const absl::TimeZone tz = absl::UTCTimeZone(); const absl::Time in = absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()); std::string err; absl::Time out; const std::string s = absl::FormatTime(absl::RFC3339_full, in, tz); EXPECT_TRUE(absl::ParseTime(absl::RFC3339_full, s, &out, &err)) << s << ": " << err; EXPECT_EQ(in, out); } TEST(FormatParse, RoundTripDistantPast) { const absl::TimeZone tz = absl::UTCTimeZone(); const absl::Time in = absl::FromUnixSeconds(std::numeric_limits<int64_t>::min()); std::string err; absl::Time out; const std::string s = absl::FormatTime(absl::RFC3339_full, in, tz); EXPECT_TRUE(absl::ParseTime(absl::RFC3339_full, s, &out, &err)) << s << ": " << err; EXPECT_EQ(in, out); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/time/format.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/time/format_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
d8c6f192-fbf5-4544-be2d-8bd71d36f15e
cpp
google/quiche
qbone_packet_processor
quiche/quic/qbone/qbone_packet_processor.cc
quiche/quic/qbone/qbone_packet_processor_test.cc
#include "quiche/quic/qbone/qbone_packet_processor.h" #include <netinet/icmp6.h> #include <netinet/in.h> #include <netinet/ip6.h> #include <cstdint> #include <cstring> #include <string> #include "absl/base/optimization.h" #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_ip_address_family.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/qbone/platform/icmp_packet.h" #include "quiche/quic/qbone/platform/tcp_packet.h" #include "quiche/common/quiche_endian.h" namespace { constexpr size_t kIPv6AddressSize = 16; constexpr size_t kIPv6MinPacketSize = 1280; constexpr size_t kIcmpTtl = 64; constexpr size_t kICMPv6DestinationUnreachableDueToSourcePolicy = 5; constexpr size_t kIPv6DestinationOffset = 8; } namespace quic { const QuicIpAddress QbonePacketProcessor::kInvalidIpAddress = QuicIpAddress::Any6(); QbonePacketProcessor::QbonePacketProcessor(QuicIpAddress self_ip, QuicIpAddress client_ip, size_t client_ip_subnet_length, OutputInterface* output, StatsInterface* stats) : client_ip_(client_ip), output_(output), stats_(stats), filter_(new Filter) { memcpy(self_ip_.s6_addr, self_ip.ToPackedString().data(), kIPv6AddressSize); QUICHE_DCHECK_LE(client_ip_subnet_length, kIPv6AddressSize * 8); client_ip_subnet_length_ = client_ip_subnet_length; QUICHE_DCHECK(IpAddressFamily::IP_V6 == self_ip.address_family()); QUICHE_DCHECK(IpAddressFamily::IP_V6 == client_ip.address_family()); QUICHE_DCHECK(self_ip != kInvalidIpAddress); } QbonePacketProcessor::OutputInterface::~OutputInterface() {} QbonePacketProcessor::StatsInterface::~StatsInterface() {} QbonePacketProcessor::Filter::~Filter() {} QbonePacketProcessor::ProcessingResult QbonePacketProcessor::Filter::FilterPacket(Direction direction, absl::string_view full_packet, absl::string_view payload, icmp6_hdr* icmp_header) { return ProcessingResult::OK; } void QbonePacketProcessor::ProcessPacket(std::string* packet, Direction direction) { uint8_t traffic_class = TrafficClassFromHeader(*packet); if (ABSL_PREDICT_FALSE(!IsValid())) { QUIC_BUG(quic_bug_11024_1) << "QuicPacketProcessor is invoked in an invalid state."; stats_->OnPacketDroppedSilently(direction, traffic_class); return; } stats_->RecordThroughput(packet->size(), direction, traffic_class); uint8_t transport_protocol; char* transport_data; icmp6_hdr icmp_header; memset(&icmp_header, 0, sizeof(icmp_header)); ProcessingResult result = ProcessIPv6HeaderAndFilter( packet, direction, &transport_protocol, &transport_data, &icmp_header); in6_addr dst; memcpy(&dst, &packet->data()[kIPv6DestinationOffset], kIPv6AddressSize); switch (result) { case ProcessingResult::OK: switch (direction) { case Direction::FROM_OFF_NETWORK: output_->SendPacketToNetwork(*packet); break; case Direction::FROM_NETWORK: output_->SendPacketToClient(*packet); break; } stats_->OnPacketForwarded(direction, traffic_class); break; case ProcessingResult::SILENT_DROP: stats_->OnPacketDroppedSilently(direction, traffic_class); break; case ProcessingResult::ICMP: if (icmp_header.icmp6_type == ICMP6_ECHO_REPLY) { auto icmp_body = absl::string_view(*packet).substr(sizeof(ip6_hdr) + sizeof(icmp6_hdr)); SendIcmpResponse(dst, &icmp_header, icmp_body, direction); } else { SendIcmpResponse(dst, &icmp_header, *packet, direction); } stats_->OnPacketDroppedWithIcmp(direction, traffic_class); break; case ProcessingResult::ICMP_AND_TCP_RESET: SendIcmpResponse(dst, &icmp_header, *packet, direction); stats_->OnPacketDroppedWithIcmp(direction, traffic_class); SendTcpReset(*packet, direction); stats_->OnPacketDroppedWithTcpReset(direction, traffic_class); break; case ProcessingResult::TCP_RESET: SendTcpReset(*packet, direction); stats_->OnPacketDroppedWithTcpReset(direction, traffic_class); break; } } QbonePacketProcessor::ProcessingResult QbonePacketProcessor::ProcessIPv6HeaderAndFilter(std::string* packet, Direction direction, uint8_t* transport_protocol, char** transport_data, icmp6_hdr* icmp_header) { ProcessingResult result = ProcessIPv6Header( packet, direction, transport_protocol, transport_data, icmp_header); if (result == ProcessingResult::OK) { char* packet_data = &*packet->begin(); size_t header_size = *transport_data - packet_data; if (packet_data >= *transport_data || header_size > packet->size() || header_size < kIPv6HeaderSize) { QUIC_BUG(quic_bug_11024_2) << "Invalid pointers encountered in " "QbonePacketProcessor::ProcessPacket. Dropping the packet"; return ProcessingResult::SILENT_DROP; } result = filter_->FilterPacket( direction, *packet, absl::string_view(*transport_data, packet->size() - header_size), icmp_header); } if (result == ProcessingResult::ICMP) { const uint8_t* header = reinterpret_cast<const uint8_t*>(packet->data()); constexpr size_t kIPv6NextHeaderOffset = 6; constexpr size_t kIcmpMessageTypeOffset = kIPv6HeaderSize + 0; constexpr size_t kIcmpMessageTypeMaxError = 127; if ( packet->size() >= (kIPv6HeaderSize + kICMPv6HeaderSize) && header[kIPv6NextHeaderOffset] == IPPROTO_ICMPV6 && header[kIcmpMessageTypeOffset] < kIcmpMessageTypeMaxError) { result = ProcessingResult::SILENT_DROP; } } return result; } QbonePacketProcessor::ProcessingResult QbonePacketProcessor::ProcessIPv6Header( std::string* packet, Direction direction, uint8_t* transport_protocol, char** transport_data, icmp6_hdr* icmp_header) { if (packet->size() < kIPv6HeaderSize) { QUIC_DVLOG(1) << "Dropped malformed packet: IPv6 header too short"; return ProcessingResult::SILENT_DROP; } ip6_hdr* header = reinterpret_cast<ip6_hdr*>(&*packet->begin()); if (header->ip6_vfc >> 4 != 6) { QUIC_DVLOG(1) << "Dropped malformed packet: IP version is not IPv6"; return ProcessingResult::SILENT_DROP; } const size_t declared_payload_size = quiche::QuicheEndian::NetToHost16(header->ip6_plen); const size_t actual_payload_size = packet->size() - kIPv6HeaderSize; if (declared_payload_size != actual_payload_size) { QUIC_DVLOG(1) << "Dropped malformed packet: incorrect packet length specified"; return ProcessingResult::SILENT_DROP; } QuicIpAddress address_to_check; uint8_t address_reject_code; bool ip_parse_result; switch (direction) { case Direction::FROM_OFF_NETWORK: ip_parse_result = address_to_check.FromPackedString( reinterpret_cast<const char*>(&header->ip6_src), sizeof(header->ip6_src)); address_reject_code = kICMPv6DestinationUnreachableDueToSourcePolicy; break; case Direction::FROM_NETWORK: ip_parse_result = address_to_check.FromPackedString( reinterpret_cast<const char*>(&header->ip6_dst), sizeof(header->ip6_src)); address_reject_code = ICMP6_DST_UNREACH_NOROUTE; break; } QUICHE_DCHECK(ip_parse_result); if (!client_ip_.InSameSubnet(address_to_check, client_ip_subnet_length_)) { QUIC_DVLOG(1) << "Dropped packet: source/destination address is not client's"; icmp_header->icmp6_type = ICMP6_DST_UNREACH; icmp_header->icmp6_code = address_reject_code; return ProcessingResult::ICMP; } if (header->ip6_hops <= 1) { icmp_header->icmp6_type = ICMP6_TIME_EXCEEDED; icmp_header->icmp6_code = ICMP6_TIME_EXCEED_TRANSIT; return ProcessingResult::ICMP; } header->ip6_hops--; switch (header->ip6_nxt) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_ICMPV6: *transport_protocol = header->ip6_nxt; *transport_data = (&*packet->begin()) + kIPv6HeaderSize; break; default: icmp_header->icmp6_type = ICMP6_PARAM_PROB; icmp_header->icmp6_code = ICMP6_PARAMPROB_NEXTHEADER; return ProcessingResult::ICMP; } return ProcessingResult::OK; } void QbonePacketProcessor::SendIcmpResponse(in6_addr dst, icmp6_hdr* icmp_header, absl::string_view payload, Direction original_direction) { CreateIcmpPacket(self_ip_, dst, *icmp_header, payload, [this, original_direction](absl::string_view packet) { SendResponse(original_direction, packet); }); } void QbonePacketProcessor::SendTcpReset(absl::string_view original_packet, Direction original_direction) { CreateTcpResetPacket(original_packet, [this, original_direction](absl::string_view packet) { SendResponse(original_direction, packet); }); } void QbonePacketProcessor::SendResponse(Direction original_direction, absl::string_view packet) { switch (original_direction) { case Direction::FROM_OFF_NETWORK: output_->SendPacketToClient(packet); break; case Direction::FROM_NETWORK: output_->SendPacketToNetwork(packet); break; } } uint8_t QbonePacketProcessor::TrafficClassFromHeader( absl::string_view ipv6_header) { if (ipv6_header.length() < 2) { return 0; } return ipv6_header[0] << 4 | ipv6_header[1] >> 4; } }
#include "quiche/quic/qbone/qbone_packet_processor.h" #include <memory> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/qbone/qbone_packet_processor_test_tools.h" #include "quiche/common/quiche_text_utils.h" namespace quic::test { namespace { using Direction = QbonePacketProcessor::Direction; using ProcessingResult = QbonePacketProcessor::ProcessingResult; using OutputInterface = QbonePacketProcessor::OutputInterface; using ::testing::_; using ::testing::Eq; using ::testing::Invoke; using ::testing::Return; using ::testing::WithArgs; static const char kReferenceClientPacketData[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x30, 0x39, 0x01, 0xbb, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceClientPacketDataAF4[] = { 0x68, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x30, 0x39, 0x01, 0xbb, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceClientPacketDataAF3[] = { 0x66, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x30, 0x39, 0x01, 0xbb, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceClientPacketDataAF2[] = { 0x64, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x30, 0x39, 0x01, 0xbb, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceClientPacketDataAF1[] = { 0x62, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x30, 0x39, 0x01, 0xbb, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceNetworkPacketData[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0xbb, 0x30, 0x39, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceClientSubnetPacketData[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 17, 50, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x30, 0x39, 0x01, 0xbb, 0x00, 0x00, 0x00, 0x00, }; static const char kReferenceEchoRequestData[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 64, 58, 127, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x71, 0x62, 0x6f, 0x6e, 0x6f, 128, 0, 0x00, 0x00, 0xca, 0xfe, 0x00, 0x01, 0x67, 0x37, 0x8a, 0x63, 0x00, 0x00, 0x00, 0x00, 0x96, 0x58, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, }; static const char kReferenceEchoReplyData[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 64, 58, 255, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xfd, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 129, 0, 0x66, 0xb6, 0xca, 0xfe, 0x00, 0x01, 0x67, 0x37, 0x8a, 0x63, 0x00, 0x00, 0x00, 0x00, 0x96, 0x58, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, }; static const absl::string_view kReferenceClientPacket( kReferenceClientPacketData, ABSL_ARRAYSIZE(kReferenceClientPacketData)); static const absl::string_view kReferenceClientPacketAF4( kReferenceClientPacketDataAF4, ABSL_ARRAYSIZE(kReferenceClientPacketDataAF4)); static const absl::string_view kReferenceClientPacketAF3( kReferenceClientPacketDataAF3, ABSL_ARRAYSIZE(kReferenceClientPacketDataAF3)); static const absl::string_view kReferenceClientPacketAF2( kReferenceClientPacketDataAF2, ABSL_ARRAYSIZE(kReferenceClientPacketDataAF2)); static const absl::string_view kReferenceClientPacketAF1( kReferenceClientPacketDataAF1, ABSL_ARRAYSIZE(kReferenceClientPacketDataAF1)); static const absl::string_view kReferenceNetworkPacket( kReferenceNetworkPacketData, ABSL_ARRAYSIZE(kReferenceNetworkPacketData)); static const absl::string_view kReferenceClientSubnetPacket( kReferenceClientSubnetPacketData, ABSL_ARRAYSIZE(kReferenceClientSubnetPacketData)); static const absl::string_view kReferenceEchoRequest( kReferenceEchoRequestData, ABSL_ARRAYSIZE(kReferenceEchoRequestData)); MATCHER_P(IsIcmpMessage, icmp_type, "Checks whether the argument is an ICMP message of supplied type") { if (arg.size() < kTotalICMPv6HeaderSize) { return false; } return arg[40] == icmp_type; } class MockPacketFilter : public QbonePacketProcessor::Filter { public: MOCK_METHOD(ProcessingResult, FilterPacket, (Direction, absl::string_view, absl::string_view, icmp6_hdr*), (override)); }; class QbonePacketProcessorTest : public QuicTest { protected: QbonePacketProcessorTest() { QUICHE_CHECK(client_ip_.FromString("fd00:0:0:1::1")); QUICHE_CHECK(self_ip_.FromString("fd00:0:0:4::1")); QUICHE_CHECK(network_ip_.FromString("fd00:0:0:5::1")); processor_ = std::make_unique<QbonePacketProcessor>( self_ip_, client_ip_, 62, &output_, &stats_); EXPECT_CALL(stats_, RecordThroughput(_, _, _)).WillRepeatedly(Return()); } void SendPacketFromClient(absl::string_view packet) { std::string packet_buffer(packet.data(), packet.size()); processor_->ProcessPacket(&packet_buffer, Direction::FROM_OFF_NETWORK); } void SendPacketFromNetwork(absl::string_view packet) { std::string packet_buffer(packet.data(), packet.size()); processor_->ProcessPacket(&packet_buffer, Direction::FROM_NETWORK); } QuicIpAddress client_ip_; QuicIpAddress self_ip_; QuicIpAddress network_ip_; std::unique_ptr<QbonePacketProcessor> processor_; testing::StrictMock<MockPacketProcessorOutput> output_; testing::StrictMock<MockPacketProcessorStats> stats_; }; TEST_F(QbonePacketProcessorTest, EmptyPacket) { EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_OFF_NETWORK, _)); EXPECT_CALL(stats_, RecordThroughput(0, Direction::FROM_OFF_NETWORK, _)); SendPacketFromClient(""); EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_NETWORK, _)); EXPECT_CALL(stats_, RecordThroughput(0, Direction::FROM_NETWORK, _)); SendPacketFromNetwork(""); } TEST_F(QbonePacketProcessorTest, RandomGarbage) { EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_OFF_NETWORK, _)); SendPacketFromClient(std::string(1280, 'a')); EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_NETWORK, _)); SendPacketFromNetwork(std::string(1280, 'a')); } TEST_F(QbonePacketProcessorTest, RandomGarbageWithCorrectLengthFields) { std::string packet(40, 'a'); packet[4] = 0; packet[5] = 0; EXPECT_CALL(stats_, OnPacketDroppedWithIcmp(Direction::FROM_OFF_NETWORK, _)); EXPECT_CALL(output_, SendPacketToClient(IsIcmpMessage(ICMP6_DST_UNREACH))); SendPacketFromClient(packet); } TEST_F(QbonePacketProcessorTest, GoodPacketFromClient) { EXPECT_CALL(stats_, OnPacketForwarded(Direction::FROM_OFF_NETWORK, _)); EXPECT_CALL(output_, SendPacketToNetwork(_)); SendPacketFromClient(kReferenceClientPacket); } TEST_F(QbonePacketProcessorTest, GoodPacketFromClientSubnet) { EXPECT_CALL(stats_, OnPacketForwarded(Direction::FROM_OFF_NETWORK, _)); EXPECT_CALL(output_, SendPacketToNetwork(_)); SendPacketFromClient(kReferenceClientSubnetPacket); } TEST_F(QbonePacketProcessorTest, GoodPacketFromNetwork) { EXPECT_CALL(stats_, OnPacketForwarded(Direction::FROM_NETWORK, _)); EXPECT_CALL(output_, SendPacketToClient(_)); SendPacketFromNetwork(kReferenceNetworkPacket); } TEST_F(QbonePacketProcessorTest, GoodPacketFromNetworkWrongDirection) { EXPECT_CALL(stats_, OnPacketDroppedWithIcmp(Direction::FROM_OFF_NETWORK, _)); EXPECT_CALL(output_, SendPacketToClient(IsIcmpMessage(ICMP6_DST_UNREACH))); SendPacketFromClient(kReferenceNetworkPacket); } TEST_F(QbonePacketProcessorTest, TtlExpired) { std::string packet(kReferenceNetworkPacket); packet[7] = 1; EXPECT_CALL(stats_, OnPacketDroppedWithIcmp(Direction::FROM_NETWORK, _)); EXPECT_CALL(output_, SendPacketToNetwork(IsIcmpMessage(ICMP6_TIME_EXCEEDED))); SendPacketFromNetwork(packet); } TEST_F(QbonePacketProcessorTest, UnknownProtocol) { std::string packet(kReferenceNetworkPacket); packet[6] = IPPROTO_SCTP; EXPECT_CALL(stats_, OnPacketDroppedWithIcmp(Direction::FROM_NETWORK, _)); EXPECT_CALL(output_, SendPacketToNetwork(IsIcmpMessage(ICMP6_PARAM_PROB))); SendPacketFromNetwork(packet); } TEST_F(QbonePacketProcessorTest, FilterFromClient) { auto filter = std::make_unique<MockPacketFilter>(); EXPECT_CALL(*filter, FilterPacket(_, _, _, _)) .WillRepeatedly(Return(ProcessingResult::SILENT_DROP)); processor_->set_filter(std::move(filter)); EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_OFF_NETWORK, _)); SendPacketFromClient(kReferenceClientPacket); } class TestFilter : public QbonePacketProcessor::Filter { public: TestFilter(QuicIpAddress client_ip, QuicIpAddress network_ip) : client_ip_(client_ip), network_ip_(network_ip) {} ProcessingResult FilterPacket(Direction direction, absl::string_view full_packet, absl::string_view payload, icmp6_hdr* icmp_header) override { EXPECT_EQ(kIPv6HeaderSize, full_packet.size() - payload.size()); EXPECT_EQ(IPPROTO_UDP, TransportProtocolFromHeader(full_packet)); EXPECT_EQ(client_ip_, SourceIpFromHeader(full_packet)); EXPECT_EQ(network_ip_, DestinationIpFromHeader(full_packet)); last_tos_ = QbonePacketProcessor::TrafficClassFromHeader(full_packet); called_++; return ProcessingResult::SILENT_DROP; } int called() const { return called_; } uint8_t last_tos() const { return last_tos_; } private: int called_ = 0; uint8_t last_tos_ = 0; QuicIpAddress client_ip_; QuicIpAddress network_ip_; }; TEST_F(QbonePacketProcessorTest, FilterHelperFunctions) { auto filter_owned = std::make_unique<TestFilter>(client_ip_, network_ip_); TestFilter* filter = filter_owned.get(); processor_->set_filter(std::move(filter_owned)); EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_OFF_NETWORK, _)); SendPacketFromClient(kReferenceClientPacket); ASSERT_EQ(1, filter->called()); } TEST_F(QbonePacketProcessorTest, FilterHelperFunctionsTOS) { auto filter_owned = std::make_unique<TestFilter>(client_ip_, network_ip_); processor_->set_filter(std::move(filter_owned)); EXPECT_CALL(stats_, OnPacketDroppedSilently(Direction::FROM_OFF_NETWORK, _)) .Times(testing::AnyNumber()); EXPECT_CALL(stats_, RecordThroughput(kReferenceClientPacket.size(), Direction::FROM_OFF_NETWORK, 0)); SendPacketFromClient(kReferenceClientPacket); EXPECT_CALL(stats_, RecordThroughput(kReferenceClientPacketAF4.size(), Direction::FROM_OFF_NETWORK, 0x80)); SendPacketFromClient(kReferenceClientPacketAF4); EXPECT_CALL(stats_, RecordThroughput(kReferenceClientPacketAF3.size(), Direction::FROM_OFF_NETWORK, 0x60)); SendPacketFromClient(kReferenceClientPacketAF3); EXPECT_CALL(stats_, RecordThroughput(kReferenceClientPacketAF2.size(), Direction::FROM_OFF_NETWORK, 0x40)); SendPacketFromClient(kReferenceClientPacketAF2); EXPECT_CALL(stats_, RecordThroughput(kReferenceClientPacketAF1.size(), Direction::FROM_OFF_NETWORK, 0x20)); SendPacketFromClient(kReferenceClientPacketAF1); } TEST_F(QbonePacketProcessorTest, Icmp6EchoResponseHasRightPayload) { auto filter = std::make_unique<MockPacketFilter>(); EXPECT_CALL(*filter, FilterPacket(_, _, _, _)) .WillOnce(WithArgs<2, 3>( Invoke([](absl::string_view payload, icmp6_hdr* icmp_header) { icmp_header->icmp6_type = ICMP6_ECHO_REPLY; icmp_header->icmp6_code = 0; auto* request_header = reinterpret_cast<const icmp6_hdr*>(payload.data()); icmp_header->icmp6_id = request_header->icmp6_id; icmp_header->icmp6_seq = request_header->icmp6_seq; return ProcessingResult::ICMP; }))); processor_->set_filter(std::move(filter)); EXPECT_CALL(stats_, OnPacketDroppedWithIcmp(Direction::FROM_OFF_NETWORK, _)); EXPECT_CALL(output_, SendPacketToClient(_)) .WillOnce(Invoke([](absl::string_view packet) { absl::string_view expected = absl::string_view( kReferenceEchoReplyData, sizeof(kReferenceEchoReplyData)); EXPECT_THAT(packet, Eq(expected)); QUIC_LOG(INFO) << "ICMP response:\n" << quiche::QuicheTextUtils::HexDump(packet); })); SendPacketFromClient(kReferenceEchoRequest); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_packet_processor.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_packet_processor_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
0c1e0df2-8f32-4754-b90e-7b6a758a3abc
cpp
tensorflow/tensorflow
all_gather_decomposer
third_party/xla/xla/service/all_gather_decomposer.cc
third_party/xla/xla/service/all_gather_decomposer_test.cc
#include "xla/service/all_gather_decomposer.h" #include <cstdint> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/collective_decomposer_utils.h" #include "xla/service/collective_ops_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloComputation* MakeBinaryAdd(PrimitiveType type, HloModule* module) { HloComputation::Builder sum_b("add"); auto x = sum_b.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(type, {}), "x")); auto y = sum_b.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(type, {}), "y")); if (type == PRED) { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kOr, x, y)); } else { sum_b.AddInstruction(HloInstruction::CreateBinary( ShapeUtil::MakeShape(type, {}), HloOpcode::kAdd, x, y)); } HloComputation* reduction = module->AddEmbeddedComputation(sum_b.Build()); return reduction; } } HloInstruction* AllGatherDecomposer::TranslateAllGatherToAllReducePerOperand( CollectiveOpGroupMode group_mode, const HloAllGatherInstruction& ag, const Shape& output_shape, HloInstruction* operand, HloComputation* comp, int64_t ag_dim) { std::vector<HloInstruction*> start_indices = CreateStartIndicesForCollectiveDecomposition( group_mode, ag.replica_groups(), operand->shape(), ag_dim, comp) .value(); auto zero = comp->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(output_shape.element_type()))); zero = comp->AddInstruction( HloInstruction::CreateBroadcast(output_shape, zero, {})); auto dus = comp->AddInstruction(HloInstruction::CreateDynamicUpdateSlice( zero->shape(), zero, operand, start_indices)); auto ar = comp->AddInstruction(HloInstruction::CreateAllReduce( dus->shape(), {dus}, MakeBinaryAdd(dus->shape().element_type(), comp->parent()), ag.device_list(), ag.constrain_layout(), ag.channel_id(), ag.use_global_device_ids())); return ar; } absl::Status AllGatherDecomposer::DecomposeAllGather( HloAllGatherInstruction* ag, HloComputation* comp) { TF_ASSIGN_OR_RETURN(CollectiveOpGroupMode group_mode, GetCollectiveOpGroupMode(ag->channel_id().has_value(), ag->use_global_device_ids())); if (ag->operand_count() > 1) { std::vector<HloInstruction*> tuple_inputs; for (int i = 0; i < ag->operand_count(); ++i) { auto* input_operand = ag->mutable_operand(i); const auto& output_shape = ag->shape().tuple_shapes(i); auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, output_shape, input_operand, comp, ag->all_gather_dimension()); tuple_inputs.push_back(ar); } auto tup = comp->AddInstruction(HloInstruction::CreateTuple(tuple_inputs)); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(tup)); } else { auto* ar = TranslateAllGatherToAllReducePerOperand( group_mode, *ag, ag->shape(), ag->mutable_operand(0), comp, ag->all_gather_dimension()); TF_RETURN_IF_ERROR(ag->ReplaceAllUsesWith(ar)); } TF_RETURN_IF_ERROR(comp->RemoveInstructionAndUnusedOperands(ag)); return absl::OkStatus(); } absl::StatusOr<bool> AllGatherDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto comp : module->MakeNonfusionComputations(execution_threads)) { for (auto hlo : comp->MakeInstructionPostOrder()) { if (hlo->opcode() != HloOpcode::kAllGather) { continue; } auto ag = Cast<HloAllGatherInstruction>(hlo); if (ShouldDecompose(*ag)) { TF_RETURN_IF_ERROR(DecomposeAllGather(ag, comp)); changed = true; } } } return changed; } }
#include "xla/service/all_gather_decomposer.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using ::testing::AllOf; namespace op = xla::testing::opcode_matchers; using AllGatherDecomposerTest = HloTestBase; TEST_F(AllGatherDecomposerTest, CrossReplicaAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAndPartitionAllGather) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0}}, channel_id=1, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::PartitionId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTrivialGroup) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{0,1,2,3}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroups) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), op::ReplicaId()))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithSubgroupsGlobalIds) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) ROOT ag = f32[10,80] all-gather(param0), replica_groups={{2,1,0,3}, {4,6,7,5}}, dimensions={1}, channel_id=1, use_global_device_ids=true } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); auto global_id = op::Add(op::Multiply(op::ReplicaId(), op::Constant()), op::PartitionId()); auto id = AllOf(op::Shape("u32[]"), op::Reshape(op::DynamicSlice(op::Constant(), global_id))); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(id, op::Constant())))); } TEST_F(AllGatherDecomposerTest, CrossReplicaAllGatherWithTuple) { const std::string module_str = R"( HloModule module ENTRY entry { param0 = f32[10,20] parameter(0) param1 = f32[10,16] parameter(1) ROOT ag = (f32[10,80], f32[10,64]) all-gather(param0, param1), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); AllGatherDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple( op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(0), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))), op::AllReduce(op::DynamicUpdateSlice( op::Broadcast(op::Constant()), op::Parameter(1), op::Constant(), op::Multiply(op::ReplicaId(), op::Constant()))))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_gather_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_gather_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
324f4e92-107f-46ec-881e-dd70ba2de645
cpp
google/tensorstore
grid_occupancy_map
tensorstore/driver/downsample/grid_occupancy_map.cc
tensorstore/driver/downsample/grid_occupancy_map_test.cc
#include "tensorstore/driver/downsample/grid_occupancy_map.h" #include <algorithm> #include <cassert> #include <cstddef> #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/rank.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { GridOccupancyMap::GridOccupancyMap(GridOccupancyTracker&& tracker, BoxView<> domain) : partition_points(domain.rank()) { const DimensionIndex rank = domain.rank(); span<Index> occupied_chunks = tracker.occupied_chunks; { absl::flat_hash_map<Index, Index> partition_map; for (DimensionIndex dim = 0; dim < rank; ++dim) { partition_map.clear(); IndexInterval bounds = domain[dim]; partition_map.emplace(bounds.inclusive_min(), 0); partition_map.emplace(bounds.exclusive_max(), 0); for (ptrdiff_t i = dim; i < occupied_chunks.size(); i += 2 * rank) { Index begin = occupied_chunks[i]; Index end = begin + occupied_chunks[i + rank]; partition_map.emplace(begin, 0); partition_map.emplace(end, 0); } auto& dim_partition_points = partition_points[dim]; dim_partition_points.reserve(partition_map.size()); for (const auto& p : partition_map) { dim_partition_points.push_back(p.first); } std::sort(dim_partition_points.begin(), dim_partition_points.end()); for (size_t i = 0, size = dim_partition_points.size(); i < size; ++i) { partition_map.at(dim_partition_points[i]) = i; } for (ptrdiff_t i = dim; i < occupied_chunks.size(); i += 2 * rank) { Index& begin = occupied_chunks[i]; Index& end = occupied_chunks[i + rank]; end = partition_map.at(begin + end); begin = partition_map.at(begin); } } } Index grid_cell[kMaxRank]; span<Index> grid_cell_span(&grid_cell[0], rank); { for (DimensionIndex dim = 0; dim < rank; ++dim) { grid_cell[dim] = partition_points[dim].size() - 1; } occupied_chunk_mask = AllocateArray<bool>(grid_cell_span, c_order, value_init); } for (ptrdiff_t i = 0; i < occupied_chunks.size(); i += 2 * rank) { std::copy_n(&occupied_chunks[i], rank, &grid_cell[0]); do { occupied_chunk_mask(grid_cell_span) = true; } while (internal::AdvanceIndices(rank, &grid_cell[0], &occupied_chunks[i], &occupied_chunks[i + rank])); } } bool GridOccupancyMap::GetGridCellDomain( span<const Index> grid_cell, MutableBoxView<> grid_cell_domain) const { assert(grid_cell.size() == grid_cell_domain.rank()); assert(grid_cell.size() == rank()); if (occupied_chunk_mask(grid_cell)) return false; for (DimensionIndex dim = 0; dim < grid_cell.size(); ++dim) { const Index partition_index = grid_cell[dim]; grid_cell_domain[dim] = IndexInterval::UncheckedHalfOpen( partition_points[dim][partition_index], partition_points[dim][partition_index + 1]); } return true; } void GridOccupancyMap::InitializeCellIterator(span<Index> grid_cell) const { std::fill(grid_cell.begin(), grid_cell.end(), 0); } bool GridOccupancyMap::AdvanceCellIterator(span<Index> grid_cell) const { assert(grid_cell.size() == occupied_chunk_mask.rank()); return internal::AdvanceIndices(grid_cell.size(), grid_cell.data(), occupied_chunk_mask.shape().data()); } } }
#include "tensorstore/driver/downsample/grid_occupancy_map.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::internal_downsample::GridOccupancyMap; using ::tensorstore::internal_downsample::GridOccupancyTracker; std::vector<Box<>> GetUnoccupiedBoxes(const GridOccupancyMap& map) { std::vector<Box<>> boxes; std::vector<Index> grid_cell(map.rank()); map.InitializeCellIterator(grid_cell); Box<> box(map.rank()); do { if (map.GetGridCellDomain(grid_cell, box)) { boxes.push_back(box); } } while (map.AdvanceCellIterator(grid_cell)); return boxes; } TEST(GridOccupancyMapTest, Rank1) { GridOccupancyTracker tracker; tracker.MarkOccupied(BoxView<1>({1}, {3})); tracker.MarkOccupied(BoxView<1>({5}, {4})); GridOccupancyMap map(std::move(tracker), BoxView<1>({-1}, {11})); EXPECT_THAT( map.partition_points, ::testing::ElementsAre(::testing::ElementsAre(-1, 1, 4, 5, 9, 10))); EXPECT_EQ(map.occupied_chunk_mask, MakeArray<bool>({0, 1, 0, 1, 0})); EXPECT_THAT(GetUnoccupiedBoxes(map), ::testing::ElementsAre(Box<>({-1}, {2}), Box<>({4}, {1}), Box<>({9}, {1}))); } TEST(GridOccupancyMapTest, Rank2) { GridOccupancyTracker tracker; tracker.MarkOccupied(BoxView<2>({0, 0}, {3, 2})); tracker.MarkOccupied(BoxView<2>({3, 3}, {1, 3})); tracker.MarkOccupied(BoxView<2>({0, 5}, {2, 3})); GridOccupancyMap map(std::move(tracker), BoxView<2>({4, 10})); EXPECT_THAT( map.partition_points, ::testing::ElementsAre(::testing::ElementsAre(0, 2, 3, 4), ::testing::ElementsAre(0, 2, 3, 5, 6, 8, 10))); EXPECT_EQ(map.occupied_chunk_mask, MakeArray<bool>({ {1, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, })); EXPECT_THAT( GetUnoccupiedBoxes(map), ::testing::ElementsAre( Box<>({0, 2}, {2, 1}), Box<>({0, 3}, {2, 2}), Box<>({0, 8}, {2, 2}), Box<>({2, 2}, {1, 1}), Box<>({2, 3}, {1, 2}), Box<>({2, 5}, {1, 1}), Box<>({2, 6}, {1, 2}), Box<>({2, 8}, {1, 2}), Box<>({3, 0}, {1, 2}), Box<>({3, 2}, {1, 1}), Box<>({3, 6}, {1, 2}), Box<>({3, 8}, {1, 2}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/downsample/grid_occupancy_map.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/downsample/grid_occupancy_map_test.cc
4f887a6430414cd6088e1743555015b10f116d50
cb21734b-9242-415e-ac25-360ddf2d0b25
cpp
google/quiche
decode_buffer
quiche/http2/decoder/decode_buffer.cc
quiche/http2/decoder/decode_buffer_test.cc
#include "quiche/http2/decoder/decode_buffer.h" namespace http2 { uint8_t DecodeBuffer::DecodeUInt8() { return static_cast<uint8_t>(DecodeChar()); } uint16_t DecodeBuffer::DecodeUInt16() { QUICHE_DCHECK_LE(2u, Remaining()); const uint8_t b1 = DecodeUInt8(); const uint8_t b2 = DecodeUInt8(); return b1 << 8 | b2; } uint32_t DecodeBuffer::DecodeUInt24() { QUICHE_DCHECK_LE(3u, Remaining()); const uint8_t b1 = DecodeUInt8(); const uint8_t b2 = DecodeUInt8(); const uint8_t b3 = DecodeUInt8(); return b1 << 16 | b2 << 8 | b3; } uint32_t DecodeBuffer::DecodeUInt31() { QUICHE_DCHECK_LE(4u, Remaining()); const uint8_t b1 = DecodeUInt8() & 0x7f; const uint8_t b2 = DecodeUInt8(); const uint8_t b3 = DecodeUInt8(); const uint8_t b4 = DecodeUInt8(); return b1 << 24 | b2 << 16 | b3 << 8 | b4; } uint32_t DecodeBuffer::DecodeUInt32() { QUICHE_DCHECK_LE(4u, Remaining()); const uint8_t b1 = DecodeUInt8(); const uint8_t b2 = DecodeUInt8(); const uint8_t b3 = DecodeUInt8(); const uint8_t b4 = DecodeUInt8(); return b1 << 24 | b2 << 16 | b3 << 8 | b4; } #ifndef NDEBUG void DecodeBuffer::set_subset_of_base(DecodeBuffer* base, const DecodeBufferSubset* subset) { QUICHE_DCHECK_EQ(this, subset); base->set_subset(subset); } void DecodeBuffer::clear_subset_of_base(DecodeBuffer* base, const DecodeBufferSubset* subset) { QUICHE_DCHECK_EQ(this, subset); base->clear_subset(subset); } void DecodeBuffer::set_subset(const DecodeBufferSubset* subset) { QUICHE_DCHECK(subset != nullptr); QUICHE_DCHECK_EQ(subset_, nullptr) << "There is already a subset"; subset_ = subset; } void DecodeBuffer::clear_subset(const DecodeBufferSubset* subset) { QUICHE_DCHECK(subset != nullptr); QUICHE_DCHECK_EQ(subset_, subset); subset_ = nullptr; } void DecodeBufferSubset::DebugSetup() { start_base_offset_ = base_buffer_->Offset(); max_base_offset_ = start_base_offset_ + FullSize(); QUICHE_DCHECK_LE(max_base_offset_, base_buffer_->FullSize()); set_subset_of_base(base_buffer_, this); } void DecodeBufferSubset::DebugTearDown() { QUICHE_DCHECK_EQ(start_base_offset_, base_buffer_->Offset()) << "The base buffer was modified"; size_t offset = Offset(); QUICHE_DCHECK_LE(offset, FullSize()); QUICHE_DCHECK_LE(start_base_offset_ + offset, max_base_offset_); QUICHE_DCHECK_LE(max_base_offset_, base_buffer_->FullSize()); clear_subset_of_base(base_buffer_, this); } #endif }
#include "quiche/http2/decoder/decode_buffer.h" #include <functional> #include "quiche/http2/test_tools/http2_random.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { enum class TestEnumClass32 { kValue1 = 1, kValue99 = 99, kValue1M = 1000000, }; enum class TestEnumClass8 { kValue1 = 1, kValue2 = 1, kValue99 = 99, kValue255 = 255, }; enum TestEnum8 { kMaskLo = 0x01, kMaskHi = 0x80, }; struct TestStruct { uint8_t f1; uint16_t f2; uint32_t f3; uint32_t f4; uint32_t f5; TestEnumClass32 f6; TestEnumClass8 f7; TestEnum8 f8; }; class DecodeBufferTest : public quiche::test::QuicheTest { protected: Http2Random random_; uint32_t decode_offset_; }; TEST_F(DecodeBufferTest, DecodesFixedInts) { const char data[] = "\x01\x12\x23\x34\x45\x56\x67\x78\x89\x9a"; DecodeBuffer b1(data, strlen(data)); EXPECT_EQ(1, b1.DecodeUInt8()); EXPECT_EQ(0x1223u, b1.DecodeUInt16()); EXPECT_EQ(0x344556u, b1.DecodeUInt24()); EXPECT_EQ(0x6778899Au, b1.DecodeUInt32()); } TEST_F(DecodeBufferTest, HasNotCopiedInput) { const char data[] = "ab"; DecodeBuffer b1(data, 2); EXPECT_EQ(2u, b1.Remaining()); EXPECT_EQ(0u, b1.Offset()); EXPECT_FALSE(b1.Empty()); EXPECT_EQ(data, b1.cursor()); EXPECT_TRUE(b1.HasData()); b1.AdvanceCursor(1); EXPECT_EQ(1u, b1.Remaining()); EXPECT_EQ(1u, b1.Offset()); EXPECT_FALSE(b1.Empty()); EXPECT_EQ(&data[1], b1.cursor()); EXPECT_TRUE(b1.HasData()); b1.AdvanceCursor(1); EXPECT_EQ(0u, b1.Remaining()); EXPECT_EQ(2u, b1.Offset()); EXPECT_TRUE(b1.Empty()); EXPECT_EQ(&data[2], b1.cursor()); EXPECT_FALSE(b1.HasData()); DecodeBuffer b2(data, 0); EXPECT_EQ(0u, b2.Remaining()); EXPECT_EQ(0u, b2.Offset()); EXPECT_TRUE(b2.Empty()); EXPECT_EQ(data, b2.cursor()); EXPECT_FALSE(b2.HasData()); } TEST_F(DecodeBufferTest, DecodeBufferSubsetLimited) { const char data[] = "abc"; DecodeBuffer base(data, 3); base.AdvanceCursor(1); DecodeBufferSubset subset(&base, 100); EXPECT_EQ(2u, subset.FullSize()); } TEST_F(DecodeBufferTest, DecodeBufferSubsetAdvancesCursor) { const char data[] = "abc"; const size_t size = sizeof(data) - 1; EXPECT_EQ(3u, size); DecodeBuffer base(data, size); { DecodeBufferSubset subset(&base, size + 100); EXPECT_EQ(size, subset.FullSize()); EXPECT_EQ(base.FullSize(), subset.FullSize()); EXPECT_EQ(0u, subset.Offset()); } EXPECT_EQ(0u, base.Offset()); EXPECT_EQ(size, base.Remaining()); } #if GTEST_HAS_DEATH_TEST && !defined(NDEBUG) TEST(DecodeBufferDeathTest, NonNullBufferRequired) { EXPECT_QUICHE_DEBUG_DEATH({ DecodeBuffer b(nullptr, 3); }, "nullptr"); } TEST(DecodeBufferDeathTest, ModestBufferSizeRequired) { EXPECT_QUICHE_DEBUG_DEATH( { constexpr size_t kLength = DecodeBuffer::kMaxDecodeBufferLength + 1; auto data = std::make_unique<char[]>(kLength); DecodeBuffer b(data.get(), kLength); }, "Max.*Length"); } TEST(DecodeBufferDeathTest, LimitedAdvance) { { const char data[] = "abc"; DecodeBuffer b(data, 3); b.AdvanceCursor(3); EXPECT_TRUE(b.Empty()); } EXPECT_QUICHE_DEBUG_DEATH( { const char data[] = "abc"; DecodeBuffer b(data, 3); b.AdvanceCursor(4); }, "Remaining"); } TEST(DecodeBufferDeathTest, DecodeUInt8PastEnd) { const char data[] = {0x12, 0x23}; DecodeBuffer b(data, sizeof data); EXPECT_EQ(2u, b.FullSize()); EXPECT_EQ(0x1223, b.DecodeUInt16()); EXPECT_QUICHE_DEBUG_DEATH({ b.DecodeUInt8(); }, "Remaining"); } TEST(DecodeBufferDeathTest, DecodeUInt16OverEnd) { const char data[] = {0x12, 0x23, 0x34}; DecodeBuffer b(data, sizeof data); EXPECT_EQ(3u, b.FullSize()); EXPECT_EQ(0x1223, b.DecodeUInt16()); EXPECT_QUICHE_DEBUG_DEATH({ b.DecodeUInt16(); }, "Remaining"); } TEST(DecodeBufferSubsetDeathTest, TwoSubsets) { const char data[] = "abc"; DecodeBuffer base(data, 3); DecodeBufferSubset subset1(&base, 1); EXPECT_QUICHE_DEBUG_DEATH({ DecodeBufferSubset subset2(&base, 1); }, "There is already a subset"); } TEST(DecodeBufferSubsetDeathTest, BaseCursorAdvanced) { const char data[] = "abc"; DecodeBuffer base(data, 3); base.AdvanceCursor(1); EXPECT_QUICHE_DEBUG_DEATH( { DecodeBufferSubset subset1(&base, 2); base.AdvanceCursor(1); }, "Access via subset only when present"); } #endif } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/decode_buffer.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/decode_buffer_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
63728d0f-b84d-4e18-bb17-5fb065cf6c33
cpp
tensorflow/tensorflow
concatenate_dataset_op
tensorflow/core/kernels/data/concatenate_dataset_op.cc
tensorflow/core/kernels/data/concatenate_dataset_op_test.cc
#include "tensorflow/core/kernels/data/concatenate_dataset_op.h" #include <algorithm> #include <cstddef> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/split_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/statusor.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr const char* const ConcatenateDatasetOp::kDatasetType; constexpr const char* const ConcatenateDatasetOp::kInputDataset; constexpr const char* const ConcatenateDatasetOp::kAnotherDataset; constexpr const char* const ConcatenateDatasetOp::kOutputTypes; constexpr const char* const ConcatenateDatasetOp::kOutputShapes; constexpr char kIndex[] = "i"; constexpr char kInputImplUninitialized[] = "input_impl_uninitialized"; constexpr char kElementCount[] = "element_count"; namespace { absl::StatusOr<size_t> GetNextShuffledIndex(const IndexMapperFn& index_mapper, size_t& element_count) { absl::StatusOr<size_t> shuffled_index = absl::NotFoundError("default"); while (absl::IsNotFound(shuffled_index.status())) { shuffled_index = index_mapper(element_count++); if (absl::IsOutOfRange(shuffled_index.status())) { return shuffled_index.status(); } if (!absl::IsNotFound(shuffled_index.status()) && !shuffled_index.ok()) { return shuffled_index.status(); } } return shuffled_index; } } class ConcatenateDatasetOp::Dataset : public DatasetBase { public: explicit Dataset(OpKernelContext* ctx, const DatasetBase* input, const DatasetBase* to_concatenate) : DatasetBase(DatasetContext(ctx)), input_(input), to_concatenate_(to_concatenate), input_cardinality_(input->Cardinality()), to_concatenate_cardinality_(to_concatenate_->Cardinality()) { input_->Ref(); to_concatenate_->Ref(); auto os_input = input->output_shapes(); auto os_concatenate = to_concatenate->output_shapes(); for (int i = 0; i < os_input.size(); i++) { PartialTensorShape output_tensorshape({}); OP_REQUIRES_OK(ctx, MostSpecificCompatibleShape(os_input[i], os_concatenate[i], &output_tensorshape)); output_shapes_.push_back(output_tensorshape); } if (input_ != nullptr && !input_->RandomIndexingCompatible().ok()) { random_indexing_compatible_ = input->RandomIndexingCompatible(); } else if (to_concatenate_ != nullptr && !to_concatenate_->RandomIndexingCompatible().ok()) { random_indexing_compatible_ = to_concatenate_->RandomIndexingCompatible(); } } ~Dataset() override { input_->Unref(); to_concatenate_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { TF_ASSIGN_OR_RETURN(*split_providers, GetSplitProviders(this)); return absl::OkStatus(); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { int64_t input_cardinality = input_->Cardinality(options); int64_t to_concatenate_cardinality = to_concatenate_->Cardinality(options); if (input_cardinality == kInfiniteCardinality || to_concatenate_cardinality == kInfiniteCardinality) { return kInfiniteCardinality; } if (input_cardinality == kUnknownCardinality || to_concatenate_cardinality == kUnknownCardinality) { return kUnknownCardinality; } return input_cardinality + to_concatenate_cardinality; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); inputs->push_back(to_concatenate_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(input_->CheckExternalState()); return to_concatenate_->CheckExternalState(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); if (index < input_cardinality_) { TF_RETURN_IF_ERROR(input_->Get(ctx, index, out_tensors)); } else { TF_RETURN_IF_ERROR( to_concatenate_->Get(ctx, index - input_cardinality_, out_tensors)); } return absl::OkStatus(); } absl::Status RandomIndexingCompatible() const override { return random_indexing_compatible_; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph)); Node* to_concatenate_graph = nullptr; TF_RETURN_IF_ERROR( b->AddInputDataset(ctx, to_concatenate_, &to_concatenate_graph)); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph, to_concatenate_graph}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params), i_(0) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); input_impls_.resize(2); TF_ASSIGN_OR_RETURN(input_contexts_, CreateInputIteratorContexts(ctx, dataset())); TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( &input_contexts_[0], this, strings::StrCat(prefix(), "[0]"), &input_impls_[0])); ctx->MergeCheckpoint(input_contexts_[0].checkpoint()); return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); if (!input_impls_[0] && !input_impls_[1]) { *end_of_sequence = true; return absl::OkStatus(); } if (ctx->index_mapper()) { if (input_impls_[1] == nullptr) { TF_RETURN_IF_ERROR(dataset()->to_concatenate_->MakeIterator( &input_contexts_[1], this, strings::StrCat(prefix(), "[1]"), &input_impls_[1])); ctx->MergeCheckpoint(input_contexts_[1].checkpoint()); } if (input_contexts_[0].index_mapper() == nullptr) { IndexMapperFn left_index_mapper = [index_mapper = ctx->index_mapper(), left_cardinality = dataset()->input_cardinality_, right_cardinality = dataset()->to_concatenate_cardinality_]( size_t to_idx) -> absl::StatusOr<size_t> { TF_ASSIGN_OR_RETURN(size_t from_idx, index_mapper(to_idx)); if (from_idx >= left_cardinality + right_cardinality) { return absl::OutOfRangeError("Running out of elements."); } if (from_idx >= left_cardinality) { return absl::NotFoundError("Skipping this element."); } return from_idx; }; IndexMapperFn right_index_mapper = [index_mapper = ctx->index_mapper(), left_cardinality = dataset()->input_cardinality_, right_cardinality = dataset()->to_concatenate_cardinality_]( size_t to_idx) -> absl::StatusOr<size_t> { TF_ASSIGN_OR_RETURN(size_t from_idx, index_mapper(to_idx)); if (from_idx >= left_cardinality + right_cardinality) { return absl::OutOfRangeError("Running out of elements."); } if (from_idx < left_cardinality) { return absl::NotFoundError("Skipping this element."); } return from_idx - left_cardinality; }; input_contexts_[0].SetIndexMapper(left_index_mapper); input_contexts_[1].SetIndexMapper(right_index_mapper); } absl::StatusOr<size_t> shuffled_index = GetNextShuffledIndex(ctx->index_mapper(), element_count_); if (absl::IsOutOfRange(shuffled_index.status())) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(shuffled_index.status()); bool temp_end_of_sequence = false; absl::Status status = absl::OkStatus(); if (shuffled_index.value() < dataset()->input_cardinality_) { status = input_impls_[0]->GetNext(&input_contexts_[0], out_tensors, &temp_end_of_sequence); ctx->MergeCheckpoint(input_contexts_[0].checkpoint()); } else { status = input_impls_[1]->GetNext(&input_contexts_[1], out_tensors, &temp_end_of_sequence); ctx->MergeCheckpoint(input_contexts_[1].checkpoint()); } TF_RETURN_IF_ERROR(status); if (temp_end_of_sequence) { *end_of_sequence = temp_end_of_sequence; return absl::OkStatus(); } return absl::OkStatus(); } for (; i_ < 2; ++i_) { TF_RETURN_IF_ERROR(input_impls_[i_]->GetNext( &input_contexts_[i_], out_tensors, end_of_sequence)); ctx->MergeCheckpoint(input_contexts_[i_].checkpoint()); if (!*end_of_sequence) { return absl::OkStatus(); } if (i_ == 0) { TF_RETURN_IF_ERROR(dataset()->to_concatenate_->MakeIterator( &input_contexts_[1], this, strings::StrCat(prefix(), "[1]"), &input_impls_[1])); ctx->MergeCheckpoint(input_contexts_[1].checkpoint()); } } *end_of_sequence = true; input_impls_[0].reset(); input_impls_[1].reset(); return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), 1); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kIndex, i_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kElementCount, element_count_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), absl::StrFormat("%s[%d]", kInputImplUninitialized, 0), static_cast<int64_t>(!input_impls_[0]))); if (input_impls_[0]) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impls_[0])); } TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), absl::StrFormat("%s[%d]", kInputImplUninitialized, 1), static_cast<int64_t>(!input_impls_[1]))); if (input_impls_[1]) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impls_[1])); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t input_uninitialized[2]; TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), absl::StrFormat("%s[%d]", kInputImplUninitialized, 0), &input_uninitialized[0])); if (static_cast<bool>(input_uninitialized[0])) { input_impls_[0].reset(); } TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), absl::StrFormat("%s[%d]", kInputImplUninitialized, 1), &input_uninitialized[1])); if (static_cast<bool>(input_uninitialized[1])) { input_impls_[1].reset(); } if (ctx->restored_element_count()) { if (input_impls_.size() != 2) { return absl::FailedPreconditionError( "`Initialize` should be called before restoring from the " "checkpoint."); } { int64_t tmp_element_count; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kElementCount, &tmp_element_count)); if (tmp_element_count < 0) { return absl::FailedPreconditionError(absl::StrFormat( "element_count should be >= 0. Got %d", tmp_element_count)); } element_count_ = static_cast<size_t>(tmp_element_count); } if (!static_cast<bool>(input_uninitialized[0])) { if (!input_impls_[0]) { return absl::FailedPreconditionError( "Something went wrong internally. The first iterator should " "exist because of `Initialize`."); } input_contexts_[0].set_restored_element_count( *ctx->restored_element_count()); TF_RETURN_IF_ERROR( RestoreInput(&input_contexts_[0], reader, input_impls_[0])); ctx->MergeCheckpoint(input_contexts_[0].checkpoint()); } if (!static_cast<bool>(input_uninitialized[1])) { TF_RETURN_IF_ERROR(dataset()->to_concatenate_->MakeIterator( &input_contexts_[1], this, strings::StrCat(prefix(), "[1]"), &input_impls_[1])); input_contexts_[1].set_restored_element_count( *ctx->restored_element_count()); TF_RETURN_IF_ERROR( RestoreInput(&input_contexts_[1], reader, input_impls_[1])); ctx->MergeCheckpoint(input_contexts_[1].checkpoint()); } return absl::OkStatus(); } TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kIndex, &i_)); if (!TF_PREDICT_TRUE(i_ >= 0 && i_ <= 2)) return errors::InvalidArgument("i_ must be in range [0, 2]."); if (!static_cast<bool>(input_uninitialized[0])) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impls_[0])); } if (!static_cast<bool>(input_uninitialized[1])) { TF_RETURN_IF_ERROR(dataset()->to_concatenate_->MakeIterator( &input_contexts_[1], this, strings::StrCat(prefix(), "[1]"), &input_impls_[1])); ctx->MergeCheckpoint(input_contexts_[1].checkpoint()); TF_RETURN_IF_ERROR( RestoreInput(&input_contexts_[1], reader, input_impls_[1])); ctx->MergeCheckpoint(input_contexts_[1].checkpoint()); } return absl::OkStatus(); } private: mutex mu_; int64_t i_ TF_GUARDED_BY(mu_); std::vector<std::unique_ptr<IteratorBase>> input_impls_ TF_GUARDED_BY(mu_); std::vector<IteratorContext> input_contexts_ TF_GUARDED_BY(mu_); size_t element_count_ TF_GUARDED_BY(mu_) = 0; }; Status MostSpecificCompatibleShape(const PartialTensorShape& ts1, const PartialTensorShape& ts2, PartialTensorShape* output_tensorshape) { if (ts1.dims() != ts2.dims() || ts1.unknown_rank() || ts2.unknown_rank()) return absl::OkStatus(); auto dims1 = ts1.dim_sizes(); auto dims2 = ts2.dim_sizes(); for (int d = 0; d < ts1.dims(); d++) { if (dims1[d] == dims2[d]) TF_RETURN_IF_ERROR(output_tensorshape->AddDimWithStatus(dims1[d])); else TF_RETURN_IF_ERROR(output_tensorshape->AddDimWithStatus(-1)); } return absl::OkStatus(); } const DatasetBase* input_; const DatasetBase* to_concatenate_; const int64_t input_cardinality_; const int64_t to_concatenate_cardinality_; std::vector<PartialTensorShape> output_shapes_; absl::Status random_indexing_compatible_ = absl::OkStatus(); }; ConcatenateDatasetOp::ConcatenateDatasetOp(OpKernelConstruction* ctx) : BinaryDatasetOpKernel(ctx) {} void ConcatenateDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase* to_concatenate, DatasetBase** output) { OP_REQUIRES(ctx, input->output_dtypes() == to_concatenate->output_dtypes(), errors::InvalidArgument( "input dataset and dataset to concatenate" " have different output_types %s and %s", (DataTypeVectorString(input->output_dtypes()), DataTypeVectorString(to_concatenate->output_dtypes())))); *output = new Dataset(ctx, input, to_concatenate); } namespace { REGISTER_KERNEL_BUILDER(Name("ConcatenateDataset").Device(DEVICE_CPU), ConcatenateDatasetOp); } } }
#include "tensorflow/core/kernels/data/concatenate_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "concatenate_dataset"; ConcatenateDatasetParams SameShapeConcatenateDatasetParams() { auto tensor_slice_dataset_params_0 = TensorSliceDatasetParams( CreateTensors<int64_t>(TensorShape{2, 2}, {{1, 2, 3, 4}, {5, 6, 7, 8}}), "tensor_slice_0"); auto tensor_slice_dataset_params_1 = TensorSliceDatasetParams( CreateTensors<int64_t>( TensorShape{2, 2}, {{11, 12, 13, 14}, {15, 16, 17, 18}}), "tensor_slice_1"); return ConcatenateDatasetParams( std::move(tensor_slice_dataset_params_0), std::move(tensor_slice_dataset_params_1), {DT_INT64, DT_INT64}, {PartialTensorShape({2}), PartialTensorShape({2})}, kNodeName); } ConcatenateDatasetParams DifferentShapeConcatenateDatasetParams() { auto tensor_slice_dataset_params_0 = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{2, 3}, {1, 2, 3, 4, 5, 6}), CreateTensor<int64_t>(TensorShape{2, 2}, {7, 8, 9, 10})}, "tensor_slice_0"); auto tensor_slice_dataset_params_1 = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{2, 2}, {11, 12, 13, 14}), CreateTensor<int64_t>(TensorShape{2, 1}, {15, 16})}, "tensor_slice_1"); return ConcatenateDatasetParams( std::move(tensor_slice_dataset_params_0), std::move(tensor_slice_dataset_params_1), {DT_INT64, DT_INT64}, {PartialTensorShape({-1}), PartialTensorShape({-1})}, kNodeName); } ConcatenateDatasetParams DifferentDtypeConcatenateDatasetParams() { auto tensor_slice_dataset_params_0 = TensorSliceDatasetParams( CreateTensors<int64_t>(TensorShape{2, 2}, {{1, 2, 3, 4}}), "tensor_slice_0"); auto tensor_slice_dataset_params_1 = TensorSliceDatasetParams( CreateTensors<double>(TensorShape{2, 2}, {{1.0, 2.0, 3.0, 4.0}}), "tensor_slice_1"); return ConcatenateDatasetParams(std::move(tensor_slice_dataset_params_0), std::move(tensor_slice_dataset_params_1), {DT_INT64}, {PartialTensorShape({2})}, kNodeName); } class ConcatenateDatasetOpTest : public DatasetOpsTestBase {}; std::vector<GetNextTestCase<ConcatenateDatasetParams>> GetNextTestCases() { return {{SameShapeConcatenateDatasetParams(), CreateTensors<int64_t>(TensorShape({2}), {{1, 2}, {5, 6}, {3, 4}, {7, 8}, {11, 12}, {15, 16}, {13, 14}, {17, 18}})}, {DifferentShapeConcatenateDatasetParams(), {CreateTensor<int64_t>(TensorShape{3}, {1, 2, 3}), CreateTensor<int64_t>(TensorShape{2}, {7, 8}), CreateTensor<int64_t>(TensorShape{3}, {4, 5, 6}), CreateTensor<int64_t>(TensorShape{2}, {9, 10}), CreateTensor<int64_t>(TensorShape{2}, {11, 12}), CreateTensor<int64_t>(TensorShape{1}, {15}), CreateTensor<int64_t>(TensorShape{2}, {13, 14}), CreateTensor<int64_t>(TensorShape{1}, {16})}}}; } ITERATOR_GET_NEXT_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, GetNextTestCases()) TEST_F(ConcatenateDatasetOpTest, DifferentDtypes) { auto dataset_params = DifferentDtypeConcatenateDatasetParams(); EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } TEST_F(ConcatenateDatasetOpTest, DatasetNodeName) { auto dataset_params = SameShapeConcatenateDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(ConcatenateDatasetOpTest, DatasetTypeString) { auto dataset_params = SameShapeConcatenateDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(ConcatenateDatasetOp::kDatasetType))); } std::vector<DatasetOutputDtypesTestCase<ConcatenateDatasetParams>> DatasetOutputDtypesTestCases() { return {{SameShapeConcatenateDatasetParams(), SameShapeConcatenateDatasetParams().output_dtypes()}, {DifferentShapeConcatenateDatasetParams(), DifferentShapeConcatenateDatasetParams().output_dtypes()}}; } DATASET_OUTPUT_DTYPES_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, DatasetOutputDtypesTestCases()) std::vector<DatasetOutputShapesTestCase<ConcatenateDatasetParams>> DatasetOutputShapesTestCases() { return {{SameShapeConcatenateDatasetParams(), SameShapeConcatenateDatasetParams().output_shapes()}, { DifferentShapeConcatenateDatasetParams(), DifferentShapeConcatenateDatasetParams().output_shapes()}}; } DATASET_OUTPUT_SHAPES_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<ConcatenateDatasetParams>> CardinalityTestCases() { return {{SameShapeConcatenateDatasetParams(), 4}, {DifferentShapeConcatenateDatasetParams(), 4}}; } DATASET_CARDINALITY_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, CardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<ConcatenateDatasetParams>> IteratorOutputDtypesTestCases() { return {{SameShapeConcatenateDatasetParams(), SameShapeConcatenateDatasetParams().output_dtypes()}, {DifferentShapeConcatenateDatasetParams(), DifferentShapeConcatenateDatasetParams().output_dtypes()}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, IteratorOutputDtypesTestCases()) std::vector<IteratorOutputShapesTestCase<ConcatenateDatasetParams>> IteratorOutputShapesTestCases() { return {{SameShapeConcatenateDatasetParams(), SameShapeConcatenateDatasetParams().output_shapes()}, {DifferentShapeConcatenateDatasetParams(), DifferentShapeConcatenateDatasetParams().output_shapes()}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, IteratorOutputShapesTestCases()) TEST_F(ConcatenateDatasetOpTest, IteratorPrefix) { auto dataset_params = SameShapeConcatenateDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( ConcatenateDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<ConcatenateDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{SameShapeConcatenateDatasetParams(), {0, 2, 5}, CreateTensors<int64_t>(TensorShape({2}), {{1, 2}, {5, 6}, {3, 4}, {7, 8}, {11, 12}, {15, 16}, {13, 14}, {17, 18}})}, {DifferentShapeConcatenateDatasetParams(), {0, 2, 5}, {CreateTensor<int64_t>(TensorShape{3}, {1, 2, 3}), CreateTensor<int64_t>(TensorShape{2}, {7, 8}), CreateTensor<int64_t>(TensorShape{3}, {4, 5, 6}), CreateTensor<int64_t>(TensorShape{2}, {9, 10}), CreateTensor<int64_t>(TensorShape{2}, {11, 12}), CreateTensor<int64_t>(TensorShape{1}, {15}), CreateTensor<int64_t>(TensorShape{2}, {13, 14}), CreateTensor<int64_t>(TensorShape{1}, {16})}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(ConcatenateDatasetOpTest, ConcatenateDatasetParams, IteratorSaveAndRestoreTestCases()) } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/concatenate_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/concatenate_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bcacdd99-1c10-474c-bf53-07e8abaf672b
cpp
google/quiche
aes_128_gcm_decrypter
quiche/quic/core/crypto/aes_128_gcm_decrypter.cc
quiche/quic/core/crypto/aes_128_gcm_decrypter_test.cc
#include "quiche/quic/core/crypto/aes_128_gcm_decrypter.h" #include "openssl/aead.h" #include "openssl/tls1.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" namespace quic { namespace { const size_t kKeySize = 16; const size_t kNonceSize = 12; } Aes128GcmDecrypter::Aes128GcmDecrypter() : AesBaseDecrypter(EVP_aead_aes_128_gcm, kKeySize, kAuthTagSize, kNonceSize, true) { static_assert(kKeySize <= kMaxKeySize, "key size too big"); static_assert(kNonceSize <= kMaxNonceSize, "nonce size too big"); } Aes128GcmDecrypter::~Aes128GcmDecrypter() {} uint32_t Aes128GcmDecrypter::cipher_id() const { return TLS1_CK_AES_128_GCM_SHA256; } }
#include "quiche/quic/core/crypto/aes_128_gcm_decrypter.h" #include <memory> #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace { struct TestGroupInfo { size_t key_len; size_t iv_len; size_t pt_len; size_t aad_len; size_t tag_len; }; struct TestVector { const char* key; const char* iv; const char* ct; const char* aad; const char* tag; const char* pt; }; const TestGroupInfo test_group_info[] = { {128, 96, 0, 0, 128}, {128, 96, 0, 128, 128}, {128, 96, 128, 0, 128}, {128, 96, 408, 160, 128}, {128, 96, 408, 720, 128}, {128, 96, 104, 0, 128}, }; const TestVector test_group_0[] = { {"cf063a34d4a9a76c2c86787d3f96db71", "113b9785971864c83b01c787", "", "", "72ac8493e3a5228b5d130a69d2510e42", ""}, { "a49a5e26a2f8cb63d05546c2a62f5343", "907763b19b9b4ab6bd4f0281", "", "", "a2be08210d8c470a8df6e8fbd79ec5cf", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_1[] = { { "d1f6af919cde85661208bdce0c27cb22", "898c6929b435017bf031c3c5", "", "7c5faa40e636bbc91107e68010c92b9f", "ae45f11777540a2caeb128be8092468a", nullptr }, {"2370e320d4344208e0ff5683f243b213", "04dbb82f044d30831c441228", "", "d43a8e5089eea0d026c03a85178b27da", "2a049c049d25aa95969b451d93c31c6e", ""}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_2[] = { {"e98b72a9881a84ca6b76e0f43e68647a", "8b23299fde174053f3d652ba", "5a3c1cf1985dbb8bed818036fdd5ab42", "", "23c7ab0f952b7091cd324835043b5eb5", "28286a321293253c3e0aa2704a278032"}, {"33240636cd3236165f1a553b773e728e", "17c4d61493ecdc8f31700b12", "47bb7e23f7bdfe05a8091ac90e4f8b2e", "", "b723c70e931d9785f40fd4ab1d612dc9", "95695a5b12f2870b9cc5fdc8f218a97d"}, { "5164df856f1e9cac04a79b808dc5be39", "e76925d5355e0584ce871b2b", "0216c899c88d6e32c958c7e553daa5bc", "", "a145319896329c96df291f64efbe0e3a", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_3[] = { {"af57f42c60c0fc5a09adb81ab86ca1c3", "a2dc01871f37025dc0fc9a79", "b9a535864f48ea7b6b1367914978f9bfa087d854bb0e269bed8d279d2eea1210e48947" "338b22f9bad09093276a331e9c79c7f4", "41dc38988945fcb44faf2ef72d0061289ef8efd8", "4f71e72bde0018f555c5adcce062e005", "3803a0727eeb0ade441e0ec107161ded2d425ec0d102f21f51bf2cf9947c7ec4aa7279" "5b2f69b041596e8817d0a3c16f8fadeb"}, {"ebc753e5422b377d3cb64b58ffa41b61", "2e1821efaced9acf1f241c9b", "069567190554e9ab2b50a4e1fbf9c147340a5025fdbd201929834eaf6532325899ccb9" "f401823e04b05817243d2142a3589878", "b9673412fd4f88ba0e920f46dd6438ff791d8eef", "534d9234d2351cf30e565de47baece0b", "39077edb35e9c5a4b1e4c2a6b9bb1fce77f00f5023af40333d6d699014c2bcf4209c18" "353a18017f5b36bfc00b1f6dcb7ed485"}, { "52bdbbf9cf477f187ec010589cb39d58", "d3be36d3393134951d324b31", "700188da144fa692cf46e4a8499510a53d90903c967f7f13e8a1bd8151a74adc4fe63e" "32b992760b3a5f99e9a47838867000a9", "93c4fc6a4135f54d640b0c976bf755a06a292c33", "8ca4e38aa3dfa6b1d0297021ccf3ea5f", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_4[] = { {"da2bb7d581493d692380c77105590201", "44aa3e7856ca279d2eb020c6", "9290d430c9e89c37f0446dbd620c9a6b34b1274aeb6f911f75867efcf95b6feda69f1a" "f4ee16c761b3c9aeac3da03aa9889c88", "4cd171b23bddb3a53cdf959d5c1710b481eb3785a90eb20a2345ee00d0bb7868c367ab" "12e6f4dd1dee72af4eee1d197777d1d6499cc541f34edbf45cda6ef90b3c024f9272d7" "2ec1909fb8fba7db88a4d6f7d3d925980f9f9f72", "9e3ac938d3eb0cadd6f5c9e35d22ba38", "9bbf4c1a2742f6ac80cb4e8a052e4a8f4f07c43602361355b717381edf9fabd4cb7e3a" "d65dbd1378b196ac270588dd0621f642"}, {"d74e4958717a9d5c0e235b76a926cae8", "0b7471141e0c70b1995fd7b1", "e701c57d2330bf066f9ff8cf3ca4343cafe4894651cd199bdaaa681ba486b4a65c5a22" "b0f1420be29ea547d42c713bc6af66aa", "4a42b7aae8c245c6f1598a395316e4b8484dbd6e64648d5e302021b1d3fa0a38f46e22" "bd9c8080b863dc0016482538a8562a4bd0ba84edbe2697c76fd039527ac179ec5506cf" "34a6039312774cedebf4961f3978b14a26509f96", "e192c23cb036f0b31592989119eed55d", "840d9fb95e32559fb3602e48590280a172ca36d9b49ab69510f5bd552bfab7a306f85f" "f0a34bc305b88b804c60b90add594a17"}, { "1986310c725ac94ecfe6422e75fc3ee7", "93ec4214fa8e6dc4e3afc775", "b178ec72f85a311ac4168f42a4b2c23113fbea4b85f4b9dabb74e143eb1b8b0a361e02" "43edfd365b90d5b325950df0ada058f9", "e80b88e62c49c958b5e0b8b54f532d9ff6aa84c8a40132e93e55b59fc24e8decf28463" "139f155d1e8ce4ee76aaeefcd245baa0fc519f83a5fb9ad9aa40c4b21126013f576c42" "72c2cb136c8fd091cc4539877a5d1e72d607f960", "8b347853f11d75e81e8a95010be81f17", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_5[] = { {"387218b246c1a8257748b56980e50c94", "dd7e014198672be39f95b69d", "cdba9e73eaf3d38eceb2b04a8d", "", "ecf90f4a47c9c626d6fb2c765d201556", "48f5b426baca03064554cc2b30"}, {"294de463721e359863887c820524b3d4", "3338b35c9d57a5d28190e8c9", "2f46634e74b8e4c89812ac83b9", "", "dabd506764e68b82a7e720aa18da0abe", "46a2e55c8e264df211bd112685"}, {"28ead7fd2179e0d12aa6d5d88c58c2dc", "5055347f18b4d5add0ae5c41", "142d8210c3fb84774cdbd0447a", "", "5fd321d9cdb01952dc85f034736c2a7d", "3b95b981086ee73cc4d0cc1422"}, { "7d7b6c988137b8d470c57bf674a09c87", "9edf2aa970d016ac962e1fd8", "a85b66c3cb5eab91d5bdc8bc0e", "", "dc054efc01f3afd21d9c2484819f569a", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector* const test_group_array[] = { test_group_0, test_group_1, test_group_2, test_group_3, test_group_4, test_group_5, }; } namespace quic { namespace test { QuicData* DecryptWithNonce(Aes128GcmDecrypter* decrypter, absl::string_view nonce, absl::string_view associated_data, absl::string_view ciphertext) { decrypter->SetIV(nonce); std::unique_ptr<char[]> output(new char[ciphertext.length()]); size_t output_length = 0; const bool success = decrypter->DecryptPacket(0, associated_data, ciphertext, output.get(), &output_length, ciphertext.length()); if (!success) { return nullptr; } return new QuicData(output.release(), output_length, true); } class Aes128GcmDecrypterTest : public QuicTest {}; TEST_F(Aes128GcmDecrypterTest, Decrypt) { for (size_t i = 0; i < ABSL_ARRAYSIZE(test_group_array); i++) { SCOPED_TRACE(i); const TestVector* test_vectors = test_group_array[i]; const TestGroupInfo& test_info = test_group_info[i]; for (size_t j = 0; test_vectors[j].key != nullptr; j++) { bool has_pt = test_vectors[j].pt; std::string key; std::string iv; std::string ct; std::string aad; std::string tag; std::string pt; ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].key, &key)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].iv, &iv)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].ct, &ct)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].aad, &aad)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].tag, &tag)); if (has_pt) { ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].pt, &pt)); } EXPECT_EQ(test_info.key_len, key.length() * 8); EXPECT_EQ(test_info.iv_len, iv.length() * 8); EXPECT_EQ(test_info.pt_len, ct.length() * 8); EXPECT_EQ(test_info.aad_len, aad.length() * 8); EXPECT_EQ(test_info.tag_len, tag.length() * 8); if (has_pt) { EXPECT_EQ(test_info.pt_len, pt.length() * 8); } std::string ciphertext = ct + tag; Aes128GcmDecrypter decrypter; ASSERT_TRUE(decrypter.SetKey(key)); std::unique_ptr<QuicData> decrypted(DecryptWithNonce( &decrypter, iv, aad.length() ? aad : absl::string_view(), ciphertext)); if (!decrypted) { EXPECT_FALSE(has_pt); continue; } EXPECT_TRUE(has_pt); ASSERT_EQ(pt.length(), decrypted->length()); quiche::test::CompareCharArraysWithHexError( "plaintext", decrypted->data(), pt.length(), pt.data(), pt.length()); } } } TEST_F(Aes128GcmDecrypterTest, GenerateHeaderProtectionMask) { Aes128GcmDecrypter decrypter; std::string key; std::string sample; std::string expected_mask; ASSERT_TRUE(absl::HexStringToBytes("d9132370cb18476ab833649cf080d970", &key)); ASSERT_TRUE( absl::HexStringToBytes("d1d7998068517adb769b48b924a32c47", &sample)); ASSERT_TRUE(absl::HexStringToBytes("b132c37d6164da4ea4dc9b763aceec27", &expected_mask)); QuicDataReader sample_reader(sample.data(), sample.size()); ASSERT_TRUE(decrypter.SetHeaderProtectionKey(key)); std::string mask = decrypter.GenerateHeaderProtectionMask(&sample_reader); quiche::test::CompareCharArraysWithHexError( "header protection mask", mask.data(), mask.size(), expected_mask.data(), expected_mask.size()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/aes_128_gcm_decrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/aes_128_gcm_decrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
145ec2e0-d3a0-4ee7-9f72-6f42a78ef99f
cpp
tensorflow/tensorflow
onednn_softmax
third_party/xla/xla/service/cpu/onednn_softmax.cc
third_party/xla/xla/service/cpu/tests/onednn_softmax_test.cc
#if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include "xla/service/cpu/onednn_softmax.h" #include <algorithm> #include <cmath> #include <initializer_list> #include <vector> #include "absl/base/dynamic_annotations.h" #include "dnnl.hpp" #include "xla/executable_run_options.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_config.pb.h" #include "xla/service/cpu/onednn_memory_util.h" #include "xla/service/cpu/runtime_lightweight_check.h" #include "xla/tsl/util/onednn_threadpool.h" #include "unsupported/Eigen/CXX11/Tensor" namespace xla { namespace cpu { ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_OneDnnSoftmax( const void* run_options_ptr, void* input, void* result, void* softmax_config_ptr) { const xla::ExecutableRunOptions* run_options = static_cast<const xla::ExecutableRunOptions*>(run_options_ptr); XLA_LIGHTWEIGHT_CHECK(run_options != nullptr); XLA_LIGHTWEIGHT_CHECK(run_options->intra_op_thread_pool() != nullptr); tsl::OneDnnThreadPool thread_pool( run_options->intra_op_thread_pool()->getPool(), false); dnnl::engine cpu_engine(dnnl::engine::kind::cpu, 0); #ifndef ENABLE_ONEDNN_OPENMP auto onednn_stream = dnnl::stream( dnnl::threadpool_interop::make_stream(cpu_engine, &thread_pool)); #else auto onednn_stream = dnnl::stream(cpu_engine); #endif std::string config_str(static_cast<const char*>(softmax_config_ptr)); OneDnnSoftmaxConfig softmax_config; softmax_config.ParseFromString(config_str); MemrefInfo input_minfo(input); MemrefInfo result_minfo(result); auto src_md = input_minfo.GetOneDnnMemDesc(); auto dst_md = result_minfo.GetOneDnnMemDesc(); auto src_mem = dnnl::memory(src_md, cpu_engine, input_minfo.Data()); auto dst_mem = dnnl::memory(dst_md, cpu_engine, result_minfo.Data()); int axis = softmax_config.softmax_axis(); auto softmax_pd = dnnl::softmax_forward::primitive_desc( cpu_engine, dnnl::prop_kind::forward_inference, dnnl::algorithm::softmax_accurate, src_md, dst_md, axis); auto softmax_prim = dnnl::softmax_forward(softmax_pd); std::unordered_map<int, dnnl::memory> softmax_args; softmax_args.insert({DNNL_ARG_SRC, src_mem}); softmax_args.insert({DNNL_ARG_DST, dst_mem}); softmax_prim.execute(onednn_stream, softmax_args); } } } #endif
#if defined(INTEL_MKL) && defined(ENABLE_ONEDNN_V3) #include <utility> #include "absl/strings/str_replace.h" #include "absl/strings/substitute.h" #include "xla/literal.h" #include "xla/service/cpu/backend_config.pb.h" #include "xla/service/cpu/onednn_config.pb.h" #include "xla/service/cpu/onednn_ops_rewriter.h" #include "xla/service/cpu/onednn_util.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" namespace xla { namespace cpu { std::string TestParamsToString( const ::testing::TestParamInfo<std::tuple<PrimitiveType, int>>& data) { PrimitiveType data_type; int batch_size; std::tie(data_type, batch_size) = data.param; return absl::StrCat(primitive_util::LowercasePrimitiveTypeName(data_type), "_BatchSize", std::to_string(batch_size)); } class OneDnnSoftmaxTest : public HloTestBase, public ::testing::WithParamInterface<std::tuple<PrimitiveType, int>> { protected: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_cpu_use_thunk_runtime(false); return debug_options; } const char* onednn_softmax_ = R"( ; CHECK: custom_call_target="__onednn$softmax" )"; const std::string GetGenericSoftmaxHLORawText(PrimitiveType data_type, int batch_size) { const std::string softmax_hlo_template_string = R"( HloModule softmax_module region_max { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT maximum = $0[] maximum(Arg_0, Arg_1) } region_add { Arg_0 = $0[] parameter(0) Arg_1 = $0[] parameter(1) ROOT add = $0[] add(Arg_0, Arg_1) } ENTRY main { Arg_0 = $0[$1,128,30522]{2,1,0} parameter(0) neg_inf = $0[] constant(-inf) reduce_max = $0[$1,128]{1,0} reduce(Arg_0, neg_inf), dimensions={2}, to_apply=region_max reshape.0 = $0[$1,128,1]{2,1,0} reshape(reduce_max) broadcast.0 = $0[$1,128,1]{2,1,0} broadcast(reshape.0), dimensions={0,1,2} reshape.1 = $0[$1,128]{1,0} reshape(broadcast.0) broadcast.1 = $0[$1,128,30522]{2,1,0} broadcast(reshape.1), dimensions={0,1} subtract.0 = $0[$1,128,30522]{2,1,0} subtract(Arg_0, broadcast.1) exponential = $0[$1,128,30522]{2,1,0} exponential(subtract.0) const_zero = $0[] constant(0) reduce_add = $0[$1,128]{1,0} reduce(exponential, const_zero), dimensions={2}, to_apply=region_add reshape.2 = $0[$1,128,1]{2,1,0} reshape(reduce_add) broadcast.2 = $0[$1,128,1]{2,1,0} broadcast(reshape.2), dimensions={0,1,2} reshape.3 = $0[$1,128]{1,0} reshape(broadcast.2) broadcast.3 = $0[$1,128,30522]{2,1,0} broadcast(reshape.3), dimensions={0,1} ROOT divide = $0[$1,128,30522]{2,1,0} divide(exponential, broadcast.3) } )"; const std::string softmax_hlo_string = absl::Substitute( softmax_hlo_template_string, primitive_util::LowercasePrimitiveTypeName(data_type), batch_size); return softmax_hlo_string; } void TestSoftmaxPatternMatching(std::string input_hlo_string, int expected_softmax_axis) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(input_hlo_string)); OneDnnOpsRewriter softmax_rewrite_pass; HloInstruction* onednn_softmax; OneDnnSoftmaxConfig softmax_config; TF_ASSERT_OK_AND_ASSIGN( bool changed, this->RunHloPass(&softmax_rewrite_pass, module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(::xla::match::CustomCall(&onednn_softmax, {"__onednn$softmax"}))); auto backend_config = onednn_softmax->backend_config<BackendConfig>(); softmax_config.CopyFrom(backend_config->onednn_softmax_config()); int axis_after_rewrite = softmax_config.softmax_axis(); EXPECT_EQ(expected_softmax_axis, axis_after_rewrite); } }; TEST_P(OneDnnSoftmaxTest, SoftmaxGenericTest) { PrimitiveType data_type; int batch_size; std::tie(data_type, batch_size) = GetParam(); if (!IsSupportedType(data_type)) { GTEST_SKIP() << "CPU does not support " << primitive_util::LowercasePrimitiveTypeName(data_type); } const std::string softmax_hlo_string = GetGenericSoftmaxHLORawText(data_type, batch_size); TestSoftmaxPatternMatching(softmax_hlo_string, 2); } TEST_P(OneDnnSoftmaxTest, SoftmaxGenericNumericalCorrectnessTest) { PrimitiveType data_type; int batch_size; std::tie(data_type, batch_size) = GetParam(); if (!IsSupportedType(data_type)) { GTEST_SKIP() << "CPU does not support " << primitive_util::LowercasePrimitiveTypeName(data_type); } const std::string onednn_softmax_hlo_template_string = R"( HloModule softmax_module ENTRY main { Arg_0 = $0[$1,128,30522]{2,1,0} parameter(0) ROOT custom-call = $0[$1,128,30522]{2,1,0} custom-call(Arg_0), custom_call_target="$2", backend_config={"onednn_softmax_config":{"softmax_axis":2}} } )"; auto onednn_softmax_hlo_string = absl::Substitute(onednn_softmax_hlo_template_string, primitive_util::LowercasePrimitiveTypeName(data_type), batch_size, "__onednn$softmax"); const std::string hlo_string_ref = GetGenericSoftmaxHLORawText(data_type, batch_size); float atol = (data_type == F32) ? 1e-4 : 1e-2; float rtol = (data_type == F32) ? 1e-4 : 1e-2; EXPECT_TRUE(RunAndCompareTwoModules(onednn_softmax_hlo_string, hlo_string_ref, ErrorSpec{atol, rtol}, false)); } INSTANTIATE_TEST_SUITE_P(OneDnnSoftmaxTestSuite, OneDnnSoftmaxTest, ::testing::Combine(::testing::ValuesIn({F32, BF16, F16}), ::testing::Values(1, 16)), TestParamsToString); TEST_F(OneDnnSoftmaxTest, SoftmaxFP32OnAxisZero) { const std::string softmax_hlo_string = R"( HloModule softmax_module region_max { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT maximum = f32[] maximum(Arg_0, Arg_1) } region_add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } ENTRY main { Arg_0 = f32[3,1,1]{2,1,0} parameter(0) neg_inf = f32[] constant(-inf) reduce_max = f32[1,1]{1,0} reduce(Arg_0, neg_inf), dimensions={0}, to_apply=region_max neg_inf.1 = f32[1,1]{1,0} constant({ {-inf} }) maximum = f32[1,1]{1,0} maximum(reduce_max, neg_inf.1) reshape.0 = f32[1,1,1]{2,1,0} reshape(maximum) broadcast.0 = f32[1,1,1]{2,1,0} broadcast(reshape.0), dimensions={0,1,2} reshape.1 = f32[1,1]{1,0} reshape(broadcast.0) broadcast.1 = f32[3,1,1]{2,1,0} broadcast(reshape.1), dimensions={1,2} subtract = f32[3,1,1]{2,1,0} subtract(Arg_0, broadcast.1) exponential = f32[3,1,1]{2,1,0} exponential(subtract) const_zero = f32[] constant(0) reduce_add = f32[1,1]{1,0} reduce(exponential, const_zero), dimensions={0}, to_apply=region_add reshape.2 = f32[1,1,1]{2,1,0} reshape(reduce_add) broadcast.2 = f32[1,1,1]{2,1,0} broadcast(reshape.2), dimensions={0,1,2} reshape.3 = f32[1,1]{1,0} reshape(broadcast.2) broadcast.3 = f32[3,1,1]{2,1,0} broadcast(reshape.3), dimensions={1,2} ROOT divide = f32[3,1,1]{2,1,0} divide(exponential, broadcast.3) } )"; TestSoftmaxPatternMatching(softmax_hlo_string, 0); } TEST_F(OneDnnSoftmaxTest, SoftmaxWithBF16ConvertOutputFP32Pattern) { if (!IsSupportedType(PrimitiveType::BF16)) { GTEST_SKIP() << "CPU does not support BF16."; } const std::string softmax_hlo_string = R"( HloModule softmax_module region_max { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT maximum = f32[] maximum(Arg_0, Arg_1) } region_add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } ENTRY main { Arg_0 = f32[16,128,30522]{2,1,0} parameter(0) neg_inf = f32[] constant(-inf) reduce_max = f32[16,128]{1,0} reduce(Arg_0, neg_inf), dimensions={2}, to_apply=region_max reshape.0 = f32[16,128,1]{2,1,0} reshape(reduce_max) broadcast.0 = f32[16,128,1]{2,1,0} broadcast(reshape.0), dimensions={0,1,2} reshape.1 = f32[16,128]{1,0} reshape(broadcast.0) broadcast.1 = f32[16,128,30522]{2,1,0} broadcast(reshape.1), dimensions={0,1} subtract = f32[16,128,30522]{2,1,0} subtract(Arg_0, broadcast.1) exponential = f32[16,128,30522]{2,1,0} exponential(subtract) const_zero = f32[] constant(0) reduce_add = f32[16,128]{1,0} reduce(exponential, const_zero), dimensions={2}, to_apply=region_add reshape.2 = f32[16,128,1]{2,1,0} reshape(reduce_add) broadcast.2 = f32[16,128,1]{2,1,0} broadcast(reshape.2), dimensions={0,1,2} reshape.3 = f32[16,128]{1,0} reshape(broadcast.2) broadcast.3 = f32[16,128,30522]{2,1,0} broadcast(reshape.3), dimensions={0,1} divide = f32[16,128,30522]{2,1,0} divide(exponential, broadcast.3) ROOT convert = bf16[16,128,30522]{2,1,0} convert(divide) } )"; TestSoftmaxPatternMatching(softmax_hlo_string, 2); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/onednn_softmax.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/tests/onednn_softmax_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
94d65507-653b-432e-949d-172867d6e0b4
cpp
google/quiche
aes_256_gcm_decrypter
quiche/quic/core/crypto/aes_256_gcm_decrypter.cc
quiche/quic/core/crypto/aes_256_gcm_decrypter_test.cc
#include "quiche/quic/core/crypto/aes_256_gcm_decrypter.h" #include "openssl/aead.h" #include "openssl/tls1.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" namespace quic { namespace { const size_t kKeySize = 32; const size_t kNonceSize = 12; } Aes256GcmDecrypter::Aes256GcmDecrypter() : AesBaseDecrypter(EVP_aead_aes_256_gcm, kKeySize, kAuthTagSize, kNonceSize, true) { static_assert(kKeySize <= kMaxKeySize, "key size too big"); static_assert(kNonceSize <= kMaxNonceSize, "nonce size too big"); } Aes256GcmDecrypter::~Aes256GcmDecrypter() {} uint32_t Aes256GcmDecrypter::cipher_id() const { return TLS1_CK_AES_256_GCM_SHA384; } }
#include "quiche/quic/core/crypto/aes_256_gcm_decrypter.h" #include <memory> #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace { struct TestGroupInfo { size_t key_len; size_t iv_len; size_t pt_len; size_t aad_len; size_t tag_len; }; struct TestVector { const char* key; const char* iv; const char* ct; const char* aad; const char* tag; const char* pt; }; const TestGroupInfo test_group_info[] = { {256, 96, 0, 0, 128}, {256, 96, 0, 128, 128}, {256, 96, 128, 0, 128}, {256, 96, 408, 160, 128}, {256, 96, 408, 720, 128}, {256, 96, 104, 0, 128}, }; const TestVector test_group_0[] = { {"f5a2b27c74355872eb3ef6c5feafaa740e6ae990d9d48c3bd9bb8235e589f010", "58d2240f580a31c1d24948e9", "", "", "15e051a5e4a5f5da6cea92e2ebee5bac", ""}, { "e5a8123f2e2e007d4e379ba114a2fb66e6613f57c72d4e4f024964053028a831", "51e43385bf533e168427e1ad", "", "", "38fe845c66e66bdd884c2aecafd280e6", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_1[] = { {"6dfdafd6703c285c01f14fd10a6012862b2af950d4733abb403b2e745b26945d", "3749d0b3d5bacb71be06ade6", "", "c0d249871992e70302ae008193d1e89f", "4aa4cc69f84ee6ac16d9bfb4e05de500", ""}, { "2c392a5eb1a9c705371beda3a901c7c61dca4d93b4291de1dd0dd15ec11ffc45", "0723fb84a08f4ea09841f32a", "", "140be561b6171eab942c486a94d33d43", "aa0e1c9b57975bfc91aa137231977d2c", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_2[] = { {"4c8ebfe1444ec1b2d503c6986659af2c94fafe945f72c1e8486a5acfedb8a0f8", "473360e0ad24889959858995", "d2c78110ac7e8f107c0df0570bd7c90c", "", "c26a379b6d98ef2852ead8ce83a833a7", "7789b41cb3ee548814ca0b388c10b343"}, {"3934f363fd9f771352c4c7a060682ed03c2864223a1573b3af997e2ababd60ab", "efe2656d878c586e41c539c4", "e0de64302ac2d04048d65a87d2ad09fe", "", "33cbd8d2fb8a3a03e30c1eb1b53c1d99", "697aff2d6b77e5ed6232770e400c1ead"}, { "c997768e2d14e3d38259667a6649079de77beb4543589771e5068e6cd7cd0b14", "835090aed9552dbdd45277e2", "9f6607d68e22ccf21928db0986be126e", "", "f32617f67c574fd9f44ef76ff880ab9f", nullptr }, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_3[] = { { "e9d381a9c413bee66175d5586a189836e5c20f5583535ab4d3f3e612dc21700e", "23e81571da1c7821c681c7ca", "a25f3f580306cd5065d22a6b7e9660110af7204bb77d370f7f34bee547feeff7b32a59" "6fce29c9040e68b1589aad48da881990", "6f39c9ae7b8e8a58a95f0dd8ea6a9087cbccdfd6", "5b6dcd70eefb0892fab1539298b92a4b", nullptr }, {"6450d4501b1e6cfbe172c4c8570363e96b496591b842661c28c2f6c908379cad", "7e4262035e0bf3d60e91668a", "5a99b336fd3cfd82f10fb08f7045012415f0d9a06bb92dcf59c6f0dbe62d433671aacb8a1" "c52ce7bbf6aea372bf51e2ba79406", "f1c522f026e4c5d43851da516a1b78768ab18171", "fe93b01636f7bb0458041f213e98de65", "17449e236ef5858f6d891412495ead4607bfae2a2d735182a2a0242f9d52fc5345ef912db" "e16f3bb4576fe3bcafe336dee6085"}, {"90f2e71ccb1148979cb742efc8f921de95457d898c84ce28edeed701650d3a26", "aba58ad60047ba553f6e4c98", "3fc77a5fe9203d091c7916587c9763cf2e4d0d53ca20b078b851716f1dab4873fe342b7b3" "01402f015d00263bf3f77c58a99d6", "2abe465df6e5be47f05b92c9a93d76ae3611fac5", "9cb3d04637048bc0bddef803ffbb56cf", "1d21639640e11638a2769e3fab78778f84be3f4a8ce28dfd99cb2e75171e05ea8e94e30aa" "78b54bb402b39d613616a8ed951dc"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_4[] = { { "e36aca93414b13f5313e76a7244588ee116551d1f34c32859166f2eb0ac1a9b7", "e9e701b1ccef6bddd03391d8", "5b059ac6733b6de0e8cf5b88b7301c02c993426f71bb12abf692e9deeacfac1ff1644c" "87d4df130028f515f0feda636309a24d", "6a08fe6e55a08f283cec4c4b37676e770f402af6102f548ad473ec6236da764f7076ff" "d41bbd9611b439362d899682b7b0f839fc5a68d9df54afd1e2b3c4e7d072454ee27111" "d52193d28b9c4f925d2a8b451675af39191a2cba", "43c7c9c93cc265fc8e192000e0417b5b", nullptr }, {"5f72046245d3f4a0877e50a86554bfd57d1c5e073d1ed3b5451f6d0fc2a8507a", "ea6f5b391e44b751b26bce6f", "0e6e0b2114c40769c15958d965a14dcf50b680e0185a4409d77d894ca15b1e698dd83b353" "6b18c05d8cd0873d1edce8150ecb5", "9b3a68c941d42744673fb60fea49075eae77322e7e70e34502c115b6495ebfc796d629080" "7653c6b53cd84281bd0311656d0013f44619d2748177e99e8f8347c989a7b59f9d8dcf00f" "31db0684a4a83e037e8777bae55f799b0d", "fdaaff86ceb937502cd9012d03585800", "b0a881b751cc1eb0c912a4cf9bd971983707dbd2411725664503455c55db25cdb19bc669c" "2654a3a8011de6bf7eff3f9f07834"}, {"ab639bae205547607506522bd3cdca7861369e2b42ef175ff135f6ba435d5a8e", "5fbb63eb44bd59fee458d8f6", "9a34c62bed0972285503a32812877187a54dedbd55d2317fed89282bf1af4ba0b6bb9f9e1" "6dd86da3b441deb7841262bc6bd63", "1ef2b1768b805587935ffaf754a11bd2a305076d6374f1f5098b1284444b78f55408a786d" "a37e1b7f1401c330d3585ef56f3e4d35eaaac92e1381d636477dc4f4beaf559735e902d6b" "e58723257d4ac1ed9bd213de387f35f3c4", "e0299e079bff46fd12e36d1c60e41434", "e5a3ce804a8516cdd12122c091256b789076576040dbf3c55e8be3c016025896b8a72532b" "fd51196cc82efca47aa0fd8e2e0dc"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector test_group_5[] = { { "8b37c4b8cf634704920059866ad96c49e9da502c63fca4a3a7a4dcec74cb0610", "cb59344d2b06c4ae57cd0ea4", "66ab935c93555e786b775637a3", "", "d8733acbb564d8afaa99d7ca2e2f92a9", nullptr }, {"a71dac1377a3bf5d7fb1b5e36bee70d2e01de2a84a1c1009ba7448f7f26131dc", "c5b60dda3f333b1146e9da7c", "43af49ec1ae3738a20755034d6", "", "6f80b6ef2d8830a55eb63680a8dff9e0", "5b87141335f2becac1a559e05f"}, {"dc1f64681014be221b00793bbcf5a5bc675b968eb7a3a3d5aa5978ef4fa45ecc", "056ae9a1a69e38af603924fe", "33013a48d9ea0df2911d583271", "", "5b8f9cc22303e979cd1524187e9f70fe", "2a7e05612191c8bce2f529dca9"}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; const TestVector* const test_group_array[] = { test_group_0, test_group_1, test_group_2, test_group_3, test_group_4, test_group_5, }; } namespace quic { namespace test { QuicData* DecryptWithNonce(Aes256GcmDecrypter* decrypter, absl::string_view nonce, absl::string_view associated_data, absl::string_view ciphertext) { decrypter->SetIV(nonce); std::unique_ptr<char[]> output(new char[ciphertext.length()]); size_t output_length = 0; const bool success = decrypter->DecryptPacket(0, associated_data, ciphertext, output.get(), &output_length, ciphertext.length()); if (!success) { return nullptr; } return new QuicData(output.release(), output_length, true); } class Aes256GcmDecrypterTest : public QuicTest {}; TEST_F(Aes256GcmDecrypterTest, Decrypt) { for (size_t i = 0; i < ABSL_ARRAYSIZE(test_group_array); i++) { SCOPED_TRACE(i); const TestVector* test_vectors = test_group_array[i]; const TestGroupInfo& test_info = test_group_info[i]; for (size_t j = 0; test_vectors[j].key != nullptr; j++) { bool has_pt = test_vectors[j].pt; std::string key; std::string iv; std::string ct; std::string aad; std::string tag; std::string pt; ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].key, &key)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].iv, &iv)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].ct, &ct)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].aad, &aad)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].tag, &tag)); if (has_pt) { ASSERT_TRUE(absl::HexStringToBytes(test_vectors[j].pt, &pt)); } EXPECT_EQ(test_info.key_len, key.length() * 8); EXPECT_EQ(test_info.iv_len, iv.length() * 8); EXPECT_EQ(test_info.pt_len, ct.length() * 8); EXPECT_EQ(test_info.aad_len, aad.length() * 8); EXPECT_EQ(test_info.tag_len, tag.length() * 8); if (has_pt) { EXPECT_EQ(test_info.pt_len, pt.length() * 8); } std::string ciphertext = ct + tag; Aes256GcmDecrypter decrypter; ASSERT_TRUE(decrypter.SetKey(key)); std::unique_ptr<QuicData> decrypted(DecryptWithNonce( &decrypter, iv, aad.length() ? aad : absl::string_view(), ciphertext)); if (!decrypted) { EXPECT_FALSE(has_pt); continue; } EXPECT_TRUE(has_pt); ASSERT_EQ(pt.length(), decrypted->length()); quiche::test::CompareCharArraysWithHexError( "plaintext", decrypted->data(), pt.length(), pt.data(), pt.length()); } } } TEST_F(Aes256GcmDecrypterTest, GenerateHeaderProtectionMask) { Aes256GcmDecrypter decrypter; std::string key; std::string sample; std::string expected_mask; ASSERT_TRUE(absl::HexStringToBytes( "ed23ecbf54d426def5c52c3dcfc84434e62e57781d3125bb21ed91b7d3e07788", &key)); ASSERT_TRUE( absl::HexStringToBytes("4d190c474be2b8babafb49ec4e38e810", &sample)); ASSERT_TRUE(absl::HexStringToBytes("db9ed4e6ccd033af2eae01407199c56e", &expected_mask)); QuicDataReader sample_reader(sample.data(), sample.size()); ASSERT_TRUE(decrypter.SetHeaderProtectionKey(key)); std::string mask = decrypter.GenerateHeaderProtectionMask(&sample_reader); quiche::test::CompareCharArraysWithHexError( "header protection mask", mask.data(), mask.size(), expected_mask.data(), expected_mask.size()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/aes_256_gcm_decrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/aes_256_gcm_decrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6