ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
6faa1ee0-6de7-43eb-8611-02cba56c2d4f
cpp
tensorflow/tensorflow
tensor_slice_util
tensorflow/lite/kernels/tensor_slice_util.cc
tensorflow/lite/kernels/tensor_slice_util_test.cc
#include "tensorflow/lite/kernels/tensor_slice_util.h" #include <cstdint> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" namespace tflite { namespace ops { namespace builtin { template <typename IndexType> Index<IndexType> ReadIndexVector(const TfLiteTensor* indices_tensor, const RuntimeShape& tensor_shape, const Index<IndexType>& other_indices, int64_t dim_to_read) { Index<IndexType> index; index.reserve(tensor_shape.DimensionsCount()); int shift = 0; for (int64_t dim = 0; dim < tensor_shape.DimensionsCount(); ++dim) { if (dim == dim_to_read) { index.push_back(0); shift = 1; } else { index.push_back(other_indices[dim - shift]); } } int64_t index_vector_size = tensor_shape.Dims(dim_to_read); Index<IndexType> result; result.reserve(index_vector_size); for (IndexType index_vector_idx = 0; index_vector_idx < index_vector_size; ++index_vector_idx) { index[dim_to_read] = index_vector_idx; IndexType flat_index = TensorIndexToFlat( index.data(), tensor_shape.DimensionsCount(), tensor_shape); const IndexType* tensor_data = GetTensorData<IndexType>(indices_tensor); result.push_back(tensor_data[flat_index]); } return result; } template Index<int32_t> ReadIndexVector(const TfLiteTensor* indices_tensor, const RuntimeShape& tensor_shape, const Index<int32_t>& other_indices, int64_t dim_to_read); template Index<int64_t> ReadIndexVector(const TfLiteTensor* indices_tensor, const RuntimeShape& tensor_shape, const Index<int64_t>& other_indices, int64_t dim_to_read); } } }
#include "tensorflow/lite/kernels/tensor_slice_util.h" #include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/runtime_shape.h" namespace tflite { namespace ops { namespace builtin { namespace { using ::testing::ElementsAreArray; TEST(TensorSliceUtil, ArrayContains) { std::vector<int64_t> array = {1, 2, 3}; EXPECT_TRUE(ArrayContains(array.data(), array.size(), 2)); EXPECT_FALSE(ArrayContains(array.data(), array.size(), 0)); } TEST(TensorSliceUtil, ArrayContainsWorkOnEmptyArray) { std::vector<int64_t> array = {}; EXPECT_FALSE(ArrayContains(array.data(), 0, 2)); } TEST(TensorSliceUtil, ScatterIndexHandlesNullPtr) { Index<int64_t> index = {3, 5}; std::vector<int64_t> scatter_dims = {1, 0}; Index<int64_t>* result = nullptr; TfLiteStatus status = ScatterIndex(index, scatter_dims.data(), scatter_dims.size(), 3, result); EXPECT_THAT(status, kTfLiteError); } TEST(TensorSliceUtil, ScatterIndexHandlesOutOfBoundIndices) { Index<int64_t> index = {3, 5}; std::vector<int64_t> scatter_dims = {4, 0}; Index<int64_t> result; TfLiteStatus status = ScatterIndex(index, scatter_dims.data(), scatter_dims.size(), 3, &result); EXPECT_THAT(status, kTfLiteError); } TEST(TensorSliceUtil, ScatterIndex) { Index<int64_t> index = {3, 5}; std::vector<int64_t> scatter_dims = {1, 0}; Index<int64_t> result; ScatterIndex(index, scatter_dims.data(), scatter_dims.size(), 3, &result); EXPECT_THAT(result, ElementsAreArray({5, 3, 0})); } TEST(TensorSliceUtil, TensorIndexToFlatWorksForScalars) { Index<int64_t> index = {0}; RuntimeShape shape(0); EXPECT_EQ(TensorIndexToFlat(index.data(), index.size(), shape), 0); } TEST(TensorSliceUtil, TensorIndexToFlat) { Index<int64_t> index = {2, 4}; RuntimeShape shape({3, 5}); EXPECT_EQ(TensorIndexToFlat(index.data(), index.size(), shape), 14); } TEST(TensorSliceUtil, AddIndices) { Index<int64_t> index1 = {1, 2, 3}; Index<int64_t> index2 = {2, 7, 5}; EXPECT_THAT(AddIndices(index1, index2), ElementsAreArray({3, 9, 8})); } TEST(TensorSliceUtil, ExpandDimsHandlesEmptyIndex) { Index<int64_t> index = {}; std::vector<int64_t> avoided_dims = {0, 1}; Index<int64_t> result; ExpandDims(index, avoided_dims.data(), avoided_dims.size(), &result); EXPECT_THAT(result, ElementsAreArray({0, 0})); } TEST(TensorSliceUtil, ExpandDims) { Index<int64_t> index = {2, 4}; std::vector<int64_t> avoided_dims = {0, 2}; Index<int64_t> result; ExpandDims(index, avoided_dims.data(), avoided_dims.size(), &result); EXPECT_THAT(result, ElementsAreArray({0, 2, 0, 4})); } TEST(TensorSliceUtil, ReadIndexVector) { TfLiteTensor tensor; tensor.type = kTfLiteInt64; std::vector<int64_t> tensor_data = {0, 2, 1, 0, 2, 1, 0, 1, 1, 0, 0, 9}; TfLitePtrUnion ptr_union; ptr_union.i64 = tensor_data.data(); tensor.data = ptr_union; RuntimeShape shape = {2, 3, 2}; Index<int64_t> other_indices = {1, 1}; int64_t dim_to_read = 1; EXPECT_THAT(ReadIndexVector(&tensor, shape, other_indices, dim_to_read), ElementsAreArray({1, 0, 9})); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/tensor_slice_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/tensor_slice_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49a0ec33-fc7c-48d1-bb5c-a573c76e4ae8
cpp
tensorflow/tensorflow
run_handler_concurrent_work_queue
tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.cc
tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue_test.cc
#include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.h" #include <memory> #include <optional> #include <ostream> #include <utility> #include "absl/strings/str_join.h" #include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler.h" #include "tfrt/host_context/async_dispatch.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/execution_context.h" namespace tfrt { namespace tf { RunHandlerThreadWorkQueue::RunHandlerThreadWorkQueue(const Options& options) : options_(options), quiescing_state_(std::make_unique<::tfrt::internal::QuiescingState>()), non_blocking_work_queue_(quiescing_state_.get(), 1), blocking_work_queue_(quiescing_state_.get(), 1) { CHECK(options.num_threads_in_sub_thread_pool.size() == options.num_sub_thread_pool); CHECK(options.sub_thread_request_percentage.size() == options.num_sub_thread_pool); RunHandlerPool::Options pool_options; pool_options.num_inter_op_threads = options.num_main_threads; pool_options.num_intra_op_threads = options.num_complementary_threads; pool_options.max_concurrent_handler = options.max_concurrent_handler; pool_options.blocking_threads_max_sleep_time_micro_sec = options.blocking_threads_max_sleep_time_micro_sec; pool_options.non_blocking_threads_sleep_time_micro_sec = options.non_blocking_threads_sleep_time_micro_sec; pool_options.num_sub_thread_pool = options.num_sub_thread_pool; pool_options.num_threads_in_sub_thread_pool = options.num_threads_in_sub_thread_pool; pool_options.sub_thread_request_percentage = options.sub_thread_request_percentage; pool_options.enable_wake_up = options.enable_wake_up; pool_options.wait_if_no_active_request = options.wait_if_no_active_request; pool_options.use_adaptive_waiting_time = options.use_adaptive_waiting_time; handler_pool_ = std::make_unique<RunHandlerPool>(pool_options); } absl::StatusOr<std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface>> RunHandlerThreadWorkQueue::InitializeRequest(int64_t request_id) const { RunHandlerOptions options; std::unique_ptr<RunHandler> handler = handler_pool_->Get(request_id, options_.init_timeout_ms, options); if (!handler) { return tensorflow::errors::Internal(absl::StrCat( "Could not obtain RunHandler for request after waiting for ", options_.init_timeout_ms, " ms.")); } return {std::make_unique<RunHandlerWorkQueue>(std::move(handler))}; } void RunHandlerThreadWorkQueue::AddTask(TaskFunction work) { non_blocking_work_queue_.AddTask(std::move(work)); } std::optional<TaskFunction> RunHandlerThreadWorkQueue::AddBlockingTask( TaskFunction work, bool allow_queuing) { if (allow_queuing) { return blocking_work_queue_.EnqueueBlockingTask(std::move(work)); } else { return blocking_work_queue_.RunBlockingTask(std::move(work)); } return std::nullopt; } void RunHandlerThreadWorkQueue::Quiesce() { handler_pool_->Quiesce(); non_blocking_work_queue_.Quiesce(); blocking_work_queue_.Quiesce(); } void RunHandlerThreadWorkQueue::Await( ArrayRef<RCReference<AsyncValue>> values) { tfrt::Await(values); } bool RunHandlerThreadWorkQueue::IsInWorkerThread() const { return true; } std::ostream& operator<<(std::ostream& strm, const RunHandlerThreadWorkQueue::Options& options) { return strm << "{" << "num_main_threads = " << options.num_main_threads << ", num_complementary_threads = " << options.num_complementary_threads << ", init_timeout_ms = " << options.init_timeout_ms << ", max_concurrent_handler = " << options.max_concurrent_handler << ", num_sub_thread_pool = " << options.num_sub_thread_pool << ", num_threads_in_sub_thread_pool = [" << absl::StrJoin(options.num_threads_in_sub_thread_pool, ",") << "]" << ", sub_thread_request_percentage = [" << absl::StrJoin(options.sub_thread_request_percentage, ",") << "]" << ", non_blocking_threads_sleep_time_micro_sec = " << options.non_blocking_threads_sleep_time_micro_sec << ", blocking_threads_max_sleep_time_micro_sec = " << options.blocking_threads_max_sleep_time_micro_sec << ", use_adaptive_waiting_time = " << options.use_adaptive_waiting_time << ", wait_if_no_active_request = " << options.wait_if_no_active_request << ", enable_wake_up = " << options.enable_wake_up << "}"; } } }
#include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.h" #include <cstdio> #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/diagnostic.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/host_allocator.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/task_function.h" #include "tfrt/support/mutex.h" namespace tfrt { namespace tf { namespace { const int kNumMainThreads = 1; const int kNumComplementaryThreads = 1; class RunHandlerThreadWorkQueueTest : public ::testing::Test { protected: void SetUp() override { RunHandlerThreadWorkQueue::Options options; options.num_complementary_threads = kNumComplementaryThreads; options.num_main_threads = kNumMainThreads; options.init_timeout_ms = 100; pool_ = std::make_unique<RunHandlerThreadWorkQueue>(options); auto decoded_diagnostic_handler = [&](const DecodedDiagnostic& diag) {}; std::unique_ptr<ConcurrentWorkQueue> work_queue = CreateSingleThreadedWorkQueue(); std::unique_ptr<HostAllocator> host_allocator = CreateMallocAllocator(); host_ = std::make_unique<HostContext>(decoded_diagnostic_handler, std::move(host_allocator), std::move(work_queue)); RequestContextBuilder req_ctx_builder{host_.get(), nullptr}; auto queue = pool_->InitializeRequest(100); TF_CHECK_OK(queue.status()); queue_ = std::move(*queue); auto req_ctx = std::move(req_ctx_builder).build(); ASSERT_TRUE(static_cast<bool>(req_ctx)); exec_ctx_ = std::make_unique<ExecutionContext>(std::move(*req_ctx)); } std::unique_ptr<RunHandlerThreadWorkQueue> pool_; std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface> queue_; std::unique_ptr<HostContext> host_; std::unique_ptr<ExecutionContext> exec_ctx_; }; TEST_F(RunHandlerThreadWorkQueueTest, RunningBlockingTask) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { ASSERT_FALSE(pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), true)); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningBlockingTaskNoExecCtx) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), true); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningBlockingTaskNoQueueing) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { ASSERT_FALSE(pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), false)); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningNonBlockingTask) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { queue_->AddTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; })); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningNonBlockingTaskWithNoExecCtx) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { pool_->AddTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; })); } pool_->Quiesce(); EXPECT_EQ(n, 10); } TEST_F(RunHandlerThreadWorkQueueTest, RunningMixedTask) { int n = 0; tensorflow::mutex m; for (int i = 0; i < 10; ++i) { queue_->AddTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; })); ASSERT_FALSE(pool_->AddBlockingTask(TaskFunction([&n, &m] { tensorflow::mutex_lock lock(m); ++n; }), true)); } pool_->Quiesce(); EXPECT_EQ(n, 20); } TEST_F(RunHandlerThreadWorkQueueTest, NameReturnsValidString) { EXPECT_TRUE(absl::StrContains(pool_->name(), "RunHandlerThreadWorkQueue")); } TEST_F(RunHandlerThreadWorkQueueTest, GetParallelismLevelOk) { EXPECT_EQ(pool_->GetParallelismLevel(), kNumComplementaryThreads + kNumMainThreads); } TEST_F(RunHandlerThreadWorkQueueTest, IsWorkerThreadOk) { EXPECT_TRUE(pool_->IsInWorkerThread()); } TEST_F(RunHandlerThreadWorkQueueTest, NoHandlerReturnsError) { RunHandlerThreadWorkQueue::Options options; options.num_complementary_threads = 0; options.num_main_threads = 0; options.init_timeout_ms = 1; options.max_concurrent_handler = 0; auto queue = std::make_unique<RunHandlerThreadWorkQueue>(options); tfrt::RequestContextBuilder ctx_builder(nullptr, nullptr); EXPECT_THAT( queue->InitializeRequest(100), tensorflow::testing::StatusIs( tensorflow::error::INTERNAL, "Could not obtain RunHandler for request after waiting for 1 ms.")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
16f36227-4093-4bab-99de-c06d8b586284
cpp
tensorflow/tensorflow
compression_utils
tensorflow/core/data/compression_utils.cc
tensorflow/core/data/compression_utils_test.cc
#include "tensorflow/core/data/compression_utils.h" #include <limits> #include <string> #include <vector> #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/snappy.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace data { namespace { constexpr int kCompressedElementVersion = 0; } class Iov { public: explicit Iov(size_t size) : iov_(size), idx_(0), num_bytes_(0) {} void Add(void* base, size_t len) { iov_[idx_].iov_base = base; iov_[idx_].iov_len = len; num_bytes_ += len; ++idx_; } iovec* Data() { return iov_.data(); } size_t NumBytes() const { return num_bytes_; } size_t NumPieces() const { return iov_.size(); } private: std::vector<struct iovec> iov_; size_t idx_; size_t num_bytes_; }; Status CompressElement(const std::vector<Tensor>& element, CompressedElement* out) { size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; std::vector<TensorProto> nonmemcpyable_components; size_t total_nonmemcpyable_size = 0; for (const auto& component : element) { if (component.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += component.NumElements(); } else if (!DataTypeCanUseMemcpy(component.dtype())) { nonmemcpyable_components.emplace_back(); component.AsProtoTensorContent(&nonmemcpyable_components.back()); total_nonmemcpyable_size += nonmemcpyable_components.back().ByteSizeLong(); } } Iov iov{element.size() + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); int nonmemcpyable_component_index = 0; for (int i = 0; i < element.size(); ++i) { const auto& component = element[i]; CompressedComponentMetadata* metadata = out->mutable_component_metadata()->Add(); metadata->set_dtype(component.dtype()); component.shape().AsProto(metadata->mutable_tensor_shape()); if (DataTypeCanUseMemcpy(component.dtype())) { const TensorBuffer* buffer = DMAHelper::buffer(&component); if (buffer) { iov.Add(buffer->data(), buffer->size()); metadata->add_uncompressed_bytes(buffer->size()); } } else if (component.dtype() == DT_STRING) { const auto& flats = component.unaligned_flat<tstring>(); for (int i = 0; i < flats.size(); ++i) { iov.Add(const_cast<char*>(flats.data()[i].data()), flats.data()[i].size()); metadata->add_uncompressed_bytes(flats.data()[i].size()); } } else { TensorProto& proto = nonmemcpyable_components[nonmemcpyable_component_index++]; proto.SerializeToArray(nonmemcpyable_pos, proto.ByteSizeLong()); iov.Add(nonmemcpyable_pos, proto.ByteSizeLong()); nonmemcpyable_pos += proto.ByteSizeLong(); metadata->add_uncompressed_bytes(proto.ByteSizeLong()); } } if (iov.NumBytes() > kuint32max) { return errors::OutOfRange("Encountered dataset element of size ", iov.NumBytes(), ", exceeding the 4GB Snappy limit."); } if (!port::Snappy_CompressFromIOVec(iov.Data(), iov.NumBytes(), out->mutable_data())) { return errors::Internal("Failed to compress using snappy."); } out->set_version(kCompressedElementVersion); VLOG(3) << "Compressed element from " << iov.NumBytes() << " bytes to " << out->data().size() << " bytes"; return absl::OkStatus(); } Status UncompressElement(const CompressedElement& compressed, std::vector<Tensor>* out) { if (compressed.version() != kCompressedElementVersion) { return errors::Internal("Unsupported compressed element version: ", compressed.version()); } int num_components = compressed.component_metadata_size(); out->clear(); out->reserve(num_components); size_t num_string_tensors = 0; size_t num_string_tensor_strings = 0; size_t total_nonmemcpyable_size = 0; for (const auto& metadata : compressed.component_metadata()) { if (metadata.dtype() == DT_STRING) { ++num_string_tensors; num_string_tensor_strings += metadata.uncompressed_bytes_size(); } else if (!DataTypeCanUseMemcpy(metadata.dtype())) { total_nonmemcpyable_size += metadata.uncompressed_bytes(0); } } Iov iov{num_components + num_string_tensor_strings - num_string_tensors}; tstring nonmemcpyable; nonmemcpyable.resize_uninitialized(total_nonmemcpyable_size); char* nonmemcpyable_pos = nonmemcpyable.mdata(); for (const auto& metadata : compressed.component_metadata()) { if (DataTypeCanUseMemcpy(metadata.dtype())) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); TensorBuffer* buffer = DMAHelper::buffer(&out->back()); if (buffer) { iov.Add(buffer->data(), metadata.uncompressed_bytes(0)); } } else if (metadata.dtype() == DT_STRING) { out->emplace_back(metadata.dtype(), metadata.tensor_shape()); const auto& flats = out->back().unaligned_flat<tstring>(); for (int i = 0; i < metadata.uncompressed_bytes_size(); ++i) { flats.data()[i].resize(metadata.uncompressed_bytes(i)); iov.Add(flats.data()[i].mdata(), metadata.uncompressed_bytes(i)); } } else { out->emplace_back(); iov.Add(nonmemcpyable_pos, metadata.uncompressed_bytes(0)); nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } const std::string& compressed_data = compressed.data(); size_t uncompressed_size; if (!port::Snappy_GetUncompressedLength( compressed_data.data(), compressed_data.size(), &uncompressed_size)) { return errors::Internal( "Could not get snappy uncompressed length. Compressed data size: ", compressed_data.size()); } if (uncompressed_size != static_cast<size_t>(iov.NumBytes())) { return errors::Internal( "Uncompressed size mismatch. Snappy expects ", uncompressed_size, " whereas the tensor metadata suggests ", iov.NumBytes()); } if (!port::Snappy_UncompressToIOVec(compressed_data.data(), compressed_data.size(), iov.Data(), iov.NumPieces())) { return errors::Internal("Failed to perform snappy decompression."); } nonmemcpyable_pos = nonmemcpyable.mdata(); for (int i = 0; i < num_components; ++i) { const CompressedComponentMetadata& metadata = compressed.component_metadata(i); if (!DataTypeCanUseMemcpy(metadata.dtype()) && metadata.dtype() != DT_STRING) { TensorProto tp; if (!tp.ParseFromString( {nonmemcpyable_pos, static_cast<size_t>(metadata.uncompressed_bytes(0))})) { return errors::Internal("Could not parse TensorProto"); } if (!out->at(i).FromProto(tp)) { return errors::Internal("Could not parse Tensor"); } nonmemcpyable_pos += metadata.uncompressed_bytes(0); } } return absl::OkStatus(); } REGISTER_UNARY_VARIANT_DECODE_FUNCTION(CompressedElement, "tensorflow.data.CompressedElement"); } }
#include "tensorflow/core/data/compression_utils.h" #include <string> #include <vector> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tsl/platform/status_matchers.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(CompressionUtilsTest, Exceeds4GB) { std::vector<Tensor> element = { CreateTensor<int64_t>(TensorShape{1024, 1024, 513})}; CompressedElement compressed; EXPECT_THAT(CompressElement(element, &compressed), StatusIs(error::OUT_OF_RANGE, HasSubstr("exceeding the 4GB Snappy limit"))); } std::vector<std::vector<Tensor>> TestCases() { return { CreateTensors<int64_t>(TensorShape{1}, {{1}}), CreateTensors<int64_t>(TensorShape{1}, {{1}, {2}}), CreateTensors<tstring>(TensorShape{1}, {{"a"}, {"b"}}), {CreateTensor<tstring>(TensorShape{1, 2}, {"abc", "xyz"}), CreateTensor<tstring>(TensorShape{2, 1}, {"ijk", "mnk"})}, {CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{1}, {1})}, {}, {CreateTensor<int64_t>(TensorShape{1, 0})}, {CreateTensor<int64_t>(TensorShape{128, 128}), CreateTensor<int64_t>(TensorShape{64, 2})}, { DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {1, 2, 3}), CreateTensor<tstring>(TensorShape{}, {"abc"})}), DatasetOpsTestBase::CreateTestVariantTensor( {CreateTensor<int64_t>(TensorShape{3, 1}, {10, 11, 12}), CreateTensor<tstring>(TensorShape{}, {"xyz"})}), }, }; } class ParameterizedCompressionUtilsTest : public DatasetOpsTestBase, public ::testing::WithParamInterface<std::vector<Tensor>> {}; TEST_P(ParameterizedCompressionUtilsTest, RoundTrip) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); std::vector<Tensor> round_trip_element; TF_ASSERT_OK(UncompressElement(compressed, &round_trip_element)); TF_EXPECT_OK( ExpectEqual(element, round_trip_element, true)); } TEST_P(ParameterizedCompressionUtilsTest, CompressedElementVersion) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); EXPECT_EQ(0, compressed.version()); } TEST_P(ParameterizedCompressionUtilsTest, VersionMismatch) { std::vector<Tensor> element = GetParam(); CompressedElement compressed; TF_ASSERT_OK(CompressElement(element, &compressed)); compressed.set_version(1); std::vector<Tensor> round_trip_element; EXPECT_THAT(UncompressElement(compressed, &round_trip_element), StatusIs(error::INTERNAL)); } INSTANTIATE_TEST_SUITE_P(Instantiation, ParameterizedCompressionUtilsTest, ::testing::ValuesIn(TestCases())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/compression_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/compression_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
524d7df9-40ce-40ac-b402-546c47ddbe12
cpp
tensorflow/tensorflow
ragged_range_op
tensorflow/core/kernels/ragged_range_op.cc
tensorflow/core/kernels/ragged_range_op_test.cc
#include <cstdint> #include <limits> #include <memory> #include <string> #include <type_traits> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tsl/platform/errors.h" namespace tensorflow { using errors::InvalidArgument; template <typename T, typename SPLITS_TYPE> class RaggedRangeOp : public OpKernel { public: using OpKernel::OpKernel; void Compute(OpKernelContext* context) override { const Tensor& starts_in = context->input(0); const Tensor& limits_in = context->input(1); const Tensor& deltas_in = context->input(2); OP_REQUIRES(context, starts_in.shape().dims() <= 1, InvalidArgument("starts must be a scalar or vector")); OP_REQUIRES(context, limits_in.shape().dims() <= 1, InvalidArgument("limits must be a scalar or vector")); OP_REQUIRES(context, deltas_in.shape().dims() <= 1, InvalidArgument("deltas must be a scalar or vector")); bool broadcast_starts = starts_in.shape().dims() == 0; bool broadcast_limits = limits_in.shape().dims() == 0; bool broadcast_deltas = deltas_in.shape().dims() == 0; std::vector<int> in_sizes; if (!broadcast_starts) in_sizes.push_back(starts_in.shape().dim_size(0)); if (!broadcast_limits) in_sizes.push_back(limits_in.shape().dim_size(0)); if (!broadcast_deltas) in_sizes.push_back(deltas_in.shape().dim_size(0)); for (int i = 1; i < in_sizes.size(); ++i) { OP_REQUIRES(context, in_sizes[i] == in_sizes[i - 1], InvalidArgument("starts, limits, and deltas must have the " "same shape")); } SPLITS_TYPE nrows = in_sizes.empty() ? 1 : in_sizes[0]; const auto& starts = starts_in.flat<T>(); const auto& limits = limits_in.flat<T>(); const auto& deltas = deltas_in.flat<T>(); Tensor* rt_nested_splits_out = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({nrows + 1}), &rt_nested_splits_out)); auto rt_nested_splits = rt_nested_splits_out->flat<SPLITS_TYPE>(); rt_nested_splits(0) = 0; for (int row = 0; row < nrows; ++row) { T start = broadcast_starts ? starts(0) : starts(row); T limit = broadcast_limits ? limits(0) : limits(row); T delta = broadcast_deltas ? deltas(0) : deltas(row); OP_REQUIRES(context, delta != 0, InvalidArgument("Requires delta != 0")); SPLITS_TYPE size; if (((delta > 0) && (limit < start)) || ((delta < 0) && (limit > start))) { size = 0; } else if constexpr (std::is_integral<T>::value) { size = Eigen::divup(Eigen::numext::abs(limit - start), Eigen::numext::abs(delta)); } else { auto size_auto = Eigen::numext::ceil(Eigen::numext::abs((limit - start) / delta)); OP_REQUIRES( context, size_auto <= std::numeric_limits<int64_t>::max(), errors::InvalidArgument("Requires ((limit - start) / delta) <= ", std::numeric_limits<int64_t>::max())); size = static_cast<SPLITS_TYPE>(size_auto); } OP_REQUIRES(context, size >= 0, InvalidArgument("Requires size >= 0")); OP_REQUIRES( context, size <= std::numeric_limits<SPLITS_TYPE>::max() - rt_nested_splits(row), InvalidArgument("The total range size overflowed. Consider using " "int64 instead of int32 for row_splits_dtype.")); rt_nested_splits(row + 1) = rt_nested_splits(row) + size; } SPLITS_TYPE nvals = rt_nested_splits(nrows); Tensor* rt_dense_values_out = nullptr; OP_REQUIRES_OK(context, context->allocate_output(1, TensorShape({nvals}), &rt_dense_values_out)); auto rt_dense_values = rt_dense_values_out->flat<T>(); int value_index = 0; for (int row = 0; row < nrows; ++row) { SPLITS_TYPE row_size = rt_nested_splits(row + 1) - rt_nested_splits(row); T value = broadcast_starts ? starts(0) : starts(row); T delta = broadcast_deltas ? deltas(0) : deltas(row); for (SPLITS_TYPE i = 0; i < row_size; ++i) { rt_dense_values(value_index++) = T(value); value += delta; } } } }; #define REGISTER_CPU_KERNEL(TYPE) \ REGISTER_KERNEL_BUILDER(Name("RaggedRange") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("T") \ .TypeConstraint<int32>("Tsplits"), \ RaggedRangeOp<TYPE, int32>); \ REGISTER_KERNEL_BUILDER(Name("RaggedRange") \ .Device(DEVICE_CPU) \ .TypeConstraint<TYPE>("T") \ .TypeConstraint<int64_t>("Tsplits"), \ RaggedRangeOp<TYPE, int64>); TF_CALL_float(REGISTER_CPU_KERNEL); TF_CALL_double(REGISTER_CPU_KERNEL); TF_CALL_int32(REGISTER_CPU_KERNEL); TF_CALL_int64(REGISTER_CPU_KERNEL); #undef REGISTER_CPU_KERNEL }
#include <gtest/gtest.h> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class RaggedRangeOpTest : public ::tensorflow::OpsTestBase { protected: static constexpr int kSplitsOutput = 0; static constexpr int kValuesOutput = 1; template <typename T> void BuildRaggedRangeGraph() { const auto& dtype = DataTypeToEnum<T>::v(); TF_ASSERT_OK(NodeDefBuilder("tested_op", "RaggedRange") .Input(FakeInput(dtype)) .Input(FakeInput(dtype)) .Input(FakeInput(dtype)) .Attr("T", dtype) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(RaggedRangeOpTest, IntValues) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({4}), {0, 5, 8, 5}); AddInputFromArray<int>(TensorShape({4}), {8, 7, 8, 1}); AddInputFromArray<int>(TensorShape({4}), {2, 1, 1, -1}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 4, 6, 6, 10})); test::ExpectTensorEqual<int>( *GetOutput(kValuesOutput), test::AsTensor<int>({0, 2, 4, 6, 5, 6, 5, 4, 3, 2})); } TEST_F(RaggedRangeOpTest, FloatValues) { BuildRaggedRangeGraph<float>(); AddInputFromArray<float>(TensorShape({4}), {0, 5, 8, 5}); AddInputFromArray<float>(TensorShape({4}), {8, 7, 8, 1}); AddInputFromArray<float>(TensorShape({4}), {2, 1, 1, -1}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 4, 6, 6, 10})); test::ExpectTensorNear<float>( *GetOutput(kValuesOutput), test::AsTensor<float>({0, 2, 4, 6, 5, 6, 5, 4, 3, 2}), 0.1); } TEST_F(RaggedRangeOpTest, RangeSizeOverflow) { BuildRaggedRangeGraph<float>(); AddInputFromArray<float>(TensorShape({2}), {1.1, 0.1}); AddInputFromArray<float>(TensorShape({2}), {10.0, 1e10}); AddInputFromArray<float>(TensorShape({2}), {1, 1e-10}); EXPECT_EQ(absl::StrCat("Requires ((limit - start) / delta) <= ", std::numeric_limits<int64_t>::max()), RunOpKernel().message()); } TEST_F(RaggedRangeOpTest, BroadcastDeltas) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({3}), {0, 5, 8}); AddInputFromArray<int>(TensorShape({3}), {8, 7, 8}); AddInputFromArray<int>(TensorShape({}), {1}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 8, 10, 10})); test::ExpectTensorEqual<int>( *GetOutput(kValuesOutput), test::AsTensor<int>({0, 1, 2, 3, 4, 5, 6, 7, 5, 6})); } TEST_F(RaggedRangeOpTest, BroadcastLimitsAndDeltas) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({}), {0}); AddInputFromArray<int>(TensorShape({3}), {3, 0, 2}); AddInputFromArray<int>(TensorShape({}), {1}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 3, 3, 5})); test::ExpectTensorEqual<int>(*GetOutput(kValuesOutput), test::AsTensor<int>({0, 1, 2, 0, 1})); } TEST_F(RaggedRangeOpTest, BroadcastStartsAndLimits) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({}), {0}); AddInputFromArray<int>(TensorShape({}), {12}); AddInputFromArray<int>(TensorShape({3}), {3, 4, 5}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 4, 7, 10})); test::ExpectTensorEqual<int>( *GetOutput(kValuesOutput), test::AsTensor<int>({0, 3, 6, 9, 0, 4, 8, 0, 5, 10})); } TEST_F(RaggedRangeOpTest, AllScalarInputs) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({}), {0}); AddInputFromArray<int>(TensorShape({}), {5}); AddInputFromArray<int>(TensorShape({}), {1}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 5})); test::ExpectTensorEqual<int>(*GetOutput(kValuesOutput), test::AsTensor<int>({0, 1, 2, 3, 4})); } TEST_F(RaggedRangeOpTest, InvalidArgsStarts) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({4, 1}), {0, 5, 8, 5}); AddInputFromArray<int>(TensorShape({4}), {8, 7, 8, 1}); AddInputFromArray<int>(TensorShape({4}), {2, 1, 1, -1}); EXPECT_EQ("starts must be a scalar or vector", RunOpKernel().message()); } TEST_F(RaggedRangeOpTest, InvalidArgsLimits) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({4}), {0, 5, 8, 5}); AddInputFromArray<int>(TensorShape({4, 1}), {8, 7, 8, 1}); AddInputFromArray<int>(TensorShape({4}), {2, 1, 1, -1}); EXPECT_EQ("limits must be a scalar or vector", RunOpKernel().message()); } TEST_F(RaggedRangeOpTest, InvalidArgsDeltas) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({4}), {0, 5, 8, 5}); AddInputFromArray<int>(TensorShape({4}), {8, 7, 8, 1}); AddInputFromArray<int>(TensorShape({4, 1}), {2, 1, 1, -1}); EXPECT_EQ("deltas must be a scalar or vector", RunOpKernel().message()); } TEST_F(RaggedRangeOpTest, InvalidArgsShapeMismatch) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({4}), {0, 5, 8, 5}); AddInputFromArray<int>(TensorShape({3}), {7, 8, 1}); AddInputFromArray<int>(TensorShape({4}), {2, 1, 1, -1}); EXPECT_EQ("starts, limits, and deltas must have the same shape", RunOpKernel().message()); } TEST_F(RaggedRangeOpTest, InvalidArgsZeroDelta) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({4}), {0, 5, 8, 5}); AddInputFromArray<int>(TensorShape({4}), {7, 8, 8, 1}); AddInputFromArray<int>(TensorShape({4}), {2, 1, 0, -1}); EXPECT_EQ("Requires delta != 0", RunOpKernel().message()); } TEST_F(RaggedRangeOpTest, EmptyRangePositiveDelta) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({2}), {0, 5}); AddInputFromArray<int>(TensorShape({2}), {5, 0}); AddInputFromArray<int>(TensorShape({}), {2}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 3, 3})); test::ExpectTensorEqual<int>(*GetOutput(kValuesOutput), test::AsTensor<int>({0, 2, 4})); } TEST_F(RaggedRangeOpTest, EmptyRangeNegativeDelta) { BuildRaggedRangeGraph<int>(); AddInputFromArray<int>(TensorShape({2}), {0, 5}); AddInputFromArray<int>(TensorShape({2}), {5, 0}); AddInputFromArray<int>(TensorShape({}), {-2}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>(*GetOutput(kSplitsOutput), test::AsTensor<int64_t>({0, 0, 3})); test::ExpectTensorEqual<int>(*GetOutput(kValuesOutput), test::AsTensor<int>({5, 3, 1})); } TEST_F(RaggedRangeOpTest, ShapeFn) { ShapeInferenceTestOp op("RaggedRange"); INFER_OK(op, "?;?;?", "[?];[?]"); INFER_OK(op, "[3];[3];[3]", "[4];[?]"); INFER_OK(op, "[3];[3];[]", "[4];[?]"); INFER_OK(op, "[3];[];[3]", "[4];[?]"); INFER_OK(op, "[];[3];[3]", "[4];[?]"); INFER_OK(op, "[];[];[]", "[2];[?]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[5,5];[5];[5]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[5];[5,5];[5]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[5];[5];[5,5]"); INFER_ERROR("Dimensions must be equal, but are 4 and 3", op, "[3];[4];[3]"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_range_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_range_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e651f8c4-71e9-4cab-a12a-ea760481aaca
cpp
tensorflow/tensorflow
mkl_cpu_allocator
tensorflow/core/common_runtime/mkl_cpu_allocator.cc
tensorflow/core/common_runtime/mkl_cpu_allocator_test.cc
#ifdef INTEL_MKL #include "tensorflow/core/common_runtime/mkl_cpu_allocator.h" namespace tensorflow { constexpr const char* MklCPUAllocator::kMaxLimitStr; constexpr const size_t MklCPUAllocator::kDefaultMaxLimit; } #endif
#if defined(INTEL_MKL) #include "tensorflow/core/common_runtime/mkl_cpu_allocator.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(MKLBFCAllocatorTest, TestMaxLimit) { setenv(MklCPUAllocator::kMaxLimitStr, "1000", 1); MklCPUAllocator a; TF_EXPECT_OK(a.Initialize()); auto stats = a.GetStats(); EXPECT_EQ(stats->bytes_limit, 1000); unsetenv(MklCPUAllocator::kMaxLimitStr); TF_EXPECT_OK(a.Initialize()); stats = a.GetStats(); uint64 max_mem_bytes = MklCPUAllocator::kDefaultMaxLimit; #if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE) max_mem_bytes = (uint64)sysconf(_SC_PHYS_PAGES) * (uint64)sysconf(_SC_PAGESIZE); #endif EXPECT_EQ(stats->bytes_limit, max_mem_bytes); setenv(MklCPUAllocator::kMaxLimitStr, "wrong-input", 1); EXPECT_TRUE(errors::IsInvalidArgument(a.Initialize())); setenv(MklCPUAllocator::kMaxLimitStr, "-20", 1); EXPECT_TRUE(errors::IsInvalidArgument(a.Initialize())); } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/mkl_cpu_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/mkl_cpu_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c15ad434-bb08-4201-adc4-f39173e7f27c
cpp
google/cel-cpp
double_type
common/types/double_type.h
common/types/double_type_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_DOUBLE_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_DOUBLE_TYPE_H_ #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeParameters; class DoubleType final { public: static constexpr TypeKind kKind = TypeKind::kDouble; static constexpr absl::string_view kName = "double"; DoubleType() = default; DoubleType(const DoubleType&) = default; DoubleType(DoubleType&&) = default; DoubleType& operator=(const DoubleType&) = default; DoubleType& operator=(DoubleType&&) = default; static TypeKind kind() { return kKind; } static absl::string_view name() { return kName; } static TypeParameters GetParameters(); static std::string DebugString() { return std::string(name()); } constexpr void swap(DoubleType&) noexcept {} }; inline constexpr void swap(DoubleType& lhs, DoubleType& rhs) noexcept { lhs.swap(rhs); } inline constexpr bool operator==(DoubleType, DoubleType) { return true; } inline constexpr bool operator!=(DoubleType lhs, DoubleType rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, DoubleType) { return std::move(state); } inline std::ostream& operator<<(std::ostream& out, const DoubleType& type) { return out << type.DebugString(); } } #endif
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { TEST(DoubleType, Kind) { EXPECT_EQ(DoubleType().kind(), DoubleType::kKind); EXPECT_EQ(Type(DoubleType()).kind(), DoubleType::kKind); } TEST(DoubleType, Name) { EXPECT_EQ(DoubleType().name(), DoubleType::kName); EXPECT_EQ(Type(DoubleType()).name(), DoubleType::kName); } TEST(DoubleType, DebugString) { { std::ostringstream out; out << DoubleType(); EXPECT_EQ(out.str(), DoubleType::kName); } { std::ostringstream out; out << Type(DoubleType()); EXPECT_EQ(out.str(), DoubleType::kName); } } TEST(DoubleType, Hash) { EXPECT_EQ(absl::HashOf(DoubleType()), absl::HashOf(DoubleType())); } TEST(DoubleType, Equal) { EXPECT_EQ(DoubleType(), DoubleType()); EXPECT_EQ(Type(DoubleType()), DoubleType()); EXPECT_EQ(DoubleType(), Type(DoubleType())); EXPECT_EQ(Type(DoubleType()), Type(DoubleType())); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/double_type.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/double_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
52ccbbd8-23d0-473e-a425-5f4b87f19ae3
cpp
tensorflow/tensorflow
rename_fusions
third_party/xla/xla/service/gpu/transforms/rename_fusions.cc
third_party/xla/xla/service/gpu/transforms/rename_fusions_test.cc
#include "xla/service/gpu/transforms/rename_fusions.h" #include <memory> #include <string> #include "absl/container/btree_set.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" namespace xla { namespace gpu { namespace { constexpr absl::string_view FusionKindToString( HloInstruction::FusionKind kind) { switch (kind) { case HloInstruction::FusionKind::kCustom: return "custom"; case HloInstruction::FusionKind::kLoop: return "loop"; case HloInstruction::FusionKind::kInput: return "input"; case HloInstruction::FusionKind::kOutput: return "output"; } } std::string MakeFusionHeroNames(const HloInstruction* instruction) { std::unique_ptr<HloFusionAdaptor> fusion_adaptor = HloFusionAdaptor::ForInstruction(instruction); absl::btree_set<absl::string_view> heroes; for (auto root : fusion_adaptor->GetRoots()) { heroes.insert(HloOpcodeString(FindNonTrivialHero(root).opcode())); } return absl::StrReplaceAll(absl::StrJoin(heroes, "_"), {{"-", "_"}}); } void RenameFusion(HloModule* module, HloInstruction* instruction) { std::string hero_names = MakeFusionHeroNames(instruction); module->SetAndUniquifyInstrName( instruction, absl::StrCat(FusionKindToString(instruction->fusion_kind()), "_", hero_names, "_fusion")); module->SetAndUniquifyComputationName( instruction->fused_instructions_computation(), absl::StrCat("fused_", hero_names)); } } absl::StatusOr<bool> RenameFusions::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { for (HloComputation* computation : module->MakeNonfusionComputations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kFusion || instruction->fusion_kind() == HloInstruction::FusionKind::kCustom) { continue; } RenameFusion(module, instruction); } } return true; } } }
#include "xla/service/gpu/transforms/rename_fusions.h" #include <utility> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { class RenameFusionsTest : public HloTestBase { protected: RenameFusions rename_fusions_; }; TEST_F(RenameFusionsTest, FusionInstructionNames) { absl::string_view kHlo = R"( HloModule test_module square { p = f32[16384] parameter(0) ROOT m = f32[16384] multiply(p, p) } exp { p = f32[16384] parameter(0) ROOT e = f32[16384] exponential(p) } log { p = f32[16384] parameter(0) ROOT l = f32[16384] log(p) } add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY main { p0 = bf16[1024,8192] parameter(0) p1 = f32[8192] parameter(1) p2 = f32[16384] parameter(2) convert = f32[1024,8192] convert(p0) broadcast = f32[1024,8192] broadcast(p1), dimensions={1} c0 = f32[] constant(0) multiply = f32[1024,8192] multiply(broadcast, convert) reduce = f32[1024] reduce(multiply, c0), dimensions={1}, to_apply=add convert.1 = bf16[1024] convert(reduce) s = f32[16384] fusion(p2), kind=kLoop, calls=square e = f32[16384] fusion(s), kind=kLoop, calls=exp l = f32[16384] fusion(s), kind=kInput, calls=log ROOT result = (bf16[1024]{0}, f32[16384]{0}, f32[16384]{0}) tuple(convert.1, l, e) })"; RunAndFilecheckHloRewrite(kHlo, std::move(rename_fusions_), R"( CHECK: ENTRY %main CHECK: %loop_multiply_fusion{{.*}} calls=%fused_multiply CHECK: %input_log_fusion{{.*}} calls=%fused_log CHECK: %loop_exponential_fusion{{.*}} calls=%fused_exponential CHECK: ROOT %result )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/rename_fusions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/rename_fusions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b1dcf762-9ec7-475c-a7a3-29543231774f
cpp
tensorflow/tensorflow
minimal_logging
tensorflow/lite/minimal_logging.cc
tensorflow/lite/minimal_logging_test.cc
#include "tensorflow/lite/minimal_logging.h" #include <cstdarg> #include "tensorflow/lite/logger.h" namespace tflite { namespace logging_internal { void MinimalLogger::Log(LogSeverity severity, const char* format, ...) { va_list args; va_start(args, format); LogFormatted(severity, format, args); va_end(args); } const char* MinimalLogger::GetSeverityName(LogSeverity severity) { switch (severity) { case TFLITE_LOG_VERBOSE: return "VERBOSE"; case TFLITE_LOG_INFO: return "INFO"; case TFLITE_LOG_WARNING: return "WARNING"; case TFLITE_LOG_ERROR: return "ERROR"; case TFLITE_LOG_SILENT: return "SILENT"; } return "<Unknown severity>"; } LogSeverity MinimalLogger::GetMinimumLogSeverity() { return MinimalLogger::minimum_log_severity_; } LogSeverity MinimalLogger::SetMinimumLogSeverity(LogSeverity new_severity) { LogSeverity old_severity = MinimalLogger::minimum_log_severity_; MinimalLogger::minimum_log_severity_ = new_severity; return old_severity; } } }
#include "tensorflow/lite/minimal_logging.h" #include <gtest/gtest.h> #include "tensorflow/lite/logger.h" namespace tflite { TEST(MinimalLogging, Basic) { testing::internal::CaptureStderr(); TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Foo"); EXPECT_EQ("INFO: Foo\n", testing::internal::GetCapturedStderr()); } TEST(MinimalLogging, BasicFormatted) { testing::internal::CaptureStderr(); TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Foo %s %s", "Bar", "Baz"); EXPECT_EQ("INFO: Foo Bar Baz\n", testing::internal::GetCapturedStderr()); } TEST(MinimalLogging, Warn) { testing::internal::CaptureStderr(); TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "One", ""); EXPECT_EQ("WARNING: One\n", testing::internal::GetCapturedStderr()); } TEST(MinimalLogging, Error) { testing::internal::CaptureStderr(); TFLITE_LOG_PROD(TFLITE_LOG_ERROR, "Two"); EXPECT_EQ("ERROR: Two\n", testing::internal::GetCapturedStderr()); } TEST(MinimalLogging, UnknownSeverity) { testing::internal::CaptureStderr(); LogSeverity default_log_severity = TFLITE_LOG_INFO; #if defined(__ANDROID__) || !defined(NDEBUG) default_log_severity = TFLITE_LOG_VERBOSE; #endif EXPECT_EQ(tflite::logging_internal::MinimalLogger::SetMinimumLogSeverity( static_cast<LogSeverity>(-1)), default_log_severity); TFLITE_LOG_PROD(static_cast<LogSeverity>(-1), "Three"); EXPECT_EQ("<Unknown severity>: Three\n", testing::internal::GetCapturedStderr()); tflite::logging_internal::MinimalLogger::SetMinimumLogSeverity( default_log_severity); } TEST(MinimalLogging, MinimumSeverity) { testing::internal::CaptureStderr(); LogSeverity default_log_severity = TFLITE_LOG_INFO; #if defined(__ANDROID__) || !defined(NDEBUG) default_log_severity = TFLITE_LOG_VERBOSE; #endif EXPECT_EQ(tflite::logging_internal::MinimalLogger::SetMinimumLogSeverity( TFLITE_LOG_WARNING), default_log_severity); TFLITE_LOG_PROD(TFLITE_LOG_WARNING, "Foo"); TFLITE_LOG_PROD(default_log_severity, "Bar"); EXPECT_EQ("WARNING: Foo\n", testing::internal::GetCapturedStderr()); tflite::logging_internal::MinimalLogger::SetMinimumLogSeverity( default_log_severity); } TEST(MinimalLogging, Once) { testing::internal::CaptureStderr(); for (int i = 0; i < 10; ++i) { TFLITE_LOG_PROD_ONCE(TFLITE_LOG_INFO, "Count: %d", i); } EXPECT_EQ("INFO: Count: 0\n", testing::internal::GetCapturedStderr()); } TEST(MinimalLogging, Debug) { testing::internal::CaptureStderr(); TFLITE_LOG(TFLITE_LOG_INFO, "Foo"); TFLITE_LOG(TFLITE_LOG_WARNING, "Bar"); TFLITE_LOG(TFLITE_LOG_ERROR, "Baz"); #ifndef NDEBUG EXPECT_EQ("INFO: Foo\nWARNING: Bar\nERROR: Baz\n", testing::internal::GetCapturedStderr()); #else EXPECT_TRUE(testing::internal::GetCapturedStderr().empty()); #endif } TEST(MinimalLogging, DebugOnce) { testing::internal::CaptureStderr(); for (int i = 0; i < 10; ++i) { TFLITE_LOG_ONCE(TFLITE_LOG_INFO, "Count: %d", i); } #ifndef NDEBUG EXPECT_EQ("INFO: Count: 0\n", testing::internal::GetCapturedStderr()); #else EXPECT_TRUE(testing::internal::GetCapturedStderr().empty()); #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/minimal_logging.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/minimal_logging_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3d22ad6c-a254-4b61-adf3-de1bf2716283
cpp
google/tsl
time_util
tsl/platform/cloud/time_util.cc
tsl/platform/cloud/time_util_test.cc
#include "tsl/platform/cloud/time_util.h" #include <time.h> #include <cmath> #include <cstdio> #include <ctime> #ifdef _WIN32 #define timegm _mkgmtime #endif #include "tsl/platform/errors.h" namespace tsl { namespace { constexpr int64_t kNanosecondsPerSecond = 1000 * 1000 * 1000; } absl::Status ParseRfc3339Time(const string& time, int64_t* mtime_nsec) { tm parsed{0}; float seconds; if (sscanf(time.c_str(), "%4d-%2d-%2dT%2d:%2d:%fZ", &(parsed.tm_year), &(parsed.tm_mon), &(parsed.tm_mday), &(parsed.tm_hour), &(parsed.tm_min), &seconds) != 6) { return errors::Internal( strings::StrCat("Unrecognized RFC 3339 time format: ", time)); } const int int_seconds = std::floor(seconds); parsed.tm_year -= 1900; parsed.tm_mon -= 1; parsed.tm_sec = int_seconds; *mtime_nsec = timegm(&parsed) * kNanosecondsPerSecond + static_cast<int64_t>(std::floor((seconds - int_seconds) * kNanosecondsPerSecond)); return absl::OkStatus(); } }
#include "tsl/platform/cloud/time_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/test.h" namespace tsl { TEST(TimeUtil, ParseRfc3339Time) { int64_t mtime_nsec; TF_EXPECT_OK(ParseRfc3339Time("2016-04-29T23:15:24.896Z", &mtime_nsec)); EXPECT_NEAR(1461971724896, mtime_nsec / 1000 / 1000, 1); } TEST(TimeUtil, ParseRfc3339Time_ParseError) { int64_t mtime_nsec; EXPECT_EQ("Unrecognized RFC 3339 time format: 2016-04-29", ParseRfc3339Time("2016-04-29", &mtime_nsec).message()); } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/cloud/time_util.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/cloud/time_util_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
8971d4cb-bee3-478d-b5af-bb826df19571
cpp
tensorflow/tensorflow
gpu_executor
third_party/xla/xla/stream_executor/gpu/gpu_executor.h
third_party/xla/xla/stream_executor/gpu/gpu_executor_test.cc
#ifndef XLA_STREAM_EXECUTOR_GPU_GPU_EXECUTOR_H_ #define XLA_STREAM_EXECUTOR_GPU_GPU_EXECUTOR_H_ #include <cstdint> #include <memory> #include <utility> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/event_based_timer.h" #include "xla/stream_executor/gpu/context.h" #include "xla/stream_executor/host_memory_allocation.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_common.h" namespace stream_executor { namespace gpu { class GpuStream; class GpuExecutor : public StreamExecutorCommon { public: GpuExecutor(Platform* platform, int device_ordinal) : StreamExecutorCommon(platform), context_(nullptr), device_ordinal_(device_ordinal) {} int device_ordinal() const override { return device_ordinal_; }; virtual void UnloadKernel(const Kernel* kernel) = 0; virtual absl::StatusOr<std::unique_ptr<EventBasedTimer>> CreateEventBasedTimer(GpuStream* stream, bool use_delay_kernel) = 0; virtual absl::Status TrimGraphMemory() = 0; Context* gpu_context() const { return context_; } absl::StatusOr<std::vector<ApiTrace>> ExtractApiTrace() override { absl::MutexLock lock(&logger_mu_); return std::move(argument_logs_); } absl::Status RecordApiTrace(ApiTrace call) override { absl::MutexLock lock(&logger_mu_); if (std::holds_alternative<GemmCallTrace>(call) && (argument_logging_mode_ & kLogGemm)) { argument_logs_.push_back(call); } return absl::OkStatus(); } bool SetArgumentLoggingMode(uint64_t mode) override { absl::MutexLock lock(&logger_mu_); argument_logging_mode_ = mode; return true; } uint64_t GetArgumentLoggingMode() const { return argument_logging_mode_; } protected: void set_context(Context* context) { context_ = context; } private: Context* context_; int device_ordinal_; absl::Mutex logger_mu_; mutable std::vector<ApiTrace> argument_logs_ ABSL_GUARDED_BY(logger_mu_); uint64_t argument_logging_mode_ = 0; GpuExecutor(const GpuExecutor&) = delete; void operator=(const GpuExecutor&) = delete; }; inline GpuExecutor* ExtractGpuExecutor(StreamExecutor* stream_exec) { return static_cast<GpuExecutor*>(stream_exec); } } } #endif
#include <gtest/gtest.h> #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor { class GpuExecutorTest : public testing::Test { public: Platform* GetPlatform() { auto name = absl::AsciiStrToLower( xla::PlatformUtil::CanonicalPlatformName("gpu").value()); return PlatformManager::PlatformWithName(name).value(); } }; using GetPointerMemorySpaceTest = GpuExecutorTest; TEST_F(GetPointerMemorySpaceTest, Host) { StreamExecutor* executor = GetPlatform()->ExecutorForDevice(0).value(); TF_ASSERT_OK_AND_ASSIGN(auto host_ptr, executor->HostMemoryAllocate(64)); TF_ASSERT_OK_AND_ASSIGN(auto memory_space, executor->GetPointerMemorySpace(host_ptr->opaque())) EXPECT_EQ(memory_space, MemoryType::kHost); } TEST_F(GetPointerMemorySpaceTest, Device) { StreamExecutor* executor = GetPlatform()->ExecutorForDevice(0).value(); auto mem = executor->Allocate(64); ASSERT_NE(mem, nullptr); TF_ASSERT_OK_AND_ASSIGN(auto memory_space, executor->GetPointerMemorySpace(mem.opaque())) EXPECT_EQ(memory_space, MemoryType::kDevice); executor->Deallocate(&mem); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_executor.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/gpu/gpu_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bc60f86c-e41b-41b2-8fdf-d424fb530694
cpp
google/quiche
quic_blocked_writer_list
quiche/quic/core/quic_blocked_writer_list.cc
quiche/quic/core/quic_blocked_writer_list_test.cc
#include "quiche/quic/core/quic_blocked_writer_list.h" #include <utility> #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" namespace quic { void QuicBlockedWriterList::Add(QuicBlockedWriterInterface& blocked_writer) { if (!blocked_writer.IsWriterBlocked()) { QUIC_BUG(quic_bug_12724_4) << "Tried to add writer into blocked list when it shouldn't be added"; return; } write_blocked_list_.insert(std::make_pair(&blocked_writer, true)); } bool QuicBlockedWriterList::Empty() const { return write_blocked_list_.empty(); } bool QuicBlockedWriterList::Remove(QuicBlockedWriterInterface& blocked_writer) { return write_blocked_list_.erase(&blocked_writer) != 0; } void QuicBlockedWriterList::OnWriterUnblocked() { const size_t num_blocked_writers_before = write_blocked_list_.size(); WriteBlockedList temp_list; temp_list.swap(write_blocked_list_); QUICHE_DCHECK(write_blocked_list_.empty()); while (!temp_list.empty()) { QuicBlockedWriterInterface* blocked_writer = temp_list.begin()->first; temp_list.erase(temp_list.begin()); blocked_writer->OnBlockedWriterCanWrite(); } const size_t num_blocked_writers_after = write_blocked_list_.size(); if (num_blocked_writers_after != 0) { if (num_blocked_writers_before == num_blocked_writers_after) { QUIC_CODE_COUNT(quic_zero_progress_on_can_write); } else { QUIC_CODE_COUNT(quic_blocked_again_on_can_write); } } } }
#include "quiche/quic/core/quic_blocked_writer_list.h" #include "quiche/quic/core/quic_blocked_writer_interface.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { using testing::Invoke; using testing::Return; namespace { class TestWriter : public QuicBlockedWriterInterface { public: ~TestWriter() override = default; MOCK_METHOD(void, OnBlockedWriterCanWrite, ()); MOCK_METHOD(bool, IsWriterBlocked, (), (const)); }; } TEST(QuicBlockedWriterList, Empty) { QuicBlockedWriterList list; EXPECT_TRUE(list.Empty()); } TEST(QuicBlockedWriterList, NotEmpty) { QuicBlockedWriterList list; testing::StrictMock<TestWriter> writer1; EXPECT_CALL(writer1, IsWriterBlocked()).WillOnce(Return(true)); list.Add(writer1); EXPECT_FALSE(list.Empty()); list.Remove(writer1); EXPECT_TRUE(list.Empty()); } TEST(QuicBlockedWriterList, OnWriterUnblocked) { QuicBlockedWriterList list; testing::StrictMock<TestWriter> writer1; EXPECT_CALL(writer1, IsWriterBlocked()).WillOnce(Return(true)); list.Add(writer1); EXPECT_CALL(writer1, OnBlockedWriterCanWrite()); list.OnWriterUnblocked(); EXPECT_TRUE(list.Empty()); } TEST(QuicBlockedWriterList, OnWriterUnblockedInOrder) { QuicBlockedWriterList list; testing::StrictMock<TestWriter> writer1; testing::StrictMock<TestWriter> writer2; testing::StrictMock<TestWriter> writer3; EXPECT_CALL(writer1, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer2, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer3, IsWriterBlocked()).WillOnce(Return(true)); list.Add(writer1); list.Add(writer2); list.Add(writer3); testing::InSequence s; EXPECT_CALL(writer1, OnBlockedWriterCanWrite()); EXPECT_CALL(writer2, OnBlockedWriterCanWrite()); EXPECT_CALL(writer3, OnBlockedWriterCanWrite()); list.OnWriterUnblocked(); EXPECT_TRUE(list.Empty()); } TEST(QuicBlockedWriterList, OnWriterUnblockedInOrderAfterReinsertion) { QuicBlockedWriterList list; testing::StrictMock<TestWriter> writer1; testing::StrictMock<TestWriter> writer2; testing::StrictMock<TestWriter> writer3; EXPECT_CALL(writer1, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer2, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer3, IsWriterBlocked()).WillOnce(Return(true)); list.Add(writer1); list.Add(writer2); list.Add(writer3); EXPECT_CALL(writer1, IsWriterBlocked()).WillOnce(Return(true)); list.Add(writer1); testing::InSequence s; EXPECT_CALL(writer1, OnBlockedWriterCanWrite()); EXPECT_CALL(writer2, OnBlockedWriterCanWrite()); EXPECT_CALL(writer3, OnBlockedWriterCanWrite()); list.OnWriterUnblocked(); EXPECT_TRUE(list.Empty()); } TEST(QuicBlockedWriterList, OnWriterUnblockedThenBlocked) { QuicBlockedWriterList list; testing::StrictMock<TestWriter> writer1; testing::StrictMock<TestWriter> writer2; testing::StrictMock<TestWriter> writer3; EXPECT_CALL(writer1, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer2, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer3, IsWriterBlocked()).WillOnce(Return(true)); list.Add(writer1); list.Add(writer2); list.Add(writer3); EXPECT_CALL(writer1, OnBlockedWriterCanWrite()); EXPECT_CALL(writer2, IsWriterBlocked()).WillOnce(Return(true)); EXPECT_CALL(writer2, OnBlockedWriterCanWrite()).WillOnce(Invoke([&]() { list.Add(writer2); })); EXPECT_CALL(writer3, OnBlockedWriterCanWrite()); list.OnWriterUnblocked(); EXPECT_FALSE(list.Empty()); EXPECT_CALL(writer2, OnBlockedWriterCanWrite()); list.OnWriterUnblocked(); EXPECT_TRUE(list.Empty()); } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_blocked_writer_list.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_blocked_writer_list_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
e623c8f3-9336-4f63-a160-ff9b2d0ae2db
cpp
google/tensorstore
label_op
tensorstore/index_space/internal/label_op.cc
tensorstore/index_space/label_op_test.cc
#include "tensorstore/index_space/internal/label_op.h" #include <stddef.h> #include <string> #include <string_view> #include <utility> #include "absl/status/status.h" #include "tensorstore/container_kind.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyLabel(IndexTransform<> transform, DimensionIndexBuffer* dimensions, internal::StringLikeSpan labels, bool domain_only) { if (dimensions->size() != static_cast<size_t>(labels.size())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", dimensions->size(), ") does not match number of labels (", labels.size(), ").")); } auto rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); const DimensionIndex input_rank = rep->input_rank; span<std::string> input_labels = rep->input_labels().first(input_rank); for (DimensionIndex i = 0; i < static_cast<DimensionIndex>(dimensions->size()); ++i) { const DimensionIndex input_dim = (*dimensions)[i]; std::string_view label = labels[i]; input_labels[input_dim].assign(label.begin(), label.end()); } TENSORSTORE_RETURN_IF_ERROR( internal::ValidateDimensionLabelsAreUnique(input_labels)); internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::IdentityTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; using ::tensorstore::internal_index_space::TestDimExpression; TEST(LabelTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"a", "y", "b"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).Label("a", "b"), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims("x", "z").Label("a", "b"), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(LabelTest, MultipleArguments) { TestDimExpression( IndexTransformBuilder<3, 1>() .output_constant(0, 1) .Finalize() .value(), Dims(1, 0).Label("x", "y"), {1, 0}, IndexTransformBuilder<3, 3>() .input_labels({"y", "x", ""}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<3, 1>() .input_labels({"y", "x", ""}) .output_constant(0, 1) .Finalize() .value(), {}); } TEST(LabelTest, ErrorHandling) { TestDimExpressionError( IdentityTransform(1), Dims(span<const DimensionIndex>({0})).Label("x", "y"), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) does not match number of " "labels \\(2\\)\\."); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/label_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/label_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
910cd118-d757-4424-beac-fac04be8dd3a
cpp
tensorflow/tensorflow
pjrt_client
third_party/xla/xla/python/pjrt_ifrt/pjrt_client.cc
third_party/xla/xla/pjrt/pjrt_client_test.cc
#include "xla/python/pjrt_ifrt/pjrt_client.h" #include <atomic> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/literal.h" #include "xla/pjrt/distributed/protocol.pb.h" #include "xla/pjrt/distributed/topology_util.h" #include "xla/pjrt/pjrt_client.h" #include "xla/pjrt/pjrt_common.h" #include "xla/pjrt/pjrt_compiler.h" #include "xla/pjrt/pjrt_device_description.h" #include "xla/pjrt/pjrt_future.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/attribute_map.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/remap_plan.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/topology.h" #include "xla/python/ifrt/tuple.h" #include "xla/python/ifrt/value.h" #include "xla/python/pjrt_ifrt/basic_string_array.h" #include "xla/python/pjrt_ifrt/pjrt_array.h" #include "xla/python/pjrt_ifrt/pjrt_attribute_map_util.h" #include "xla/python/pjrt_ifrt/pjrt_device.h" #include "xla/python/pjrt_ifrt/pjrt_dtype.h" #include "xla/python/pjrt_ifrt/pjrt_memory.h" #include "xla/python/pjrt_ifrt/pjrt_remap.h" #include "xla/python/pjrt_ifrt/pjrt_topology.h" #include "xla/python/pjrt_ifrt/pjrt_tuple.h" #include "xla/python/pjrt_ifrt/xla_sharding.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/util.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { absl::AnyInvocable<void() &&> FromStdFunction(std::function<void()>&& f) { return f ? std::move(f) : absl::AnyInvocable<void() &&>(); } AttributeMap MakeAttributeMap(xla::PjRtClient* pjrt_client) { absl::flat_hash_map<std::string, PjRtValueType> attributes; attributes.insert({"supports_executable_serialization", true}); if (std::optional<PjRtPluginAttributes> plugin_attributes = pjrt_client->plugin_attributes(); plugin_attributes.has_value()) { attributes.insert( {"pjrt_c_api_major_version", PjRtValueType(plugin_attributes->pjrt_c_api_major_version)}); attributes.insert( {"pjrt_c_api_minor_version", PjRtValueType(plugin_attributes->pjrt_c_api_minor_version)}); for (const auto& [key, value] : plugin_attributes->attributes) { attributes.insert({key, value}); } } return FromPjRtAttributeMap(std::move(attributes)); } void SerializePjRtDeviceAttributes( const absl::flat_hash_map<std::string, PjRtDeviceAttribute>& attributes, DeviceProto& device_proto) { for (const auto& [key, value] : attributes) { DeviceAttributeProto& attribute = (*device_proto.mutable_attributes())[key]; if (std::holds_alternative<std::string>(value)) { attribute.set_string_value(std::get<std::string>(value)); } else if (std::holds_alternative<int64_t>(value)) { attribute.set_int_value(std::get<int64_t>(value)); } else if (std::holds_alternative<std::vector<int64_t>>(value)) { auto values = std::get<std::vector<int64_t>>(value); attribute.mutable_int_values()->mutable_values()->Assign(values.begin(), values.end()); } else if (std::holds_alternative<bool>(value)) { attribute.set_bool_value(std::get<bool>(value)); } else if (std::holds_alternative<float>(value)) { attribute.set_float_value(std::get<float>(value)); } } } absl::Status DeserializePjRtDeviceAttributes( const DeviceProto& device_proto, absl::flat_hash_map<std::string, PjRtDeviceAttribute>& attributes) { for (const auto& [key, value] : device_proto.attributes()) { if (value.has_string_value()) { attributes[key] = value.string_value(); } else if (value.has_int_value()) { attributes[key] = value.int_value(); } else if (value.has_int_values()) { attributes[key] = std::vector<int64_t>(value.int_values().values().begin(), value.int_values().values().end()); } else if (value.has_bool_value()) { attributes[key] = value.bool_value(); } else if (value.has_float_value()) { attributes[key] = value.float_value(); } } return absl::OkStatus(); } absl::StatusOr<tsl::RCReference<Array>> MakeStringArrayFromHostBuffer( Client* client, const void* data, DType dtype, Shape shape, std::optional<absl::Span<const int64_t>> byte_strides, std::shared_ptr<const Sharding> sharding, Client::HostBufferSemantics semantics, std::function<void()> on_done_with_host_buffer) { auto param_validation = [&]() -> absl::Status { if (byte_strides.has_value()) { return absl::InvalidArgumentError( "byte_strides is not currently supported for making " "BasicStringArrays."); } if (semantics != Client::HostBufferSemantics::kImmutableOnlyDuringCall) { return absl::InvalidArgumentError( "HostBufferSemantics other than kImmutableOnlyDuringCall are not " "currently supported for making BasicStringArrays."); } if (!llvm::isa<const SingleDeviceSharding>(sharding.get())) { return absl::InvalidArgumentError( absl::StrCat("Only SingleDeviceSharding is supported for making " "BasicStringArrays: got: ", sharding->DebugString())); } return absl::OkStatus(); }(); TF_RETURN_IF_ERROR(param_validation); auto num_elements = shape.num_elements(); auto strings = std::make_shared<std::vector<std::string>>(); strings->reserve(num_elements); auto string_views = std::make_shared<std::vector<absl::string_view>>(); string_views->reserve(num_elements); auto element = static_cast<const absl::string_view*>(data); for (int i = 0; i < num_elements; ++i, ++element) { strings->push_back(std::string(*element)); string_views->push_back(absl::string_view(strings->back())); } std::move(on_done_with_host_buffer)(); BasicStringArray::Buffers buffers; buffers.push_back(*string_views); auto buffer_releaser = [strings = std::move(strings), string_views = std::move(string_views)]() {}; return BasicStringArray::Create( client, std::move(shape), std::move(sharding), Future<BasicStringArray::Buffers>(std::move(buffers)), std::move(buffer_releaser)); } absl::StatusOr<tsl::RCReference<Array>> AssembleStringArrayFromSingleDeviceStringArrays( Shape shape, std::shared_ptr<const Sharding> sharding, absl::Span<tsl::RCReference<Array>> arrays, ArrayCopySemantics semantics) { struct BufferBackingStore { explicit BufferBackingStore(int num_shards) : per_shard_strings(num_shards), per_shard_string_views(num_shards) {} void clear() { per_shard_strings.clear(); per_shard_string_views.clear(); } void CopyBuffer(absl::Span<const absl::string_view> strbuf, int shard_index, BasicStringArray::Buffers* buffers) { auto& strings = per_shard_strings[shard_index]; strings.reserve(strbuf.size()); auto& views = per_shard_string_views[shard_index]; views.reserve(strbuf.size()); for (int i = 0; i < strbuf.size(); ++i) { strings.push_back(std::string(strbuf[i].data(), strbuf[i].size())); } for (const auto& str : strings) { views.push_back(str); } (*buffers)[shard_index] = absl::MakeConstSpan(views); } std::vector<std::vector<std::string>> per_shard_strings; std::vector<std::vector<absl::string_view>> per_shard_string_views; }; auto buffer_backing_store = std::make_shared<BufferBackingStore>(sharding->devices()->size()); auto on_done_with_buffer = [buffer_holder = buffer_backing_store]() {}; struct BufferCopyingState { BufferCopyingState(int num_buffers_to_copy, std::shared_ptr<BufferBackingStore> buffer_backing_store) : num_buffers_to_copy(num_buffers_to_copy), buffer_backing_store(std::move(buffer_backing_store)), buffers(num_buffers_to_copy) {} absl::Mutex mu; int num_buffers_to_copy ABSL_GUARDED_BY(mu); std::shared_ptr<BufferBackingStore> buffer_backing_store ABSL_GUARDED_BY(mu); BasicStringArray::Buffers buffers ABSL_GUARDED_BY(mu); }; auto buffer_copying_state = std::make_shared<BufferCopyingState>( arrays.size(), std::move(buffer_backing_store)); auto buffers_promise = Future<BasicStringArray::Buffers>::CreatePromise(); auto buffers_future = Future<BasicStringArray::Buffers>(buffers_promise); auto buffer_copier = [state = buffer_copying_state, promise = buffers_promise]( absl::StatusOr<BasicStringArray::Buffers> strbuf, int shard_index) mutable { absl::MutexLock lock(&state->mu); if (state->num_buffers_to_copy == 0) { return; } if (!strbuf.ok()) { promise.Set(strbuf.status()); state->num_buffers_to_copy = 0; state->buffer_backing_store->clear(); state->buffer_backing_store = nullptr; return; } state->buffer_backing_store->CopyBuffer(strbuf->front(), shard_index, &state->buffers); if (--state->num_buffers_to_copy > 0) { return; } promise.Set(std::move(state->buffers)); }; for (int i = 0; i < arrays.size(); ++i) { auto basic_string_array = llvm::dyn_cast<BasicStringArray>(arrays[i].get()); if (!basic_string_array) { return absl::InvalidArgumentError( "All single device arrays must be BasicStringArrays"); } if (!llvm::isa<SingleDeviceSharding>(basic_string_array->sharding())) { return absl::InvalidArgumentError(absl::StrFormat( "All single device arrays must have single device sharding. got: %s " "for shard index: %d", basic_string_array->sharding().DebugString(), i)); } basic_string_array->buffers().OnReady( [shard_index = i, buffer_copier = buffer_copier]( absl::StatusOr<BasicStringArray::Buffers> strbuf) mutable { buffer_copier(std::move(strbuf), shard_index); }); } return BasicStringArray::Create(arrays[0]->client(), std::move(shape), std::move(sharding), buffers_future, std::move(on_done_with_buffer)); } } char PjRtCompatibleClient::ID = 0; char PjRtClient::ID = 0; absl::StatusOr<std::unique_ptr<PjRtClient>> PjRtClient::Create( PjRtClient::CreateOptions options) { auto client = absl::WrapUnique(new PjRtClient(std::move(options.pjrt_client))); xla::PjRtClient* pjrt_client = client->pjrt_client(); std::vector<std::unique_ptr<PjRtDevice>> devices; if (!options.kv_store) { devices.reserve(pjrt_client->devices().size()); for (xla::PjRtDevice* device : pjrt_client->devices()) { auto ifrt_device = std::make_unique<PjRtDevice>( client.get(), DeviceId(device->global_device_id().value()), std::string(device->device_kind()), std::string(device->ToString()), std::string(device->DebugString()), device->process_index(), device->Attributes(), device->IsAddressable() ? device : nullptr); devices.push_back(std::move(ifrt_device)); } } else { LocalTopologyProto local_topology; local_topology.set_node_id(options.process_id); std::string boot_id_str; auto boot_id_str_or_status = GetBootIdString(); if (!boot_id_str_or_status.ok()) { LOG(INFO) << boot_id_str_or_status.status(); } else { boot_id_str = boot_id_str_or_status.value(); } local_topology.set_boot_id(boot_id_str); absl::flat_hash_map<PjRtLocalDeviceId, xla::PjRtDevice*> pjrt_devices; for (xla::PjRtDevice* device : pjrt_client->addressable_devices()) { pjrt_devices[device->local_device_id()] = device; DeviceProto& device_proto = *local_topology.add_devices(); device_proto.set_global_device_id(device->global_device_id().value()); device_proto.set_local_device_ordinal(device->local_device_id().value()); device_proto.set_device_kind( std::string(device->description().device_kind())); device_proto.set_to_string(std::string(device->ToString())); device_proto.set_debug_string(std::string(device->DebugString())); SerializePjRtDeviceAttributes(device->Attributes(), device_proto); } GlobalTopologyProto global_topology; TF_RETURN_IF_ERROR(ExchangeTopologies( pjrt_client->platform_name(), options.process_id, options.num_processes, options.get_local_topology_timeout, options.get_global_topology_timeout, options.kv_store.get(), local_topology, &global_topology, false)); int next_slice_index = 0; absl::flat_hash_map<std::string, int> boot_id_to_slice_index; for (const LocalTopologyProto& node : global_topology.nodes()) { int64_t slice_index = -1; if (!node.boot_id().empty()) { std::string_view boot_id = node.boot_id(); auto [it, inserted] = boot_id_to_slice_index.try_emplace(boot_id, next_slice_index); slice_index = it->second; if (inserted) { ++next_slice_index; } } bool node_is_me = (node.node_id() == options.process_id); for (const DeviceProto& device_proto : node.devices()) { absl::flat_hash_map<std::string, PjRtDeviceAttribute> attributes; TF_RETURN_IF_ERROR( DeserializePjRtDeviceAttributes(device_proto, attributes)); if (!attributes.contains("slice_index")) { attributes["slice_index"] = slice_index; } xla::PjRtDevice* pjrt_device = nullptr; if (node_is_me) { auto it = pjrt_devices.find( PjRtLocalDeviceId(device_proto.local_device_ordinal())); TF_RET_CHECK(it != pjrt_devices.end()); pjrt_device = it->second; } auto ifrt_device = std::make_unique<PjRtDevice>( client.get(), DeviceId(device_proto.global_device_id()), device_proto.device_kind(), device_proto.to_string(), device_proto.debug_string(), node.node_id(), std::move(attributes), pjrt_device); devices.push_back(std::move(ifrt_device)); } } } client->devices_.reserve(devices.size()); client->device_map_.reserve(pjrt_client->addressable_device_count()); for (auto& ifrt_device : devices) { client->devices_.push_back(ifrt_device.get()); TF_RET_CHECK( client->device_id_map_.emplace(ifrt_device->Id(), ifrt_device.get()) .second); xla::PjRtDevice* pjrt_device = ifrt_device->pjrt_device(); if (pjrt_device) { TF_RET_CHECK( client->device_map_.emplace(pjrt_device, ifrt_device.get()).second); } client->owned_devices_.push_back(std::move(ifrt_device)); } client->addressable_devices_.reserve( pjrt_client->addressable_devices().size()); for (xla::PjRtDevice* device : pjrt_client->addressable_devices()) { auto it = client->device_map_.find(device); CHECK(it != client->device_map_.end()); client->addressable_devices_.push_back(it->second); } client->memory_map_.reserve(pjrt_client->memory_spaces().size()); for (xla::PjRtMemorySpace* memory_space : pjrt_client->memory_spaces()) { auto ifrt_memory = std::make_unique<PjRtMemory>(client.get(), memory_space); client->memory_map_[memory_space] = ifrt_memory.get(); client->owned_memories_.push_back(std::move(ifrt_memory)); } for (Device* ifrt_device : client->addressable_devices_) { auto* device = tensorflow::down_cast<PjRtDevice*>(ifrt_device); auto* pjrt_device = device->pjrt_device(); device->memories_.reserve(pjrt_device->memory_spaces().size()); for (xla::PjRtMemorySpace* pjrt_memory_space : pjrt_device->memory_spaces()) { device->memories_.push_back(*client->LookupPjRtMemory(pjrt_memory_space)); } absl::StatusOr<PjRtMemorySpace*> memory = pjrt_device->default_memory_space(); if (memory.ok()) { device->default_memory_ = *client->LookupPjRtMemory(*memory); } else { device->default_memory_ = memory.status(); } } return client; } std::unique_ptr<PjRtClient> PjRtClient::Create( std::shared_ptr<xla::PjRtClient> pjrt_client) { PjRtClient::CreateOptions options; options.pjrt_client = std::move(pjrt_client); return *Create(std::move(options)); } PjRtClient::PjRtClient(std::shared_ptr<xla::PjRtClient> pjrt_client) : pjrt_client_(std::move(pjrt_client)), default_compiler_(this), attributes_(MakeAttributeMap(pjrt_client_.get())) {} PjRtClient::~PjRtClient() = default; absl::StatusOr<PjRtCompatibleDevice*> PjRtClient::LookupPjRtDevice( xla::PjRtDevice* pjrt_device) const { auto it = device_map_.find(pjrt_device); if (it == device_map_.end()) { return InvalidArgument("PjRtDevice not found: %s", pjrt_device->DebugString()); } return it->second; } absl::StatusOr<PjRtCompatibleMemory*> PjRtClient::LookupPjRtMemory( xla::PjRtMemorySpace* pjrt_memory) const { auto it = memory_map_.find(pjrt_memory); if (it == memory_map_.end()) { return InvalidArgument("PjRtMemorySpace not found: %s", pjrt_memory->DebugString()); } return it->second; } absl::StatusOr<Device*> PjRtClient::LookupDevice(DeviceId device_id) const { DCHECK(this); auto it = device_id_map_.find(device_id); if (it != device_id_map_.end()) { return it->second; } return InvalidArgument("No matching device found for device_id %d", device_id.value()); } absl::StatusOr<Device*> PjRtClient::LookupAddressableDevice( int local_hardware_id) const { DCHECK(this); TF_ASSIGN_OR_RETURN(xla::PjRtDevice * pjrt_device, pjrt_client_->LookupAddressableDevice( xla::PjRtLocalDeviceId(local_hardware_id))); return LookupPjRtDevice(pjrt_device); } const AttributeMap& PjRtClient::Attributes() const { return attributes_; } absl::StatusOr<tsl::RCReference<PjRtCompatibleArray>> PjRtClient::CreatePjRtArray(std::shared_ptr<PjRtBuffer> pjrt_buffer) { TF_ASSIGN_OR_RETURN(auto array, PjRtArray::Create(this, std::move(pjrt_buffer))); return tsl::RCReference<PjRtCompatibleArray>(std::move(array)); } absl::StatusOr<tsl::RCReference<PjRtCompatibleArray>> PjRtClient::CreatePjRtArray(Shape shape, PjRtBuffers pjrt_buffers) { TF_ASSIGN_OR_RETURN(auto array, PjRtArray::Create(this, std::move(shape), std::move(pjrt_buffers))); return tsl::RCReference<PjRtCompatibleArray>(std::move(array)); } absl::StatusOr<tsl::RCReference<Array>> PjRtClient::MakeArrayFromHostBuffer( const void* data, DType dtype, Shape shape, std::optional<absl::Span<const int64_t>> byte_strides, std::shared_ptr<const Sharding> sharding, Client::HostBufferSemantics semantics, std::function<void()> on_done_with_host_buffer) { DCHECK(this); if (dtype.kind() == DType::kString) { return MakeStringArrayFromHostBuffer(this, data, dtype, shape, byte_strides, sharding, semantics, on_done_with_host_buffer); } if (!llvm::isa<const SingleDeviceSharding>(sharding.get()) && !sharding->IsFullyReplicated()) { return InvalidArgument( "Only SingleDeviceSharding or fully-replicated sharding is supported: " "sharding=%s", sharding->DebugString()); } TF_ASSIGN_OR_RETURN(auto primitive_type, ToPrimitiveType(dtype)); auto count = std::make_shared<std::atomic<int>>(sharding->devices()->size()); std::function<void()> on_done_with_host_buffer_per_device; if (on_done_with_host_buffer) { on_done_with_host_buffer_per_device = [on_done_with_host_buffer = std::move(on_done_with_host_buffer), count]() { if (count->fetch_sub(1, std::memory_order_relaxed) == 1) { on_done_with_host_buffer(); } }; } else { on_done_with_host_buffer_per_device = []() {}; } PjRtArray::PjRtBuffers buffers; buffers.reserve(sharding->devices()->size()); for (xla::ifrt::Device* const device : sharding->devices()->devices()) { std::unique_ptr<PjRtBuffer> buffer; if (sharding->memory_kind().memory_kind().has_value()) { Memory* memory = nullptr; for (Memory* ms : device->Memories()) { if (ms->Kind() == sharding->memory_kind()) { memory = ms; break; } } if (memory == nullptr) { return InvalidArgument( "Invalid memory kind: %s; available memory kinds: %s", *sharding->memory_kind().memory_kind(), absl::StrJoin(sharding->devices()->devices().front()->Memories(), ", ", [](std::string* out, Memory* ms) { absl::StrAppend(out, *ms->Kind().memory_kind()); })); } TF_ASSIGN_OR_RETURN( buffer, pjrt_client_->BufferFromHostBuffer( data, primitive_type, shape.dims(), byte_strides, semantics, on_done_with_host_buffer_per_device, tensorflow::down_cast<PjRtMemory*>(memory)->pjrt_memory(), nullptr)); } else { if (!device->IsAddressable()) { return InvalidArgument("Cannot copy array to non-addressable device %s", device->DebugString()); } TF_ASSIGN_OR_RETURN( buffer, pjrt_client_->BufferFromHostBuffer( data, primitive_type, shape.dims(), byte_strides, semantics, on_done_with_host_buffer_per_device, tensorflow::down_cast<PjRtDevice*>(device)->pjrt_device())); } buffers.push_back(std::move(buffer)); } return PjRtArray::Create(this, dtype, std::move(shape), std::move(sharding), std::move(buffers)); } absl::StatusOr<tsl::RCReference<Array>> PjRtClient::AssembleArrayFromSingleDeviceArrays( Shape shape, std::shared_ptr<const Sharding> sharding, absl::Span<tsl::RCReference<Array>> arrays, ArrayCopySemantics semantics) { DCHECK(this); if (llvm::isa<const SingleDeviceSharding>(sharding.get())) { if (arrays.size() != 1) { return InvalidArgument( "When the sharding is SingleDeviceSharding, the input arrays size " "must be one, but the actual size is %d", arrays.size()); } return arrays[0]; } else if (!llvm::isa<const OpaqueSharding, const ConcreteSharding, const ConcreteEvenSharding, const ShardingParamSharding, const HloSharding>(sharding.get())) { return InvalidArgument( "Only SingleDeviceSharding, OpaqueSharding, ConcreteSharding, " "ConcreteEvenSharding, ShardingParamSharding, HloSharding are " "supported: sharding=%s", sharding->DebugString()); } if (sharding->devices()->size() != arrays.size()) { return InvalidArgument( "Number of output shards must match the number of single-shard " "arrays: %d vs. %d", sharding->devices()->size(), arrays.size()); } if (arrays[0]->dtype().kind() == DType::kString) { return AssembleStringArrayFromSingleDeviceStringArrays(shape, sharding, arrays, semantics); } PjRtArray::PjRtBuffers buffers; buffers.reserve(arrays.size()); DType dtype = arrays[0]->dtype(); for (int i = 0; i < arrays.size(); ++i) { if (!llvm::isa<PjRtCompatibleArray>(arrays[i].get())) { return InvalidArgument( "Only PjRtCompatibleArray is supported: arrays[%d]=%s", i, arrays[i]->DebugString()); } auto* array = static_cast<PjRtCompatibleArray*>(arrays[i].get()); if (array->dtype() != dtype) { return InvalidArgument( "Every input must have the same dtype: %s (shard 0) vs. %s (shard " "%d)", dtype.DebugString(), array->dtype().DebugString(), i); } if (array->sharding().devices()->size() != 1) { return InvalidArgument( "Every input must use a single device sharding, but input %d has " "sharding=%s", i, array->sharding().DebugString()); } switch (semantics) { case ArrayCopySemantics::kAlwaysCopy: buffers.push_back(array->pjrt_buffers().front()); break; case ArrayCopySemantics::kReuseInput: buffers.push_back(array->pjrt_buffers().front()); break; case ArrayCopySemantics::kDonateInput: buffers.push_back(std::move(array->pjrt_buffers().front())); break; } } return PjRtArray::Create(this, dtype, std::move(shape), std::move(sharding), std::move(buffers)); } absl::StatusOr<std::vector<tsl::RCReference<Array>>> PjRtClient::CopyArrays( absl::Span<tsl::RCReference<Array>> arrays, std::optional<tsl::RCReference<DeviceList>> devices, std::optional<MemoryKind> memory_kind, ArrayCopySemantics semantics) { if (arrays.empty()) { return std::vector<tsl::RCReference<Array>>(); } for (int i = 1; i < arrays.size(); ++i) { const auto& sharding = arrays[i]->sharding(); if (*sharding.devices() != *arrays[0]->sharding().devices() || sharding.memory_kind() != arrays[0]->sharding().memory_kind()) { return absl::InvalidArgumentError( "CopyArrays only supports arrays with the same device list and " "memory kind"); } } std::vector<tsl::RCReference<Array>> new_arrays; new_arrays.reserve(arrays.size()); for (const auto& array : arrays) { if (auto* const pjrt_array = llvm::dyn_cast<PjRtArray>(array.get())) { TF_ASSIGN_OR_RETURN(new_arrays.emplace_back(), pjrt_array->Copy(devices, memory_kind, semantics)); } else if (auto* const string_array = llvm::dyn_cast<BasicStringArray>(array.get())) { TF_ASSIGN_OR_RETURN(new_arrays.emplace_back(), string_array->Copy(devices, memory_kind, semantics)); } else { return absl::InvalidArgumentError( "Unsupported array type for PjRtClient::CopyArrays"); } } return new_arrays; } absl::StatusOr<std::vector<tsl::RCReference<xla::ifrt::Array>>> PjRtClient::RemapArrays(const RemapPlan& plan, absl::Span<tsl::RCReference<xla::ifrt::Array>> arrays, ArrayCopySemantics semantics) { return PjRtCompatibleClientRemapArrays(this, plan, arrays, semantics); } Future<> PjRtClient::GetReadyFuture( absl::Span<const tsl::RCReference<Value>> values) { absl::InlinedVector<Future<>, 1> futures; futures.reserve(values.size()); for (const auto& value : values) { futures.push_back(value->GetReadyFuture()); } return JoinFutures(futures); } absl::StatusOr<tsl::RCReference<Tuple>> PjRtClient::MakeTuple( absl::Span<tsl::RCReference<Value>> values) { return PjRtTuple::Create(this, values); } absl::StatusOr<std::shared_ptr<Topology>> PjRtClient::GetTopologyForDevices( const tsl::RCReference<xla::ifrt::DeviceList>& devices) const { TF_ASSIGN_OR_RETURN(auto topology, pjrt_client_->GetTopologyDescription()); return std::make_shared<PjRtTopology>( std::shared_ptr<const xla::PjRtTopologyDescription>(pjrt_client_, topology)); } absl::StatusOr<std::unique_ptr<PjRtLayout>> PjRtClient::GetDefaultLayoutForDevice(DType dtype, absl::Span<const int64_t> dims, Device* device) const { TF_ASSIGN_OR_RETURN(PrimitiveType element_type, ToPrimitiveType(dtype)); TF_ASSIGN_OR_RETURN(xla::Layout layout, pjrt_client_->GetDefaultLayout(element_type, dims)); return std::make_unique<PjRtXlaLayout>(std::move(layout)); } absl::Status PjRtClient::TransferToInfeed(PjRtDevice* device, const LiteralSlice& literal) { if (!device->IsAddressable()) { return InvalidArgument( "Infeed is only supported on addressable devices " "but device %s is not addressable", device->DebugString()); } return device->pjrt_device()->TransferToInfeed(literal); } absl::Status PjRtClient::TransferFromOutfeed(PjRtDevice* device, MutableBorrowingLiteral literal) { if (!device->IsAddressable()) { return InvalidArgument( "Outfeed is only supported on addressable devices " "but device %s is not addressable", device->DebugString()); } return device->pjrt_device()->TransferFromOutfeed(literal); } } }
#include "xla/pjrt/pjrt_client_test.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/span.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/pjrt/pjrt_client.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/literal_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class TestClientFactory { public: void Register( std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory) { absl::MutexLock lock(&mu_); CHECK(!factory_); factory_ = std::move(factory); } std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> Get() const { absl::MutexLock lock(&mu_); return factory_; } private: mutable absl::Mutex mu_; std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory_ ABSL_GUARDED_BY(mu_); }; TestClientFactory& GetGlobalTestClientFactory() { static auto* const factory = new TestClientFactory; return *factory; } absl::StatusOr<std::unique_ptr<PjRtClient>> GetClient() { return GetGlobalTestClientFactory().Get()(); } } void RegisterTestClientFactory( std::function<absl::StatusOr<std::unique_ptr<PjRtClient>>()> factory) { GetGlobalTestClientFactory().Register(std::move(factory)); } namespace { std::unique_ptr<PjRtLoadedExecutable> MakeIncrementProgram( PjRtClient* client, bool alias, int device, bool tuplize_arg = false) { Shape shape = ShapeUtil::MakeShape(S32, {4}); XlaBuilder builder("inc"); if (tuplize_arg) { shape = ShapeUtil::MakeTupleShape({shape}); } auto inp = Parameter(&builder, 0, shape, "inp"); if (tuplize_arg) { inp = GetTupleElement(inp, 0); } auto one = ConstantR0<int32_t>(&builder, 1); auto inc = Add(inp, one); if (alias) { builder.SetUpAlias({}, 0, {}); } XlaComputation computation = builder.Build(inc).value(); DeviceAssignment assignment(1, 1); assignment(0, 0) = device; CompileOptions options; options.parameter_is_tupled_arguments = tuplize_arg; options.executable_build_options.set_device_assignment(assignment); return client->Compile(computation, options).value(); } class PjRtClientTest : public ::testing::TestWithParam<ExecuteOptions::ExecutionMode> {}; TEST_P(PjRtClientTest, Execute) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithImmutableUntilTransferCompletes) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableUntilTransferCompletes, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithTupleZeroCopy) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0, true); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, [&data]() { std::fill(data.begin(), data.end(), 1); }, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); buffer.reset(); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithDonation) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); TF_ASSERT_OK_AND_ASSIGN(auto results, executable->Execute({{buffer.get()}}, options)); ASSERT_EQ(results.size(), 1); ASSERT_EQ(results[0].size(), 1); TF_ASSERT_OK_AND_ASSIGN(auto literal, results[0][0]->ToLiteralSync()); std::vector<int32_t> expected(4, 1); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST_P(PjRtClientTest, ExecuteWithDonationAbort) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); if (client->platform_id() == CpuId()) { return; } auto executable = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); auto external_reference = buffer->AcquireExternalReference(); ExecuteOptions options; options.execution_mode = GetParam(); auto resultsor = executable->Execute({{buffer.get()}}, options); ASSERT_FALSE(resultsor.ok()); EXPECT_THAT(resultsor.status().message(), ::testing::HasSubstr( "Donation requested for buffer with external reference")); } TEST_P(PjRtClientTest, ExecuteWithConcurrentUsage) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool( tsl::Env::Default(), "ExecuteWithConcurrentUsage", kNumThreads); constexpr int kConcurrency = 16; absl::BlockingCounter blocking_counter(kConcurrency); std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrency); for (int i = 0; i < kConcurrency; ++i) { thread_pool.Schedule([&, &result = results[i]]() { auto results = executable->Execute({{buffer.get()}}, options).value(); CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); result = std::move(results[0][0]); blocking_counter.DecrementCount(); }); } blocking_counter.Wait(); std::vector<int32_t> expected(4, 1); for (const auto& result : results) { TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } TEST_P(PjRtClientTest, ExecuteWithConcurrentUsageAndDonation) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); auto executable = MakeIncrementProgram(client.get(), false, 0); auto executable_with_donation = MakeIncrementProgram(client.get(), true, 0); std::vector<int32_t> data(4, 0); std::vector<int32_t> expected(4, 1); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableZeroCopy, nullptr, client->addressable_devices()[0])); ExecuteOptions options; options.execution_mode = GetParam(); constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "ExecuteWithConcurrentUsageAndDonation", kNumThreads); constexpr int kConcurrentUsage = 16; absl::BlockingCounter blocking_counter(kConcurrentUsage + 1); for (int i = 0; i < kConcurrentUsage; ++i) { thread_pool.Schedule([&]() { auto results_or = executable->Execute({{buffer.get()}}, options); if (results_or.ok()) { auto& results = *results_or; CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); auto literal = results[0][0]->ToLiteralSync().value(); CHECK(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } blocking_counter.DecrementCount(); }); } std::unique_ptr<PjRtBuffer> result; thread_pool.Schedule([&]() { auto results = executable_with_donation->Execute({{buffer.get()}}, options).value(); CHECK_EQ(results.size(), 1); CHECK_EQ(results[0].size(), 1); result = std::move(results[0][0]); blocking_counter.DecrementCount(); }); blocking_counter.Wait(); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } INSTANTIATE_TEST_SUITE_P( PjRtClientTestSuite, PjRtClientTest, ::testing::Values(ExecuteOptions::ExecutionMode::kSynchronous, ExecuteOptions::ExecutionMode::kAsynchronous)); TEST(PjRtClientTest, CopyToDevice) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto* device_1 = client->addressable_devices()[1]; TF_ASSERT_OK_AND_ASSIGN(auto result, buffer->CopyToDevice(device_1)); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } TEST(PjRtClientTest, CopyToDeviceAsync) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); std::vector<int32_t> data(4, 0); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0])); auto* device_1 = client->addressable_devices()[1]; constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "CopyToDeviceAsync", kNumThreads); constexpr int kConcurrentCopy = 16; std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrentCopy); for (int i = 0; i < kConcurrentCopy; ++i) { TF_ASSERT_OK_AND_ASSIGN(results[i], buffer->CopyToDevice(device_1)); } buffer.reset(); for (const auto& result : results) { ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } TEST(PjRtClientTest, CopyToDeviceAsyncExternalCpuOnly) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); ASSERT_GT(client->addressable_devices().size(), 1); if (client->platform_id() != CpuId()) return; std::vector<int32_t> data(4, 0); auto* data_ptr = data.data(); Shape shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto buffer, client->CreateViewOfDeviceBuffer( data_ptr, shape, client->addressable_devices()[0], [data = std::move(data)]() mutable { data.clear(); data.shrink_to_fit(); })); auto* device_1 = client->addressable_devices()[1]; constexpr int kNumThreads = 4; tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "CopyToDeviceAsyncExternal", kNumThreads); constexpr int kConcurrentCopy = 16; std::vector<std::unique_ptr<PjRtBuffer>> results(kConcurrentCopy); for (int i = 0; i < kConcurrentCopy; ++i) { TF_ASSERT_OK_AND_ASSIGN(results[i], buffer->CopyToDevice(device_1)); } buffer.reset(); for (const auto& result : results) { ASSERT_TRUE(result); TF_ASSERT_OK_AND_ASSIGN(auto literal, result->ToLiteralSync()); std::vector<int32_t> expected(4, 0); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int32_t>(expected), *literal)); } } absl::StatusOr<std::unique_ptr<PjRtBuffer>> MakeFloatBuffer( PjRtClient* client, const std::vector<float>& data, absl::Span<const int64_t> dimensions) { Shape shape = ShapeUtil::MakeShape(F32, {2, 2}); return client->BufferFromHostBuffer( data.data(), shape.element_type(), shape.dimensions(), std::nullopt, PjRtClient::HostBufferSemantics::kImmutableOnlyDuringCall, nullptr, client->addressable_devices()[0]); } TEST(PjRtClientTest, DuplicateDonationError) { TF_ASSERT_OK_AND_ASSIGN(auto client, GetClient()); constexpr char kProgram[] = R"(HloModule DuplicateDonationError, input_output_alias={ {0}: (1, {}, must-alias), {1}: (2, {}, must-alias) } ENTRY DuplicateDonationError() -> (f32[2, 2], f32[2, 2]) { %input0 = f32[2, 2] parameter(0) %input1 = f32[2, 2] parameter(1) %input2 = f32[2, 2] parameter(2) %input3 = f32[2, 2] parameter(3) %tmp1 = f32[2, 2] add(%input0, %input1) %tmp2 = f32[2, 2] add(%input2, %input3) ROOT %result = (f32[2, 2], f32[2, 2]) tuple(%tmp1, %tmp2) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnUnverifiedModule(kProgram, {})); XlaComputation xla_computation(hlo_module->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_executable, client->Compile(xla_computation, {})); std::vector<float> data(4, 0); TF_ASSERT_OK_AND_ASSIGN(auto buffer0, MakeFloatBuffer(client.get(), data, {2, 2})); TF_ASSERT_OK_AND_ASSIGN(auto buffer1, MakeFloatBuffer(client.get(), data, {2, 2})); TF_ASSERT_OK_AND_ASSIGN(auto buffer2, MakeFloatBuffer(client.get(), data, {2, 2})); { auto result = pjrt_executable->Execute({{ buffer0.get(), buffer1.get(), buffer1.get(), buffer0.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(donate(a), donate(a))")); } { auto result = pjrt_executable->Execute({{ buffer1.get(), buffer1.get(), buffer2.get(), buffer0.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(a, donate(a))")); } { auto result = pjrt_executable->Execute({{ buffer0.get(), buffer1.get(), buffer2.get(), buffer2.get(), }}, {}); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("f(donate(a), a)")); } } TEST(PjRtClientTest, GetDefaultLayout) {} } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/pjrt_ifrt/pjrt_client.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/pjrt_client_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b6d6e20f-9b2b-4830-9059-b6284133322f
cpp
tensorflow/tensorflow
mlir_to_bytecode
tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode.cc
tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode_test.cc
#include "tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode.h" #include <cstdint> #include <cstring> #include <iterator> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Region.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/bytecode/function.h" #include "tensorflow/core/tfrt/mlrt/bytecode/kernel.h" namespace mlrt { namespace { bool CanBeInlined(mlir::Attribute attr, absl::string_view data) { return mlir::isa<mlir::IntegerAttr, mlir::FloatAttr, mlir::FlatSymbolRefAttr>( attr) && data.size() <= sizeof(uint32_t); } template <typename T> std::string EncodeIntegerOrFloat(T attr) { std::string data(sizeof(attr), '\0'); std::memcpy(data.data(), &attr, sizeof(attr)); return data; } template <typename T> std::optional<std::string> EncodeListOfInteger(mlir::ArrayAttr array) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto ctor = bc::New<bc::Vector<T>>(&allocator, array.size()); mlir::Type type; for (int i = 0; i < array.size(); ++i) { if (auto integer_attr = mlir::dyn_cast<mlir::IntegerAttr>(array[i])) { if (type && integer_attr.getType() != type) return std::nullopt; type = integer_attr.getType(); llvm::APInt value = integer_attr.getValue(); if (value.getBitWidth() != sizeof(T) * 8) return std::nullopt; ctor.ConstructAt(i, value.getZExtValue()); } else { return std::nullopt; } } return std::string(buffer.data(), buffer.size()); } std::optional<std::string> EncodeListOfSymbolRef( const ModuleEmitterContext& module_context, mlir::ArrayAttr array) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto ctor = bc::New<bc::Vector<uint32_t>>(&allocator, array.size()); for (int i = 0; i < array.size(); ++i) { if (auto symbol_ref = mlir::dyn_cast<mlir::FlatSymbolRefAttr>(array[i])) { ctor.ConstructAt(i, module_context.GetFunctionId(symbol_ref.getValue())); } else { return std::nullopt; } } return std::string(buffer.data(), buffer.size()); } template <typename T> std::optional<std::string> EncodeDenseArray(llvm::ArrayRef<T> array) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto ctor = bc::New<bc::Vector<T>>(&allocator, array.size()); if (!array.empty()) { ctor.Place(reinterpret_cast<const char*>(array.data()), array.size() * sizeof(T)); } return std::string(buffer.data(), buffer.size()); } std::optional<std::string> EncodeDenseBoolArray(llvm::ArrayRef<bool> array) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto ctor = bc::New<bc::Vector<uint8_t>>(&allocator, array.size()); if (!array.empty()) { std::vector<uint8_t> data(array.size()); int i = 0; for (auto v : array) { data[i++] = static_cast<uint8_t>(v); } ctor.Place(reinterpret_cast<const char*>(data.data()), data.size()); } return std::string(buffer.data(), buffer.size()); } std::optional<std::string> EncodeListOfString(mlir::ArrayAttr array) { bc::Buffer buffer; bc::Allocator allocator(&buffer); auto ctor = bc::New<bc::Vector<bc::String>>(&allocator, array.size()); for (int i = 0; i < array.size(); ++i) { if (auto string_attr = mlir::dyn_cast<mlir::StringAttr>(array[i])) { ctor.ConstructAt(i, string_attr.getValue().str()); } else { return std::nullopt; } } return std::string(buffer.data(), buffer.size()); } struct FunctionEmitterContext { explicit FunctionEmitterContext(const ModuleEmitterContext* module_context) : module_context(*module_context) {} const ModuleEmitterContext& module_context; struct RegInfo { int num_uses = 0; int id = -1; }; int next_reg_id = 0; llvm::DenseMap<mlir::Value, RegInfo> register_table; std::vector<int> free_regs; int AssignRegId() { if (free_regs.empty()) { return next_reg_id++; } int id = free_regs.back(); free_regs.pop_back(); return id; } void FreeRegId(int id) { free_regs.push_back(id); } }; void EmitKernel(FunctionEmitterContext& function_context, bc::Kernel::Constructor& constructor, mlir::Operation& op, std::vector<uint32_t>& function_output_regs, std::vector<uint8_t>& function_output_last_uses) { std::vector<uint32_t> results; results.reserve(op.getNumResults()); for (auto result : op.getResults()) { auto iter = function_context.register_table.find(result); CHECK(iter != function_context.register_table.end()); CHECK_EQ(iter->second.id, -1); iter->second.id = function_context.AssignRegId(); results.push_back(iter->second.id); } constructor.construct_results(results.size()) .Assign(results.begin(), results.end()); std::vector<uint32_t> arguments; std::vector<uint8_t> last_uses; arguments.reserve(op.getNumOperands()); last_uses.reserve(op.getNumOperands()); for (auto operand : op.getOperands()) { auto iter = function_context.register_table.find(operand); CHECK(iter != function_context.register_table.end()); int id = iter->second.id; CHECK_NE(id, -1); last_uses.push_back(0); if (--iter->second.num_uses == 0) { function_context.FreeRegId(id); last_uses.back() = 1; } arguments.push_back(id); } constructor.construct_arguments(arguments.size()) .Assign(arguments.begin(), arguments.end()); constructor.construct_last_uses(last_uses.size()) .Assign(last_uses.begin(), last_uses.end()); std::vector<uint32_t> attributes; attributes.reserve(op.getAttrs().size()); for (auto attr : op.getAttrs()) { int attr_id = function_context.module_context.GetAttributeId(attr.getValue()); absl::string_view attr_data = function_context.module_context.attributes().at(attr_id); if (CanBeInlined(attr.getValue(), attr_data)) { uint32_t data = 0; std::memcpy(&data, attr_data.data(), attr_data.size()); attributes.push_back(data); } else { attributes.push_back(attr_id); } } constructor.construct_attributes(attributes.size()) .Assign(attributes.begin(), attributes.end()); if (llvm::isa<mlir::func::ReturnOp>(&op)) { constructor.set_code(function_context.module_context.GetKernelId("return")); function_output_regs = std::move(arguments); function_output_last_uses = std::move(last_uses); } else if (llvm::isa<mlir::func::CallOp>(&op)) { constructor.set_code(function_context.module_context.GetKernelId("call")); } else { llvm::StringRef op_name = op.getName().getStringRef(); constructor.set_code(function_context.module_context.GetKernelId(op_name)); } } void EmitFunction(const ModuleEmitterContext& module_context, bc::Function::Constructor& constructor, llvm::StringRef name, mlir::Region& region) { FunctionEmitterContext function_context(&module_context); constructor.construct_name(name.str()); DCHECK(llvm::hasSingleElement(region)) << "should have a single block"; auto& block = region.front(); auto& register_table = function_context.register_table; std::vector<uint32_t> input_regs; input_regs.reserve(block.getNumArguments()); for (auto arg : block.getArguments()) { int id = function_context.AssignRegId(); input_regs.push_back(id); register_table[arg] = {static_cast<int>(std::distance(arg.getUses().begin(), arg.getUses().end())), id}; } constructor.construct_input_regs(input_regs); for (auto& op : block) { for (auto result : op.getResults()) { register_table[result] = {static_cast<int>( std::distance(result.getUses().begin(), result.getUses().end()))}; } } auto kernels_constructor = constructor.construct_kernels(block.getOperations().size()); std::vector<uint32_t> output_regs; std::vector<uint8_t> output_last_uses; for (const auto& iter : llvm::enumerate(block.getOperations())) { int i = iter.index(); mlir::Operation& op = iter.value(); auto kernel_ctor = kernels_constructor.ConstructAt(i); EmitKernel(function_context, kernel_ctor, op, output_regs, output_last_uses); } constructor.set_num_regs(function_context.next_reg_id); constructor.construct_output_regs(output_regs); constructor.construct_output_last_uses(output_last_uses); } absl::Status EmitExecutable(ModuleEmitterContext& module_context, bc::Executable::Constructor& constructor, mlir::ModuleOp module) { module.walk( [&](mlir::func::FuncOp func) { module_context.AddFunction(func); }); auto functions = module_context.functions(); for (auto func : functions) { if (!llvm::hasSingleElement(func.getRegion())) { return absl::InvalidArgumentError("function should have a single block."); } auto& block = func.getRegion().front(); for (auto& op : block) { if (llvm::isa<mlir::func::CallOp>(&op)) { module_context.AddKernelName("call"); } else if (llvm::isa<mlir::func::ReturnOp>(&op)) { if (op.getNumResults() != 0) { return absl::InvalidArgumentError( "Block terminator must be a return op."); } module_context.AddKernelName("return"); } else { module_context.AddKernelName(op.getName().getStringRef().str()); } for (auto attr : op.getAttrs()) { if (auto status = module_context.AddAttribute(&op, attr.getValue()); !status.ok()) { return status; } } } } constructor.construct_kernel_names(module_context.kernels().size()) .Assign(module_context.kernels().begin(), module_context.kernels().end()); auto functions_constructor = constructor.construct_functions(functions.size()); for (int i = 0; i < functions.size(); ++i) { auto func = functions[i]; auto function_ctor = functions_constructor.ConstructAt(i); EmitFunction(module_context, function_ctor, func.getSymName(), func.getRegion()); } constructor.construct_attributes(module_context.attributes().size()) .Assign(module_context.attributes().begin(), module_context.attributes().end()); return absl::OkStatus(); } } absl::Status ModuleEmitterContext::AddAttribute(mlir::Operation* op, mlir::Attribute attr) { absl::StatusOr<std::string> attr_data; if (auto* encoder = attribute_encoder_registry_.Get( op->getName().getDialectNamespace())) { attr_data = (*encoder)(*this, attr); } else { attr_data = DefaultEncodeAttribute(attr); } if (!attr_data.ok()) return std::move(attr_data).status(); int id = AddData(std::move(*attr_data), attributes_, attribute_data_id_map_); attribute_id_map_[attr] = id; return absl::OkStatus(); } int ModuleEmitterContext::AddFunction(mlir::func::FuncOp func) { int id = functions_.size(); functions_.push_back(func); DCHECK(!function_name_id_map_.contains(func.getSymName())); function_name_id_map_[func.getSymName()] = id; return id; } std::optional<std::string> EncodeSimpleAttribute( const ModuleEmitterContext& module_context, mlir::Attribute attr) { return llvm::TypeSwitch<mlir::Attribute, std::optional<std::string>>(attr) .Case<mlir::StringAttr>( [](const auto& str_attr) { return str_attr.str(); }) .Case<mlir::IntegerAttr>( [](const auto& integer_attr) -> std::optional<std::string> { switch (llvm::APInt value = integer_attr.getValue(); value.getBitWidth()) { case 1: return EncodeIntegerOrFloat<uint8_t>(value.getZExtValue()); case 32: return EncodeIntegerOrFloat<uint32_t>(value.getZExtValue()); case 64: return EncodeIntegerOrFloat<uint64_t>(value.getZExtValue()); default: return std::nullopt; } }) .Case<mlir::FloatAttr>( [](const auto& float_attr) -> std::optional<std::string> { llvm::APFloat value = float_attr.getValue(); if (float_attr.getType().isF32()) { return EncodeIntegerOrFloat<float>(value.convertToFloat()); } return std::nullopt; }) .Case<mlir::ArrayAttr>([&](const auto& array_attr) -> std::optional<std::string> { if (auto encoded_list_i32 = EncodeListOfInteger<uint32_t>(array_attr)) { return std::move(*encoded_list_i32); } else if (auto encoded_list_i64 = EncodeListOfInteger<uint64_t>(array_attr)) { return std::move(*encoded_list_i64); } else if (auto encoded_list_string = EncodeListOfString(array_attr)) { return std::move(*encoded_list_string); } else if (auto encoded_list_symbol_ref = EncodeListOfSymbolRef(module_context, array_attr)) { return std::move(*encoded_list_symbol_ref); } else { return std::nullopt; } }) .Case<mlir::DenseI32ArrayAttr>( [](const auto& dense_array_i32) -> std::optional<std::string> { return EncodeDenseArray<int32_t>(dense_array_i32); }) .Case<mlir::DenseI64ArrayAttr>( [](const auto& dense_array_i64) -> std::optional<std::string> { return EncodeDenseArray<int64_t>(dense_array_i64); }) .Case<mlir::DenseBoolArrayAttr>( [](const auto& dense_array_bool) -> std::optional<std::string> { return EncodeDenseBoolArray(dense_array_bool.asArrayRef()); }) .Case<mlir::FlatSymbolRefAttr>([&](const auto& symbol_ref) { return EncodeIntegerOrFloat<uint32_t>( module_context.GetFunctionId(symbol_ref.getValue())); }) .Default([](const auto& attr) { return std::nullopt; }); } absl::StatusOr<std::string> ModuleEmitterContext::DefaultEncodeAttribute( mlir::Attribute attr) { if (auto result = EncodeSimpleAttribute(*this, attr)) { return std::move(*result); } std ::string attr_str; llvm::raw_string_ostream os(attr_str); attr.print(os); return absl::InvalidArgumentError( absl::StrCat("Try to encode unsupported attribute: ", attr_str)); } absl::StatusOr<bc::Buffer> EmitExecutable( const AttributeEncoderRegistry& attribute_encoder_registry, mlir::ModuleOp module) { bc::Buffer buffer; bc::Allocator allocator(&buffer); ModuleEmitterContext module_context(&attribute_encoder_registry); auto executable_ctor = bc::New<bc::Executable>(&allocator); if (auto status = EmitExecutable(module_context, executable_ctor, module); !status.ok()) { return status; } buffer.shrink_to_fit(); return buffer; } }
#include "tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode.h" #include <cstring> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/interpreter/attribute_span.h" #include "tsl/platform/resource_loader.h" #include "tsl/platform/status_matchers.h" namespace mlrt { namespace { using ::testing::ElementsAreArray; using ::testing::FloatEq; using ::testing::IsEmpty; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; TEST(MlirToByteCodeTest, Basic) { constexpr char kBasicMlir[] = "tensorflow/compiler/mlir/tfrt/translate/mlrt/testdata/basic.mlir"; mlir::DialectRegistry registry; registry.insert<mlir::func::FuncDialect>(); mlir::MLIRContext mlir_context(registry); mlir_context.allowUnregisteredDialects(); auto mlir_module = mlir::parseSourceFile<mlir::ModuleOp>( tsl::GetDataDependencyFilepath(kBasicMlir), &mlir_context); AttributeEncoderRegistry attribute_encoder_registry; bc::Buffer buffer = EmitExecutable(attribute_encoder_registry, mlir_module.get()).value(); bc::Executable executable(buffer.data()); auto kernel_names = executable.kernel_names(); EXPECT_THAT(kernel_names, ElementsAreArray({"test_mlbc.add.i32", "test_mlbc.sub.i32", "call", "return"})); auto functions = executable.functions(); ASSERT_GE(functions.size(), 1); auto function = functions[0]; EXPECT_EQ(function.name().str(), "add_i32_10"); EXPECT_EQ(function.num_regs(), 5); EXPECT_THAT(function.input_regs(), ElementsAreArray({0})); EXPECT_THAT(function.output_regs(), ElementsAreArray({0, 2, 2})); EXPECT_THAT(function.output_last_uses(), ElementsAreArray({true, false, true})); auto kernels = function.kernels(); ASSERT_EQ(kernels.size(), 11); EXPECT_EQ(kernels[0].code(), 0); EXPECT_THAT(kernels[0].arguments(), ElementsAreArray({0, 0})); EXPECT_THAT(kernels[0].results(), ElementsAreArray({1})); EXPECT_THAT(kernels[0].last_uses(), ElementsAreArray({0, 0})); for (int i = 1; i < 9; i++) { EXPECT_EQ(kernels[i].code(), i % 2); EXPECT_THAT(kernels[i].arguments(), ElementsAreArray({(i - 1) % 2 + 1, 0})); EXPECT_THAT(kernels[i].results(), ElementsAreArray({i % 2 + 1})); EXPECT_THAT(kernels[i].last_uses(), ElementsAreArray({1, 0})); } EXPECT_EQ(kernels[9].code(), 2); EXPECT_THAT(kernels[9].arguments(), ElementsAreArray({1})); EXPECT_THAT(kernels[9].last_uses(), ElementsAreArray({true})); EXPECT_THAT(kernels[9].results(), ElementsAreArray({2, 3, 4})); EXPECT_EQ(kernels[10].code(), 3); EXPECT_THAT(kernels[10].arguments(), ElementsAreArray({0, 2, 2})); EXPECT_THAT(kernels[10].last_uses(), ElementsAreArray({true, false, true})); EXPECT_TRUE(kernels[10].results().empty()); } template <typename T> absl::StatusOr<T> DecodeAttribute(absl::string_view data) { if (data.size() < sizeof(T)) return absl::InvalidArgumentError("Invalid data size for attribute."); T value; std::memcpy(&value, data.data(), sizeof(T)); return value; } TEST(MlirToByteCodeTest, BasicAttributes) { constexpr char kBasicAttributesMlir[] = "tensorflow/compiler/mlir/tfrt/translate/mlrt/testdata/" "basic_attributes.mlir"; mlir::DialectRegistry registry; registry.insert<mlir::func::FuncDialect>(); mlir::MLIRContext mlir_context(registry); mlir_context.allowUnregisteredDialects(); auto mlir_module = mlir::parseSourceFile<mlir::ModuleOp>( tsl::GetDataDependencyFilepath(kBasicAttributesMlir), &mlir_context); AttributeEncoderRegistry attribute_encoder_registry; bc::Buffer buffer = EmitExecutable(attribute_encoder_registry, mlir_module.get()).value(); bc::Executable executable(buffer.data()); auto attributes = executable.attributes(); ASSERT_EQ(attributes.size(), 15); auto attr_iter = attributes.begin(); EXPECT_EQ(*attr_iter, "test string"); ++attr_iter; EXPECT_EQ(*attr_iter, "ts"); ++attr_iter; EXPECT_THAT(DecodeAttribute<int32_t>(*attr_iter), IsOkAndHolds(100)); ++attr_iter; EXPECT_THAT(DecodeAttribute<int64_t>(*attr_iter), IsOkAndHolds(200)); ++attr_iter; EXPECT_THAT(DecodeAttribute<float>(*attr_iter), IsOkAndHolds(FloatEq(3.0))); ++attr_iter; EXPECT_THAT(DecodeAttribute<uint8_t>(*attr_iter), IsOkAndHolds(0)); ++attr_iter; bc::Vector<int64_t> list_of_i64((*attr_iter).data()); EXPECT_THAT(list_of_i64, ElementsAreArray({0, 1, 2, 3, 4})); ++attr_iter; bc::Vector<int32_t> list_of_i32((*attr_iter).data()); EXPECT_THAT(list_of_i32, ElementsAreArray({0, 1, 2, 3})); ++attr_iter; bc::Vector<bc::String> list_of_str((*attr_iter).data()); EXPECT_THAT(list_of_str, ElementsAreArray({"string 0", "string 1"})); ++attr_iter; EXPECT_THAT(DecodeAttribute<uint32_t>(*attr_iter), IsOkAndHolds(1)); EXPECT_EQ(executable.functions()[1].name().Get(), "callee"); ++attr_iter; bc::Vector<int32_t> list_of_symbol_ref((*attr_iter).data()); EXPECT_EQ(executable.functions()[2].name().Get(), "callee0"); EXPECT_EQ(executable.functions()[3].name().Get(), "callee1"); EXPECT_THAT(list_of_symbol_ref, ElementsAreArray({2, 3})); ++attr_iter; bc::Vector<int32_t> dense_array_of_i32((*attr_iter).data()); EXPECT_THAT(dense_array_of_i32, ElementsAreArray({0, 1, 2})); ++attr_iter; bc::Vector<int64_t> dense_array_of_i64((*attr_iter).data()); EXPECT_THAT(dense_array_of_i64, ElementsAreArray({0, 1, 2})); ++attr_iter; bc::Vector<int32_t> empty_dense_array((*attr_iter).data()); EXPECT_TRUE(empty_dense_array.empty()); ++attr_iter; bc::Vector<uint8_t> dense_array_of_bool((*attr_iter).data()); EXPECT_THAT(dense_array_of_bool, ElementsAreArray({true, false})); auto kernels = executable.functions()[0].kernels(); ASSERT_EQ(kernels.size(), 16); auto kernel_iter = kernels.begin(); auto attribute_span = [&](auto kernel_iter) { return mlrt::AttributeSpan((*kernel_iter).attributes(), attributes); }; EXPECT_EQ(attribute_span(kernel_iter).GetAs<bc::String>(0).Get(), "test string"); ++kernel_iter; EXPECT_EQ(attribute_span(kernel_iter).GetAs<bc::String>(0).Get(), "ts"); ++kernel_iter; EXPECT_EQ(attribute_span(kernel_iter).GetAs<int32_t>(0), 100); ++kernel_iter; EXPECT_EQ(attribute_span(kernel_iter).GetAs<int64_t>(0), 200); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<float>(0), FloatEq(3.0)); ++kernel_iter; EXPECT_EQ(attribute_span(kernel_iter).GetAs<uint8_t>(0), false); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<int64_t>>(0), ElementsAreArray({0, 1, 2, 3, 4})); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<int32_t>>(0), ElementsAreArray({0, 1, 2, 3})); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<bc::String>>(0), ElementsAreArray({"string 0", "string 1"})); ++kernel_iter; EXPECT_EQ(attribute_span(kernel_iter).GetAs<uint32_t>(0), 1); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<int32_t>>(0), ElementsAreArray({2, 3})); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<int32_t>>(0), ElementsAreArray({0, 1, 2})); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<int64_t>>(0), ElementsAreArray({0, 1, 2})); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<int32_t>>(0), IsEmpty()); ++kernel_iter; EXPECT_THAT(attribute_span(kernel_iter).GetAs<bc::Vector<bool>>(0), ElementsAreArray({true, false})); } TEST(MlirToByteCodeTest, UnsupportedAttributes) { constexpr char kUnsupportedAttributesMlir[] = "tensorflow/compiler/mlir/tfrt/translate/mlrt/testdata/" "unsupported_attributes.mlir"; mlir::DialectRegistry registry; registry.insert<mlir::func::FuncDialect>(); mlir::MLIRContext mlir_context(registry); mlir_context.allowUnregisteredDialects(); auto mlir_module = mlir::parseSourceFile<mlir::ModuleOp>( tsl::GetDataDependencyFilepath(kUnsupportedAttributesMlir), &mlir_context); AttributeEncoderRegistry attribute_encoder_registry; EXPECT_THAT(EmitExecutable(attribute_encoder_registry, mlir_module.get()), StatusIs(absl::StatusCode::kInvalidArgument, "Try to encode unsupported attribute: unit")); } class CustomDense { public: struct StorageType { using Self = StorageType; DEFINE_BYTECODE_FIELD(bc::Vector<int64_t>, shape); DEFINE_BYTECODE_FIELD(bc::Vector<uint32_t>, data); }; class Constructor { public: Constructor(bc::Allocator* allocator, bc::BcAddr_t address) : allocator_(allocator), address_(address) {} template <typename... Args> auto construct_shape(Args&&... args) { return StorageType::construct_shape(allocator_, address_, std::forward<Args>(args)...); } template <typename... Args> auto construct_data(Args&&... args) { return StorageType::construct_data(allocator_, address_, std::forward<Args>(args)...); } bc::BcAddr_t address() const { return address_; } private: bc::Allocator* allocator_; bc::BcAddr_t address_; }; using NonTrivialConstructorType = Constructor; explicit CustomDense(const char* p) : p_(p) {} bc::Vector<int64_t> shape() const { return StorageType::read_shape(p_); } bc::Vector<uint32_t> data() const { return StorageType::read_data(p_); } private: const char* p_ = nullptr; }; absl::StatusOr<std::string> EncodeCustomDense(const ModuleEmitterContext&, mlir::Attribute attr) { auto dense_int_attr = mlir::dyn_cast<mlir::DenseIntElementsAttr>(attr); if (!dense_int_attr) return absl::InvalidArgumentError( "The element of the custom dense attribute must be an integer."); if (mlir::cast<mlir::IntegerType>(dense_int_attr.getElementType()) .getWidth() != 32) { return absl::InvalidArgumentError( "The element of the custom dense attribute must be an i32 integer."); } bc::Buffer buffer; bc::Allocator allocator(&buffer); auto custom_dense_ctor = bc::New<CustomDense>(&allocator); auto shaped_type = dense_int_attr.getType(); std::vector<int64_t> shape(shaped_type.getShape().begin(), shaped_type.getShape().end()); custom_dense_ctor.construct_shape(shape); custom_dense_ctor.construct_data(shaped_type.getNumElements()) .Place(dense_int_attr.getRawData().data(), dense_int_attr.getRawData().size()); return std::string(buffer.data(), buffer.size()); } TEST(MlirToByteCodeTest, CustomDense) { constexpr char kCustomAttributesMlir[] = "tensorflow/compiler/mlir/tfrt/translate/mlrt/testdata/" "custom_attributes.mlir"; mlir::DialectRegistry registry; registry.insert<mlir::func::FuncDialect>(); mlir::MLIRContext mlir_context(registry); mlir_context.allowUnregisteredDialects(); auto mlir_module = mlir::parseSourceFile<mlir::ModuleOp>( tsl::GetDataDependencyFilepath(kCustomAttributesMlir), &mlir_context); AttributeEncoderRegistry attribute_encoder_registry; attribute_encoder_registry.Register("test_custom", &EncodeCustomDense); bc::Buffer buffer = EmitExecutable(attribute_encoder_registry, mlir_module.get()).value(); bc::Executable executable(buffer.data()); auto attributes = executable.attributes(); ASSERT_EQ(attributes.size(), 10); for (int i = 0; i < 10; ++i) { bc::String attr_data = attributes[i]; CustomDense custom_dense(attr_data.data()); EXPECT_THAT(custom_dense.shape(), ElementsAreArray({1})); EXPECT_THAT(custom_dense.data(), ElementsAreArray({i})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfrt/translate/mlrt/mlir_to_bytecode_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9f7eb9d2-3b42-4f7c-8958-4e6e67b9b0a1
cpp
tensorflow/tensorflow
mkl_qmatmul_op
tensorflow/core/kernels/mkl/mkl_qmatmul_op.cc
tensorflow/core/kernels/mkl/mkl_qmatmul_op_test.cc
#if defined(INTEL_MKL) #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/kernels/fill_functor.h" #include "tensorflow/core/kernels/mkl/mkl_matmul_ops_common.h" #include "tensorflow/core/kernels/mkl/mkl_quantized_conv_ops.h" #include "tensorflow/core/kernels/no_op.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/util/mkl_util.h" #include "tensorflow/core/util/work_sharder.h" namespace { enum { QUANTIZE_MODE_MIN_FIRST, QUANTIZE_MODE_SCALED, }; } namespace tensorflow { #ifndef ENABLE_ONEDNN_V3 #define TSCALED_BIAS Tbias #else #define TSCALED_BIAS float #endif template <typename Device, typename Tinput, typename Tweight, typename Tbias, typename Toutput, bool native_format = false> class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Tbias, Toutput> { public: virtual ~MklDnnQuantizedMatMulOp() { if (this->input_bias_ != nullptr) { delete this->input_bias_; input_bias_ = nullptr; } if (this->scaled_bias_ != nullptr) { delete this->scaled_bias_; scaled_bias_ = nullptr; } if (this->comp_bias_ != nullptr) { delete this->comp_bias_; comp_bias_ = nullptr; } } float* GetCompBiasBuffer(int size) { if (comp_bias_ == nullptr) { comp_bias_ = new float[size]; } return comp_bias_; } explicit MklDnnQuantizedMatMulOp(OpKernelConstruction* context) : MklDnnMatMulOpBase<Tweight, Tbias, Toutput>(context) { string mode_string; OP_REQUIRES_OK(context, context->GetAttr("input_quant_mode", &mode_string)); if (mode_string == "MIN_FIRST") { mode_ = QUANTIZE_MODE_MIN_FIRST; } else if (mode_string == "SCALED") { mode_ = QUANTIZE_MODE_SCALED; } else { context->CtxFailure(absl::InvalidArgumentError( absl::StrCat("Quantization mode must be either MIN_FIRST or " "SCALED, but received ", mode_string))); } this->is_weight_const_ = false; if (context->HasAttr("is_weight_const")) { OP_REQUIRES_OK(context, context->GetAttr("is_weight_const", &(this->is_weight_const_))); } this->is_bias_const_ = false; if (context->HasAttr("is_bias_const")) { OP_REQUIRES_OK( context, context->GetAttr("is_bias_const", &(this->is_bias_const_))); } } void Compute(OpKernelContext* context) override { try { const Tensor& src_tensor = MklGetInput(context, this->kInputIndexSrc); const Tensor& weight_tensor = MklGetInput(context, this->kInputIndexWeight); const Tensor& bias_tensor = MklGetInput(context, this->kInputIndexBias); MklDnnShape src_mkl_shape, weight_mkl_shape; GetMklShape(context, this->kInputIndexSrc, &src_mkl_shape, native_format); GetMklShape(context, this->kInputIndexWeight, &weight_mkl_shape, native_format); OP_REQUIRES( context, !weight_mkl_shape.IsMklTensor(), absl::InvalidArgumentError("Weight should not be in MKL Layout")); MklDnnData<Tinput> src(&(this->cpu_engine_)); MklDnnData<Tweight> weight(&(this->cpu_engine_)); memory::dims src_dims, weight_dims; memory::dims dst_dims_tf_order, dst_dims_mkl_order; auto src_tf_shape = src_mkl_shape.IsMklTensor() ? src_mkl_shape.GetTfShape() : src_tensor.shape(); auto weight_tf_shape = weight_mkl_shape.IsMklTensor() ? weight_mkl_shape.GetTfShape() : weight_tensor.shape(); src_dims = TFShapeToMklDnnDims(src_tf_shape); weight_dims = TFShapeToMklDnnDims(weight_tf_shape); dst_dims_mkl_order = {static_cast<int>(src_tf_shape.dim_size(0)), static_cast<int>(weight_tf_shape.dim_size(1))}; weight_dims = {static_cast<int>(weight_tf_shape.dim_size(1)), static_cast<int>(weight_tf_shape.dim_size(0))}; Tensor* dst_tensor = nullptr; auto input_output_fmt = memory::format_tag::nc; auto input_output_fmt_mkldnn = MklTensorFormat::FORMAT_NC; auto src_md = src_mkl_shape.IsMklTensor() ? src_mkl_shape.GetMklLayout() : memory::desc(src_dims, MklDnnType<Tinput>(), input_output_fmt); src.SetUsrMem(src_md, &src_tensor); auto weight_md = weight_mkl_shape.IsMklTensor() ? weight_mkl_shape.GetMklLayout() : memory::desc(weight_dims, MklDnnType<Tweight>(), memory::format_tag::io); weight.SetUsrMem(weight_md, &weight_tensor); MklDnnMatMulFwdPrimitive<float, Tinput, Tweight, Tbias, Toutput>* matmul_fwd = nullptr; memory::dims bias_dims = {static_cast<int>(bias_tensor.dim_size(0))}; MklDnnMatMulFwdParams matmul_fwd_dims(src_dims, weight_dims, bias_dims, dst_dims_mkl_order); this->ExtendMklDnnMatMulFwdParams(context, matmul_fwd_dims); Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); tsl::OneDnnThreadPool eigen_tp(eigen_interface, ThreadPoolUseCallerThread()); matmul_fwd = MklDnnMatMulFwdPrimitiveFactory<float, Tinput, Tweight, Tbias, Toutput>::Get(matmul_fwd_dims, 0); std::shared_ptr<dnnl::inner_product_forward::primitive_desc> matmul_fwd_pd = matmul_fwd->GetPrimitiveDesc(); this->AllocateOutputTensor(context, *matmul_fwd_pd, dst_dims_mkl_order, input_output_fmt_mkldnn, &dst_tensor, native_format); Toutput* dst_data = reinterpret_cast<Toutput*>(dst_tensor->flat<Toutput>().data()); Tinput* src_data = nullptr; if (!native_format && src_md != matmul_fwd_pd->src_desc()) { src.SetUsrMem(src_md, &src_tensor); src.CheckReorderToOpMem(matmul_fwd_pd.get()->src_desc(), this->cpu_engine_, context); src_data = static_cast<Tinput*>(src.GetOpMem().get_data_handle()); } else { src_data = static_cast<Tinput*>( const_cast<Tinput*>(src_tensor.flat<Tinput>().data())); } Tweight* weight_data = nullptr; if (weight_md != matmul_fwd_pd->weights_desc()) { bool is_weight_cached = false; if (this->is_weight_const_) { if (this->IsWeightCacheEmpty(context)) { this->CacheWeight(context, matmul_fwd_pd, weight_data, weight_tensor, weight, weight_md); } weight_data = this->GetCachedWeight(context, matmul_fwd_pd->weights_desc()); is_weight_cached = (weight_data != nullptr); } if (!is_weight_cached) { weight.SetUsrMem(weight_md, &weight_tensor); weight.CheckReorderToOpMem(matmul_fwd_pd.get()->weights_desc(), this->cpu_engine_, context); weight_data = static_cast<Tweight*>(weight.GetOpMem().get_data_handle()); } } else { weight_data = static_cast<Tweight*>( const_cast<Tweight*>(weight_tensor.flat<Tweight>().data())); } std::shared_ptr<stream> cpu_stream; cpu_stream.reset(CreateStream(&eigen_tp, matmul_fwd->GetEngine())); UserScratchPad<unsigned char> scratch_pad; scratch_pad.AllocateSPTensor(matmul_fwd, context); #ifndef ENABLE_ONEDNN_V3 Tbias* bias_data = this->GetBiasHandle( context, matmul_fwd_pd, bias_tensor, weight_tensor, cpu_stream); #else void* bias_data = static_cast<void*>( const_cast<Tbias*>(bias_tensor.flat<Tbias>().data())); Tensor temp_scaled_bias_tensor; this->GetBiasHandle(context, matmul_fwd_pd, bias_tensor, weight_tensor, cpu_stream, &temp_scaled_bias_tensor, &bias_data); #endif matmul_fwd->Execute(src_data, weight_data, bias_data, dst_data, matmul_fwd_dims, scratch_pad.Get(), cpu_stream); } catch (dnnl::error& e) { string error_msg = tensorflow::strings::StrCat( "Status: ", e.status, ", message: ", string(e.message), ", in file ", __FILE__, ":", __LINE__); OP_REQUIRES_OK(context, absl::AbortedError(absl::StrCat( "Operation received an exception:", error_msg))); } float min_output_value; float max_output_value; if (std::is_same<Toutput, quint8>::value || std::is_same<Toutput, qint8>::value) { const Tensor& min_freezed_tensor = context->input(7); const Tensor& max_freezed_tensor = context->input(8); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_freezed_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`min_freezed_output` must be rank 0 but is rank ", min_freezed_tensor.dims()))); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_freezed_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`max_freezed_output` must be rank 0 but is rank ", max_freezed_tensor.dims()))); min_output_value = min_freezed_tensor.scalar<float>()(); max_output_value = max_freezed_tensor.scalar<float>()(); } else { ComputeOutputRangeForInt32(context, &min_output_value, &max_output_value); } if (std::is_same<Toutput, quint8>::value || std::is_same<Toutput, qint8>::value || std::is_same<Toutput, qint32>::value) { Tensor* output_min = nullptr; Tensor* output_max = nullptr; MklDnnShape output_min_mkl_shape, output_max_mkl_shape; output_min_mkl_shape.SetMklTensor(false); output_max_mkl_shape.SetMklTensor(false); AllocateOutputSetMklShape(context, 1, &output_min, {}, output_min_mkl_shape, native_format); AllocateOutputSetMklShape(context, 2, &output_max, {}, output_max_mkl_shape, native_format); output_min->flat<float>()(0) = min_output_value; output_max->flat<float>()(0) = max_output_value; } } protected: void ComputeOutputRangeForInt32(OpKernelContext* context, float* min_output_value, float* max_output_value) { const float min_input = context->input(3).scalar<float>()(); const float max_input = context->input(4).scalar<float>()(); const float min_weight = context->input(5).scalar<float>()(); const float max_weight = context->input(6).scalar<float>()(); MklQuantizationRangeForMultiplication<quint8, qint8, qint32>( min_input, max_input, min_weight, max_weight, min_output_value, max_output_value); } virtual void ExtendMklDnnMatMulFwdParams(OpKernelContext* context, MklDnnMatMulFwdParams& params) { params.dtypes.append(typeid(Tinput).name()); params.dtypes.append(typeid(Tweight).name()); params.dtypes.append(typeid(Tbias).name()); params.dtypes.append(typeid(Toutput).name()); const Tensor& min_input_tensor = context->input(3); const Tensor& max_input_tensor = context->input(4); const Tensor& min_weight_tensor = context->input(5); const Tensor& max_weight_tensor = context->input(6); OP_REQUIRES( context, TensorShapeUtils::IsScalar(min_input_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`min_a` must be rank 0 but is rank ", min_input_tensor.dims()))); OP_REQUIRES( context, TensorShapeUtils::IsScalar(max_input_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`max_a` must be rank 0 but is rank ", max_input_tensor.dims()))); OP_REQUIRES( context, TensorShapeUtils::IsScalar(min_weight_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`min_b` must be rank 0 but is rank ", min_weight_tensor.dims()))); OP_REQUIRES( context, TensorShapeUtils::IsScalar(max_weight_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`max_b` must be rank 0 but is rank ", max_weight_tensor.dims()))); #ifdef ENABLE_ONEDNN_V3 const float min_input = min_input_tensor.scalar<float>()(); const float max_input = max_input_tensor.scalar<float>()(); const float min_weight = min_weight_tensor.scalar<float>()(); const float max_weight = max_weight_tensor.scalar<float>()(); float src_scale = mode_ == QUANTIZE_MODE_MIN_FIRST ? (max_input - min_input) / 255.0 : std::max(std::abs(min_input), std::abs(max_input)) / 255.0; float wei_scale = std::max(std::abs(min_weight), std::abs(max_weight)) / 127.0; float dst_scale = 1.0; #endif if (std::is_same<Toutput, quint8>::value || std::is_same<Toutput, qint8>::value || std::is_same<Toutput, float>::value) { const Tensor& min_freezed_tensor = context->input(7); const Tensor& max_freezed_tensor = context->input(8); OP_REQUIRES(context, TensorShapeUtils::IsScalar(min_freezed_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`min_freezed_output` must be rank 0 but is rank ", min_freezed_tensor.dims()))); OP_REQUIRES(context, TensorShapeUtils::IsScalar(max_freezed_tensor.shape()), absl::InvalidArgumentError(absl::StrCat( "`max_freezed_output` must be rank 0 but is rank ", max_freezed_tensor.dims()))); const float min_freezed_output = min_freezed_tensor.scalar<float>()(); const float max_freezed_output = max_freezed_tensor.scalar<float>()(); float scale_eightbit = std::max(std::abs(min_freezed_output), std::abs(max_freezed_output)); #ifndef ENABLE_ONEDNN_V3 float min_output_value; float max_output_value; ComputeOutputRangeForInt32(context, &min_output_value, &max_output_value); float scale_int32 = std::max(std::abs(min_output_value), std::abs(max_output_value)); float scale = 1.0; if (std::is_same<Toutput, quint8>::value) { scale = scale_int32 / scale_eightbit / static_cast<float>(1u << 23); } else if (std::is_same<Toutput, qint8>::value) { scale = scale_int32 / scale_eightbit / static_cast<float>(1u << 24); } else if (std::is_same<Toutput, float>::value) { scale = scale_int32 / static_cast<float>(1u << 31); } else { scale = scale_int32 / scale_eightbit / static_cast<float>(1u << 24); } std::vector<float> output_scale; output_scale.push_back(scale); params.post_op_params.push_back({"output_scale", output_scale}); } #else if (std::is_same<Toutput, quint8>::value) { dst_scale = scale_eightbit / 255.0; } else if (std::is_same<Toutput, qint8>::value) { dst_scale = scale_eightbit / 127.0; } else { dst_scale = 1.0; } } else { if (!std::is_same<Toutput, qint32>::value) TF_CHECK_OK(Status(absl::StatusCode::kFailedPrecondition, "Output datatype is expected to be qint32.")); dst_scale = src_scale * wei_scale; } params.post_op_params.push_back({"src_scale", {src_scale}}); params.post_op_params.push_back({"wei_scale", {wei_scale}}); params.post_op_params.push_back({"dst_scale", {dst_scale}}); #endif } #ifndef ENABLE_ONEDNN_V3 Tbias* GetBiasHandle( OpKernelContext* context, std::shared_ptr<dnnl::inner_product_forward::primitive_desc>& mkldnn_matmul_fwd_pd, const Tensor& bias_tensor, const Tensor& weight_tensor, std::shared_ptr<stream> reorder_stream) { if (std::is_same<Tbias, qint32>::value) { return static_cast<Tbias*>( const_cast<Tbias*>(bias_tensor.flat<Tbias>().data())); } else { const float min_input = context->input(3).flat<float>()(0); const float max_input = context->input(4).flat<float>()(0); const float min_weight = context->input(5).flat<float>()(0); const float max_weight = context->input(6).flat<float>()(0); std::vector<dnnl::primitive> net; float out_scale; if (mode_ == QUANTIZE_MODE_MIN_FIRST) { int64_t k = weight_tensor.dim_size(0); int64_t n = weight_tensor.dim_size(1); float* comp_bias = GetCompBiasBuffer(n); qint8* wt_buf = static_cast<qint8*>( const_cast<qint8*>(weight_tensor.flat<qint8>().data())); const float* bias_buf = static_cast<float*>( const_cast<float*>(bias_tensor.flat<float>().data())); float qa_amin = 255 * min_input / (max_input - min_input); out_scale = (255.0 * 127.0) / ((max_input - min_input) * std::max(std::abs(max_weight), std::abs(min_weight))); #ifndef ENABLE_ONEDNN_OPENMP auto parallel_func = [&](int64_t start, int64_t end) { for (int64_t j = start; j < end; j++) { int64_t x = 0; for (int64_t i = 0; i < k; ++i) { x += wt_buf[i * n + j]; } comp_bias[j] = ((bias_buf[j] * out_scale) + static_cast<float>(x * qa_amin)); } }; const float kArithCost = 2.5f; const float kMovCost = 1.0f; float shard_cost = 4 * kArithCost + kMovCost; const DeviceBase::CpuWorkerThreads& worker_threads = *(context->device()->tensorflow_cpu_worker_threads()); Shard(worker_threads.num_threads, worker_threads.workers, n, shard_cost, parallel_func); #else #pragma omp parallel for schedule(static) for (int64_t j = 0; j < n; ++j) { int64_t x = 0; for (int64_t i = 0; i < k; ++i) { x += wt_buf[i * n + j]; } comp_bias[j] = ((bias_buf[j] * out_scale) + static_cast<float>(x * qa_amin)); } #endif return reinterpret_cast<Tbias*>(comp_bias_); } else if (mode_ == QUANTIZE_MODE_SCALED) { out_scale = 255.0 * 127.0 / max_input * std::max(std::abs(max_weight), std::abs(min_weight)); std::vector<float> scales; scales.push_back(out_scale); dnnl::primitive_attr bias_attr; bias_attr.set_output_scales(0, scales); void* bias_buf = static_cast<void*>( const_cast<Tbias*>(bias_tensor.flat<Tbias>().data())); input_bias_ = new memory(mkldnn_matmul_fwd_pd->bias_desc(), this->cpu_engine_, bias_buf); scaled_bias_ = new memory(mkldnn_matmul_fwd_pd->bias_desc(), this->cpu_engine_); auto reorder_desc = dnnl::reorder::primitive_desc( *input_bias_, *scaled_bias_, bias_attr); net.push_back(dnnl::reorder(reorder_desc)); std::unordered_map<int, memory> reorder_net_args = { {DNNL_ARG_FROM, *input_bias_}, {DNNL_ARG_TO, *scaled_bias_}}; net.at(0).execute(*reorder_stream, reorder_net_args); return reinterpret_cast<Tbias*>(scaled_bias_->get_data_handle()); } else { context->CtxFailure(absl::InvalidArgumentError( "Quantization mode must be either MIN_FIRST or SCALED.")); return nullptr; } } } #else void GetBiasHandle( OpKernelContext* context, std::shared_ptr<dnnl::inner_product_forward::primitive_desc>& mkldnn_matmul_fwd_pd, const Tensor& bias_tensor, const Tensor& weight_tensor, std::shared_ptr<stream> reorder_stream, Tensor* temp_scaled_bias_tensor, void** bias_data) { if (std::is_same<Tbias, float>::value && mode_ == QUANTIZE_MODE_SCALED) { return; } else { const float min_input = context->input(3).flat<float>()(0); const float max_input = context->input(4).flat<float>()(0); const float min_weight = context->input(5).flat<float>()(0); const float max_weight = context->input(6).flat<float>()(0); std::vector<dnnl::primitive> net; float out_scale; bool is_cached_bias_valid = false; bool is_bias_cache_empty = this->IsBiasCacheEmpty(); if (!is_bias_cache_empty) { this->GetCachedBias(min_input, max_input, bias_data); is_cached_bias_valid = (*bias_data != nullptr); } if (!is_cached_bias_valid) { auto scaled_bias_md = mkldnn_matmul_fwd_pd->bias_desc(); TensorShape scaled_bias_shape; scaled_bias_shape.AddDim( (scaled_bias_md.get_size() / sizeof(TSCALED_BIAS))); OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<TSCALED_BIAS>::v(), scaled_bias_shape, temp_scaled_bias_tensor)); void* scaled_bias_buf = static_cast<void*>( temp_scaled_bias_tensor->flat<TSCALED_BIAS>().data()); if (mode_ == QUANTIZE_MODE_MIN_FIRST) { int k = weight_tensor.dim_size(0); int n = weight_tensor.dim_size(1); TSCALED_BIAS* comp_bias = (TSCALED_BIAS*)scaled_bias_buf; qint8* wt_buf = static_cast<qint8*>( const_cast<qint8*>(weight_tensor.flat<qint8>().data())); const Tbias* bias_buf = static_cast<Tbias*>( const_cast<Tbias*>(bias_tensor.flat<Tbias>().data())); float qa_amin = 255 * min_input / (max_input - min_input); out_scale = (255.0 * 127.0) / ((max_input - min_input) * std::max(std::abs(max_weight), std::abs(min_weight))); for (int j = 0; j < n; ++j) { int x = 0; for (int i = 0; i < k; ++i) { x += wt_buf[i * n + j]; } if (std::is_same<Tbias, qint32>::value) { comp_bias[j] = static_cast<float>(bias_buf[j]) / out_scale; } else { comp_bias[j] = static_cast<float>(bias_buf[j]) + (x * qa_amin); } } } else if (mode_ == QUANTIZE_MODE_SCALED) { out_scale = 255.0 * 127.0 / (max_input * std::max(std::abs(max_weight), std::abs(min_weight))); std::vector<float> scales; scales.push_back(out_scale); dnnl::primitive_attr bias_attr; void* bias_buf = static_cast<void*>( const_cast<Tbias*>(bias_tensor.flat<Tbias>().data())); bias_attr.set_scales_mask(DNNL_ARG_DST, 0); auto input_bias_mem = memory({{static_cast<int>(bias_tensor.NumElements())}, MklDnnType<Tbias>(), memory::format_tag::x}, this->cpu_engine_, bias_buf); auto scaled_bias_mem = memory(mkldnn_matmul_fwd_pd->bias_desc(), this->cpu_engine_, scaled_bias_buf); auto reorder_desc = dnnl::reorder::primitive_desc( input_bias_mem, scaled_bias_mem, bias_attr); net.push_back(dnnl::reorder(reorder_desc)); std::unordered_map<int, memory> reorder_net_args = { {DNNL_ARG_FROM, input_bias_mem}, {DNNL_ARG_TO, scaled_bias_mem}}; auto scale_mem = memory({{1}, MklDnnType<float>(), memory::format_tag::x}, this->cpu_engine_, scales.data()); reorder_net_args.insert( {DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, scale_mem}); std::vector<MemoryArgsMap> net_args{reorder_net_args}; ExecutePrimitive(net, &net_args, this->cpu_engine_, context); } else { context->CtxFailure( absl::InvalidArgumentError("Quantization mode must be" "either MIN_FIRST or SCALED.")); } *bias_data = static_cast<void*>( temp_scaled_bias_tensor->flat<TSCALED_BIAS>().data()); if (is_bias_cache_empty) { this->CacheBias(context, *temp_scaled_bias_tensor, min_input, max_input); } } } } bool IsCachedBiasValid(float current_min_input, float current_max_input) override { if (this->is_bias_const_ && this->is_weight_const_ && std::abs(current_min_input - this->saved_min_input_) < 1e-5 && std::abs(current_max_input - this->saved_max_input_) < 1e-5) { return true; } return false; } #endif private: memory* input_bias_ = nullptr; memory* scaled_bias_ = nullptr; float* comp_bias_ = nullptr; int mode_; }; template <typename Device, typename Tinput, typename Tweight, typename Tbias, typename Toutput, bool native_format = false> class MklDnnQuantizedMatMulReluOp : public MklDnnQuantizedMatMulOp<Device, Tinput, Tweight, Tbias, Toutput, native_format> { public: virtual ~MklDnnQuantizedMatMulReluOp() {} explicit MklDnnQuantizedMatMulReluOp(OpKernelConstruction* context) : MklDnnQuantizedMatMulOp<Device, Tinput, Tweight, Tbias, Toutput, native_format>(context) {} protected: void ExtendMklDnnMatMulFwdParams(OpKernelContext* context, MklDnnMatMulFwdParams& params) override { MklDnnQuantizedMatMulOp<Device, quint8, qint8, Tbias, Toutput, native_format>::ExtendMklDnnMatMulFwdParams(context, params); params.post_op_params.push_back({"Relu", {1.0, 0.0, 0.0}}); } }; #define REGISTER_MKL_KERNEL(op, kernel, bias_type, output_type, is_native) \ REGISTER_KERNEL_BUILDER( \ Name(op) \ .Device(DEVICE_CPU) \ .TypeConstraint<quint8>("T1") \ .TypeConstraint<qint8>("T2") BIAS_TYPE_CONSTRAINT(bias_type) \ .TypeConstraint<output_type>("Toutput") LABEL, \ kernel TEMPLATE_ARGS(CPUDevice, quint8, qint8, bias_type, output_type, \ is_native)); #define REGISTER_MKL_KERNEL_ALL_BIAS_TYPES(op, kernel, output_type, is_native) \ REGISTER_MKL_KERNEL(op, kernel, float, output_type, is_native) \ REGISTER_MKL_KERNEL(op, kernel, qint32, output_type, is_native); #define LABEL #define TEMPLATE_ARGS(CPUDevice, quint8, qint8, bias_type, output_type, \ is_native) #define BIAS_TYPE_CONSTRAINT(bias_type) REGISTER_MKL_KERNEL("QuantizedMatMulWithBiasAndRelu", NoOp, float, qint32, false); #undef BIAS_TYPE_CONSTRAINT #define BIAS_TYPE_CONSTRAINT(bias_type) .TypeConstraint<bias_type>("Tbias") REGISTER_MKL_KERNEL_ALL_BIAS_TYPES("QuantizedMatMulWithBias", NoOp, qint32, false); REGISTER_MKL_KERNEL_ALL_BIAS_TYPES( "QuantizedMatMulWithBiasAndReluAndRequantize", NoOp, quint8, false); REGISTER_MKL_KERNEL_ALL_BIAS_TYPES("QuantizedMatMulWithBiasAndRequantize", NoOp, quint8, false); REGISTER_MKL_KERNEL_ALL_BIAS_TYPES("QuantizedMatMulWithBiasAndDequantize", NoOp, float, false); #undef BIAS_TYPE_CONSTRAINT #undef TEMPLATE_ARGS #undef LABEL #define LABEL .Label(mkl_op_registry::kMklQuantizedOpLabel) #define TEMPLATE_ARGS(CPUDevice, quint8, qint8, bias_type, output_type, \ is_native) \ <CPUDevice, quint8, qint8, bias_type, output_type, is_native> #define BIAS_TYPE_CONSTRAINT(bias_type) REGISTER_MKL_KERNEL("_MklQuantizedMatMulWithBiasAndRelu", MklDnnQuantizedMatMulReluOp, float, qint32, true); #undef BIAS_TYPE_CONSTRAINT #define BIAS_TYPE_CONSTRAINT(bias_type) .TypeConstraint<bias_type>("Tbias") REGISTER_MKL_KERNEL_ALL_BIAS_TYPES("_MklQuantizedMatMulWithBias", MklDnnQuantizedMatMulOp, qint32, true); REGISTER_MKL_KERNEL_ALL_BIAS_TYPES( "_MklQuantizedMatMulWithBiasAndReluAndRequantize", MklDnnQuantizedMatMulReluOp, quint8, true); REGISTER_MKL_KERNEL_ALL_BIAS_TYPES("_MklQuantizedMatMulWithBiasAndRequantize", MklDnnQuantizedMatMulOp, quint8, true); REGISTER_MKL_KERNEL_ALL_BIAS_TYPES("_MklQuantizedMatMulWithBiasAndDequantize", MklDnnQuantizedMatMulOp, float, true); #undef BIAS_TYPE_CONSTRAINT #undef TEMPLATE_ARGS #undef LABEL #undef TSCALED_BIAS } #endif
 #if defined(INTEL_MKL) #define EIGEN_USE_THREADS #include <functional> #include <memory> #include <vector> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class QuantizedMatMulTest : public OpsTestBase, public ::testing::WithParamInterface<bool> {}; TEST_P(QuantizedMatMulTest, Small_withBias) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBias") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<qint32>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_QINT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_QINT32) .Attr("Tout", DT_QINT32) .Attr("fused_ops", {"BiasAdd"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<qint32>(TensorShape({4}), {1, 2, 3, 4}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 4})); test::FillValues<qint32>(&expected, {75, 82, 89, 96, 174, 190, 206, 222}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } TEST_P(QuantizedMatMulTest, Small_withNegBias) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBias") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<qint32>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_QINT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_QINT32) .Attr("Tout", DT_QINT32) .Attr("fused_ops", {"BiasAdd"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<qint32>(TensorShape({4}), {100, -200, 300, -400}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 4})); test::FillValues<qint32>(&expected, {174, -120, 386, -308, 273, -12, 503, -182}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } TEST_P(QuantizedMatMulTest, Small_WithNegInp) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBias") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<qint32>::v()) .Attr("input_quant_mode", "MIN_FIRST") .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_FLOAT) .Attr("Tout", DT_QINT32) .Attr("fused_ops", {"BiasAdd"}) .Attr("input_quant_mode", "MIN_FIRST") .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({4, 3}), {11, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 0}); AddInputFromArray<qint8>(TensorShape({3, 2}), {1, 4, 2, 5, 3, 6}); AddInputFromArray<float>(TensorShape({2}), {10.0f, 20.0f}); AddInputFromArray<float>(TensorShape({}), {-12.0f}); AddInputFromArray<float>(TensorShape({}), {243.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({4, 2})); test::FillValues<qint32>(&expected, {-28, -63, -34, -78, -40, -93, -46, -108}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } TEST_P(QuantizedMatMulTest, Small_withBiasAndReq) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBiasAndRequantize") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<quint8>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK(NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_QINT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QUINT8, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_QINT32) .Attr("Tout", DT_QUINT8) .Attr("fused_ops", {"BiasAdd", "Requantize"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<qint32>(TensorShape({4}), {10, -20, 30, -40}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({2, 4})); if (is_old_api) { #ifdef ENABLE_ONEDNN_V3 test::FillValues<quint8>(&expected, {84, 60, 116, 52, 183, 168, 233, 178}); #else test::FillValues<quint8>(&expected, {84, 60, 116, 52, 184, 169, 234, 179}); #endif } else { test::FillValues<quint8>(&expected, {84, 60, 116, 52, 183, 168, 233, 178}); } const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<quint8>(expected, output); } TEST_P(QuantizedMatMulTest, Small_withBiasAndDeq) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBiasAndDequantize") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<float>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_QINT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_QINT32) .Attr("Tout", DT_FLOAT) .Attr("fused_ops", {"BiasAdd", "Dequantize"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<qint32>(TensorShape({4}), {10, -20, 30, -40}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); if (is_old_api) { AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); } TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 4})); test::FillValues<float>(&expected, {84, 60, 116, 52, 183, 168, 233, 178}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<float>(expected, output); } TEST_P(QuantizedMatMulTest, Small_withBiasAndRelu) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK(NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBiasAndRelu") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<qint32>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_FLOAT) .Attr("Tout", DT_QINT32) .Attr("fused_ops", {"BiasAdd", "Relu"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<float>(TensorShape({4}), {100.0f, -200.0f, 300.0f, -400.0f}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 4})); test::FillValues<qint32>(&expected, {174, 0, 386, 0, 273, 0, 503, 0}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); } TEST_P(QuantizedMatMulTest, Small_withBiasAndReluAndReq) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBiasAndReluAndRequantize") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<quint8>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK(NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_QINT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QUINT8, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_QINT32) .Attr("Tout", DT_QUINT8) .Attr("fused_ops", {"BiasAdd", "Relu", "Requantize"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<qint32>(TensorShape({4}), {10, -20, 30, -40}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QUINT8, TensorShape({2, 4})); if (is_old_api) { #ifdef ENABLE_ONEDNN_V3 test::FillValues<quint8>(&expected, {84, 60, 116, 52, 183, 168, 233, 178}); #else test::FillValues<quint8>(&expected, {84, 60, 116, 52, 184, 169, 234, 179}); #endif } else { test::FillValues<quint8>(&expected, {84, 60, 116, 52, 183, 168, 233, 178}); } const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<quint8>(expected, output); } TEST_P(QuantizedMatMulTest, Small_withWeightCached) { const bool is_old_api = GetParam(); if (is_old_api) { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_MklQuantizedMatMulWithBias") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("Toutput", DataTypeToEnum<qint32>::v()) .Attr("_kernel", "QuantizedMklOp") .Finalize(node_def())); } else { TF_ASSERT_OK( NodeDefBuilder("quantized_mat_mul_op", "_QuantizedMatMul") .Attr("Thost_inputs", {DT_QUINT8, DT_QINT8, DT_QINT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT}) .Attr("Thost_outputs", {DT_QINT32, DT_FLOAT, DT_FLOAT}) .Attr("Tdevice_inputs", std::vector<DataType>()) .Attr("Tdevice_outputs", std::vector<DataType>()) .Attr("T1", DT_QUINT8) .Attr("T2", DT_QINT8) .Attr("Tbias", DT_QINT32) .Attr("Tout", DT_QINT32) .Attr("fused_ops", {"BiasAdd"}) .Input(FakeInput()) .Input(FakeInput()) .Finalize(node_def())); } TF_ASSERT_OK(InitOp()); AddInputFromArray<quint8>(TensorShape({1, 3}), {1, 2, 3}); AddInputFromArray<qint8>(TensorShape({3, 4}), {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}); AddInputFromArray<qint32>(TensorShape({4}), {1, 2, 3, 4}); AddInputFromArray<float>(TensorShape({}), {0}); AddInputFromArray<float>(TensorShape({}), {255.0f}); AddInputFromArray<float>(TensorShape({}), {-127.0f}); AddInputFromArray<float>(TensorShape({}), {127.0f}); int64 start_time = Env::Default()->NowMicros(); TF_ASSERT_OK(RunOpKernel()); int64 end_time = Env::Default()->NowMicros(); int64 total_duration_unopt = end_time - start_time; Tensor expected(allocator(), DT_QINT32, TensorShape({1, 4})); test::FillValues<qint32>(&expected, {75, 82, 89, 96}); const Tensor& output = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output); start_time = Env::Default()->NowMicros(); TF_ASSERT_OK(RunOpKernel()); end_time = Env::Default()->NowMicros(); int64 total_duration_opt = end_time - start_time; LOG(INFO) << " Time taken by first call : " << total_duration_unopt << ", Time taken after Caching : " << total_duration_opt; EXPECT_LT(total_duration_opt, total_duration_unopt * 0.8); const Tensor& output_new = *GetOutput(0); test::ExpectTensorEqual<qint32>(expected, output_new); } INSTANTIATE_TEST_SUITE_P(All, QuantizedMatMulTest, ::testing::Values(true, false)); } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_qmatmul_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_qmatmul_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
93f94341-4b0e-4bc2-912e-7f6500b6da69
cpp
tensorflow/tensorflow
math_ops
tensorflow/c/experimental/ops/math_ops.cc
tensorflow/core/ops/math_ops_test.cc
#include "tensorflow/c/experimental/ops/math_ops.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/tracing_utils.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" using tensorflow::tracing::MaybeSetOpName; namespace tensorflow { namespace ops { Status Mul(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle* const y, AbstractTensorHandle** z, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Mul", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); TF_RETURN_IF_ERROR(op_ptr->AddInput(y)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(z, 1), &num_retvals); } Status Conj(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle** output, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Conj", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status AddV2(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle* const y, AbstractTensorHandle** z, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("AddV2", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); TF_RETURN_IF_ERROR(op_ptr->AddInput(y)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(z, 1), &num_retvals); } Status MatMul(AbstractContext* ctx, AbstractTensorHandle* const a, AbstractTensorHandle* const b, AbstractTensorHandle** product, bool transpose_a, bool transpose_b, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("MatMul", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(a)); TF_RETURN_IF_ERROR(op_ptr->AddInput(b)); TF_RETURN_IF_ERROR(op_ptr->SetAttrBool("transpose_a", transpose_a)); TF_RETURN_IF_ERROR(op_ptr->SetAttrBool("transpose_b", transpose_b)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(product, 1), &num_retvals); } Status Neg(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Neg", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } Status Sum(AbstractContext* ctx, AbstractTensorHandle* const input, AbstractTensorHandle* const reduction_indices, AbstractTensorHandle** output, bool keep_dims, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Sum", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(input)); TF_RETURN_IF_ERROR(op_ptr->AddInput(reduction_indices)); TF_RETURN_IF_ERROR(op_ptr->SetAttrBool("keep_dims", keep_dims)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(output, 1), &num_retvals); } Status Sub(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle* const y, AbstractTensorHandle** z, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Sub", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); TF_RETURN_IF_ERROR(op_ptr->AddInput(y)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(z, 1), &num_retvals); } Status Div(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle* const y, AbstractTensorHandle** z, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Div", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); TF_RETURN_IF_ERROR(op_ptr->AddInput(y)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(z, 1), &num_retvals); } Status DivNoNan(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle* const y, AbstractTensorHandle** z, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("DivNoNan", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); TF_RETURN_IF_ERROR(op_ptr->AddInput(y)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(z, 1), &num_retvals); } Status Exp(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Exp", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } Status Sqrt(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Sqrt", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } Status SqrtGrad(AbstractContext* ctx, AbstractTensorHandle* const y, AbstractTensorHandle* const dy, AbstractTensorHandle** z, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("SqrtGrad", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(y)); TF_RETURN_IF_ERROR(op_ptr->AddInput(dy)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(z, 1), &num_retvals); } Status Log1p(AbstractContext* ctx, AbstractTensorHandle* const x, AbstractTensorHandle** y, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("Log1p", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(x)); int num_retvals = 1; return op_ptr->Execute(absl::MakeSpan(y, 1), &num_retvals); } } }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(MathOpsTest, AddN_ShapeFn) { ShapeInferenceTestOp op("AddN"); auto set_n = [&op](int n) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "AddN") .Input(src_list) .Attr("N", n) .Finalize(&op.node_def)); }; set_n(2); INFER_OK(op, "?;?", "in0|in1"); INFER_OK(op, "[1];[?]", "in0"); INFER_OK(op, "[1];?", "in0"); INFER_OK(op, "[?];[1]", "in1"); INFER_OK(op, "?;[1]", "in1"); set_n(2); INFER_OK(op, "[1,2];[?,2]", "in0"); INFER_OK(op, "[1,2];[1,2]", "in0|in1"); INFER_OK(op, "[?,2];[1,2]", "in1"); set_n(3); INFER_OK(op, "[1,?];[?,2];[1,2]", "in2"); INFER_OK(op, "[1,2];[?,2];[1,?]", "in0"); INFER_OK(op, "?;?;[1,2]", "in2"); set_n(2); INFER_OK(op, "?;[1,2]", "in1"); INFER_OK(op, "[1,?];[?,2]", "[d0_0,d1_1]"); INFER_OK(op, "[?,2,?];[?,?,3]", "[d0_0|d1_0,d0_1,d1_2]"); INFER_OK(op, "[?,2];[1,?]", "[d1_0,d0_1]"); set_n(3); INFER_ERROR("Dimension 1 in both shapes must be equal, but are 2 and 4", op, "[1,2];?;[1,4]"); INFER_ERROR("From merging shape 0 with other shapes.", op, "[1,2];?;[1,4]"); set_n(4); INFER_ERROR("Shapes must be equal rank, but are 2 and 3", op, "?;[1,2];?;[1,2,3]"); INFER_ERROR("From merging shape 1 with other shapes.", op, "?;[1,2];?;[1,2,3]"); } TEST(MathOpsTest, UnchangedShape_ShapeFn) { ShapeInferenceTestOp op("Cast"); INFER_OK(op, "?", "in0"); INFER_OK(op, "[?]", "in0"); INFER_OK(op, "[1,?,3,4]", "in0"); } TEST(MathOpsTest, Segment_ShapeFn) { for (const auto* op_name : {"SegmentMax", "SegmentMean", "SegmentMin", "SegmentProd", "SegmentSum"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?;?", "?"); INFER_OK(op, "?;[100]", "?"); INFER_OK(op, "[?];?", "[?]"); INFER_OK(op, "[?];[100]", "[?]"); INFER_OK(op, "[1];?", "[?]"); INFER_OK(op, "[1];[100]", "[?]"); INFER_OK(op, "[?,?];?", "[?,d0_1]"); INFER_OK(op, "[?,2];[100]", "[?,d0_1]"); INFER_OK(op, "[?,2,?,4];[100]", "[?,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?];?", "[?,d0_1]"); INFER_OK(op, "[1,2];[100]", "[?,d0_1]"); INFER_OK(op, "[1,2,?,4];[100]", "[?,d0_1,d0_2,d0_3]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[1,2]"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[1]"); } } TEST(MathOpsTest, BroadcastBinaryOps_ShapeFn) { auto test_shapes = [&](ShapeInferenceTestOp& op, bool incompatible_shape_error) { INFER_OK(op, "?;?", "?"); INFER_OK(op, "[1,2];?", "?"); INFER_OK(op, "?;[1,2]", "?"); INFER_OK(op, "[?];[1]", "[d0_0]"); INFER_OK(op, "[1];[?]", "[d1_0]"); INFER_OK(op, "[?];[2]", incompatible_shape_error ? "[d1_0]" : "?"); INFER_OK(op, "[2];[?]", incompatible_shape_error ? "[d0_0]" : "?"); INFER_OK(op, "[?];[?]", "[?]"); INFER_OK(op, "[];[?]", "[d1_0]"); INFER_OK(op, "[?];[]", "[d0_0]"); INFER_OK(op, "[1];[1]", "[d0_0|d1_0]"); INFER_OK(op, "[];[1]", "[d1_0]"); INFER_OK(op, "[1];[]", "[d0_0]"); INFER_OK(op, "[2];[2]", "[d0_0|d1_0]"); INFER_OK(op, "[];[2]", "[d1_0]"); INFER_OK(op, "[1];[2]", "[d1_0]"); INFER_OK(op, "[2];[1]", "[d0_0]"); INFER_OK(op, "[2];[]", "[d0_0]"); INFER_OK(op, "[2];[?]", incompatible_shape_error ? "[d0_0]" : "?"); INFER_OK(op, "[0];[0]", "[d0_0|d1_0]"); INFER_OK(op, "[];[0]", "[d1_0]"); INFER_OK(op, "[1];[0]", "[d1_0]"); INFER_OK(op, "[0];[1]", "[d0_0]"); INFER_OK(op, "[0];[]", "[d0_0]"); INFER_OK(op, "[2];[?,?]", incompatible_shape_error ? "[d1_0,d0_0]" : "?"); INFER_OK(op, "[2,2];[?,?,?]", incompatible_shape_error ? "[d1_0,d0_0,d0_1]" : "?"); INFER_OK(op, "[?,1,2,3,4,5];[3,1,?]", incompatible_shape_error ? "[d0_0,d0_1,d0_2,d0_3|d1_0,d0_4,d0_5]" : "?"); INFER_OK(op, "[3,1,?];[?,1,2,3,4,5]", incompatible_shape_error ? "[d1_0,d1_1,d1_2,d1_3|d0_0,d1_4,d1_5]" : "?"); if (incompatible_shape_error) { INFER_ERROR("Dimensions must be equal", op, "[2];[3]"); } else { INFER_OK(op, "[2];[3]", "[]"); } }; for (string op_name : {"Add", "Complex", "Div", "Equal", "Greater", "GreaterEqual", "Igamma", "Igammac", "Zeta", "Polygamma", "Less", "LessEqual", "LogicalAnd", "LogicalOr", "Maximum", "Minimum", "Mod", "Mul", "NotEqual", "Pow", "Sub", "SquaredDifference", "DivNoNan"}) { ShapeInferenceTestOp op(op_name); AddNodeAttr("incompatible_shape_error", true, &op.node_def); test_shapes(op, true); if ((op_name == "Equal") || (op_name == "NotEqual")) { ShapeInferenceTestOp op(op_name); AddNodeAttr("incompatible_shape_error", false, &op.node_def); test_shapes(op, false); } } } TEST(MathOpsTest, Select_ShapeFn) { ShapeInferenceTestOp op("Select"); INFER_OK(op, "?;?;?", "in1|in2"); INFER_OK(op, "[];[1];?", "in1"); INFER_OK(op, "[];?;?", "in1|in2"); INFER_OK(op, "[1];?;?", "in1|in2"); INFER_OK(op, "[1,2];?;?", "in1|in2?"); INFER_OK(op, "?;[];?", "in1"); INFER_OK(op, "?;?;[]", "in2"); INFER_OK(op, "?;[1];?", "in1"); INFER_OK(op, "?;?;[1]", "in2"); INFER_OK(op, "?;[1,2];?", "in1"); INFER_OK(op, "?;?;[1,2]", "in2"); INFER_ERROR("Shapes must be equal rank, but are 0 and 1", op, "[1];[];?"); INFER_ERROR("Shapes must be equal rank, but are 1 and 2", op, "[];[1];[1,2]"); INFER_ERROR("Shapes must be equal rank, but are 1 and 2", op, "[1,2];[1];?"); INFER_OK(op, "[2];[?];[?]", "in1|in2"); INFER_OK(op, "[?];[?,?,3];[1,2,?]", "[d2_0,d2_1,d1_2]"); INFER_OK(op, "[2];[?,?,3];[?,2,?]", "[d1_0|d2_0,d2_1,d1_2]"); INFER_ERROR("must be equal", op, "[1];[2,?,3];[?,2,?]"); INFER_ERROR("Shapes must be equal rank, but are 3 and 2", op, "[2,?];[?,?,3];[?,2,?]"); INFER_OK(op, "[2,?,?];[?,?,3];[?,2,?]", "[d0_0,d2_1,d1_2]"); INFER_ERROR("Dimension 2 in both shapes must be equal, but are 3 and 5", op, "[2,?,5];[?,?,3];[?,2,?]"); const OpRegistrationData* op_reg_data; TF_ASSERT_OK(OpRegistry::Global()->LookUp(op.name, &op_reg_data)); typedef std::vector<std::pair<PartialTensorShape, DataType>> ShapeDtypeV; std::vector<std::unique_ptr<ShapeDtypeV>> handle_data; std::unique_ptr<shape_inference::InferenceContext> c; auto run_inference_for_handles = [&]() -> Status { CHECK(op_reg_data->shape_inference_fn != nullptr); c.reset(new shape_inference::InferenceContext( TF_GRAPH_DEF_VERSION, op.node_def, op_reg_data->op_def, {PartialTensorShape(), PartialTensorShape(), PartialTensorShape()}, {}, {}, handle_data)); TF_CHECK_OK(c->construction_status()); Status s = c->Run(op_reg_data->shape_inference_fn); LOG(INFO) << "Inference got " << s; return s; }; auto shape_proto = [](std::initializer_list<int64_t> dim_sizes) { TensorShapeProto p; for (auto i : dim_sizes) p.add_dim()->set_size(i); return p; }; auto i0 = PartialTensorShape({1, -1}); auto i1 = PartialTensorShape({-1, 2}); PartialTensorShape unknown_shape; auto scalar = PartialTensorShape({}); handle_data.emplace_back( new ShapeDtypeV{{scalar, DT_FLOAT}, {unknown_shape, DT_INT32}}); handle_data.emplace_back(new ShapeDtypeV{{i0, DT_FLOAT}, {i1, DT_INT32}}); handle_data.emplace_back( new ShapeDtypeV{{i1, DT_FLOAT}, {unknown_shape, DT_INT32}}); TF_ASSERT_OK(run_inference_for_handles()); auto* out = c->output_handle_shapes_and_types(0); ASSERT_EQ(2, out->size()); EXPECT_EQ("[1,2]", c->DebugString(out->at(0).shape)); EXPECT_EQ(DT_FLOAT, out->at(0).dtype); EXPECT_EQ("[?,2]", c->DebugString(out->at(1).shape)); EXPECT_EQ(DT_INT32, out->at(1).dtype); handle_data[2]->at(0).first = shape_proto({2, 2}); EXPECT_TRUE(absl::StrContains(run_inference_for_handles().message(), "must be equal, but are 1 and 2")); handle_data[2]->at(0).first = i1; handle_data[2]->at(1).second = DT_INT64; EXPECT_TRUE(absl::StrContains(run_inference_for_handles().message(), "pointing to different dtypes")); handle_data[2]->at(1).second = DT_INT32; handle_data[2]->push_back({i1, DT_FLOAT}); EXPECT_TRUE(absl::StrContains(run_inference_for_handles().message(), "pointing to different numbers of tensors")); handle_data[2]->pop_back(); } TEST(MathOpsTest, Range_ShapeFn) { ShapeInferenceTestOp op("Range"); TF_ASSERT_OK(NodeDefBuilder("test", "Range") .Input({"start", {}, DT_INT32}) .Input({"limit", {}, DT_INT32}) .Input({"delta", {}, DT_INT32}) .Attr("Tidx", DT_INT32) .Finalize(&op.node_def)); op.input_tensors.resize(3); INFER_OK(op, "?;?;?", "[?]"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "[1,2];?;?"); INFER_ERROR("for 'start'", op, "[1,2];?;?"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "?;[1,2];?"); INFER_ERROR("for 'limit'", op, "?;[1,2];?"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "?;?;[1,2]"); INFER_ERROR("for 'delta'", op, "?;?;[1,2]"); Tensor start_t = test::AsScalar(1); op.input_tensors[0] = &start_t; INFER_OK(op, "?;?;?", "[?]"); Tensor limit_t = test::AsScalar(1); op.input_tensors[1] = &limit_t; INFER_OK(op, "?;?;?", "[?]"); Tensor delta_t = test::AsScalar(1); op.input_tensors[2] = &delta_t; INFER_OK(op, "?;?;?", "[0]"); delta_t = test::AsScalar(0); INFER_ERROR("Requires delta != 0", op, "?;?;?"); delta_t = test::AsScalar(3); limit_t = test::AsScalar(-1); INFER_ERROR("Requires start <= limit when delta > 0: 1/-1", op, "?;?;?"); delta_t = test::AsScalar(-1); INFER_OK(op, "?;?;?", "[2]"); limit_t = test::AsScalar(4); INFER_ERROR("Requires start >= limit when delta < 0: 1/4", op, "?;?;?"); limit_t = test::AsScalar(100); start_t = test::AsScalar(2); delta_t = test::AsScalar(3); INFER_OK(op, "?;?;?", "[33]"); } TEST(MathOpsTest, LinSpace_ShapeFn) { ShapeInferenceTestOp op("LinSpace"); op.input_tensors.resize(3); INFER_OK(op, "?;?;?", "[?]"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "[1,2];?;?"); INFER_ERROR("for 'start'", op, "[1,2];?;?"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "?;[1,2];?"); INFER_ERROR("for 'stop'", op, "?;[1,2];?"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "?;?;[1,2]"); INFER_ERROR("for 'num'", op, "?;?;[1,2]"); Tensor num_t = test::AsScalar(1); op.input_tensors[2] = &num_t; INFER_OK(op, "?;?;?", "[1]"); num_t = test::AsScalar(2); INFER_OK(op, "?;?;?", "[2]"); num_t = test::AsScalar(-1); INFER_ERROR("Requires num > 0: -1", op, "?;?;?"); } TEST(MathOpsTest, UnsortedSegmentSum_ShapeFn) { ShapeInferenceTestOp op("UnsortedSegmentSum"); op.input_tensors.resize(3); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "?;[?];?", "?"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "?;?;[1,2]"); INFER_ERROR("Dimensions must be equal, but are 2 and 3", op, "[1,?,2];[1,?,3];?"); INFER_OK(op, "?;[3];?", "?"); INFER_ERROR("Shape must be at least rank 3 but is rank 2", op, "[1,2];[1,2,3];?"); Tensor num_segments_t = test::AsScalar(100); op.input_tensors[2] = &num_segments_t; INFER_OK(op, "[?,2,3,?,5];[1,2,?];[]", "[100,d0_3,d0_4]"); num_segments_t = test::AsScalar(-1); INFER_ERROR(("Dimension size, given by scalar input 2, must be " "non-negative but is -1"), op, "[3];[3];?"); } TEST(MathOpsTest, SparseSegment_ShapeFn) { ShapeInferenceTestOp op("SparseSegmentSum"); op.input_tensors.resize(3); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[2,4,3];[3];[3]", "[?,d0_1,d0_2]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2,4,3];[];[3]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[2,4,3];[3];[3,4]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 3 and 4", op, "[2,4,3];[3];[4]"); } TEST(MathOpsTest, SparseSegmentGrad_ShapeFn) { ShapeInferenceTestOp op("SparseSegmentMeanGrad"); op.input_tensors.resize(4); INFER_OK(op, "?;?;?;?", "?"); INFER_OK(op, "[2,4,3];[3];[3];[]", "[?,d0_1,d0_2]"); Tensor num_segments_t = test::AsScalar(100); op.input_tensors[3] = &num_segments_t; INFER_OK(op, "[2,4,3];[3];[3];[]", "[100,d0_1,d0_2]"); INFER_ERROR("Shape must be rank 0 but is rank 2", op, "[2,4,3];[3];[3];[1,1]"); num_segments_t = test::AsScalar(-100); op.input_tensors[3] = &num_segments_t; INFER_ERROR("Cannot specify a negative value", op, "[2,4,3];[3];[3];[]"); } TEST(MathOpsTest, BatchMatMul_ShapeFn) { ShapeInferenceTestOp op("BatchMatMul"); auto set_adj = [&op](bool adj_x, bool adj_y) { TF_ASSERT_OK(NodeDefBuilder("test", "BatchMatMul") .Input({"a", 0, DT_FLOAT}) .Input({"b", 0, DT_FLOAT}) .Attr("adj_x", adj_x) .Attr("adj_y", adj_y) .Finalize(&op.node_def)); }; set_adj(false, false); INFER_ERROR("at least rank 2", op, "[1];?"); INFER_ERROR("at least rank 2", op, "?;[2]"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[?,?];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[?,?,?,?];?", "[d0_0,d0_1,d0_2,?]"); set_adj(false, false); INFER_OK(op, "[1,2,3,4];[1,2,?,?]", "[d0_0,d0_1,d0_2,d1_3]"); INFER_ERROR("are 2 and 3", op, "[?,1,2];[?,3,1]"); set_adj(true, false); INFER_OK(op, "[1,2,3,4];[1,2,?,?]", "[d0_0,d0_1,d0_3,d1_3]"); INFER_ERROR("are 2 and 3", op, "[?,2,1];[?,3,1]"); set_adj(false, true); INFER_OK(op, "[1,2,?,?];[1,2,3,4]", "[d0_0,d0_1,d0_2,d1_2]"); INFER_ERROR("are 2 and 3", op, "[?,1,2];[?,1,3]"); set_adj(true, true); INFER_OK(op, "[1,2,?,?];[1,2,3,4]", "[d0_0,d0_1,d0_3,d1_2]"); INFER_ERROR("are 2 and 3", op, "[?,2,1];[?,1,3]"); } TEST(MathOpsTest, ArgOps_ShapeFn) { ShapeInferenceTestOp op("ArgMax"); op.input_tensors.resize(2); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[2];?", "[]"); INFER_OK(op, "[];?", "[]"); INFER_ERROR("must be rank 0", op, "[2];[1]"); INFER_OK(op, "[2,3,4];?", "[?,?]"); INFER_OK(op, "[2,3,4,5,6];?", "[?,?,?,?]"); Tensor dimension = test::AsScalar(0); op.input_tensors[1] = &dimension; INFER_OK(op, "[2,3,4];[]", "[d0_1,d0_2]"); dimension = test::AsScalar(1); op.input_tensors[1] = &dimension; INFER_OK(op, "[2,3,4];[]", "[d0_0,d0_2]"); dimension = test::AsScalar(2); op.input_tensors[1] = &dimension; INFER_OK(op, "[2,3,4];[]", "[d0_0,d0_1]"); dimension = test::AsScalar(10); op.input_tensors[1] = &dimension; INFER_ERROR("must be in the range [-3, 3)", op, "[2,3,4];[]"); dimension = test::AsScalar(-10); op.input_tensors[1] = &dimension; INFER_ERROR("must be in the range [-3, 3)", op, "[2,3,4];[]"); dimension = test::AsScalar(-1); op.input_tensors[1] = &dimension; INFER_OK(op, "[2,3,4];[]", "[d0_0,d0_1]"); } TEST(MathOpsTest, Betainc_ShapeFn) { ShapeInferenceTestOp op("Betainc"); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[?,?];?;?", "in0"); INFER_OK(op, "[?,2];?;[1,?]", "[d2_0,d0_1]"); INFER_OK(op, "[?,2,?];[1,?,?];[?,?,3]", "[d1_0,d0_1,d2_2]"); INFER_OK(op, "[?,2,?];[];[?,?,3]", "[d0_0|d2_0,d0_1,d2_2]"); INFER_OK(op, "[];[];[?,?,3]", "in2"); INFER_OK(op, "[];[];?", "in2"); INFER_OK(op, "[];[];[1,2,3,4]", "in2"); INFER_OK(op, "[];[];[]", "in0"); INFER_ERROR("must be equal", op, "[1,2];[];[1,4]"); INFER_ERROR("must be equal", op, "[1,2];[];[1,2,3]"); } TEST(MathOpsTest, Requantize_ShapeFn) { ShapeInferenceTestOp op("Requantize"); INFER_OK(op, "?;?;?;?;?", "in0;[];[]"); INFER_OK(op, "?;[];[];[];[]", "in0;[];[]"); INFER_ERROR("must be rank 0", op, "?;[1];?;?;?"); INFER_ERROR("must be rank 0", op, "?;?;[2];?;?"); INFER_ERROR("must be rank 0", op, "?;?;?;[3];?"); INFER_ERROR("must be rank 0", op, "?;?;?;?;[4]"); } TEST(MathOpstest, RequantizationRange_ShapeFn) { ShapeInferenceTestOp op("RequantizationRange"); INFER_OK(op, "?;?;?", "[];[]"); INFER_OK(op, "?;[];[]", "[];[]"); INFER_ERROR("must be rank 0", op, "?;[1];?"); INFER_ERROR("must be rank 0", op, "?;?;[2]"); } TEST(MathOpsTest, Cross_ShapeFn) { ShapeInferenceTestOp op("Cross"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "[];[]"); INFER_ERROR("Dimension 0 in both shapes must be equal, but", op, "[3];[5]"); INFER_ERROR("Dimension must be 3 but", op, "[3,5];[3,5]"); INFER_OK(op, "?;?", "in0"); INFER_OK(op, "[?];[?]", "in0"); INFER_OK(op, "[1,?,3];[?,?,?]", "in0"); } TEST(MathOpsTest, HistogramFixedWidth_ShapeFn) { ShapeInferenceTestOp op("HistogramFixedWidth"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[];[]"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[3];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[2];[2]"); INFER_OK(op, "?;?;?", "[?]"); INFER_OK(op, "[?];[2];[]", "[?]"); INFER_OK(op, "[?];[2];?", "[?]"); } TEST(MathOpsTest, QuantizedAdd_ShapeFn) { ShapeInferenceTestOp op("QuantizedAdd"); INFER_OK(op, "?;?;?;?;?;?", "?;[];[]"); INFER_OK(op, "?;?;[];[];[];[]", "?;[];[]"); INFER_OK(op, "[1,2];?;[];[];[];[]", "?;[];[]"); INFER_OK(op, "[];[2];[];[];[];[]", "[d1_0];[];[]"); INFER_ERROR("must be rank 0", op, "?;?;[1];?;?;?"); INFER_ERROR("must be rank 0", op, "?;?;?;[2];?;?"); INFER_ERROR("must be rank 0", op, "?;?;?;?;[3];?"); INFER_ERROR("must be rank 0", op, "?;?;?;?;?;[4]"); } TEST(MathOpsTest, Bincount_ShapeFn) { ShapeInferenceTestOp op("Bincount"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;[1];?"); INFER_OK(op, "?;?;?", "[?]"); INFER_OK(op, "?;[];?", "[?]"); INFER_OK(op, "[?];[];?", "[?]"); INFER_OK(op, "[?];[];[?]", "[?]"); } TEST(MathOpsTest, SobolSample) { ShapeInferenceTestOp op("SobolSample"); INFER_ERROR("must be rank 0", op, "[1];?;?"); INFER_ERROR("must be rank 0", op, "?;[1];?"); INFER_ERROR("must be rank 0", op, "?;?;[1]"); INFER_OK(op, "[];[];[]", "[?,?]"); } TEST(MathOpsTest, EqualOp) { ShapeInferenceTestOp op("Equal"); AddNodeAttr("incompatible_shape_error", true, &op.node_def); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[1,2];?", "?"); INFER_OK(op, "?;[1,2]", "?"); INFER_OK(op, "[1,2,3];[1]", "[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,2,1];[1,3]", "[d0_0,d0_1,d1_1]"); INFER_OK(op, "[1,?,3];[3,1]", "[d0_0,d1_0,d0_2]"); INFER_OK(op, "[1,2,3];[2,1,3]", "[d1_0,d0_1,d0_2]"); INFER_OK(op, "[?,10,1];[?,1,4]", "[?,d0_1,d1_2]"); INFER_OK(op, "[10,?,1];[1,?,4]", "[d0_0,?,d1_2]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/math_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/math_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
81c66f85-a1d8-463d-9347-1c571f71ce56
cpp
tensorflow/tensorflow
uniform_quantized_dot_ops
tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_dot_ops.cc
tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_dot_ops_test.cc
#include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/kernels/uniform_quant_ops/math_utils.h" #include "tensorflow/core/kernels/uniform_quant_ops/tensor_utils.h" namespace tensorflow { namespace { using tensorflow::errors::InvalidArgument; Status DotInputShapeValid(const TensorShape& lhs_shape, const TensorShape& rhs_shape) { if (lhs_shape.dims() != 2) { return InvalidArgument("lhs rank must be 2, but given lhs shape ", lhs_shape.DebugString()); } if (rhs_shape.dims() != 2) { return InvalidArgument("rhs rank must be 2, but given rhs shape ", rhs_shape.DebugString()); } if (lhs_shape.dim_size(1) != rhs_shape.dim_size(0)) { return InvalidArgument( "lhs.dim_size(1) and rhs.dim_size(0) must be equal, but given lhs " "shape ", lhs_shape.DebugString(), " and rhs shape ", rhs_shape.DebugString()); } return absl::OkStatus(); } template <typename Tlhs, typename Trhs, typename Tout, typename AccF, typename OutputF> void DotWithAccFunctionAndOutputFunction(const Tensor& lhs, const Tensor& rhs, Tensor& output, const AccF& acc_f, const OutputF& output_f) { const int64_t batches = output.dim_size(0); const int64_t output_depth = output.dim_size(1); const int64_t accum_depth = rhs.dim_size(0); const Tlhs* lhs_data = lhs.flat<Tlhs>().data(); const Trhs* rhs_data = rhs.flat<Trhs>().data(); Tout* output_data = output.flat<Tout>().data(); for (int64_t b = 0; b < batches; ++b) { for (int64_t out_c = 0; out_c < output_depth; ++out_c) { int32_t acc = 0; for (int64_t d = 0; d < accum_depth; ++d) { acc += acc_f(lhs_data[b * accum_depth + d], rhs_data[d * output_depth + out_c], b, out_c); } output_data[b * output_depth + out_c] = output_f(acc, b, out_c); } } } template <typename Tin, typename Tout> Status EvalLhsPerTensorAndRhsPerTensorQuantizedDot( const Tensor& lhs, const Tensor& rhs, float lhs_scale, int32_t lhs_zero_point, float rhs_scale, int32_t rhs_zero_point, float output_scale, int32_t output_zero_point, int output_quantization_min_val, int output_quantization_max_val, Tensor& output) { const double effective_multiplier = static_cast<double>(lhs_scale) * rhs_scale / output_scale; int32_t effective_quantized_multiplier; int effective_shift; TF_RETURN_IF_ERROR(QuantizeMultiplier( effective_multiplier, effective_quantized_multiplier, effective_shift)); DotWithAccFunctionAndOutputFunction<Tin, Tin, Tout>( lhs, rhs, output, [lhs_zero_point, rhs_zero_point](Tin lhs_val, Tin rhs_val, int64_t b, int64_t out_c) { return static_cast<Tout>( (static_cast<int32_t>(lhs_val) - lhs_zero_point) * (static_cast<int32_t>(rhs_val) - rhs_zero_point)); }, [effective_quantized_multiplier, effective_shift, output_zero_point, output_quantization_min_val, output_quantization_max_val](int32_t acc, int64_t b, int64_t out_c) { return AffineRequantizeWithQuantizedMultiplierAndShift<int32_t, Tout>( acc, effective_quantized_multiplier, effective_shift, 0, output_zero_point, output_quantization_min_val, output_quantization_max_val); }); return absl::OkStatus(); } template <typename Tin, typename Tout> Status EvalLhsPerTensorAndRhsPerChannelQuantizedDot( OpKernelContext* context, const Tensor& lhs, const Tensor& rhs, float lhs_scale, int32_t lhs_zero_point, const Tensor& rhs_scales, const Tensor& rhs_zero_points, const Tensor& output_scales, const Tensor& output_zero_points, int output_quantization_min_val, int output_quantization_max_val, Tensor& output) { const int output_depth = output.dim_size(1); const float* rhs_scales_data = rhs_scales.flat<float>().data(); const int32_t* rhs_zero_points_data = rhs_zero_points.flat<int32_t>().data(); Tensor effective_quantized_multipliers; TF_RETURN_IF_ERROR(context->allocate_temp(DT_INT32, rhs_scales.shape(), &effective_quantized_multipliers)); Tensor effective_shifts; TF_RETURN_IF_ERROR( context->allocate_temp(DT_INT32, rhs_scales.shape(), &effective_shifts)); int32_t* effective_quantized_multipliers_data = effective_quantized_multipliers.flat<int32_t>().data(); int32_t* effective_shifts_data = effective_shifts.flat<int32_t>().data(); const bool is_output_scales_scalar = output_scales.dims() == 0; if (!is_output_scales_scalar) { const float* output_scales_data = output_scales.flat<float>().data(); for (int64_t out_c = 0; out_c < output_depth; ++out_c) { const double effective_multiplier = static_cast<double>(lhs_scale) * rhs_scales_data[out_c] / output_scales_data[out_c]; TF_RETURN_IF_ERROR(QuantizeMultiplier( effective_multiplier, effective_quantized_multipliers_data[out_c], effective_shifts_data[out_c])); } } else { const float output_scale = output_scales.scalar<float>()(); for (int64_t out_c = 0; out_c < output_depth; ++out_c) { const double effective_multiplier = static_cast<double>(lhs_scale) * rhs_scales_data[out_c] / output_scale; TF_RETURN_IF_ERROR(QuantizeMultiplier( effective_multiplier, effective_quantized_multipliers_data[out_c], effective_shifts_data[out_c])); } } const int32_t* output_zero_points_data = output_zero_points.flat<int32_t>().data(); DotWithAccFunctionAndOutputFunction<Tin, Tin, Tout>( lhs, rhs, output, [lhs_zero_point, rhs_zero_points_data](Tin lhs_val, Tin rhs_val, int64_t b, int64_t out_c) { return (static_cast<int32_t>(lhs_val) - lhs_zero_point) * (static_cast<int32_t>(rhs_val) - rhs_zero_points_data[out_c]); }, [effective_quantized_multipliers_data, effective_shifts_data, output_zero_points_data, output_quantization_min_val, output_quantization_max_val, is_output_scales_scalar](int32_t acc, int64_t b, int64_t out_c) { return AffineRequantizeWithQuantizedMultiplierAndShift<int32_t, Tout>( acc, effective_quantized_multipliers_data[out_c], effective_shifts_data[out_c], 0, output_zero_points_data[is_output_scales_scalar ? 0 : out_c], output_quantization_min_val, output_quantization_max_val); }); return absl::OkStatus(); } template <typename Tlhs, typename Trhs> void EvalLhsPerBatchAndRhsPerTensorQuantizedDot( OpKernelContext* context, const Tensor& lhs, const Tensor& rhs, const Tensor& lhs_scales, const Tensor& lhs_zero_points, float rhs_scale, int32_t rhs_zero_point, Tensor& output) { const float* lhs_scales_data = lhs_scales.flat<float>().data(); const int32_t* lhs_zero_points_data = lhs_zero_points.flat<int32_t>().data(); DotWithAccFunctionAndOutputFunction<Tlhs, Trhs, float>( lhs, rhs, output, [lhs_zero_points_data, rhs_zero_point](Tlhs lhs_val, Trhs rhs_val, int64_t b, int64_t out_c) { return (static_cast<int32_t>(lhs_val) - lhs_zero_points_data[b]) * (static_cast<int32_t>(rhs_val) - rhs_zero_point); }, [lhs_scales_data, rhs_scale](int32_t acc, int64_t b, int64_t out_c) { return acc * lhs_scales_data[b] * rhs_scale; }); } template <typename Tlhs, typename Trhs> void EvalLhsPerBatchAndRhsPerChannelQuantizedDot( const Tensor& lhs, const Tensor& rhs, const Tensor& lhs_scales, const Tensor& lhs_zero_points, const Tensor& rhs_scales, const Tensor& rhs_zero_points, Tensor& output) { const float* lhs_scales_data = lhs_scales.flat<float>().data(); const int32_t* lhs_zero_points_data = lhs_zero_points.flat<int32_t>().data(); const float* rhs_scales_data = rhs_scales.flat<float>().data(); const int32_t* rhs_zero_points_data = rhs_zero_points.flat<int32_t>().data(); DotWithAccFunctionAndOutputFunction<Tlhs, Trhs, float>( lhs, rhs, output, [lhs_zero_points_data, rhs_zero_points_data](Tlhs lhs_val, Trhs rhs_val, int64_t b, int64_t out_c) { return (static_cast<int32_t>(lhs_val) - lhs_zero_points_data[b]) * (static_cast<int32_t>(rhs_val) - rhs_zero_points_data[out_c]); }, [lhs_scales_data, rhs_scales_data](int32_t acc, int64_t b, int64_t out_c) { return acc * lhs_scales_data[b] * rhs_scales_data[out_c]; }); } template <typename Tin, typename Tout> Status EvalQuantizedDot(OpKernelContext* context, const Tensor& lhs, const Tensor& rhs, const Tensor& lhs_scales, const Tensor& lhs_zero_points, const Tensor& rhs_scales, const Tensor& rhs_zero_points, const Tensor& output_scales, const Tensor& output_zero_points, int output_quantization_min_val, int output_quantization_max_val, Tensor& output) { const float lhs_scale = lhs_scales.scalar<float>()(); const int32_t lhs_zero_point = lhs_zero_points.scalar<int32_t>()(); if (rhs_scales.dims() != 0) { return EvalLhsPerTensorAndRhsPerChannelQuantizedDot<Tin, Tout>( context, lhs, rhs, lhs_scale, lhs_zero_point, rhs_scales, rhs_zero_points, output_scales, output_zero_points, output_quantization_min_val, output_quantization_max_val, output); } else { const float rhs_scale = rhs_scales.scalar<float>()(); const int32_t rhs_zero_point = rhs_zero_points.scalar<int32_t>()(); const float output_scale = output_scales.scalar<float>()(); const int32_t output_zero_point = output_zero_points.scalar<int32_t>()(); return EvalLhsPerTensorAndRhsPerTensorQuantizedDot<Tin, Tout>( lhs, rhs, lhs_scale, lhs_zero_point, rhs_scale, rhs_zero_point, output_scale, output_zero_point, output_quantization_min_val, output_quantization_max_val, output); } } template <typename Trhs> Status EvalHybridDot(OpKernelContext* context, const Tensor& lhs, const Tensor& rhs, const Tensor& rhs_scales, const Tensor& rhs_zero_points, Tensor& output) { const int64_t batches = lhs.dim_size(0); Tensor lhs_quantized; TF_RETURN_IF_ERROR( context->allocate_temp(DT_QINT8, lhs.shape(), &lhs_quantized)); Tensor lhs_scales; TF_RETURN_IF_ERROR(context->allocate_temp(DT_FLOAT, {batches}, &lhs_scales)); Tensor lhs_zero_points; TF_RETURN_IF_ERROR( context->allocate_temp(DT_INT32, {batches}, &lhs_zero_points)); float* lhs_scales_data = lhs_scales.flat<float>().data(); int32_t* lhs_zero_points_data = lhs_zero_points.flat<int32_t>().data(); auto lhs_tensor = lhs.template tensor<float, 2>(); auto lhs_quantized_tensor = lhs_quantized.template tensor<qint8, 2>(); for (int64_t b = 0; b < batches; ++b) { TF_RETURN_IF_ERROR(AsymmetricQuantize( lhs_tensor.template chip<0>(b), -128, 127, lhs_scales_data[b], lhs_zero_points_data[b], lhs_quantized_tensor.template chip<0>(b))); } if (rhs_scales.dims() != 0) { EvalLhsPerBatchAndRhsPerChannelQuantizedDot<qint8, Trhs>( lhs_quantized, rhs, lhs_scales, lhs_zero_points, rhs_scales, rhs_zero_points, output); } else { EvalLhsPerBatchAndRhsPerTensorQuantizedDot<qint8, Trhs>( context, lhs_quantized, rhs, lhs_scales, lhs_zero_points, rhs_scales.scalar<float>()(), rhs_zero_points.scalar<int32_t>()(), output); } return absl::OkStatus(); } } template <typename Tin, typename Tout> class UniformQuantizedDotOp : public OpKernel { public: explicit UniformQuantizedDotOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES(context, (std::is_same<Tin, qint8>()), InvalidArgument("Unsupported lhs/rhs type.")); OP_REQUIRES(context, (std::is_same<Tout, qint32>()), InvalidArgument("Unsupported output type.")); OP_REQUIRES_OK(context, context->GetAttr("output_quantization_min_val", &output_quantization_min_val_)); OP_REQUIRES_OK(context, context->GetAttr("output_quantization_max_val", &output_quantization_max_val_)); int lhs_quantization_axis; OP_REQUIRES_OK(context, context->GetAttr("lhs_quantization_axis", &lhs_quantization_axis)); OP_REQUIRES( context, (lhs_quantization_axis == -1), InvalidArgument("lhs_quantization_axis Attr must be -1 (per-tensor).")); int rhs_quantization_axis; OP_REQUIRES_OK(context, context->GetAttr("rhs_quantization_axis", &rhs_quantization_axis)); OP_REQUIRES(context, (rhs_quantization_axis == 1 || rhs_quantization_axis == -1), InvalidArgument("rhs_quantization_axis Attr must be 1 " "(per-channel) or -1 (per-tensor).")); int output_quantization_axis; OP_REQUIRES_OK(context, context->GetAttr("output_quantization_axis", &output_quantization_axis)); OP_REQUIRES( context, (output_quantization_axis == 1 || output_quantization_axis == -1), InvalidArgument("output_quantization_axis Attr must be 1 " "(per-channel) or -1 (per-tensor).")); } void Compute(OpKernelContext* context) override { const Tensor& lhs = context->input(0); const Tensor& rhs = context->input(1); const Tensor& lhs_scales = context->input(2); const Tensor& lhs_zero_points = context->input(3); const Tensor& rhs_scales = context->input(4); const Tensor& rhs_zero_points = context->input(5); const Tensor& output_scales = context->input(6); const Tensor& output_zero_points = context->input(7); OP_REQUIRES(context, (AllElementsPositive<float>(lhs_scales)), InvalidArgument("lhs scales elements must be all positive.")); OP_REQUIRES(context, (AllElementsPositive<float>(rhs_scales)), InvalidArgument("rhs scales elements must be all positive.")); OP_REQUIRES( context, (AllElementsPositive<float>(output_scales)), InvalidArgument("output scales elements must be all positive.")); OP_REQUIRES_OK(context, DotInputShapeValid(lhs.shape(), rhs.shape())); OP_REQUIRES( context, (lhs_scales.IsSameSize(lhs_zero_points) && lhs_scales.dims() == 0), InvalidArgument( "lhs scales/zero_points must be all scalar tensors. Given: ", lhs_scales.shape().DebugString(), lhs_zero_points.shape().DebugString())); OP_REQUIRES_OK(context, QuantizationAxisAndShapeValid( rhs.shape(), rhs_scales.shape(), rhs_zero_points.shape(), rhs_scales.dims() == 0 ? -1 : 1)); TensorShape output_shape({lhs.dim_size(0), rhs.dim_size(1)}); OP_REQUIRES_OK( context, QuantizationAxisAndShapeValid( output_shape, output_scales.shape(), output_zero_points.shape(), output_scales.dims() == 0 ? -1 : 1)); OP_REQUIRES( context, (rhs_scales.dims() > 0 || output_scales.dims() == 0), InvalidArgument( "If rhs is per-tensor quantized, output must be also per-tensor " "quantized. Given rhs scales and zero_points of shape ", rhs_scales.shape().DebugString(), " but given output scales and zero_points of shape ", output_scales.shape().DebugString())); Tensor* output = nullptr; OP_REQUIRES_OK( context, context->allocate_output( 0, TensorShape({lhs.dim_size(0), rhs.dim_size(1)}), &output)); OP_REQUIRES_OK( context, EvalQuantizedDot<Tin, Tout>( context, lhs, rhs, lhs_scales, lhs_zero_points, rhs_scales, rhs_zero_points, output_scales, output_zero_points, output_quantization_min_val_, output_quantization_max_val_, *output)); } private: int output_quantization_min_val_; int output_quantization_max_val_; }; template <typename Tlhs, typename Trhs, typename Tout> class UniformQuantizedDotHybridOp : public OpKernel { public: explicit UniformQuantizedDotHybridOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES(context, (std::is_same<Tlhs, float>()), InvalidArgument("Unsupported lhs type.")); OP_REQUIRES(context, (std::is_same<Trhs, qint8>()), InvalidArgument("Unsupported rhs type.")); OP_REQUIRES(context, (std::is_same<Tout, float>()), InvalidArgument("Unsupported output type.")); int rhs_quantization_axis; OP_REQUIRES_OK(context, context->GetAttr("rhs_quantization_axis", &rhs_quantization_axis)); OP_REQUIRES(context, (rhs_quantization_axis == 1 || rhs_quantization_axis == -1), InvalidArgument("rhs_quantization_axis Attr must be 1 " "(per-channel) or -1 (per-tensor).")); } void Compute(OpKernelContext* context) override { const Tensor& lhs = context->input(0); const Tensor& rhs = context->input(1); const Tensor& rhs_scales = context->input(2); const Tensor& rhs_zero_points = context->input(3); OP_REQUIRES_OK(context, DotInputShapeValid(lhs.shape(), rhs.shape())); OP_REQUIRES_OK(context, QuantizationAxisAndShapeValid( rhs.shape(), rhs_scales.shape(), rhs_zero_points.shape(), rhs_scales.dims() == 0 ? -1 : 1)); OP_REQUIRES(context, AllElementsPositive<float>(rhs_scales), InvalidArgument("rhs scales elements must be all positive.")); Tensor* output = nullptr; OP_REQUIRES_OK( context, context->allocate_output( 0, TensorShape({lhs.dim_size(0), rhs.dim_size(1)}), &output)); OP_REQUIRES_OK(context, EvalHybridDot<Trhs>(context, lhs, rhs, rhs_scales, rhs_zero_points, *output)); } }; REGISTER_KERNEL_BUILDER(Name("UniformQuantizedDot") .Device(DEVICE_CPU) .TypeConstraint<qint8>("Tin") .TypeConstraint<qint32>("Tout"), UniformQuantizedDotOp<qint8, qint32>); REGISTER_KERNEL_BUILDER(Name("UniformQuantizedDotHybrid") .Device(DEVICE_CPU) .TypeConstraint<float>("Tlhs") .TypeConstraint<qint8>("Trhs") .TypeConstraint<float>("Tout"), UniformQuantizedDotHybridOp<float, qint8, float>); }
#include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { class UniformQuantizedDotTest : public OpsTestBase { protected: }; TEST_F(UniformQuantizedDotTest, PerTensorQuantized) { TF_ASSERT_OK( NodeDefBuilder("test", "UniformQuantizedDot") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("lhs_quantization_min_val", -128) .Attr("lhs_quantization_max_val", 127) .Attr("rhs_quantization_min_val", -128) .Attr("rhs_quantization_max_val", 127) .Attr("output_quantization_min_val", static_cast<int32_t>(-2147483648)) .Attr("output_quantization_max_val", static_cast<int32_t>(2147483647)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint8>(TensorShape({2, 2}), {1, 2, 3, 4}); AddInputFromArray<qint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<float>(TensorShape({}), {0.5}); AddInputFromArray<int32>(TensorShape({}), {1}); AddInputFromArray<float>(TensorShape({}), {2.0}); AddInputFromArray<int32>(TensorShape({}), {2}); AddInputFromArray<float>(TensorShape({}), {0.25}); AddInputFromArray<int32>(TensorShape({}), {-20}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-12, -8, -4, -4, 16, 36}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedDotTest, PerChannelQuantized) { TF_ASSERT_OK( NodeDefBuilder("test", "UniformQuantizedDot") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("lhs_quantization_min_val", -128) .Attr("lhs_quantization_max_val", 127) .Attr("rhs_quantization_min_val", -128) .Attr("rhs_quantization_max_val", 127) .Attr("rhs_quantization_axis", 1) .Attr("output_quantization_min_val", static_cast<int32_t>(-2147483648)) .Attr("output_quantization_max_val", static_cast<int32_t>(2147483647)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint8>(TensorShape({2, 2}), {1, 2, 3, 4}); AddInputFromArray<qint8>(TensorShape({2, 3}), {1, 4, 3, 4, 7, 6}); AddInputFromArray<float>(TensorShape({}), {0.5}); AddInputFromArray<int32>(TensorShape({}), {1}); AddInputFromArray<float>(TensorShape({3}), {2.0, 4.0, 2.0}); AddInputFromArray<int32>(TensorShape({3}), {2, 4, 2}); AddInputFromArray<float>(TensorShape({}), {0.25}); AddInputFromArray<int32>(TensorShape({}), {-20}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-12, 4, -4, -4, 52, 36}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedDotTest, PerTensorQuantizedEffectiveMultiplierOne) { TF_ASSERT_OK( NodeDefBuilder("test", "UniformQuantizedDot") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("lhs_quantization_min_val", -128) .Attr("lhs_quantization_max_val", 127) .Attr("rhs_quantization_min_val", -128) .Attr("rhs_quantization_max_val", 127) .Attr("output_quantization_min_val", static_cast<int32_t>(-2147483648)) .Attr("output_quantization_max_val", static_cast<int32_t>(2147483647)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint8>(TensorShape({2, 2}), {1, 2, 3, 4}); AddInputFromArray<qint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<float>(TensorShape({}), {0.5}); AddInputFromArray<int32>(TensorShape({}), {1}); AddInputFromArray<float>(TensorShape({}), {0.5}); AddInputFromArray<int32>(TensorShape({}), {2}); AddInputFromArray<float>(TensorShape({}), {0.25}); AddInputFromArray<int32>(TensorShape({}), {-4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {-2, -1, 0, 0, 5, 10}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedDotTest, PerChannelQuantizedEffectiveMultiplierOne) { TF_ASSERT_OK( NodeDefBuilder("test", "UniformQuantizedDot") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("lhs_quantization_min_val", -128) .Attr("lhs_quantization_max_val", 127) .Attr("rhs_quantization_min_val", -128) .Attr("rhs_quantization_max_val", 127) .Attr("rhs_quantization_axis", 1) .Attr("output_quantization_min_val", static_cast<int32_t>(-2147483648)) .Attr("output_quantization_max_val", static_cast<int32_t>(2147483647)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<qint8>(TensorShape({2, 2}), {1, 2, 3, 4}); AddInputFromArray<qint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<float>(TensorShape({}), {0.5}); AddInputFromArray<int32>(TensorShape({}), {1}); AddInputFromArray<float>(TensorShape({3}), {0.5, 1.0, 0.5}); AddInputFromArray<int32>(TensorShape({3}), {2, 4, 2}); AddInputFromArray<float>(TensorShape({3}), {0.25, 0.5, 0.25}); AddInputFromArray<int32>(TensorShape({3}), {4, 8, 4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_QINT32, TensorShape({2, 3})); test::FillValues<qint32>(&expected, {6, 9, 8, 8, 7, 18}); test::ExpectTensorEqual<qint32>(expected, *GetOutput(0)); } TEST_F(UniformQuantizedDotTest, HybridPerTensorQuantized) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedDotHybrid") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tlhs", DT_FLOAT) .Attr("Trhs", DT_QINT8) .Attr("Tout", DT_FLOAT) .Attr("rhs_quantization_min_val", -128) .Attr("rhs_quantization_max_val", 127) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2}), {-32.2, -12.1, 10.7, 11.6}); AddInputFromArray<qint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<float>(TensorShape({}), {2.0}); AddInputFromArray<int32>(TensorShape({}), {2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3})); test::FillValues<float>(&expected, {16.0, -72.6, -161.2, 25.0, 69.6, 114.2}); test::ExpectClose(expected, *GetOutput(0), 0.1, 0.01); } TEST_F(UniformQuantizedDotTest, HybridPerChannelQuantized) { TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedDotHybrid") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tlhs", DT_FLOAT) .Attr("Trhs", DT_QINT8) .Attr("Tout", DT_FLOAT) .Attr("rhs_quantization_min_val", -128) .Attr("rhs_quantization_max_val", 127) .Attr("rhs_quantization_axis", 1) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2}), {-32.2, -12.1, 10.7, 11.6}); AddInputFromArray<qint8>(TensorShape({2, 3}), {1, 2, 3, 4, 5, 6}); AddInputFromArray<float>(TensorShape({3}), {2.0, 4.0, 2.0}); AddInputFromArray<int32>(TensorShape({3}), {2, 4, 2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 3})); test::FillValues<float>(&expected, {16.0, 209.2, -161.2, 25.0, -39.2, 114.2}); test::ExpectClose(expected, *GetOutput(0), 0.1, 0.01); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_dot_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/uniform_quant_ops/uniform_quantized_dot_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7d875bf1-7d72-49ea-bcaf-436820c6b061
cpp
tensorflow/tensorflow
gemm_algorithm_picker
third_party/xla/xla/service/gpu/autotuning/gemm_algorithm_picker.cc
third_party/xla/xla/service/gpu/autotuning/gemm_algorithm_picker_test.cc
#include "xla/service/gpu/autotuning/gemm_algorithm_picker.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/autotuning/autotuner_compile_util.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/buffer_comparator.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/scoped_annotation.h" namespace xla { namespace gpu { namespace { using se::gpu::BlasLt; absl::StatusOr<BlasLt::Epilogue> AsBlasLtEpilogue( GemmBackendConfig_Epilogue epilogue) { switch (epilogue) { case GemmBackendConfig::DEFAULT: return BlasLt::Epilogue::kDefault; case GemmBackendConfig::RELU: return BlasLt::Epilogue::kReLU; case GemmBackendConfig::GELU: return BlasLt::Epilogue::kGELU; case GemmBackendConfig::GELU_AUX: return BlasLt::Epilogue::kGELUWithAux; case GemmBackendConfig::BIAS: return BlasLt::Epilogue::kBias; case GemmBackendConfig::BIAS_RELU: return BlasLt::Epilogue::kBiasThenReLU; case GemmBackendConfig::BIAS_GELU: return BlasLt::Epilogue::kBiasThenGELU; case GemmBackendConfig::BIAS_GELU_AUX: return BlasLt::Epilogue::kBiasThenGELUWithAux; default: return Internal("Unsupported Epilogue."); } } class GemmAutotuner { const AutotuneConfig& autotune_config_; RedzoneBuffers rz_buffers_; se::Stream* stream_ = nullptr; bool deterministic_ops_ = false; size_t solutions_limit_ = 0; size_t num_algorithms_left_ = 0; public: explicit GemmAutotuner(const AutotuneConfig& autotune_config) : autotune_config_(autotune_config) {} const AutotuneConfig& config() const { return autotune_config_; } size_t num_algorithms_left() const { return num_algorithms_left_; } absl::StatusOr<AutotuneResult> operator()(const HloInstruction* gemm, const AutotuneCacheKey& key) { num_algorithms_left_ = 0; if (autotune_config_.IsDeviceless()) { return AutotuneResult{}; } VLOG(3) << "Starting autotune of GemmThunk " << gemm->ToString(); TF_ASSIGN_OR_RETURN(stream_, autotune_config_.GetStream()); const DebugOptions& debug_options = gemm->GetModule()->config().debug_options(); deterministic_ops_ = RequireDeterminism(gemm->GetModule()->config()); solutions_limit_ = debug_options.xla_gpu_autotune_max_solutions(); TF_ASSIGN_OR_RETURN(auto gemm_config, GemmConfig::For(gemm)); absl::MutexLock gpu_lock(&GetGpuMutex(stream_->parent())); TF_ASSIGN_OR_RETURN(rz_buffers_, RedzoneBuffers::FromInstruction( *gemm, autotune_config_, debug_options, RedzoneBuffers::kAllInputsAllOutputs)); return IsCublasLtMatmul(*gemm) || IsCublasLtMatmulF8(*gemm) ? TuneGpuBlasLt(gemm, gemm_config) : TuneGpuBlas(gemm, gemm_config); } private: se::DeviceMemoryBase LhsBuffer() { return rz_buffers_.input_buffers().at(0); } se::DeviceMemoryBase RhsBuffer() { return rz_buffers_.input_buffers().at(1); } se::DeviceMemoryBase OutputBuffer() { return rz_buffers_.output_buffers().at(0); } const Shape& GetOutputShape(const HloInstruction* gemm) { return gemm->shape().IsTuple() ? gemm->shape().tuple_shapes(0) : gemm->shape(); } absl::StatusOr<AutotuneResult> TuneGpuBlasLt(const HloInstruction* gemm, const GemmConfig& gemm_config) { auto workspace_buffer = rz_buffers_.output_buffers().at(gemm->shape().tuple_shapes_size() - 1); GpuBackendConfig gpu_config = gemm->backend_config<GpuBackendConfig>().value(); const GemmBackendConfig& backend_config = gpu_config.gemm_backend_config(); bool has_matrix_bias = gemm_config.beta != 0.; TF_ASSIGN_OR_RETURN( bool has_vector_bias, gpublas_lt::EpilogueAddsVectorBias(backend_config.epilogue())); TF_ASSIGN_OR_RETURN( bool has_aux_output, gpublas_lt::EpilogueHasAuxiliaryOutput(backend_config.epilogue())); TF_ASSIGN_OR_RETURN(auto epilogue, AsBlasLtEpilogue(backend_config.epilogue())); se::DeviceMemoryBase a_scale_buffer, b_scale_buffer, c_scale_buffer, d_scale_buffer, d_amax_buffer, bias_buffer, aux_buffer; if (has_vector_bias) { bias_buffer = rz_buffers_.input_buffers().at(has_matrix_bias ? 3 : 2); } if (has_aux_output) { aux_buffer = rz_buffers_.output_buffers().at(1); } TF_ASSIGN_OR_RETURN(auto plan, BlasLt::GetMatmulPlan(stream_, gemm_config, epilogue)); TF_ASSIGN_OR_RETURN( auto algorithms, plan->GetAlgorithms( 128, workspace_buffer.size())); auto tuned_func = [&](const BlasLt::MatmulAlgorithm& algorithm) -> absl::StatusOr<se::blas::ProfileResult> { TF_RETURN_IF_ERROR(plan->ExecuteOnStream( stream_, LhsBuffer(), RhsBuffer(), OutputBuffer(), OutputBuffer(), bias_buffer, aux_buffer, a_scale_buffer, b_scale_buffer, c_scale_buffer, d_scale_buffer, d_amax_buffer, algorithm, workspace_buffer)); se::blas::ProfileResult profile_result; profile_result.set_warmup_run_executed(true); TF_RETURN_IF_ERROR(plan->ExecuteOnStream( stream_, LhsBuffer(), RhsBuffer(), OutputBuffer(), OutputBuffer(), bias_buffer, aux_buffer, a_scale_buffer, b_scale_buffer, c_scale_buffer, d_scale_buffer, d_amax_buffer, algorithm, workspace_buffer, &profile_result)); return std::move(profile_result); }; return GetBestAlgorithm<BlasLt::MatmulAlgorithm>( gemm, algorithms, gemm_config.beta, true, tuned_func); } absl::StatusOr<AutotuneResult> TuneGpuBlas(const HloInstruction* gemm, const GemmConfig& gemm_config) { auto workspace_buffer = rz_buffers_.output_buffers().at(1); std::vector<se::blas::AlgorithmType> algorithms; TF_ASSIGN_OR_RETURN(GemmConfig::DescriptorsTuple desc, gemm_config.GetMatrixDescriptors( LhsBuffer(), RhsBuffer(), OutputBuffer())); auto blas = stream_->parent()->AsBlas(); if (blas == nullptr) { return absl::InternalError("No BLAS support for stream"); } blas->GetBlasGemmAlgorithms(stream_, desc.lhs, desc.rhs, &desc.output, &gemm_config.alpha, &gemm_config.beta, &algorithms); auto tuned_func = [&](const se::blas::AlgorithmType& algorithm) -> absl::StatusOr<se::blas::ProfileResult> { static_cast<void>(RunGemm(gemm_config, LhsBuffer(), RhsBuffer(), OutputBuffer(), workspace_buffer, deterministic_ops_, stream_, algorithm)); se::blas::ProfileResult profile_result; profile_result.set_warmup_run_executed(true); TF_RETURN_IF_ERROR(RunGemm(gemm_config, LhsBuffer(), RhsBuffer(), OutputBuffer(), workspace_buffer, deterministic_ops_, stream_, algorithm, &profile_result)); return std::move(profile_result); }; return GetBestAlgorithm<se::blas::AlgorithmType>( gemm, algorithms, gemm_config.beta, false, tuned_func); } template <typename AlgoT, typename TunedFunc> absl::StatusOr<AutotuneResult> GetBestAlgorithm( const HloInstruction* gemm, absl::Span<const AlgoT> algorithms, double beta, bool return_algo_index, TunedFunc&& run_benchmark) { static_assert(std::is_invocable_r_v<absl::StatusOr<se::blas::ProfileResult>, TunedFunc, const AlgoT&>, "Tuned function has incorrect prototype!"); if (!stream_->parent()->SynchronizeAllActivity()) { return Internal("Failed to synchronize GPU for autotuning."); } tsl::profiler::ScopedAnnotation annotation([&] { return absl::StrFormat("XlaAutotunerMeasurement:#hlo_op=%s#", gemm->name()); }); auto& hlo_module_config = gemm->GetModule()->mutable_config(); const auto& output_shape = GetOutputShape(gemm); se::DeviceMemoryBase reference_buffer; if (autotune_config_.should_check_correctness()) { TF_ASSIGN_OR_RETURN(reference_buffer, rz_buffers_.RedzoneAllocator().AllocateBytes( ShapeUtil::ByteSizeOf(output_shape))); } BufferComparator comparator( output_shape, hlo_module_config.debug_options().xla_gpu_autotune_gemm_rtol(), !autotune_config_.should_skip_wrong_results()); std::vector<AutotuneResult> results; results.reserve(algorithms.size()); std::optional<int64_t> reference_algorithm; auto num = algorithms.size(); if (solutions_limit_ > 0) num = std::min(num, solutions_limit_); for (size_t i = 0; i < num; i++) { const AlgoT& algorithm = algorithms[i]; if (autotune_config_.should_reinit_output_buffer() && beta != 0) { int64_t rng_state = 0; InitializeBuffer(stream_, output_shape.element_type(), &rng_state, OutputBuffer()); } TF_ASSIGN_OR_RETURN(auto profile_result, run_benchmark(algorithm)); AutotuneResult& result = results.emplace_back(); result.mutable_gemm()->set_algorithm(profile_result.algorithm()); if (!profile_result.is_valid()) { result.mutable_failure()->set_kind(AutotuneResult::DISQUALIFIED); continue; } VLOG(2) << "gemm algorithm " << profile_result.algorithm() << " took " << profile_result.elapsed_time_in_ms() << "ms"; *result.mutable_run_time() = tsl::proto_utils::ToDurationProto( absl::Milliseconds(profile_result.elapsed_time_in_ms())); if (!autotune_config_.should_check_correctness()) { num_algorithms_left_++; continue; } TF_ASSIGN_OR_RETURN( se::RedzoneAllocator::RedzoneCheckStatus rz_check_status, rz_buffers_.RedzoneAllocator().CheckRedzones()); if (!rz_check_status.ok()) { result.mutable_failure()->set_kind(AutotuneResult::REDZONE_MODIFIED); *result.mutable_failure()->mutable_msg() = rz_check_status.RedzoneFailureMsg(); LOG(ERROR) << "Detected out-of-bounds write in gemm buffer"; CHECK(!autotune_config_.should_crash_on_check_failure()); continue; } num_algorithms_left_++; if (!reference_algorithm) { TF_RETURN_IF_ERROR(stream_->Memcpy(&reference_buffer, OutputBuffer(), OutputBuffer().size())); reference_algorithm = profile_result.algorithm(); continue; } TF_ASSIGN_OR_RETURN( bool outputs_match, comparator.CompareEqual(stream_, OutputBuffer(), reference_buffer)); if (!outputs_match) { LOG(ERROR) << "Results mismatch between different GEMM algorithms. " << "This is likely a bug/unexpected loss of precision."; CHECK(!autotune_config_.should_crash_on_check_failure()); auto kind = AutotuneResult::WRONG_RESULT; if (autotune_config_.should_skip_wrong_results()) { kind = AutotuneResult::DISQUALIFIED; num_algorithms_left_--; } result.mutable_failure()->set_kind(kind); result.mutable_failure()->mutable_reference_gemm()->set_algorithm( *reference_algorithm); } } absl::StatusOr<AutotuneResult> best = PickBestResult(results, gemm->ToString(), hlo_module_config); if (best.ok()) { if (!return_algo_index) return best; for (size_t i = 0; i < results.size(); ++i) { if (best->gemm().algorithm() == results[i].gemm().algorithm()) { best->mutable_gemm()->set_algorithm(i); return best; } } return Internal("unknown best algorithm"); } LOG(WARNING) << "Failed to find best cuBLAS algorithm, GEMM performance " "might be suboptimal: " << best.status(); return AutotuneResult{}; } }; absl::StatusOr<bool> RunOnInstruction(HloInstruction* gemm, GemmAutotuner& autotuner) { VLOG(3) << "Loading the autotune result of GemmThunk " << gemm->ToString(); GpuBackendConfig gpu_config = gemm->backend_config<GpuBackendConfig>().value(); GemmBackendConfig& backend_config = *gpu_config.mutable_gemm_backend_config(); if (backend_config.alpha_real() == 0.0 && backend_config.alpha_imag() == 0.0 && backend_config.beta() == 0.0) { VLOG(3) << "Skip degenerate gemm instruction auto tuning"; return false; } const AutotuneConfig& config = autotuner.config(); AutotuneCacheKey key(config.GetModelStr(), *gemm); TF_ASSIGN_OR_RETURN(AutotuneResult algorithm, AutotunerUtil::Autotune( gemm, config, [&] { return autotuner(gemm, key); })); auto old_algorithm = backend_config.selected_algorithm(); bool update_algorithm = IsCublasLtMatmulF8(*gemm) || std::visit(VariantVisitor{[](const se::CudaComputeCapability& cc) { return !cc.IsAtLeast( se::CudaComputeCapability::AMPERE); }, [](const se::RocmComputeCapability&) { return true; }}, config.GetGpuComputeCapability()); if (update_algorithm) { int64_t new_algorithm{}; if (algorithm.has_gemm()) { new_algorithm = algorithm.gemm().algorithm(); } else { new_algorithm = se::blas::kDefaultAlgorithm; } if (new_algorithm == old_algorithm && backend_config.has_selected_algorithm()) { return false; } backend_config.set_selected_algorithm(new_algorithm); TF_RETURN_IF_ERROR(gemm->set_backend_config(gpu_config)); return true; } return false; } absl::StatusOr<bool> RunOnComputation(HloComputation* computation, GemmAutotuner& autotuner, size_t* num_algorithms_left) { bool changed = false; for (HloInstruction* instr : computation->instructions()) { if (IsCublasGemm(*instr)) { TF_ASSIGN_OR_RETURN(bool result, RunOnInstruction(instr, autotuner)); *num_algorithms_left = std::max(*num_algorithms_left, autotuner.num_algorithms_left()); changed |= result; } } return changed; } } absl::StatusOr<bool> GemmAlgorithmPicker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_SCOPED_LOGGING_TIMER( absl::StrCat("GemmAlgorithmPicker for ", module->name())); num_algorithms_left_ = 0; if (module->config().debug_options().xla_gpu_autotune_level() == 0) { VLOG(2) << "GEMM auto-tuning disabled, GemmAlgorithmPicker returning early"; return false; } GemmAutotuner autotuner(config_); bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation, autotuner, &num_algorithms_left_)); changed |= result; } return changed; } } }
#include "xla/service/gpu/autotuning/gemm_algorithm_picker.h" #include <cstddef> #include <cstdint> #include <string> #include <variant> #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "xla/autotune_results.pb.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/transforms/gemm_rewriter.h" #include "xla/service/gpu/variant_visitor.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/semantic_version.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/dnn.pb.h" #include "xla/xla.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::gpu { namespace { namespace m = ::xla::match; class GemmAlgorithmPickerTest : public HloTestBase, public ::testing::WithParamInterface<bool> { public: GemmAlgorithmPickerTest() { AutotunerUtil::ClearAutotuneResults(); } DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); debug_options.set_xla_gpu_enable_cublaslt(GetParam()); debug_options.set_xla_gpu_enable_triton_gemm(false); return debug_options; } se::StreamExecutor* stream_exec() { return backend().default_stream_executor(); } const se::DeviceDescription& device_desc() { return stream_exec()->GetDeviceDescription(); } const se::GpuComputeCapability& gpu_comp() { return device_desc().gpu_compute_capability(); } void SetUp() override { std::string_view name = ::testing::UnitTest::GetInstance()->current_test_info()->name(); bool blas_get_version = name.rfind("BlasGetVersion") == 0; std::visit( VariantVisitor{ [&](const se::CudaComputeCapability& cc) { if (!blas_get_version && cc.IsAtLeastAmpere()) { GTEST_SKIP() << "Skipping this test for Ampere+ as it is supported " "and recommended with the Nvidia Volta+ GPUs."; } }, [&](const se::RocmComputeCapability& cc) { if (blas_get_version) { if (device_desc().runtime_version() < stream_executor::SemanticVersion{6, 2, 0}) { GTEST_SKIP() << "This API is not available on ROCM 6.1 and below."; } } else if (GetDebugOptionsForTest().xla_gpu_enable_cublaslt() && !cc.has_hipblaslt()) { GTEST_SKIP() << "No gpublas-lt support on this architecture!"; } }}, gpu_comp()); } }; TEST_P(GemmAlgorithmPickerTest, BlasGetVersion) { auto* blas = stream_exec()->AsBlas(); ASSERT_TRUE(blas != nullptr); std::string version; ASSERT_TRUE(blas->GetVersion(&version).ok()); VLOG(0) << "Blas version: " << version; ASSERT_TRUE(!version.empty()); } TEST_P(GemmAlgorithmPickerTest, SkipAlgorithmsWithAccuracyCheck) { constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[100,100]{1,0} parameter(0) %arg1 = f32[100,100]{1,0} parameter(1) ROOT %dot = f32[100,100]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; auto module_cfg = GetModuleConfigForTest(); auto debug_opts = module_cfg.debug_options(); size_t num_left1 = 0, num_left2 = 0; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kHlo, module_cfg)); { TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHloPass( GemmRewriter( gpu_comp(), stream_executor::SemanticVersion{12, 4, 0}), module.get())); AutotuneConfig cfg{DeviceConfig{stream_exec(), nullptr}, debug_opts}; GemmAlgorithmPicker gpicker(cfg); TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(gpicker, module.get())); num_left1 = gpicker.num_algorithms_left(); if (num_left1 < 2) { GTEST_SKIP() << "Too few algorithms left after the first step"; } auto* blas = stream_exec()->AsBlas(); ASSERT_TRUE(blas != nullptr); TF_ASSERT_OK_AND_ASSIGN(bool is_main_stream, blas->IsMainStreamSet()); if (std::holds_alternative<se::RocmComputeCapability>(gpu_comp())) { ASSERT_TRUE(is_main_stream); } } AutotunerUtil::ClearAutotuneResults(); { debug_opts.set_xla_gpu_autotune_gemm_rtol(1e-12); debug_opts.set_xla_gpu_autotune_level(5); module->mutable_config().set_debug_options(debug_opts); TF_ASSERT_OK_AND_ASSIGN( bool changed, RunHloPass( GemmRewriter( gpu_comp(), stream_executor::SemanticVersion{12, 4, 0}), module.get())); AutotuneConfig cfg{DeviceConfig{stream_exec(), nullptr}, debug_opts}; GemmAlgorithmPicker gpicker(cfg); TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(gpicker, module.get())); num_left2 = gpicker.num_algorithms_left(); } ASSERT_TRUE(num_left1 > num_left2); } TEST_P(GemmAlgorithmPickerTest, SetAlgorithm) { constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[100,100]{1,0} parameter(0) %arg1 = f32[100,100]{1,0} parameter(1) ROOT %dot = f32[100,100]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; auto module_cfg = GetModuleConfigForTest(); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kHlo, module_cfg)); bool changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( gpu_comp(), stream_executor::SemanticVersion{12, 4, 0}), m.get())); changed = false; DebugOptions opts; AutotuneConfig cfg{DeviceConfig{stream_exec(), nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GemmAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); AutotuneResults results; TF_ASSERT_OK(AutotunerUtil::SerializeAutotuneResults(&results)); ASSERT_EQ(results.results_size(), 1); auto& result = *results.mutable_results(0)->mutable_result(); int64_t old_algo_id = result.algorithm().algo_id(); int64_t new_algo_id = old_algo_id + 1; result.mutable_gemm()->set_algorithm(new_algo_id); AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK(AutotunerUtil::LoadAutotuneResults(results)); TF_ASSERT_OK_AND_ASSIGN(m, ParseAndReturnVerifiedModule(kHlo, module_cfg)); changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter(gpu_comp(), se::SemanticVersion{12, 4, 0}), m.get())); changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GemmAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); SCOPED_TRACE(m->ToString()); HloInstruction* dot; ASSERT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(&dot), 0))); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, dot->backend_config<GpuBackendConfig>()); const GemmBackendConfig& config = gpu_config.gemm_backend_config(); EXPECT_EQ(config.selected_algorithm(), new_algo_id); } TEST_P(GemmAlgorithmPickerTest, GetAlgorithmWithoutDevice) { constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[100,100]{1,0} parameter(0) %arg1 = f32[100,100]{1,0} parameter(1) ROOT %dot = f32[100,100]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN( auto m, ParseAndReturnVerifiedModule(kHlo, GetModuleConfigForTest())); bool changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( gpu_comp(), stream_executor::SemanticVersion{12, 4, 0}), m.get())); changed = false; DebugOptions opts; AutotuneConfig cfg{DeviceConfig{stream_exec(), nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GemmAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); AutotuneResults results; TF_ASSERT_OK(AutotunerUtil::SerializeAutotuneResults(&results)); ASSERT_EQ(results.results_size(), 1); auto& result = *results.mutable_results(0)->mutable_result(); int64_t old_algo_id = result.algorithm().algo_id(); int64_t new_algo_id = old_algo_id + 1; result.mutable_gemm()->set_algorithm(new_algo_id); AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK(AutotunerUtil::LoadAutotuneResults(results)); auto module_cfg = GetModuleConfigForTest(); TF_ASSERT_OK_AND_ASSIGN(m, ParseAndReturnVerifiedModule(kHlo, module_cfg)); changed = false; DevicelessConfig deviceless_config{device_desc()}; AutotuneConfig deviceless_cfg{deviceless_config, opts}; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass( GemmRewriter( gpu_comp(), stream_executor::SemanticVersion{12, 4, 0}), m.get())); changed = false; TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass(GemmAlgorithmPicker(deviceless_cfg), m.get())) ASSERT_TRUE(changed); SCOPED_TRACE(m->ToString()); HloInstruction* dot; ASSERT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(&dot), 0))); TF_ASSERT_OK_AND_ASSIGN(GpuBackendConfig gpu_config, dot->backend_config<GpuBackendConfig>()); const GemmBackendConfig& config = gpu_config.gemm_backend_config(); EXPECT_EQ(config.selected_algorithm(), new_algo_id); } INSTANTIATE_TEST_SUITE_P(GemmAlgorithmPickerTestSuite, GemmAlgorithmPickerTest, ::testing::Bool()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/autotuning/gemm_algorithm_picker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/autotuning/gemm_algorithm_picker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f72466f2-69f4-45c4-9c91-d85a452eeac0
cpp
tensorflow/tensorflow
logger_registry
tensorflow/compiler/tf2tensorrt/convert/logger_registry.cc
tensorflow/compiler/tf2tensorrt/convert/logger_registry_test.cc
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/compiler/tf2tensorrt/convert/logger_registry.h" #include <unordered_map> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/mutex.h" namespace tensorflow { namespace tensorrt { class LoggerRegistryImpl : public LoggerRegistry { Status Register(const string& name, nvinfer1::ILogger* logger) override { mutex_lock lock(mu_); if (!registry_.emplace(name, std::unique_ptr<nvinfer1::ILogger>(logger)) .second) { return errors::AlreadyExists("Logger ", name, " already registered"); } return OkStatus(); } nvinfer1::ILogger* LookUp(const string& name) override { mutex_lock lock(mu_); const auto found = registry_.find(name); if (found == registry_.end()) { return nullptr; } return found->second.get(); } private: mutable mutex mu_; mutable std::unordered_map<string, std::unique_ptr<nvinfer1::ILogger>> registry_ TF_GUARDED_BY(mu_); }; LoggerRegistry* GetLoggerRegistry() { static LoggerRegistryImpl* registry = new LoggerRegistryImpl; return registry; } } } #endif
#include <gmock/gmock.h> #include <gtest/gtest.h> namespace { class TestLogger : public nvinfer1::ILogger { void log(nvinfer1::ILogger::Severity severity, const char* msg) override {} }; TestLogger test_logger; REGISTER_TENSORRT_LOGGER("test_logger", &test_logger); TEST(LoggerRegistryTest, RegistersCorrectly) { auto registered_logger = GetLoggerRegistry()->LookUp("test_logger"); EXPECT_THAT(registered_logger, Eq(&test_logger)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/logger_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/convert/logger_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c6633d09-02d1-403c-bb55-c66cc9091cc7
cpp
google/cel-cpp
flatbuffers_backed_impl
tools/flatbuffers_backed_impl.cc
tools/flatbuffers_backed_impl_test.cc
#include "tools/flatbuffers_backed_impl.h" #include <algorithm> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "eval/public/cel_value.h" #include "flatbuffers/flatbuffers.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { CelValue CreateValue(int64_t value) { return CelValue::CreateInt64(value); } CelValue CreateValue(uint64_t value) { return CelValue::CreateUint64(value); } CelValue CreateValue(double value) { return CelValue::CreateDouble(value); } CelValue CreateValue(bool value) { return CelValue::CreateBool(value); } template <typename T, typename U> class FlatBuffersListImpl : public CelList { public: FlatBuffersListImpl(const flatbuffers::Table& table, const reflection::Field& field) : list_(table.GetPointer<const flatbuffers::Vector<T>*>(field.offset())) { } int size() const override { return list_ ? list_->size() : 0; } CelValue operator[](int index) const override { return CreateValue(static_cast<U>(list_->Get(index))); } private: const flatbuffers::Vector<T>* list_; }; class StringListImpl : public CelList { public: explicit StringListImpl( const flatbuffers::Vector<flatbuffers::Offset<flatbuffers::String>>* list) : list_(list) {} int size() const override { return list_ ? list_->size() : 0; } CelValue operator[](int index) const override { auto value = list_->Get(index); return CelValue::CreateStringView( absl::string_view(value->c_str(), value->size())); } private: const flatbuffers::Vector<flatbuffers::Offset<flatbuffers::String>>* list_; }; class ObjectListImpl : public CelList { public: ObjectListImpl( const flatbuffers::Vector<flatbuffers::Offset<flatbuffers::Table>>* list, const reflection::Schema& schema, const reflection::Object& object, google::protobuf::Arena* arena) : arena_(arena), list_(list), schema_(schema), object_(object) {} int size() const override { return list_ ? list_->size() : 0; } CelValue operator[](int index) const override { auto value = list_->Get(index); return CelValue::CreateMap(google::protobuf::Arena::Create<FlatBuffersMapImpl>( arena_, *value, schema_, object_, arena_)); } private: google::protobuf::Arena* arena_; const flatbuffers::Vector<flatbuffers::Offset<flatbuffers::Table>>* list_; const reflection::Schema& schema_; const reflection::Object& object_; }; class ObjectStringIndexedMapImpl : public CelMap { public: ObjectStringIndexedMapImpl( const flatbuffers::Vector<flatbuffers::Offset<flatbuffers::Table>>* list, const reflection::Schema& schema, const reflection::Object& object, const reflection::Field& index, google::protobuf::Arena* arena) : arena_(arena), list_(list), schema_(schema), object_(object), index_(index) { keys_.parent = this; } int size() const override { return list_ ? list_->size() : 0; } absl::StatusOr<bool> Has(const CelValue& key) const override { auto lookup_result = (*this)[key]; if (!lookup_result.has_value()) { return false; } auto result = *lookup_result; if (result.IsError()) { return *(result.ErrorOrDie()); } return true; } absl::optional<CelValue> operator[](CelValue cel_key) const override { if (!cel_key.IsString()) { return CreateErrorValue( arena_, absl::InvalidArgumentError( absl::StrCat("Invalid map key type: '", CelValue::TypeName(cel_key.type()), "'"))); } const absl::string_view key = cel_key.StringOrDie().value(); const auto it = std::lower_bound( list_->begin(), list_->end(), key, [this](const flatbuffers::Table* t, const absl::string_view key) { auto value = flatbuffers::GetFieldS(*t, index_); auto sv = value ? absl::string_view(value->c_str(), value->size()) : absl::string_view(); return sv < key; }); if (it != list_->end()) { auto value = flatbuffers::GetFieldS(**it, index_); auto sv = value ? absl::string_view(value->c_str(), value->size()) : absl::string_view(); if (sv == key) { return CelValue::CreateMap(google::protobuf::Arena::Create<FlatBuffersMapImpl>( arena_, **it, schema_, object_, arena_)); } } return absl::nullopt; } absl::StatusOr<const CelList*> ListKeys() const override { return &keys_; } private: struct KeyList : public CelList { int size() const override { return parent->size(); } CelValue operator[](int index) const override { auto value = flatbuffers::GetFieldS(*(parent->list_->Get(index)), parent->index_); if (value == nullptr) { return CelValue::CreateStringView(absl::string_view()); } return CelValue::CreateStringView( absl::string_view(value->c_str(), value->size())); } ObjectStringIndexedMapImpl* parent; }; google::protobuf::Arena* arena_; const flatbuffers::Vector<flatbuffers::Offset<flatbuffers::Table>>* list_; const reflection::Schema& schema_; const reflection::Object& object_; const reflection::Field& index_; KeyList keys_; }; const reflection::Field* findStringKeyField(const reflection::Object& object) { for (const auto field : *object.fields()) { if (field->key() && field->type()->base_type() == reflection::String) { return field; } } return nullptr; } } absl::StatusOr<bool> FlatBuffersMapImpl::Has(const CelValue& key) const { auto lookup_result = (*this)[key]; if (!lookup_result.has_value()) { return false; } auto result = *lookup_result; if (result.IsError()) { return *(result.ErrorOrDie()); } return true; } absl::optional<CelValue> FlatBuffersMapImpl::operator[]( CelValue cel_key) const { if (!cel_key.IsString()) { return CreateErrorValue( arena_, absl::InvalidArgumentError( absl::StrCat("Invalid map key type: '", CelValue::TypeName(cel_key.type()), "'"))); } auto field = keys_.fields->LookupByKey(cel_key.StringOrDie().value().data()); if (field == nullptr) { return absl::nullopt; } switch (field->type()->base_type()) { case reflection::Byte: return CelValue::CreateInt64( flatbuffers::GetFieldI<int8_t>(table_, *field)); case reflection::Short: return CelValue::CreateInt64( flatbuffers::GetFieldI<int16_t>(table_, *field)); case reflection::Int: return CelValue::CreateInt64( flatbuffers::GetFieldI<int32_t>(table_, *field)); case reflection::Long: return CelValue::CreateInt64( flatbuffers::GetFieldI<int64_t>(table_, *field)); case reflection::UByte: return CelValue::CreateUint64( flatbuffers::GetFieldI<uint8_t>(table_, *field)); case reflection::UShort: return CelValue::CreateUint64( flatbuffers::GetFieldI<uint16_t>(table_, *field)); case reflection::UInt: return CelValue::CreateUint64( flatbuffers::GetFieldI<uint32_t>(table_, *field)); case reflection::ULong: return CelValue::CreateUint64( flatbuffers::GetFieldI<uint64_t>(table_, *field)); case reflection::Float: return CelValue::CreateDouble( flatbuffers::GetFieldF<float>(table_, *field)); case reflection::Double: return CelValue::CreateDouble( flatbuffers::GetFieldF<double>(table_, *field)); case reflection::Bool: return CelValue::CreateBool( flatbuffers::GetFieldI<int8_t>(table_, *field)); case reflection::String: { auto value = flatbuffers::GetFieldS(table_, *field); if (value == nullptr) { return CelValue::CreateStringView(absl::string_view()); } return CelValue::CreateStringView( absl::string_view(value->c_str(), value->size())); } case reflection::Obj: { const auto* field_schema = schema_.objects()->Get(field->type()->index()); const auto* field_table = flatbuffers::GetFieldT(table_, *field); if (field_table == nullptr) { return CelValue::CreateNull(); } if (field_schema) { return CelValue::CreateMap(google::protobuf::Arena::Create<FlatBuffersMapImpl>( arena_, *field_table, schema_, *field_schema, arena_)); } break; } case reflection::Vector: { switch (field->type()->element()) { case reflection::Byte: case reflection::UByte: { const auto* field_table = flatbuffers::GetFieldAnyV(table_, *field); if (field_table == nullptr) { return CelValue::CreateBytesView(absl::string_view()); } return CelValue::CreateBytesView(absl::string_view( reinterpret_cast<const char*>(field_table->Data()), field_table->size())); } case reflection::Short: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<int16_t, int64_t>>( arena_, table_, *field)); case reflection::Int: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<int32_t, int64_t>>( arena_, table_, *field)); case reflection::Long: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<int64_t, int64_t>>( arena_, table_, *field)); case reflection::UShort: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<uint16_t, uint64_t>>( arena_, table_, *field)); case reflection::UInt: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<uint32_t, uint64_t>>( arena_, table_, *field)); case reflection::ULong: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<uint64_t, uint64_t>>( arena_, table_, *field)); case reflection::Float: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<float, double>>( arena_, table_, *field)); case reflection::Double: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<double, double>>( arena_, table_, *field)); case reflection::Bool: return CelValue::CreateList( google::protobuf::Arena::Create<FlatBuffersListImpl<uint8_t, bool>>( arena_, table_, *field)); case reflection::String: return CelValue::CreateList(google::protobuf::Arena::Create<StringListImpl>( arena_, table_.GetPointer<const flatbuffers::Vector< flatbuffers::Offset<flatbuffers::String>>*>( field->offset()))); case reflection::Obj: { const auto* field_schema = schema_.objects()->Get(field->type()->index()); if (field_schema) { const auto* index = findStringKeyField(*field_schema); if (index) { return CelValue::CreateMap( google::protobuf::Arena::Create<ObjectStringIndexedMapImpl>( arena_, table_.GetPointer<const flatbuffers::Vector< flatbuffers::Offset<flatbuffers::Table>>*>( field->offset()), schema_, *field_schema, *index, arena_)); } else { return CelValue::CreateList(google::protobuf::Arena::Create<ObjectListImpl>( arena_, table_.GetPointer<const flatbuffers::Vector< flatbuffers::Offset<flatbuffers::Table>>*>( field->offset()), schema_, *field_schema, arena_)); } } break; } default: return absl::nullopt; } break; } default: return absl::nullopt; } return absl::nullopt; } const CelMap* CreateFlatBuffersBackedObject(const uint8_t* flatbuf, const reflection::Schema& schema, google::protobuf::Arena* arena) { return google::protobuf::Arena::Create<const FlatBuffersMapImpl>( arena, *flatbuffers::GetAnyRoot(flatbuf), schema, *schema.root_table(), arena); } } } } }
#include "tools/flatbuffers_backed_impl.h" #include <string> #include "internal/status_macros.h" #include "internal/testing.h" #include "flatbuffers/idl.h" #include "flatbuffers/reflection.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { constexpr char kReflectionBufferPath[] = "tools/testdata/" "flatbuffers.bfbs"; constexpr absl::string_view kByteField = "f_byte"; constexpr absl::string_view kUbyteField = "f_ubyte"; constexpr absl::string_view kShortField = "f_short"; constexpr absl::string_view kUshortField = "f_ushort"; constexpr absl::string_view kIntField = "f_int"; constexpr absl::string_view kUintField = "f_uint"; constexpr absl::string_view kLongField = "f_long"; constexpr absl::string_view kUlongField = "f_ulong"; constexpr absl::string_view kFloatField = "f_float"; constexpr absl::string_view kDoubleField = "f_double"; constexpr absl::string_view kBoolField = "f_bool"; constexpr absl::string_view kStringField = "f_string"; constexpr absl::string_view kObjField = "f_obj"; constexpr absl::string_view kUnknownField = "f_unknown"; constexpr absl::string_view kBytesField = "r_byte"; constexpr absl::string_view kUbytesField = "r_ubyte"; constexpr absl::string_view kShortsField = "r_short"; constexpr absl::string_view kUshortsField = "r_ushort"; constexpr absl::string_view kIntsField = "r_int"; constexpr absl::string_view kUintsField = "r_uint"; constexpr absl::string_view kLongsField = "r_long"; constexpr absl::string_view kUlongsField = "r_ulong"; constexpr absl::string_view kFloatsField = "r_float"; constexpr absl::string_view kDoublesField = "r_double"; constexpr absl::string_view kBoolsField = "r_bool"; constexpr absl::string_view kStringsField = "r_string"; constexpr absl::string_view kObjsField = "r_obj"; constexpr absl::string_view kIndexedField = "r_indexed"; const int64_t kNumFields = 27; class FlatBuffersTest : public testing::Test { public: FlatBuffersTest() { EXPECT_TRUE( flatbuffers::LoadFile(kReflectionBufferPath, true, &schema_file_)); flatbuffers::Verifier verifier( reinterpret_cast<const uint8_t*>(schema_file_.data()), schema_file_.size()); EXPECT_TRUE(reflection::VerifySchemaBuffer(verifier)); EXPECT_TRUE(parser_.Deserialize( reinterpret_cast<const uint8_t*>(schema_file_.data()), schema_file_.size())); schema_ = reflection::GetSchema(schema_file_.data()); } const CelMap& loadJson(std::string data) { EXPECT_TRUE(parser_.Parse(data.data())); const CelMap* value = CreateFlatBuffersBackedObject( parser_.builder_.GetBufferPointer(), *schema_, &arena_); EXPECT_NE(nullptr, value); EXPECT_EQ(kNumFields, value->size()); const CelList* keys = value->ListKeys().value(); EXPECT_NE(nullptr, keys); EXPECT_EQ(kNumFields, keys->size()); EXPECT_TRUE((*keys)[2].IsString()); return *value; } protected: std::string schema_file_; flatbuffers::Parser parser_; const reflection::Schema* schema_; google::protobuf::Arena arena_; }; TEST_F(FlatBuffersTest, PrimitiveFields) { const CelMap& value = loadJson(R"({ f_byte: -1, f_ubyte: 1, f_short: -2, f_ushort: 2, f_int: -3, f_uint: 3, f_long: -4, f_ulong: 4, f_float: 5.0, f_double: 6.0, f_bool: false, f_string: "test" })"); { auto f = value[CelValue::CreateStringView(kByteField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsInt64()); EXPECT_EQ(-1, f->Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUbyteField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsUint64()); EXPECT_EQ(1, uf->Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kShortField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsInt64()); EXPECT_EQ(-2, f->Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUshortField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsUint64()); EXPECT_EQ(2, uf->Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kIntField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsInt64()); EXPECT_EQ(-3, f->Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUintField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsUint64()); EXPECT_EQ(3, uf->Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kLongField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsInt64()); EXPECT_EQ(-4, f->Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUlongField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsUint64()); EXPECT_EQ(4, uf->Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kFloatField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsDouble()); EXPECT_EQ(5.0, f->DoubleOrDie()); } { auto f = value[CelValue::CreateStringView(kDoubleField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsDouble()); EXPECT_EQ(6.0, f->DoubleOrDie()); } { auto f = value[CelValue::CreateStringView(kBoolField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsBool()); EXPECT_EQ(false, f->BoolOrDie()); } { auto f = value[CelValue::CreateStringView(kStringField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsString()); EXPECT_EQ("test", f->StringOrDie().value()); } { CelValue bad_field = CelValue::CreateInt64(1); auto f = value[bad_field]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsError()); auto presence = value.Has(bad_field); EXPECT_FALSE(presence.ok()); EXPECT_EQ(presence.status().code(), absl::StatusCode::kInvalidArgument); } { auto f = value[CelValue::CreateStringView(kUnknownField)]; EXPECT_FALSE(f.has_value()); } } TEST_F(FlatBuffersTest, PrimitiveFieldDefaults) { const CelMap& value = loadJson("{}"); { auto f = value[CelValue::CreateStringView(kByteField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsInt64()); EXPECT_EQ(0, f->Int64OrDie()); } { auto f = value[CelValue::CreateStringView(kShortField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsInt64()); EXPECT_EQ(150, f->Int64OrDie()); } { auto f = value[CelValue::CreateStringView(kBoolField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsBool()); EXPECT_EQ(true, f->BoolOrDie()); } { auto f = value[CelValue::CreateStringView(kStringField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsString()); EXPECT_EQ("", f->StringOrDie().value()); } } TEST_F(FlatBuffersTest, ObjectField) { const CelMap& value = loadJson(R"({ f_obj: { f_string: "entry", f_int: 16 } })"); CelValue field = CelValue::CreateStringView(kObjField); auto presence = value.Has(field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto f = value[field]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsMap()); const CelMap& m = *f->MapOrDie(); EXPECT_EQ(2, m.size()); { auto obj_field = CelValue::CreateStringView(kStringField); auto member_presence = m.Has(obj_field); EXPECT_OK(member_presence); EXPECT_TRUE(*member_presence); auto mf = m[obj_field]; EXPECT_TRUE(mf.has_value()); EXPECT_TRUE(mf->IsString()); EXPECT_EQ("entry", mf->StringOrDie().value()); } { auto obj_field = CelValue::CreateStringView(kIntField); auto member_presence = m.Has(obj_field); EXPECT_OK(member_presence); EXPECT_TRUE(*member_presence); auto mf = m[obj_field]; EXPECT_TRUE(mf.has_value()); EXPECT_TRUE(mf->IsInt64()); EXPECT_EQ(16, mf->Int64OrDie()); } { std::string undefined = "f_undefined"; CelValue undefined_field = CelValue::CreateStringView(undefined); auto presence = m.Has(undefined_field); EXPECT_OK(presence); EXPECT_FALSE(*presence); auto v = m[undefined_field]; EXPECT_FALSE(v.has_value()); presence = m.Has(CelValue::CreateBool(false)); EXPECT_FALSE(presence.ok()); EXPECT_EQ(presence.status().code(), absl::StatusCode::kInvalidArgument); } } TEST_F(FlatBuffersTest, ObjectFieldDefault) { const CelMap& value = loadJson("{}"); auto f = value[CelValue::CreateStringView(kObjField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsNull()); } TEST_F(FlatBuffersTest, PrimitiveVectorFields) { const CelMap& value = loadJson(R"({ r_byte: [-97], r_ubyte: [97, 98, 99], r_short: [-2], r_ushort: [2], r_int: [-3], r_uint: [3], r_long: [-4], r_ulong: [4], r_float: [5.0], r_double: [6.0], r_bool: [false], r_string: ["test"] })"); { auto f = value[CelValue::CreateStringView(kBytesField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsBytes()); EXPECT_EQ("\x9F", f->BytesOrDie().value()); } { auto uf = value[CelValue::CreateStringView(kUbytesField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsBytes()); EXPECT_EQ("abc", uf->BytesOrDie().value()); } { auto f = value[CelValue::CreateStringView(kShortsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(-2, l[0].Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUshortsField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsList()); const CelList& l = *uf->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(2, l[0].Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kIntsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(-3, l[0].Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUintsField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsList()); const CelList& l = *uf->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(3, l[0].Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kLongsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(-4, l[0].Int64OrDie()); } { auto uf = value[CelValue::CreateStringView(kUlongsField)]; EXPECT_TRUE(uf.has_value()); EXPECT_TRUE(uf->IsList()); const CelList& l = *uf->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(4, l[0].Uint64OrDie()); } { auto f = value[CelValue::CreateStringView(kFloatsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(5.0, l[0].DoubleOrDie()); } { auto f = value[CelValue::CreateStringView(kDoublesField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(6.0, l[0].DoubleOrDie()); } { auto f = value[CelValue::CreateStringView(kBoolsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ(false, l[0].BoolOrDie()); } { auto f = value[CelValue::CreateStringView(kStringsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(1, l.size()); EXPECT_EQ("test", l[0].StringOrDie().value()); } } TEST_F(FlatBuffersTest, ObjectVectorField) { const CelMap& value = loadJson(R"({ r_obj: [{ f_string: "entry", f_int: 16 },{ f_int: 32 }] })"); auto f = value[CelValue::CreateStringView(kObjsField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(2, l.size()); { EXPECT_TRUE(l[0].IsMap()); const CelMap& m = *l[0].MapOrDie(); EXPECT_EQ(2, m.size()); { CelValue field = CelValue::CreateStringView(kStringField); auto presence = m.Has(field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto mf = m[field]; EXPECT_TRUE(mf.has_value()); EXPECT_TRUE(mf->IsString()); EXPECT_EQ("entry", mf->StringOrDie().value()); } { CelValue field = CelValue::CreateStringView(kIntField); auto presence = m.Has(field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto mf = m[field]; EXPECT_TRUE(mf.has_value()); EXPECT_TRUE(mf->IsInt64()); EXPECT_EQ(16, mf->Int64OrDie()); } } { EXPECT_TRUE(l[1].IsMap()); const CelMap& m = *l[1].MapOrDie(); EXPECT_EQ(2, m.size()); { CelValue field = CelValue::CreateStringView(kStringField); auto presence = m.Has(field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto mf = m[field]; EXPECT_TRUE(mf.has_value()); EXPECT_TRUE(mf->IsString()); EXPECT_EQ("", mf->StringOrDie().value()); } { CelValue field = CelValue::CreateStringView(kIntField); auto presence = m.Has(field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto mf = m[field]; EXPECT_TRUE(mf.has_value()); EXPECT_TRUE(mf->IsInt64()); EXPECT_EQ(32, mf->Int64OrDie()); } { std::string undefined = "f_undefined"; CelValue field = CelValue::CreateStringView(undefined); auto presence = m.Has(field); EXPECT_OK(presence); EXPECT_FALSE(*presence); auto mf = m[field]; EXPECT_FALSE(mf.has_value()); } } } TEST_F(FlatBuffersTest, VectorFieldDefaults) { const CelMap& value = loadJson("{}"); for (const auto field : std::vector<absl::string_view>{ kIntsField, kBoolsField, kStringsField, kObjsField}) { auto f = value[CelValue::CreateStringView(field)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsList()); const CelList& l = *f->ListOrDie(); EXPECT_EQ(0, l.size()); } { auto f = value[CelValue::CreateStringView(kIndexedField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsMap()); const CelMap& m = *f->MapOrDie(); EXPECT_EQ(0, m.size()); EXPECT_EQ(0, (*m.ListKeys())->size()); } { auto f = value[CelValue::CreateStringView(kBytesField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsBytes()); EXPECT_EQ("", f->BytesOrDie().value()); } } TEST_F(FlatBuffersTest, IndexedObjectVectorField) { const CelMap& value = loadJson(R"({ r_indexed: [ { f_string: "a", f_int: 16 }, { f_string: "b", f_int: 32 }, { f_string: "c", f_int: 64 }, { f_string: "d", f_int: 128 } ] })"); auto f = value[CelValue::CreateStringView(kIndexedField)]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsMap()); const CelMap& m = *f->MapOrDie(); EXPECT_EQ(4, m.size()); const CelList& l = *m.ListKeys().value(); EXPECT_EQ(4, l.size()); EXPECT_TRUE(l[0].IsString()); EXPECT_TRUE(l[1].IsString()); EXPECT_TRUE(l[2].IsString()); EXPECT_TRUE(l[3].IsString()); std::string a = "a"; std::string b = "b"; std::string c = "c"; std::string d = "d"; EXPECT_EQ(a, l[0].StringOrDie().value()); EXPECT_EQ(b, l[1].StringOrDie().value()); EXPECT_EQ(c, l[2].StringOrDie().value()); EXPECT_EQ(d, l[3].StringOrDie().value()); for (const std::string& key : std::vector<std::string>{a, b, c, d}) { auto v = m[CelValue::CreateString(&key)]; EXPECT_TRUE(v.has_value()); const CelMap& vm = *v->MapOrDie(); EXPECT_EQ(2, vm.size()); auto vf = vm[CelValue::CreateStringView(kStringField)]; EXPECT_TRUE(vf.has_value()); EXPECT_TRUE(vf->IsString()); EXPECT_EQ(key, vf->StringOrDie().value()); auto vi = vm[CelValue::CreateStringView(kIntField)]; EXPECT_TRUE(vi.has_value()); EXPECT_TRUE(vi->IsInt64()); } { std::string bb = "bb"; std::string dd = "dd"; EXPECT_FALSE(m[CelValue::CreateString(&bb)].has_value()); EXPECT_FALSE(m[CelValue::CreateString(&dd)].has_value()); EXPECT_FALSE( m[CelValue::CreateStringView(absl::string_view())].has_value()); } } TEST_F(FlatBuffersTest, IndexedObjectVectorFieldDefaults) { const CelMap& value = loadJson(R"({ r_indexed: [ { f_string: "", f_int: 16 } ] })"); CelValue field = CelValue::CreateStringView(kIndexedField); auto presence = value.Has(field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto f = value[field]; EXPECT_TRUE(f.has_value()); EXPECT_TRUE(f->IsMap()); const CelMap& m = *f->MapOrDie(); EXPECT_EQ(1, m.size()); const CelList& l = *m.ListKeys().value(); EXPECT_EQ(1, l.size()); EXPECT_TRUE(l[0].IsString()); EXPECT_EQ("", l[0].StringOrDie().value()); CelValue map_field = CelValue::CreateStringView(absl::string_view()); presence = m.Has(map_field); EXPECT_OK(presence); EXPECT_TRUE(*presence); auto v = m[map_field]; EXPECT_TRUE(v.has_value()); std::string undefined = "f_undefined"; CelValue undefined_field = CelValue::CreateStringView(undefined); presence = m.Has(undefined_field); EXPECT_OK(presence); EXPECT_FALSE(*presence); v = m[undefined_field]; EXPECT_FALSE(v.has_value()); presence = m.Has(CelValue::CreateBool(false)); EXPECT_FALSE(presence.ok()); EXPECT_EQ(presence.status().code(), absl::StatusCode::kInvalidArgument); } } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/tools/flatbuffers_backed_impl.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/tools/flatbuffers_backed_impl_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e1c8bb67-f331-4edf-af15-281e38fa10d1
cpp
google/arolla
expr_debug_string
arolla/expr/expr_debug_string.cc
arolla/expr/expr_debug_string_test.cc
#include "arolla/expr/expr_debug_string.h" #include <algorithm> #include <cstddef> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/annotation_utils.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_visitor.h" #include "arolla/expr/operator_repr_functions.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" #include "arolla/util/string.h" namespace arolla::expr { namespace { std::vector<ExprNodePtr> SelectStatementNodes(const PostOrder& post_order) { const size_t kCriticalDepth = 3; std::vector<size_t> node_parent_count(post_order.nodes_size(), 0); for (size_t i = 0; i < post_order.nodes_size(); ++i) { for (size_t j : post_order.dep_indices(i)) { node_parent_count[j] += 1; } } std::vector<ExprNodePtr> result; std::vector<size_t> node_depth(post_order.nodes_size()); for (size_t i = 0; i < post_order.nodes_size(); ++i) { size_t depth = 1; for (size_t j : post_order.dep_indices(i)) { depth = std::max(depth, 1 + node_depth[j]); } const auto& node = post_order.node(i); const bool is_statement = IsNameAnnotation(node) || (node_parent_count[i] > 1 && depth >= kCriticalDepth); if (is_statement) { result.push_back(node); depth = 1; } node_depth[i] = depth; } return result; } constexpr bool IsSafeStatementName(absl::string_view str) { return IsQualifiedIdentifier(str) && !(str.size() > 1 && str[0] == '_' && std::find_if_not(str.begin() + 1, str.end(), IsDigit) == str.end()); } absl::flat_hash_map<Fingerprint, std::string> GenStatementNames( const PostOrder& post_order) { const auto statement_nodes = SelectStatementNodes(post_order); absl::flat_hash_map<absl::string_view, size_t> name_counts; name_counts.reserve(statement_nodes.size()); for (const auto& node : statement_nodes) { if (auto name = ReadNameAnnotation(node); IsSafeStatementName(name)) { name_counts[name] += 1; } } for (auto& [_, v] : name_counts) { v = (v > 1); } absl::flat_hash_map<Fingerprint, std::string> result; result.reserve(statement_nodes.size()); size_t anonymous_count = 1; for (const auto& node : statement_nodes) { const auto name = ReadNameAnnotation(node); if (!IsSafeStatementName(name)) { result.emplace(node->fingerprint(), absl::StrCat("_", anonymous_count++)); continue; } auto& name_count = name_counts[name]; if (name_count == 0) { result.emplace(node->fingerprint(), name); } else { result.emplace(node->fingerprint(), absl::StrCat(name, "._", name_count++)); } } return result; } std::vector<const ReprToken*> GetNodeDepsTokens( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { std::vector<const ReprToken*> inputs(node->node_deps().size()); for (size_t i = 0; i < node->node_deps().size(); ++i) { inputs[i] = &node_tokens.at(node->node_deps()[i]->fingerprint()); } return inputs; } ReprToken FormatLiteral(const ExprNodePtr& node) { if (auto literal = node->qvalue()) { return literal->GenReprToken(); } else { return ReprToken{"<broken_literal>"}; } } ReprToken FormatLeaf(const ExprNodePtr& node) { return ReprToken{absl::StrCat("L", ContainerAccessString(node->leaf_key()))}; } ReprToken FormatPlaceholder(const ExprNodePtr& node) { return ReprToken{ absl::StrCat("P", ContainerAccessString(node->placeholder_key()))}; } ReprToken FormatOperatorCanonical(const ExprNodePtr& node, absl::Span<const ReprToken* const> inputs) { ReprToken result; if (IsRegisteredOperator(node->op())) { absl::StrAppend(&result.str, "M."); } absl::StrAppend(&result.str, node->op()->display_name(), "("); for (size_t i = 0; i < inputs.size(); ++i) { if (i > 0) { absl::StrAppend(&result.str, ", "); } absl::StrAppend(&result.str, inputs[i]->str); } absl::StrAppend(&result.str, ")"); return result; } ReprToken FormatOperatorVerbose(const ExprNodePtr& node, absl::Span<const ReprToken* const> inputs) { ReprToken result = FormatOperatorCanonical(node, inputs); if (!IsQTypeAnnotation(node)) { if (auto* qtype = node->qtype()) { absl::StrAppend(&result.str, ":", qtype->name()); } } return result; } ReprToken FormatOperatorPretty( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { if (auto repr = FormatOperatorNodePretty(node, node_tokens)) { return *std::move(repr); } return FormatOperatorCanonical(node, GetNodeDepsTokens(node, node_tokens)); } ReprToken FormatVerbose(const ExprNodePtr& node, absl::Span<const ReprToken* const> inputs) { switch (node->type()) { case ExprNodeType::kLiteral: return FormatLiteral(node); case ExprNodeType::kLeaf: return FormatLeaf(node); case ExprNodeType::kPlaceholder: return FormatPlaceholder(node); case ExprNodeType::kOperator: return FormatOperatorVerbose(node, inputs); } ABSL_UNREACHABLE(); } ReprToken FormatPretty( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { switch (node->type()) { case ExprNodeType::kLiteral: return FormatLiteral(node); case ExprNodeType::kLeaf: return FormatLeaf(node); case ExprNodeType::kPlaceholder: return FormatPlaceholder(node); case ExprNodeType::kOperator: return FormatOperatorPretty(node, node_tokens); } ABSL_UNREACHABLE(); } ReprToken FormatWithHiddenInputs(const ExprNodePtr& node) { const ReprToken kDots{.str = "..."}; std::vector<const ReprToken*> inputs(node->node_deps().size(), &kDots); return FormatVerbose(node, inputs); } } std::string ToDebugString(const ExprNodePtr& root, bool verbose) { const PostOrder post_order(root); const auto statement_names = GenStatementNames(post_order); std::vector<std::string> result; absl::flat_hash_map<Fingerprint, ReprToken> node_tokens( post_order.nodes_size()); auto format = verbose ? []( const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) { return FormatVerbose(node, GetNodeDepsTokens(node, node_tokens)); }: FormatPretty; for (const auto& node : post_order.nodes()) { auto it = statement_names.find(node->fingerprint()); if (it == statement_names.end()) { node_tokens[node->fingerprint()] = format(node, node_tokens); continue; } const auto& statement_name = it->second; if (IsSafeStatementName(ReadNameAnnotation(node))) { DCHECK_EQ(node->node_deps().size(), 2); const auto& res = node_tokens[node->node_deps()[0]->fingerprint()]; result.push_back(absl::StrCat(statement_name, " = ", res.str)); } else { result.push_back( absl::StrCat(statement_name, " = ", format(node, node_tokens).str)); } node_tokens[node->fingerprint()] = ReprToken{.str = statement_name}; } result.push_back(std::move(node_tokens[root->fingerprint()].str)); return absl::StrJoin(result, "\n"); } constexpr int kMaxDebugSnippetSize = 200; std::string GetDebugSnippet(const ExprNodePtr& node) { const auto& node_deps = node->node_deps(); absl::InlinedVector<ReprToken, 4> dep_snippets(node_deps.size()); absl::InlinedVector<const ReprToken*, 4> dep_snippet_ptrs(node_deps.size()); for (size_t i = 0; i < node_deps.size(); ++i) { dep_snippets[i] = FormatWithHiddenInputs(node_deps[i]); dep_snippet_ptrs[i] = &dep_snippets[i]; } std::string snippet = FormatVerbose(node, dep_snippet_ptrs).str; return Truncate(std::move(snippet), kMaxDebugSnippetSize); } }
#include "arolla/expr/expr_debug_string.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include "benchmark/benchmark.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operator_repr_functions.h" #include "arolla/expr/registered_expr_operator.h" #include "arolla/expr/testing/test_operators.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/testing/dummy_types.h" #include "arolla/qtype/unspecified_qtype.h" #include "arolla/util/bytes.h" #include "arolla/util/fingerprint.h" #include "arolla/util/init_arolla.h" #include "arolla/util/repr.h" #include "arolla/util/text.h" namespace arolla::expr { namespace { using ::arolla::testing::WithNameAnnotation; using ::arolla::testing::WithQTypeAnnotation; class ExprDebugStringTest : public ::testing::Test { protected: ExprNodePtr Pos(ExprNodePtr x) { return CallOp("math.pos", {x}).value(); } ExprNodePtr Neg(ExprNodePtr x) { return CallOp("math.neg", {x}).value(); } ExprNodePtr Invert(ExprNodePtr x) { return CallOp("core.presence_not", {x}).value(); } ExprNodePtr Pow(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.pow", {lhs, rhs}).value(); } ExprNodePtr Mul(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.multiply", {lhs, rhs}).value(); } ExprNodePtr TrueDiv(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.divide", {lhs, rhs}).value(); } ExprNodePtr FloorDiv(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.floordiv", {lhs, rhs}).value(); } ExprNodePtr Mod(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.mod", {lhs, rhs}).value(); } ExprNodePtr Add(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.add", {lhs, rhs}).value(); } ExprNodePtr Sub(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("math.subtract", {lhs, rhs}).value(); } ExprNodePtr And(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.presence_and", {lhs, rhs}).value(); } ExprNodePtr Or(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.presence_or", {lhs, rhs}).value(); } ExprNodePtr Lt(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.less", {lhs, rhs}).value(); } ExprNodePtr Le(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.less_equal", {lhs, rhs}).value(); } ExprNodePtr Eq(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.equal", {lhs, rhs}).value(); } ExprNodePtr Neq(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.not_equal", {lhs, rhs}).value(); } ExprNodePtr Ge(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.greater_equal", {lhs, rhs}).value(); } ExprNodePtr Gt(ExprNodePtr lhs, ExprNodePtr rhs) { return CallOp("core.greater", {lhs, rhs}).value(); } ExprNodePtr GetAttr(ExprNodePtr lhs, ExprNodePtr rhs) { return ExprNode::UnsafeMakeOperatorNode( std::make_shared<RegisteredOperator>("core.getattr"), {lhs, rhs}, ExprAttributes()); } ExprNodePtr GetItem(ExprNodePtr lhs, ExprNodePtr rhs) { return ExprNode::UnsafeMakeOperatorNode( std::make_shared<RegisteredOperator>("core.getitem"), {lhs, rhs}, ExprAttributes()); } ExprNodePtr MakeSlice(ExprNodePtr a, ExprNodePtr b, ExprNodePtr c) { return ExprNode::UnsafeMakeOperatorNode( std::make_shared<RegisteredOperator>("core.make_slice"), {a, b, c}, ExprAttributes()); } ExprNodePtr Dummy(ExprNodePtr lhs, ExprNodePtr rhs) { return ExprNode::UnsafeMakeOperatorNode( std::make_shared<testing::DummyOp>( "custom.add", ExprOperatorSignature({{"x"}, {"y"}})), {lhs, rhs}, ExprAttributes()); } }; TEST_F(ExprDebugStringTest, Literal) { { auto expr = Literal(int32_t{271828182}); EXPECT_EQ("271828182", ToDebugString(expr)); } { auto expr = Literal(int64_t{3417201710}); EXPECT_EQ("int64{3417201710}", ToDebugString(expr)); } { auto expr = Literal(Bytes("Hello, World!")); EXPECT_EQ("b'Hello, World!'", ToDebugString(expr)); } { ASSERT_OK_AND_ASSIGN(auto expr, WithNameAnnotation(Literal(Bytes("Foo")), "Bar")); EXPECT_EQ("Bar = b'Foo'\nBar", ToDebugString(expr)); } } TEST_F(ExprDebugStringTest, Leaf) { EXPECT_THAT(ToDebugString(Leaf("")), "L['']"); EXPECT_THAT(ToDebugString(Leaf("x")), "L.x"); EXPECT_THAT(ToDebugString(Leaf("'Hello, World!'")), "L['\\'Hello, World!\\'']"); ASSERT_OK_AND_ASSIGN(auto y, WithQTypeAnnotation(Leaf("y"), GetQType<double>())); EXPECT_THAT(ToDebugString(y), "M.annotation.qtype(L.y, FLOAT64)"); EXPECT_THAT(ToDebugString(y, true), "M.annotation.qtype(L.y, FLOAT64)"); } TEST_F(ExprDebugStringTest, Placeholder) { EXPECT_EQ("P['']", ToDebugString(Placeholder(""))); EXPECT_EQ("P.foo", ToDebugString(Placeholder("foo"))); EXPECT_EQ("P[':)']", ToDebugString(Placeholder(":)"))); } TEST_F(ExprDebugStringTest, Operator) { EXPECT_EQ(ToDebugString(CallOp("math.max", {Leaf("x"), Leaf("y")}).value()), "M.math.max(L.x, L.y)"); EXPECT_EQ(ToDebugString(Add(Leaf("x"), Leaf("y"))), "L.x + L.y"); } TEST_F(ExprDebugStringTest, Trivial) { ASSERT_OK_AND_ASSIGN( auto abc, CallOp("test.add3", {Literal(0.f), Literal(2.7182f), Literal(3.1415f)})); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("test.add3", {abc, Leaf("x"), Leaf("y")})); EXPECT_EQ("M.test.add3(M.test.add3(0., 2.7182, 3.1415), L.x, L.y)", ToDebugString(expr)); } TEST_F(ExprDebugStringTest, UniqueStatements) { auto a = Leaf("a"); auto b = Leaf("b"); auto c = Leaf("c"); ASSERT_OK_AND_ASSIGN( auto d, WithNameAnnotation( Pow(Sub(Mul(b, b), Mul(Literal(4.f), Mul(a, c))), Literal(0.5f)), "D")); ASSERT_OK_AND_ASSIGN( auto x0, WithNameAnnotation(TrueDiv(TrueDiv(Add(b, d), Literal(-2.f)), a), "x0")); ASSERT_OK_AND_ASSIGN(auto x1, WithNameAnnotation(TrueDiv(TrueDiv(c, a), x0), "x1")); EXPECT_EQ(("D = (L.b * L.b - 4. * (L.a * L.c)) ** 0.5\n" "x0 = (L.b + D) / -2. / L.a\n" "x1 = L.c / L.a / x0\n" "x0 * x1"), ToDebugString(Mul(x0, x1))); } TEST_F(ExprDebugStringTest, LeafKeyNameCollisions) { ASSERT_OK_AND_ASSIGN(auto expr, WithNameAnnotation(Add(Leaf("a"), Leaf("a")), "a")); EXPECT_EQ(ToDebugString(expr), "a = L.a + L.a\na"); } TEST_F(ExprDebugStringTest, PlaceholderKeyNameCollisions) { ASSERT_OK_AND_ASSIGN( auto expr, WithNameAnnotation( CallOp("math.min", {Placeholder("a"), Placeholder("a")}), "a")); EXPECT_EQ(ToDebugString(expr), "a = M.math.min(P.a, P.a)\na"); } TEST_F(ExprDebugStringTest, UnsafeStatements) { auto expr = Leaf("a"); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "_")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "_1")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "_X")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "_Y")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "_Y")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "quick' fox")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "foo.bar")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "abc.")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), ".def")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "fake..name")); ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "a.1")); EXPECT_EQ(ToDebugString(expr), "_ = L.a + L.a\n" "_1 = M.annotation.name(_ + _, '')\n" "_2 = M.annotation.name(_1 + _1, '_1')\n" "_X = _2 + _2\n" "_Y._1 = _X + _X\n" "_Y._2 = _Y._1 + _Y._1\n" "_3 = M.annotation.name(_Y._2 + _Y._2, 'quick\\' fox')\n" "foo.bar = _3 + _3\n" "_4 = M.annotation.name(foo.bar + foo.bar, 'abc.')\n" "_5 = M.annotation.name(_4 + _4, '.def')\n" "_6 = M.annotation.name(_5 + _5, 'fake..name')\n" "_7 = M.annotation.name(_6 + _6, 'a.1')\n" "_7"); } TEST_F(ExprDebugStringTest, UnnamedStatements) { auto expr = Leaf("a"); for (int i = 0; i < 10; ++i) { expr = Add(expr, expr); } EXPECT_EQ(ToDebugString(expr), "_1 = L.a + L.a + (L.a + L.a)\n" "_2 = _1 + _1 + (_1 + _1)\n" "_3 = _2 + _2 + (_2 + _2)\n" "_4 = _3 + _3 + (_3 + _3)\n" "_4 + _4 + (_4 + _4)"); } TEST_F(ExprDebugStringTest, NonUniqueStatements) { auto expr = Leaf("a"); for (int i = 0; i < 5; ++i) { ASSERT_OK_AND_ASSIGN(expr, WithNameAnnotation(Add(expr, expr), "a")); } EXPECT_EQ(ToDebugString(expr), "a._1 = L.a + L.a\n" "a._2 = a._1 + a._1\n" "a._3 = a._2 + a._2\n" "a._4 = a._3 + a._3\n" "a._5 = a._4 + a._4\n" "a._5"); } TEST_F(ExprDebugStringTest, ExponentionalBlow) { auto expr = Leaf("a"); for (int i = 0; i < 100; ++i) { expr = Add(expr, expr); } EXPECT_LT(ToDebugString(expr).size(), 10000); } TEST_F(ExprDebugStringTest, Infix_Brackets) { EXPECT_EQ(ToDebugString(Neg(Add(Leaf("u"), Leaf("v")))), "-(L.u + L.v)"); EXPECT_EQ(ToDebugString(Neg(Leaf("u"))), "-L.u"); EXPECT_EQ(ToDebugString(Mul(Leaf("u"), Leaf("x"))), "L.u * L.x"); EXPECT_EQ(ToDebugString(Mul(Add(Leaf("u"), Leaf("v")), Leaf("x"))), "(L.u + L.v) * L.x"); EXPECT_EQ(ToDebugString(Mul(Leaf("u"), Add(Leaf("x"), Leaf("y")))), "L.u * (L.x + L.y)"); EXPECT_EQ( ToDebugString(Mul(Add(Leaf("u"), Leaf("v")), Add(Leaf("x"), Leaf("y")))), "(L.u + L.v) * (L.x + L.y)"); } TEST_F(ExprDebugStringTest, Infix_Unary_IncorrectArity) { auto x = Leaf("x"); ASSERT_OK_AND_ASSIGN(auto op, LookupOperator("math.pos")); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {x}, {})), "+L.x"); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {x, x}, {})), "M.math.pos(L.x, L.x)"); } TEST_F(ExprDebugStringTest, Infix_Binary_IncorrectArity) { auto x = Leaf("x"); ASSERT_OK_AND_ASSIGN(auto op, LookupOperator("math.add")); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {x, x}, {})), "L.x + L.x"); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {x, x, x}, {})), "M.math.add(L.x, L.x, L.x)"); } TEST_F(ExprDebugStringTest, Infix_NonRegisteredOperator) { auto x = Leaf("x"); ASSERT_OK_AND_ASSIGN(auto op, LookupOperator("math.add")); ASSERT_OK_AND_ASSIGN(auto op_impl, DecayRegisteredOperator(op)); EXPECT_EQ(ToDebugString( ExprNode::UnsafeMakeOperatorNode(std::move(op), {x, x}, {})), "L.x + L.x"); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(std::move(op_impl), {x, x}, {})), "math.add(L.x, L.x)"); } TEST_F(ExprDebugStringTest, Infix_Unary_NegGroup) { auto x = Leaf("x"); EXPECT_EQ(ToDebugString(Pos(x)), "+L.x"); EXPECT_EQ(ToDebugString(Pos(Pos(x))), "+(+L.x)"); EXPECT_EQ(ToDebugString(Neg(x)), "-L.x"); EXPECT_EQ(ToDebugString(Neg(Neg(x))), "-(-L.x)"); EXPECT_EQ(ToDebugString(Invert(x)), "~L.x"); EXPECT_EQ(ToDebugString(Invert(Invert(x))), "~(~L.x)"); EXPECT_EQ(ToDebugString(Pos(Neg(Invert(x)))), "+(-(~L.x))"); EXPECT_EQ(ToDebugString(Pos(Neg(Invert(Pos(Neg(Invert(x))))))), "+(-(~(+(-(~L.x)))))"); } TEST_F(ExprDebugStringTest, Infix_Binary_Pow) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); EXPECT_EQ(ToDebugString(Pow(x, y)), "L.x ** L.y"); EXPECT_EQ(ToDebugString(Pow(Pow(x, y), z)), "(L.x ** L.y) ** L.z"); EXPECT_EQ(ToDebugString(Pow(x, Pow(y, z))), "L.x ** L.y ** L.z"); EXPECT_EQ(ToDebugString(Neg(Pow(x, y))), "-(L.x ** L.y)"); EXPECT_EQ(ToDebugString(Pow(Neg(x), y)), "(-L.x) ** L.y"); EXPECT_EQ(ToDebugString(Pow(x, Neg(y))), "L.x ** -L.y"); } TEST_F(ExprDebugStringTest, Infix_Binary_MulGroup) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); EXPECT_EQ(ToDebugString(Mul(x, y)), "L.x * L.y"); EXPECT_EQ(ToDebugString(Mul(Mul(x, y), z)), "L.x * L.y * L.z"); EXPECT_EQ(ToDebugString(Mul(x, Mul(y, z))), "L.x * (L.y * L.z)"); EXPECT_EQ(ToDebugString(TrueDiv(x, y)), "L.x / L.y"); EXPECT_EQ(ToDebugString(TrueDiv(TrueDiv(x, y), z)), "L.x / L.y / L.z"); EXPECT_EQ(ToDebugString(TrueDiv(x, TrueDiv(y, z))), "L.x / (L.y / L.z)"); EXPECT_EQ(ToDebugString(FloorDiv(x, y)), "L.x EXPECT_EQ(ToDebugString(FloorDiv(FloorDiv(x, y), z)), "L.x EXPECT_EQ(ToDebugString(FloorDiv(x, FloorDiv(y, z))), "L.x EXPECT_EQ(ToDebugString(Mod(x, y)), "L.x % L.y"); EXPECT_EQ(ToDebugString(Mod(Mod(x, y), z)), "L.x % L.y % L.z"); EXPECT_EQ(ToDebugString(Mod(x, Mod(y, z))), "L.x % (L.y % L.z)"); EXPECT_EQ(ToDebugString(TrueDiv(Mul(x, y), z)), "L.x * L.y / L.z"); EXPECT_EQ(ToDebugString(Mul(x, TrueDiv(y, z))), "L.x * (L.y / L.z)"); EXPECT_EQ(ToDebugString(Mul(TrueDiv(x, y), z)), "L.x / L.y * L.z"); EXPECT_EQ(ToDebugString(TrueDiv(x, Mul(y, z))), "L.x / (L.y * L.z)"); EXPECT_EQ(ToDebugString(FloorDiv(Mul(x, y), z)), "L.x * L.y EXPECT_EQ(ToDebugString(Mul(x, FloorDiv(y, z))), "L.x * (L.y EXPECT_EQ(ToDebugString(Mul(FloorDiv(x, y), z)), "L.x EXPECT_EQ(ToDebugString(FloorDiv(x, Mul(y, z))), "L.x EXPECT_EQ(ToDebugString(Mod(Mul(x, y), z)), "L.x * L.y % L.z"); EXPECT_EQ(ToDebugString(Mul(x, Mod(y, z))), "L.x * (L.y % L.z)"); EXPECT_EQ(ToDebugString(Mul(Mod(x, y), z)), "L.x % L.y * L.z"); EXPECT_EQ(ToDebugString(Mod(x, Mul(y, z))), "L.x % (L.y * L.z)"); EXPECT_EQ(ToDebugString(Pow(Mul(x, y), z)), "(L.x * L.y) ** L.z"); EXPECT_EQ(ToDebugString(Mul(x, Pow(y, z))), "L.x * L.y ** L.z"); EXPECT_EQ(ToDebugString(Mul(Pow(x, y), z)), "L.x ** L.y * L.z"); EXPECT_EQ(ToDebugString(Pow(x, Mul(y, z))), "L.x ** (L.y * L.z)"); EXPECT_EQ(ToDebugString(Neg(Mul(x, y))), "-(L.x * L.y)"); EXPECT_EQ(ToDebugString(Mul(Neg(x), y)), "-L.x * L.y"); EXPECT_EQ(ToDebugString(Mul(x, Neg(y))), "L.x * -L.y"); } TEST_F(ExprDebugStringTest, Infix_Binary_AddGroup) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); EXPECT_EQ(ToDebugString(Add(x, y)), "L.x + L.y"); EXPECT_EQ(ToDebugString(Add(Add(x, y), z)), "L.x + L.y + L.z"); EXPECT_EQ(ToDebugString(Add(x, Add(y, z))), "L.x + (L.y + L.z)"); EXPECT_EQ(ToDebugString(Sub(x, y)), "L.x - L.y"); EXPECT_EQ(ToDebugString(Sub(Sub(x, y), z)), "L.x - L.y - L.z"); EXPECT_EQ(ToDebugString(Sub(x, Sub(y, z))), "L.x - (L.y - L.z)"); EXPECT_EQ(ToDebugString(Sub(Add(x, y), z)), "L.x + L.y - L.z"); EXPECT_EQ(ToDebugString(Add(x, Sub(y, z))), "L.x + (L.y - L.z)"); EXPECT_EQ(ToDebugString(Add(Sub(x, y), z)), "L.x - L.y + L.z"); EXPECT_EQ(ToDebugString(Sub(x, Add(y, z))), "L.x - (L.y + L.z)"); EXPECT_EQ(ToDebugString(Mul(Add(x, y), z)), "(L.x + L.y) * L.z"); EXPECT_EQ(ToDebugString(Add(x, Mul(y, z))), "L.x + L.y * L.z"); EXPECT_EQ(ToDebugString(Add(Mul(x, y), z)), "L.x * L.y + L.z"); EXPECT_EQ(ToDebugString(Mul(x, Add(y, z))), "L.x * (L.y + L.z)"); EXPECT_EQ(ToDebugString(Pow(Add(x, y), z)), "(L.x + L.y) ** L.z"); EXPECT_EQ(ToDebugString(Add(x, Pow(y, z))), "L.x + L.y ** L.z"); EXPECT_EQ(ToDebugString(Add(Pow(x, y), z)), "L.x ** L.y + L.z"); EXPECT_EQ(ToDebugString(Pow(x, Add(y, z))), "L.x ** (L.y + L.z)"); EXPECT_EQ(ToDebugString(Neg(Add(x, y))), "-(L.x + L.y)"); EXPECT_EQ(ToDebugString(Add(Neg(x), y)), "-L.x + L.y"); EXPECT_EQ(ToDebugString(Add(x, Neg(y))), "L.x + -L.y"); } TEST_F(ExprDebugStringTest, Infix_Binary_And) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); EXPECT_EQ(ToDebugString(And(x, y)), "L.x & L.y"); EXPECT_EQ(ToDebugString(And(And(x, y), z)), "L.x & L.y & L.z"); EXPECT_EQ(ToDebugString(And(x, And(y, z))), "L.x & (L.y & L.z)"); EXPECT_EQ(ToDebugString(Add(And(x, y), z)), "(L.x & L.y) + L.z"); EXPECT_EQ(ToDebugString(And(x, Add(y, z))), "L.x & L.y + L.z"); EXPECT_EQ(ToDebugString(And(Add(x, y), z)), "L.x + L.y & L.z"); EXPECT_EQ(ToDebugString(Add(x, And(y, z))), "L.x + (L.y & L.z)"); EXPECT_EQ(ToDebugString(Mul(And(x, y), z)), "(L.x & L.y) * L.z"); EXPECT_EQ(ToDebugString(And(x, Mul(y, z))), "L.x & L.y * L.z"); EXPECT_EQ(ToDebugString(And(Mul(x, y), z)), "L.x * L.y & L.z"); EXPECT_EQ(ToDebugString(Mul(x, And(y, z))), "L.x * (L.y & L.z)"); EXPECT_EQ(ToDebugString(Pow(And(x, y), z)), "(L.x & L.y) ** L.z"); EXPECT_EQ(ToDebugString(And(x, Pow(y, z))), "L.x & L.y ** L.z"); EXPECT_EQ(ToDebugString(And(Pow(x, y), z)), "L.x ** L.y & L.z"); EXPECT_EQ(ToDebugString(Pow(x, And(y, z))), "L.x ** (L.y & L.z)"); EXPECT_EQ(ToDebugString(Neg(And(x, y))), "-(L.x & L.y)"); EXPECT_EQ(ToDebugString(And(Neg(x), y)), "-L.x & L.y"); EXPECT_EQ(ToDebugString(And(x, Neg(y))), "L.x & -L.y"); } TEST_F(ExprDebugStringTest, Infix_Binary_Or) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); EXPECT_EQ(ToDebugString(Or(x, y)), "L.x | L.y"); EXPECT_EQ(ToDebugString(Or(Or(x, y), z)), "L.x | L.y | L.z"); EXPECT_EQ(ToDebugString(Or(x, Or(y, z))), "L.x | (L.y | L.z)"); EXPECT_EQ(ToDebugString(And(Or(x, y), z)), "(L.x | L.y) & L.z"); EXPECT_EQ(ToDebugString(Or(x, And(y, z))), "L.x | L.y & L.z"); EXPECT_EQ(ToDebugString(Or(And(x, y), z)), "L.x & L.y | L.z"); EXPECT_EQ(ToDebugString(And(x, Or(y, z))), "L.x & (L.y | L.z)"); EXPECT_EQ(ToDebugString(Add(Or(x, y), z)), "(L.x | L.y) + L.z"); EXPECT_EQ(ToDebugString(Or(x, Add(y, z))), "L.x | L.y + L.z"); EXPECT_EQ(ToDebugString(Or(Add(x, y), z)), "L.x + L.y | L.z"); EXPECT_EQ(ToDebugString(Add(x, Or(y, z))), "L.x + (L.y | L.z)"); EXPECT_EQ(ToDebugString(Mul(Or(x, y), z)), "(L.x | L.y) * L.z"); EXPECT_EQ(ToDebugString(Or(x, Mul(y, z))), "L.x | L.y * L.z"); EXPECT_EQ(ToDebugString(Or(Mul(x, y), z)), "L.x * L.y | L.z"); EXPECT_EQ(ToDebugString(Mul(x, Or(y, z))), "L.x * (L.y | L.z)"); EXPECT_EQ(ToDebugString(Pow(Or(x, y), z)), "(L.x | L.y) ** L.z"); EXPECT_EQ(ToDebugString(Or(x, Pow(y, z))), "L.x | L.y ** L.z"); EXPECT_EQ(ToDebugString(Or(Pow(x, y), z)), "L.x ** L.y | L.z"); EXPECT_EQ(ToDebugString(Pow(x, Or(y, z))), "L.x ** (L.y | L.z)"); EXPECT_EQ(ToDebugString(Neg(Or(x, y))), "-(L.x | L.y)"); EXPECT_EQ(ToDebugString(Or(Neg(x), y)), "-L.x | L.y"); EXPECT_EQ(ToDebugString(Or(x, Neg(y))), "L.x | -L.y"); } TEST_F(ExprDebugStringTest, Infix_Binary_LtGroup) { auto x = Leaf("x"); auto y = Leaf("y"); auto z = Leaf("z"); EXPECT_EQ(ToDebugString(Lt(x, y)), "L.x < L.y"); EXPECT_EQ(ToDebugString(Lt(Lt(x, y), z)), "(L.x < L.y) < L.z"); EXPECT_EQ(ToDebugString(Lt(x, Lt(y, z))), "L.x < (L.y < L.z)"); EXPECT_EQ(ToDebugString(Le(x, y)), "L.x <= L.y"); EXPECT_EQ(ToDebugString(Le(Le(x, y), z)), "(L.x <= L.y) <= L.z"); EXPECT_EQ(ToDebugString(Le(x, Le(y, z))), "L.x <= (L.y <= L.z)"); EXPECT_EQ(ToDebugString(Eq(x, y)), "L.x == L.y"); EXPECT_EQ(ToDebugString(Eq(Eq(x, y), z)), "(L.x == L.y) == L.z"); EXPECT_EQ(ToDebugString(Eq(x, Eq(y, z))), "L.x == (L.y == L.z)"); EXPECT_EQ(ToDebugString(Neq(x, y)), "L.x != L.y"); EXPECT_EQ(ToDebugString(Neq(Neq(x, y), z)), "(L.x != L.y) != L.z"); EXPECT_EQ(ToDebugString(Neq(x, Neq(y, z))), "L.x != (L.y != L.z)"); EXPECT_EQ(ToDebugString(Ge(x, y)), "L.x >= L.y"); EXPECT_EQ(ToDebugString(Ge(Ge(x, y), z)), "(L.x >= L.y) >= L.z"); EXPECT_EQ(ToDebugString(Ge(x, Ge(y, z))), "L.x >= (L.y >= L.z)"); EXPECT_EQ(ToDebugString(Gt(x, y)), "L.x > L.y"); EXPECT_EQ(ToDebugString(Gt(Gt(x, y), z)), "(L.x > L.y) > L.z"); EXPECT_EQ(ToDebugString(Gt(x, Gt(y, z))), "L.x > (L.y > L.z)"); EXPECT_EQ(ToDebugString(Le(Lt(x, y), z)), "(L.x < L.y) <= L.z"); EXPECT_EQ(ToDebugString(Lt(x, Le(y, z))), "L.x < (L.y <= L.z)"); EXPECT_EQ(ToDebugString(Lt(Le(x, y), z)), "(L.x <= L.y) < L.z"); EXPECT_EQ(ToDebugString(Le(x, Lt(y, z))), "L.x <= (L.y < L.z)"); EXPECT_EQ(ToDebugString(Eq(Lt(x, y), z)), "(L.x < L.y) == L.z"); EXPECT_EQ(ToDebugString(Lt(x, Eq(y, z))), "L.x < (L.y == L.z)"); EXPECT_EQ(ToDebugString(Lt(Eq(x, y), z)), "(L.x == L.y) < L.z"); EXPECT_EQ(ToDebugString(Eq(x, Lt(y, z))), "L.x == (L.y < L.z)"); EXPECT_EQ(ToDebugString(Neq(Lt(x, y), z)), "(L.x < L.y) != L.z"); EXPECT_EQ(ToDebugString(Lt(x, Neq(y, z))), "L.x < (L.y != L.z)"); EXPECT_EQ(ToDebugString(Lt(Neq(x, y), z)), "(L.x != L.y) < L.z"); EXPECT_EQ(ToDebugString(Neq(x, Lt(y, z))), "L.x != (L.y < L.z)"); EXPECT_EQ(ToDebugString(Ge(Lt(x, y), z)), "(L.x < L.y) >= L.z"); EXPECT_EQ(ToDebugString(Lt(x, Ge(y, z))), "L.x < (L.y >= L.z)"); EXPECT_EQ(ToDebugString(Lt(Ge(x, y), z)), "(L.x >= L.y) < L.z"); EXPECT_EQ(ToDebugString(Ge(x, Lt(y, z))), "L.x >= (L.y < L.z)"); EXPECT_EQ(ToDebugString(Gt(Lt(x, y), z)), "(L.x < L.y) > L.z"); EXPECT_EQ(ToDebugString(Lt(x, Gt(y, z))), "L.x < (L.y > L.z)"); EXPECT_EQ(ToDebugString(Lt(Gt(x, y), z)), "(L.x > L.y) < L.z"); EXPECT_EQ(ToDebugString(Gt(x, Lt(y, z))), "L.x > (L.y < L.z)"); EXPECT_EQ(ToDebugString(Or(Lt(x, y), z)), "(L.x < L.y) | L.z"); EXPECT_EQ(ToDebugString(Lt(x, Or(y, z))), "L.x < L.y | L.z"); EXPECT_EQ(ToDebugString(Lt(Or(x, y), z)), "L.x | L.y < L.z"); EXPECT_EQ(ToDebugString(Or(x, Lt(y, z))), "L.x | (L.y < L.z)"); EXPECT_EQ(ToDebugString(And(Lt(x, y), z)), "(L.x < L.y) & L.z"); EXPECT_EQ(ToDebugString(Lt(x, And(y, z))), "L.x < L.y & L.z"); EXPECT_EQ(ToDebugString(Lt(And(x, y), z)), "L.x & L.y < L.z"); EXPECT_EQ(ToDebugString(And(x, Lt(y, z))), "L.x & (L.y < L.z)"); EXPECT_EQ(ToDebugString(Add(Lt(x, y), z)), "(L.x < L.y) + L.z"); EXPECT_EQ(ToDebugString(Lt(x, Add(y, z))), "L.x < L.y + L.z"); EXPECT_EQ(ToDebugString(Lt(Add(x, y), z)), "L.x + L.y < L.z"); EXPECT_EQ(ToDebugString(Add(x, Lt(y, z))), "L.x + (L.y < L.z)"); EXPECT_EQ(ToDebugString(Mul(Lt(x, y), z)), "(L.x < L.y) * L.z"); EXPECT_EQ(ToDebugString(Lt(x, Mul(y, z))), "L.x < L.y * L.z"); EXPECT_EQ(ToDebugString(Lt(Mul(x, y), z)), "L.x * L.y < L.z"); EXPECT_EQ(ToDebugString(Mul(x, Lt(y, z))), "L.x * (L.y < L.z)"); EXPECT_EQ(ToDebugString(Pow(Lt(x, y), z)), "(L.x < L.y) ** L.z"); EXPECT_EQ(ToDebugString(Lt(x, Pow(y, z))), "L.x < L.y ** L.z"); EXPECT_EQ(ToDebugString(Lt(Pow(x, y), z)), "L.x ** L.y < L.z"); EXPECT_EQ(ToDebugString(Pow(x, Lt(y, z))), "L.x ** (L.y < L.z)"); EXPECT_EQ(ToDebugString(Neg(Lt(x, y))), "-(L.x < L.y)"); EXPECT_EQ(ToDebugString(Lt(Neg(x), y)), "-L.x < L.y"); EXPECT_EQ(ToDebugString(Lt(x, Neg(y))), "L.x < -L.y"); } TEST_F(ExprDebugStringTest, Infix_GetAttr) { auto x = Leaf("x"); auto y = Leaf("y"); auto one = Literal<int>(1); auto foo = Literal(Text("foo")); auto bar = Literal(Text("bar")); EXPECT_EQ(ToDebugString(GetAttr(x, foo)), "L.x.foo"); EXPECT_EQ(ToDebugString(GetAttr(GetAttr(x, foo), bar)), "L.x.foo.bar"); EXPECT_EQ(ToDebugString(GetAttr(one, foo)), "(1).foo"); EXPECT_EQ(ToDebugString(GetAttr(foo, bar)), "'foo'.bar"); EXPECT_EQ(ToDebugString(Lt(GetAttr(x, foo), y)), "L.x.foo < L.y"); EXPECT_EQ(ToDebugString(Lt(x, GetAttr(y, bar))), "L.x < L.y.bar"); EXPECT_EQ(ToDebugString(GetAttr(Lt(x, y), foo)), "(L.x < L.y).foo"); EXPECT_EQ(ToDebugString(Or(GetAttr(x, foo), y)), "L.x.foo | L.y"); EXPECT_EQ(ToDebugString(Or(x, GetAttr(y, bar))), "L.x | L.y.bar"); EXPECT_EQ(ToDebugString(GetAttr(Or(x, y), foo)), "(L.x | L.y).foo"); EXPECT_EQ(ToDebugString(And(GetAttr(x, foo), y)), "L.x.foo & L.y"); EXPECT_EQ(ToDebugString(And(x, GetAttr(y, bar))), "L.x & L.y.bar"); EXPECT_EQ(ToDebugString(GetAttr(And(x, y), foo)), "(L.x & L.y).foo"); EXPECT_EQ(ToDebugString(Add(GetAttr(x, foo), y)), "L.x.foo + L.y"); EXPECT_EQ(ToDebugString(Add(x, GetAttr(y, bar))), "L.x + L.y.bar"); EXPECT_EQ(ToDebugString(GetAttr(Add(x, y), foo)), "(L.x + L.y).foo"); EXPECT_EQ(ToDebugString(Mul(GetAttr(x, foo), y)), "L.x.foo * L.y"); EXPECT_EQ(ToDebugString(Mul(x, GetAttr(y, bar))), "L.x * L.y.bar"); EXPECT_EQ(ToDebugString(GetAttr(Mul(x, y), foo)), "(L.x * L.y).foo"); EXPECT_EQ(ToDebugString(Pow(GetAttr(x, foo), y)), "L.x.foo ** L.y"); EXPECT_EQ(ToDebugString(Pow(x, GetAttr(y, bar))), "L.x ** L.y.bar"); EXPECT_EQ(ToDebugString(GetAttr(Pow(x, y), foo)), "(L.x ** L.y).foo"); EXPECT_EQ(ToDebugString(Neg(GetAttr(x, foo))), "-L.x.foo"); EXPECT_EQ(ToDebugString(GetAttr(Neg(x), foo)), "(-L.x).foo"); } TEST_F(ExprDebugStringTest, Infix_GetItem) { auto x = Leaf("x"); auto y = Leaf("y"); auto one = Literal<int>(1); auto foo = Literal(Text("foo")); auto bar = Literal(Text("bar")); EXPECT_EQ(ToDebugString(GetItem(x, foo)), "L.x['foo']"); EXPECT_EQ(ToDebugString(GetItem(x, y)), "L.x[L.y]"); EXPECT_EQ(ToDebugString(GetItem(GetItem(x, foo), bar)), "L.x['foo']['bar']"); EXPECT_EQ(ToDebugString(GetItem(one, foo)), "(1)['foo']"); EXPECT_EQ(ToDebugString(GetItem(foo, bar)), "'foo'['bar']"); EXPECT_EQ(ToDebugString(GetItem(CallOp("math.max", {x, y}).value(), bar)), "M.math.max(L.x, L.y)['bar']"); EXPECT_EQ(ToDebugString(Lt(GetItem(x, foo), y)), "L.x['foo'] < L.y"); EXPECT_EQ(ToDebugString(Lt(x, GetItem(y, bar))), "L.x < L.y['bar']"); EXPECT_EQ(ToDebugString(GetItem(Lt(x, y), foo)), "(L.x < L.y)['foo']"); EXPECT_EQ(ToDebugString(Or(GetItem(x, foo), y)), "L.x['foo'] | L.y"); EXPECT_EQ(ToDebugString(Or(x, GetItem(y, bar))), "L.x | L.y['bar']"); EXPECT_EQ(ToDebugString(GetItem(Or(x, y), foo)), "(L.x | L.y)['foo']"); EXPECT_EQ(ToDebugString(And(GetItem(x, foo), y)), "L.x['foo'] & L.y"); EXPECT_EQ(ToDebugString(And(x, GetItem(y, bar))), "L.x & L.y['bar']"); EXPECT_EQ(ToDebugString(GetItem(And(x, y), foo)), "(L.x & L.y)['foo']"); EXPECT_EQ(ToDebugString(Add(GetItem(x, foo), y)), "L.x['foo'] + L.y"); EXPECT_EQ(ToDebugString(Add(x, GetItem(y, bar))), "L.x + L.y['bar']"); EXPECT_EQ(ToDebugString(GetItem(Add(x, y), foo)), "(L.x + L.y)['foo']"); EXPECT_EQ(ToDebugString(Mul(GetItem(x, foo), y)), "L.x['foo'] * L.y"); EXPECT_EQ(ToDebugString(Mul(x, GetItem(y, bar))), "L.x * L.y['bar']"); EXPECT_EQ(ToDebugString(GetItem(Mul(x, y), foo)), "(L.x * L.y)['foo']"); EXPECT_EQ(ToDebugString(Pow(GetItem(x, foo), y)), "L.x['foo'] ** L.y"); EXPECT_EQ(ToDebugString(Pow(x, GetItem(y, bar))), "L.x ** L.y['bar']"); EXPECT_EQ(ToDebugString(GetItem(Pow(x, y), foo)), "(L.x ** L.y)['foo']"); EXPECT_EQ(ToDebugString(Neg(GetItem(x, foo))), "-L.x['foo']"); EXPECT_EQ(ToDebugString(GetItem(Neg(x), foo)), "(-L.x)['foo']"); EXPECT_EQ(ToDebugString(GetAttr(GetItem(x, foo), bar)), "L.x['foo'].bar"); EXPECT_EQ(ToDebugString(GetItem(x, GetAttr(y, foo))), "L.x[L.y.foo]"); EXPECT_EQ(ToDebugString(GetItem(GetAttr(x, foo), bar)), "L.x.foo['bar']"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, foo, bar))), "L.x[1:'foo':'bar']"); } TEST_F(ExprDebugStringTest, Infix_MakeSlice) { auto x = Leaf("x"); auto y = Leaf("y"); auto u = Literal(GetUnspecifiedQValue()); auto one = Literal<int>(1); auto two = Literal<int>(2); auto three = Literal<int>(3); EXPECT_EQ(ToDebugString(MakeSlice(u, u, u)), "M.core.make_slice(unspecified, unspecified, unspecified)"); EXPECT_EQ(ToDebugString(MakeSlice(one, two, three)), "M.core.make_slice(1, 2, 3)"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, u, u))), "L.x[:]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, u, u))), "L.x[1:]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, one, u))), "L.x[:1]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, u, one))), "L.x[::1]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, two, u))), "L.x[1:2]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, u, two))), "L.x[1::2]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, one, two))), "L.x[:1:2]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, two, three))), "L.x[1:2:3]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(Add(one, x), two, three))), "L.x[1 + L.x:2:3]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, Add(two, x), three))), "L.x[1:2 + L.x:3]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, two, Add(three, x)))), "L.x[1:2:3 + L.x]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(Gt(one, x), two, three))), "L.x[1 > L.x:2:3]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, Gt(two, x), three))), "L.x[1:2 > L.x:3]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(one, two, Gt(three, x)))), "L.x[1:2:3 > L.x]"); auto d = Literal(DummyWithPrecedence{}); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(d, u, u))), "L.x[dummy-with-precedence:]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, d, u))), "L.x[:dummy-with-precedence]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, u, d))), "L.x[::dummy-with-precedence]"); auto d11 = Literal(DummyWithPrecedence{.precedence = ReprToken::Precedence{11, 11}}); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(d11, u, u))), "L.x[(dummy-with-precedence):]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, d11, u))), "L.x[:(dummy-with-precedence)]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, u, d11))), "L.x[::(dummy-with-precedence)]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(d11, d11, u))), "L.x[(dummy-with-precedence):(dummy-with-precedence)]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(d11, u, d11))), "L.x[(dummy-with-precedence)::(dummy-with-precedence)]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(u, d11, d11))), "L.x[:(dummy-with-precedence):(dummy-with-precedence)]"); EXPECT_EQ(ToDebugString(GetItem(x, MakeSlice(d11, d11, d11))), "L.x[(dummy-with-precedence):(dummy-with-precedence):(dummy-with-" "precedence)]"); } TEST_F(ExprDebugStringTest, Infix_Binary_NonInfix) { auto x = Leaf("x"); auto foo = Literal(Text("foo")); ASSERT_OK_AND_ASSIGN(auto op, LookupOperator("core.getattr")); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {x, x}, {})), "M.core.getattr(L.x, L.x)"); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode( op, {x, Literal(Bytes("bar"))}, {})), "M.core.getattr(L.x, b'bar')"); EXPECT_EQ(ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {}, {})), "M.core.getattr()"); EXPECT_EQ( ToDebugString(ExprNode::UnsafeMakeOperatorNode(op, {foo, foo, foo}, {})), "M.core.getattr('foo', 'foo', 'foo')"); } TEST_F(ExprDebugStringTest, Infix_NegativeLiteralRegression) { auto x = Leaf("x"); EXPECT_EQ(ToDebugString(Pow(Literal<int>(2), x)), "2 ** L.x"); EXPECT_EQ(ToDebugString(Pow(Literal<float>(2.), x)), "2. ** L.x"); EXPECT_EQ(ToDebugString(Pow(Literal<double>(2.), x)), "float64{2} ** L.x"); EXPECT_EQ(ToDebugString(Pow(Literal<int>(-1), x)), "(-1) ** L.x"); EXPECT_EQ(ToDebugString(Pow(Literal<float>(-1.), x)), "(-1.) ** L.x"); EXPECT_EQ(ToDebugString(Pow(Literal<double>(-1.), x)), "float64{-1} ** L.x"); EXPECT_EQ(ToDebugString(Pow(x, Literal<int>(-1))), "L.x ** -1"); EXPECT_EQ(ToDebugString(Pow(x, Literal<float>(-1.))), "L.x ** -1."); EXPECT_EQ(ToDebugString(Pow(x, Literal<double>(-1.))), "L.x ** float64{-1}"); EXPECT_EQ(ToDebugString(Pow(x, Literal<int>(2))), "L.x ** 2"); EXPECT_EQ(ToDebugString(Pow(x, Literal<float>(2.))), "L.x ** 2."); EXPECT_EQ(ToDebugString(Pow(x, Literal<double>(2.))), "L.x ** float64{2}"); EXPECT_EQ(ToDebugString(Neg(Literal<int>(-1))), "-(-1)"); EXPECT_EQ(ToDebugString(Neg(Literal<float>(-1))), "-(-1.)"); EXPECT_EQ(ToDebugString(Neg(Literal<double>(-1))), "-float64{-1}"); EXPECT_EQ(ToDebugString(Neg(Literal<int>(2))), "-2"); EXPECT_EQ(ToDebugString(Neg(Literal<float>(2))), "-2."); EXPECT_EQ(ToDebugString(Neg(Literal<double>(2))), "-float64{2}"); } TEST_F(ExprDebugStringTest, CustomOpRepr) { auto x = Leaf("x"); auto y = Leaf("y"); auto expr = Dummy(x, y); { EXPECT_EQ(ToDebugString(expr), "custom.add(L.x, L.y)"); } { auto repr_fn = [](const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) -> std::optional<ReprToken> { const auto& lhs_str = node_tokens.at(node->node_deps()[0]->fingerprint()).str; const auto& rhs_str = node_tokens.at(node->node_deps()[1]->fingerprint()).str; auto res = absl::StrFormat("%s + %s", lhs_str, rhs_str); return ReprToken{.str = std::move(res)}; }; RegisterOpReprFnByQValueSpecializationKey( std::string(expr->op()->py_qvalue_specialization_key()), repr_fn); EXPECT_EQ(ToDebugString(expr), "L.x + L.y"); } { auto repr_fn = [](ExprNodePtr node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) -> std::optional<ReprToken> { return std::nullopt; }; RegisterOpReprFnByQValueSpecializationKey( std::string(expr->op()->py_qvalue_specialization_key()), repr_fn); EXPECT_EQ(ToDebugString(expr), "custom.add(L.x, L.y)"); } } TEST_F(ExprDebugStringTest, GetDebugSnippet) { auto expr = Leaf("x"); EXPECT_EQ(GetDebugSnippet(expr), "L.x"); ASSERT_OK_AND_ASSIGN(auto typed_expr, WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>())); EXPECT_EQ(GetDebugSnippet(typed_expr), "M.annotation.qtype(L.x, INT32)"); ASSERT_OK_AND_ASSIGN(auto named_expr, WithNameAnnotation(expr, "xxx")); EXPECT_EQ(GetDebugSnippet(named_expr), "M.annotation.name(L.x, 'xxx')"); auto big_expr = Leaf("x"); for (int i = 0; i < 100; ++i) { big_expr = Add(big_expr, big_expr); } EXPECT_EQ(GetDebugSnippet(big_expr), "M.math.add(M.math.add(..., ...), M.math.add(..., ...))"); ASSERT_OK_AND_ASSIGN(auto big_typed_expr, WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>())); for (int i = 0; i < 100; ++i) { big_typed_expr = Add(big_typed_expr, big_typed_expr); } EXPECT_EQ(GetDebugSnippet(big_typed_expr), ("M.math.add(M.math.add(..., ...):INT32, M.math.add(..., " "...):INT32):INT32")); } void BM_GetDebugSnippet_Leaf(benchmark::State& state) { InitArolla(); auto expr = Leaf("x"); for (auto s : state) { auto x = GetDebugSnippet(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_GetDebugSnippet_Leaf); void BM_GetDebugSnippet_Literal(benchmark::State& state) { InitArolla(); auto expr = Literal(57); for (auto s : state) { auto x = GetDebugSnippet(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_GetDebugSnippet_Literal); void BM_GetDebugSnippet_Small(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); expr = CallOp("math.add", {Literal(57), Leaf("x")}).value(); for (auto s : state) { auto x = GetDebugSnippet(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_GetDebugSnippet_Small); void BM_GetDebugSnippet_Big(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); for (int i = 0; i < 100; ++i) { expr = CallOp("math.add", {expr, Leaf("x")}).value(); expr = CallOp("math.add", {expr, Literal(57)}).value(); expr = CallOp("math.add", {expr, expr}).value(); } for (auto s : state) { auto x = GetDebugSnippet(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_GetDebugSnippet_Big); void BM_ToDebugString_Leaf(benchmark::State& state) { InitArolla(); auto expr = Leaf("x"); for (auto s : state) { auto x = ToDebugString(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Leaf); void BM_ToDebugString_Literal(benchmark::State& state) { InitArolla(); auto expr = Literal(57); for (auto s : state) { auto x = ToDebugString(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Literal); void BM_ToDebugString_Small(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); expr = CallOp("math.maximum", {Literal(57), Leaf("x")}).value(); for (auto s : state) { auto x = ToDebugString(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Small); void BM_ToDebugString_Big(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); for (int i = 0; i < 100; ++i) { expr = CallOp("math.maximum", {expr, Leaf("x")}).value(); expr = CallOp("math.maximum", {expr, Literal(57)}).value(); expr = CallOp("math.maximum", {expr, expr}).value(); } for (auto s : state) { auto x = ToDebugString(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Big); void BM_ToDebugString_Small_Verbose(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); expr = CallOp("math.maximum", {Literal(57), Leaf("x")}).value(); for (auto s : state) { auto x = ToDebugString(expr, true); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Small_Verbose); void BM_ToDebugString_Big_Verbose(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); for (int i = 0; i < 100; ++i) { expr = CallOp("math.maximum", {expr, Leaf("x")}).value(); expr = CallOp("math.maximum", {expr, Literal(57)}).value(); expr = CallOp("math.maximum", {expr, expr}).value(); } for (auto s : state) { auto x = ToDebugString(expr, true); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Big_Verbose); void BM_ToDebugString_Big_Infix(benchmark::State& state) { InitArolla(); auto expr = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); for (int i = 0; i < 100; ++i) { expr = CallOp("math.add", {expr, Leaf("x")}).value(); expr = CallOp("math.add", {expr, Literal(57)}).value(); expr = CallOp("math.add", {expr, expr}).value(); } for (auto s : state) { auto x = ToDebugString(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_Big_Infix); void BM_ToDebugString_CustomReprBig(benchmark::State& state) { InitArolla(); auto x = WithQTypeAnnotation(Leaf("x"), GetQType<int32_t>()).value(); auto foo_bar = std::make_shared<testing::DummyOp>( "foo.bar", ExprOperatorSignature({{"x"}, {"y"}})); auto expr = ExprNode::UnsafeMakeOperatorNode(foo_bar, {x, x}, ExprAttributes()); auto repr_fn = [](const ExprNodePtr& node, const absl::flat_hash_map<Fingerprint, ReprToken>& node_tokens) -> std::optional<ReprToken> { const auto& lhs_str = node_tokens.at(node->node_deps()[0]->fingerprint()).str; const auto& rhs_str = node_tokens.at(node->node_deps()[1]->fingerprint()).str; auto res = absl::StrFormat("foo.bar(%s, %s)", lhs_str, rhs_str); return ReprToken{.str = std::move(res)}; }; RegisterOpReprFnByQValueSpecializationKey( std::string(expr->op()->py_qvalue_specialization_key()), repr_fn); for (int i = 0; i < 100; ++i) { expr = ExprNode::UnsafeMakeOperatorNode(foo_bar, {expr, Leaf("x")}, ExprAttributes()); expr = ExprNode::UnsafeMakeOperatorNode(foo_bar, {expr, Literal(57)}, ExprAttributes()); expr = ExprNode::UnsafeMakeOperatorNode(foo_bar, {expr, expr}, ExprAttributes()); } for (auto s : state) { auto x = ToDebugString(expr); benchmark::DoNotOptimize(x); } } BENCHMARK(BM_ToDebugString_CustomReprBig); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_debug_string.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_debug_string_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
573867bc-7633-461e-a4f3-a42efd5de27b
cpp
tensorflow/tensorflow
tf_allocator_adapter
third_party/xla/xla/stream_executor/integrations/tf_allocator_adapter.cc
third_party/xla/xla/stream_executor/integrations/tf_allocator_adapter_test.cc
#include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" namespace stream_executor { TfAllocatorAdapter::TfAllocatorAdapter(tsl::Allocator *wrapped, Stream *stream) : DeviceMemoryAllocator(stream->parent()->GetPlatform()), wrapped_(wrapped), stream_(stream) {} TfAllocatorAdapter::TfAllocatorAdapter(tsl::Allocator *wrapped, Platform *platform) : DeviceMemoryAllocator(platform), wrapped_(wrapped), stream_(nullptr) {} TfAllocatorAdapter::~TfAllocatorAdapter() {} absl::StatusOr<OwningDeviceMemory> TfAllocatorAdapter::Allocate( int device_ordinal, uint64_t size, bool retry_on_failure, int64_t memory_space) { tsl::AllocationAttributes attrs; attrs.retry_on_failure = retry_on_failure; void *data = nullptr; if (size != 0) { data = wrapped_->AllocateRaw(tsl::Allocator::kAllocatorAlignment, size, attrs); if (data == nullptr) { return absl::ResourceExhaustedError(absl::StrCat( "Out of memory while trying to allocate ", size, " bytes.")); } } return OwningDeviceMemory(DeviceMemoryBase(data, size), device_ordinal, this); } absl::Status TfAllocatorAdapter::Deallocate(int device_ordinal, DeviceMemoryBase mem) { wrapped_->DeallocateRaw(mem.opaque()); return absl::OkStatus(); } absl::StatusOr<Stream *> TfAllocatorAdapter::GetStream(int device_ordinal) { CHECK_EQ(stream_->parent()->device_ordinal(), device_ordinal); return stream_; } absl::StatusOr<tsl::Allocator *> TfAllocatorAdapter::GetAllocator( int device_ordinal) { if (stream_ == nullptr) { return absl::UnavailableError("stream_ is null for TfAllocatorAdapter."); } if (stream_->parent()->device_ordinal() != device_ordinal) { return absl::InternalError( absl::StrCat("stream_->parent()->device_ordinal() ", stream_->parent()->device_ordinal(), " not equal to device_ordinal ", device_ordinal)); } return wrapped_; } }
#include "xla/stream_executor/integrations/tf_allocator_adapter.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/container/node_hash_set.h" #include "absl/log/check.h" #include "xla/service/platform_util.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace se = stream_executor; class TestAllocator : public tsl::Allocator { public: explicit TestAllocator( size_t start_address, std::shared_ptr<absl::flat_hash_set<void*>> allocations = nullptr) : start_address_(start_address), allocations_(allocations) { if (allocations_ == nullptr) { allocations_ = std::make_shared<absl::flat_hash_set<void*>>(); } } std::string Name() override { return "test"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { void* ptr = reinterpret_cast<void*>(++start_address_); allocations_->insert(ptr); return ptr; } void DeallocateRaw(void* ptr) override { auto it = allocations_->find(ptr); if (it == allocations_->end()) { ADD_FAILURE() << "Allocation not found (double free?)"; } else { allocations_->erase(it); } } private: size_t start_address_; std::shared_ptr<absl::flat_hash_set<void*>> allocations_; }; TEST(MultiDeviceAdapter, UsesCorrectAllocator) { TF_ASSERT_OK_AND_ASSIGN(auto* platform, xla::PlatformUtil::GetDefaultPlatform()); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, xla::PlatformUtil::GetStreamExecutors(platform)) TF_ASSERT_OK_AND_ASSIGN(auto stream, executors[0]->CreateStream()); std::vector<se::MultiDeviceAdapter::AllocatorInfo> infos; infos.emplace_back(std::make_unique<TestAllocator>(0x1000), stream.get(), 0, 0); infos.emplace_back(std::make_unique<TestAllocator>(0x2000), stream.get(), 0, 1); infos.emplace_back(std::make_unique<TestAllocator>(0x3000), stream.get(), 1, 0); infos.emplace_back(std::make_unique<TestAllocator>(0x4000), stream.get(), 1, 1); std::unique_ptr<se::DeviceMemoryAllocator> allocator = std::make_unique<se::MultiDeviceAdapter>(platform, std::move(infos)); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff0, allocator->Allocate(0, 4, false, 0)); CHECK_EQ(reinterpret_cast<size_t>(buff0->opaque()), 0x1001); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff1, allocator->Allocate(0, 4, false, 0)); CHECK_EQ(reinterpret_cast<size_t>(buff1->opaque()), 0x1002); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff2, allocator->Allocate(0, 4, false, 1)); CHECK_EQ(reinterpret_cast<size_t>(buff2->opaque()), 0x3001); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff3, allocator->Allocate(1, 4, false, 0)); CHECK_EQ(reinterpret_cast<size_t>(buff3->opaque()), 0x2001); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff4, allocator->Allocate(1, 4, false, 1)); CHECK_EQ(reinterpret_cast<size_t>(buff4->opaque()), 0x4001); } TEST(MultiDeviceAdapter, DeallocationWithDifferentAllocator) { TF_ASSERT_OK_AND_ASSIGN(auto* platform, xla::PlatformUtil::GetDefaultPlatform()); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, xla::PlatformUtil::GetStreamExecutors(platform)); TF_ASSERT_OK_AND_ASSIGN(auto stream, executors[0]->CreateStream()); std::shared_ptr<absl::flat_hash_set<void*>> allocations = std::make_shared<absl::flat_hash_set<void*>>(); std::vector<se::MultiDeviceAdapter::AllocatorInfo> info_allocator; info_allocator.emplace_back( std::make_unique<TestAllocator>(0x1000, allocations), stream.get(), 0, 0); std::unique_ptr<se::DeviceMemoryAllocator> allocator = std::make_unique<se::MultiDeviceAdapter>(platform, std::move(info_allocator)); std::vector<se::MultiDeviceAdapter::AllocatorInfo> info_deallocator; info_deallocator.emplace_back( std::make_unique<TestAllocator>(0x1000, allocations), stream.get(), 0, 0); std::unique_ptr<se::DeviceMemoryAllocator> deallocator = std::make_unique<se::MultiDeviceAdapter>(platform, std::move(info_deallocator)); TF_ASSERT_OK_AND_ASSIGN( se::OwningDeviceMemory buff0, allocator->Allocate(0, 4, false, 0)); CHECK_EQ(allocations->size(), 1); CHECK_EQ(reinterpret_cast<size_t>(buff0->opaque()), 0x1001); TF_CHECK_OK(deallocator->Deallocate(0, buff0.cref())); CHECK_EQ(allocations->size(), 0); allocations->insert(buff0->opaque()); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/integrations/tf_allocator_adapter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/integrations/tf_allocator_adapter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6373881d-be51-4cc8-ab57-a967d8737d44
cpp
tensorflow/tensorflow
one_hot_op
tensorflow/compiler/tf2xla/kernels/one_hot_op.cc
tensorflow/core/kernels/one_hot_op_test.cc
#include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/xla_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class OneHotOp : public XlaOpKernel { public: explicit OneHotOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &axis_)); } void Compile(XlaOpKernelContext* ctx) override { const TensorShape indices_shape = ctx->InputShape(0); const TensorShape depth_shape = ctx->InputShape(1); const TensorShape on_value_shape = ctx->InputShape(2); const TensorShape off_value_shape = ctx->InputShape(3); const int indices_dims = indices_shape.dims(); const int output_dims = indices_dims + 1; OP_REQUIRES( ctx, axis_ == -1 || (axis_ >= 0 && axis_ < output_dims), errors::InvalidArgument("Expected axis to be -1 or between [0, ", output_dims, "). But received: ", axis_)); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(depth_shape), errors::InvalidArgument("depth must be a scalar, but got: ", depth_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(on_value_shape), errors::InvalidArgument("on_value must be a scalar, but got: ", on_value_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(off_value_shape), errors::InvalidArgument("off_value must be a scalar, but got: ", off_value_shape.DebugString())); const int axis = (axis_ == -1) ? indices_dims : axis_; int64_t depth; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntScalar(1, &depth)); OP_REQUIRES( ctx, depth >= 0, errors::InvalidArgument("depth must be non-negative, got: ", depth)); xla::XlaOp one_hot; OP_REQUIRES_OK( ctx, XlaHelpers::OneHot(ctx->builder(), depth, axis, input_type(0), indices_shape, ctx->Input(0), ctx->Input(2), ctx->Input(3), &one_hot)); ctx->SetOutput(0, one_hot); } private: int32 axis_; OneHotOp(const OneHotOp&) = delete; void operator=(const OneHotOp&) = delete; }; REGISTER_XLA_OP(Name("OneHot").CompileTimeConstantInput("depth"), OneHotOp); } }
#include <random> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { static Graph* OneHot(int batch_size, int num_classes, int axis) { Graph* g = new Graph(OpRegistry::Global()); Tensor indices(DT_INT32, TensorShape({batch_size})); std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dist(0, num_classes - 1); auto indices_t = indices.flat<int32>(); for (int i = 0; i < batch_size; ++i) { indices_t(i) = dist(gen); } Tensor depth(DT_INT32, TensorShape({})); depth.scalar<int32>()() = num_classes; Tensor on_value(DT_FLOAT, TensorShape({})); on_value.scalar<float>()() = 1.0f; Tensor off_value(DT_FLOAT, TensorShape({})); off_value.scalar<float>()() = 0.0f; test::graph::Multi(g, "OneHot", { test::graph::Constant(g, indices), test::graph::Constant(g, depth), test::graph::Constant(g, on_value), test::graph::Constant(g, off_value), }) ->AddAttr("axis", axis); return g; } #define BM_OneHot(BATCH, CLASS, AXIS, DEVICE) \ static void BM_OneHot##_##BATCH##_##CLASS##_##AXIS##_##DEVICE( \ ::testing::benchmark::State& state) { \ test::Benchmark(#DEVICE, OneHot(BATCH, CLASS, AXIS), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * BATCH * \ CLASS); \ } \ BENCHMARK(BM_OneHot##_##BATCH##_##CLASS##_##AXIS##_##DEVICE); BM_OneHot(32, 512, 1, cpu); BM_OneHot(64, 512, 1, cpu); BM_OneHot(128, 512, 1, cpu); BM_OneHot(32, 1024, 1, cpu); BM_OneHot(64, 1024, 1, cpu); BM_OneHot(128, 1024, 1, cpu); BM_OneHot(32, 10000, 1, cpu); BM_OneHot(64, 10000, 1, cpu); BM_OneHot(128, 10000, 1, cpu); BM_OneHot(32, 512, 0, cpu); BM_OneHot(64, 512, 0, cpu); BM_OneHot(128, 512, 0, cpu); BM_OneHot(32, 1024, 0, cpu); BM_OneHot(64, 1024, 0, cpu); BM_OneHot(128, 1024, 0, cpu); BM_OneHot(32, 10000, 0, cpu); BM_OneHot(64, 10000, 0, cpu); BM_OneHot(128, 10000, 0, cpu); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/one_hot_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/one_hot_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce1df6e4-04ce-46d9-852f-1d19564385cf
cpp
tensorflow/tensorflow
tensor_handle
tensorflow/core/common_runtime/eager/tensor_handle.cc
tensorflow/core/common_runtime/eager/tensor_handle_test.cc
#include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include <algorithm> #include <cstddef> #include <map> #include <memory> #include <queue> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/substitute.h" #include "absl/types/variant.h" #include "tensorflow/c/tf_tensor_internal.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/eager/eager_executor.h" #include "tensorflow/core/common_runtime/eager/tensor_handle_data.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/errors.h" #if !defined(IS_MOBILE_PLATFORM) #include "tensorflow/core/distributed_runtime/eager/remote_tensor_handle_data.h" #endif #include "tensorflow/core/framework/resource_var.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/profiler/lib/traceme.h" namespace tensorflow { namespace { int64_t GetRemoteDeviceIncarnation(Device* device) { if (device == nullptr || device->IsLocal()) return 0; return device->attributes().incarnation(); } string SafeDeviceDebugString(Device* device) { if (device == nullptr) { return "[]"; } else { return device->DebugString(); } } } TensorHandle::PackedTensorHandleData::PackedTensorHandleData( std::vector<TensorHandle*>&& handles, const TensorShape& shape) : handles_(std::move(handles)), shape_(shape) { for (auto* handle : handles_) { handle->Ref(); } } TensorHandle::PackedTensorHandleData::~PackedTensorHandleData() { for (auto* handle : handles_) { handle->Unref(); } } Status TensorHandle::PackedTensorHandleData::Shape(TensorShape* shape) const { *shape = shape_; return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::NumDims(int* num_dims) const { *num_dims = shape_.dims(); return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::Dim(int dim_index, int64_t* dim) const { *dim = shape_.dim_size(dim_index); return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::NumElements( int64_t* num_elements) const { *num_elements = shape_.num_elements(); return absl::OkStatus(); } Status TensorHandle::PackedTensorHandleData::Unprotect() { for (auto* handle : handles_) { TF_RETURN_IF_ERROR( std::visit([](auto& data) { return data.Unprotect(); }, handle->data_)); } return absl::OkStatus(); } bool TensorHandle::PackedTensorHandleData::IsReady() const { { tf_shared_lock l(mu_); if (!is_poisoned_.ok()) { return true; } } for (auto* handle : handles_) { if (!handle->IsReady()) { return false; } } return true; } Status TensorHandle::PackedTensorHandleData::WaitReady( const char* caller) const { { tf_shared_lock l(mu_); if (!is_poisoned_.ok()) { return is_poisoned_; } } for (auto* handle : handles_) { TF_RETURN_IF_ERROR(handle->WaitReady(caller)); } return absl::OkStatus(); } void TensorHandle::PackedTensorHandleData::Poison(Status status) { mutex_lock l(mu_); is_poisoned_ = status; } string TensorHandle::PackedTensorHandleData::DebugString() const { string debug_str = "PackedTensorHandleData: "; for (const auto* handle : handles_) { debug_str.append( absl::StrCat(std::visit([](auto& data) { return data.DebugString(); }, handle->data_), "; ")); } return debug_str; } int TensorHandle::PackedTensorHandleData::NumPackedHandles() const { return handles_.size(); } Status TensorHandle::PackedTensorHandleData::ExtractPackedHandle( const int index, TensorHandle** handle) const { if (index < 0 || index >= handles_.size()) { return errors::InvalidArgument("Expect an index within [0, ", handles_.size(), "), but got ", index); } *handle = handles_.at(index); return absl::OkStatus(); } void TensorHandle::SetResourceHandleDtypeAndShape( std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes) { handle_dtypes_and_shapes_ = std::move(dtypes_and_shapes); } Status TensorHandle::GetResourceHandleDtypesAndShapes( std::vector<DtypeAndPartialTensorShape>* result) { if (dtype != DT_RESOURCE) { return errors::InvalidArgument( "TensorHandle::GetResourceDtypeAndShape should be called on tensor " "handles with data type DT_RESOURCE. Actual tensor: ", dtype); } if (Type() != LOCAL) { *result = handle_dtypes_and_shapes_; return absl::OkStatus(); } tsl::profiler::TraceMe activity( "TensorHandle::GetResourceHandleInfo WaitReady", tsl::profiler::TraceMeLevel::kVerbose); auto& data = std::get<LocalTensorHandleData>(data_); TF_RETURN_IF_ERROR(data.WaitReady("TensorHandle::GetResourceHandleInfo")); *result = handle_dtypes_and_shapes_; return absl::OkStatus(); } int TensorHandle::NumPackedHandles() const { if (Type() != PACKED) { return 0; } return std::get<PackedTensorHandleData>(data_).NumPackedHandles(); } Status TensorHandle::ExtractPackedHandle(const int index, TensorHandle** handle) const { if (Type() != PACKED) { return errors::Internal("Invalid ExtractPackedHandleOnDevice call on a", TypeString(), " handle: ", this); } return std::get<PackedTensorHandleData>(data_).ExtractPackedHandle(index, handle); } TensorHandle* TensorHandle::CreateLocalHandle(const tensorflow::Tensor& t) { tensorflow::Tensor tensor = t; return CreateLocalHandle(std::move(tensor), nullptr, nullptr, nullptr); } TensorHandle* TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, EagerContext* ctx) { return CreateLocalHandle(std::move(t), d, op_device, nullptr, ctx); } TensorHandle* TensorHandle::CreateLocalHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, Device* resource_device, EagerContext* ctx) { if (t.dtype() == DT_RESOURCE && t.NumElements() > 0) { return new TensorHandle(std::move(t), d, op_device, ctx); } else { return new TensorHandle(std::move(t), d, op_device, resource_device, ctx); } } TensorHandle::TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, Device* resource_device, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(t.dtype()), device_((!ctx || d == ctx->HostCPU()) ? nullptr : d), op_device_(op_device), resource_device_(resource_device), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) { DVLOG(3) << "Creating Local TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_) << " tensor: " << t.DeviceSafeDebugString(); } TensorHandle::TensorHandle(tensorflow::Tensor&& t, Device* d, Device* op_device, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(DT_RESOURCE), device_((!ctx || d == ctx->HostCPU()) ? nullptr : d), op_device_(op_device), resource_device_( GetResourceDevice(t.flat<class ResourceHandle>()(0), ctx)), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), handle_dtypes_and_shapes_( t.flat<class ResourceHandle>()(0).dtypes_and_shapes()), data_(absl::in_place_type<LocalTensorHandleData>, std::move(t)) { DVLOG(3) << "Creating Local TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_) << " tensor: " << t.DeviceSafeDebugString(); } TensorHandle* TensorHandle::CreateEmptyLocalHandle(Device* d, Device* op_device, Device* resource_device, tensorflow::DataType dtype, EagerContext* ctx) { return new TensorHandle(d, op_device, resource_device, dtype, ctx); } TensorHandle::TensorHandle(Device* d, Device* op_device, Device* resource_device, tensorflow::DataType dtype, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_((d == ctx->HostCPU()) ? nullptr : d), op_device_(op_device), resource_device_(resource_device), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<LocalTensorHandleData>) { DVLOG(3) << "Creating empty Local TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } Status TensorHandle::CreatePackedHandle(std::vector<TensorHandle*>&& handles, const tensorflow::DataType dtype, const tensorflow::TensorShape& shape, const string& device_name, EagerContext* ctx, TensorHandle** packed_handle) { if (handles.empty()) { return errors::InvalidArgument("Handles should not be empty."); } std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes; if (dtype == DT_RESOURCE) { TF_RETURN_IF_ERROR( handles.at(0)->GetResourceHandleDtypesAndShapes(&dtypes_and_shapes)); } std::vector<string> devices; devices.reserve(handles.size()); for (auto* handle : handles) { devices.push_back(handle->op_device() ? handle->op_device()->name() : ctx->HostCPU()->name()); } CompositeDevice* composite_device = nullptr; TF_RETURN_IF_ERROR(ctx->FindOrCreateCompositeDevice(devices, device_name, &composite_device)); *packed_handle = new TensorHandle(std::move(handles), composite_device, dtype, shape, ctx); (*packed_handle) ->SetResourceHandleDtypeAndShape(std::move(dtypes_and_shapes)); return absl::OkStatus(); } Status TensorHandle::CreatePackedHandle(std::vector<TensorHandle*>&& handles, EagerContext* ctx, TensorHandle** packed_handle) { if (handles.empty()) { return errors::InvalidArgument("Handles should not be empty."); } tensorflow::DataType dtype = handles.at(0)->dtype; tensorflow::TensorShape shape; TF_RETURN_IF_ERROR(handles.at(0)->Shape(&shape)); return CreatePackedHandle(std::move(handles), dtype, shape, "", ctx, packed_handle); } TensorHandle::TensorHandle(std::vector<TensorHandle*>&& handles, Device* device, const tensorflow::DataType dtype, const tensorflow::TensorShape& shape, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_(device), op_device_(device), resource_device_(dtype == DT_RESOURCE ? device : nullptr), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<PackedTensorHandleData>, std::move(handles), shape) { DVLOG(3) << "Creating a packed TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } #if !defined(IS_MOBILE_PLATFORM) TensorHandle* TensorHandle::CreateUnshapedRemoteHandle( int64_t op_id, int32_t output_num, const string& remote_task, tensorflow::DataType dtype, Device* d, EagerContext* ctx, const bool unknown_device) { return new TensorHandle(op_id, output_num, remote_task, dtype, d, ctx, unknown_device); } TensorHandle::TensorHandle(int64_t op_id, int32_t output_num, const string& remote_task, tensorflow::DataType dtype, Device* d, EagerContext* ctx, const bool unknown_device) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_(d), op_device_(d), resource_device_(dtype == DT_RESOURCE ? d : nullptr), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), unknown_device_(unknown_device), ctx_(ctx), data_(absl::in_place_type<RemoteTensorHandleData>, op_id, output_num, remote_task, ctx) { DVLOG(3) << "Creating Unshaped Remote TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } TensorHandle* TensorHandle::CreateLazyRemoteHandle( int64_t op_id, int32_t output_num, tensorflow::DataType dtype, Device* d, const bool is_ready, EagerContext* ctx) { return new TensorHandle(op_id, output_num, dtype, d, is_ready, ctx); } TensorHandle::TensorHandle(int64_t op_id, int32_t output_num, tensorflow::DataType dtype, Device* d, const bool is_ready, EagerContext* ctx) : ImmediateExecutionTensorHandle(kEager), dtype(dtype), device_(d), op_device_(d), resource_device_(dtype == DT_RESOURCE ? d : nullptr), resource_remote_device_incarnation_( GetRemoteDeviceIncarnation(resource_device_)), ctx_(ctx), data_(absl::in_place_type<RemoteTensorHandleData>, op_id, output_num, ctx->GetContextViewId(), is_ready) { DVLOG(3) << "Creating Lazy Remote TensorHandle: " << this << " device: " << SafeDeviceDebugString(device_); } #endif TensorHandle::~TensorHandle() { DVLOG(3) << "Deleting tensor handle " << this; } void TensorHandle::Release() { DVLOG(3) << "Releasing tensor handle " << this; Unref(); } tensorflow::DataType TensorHandle::DataType() const { return dtype; } bool TensorHandle::IsReady() const { return std::visit([](auto& data) { return data.IsReady(); }, data_); } Status TensorHandle::WaitReady(const char* caller) const { return std::visit([caller](auto& data) { return data.WaitReady(caller); }, data_); } TensorHandle::HandleType TensorHandle::Type() const { if (data_.index() == 0) { return LOCAL; } else if (data_.index() == 1) { return PACKED; } else { return REMOTE; } } string TensorHandle::TypeString() const { if (data_.index() == 0) { return "LOCAL"; } else if (data_.index() == 1) { return "PACKED"; } else { return "REMOTE"; } } Status TensorHandle::Tensor(const tensorflow::Tensor** t) const { DVLOG(3) << "Tensor on TensorHandle: " << this; if (Type() != LOCAL) { return errors::Internal("Invalid Tensor call on a ", TypeString(), " handle: ", this); } auto& data = std::get<LocalTensorHandleData>(data_); return data.Tensor(t); } Status TensorHandle::TensorFromDevice(const Device* d, const tensorflow::Tensor** t) const { DVLOG(3) << "TensorFromDevice on TensorHandle: " << this << " device: " << d; if (d == device_) { if (Type() != LOCAL) { return errors::Internal("Invalid Tensor call on a ", TypeString(), " handle: ", this); } auto& data = std::get<LocalTensorHandleData>(data_); return data.Tensor(t); } tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal("Invalid device: ", d, " in Tensor call to handle: ", this); } auto& mirror = elem->second; return mirror.Tensor(t); } Status TensorHandle::TensorValue(const Device* d, tensorflow::TensorValue* t) { DVLOG(3) << "TensorValue on TensorHandle: " << this << " device: " << d; if (d == device_) { if (Type() != LOCAL) { return errors::Internal("Invalid TensorValue call on a ", TypeString(), " handle: ", this); } auto& data = std::get<LocalTensorHandleData>(data_); return data.TensorValue(t); } tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal("Invalid device: ", d, " in TensorValue call to handle: ", this); } auto& mirror = elem->second; return mirror.TensorValue(t); } Status TensorHandle::WaitUnknownDevice() const { if (unknown_device_) { TF_RETURN_IF_ERROR(std::visit( [](auto& data) { return data.WaitReady("TensorHandle::UnknownDevice"); }, data_)); } return absl::OkStatus(); } Device* TensorHandle::DeviceOrHostCPU(const EagerContext& ctx) const { return (device_ == nullptr) ? ctx.HostCPU() : device_; } Status TensorHandle::Shape(tensorflow::TensorShape* shape) { if (!IsReady() && inference_shape_.IsFullyDefined()) { bool fill = inference_shape_.AsTensorShape(shape); DCHECK(fill); return absl::OkStatus(); } else { return std::visit([shape](auto& data) { return data.Shape(shape); }, data_); } } Status TensorHandle::InferenceShape( shape_inference::InferenceContext* const inference_context, shape_inference::ShapeHandle* shape_handle) { if (IsReady()) { std::vector<shape_inference::DimensionHandle> dims_handle; int num_dims; TF_RETURN_IF_ERROR(NumDims(&num_dims)); for (int i = 0; i < num_dims; i++) { int64_t dims; TF_RETURN_IF_ERROR(Dim(i, &dims)); dims_handle.push_back(inference_context->MakeDim(dims)); } *shape_handle = inference_context->MakeShape(dims_handle); return absl::OkStatus(); } else { if (inference_shape_.unknown_rank()) { *shape_handle = inference_context->UnknownShape(); return absl::OkStatus(); } std::vector<shape_inference::DimensionHandle> dims_handle( inference_shape_.dims()); for (int i = 0; i < dims_handle.size(); i++) { dims_handle[i] = inference_context->MakeDim(inference_shape_.dim_size(i)); } *shape_handle = inference_context->MakeShape(dims_handle); return absl::OkStatus(); } } void TensorHandle::SetInferenceShape( shape_inference::InferenceContext* const inference_context, const shape_inference::ShapeHandle& shape_handle) { auto num_dims = inference_context->Rank(shape_handle); std::vector<int64_t> dims; if (num_dims == shape_inference::InferenceContext::kUnknownRank) { inference_shape_ = PartialTensorShape(); return; } DCHECK_GE(num_dims, 0); dims.resize(num_dims); for (size_t i = 0; i < num_dims; ++i) { dims[i] = inference_context->Value(inference_context->Dim(shape_handle, i)); } auto s = PartialTensorShape::MakePartialShape(dims.data(), num_dims, &inference_shape_); TF_DCHECK_OK(s); } Status TensorHandle::CopyInferenceShape(TensorHandle* other) { if (IsReady()) { return absl::OkStatus(); } if (other->IsReady()) { TensorShape other_shape; TF_RETURN_IF_ERROR(other->Shape(&other_shape)); inference_shape_ = other_shape; } else { inference_shape_ = other->inference_shape_; } return absl::OkStatus(); } Status TensorHandle::Shape(tensorflow::PartialTensorShape* shape) const { DCHECK(shape != nullptr); if (!IsReady() && !inference_shape_.unknown_rank()) { *shape = inference_shape_; return absl::OkStatus(); } else { auto result = std::visit( [](auto& data) { TensorShape shape; Status s = data.Shape(&shape); return std::make_pair(shape, s); }, data_); TF_RETURN_IF_ERROR(result.second); *shape = result.first; } return absl::OkStatus(); } Status TensorHandle::NumDims(int* num_dims) const { DCHECK(num_dims != nullptr); if (!IsReady() && !inference_shape_.unknown_rank()) { *num_dims = inference_shape_.dims(); return absl::OkStatus(); } else { return std::visit([num_dims](auto& data) { return data.NumDims(num_dims); }, data_); } } Status TensorHandle::Dim(int dim_index, int64_t* dim) const { DCHECK(dim != nullptr); if (!IsReady() && !inference_shape_.unknown_rank() && inference_shape_.dim_size(dim_index) != -1) { *dim = inference_shape_.dim_size(dim_index); return absl::OkStatus(); } else { return std::visit( [dim_index, dim](auto& data) { return data.Dim(dim_index, dim); }, data_); } } Status TensorHandle::NumElements(int64_t* num_elements) const { DCHECK(num_elements != nullptr); if (!IsReady() && inference_shape_.IsFullyDefined()) { *num_elements = inference_shape_.num_elements(); return absl::OkStatus(); } else { return std::visit( [num_elements](auto& data) { return data.NumElements(num_elements); }, data_); } } Status TensorHandle::Unprotect(const Device* d) { DVLOG(3) << "Unprotect on TensorHandle: " << this << " device: " << d; if (d == device_) { return std::visit([](auto& data) { return data.Unprotect(); }, data_); } tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal("Invalid device: ", d, " in Unprotect call to handle: ", this); } auto& mirror = elem->second; return mirror.Unprotect(); } bool TensorHandle::HasLocalMirror(const Device* d) const { DVLOG(3) << "HasLocalMirror on TensorHandle: " << this << " device: " << d; tf_shared_lock l(mu_); return local_mirrors_.find(d) != local_mirrors_.end(); } Status TensorHandle::AddEmptyLocalMirror(const Device* d) { DVLOG(3) << "AddEmptyLocalMirror on TensorHandle: " << this << " device: " << d; if (d == device_) { return errors::Internal("Cannot add mirror for primary device."); } mutex_lock l(mu_); if (local_mirrors_.find(d) != local_mirrors_.end()) { return errors::AlreadyExists("Attempted to duplicate a local mirror."); } local_mirrors_.emplace(std::piecewise_construct, std::forward_as_tuple(d), std::forward_as_tuple()); return absl::OkStatus(); } #if !defined(IS_MOBILE_PLATFORM) Status TensorHandle::RemoteAddress(const Device* d, const bool wait_until_ready, int64_t* op_id, int32* output_num) const { DVLOG(3) << "RemoteAddress on TensorHandle: " << this << " device: " << d << " " << d->name(); const tensorflow::RemoteTensorHandleData* remote_data = nullptr; if (d != device_) { tf_shared_lock l(mu_); auto mirror = remote_mirrors_.find(d->name()); if (mirror != remote_mirrors_.end()) { remote_data = &mirror->second; } else { return errors::FailedPrecondition( "Could not find remote mirror for specified device"); } } if (remote_data != nullptr) { auto status = remote_data->OpIdAndOutputNum(wait_until_ready, op_id, output_num); if (!status.ok()) { return errors::Internal( absl::StrCat("Remote address looked up from remote mirrors found to " "be poisoned with status ", status.ToString())); } else { return absl::OkStatus(); } } if (Type() != REMOTE) { return errors::InvalidArgument("Primary device is not remote"); } auto& data = std::get<RemoteTensorHandleData>(data_); auto status = data.OpIdAndOutputNum(wait_until_ready, op_id, output_num); if (!status.ok()) { return errors::Internal( "Remote address looked up from remote data found to be poisoned"); } else { return absl::OkStatus(); } } bool TensorHandle::HasRemoteMirror(const Device* d, uint64 context_view_id) const { DVLOG(3) << "HasRemoteMirror on TensorHandle: " << this << " device: " << d << " " << d->name(); tf_shared_lock l(mu_); auto mirror = remote_mirrors_.find(d->name()); if (mirror != remote_mirrors_.end()) { if (mirror->second.context_view_id() != context_view_id) { return false; } return true; } return false; } bool TensorHandle::HasResourceShapeMirror(const Device* d, uint64 context_view_id) const { DVLOG(3) << "HasResourceShapeMirror on TensorHandle: " << this << " device: " << d << " " << d->name(); tf_shared_lock l(mu_); auto mirror = resource_shape_mirrors_.find(d->name()); if (mirror != resource_shape_mirrors_.end()) { if (mirror->second.context_view_id() != context_view_id) { return false; } return true; } return false; } Status TensorHandle::AddUnshapedRemoteMirror(const Device* d, int64_t op_id, int output_num, const string& remote_task, EagerContext* ctx) { DVLOG(3) << "AddUnshapedRemoteMirror on TensorHandle: " << this << " device: " << d << " " << d->name() << " op_id: " << op_id << " output_num: " << output_num; mutex_lock l(mu_); auto remote_mirror = remote_mirrors_.find(d->name()); if (remote_mirror != remote_mirrors_.end()) { if (remote_mirror->second.context_view_id() > ctx->GetContextId()) { return errors::Internal( "Attempted to duplicate a remote mirror with inconsistent " "arguments."); } remote_mirrors_.erase(remote_mirror); } remote_mirrors_.emplace( std::piecewise_construct, std::forward_as_tuple(d->name()), std::forward_as_tuple(op_id, output_num, remote_task, ctx)); return absl::OkStatus(); } Status TensorHandle::AddResourceShapeMirror(const Device* d, int64_t op_id, int output_num, EagerContext* ctx) { DVLOG(3) << "AddResourceShapeMirror on TensorHandle: " << this; mutex_lock l(mu_); auto mirror = resource_shape_mirrors_.find(d->name()); if (mirror != resource_shape_mirrors_.end()) { if (mirror->second.context_view_id() == ctx->GetContextViewId()) { int64_t existing_op_id; int existing_output_num; TF_RETURN_IF_ERROR(mirror->second.OpIdAndOutputNum(false, &existing_op_id, &existing_output_num)); if (op_id == existing_op_id && output_num == existing_output_num) { return absl::OkStatus(); } return absl::InternalError( "Attempted to duplicate a resource shape mirror."); } resource_shape_mirrors_.erase(mirror); } resource_shape_mirrors_.emplace( std::piecewise_construct, std::forward_as_tuple(d->name()), std::forward_as_tuple(op_id, output_num, ctx->GetContextViewId(), true)); return absl::OkStatus(); } Status TensorHandle::SetRemoteShape(const TensorShape& shape, const Device* d, uint64 context_view_id) { return SetRemoteShapeAndDevice(shape, d, context_view_id, ""); } Status TensorHandle::SetRemoteShapeAndDevice(const TensorShape& shape, const Device* d, uint64 context_view_id, string op_device) { DVLOG(3) << "SetRemoteShape on TensorHandle: " << this << " device: " << d << " " << d->name(); if (d != device_) { tf_shared_lock l(mu_); auto remote_mirror = remote_mirrors_.find(d->name()); if (remote_mirror == remote_mirrors_.end()) { return absl::OkStatus(); } auto& mirror = remote_mirror->second; if (mirror.context_view_id() == context_view_id) { auto status = mirror.SetShape(shape); if (!status.ok()) { LOG(ERROR) << "SetShape returned " << status.message() << ". This should never occur."; } return status; } else if (mirror.context_view_id() < context_view_id) { return errors::Internal( absl::Substitute("Unexpected context_view_id ($0) which should not " "be newer than the " "one ($1) associated to the remote mirror.", context_view_id, mirror.context_view_id())); } else { LOG(WARNING) << "SetRemoteShape is ignored for a remote mirror that is " "associated with a newer context_view_id."; } return absl::OkStatus(); } if (Type() != REMOTE) { return errors::InvalidArgument( "SetRemoteShape should only be called on remote handles."); } auto& data = std::get<RemoteTensorHandleData>(data_); if (op_device.empty()) { auto status = data.SetShape(shape); if (!status.ok()) { LOG(ERROR) << "SetShape returned " << status.message() << ". This should never occur."; } return status; } else { if (!unknown_device_) { return errors::Internal("Cannot reset known devices."); } Device* device; TF_RETURN_IF_ERROR(ctx_->FindDeviceFromName(op_device.c_str(), &device)); device_ = device; op_device_ = device; resource_device_ = dtype == DT_RESOURCE ? device : nullptr; resource_remote_device_incarnation_ = GetRemoteDeviceIncarnation(resource_device_); string remote_task; if (!DeviceNameUtils::GetTaskName(device->parsed_name(), &remote_task)) { return errors::InvalidArgument( "Unable to find remote task corresponding to device ", device->name()); } auto status = data.SetShapeAndRemoteTask(shape, remote_task); if (!status.ok()) { LOG(ERROR) << "SetShape returned " << status << ". This should never occur."; } return status; } } void TensorHandle::PoisonRemote(Status status, const Device* d, uint64 context_view_id) { DVLOG(3) << "PoisonRemote on TensorHandle: " << this << " device: " << d << " " << d->name(); if (d == device_) { DCHECK(Type() == REMOTE) << "Poison can only be on remote handles: " << this; auto& data = std::get<RemoteTensorHandleData>(data_); data.Poison(status); } else { tf_shared_lock l(mu_); auto mirror = remote_mirrors_.find(d->name()); if (mirror != remote_mirrors_.end()) { if (mirror->second.context_view_id() == context_view_id) { mirror->second.Poison(status); } } } } #endif Status TensorHandle::AddLocalMirror(tensorflow::Tensor&& tensor, const Device* d) { if (d == device_) { return errors::Internal( "Local mirror assign conflicts with primary device."); } mutex_lock l(mu_); auto elem = local_mirrors_.emplace(std::piecewise_construct, std::forward_as_tuple(d), std::forward_as_tuple(std::move(tensor))); if (!elem.second) { return errors::AlreadyExists("Attempted to add existing mirror."); } return absl::OkStatus(); } Status TensorHandle::SetTensor(tensorflow::Tensor&& t, const Device* d) { DVLOG(3) << "SetTensor on TensorHandle: " << this << " device: " << d; if (d == device_) { DCHECK(Type() == LOCAL) << "SetTensor is not called on local handles."; if (t.dtype() == DT_RESOURCE && t.NumElements() > 0) { auto& resource_handle = t.flat<class ResourceHandle>()(0); handle_dtypes_and_shapes_ = resource_handle.dtypes_and_shapes(); } auto& data = std::get<LocalTensorHandleData>(data_); return data.SetTensor(std::move(t)); } else { tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); if (elem == local_mirrors_.end()) { return errors::Internal( "Attempted to set tensor for non-existent local mirror."); } auto& mirror = elem->second; return mirror.SetTensor(std::move(t)); } return absl::OkStatus(); } void TensorHandle::Poison(Status status, const Device* d) { DVLOG(3) << "Poison on TensorHandle: " << this << " device: " << d; if (d == device_) { DCHECK(Type() != REMOTE) << "Poison can only be on local handles: " << this; std::visit([status](auto& data) { data.Poison(status); }, data_); } else { tf_shared_lock l(mu_); auto elem = local_mirrors_.find(d); DCHECK(elem != local_mirrors_.end()) << "Attempted to poison non-existent local mirror, handle: " << this << " device: " << d; auto& mirror = elem->second; mirror.Poison(status); } } Status TensorHandle::CopyToDevice(const EagerContext& ctx, tensorflow::Device* d, tensorflow::Tensor* output) const { tensorflow::Device* dstd = (d == nullptr) ? ctx.HostCPU() : d; tensorflow::Device* srcd = DeviceOrHostCPU(ctx); const bool dst_cpu = dstd->tensorflow_accelerator_device_info() == nullptr; const bool src_cpu = srcd->tensorflow_accelerator_device_info() == nullptr; bool is_same_device = (srcd == dstd) || (srcd->name() == dstd->name()) || (dst_cpu && src_cpu); const tensorflow::Tensor* src = nullptr; TF_RETURN_IF_ERROR(Tensor(&src)); if (is_same_device) { *output = *src; return absl::OkStatus(); } if (!dst_cpu && (src->dtype() != tensorflow::DT_VARIANT && !tensorflow::DataTypeCanUseMemcpy(src->dtype()))) { return tensorflow::errors::InvalidArgument( "Can't copy Tensor with type ", tensorflow::DataTypeString(src->dtype()), " to device ", dstd->name(), "."); } tensorflow::AllocatorAttributes attr; if (src->dtype() == tensorflow::DT_VARIANT) { attr.set_on_host(true); } const auto* dstd_info = dstd->tensorflow_accelerator_device_info(); tensorflow::Tensor dst(dstd->GetAllocator(attr), src->dtype(), src->shape()); if (src->shape().num_elements() == 0) { *output = dst; return absl::OkStatus(); } tensorflow::DeviceContext* src_device_context = nullptr; if (!src_cpu) { src_device_context = srcd->tensorflow_accelerator_device_info()->default_context; } tensorflow::DeviceContext* dst_device_context = nullptr; if (!dst_cpu) { if (dstd_info->use_pjrt_tensor_buffer && DataType() != DT_INT4 && DataType() != DT_UINT4) { dst_device_context = dstd_info->pjrt_context; } else { dst_device_context = dstd_info->default_context; } } TF_RETURN_IF_ERROR(srcd->Sync()); tensorflow::Notification n; tensorflow::Status status; tensorflow::CopyTensor::ViaDMA("copy", src_device_context, dst_device_context, srcd, dstd, tensorflow::AllocatorAttributes(), tensorflow::AllocatorAttributes(), src, &dst, 0 , [&status, &n](const tensorflow::Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); if (status.ok()) { *output = dst; return absl::OkStatus(); } return status; } Device* GetResourceDevice(const ResourceHandle& handle, EagerContext* ctx) { if (ctx == nullptr) { return nullptr; } Device* device = nullptr; if (!ctx->FindDeviceFromName(handle.device().c_str(), &device).ok()) { LOG(ERROR) << "Cannot find resource device: " << handle.device() << "."; return nullptr; } return device; } const char* TensorHandle::DeviceName(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = op_device(); return (d == nullptr) ? "/job:localhost/replica:0/task:0/device:CPU:0" : d->name().c_str(); } const char* TensorHandle::BackingDeviceName(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = device(); return (d == nullptr) ? "/job:localhost/replica:0/task:0/device:CPU:0" : d->name().c_str(); } const char* TensorHandle::DeviceType(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = op_device(); return (d == nullptr) ? "CPU" : d->parsed_name().type.c_str(); } int TensorHandle::DeviceId(Status* status) const { status->Update(WaitUnknownDevice()); tensorflow::Device* d = op_device(); return (d == nullptr) ? 0 : d->parsed_name().id; } }
#include "tensorflow/core/common_runtime/eager/tensor_handle.h" #include <iostream> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/cleanup/cleanup.h" #include "tensorflow/core/common_runtime/composite_device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/device.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/random.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using tensorflow::testing::StatusIs; using ::testing::HasSubstr; TEST(TensorHandle_ShapeTest, AsyncShape) { Tensor t(DT_UINT16, TensorShape({2, 2})); EXPECT_TRUE(t.shape().IsSameSize(TensorShape({2, 2}))); for (int64_t a = 0; a < t.shape().dim_size(0); a++) { for (int64_t b = 0; b < t.shape().dim_size(1); b++) { t.matrix<uint16>()(a, b) = uint16(a * b); } } StaticDeviceMgr device_mgr(DeviceFactory::NewDevice( "CPU", {}, "/job:localhost/replica:0/task:0/device:CPU:0")); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; TensorHandle* sync_th = TensorHandle::CreateLocalHandle(std::move(t), nullptr, nullptr, ctx); absl::Cleanup sync_th_cleanup = [&]() { sync_th->Unref(); }; TensorHandle* async_th = TensorHandle::CreateEmptyLocalHandle( nullptr, nullptr, nullptr, DataType::DT_UINT16, ctx); absl::Cleanup async_th_cleanup = [&]() { async_th->Unref(); }; EXPECT_TRUE(async_th->CopyInferenceShape(sync_th).ok()); TensorShape sync_shape; TensorShape async_shape; EXPECT_TRUE(sync_th->Shape(&sync_shape).ok()); EXPECT_TRUE(async_th->Shape(&async_shape).ok()); EXPECT_EQ(sync_shape, async_shape); int num_dims = -1; EXPECT_TRUE(async_th->NumDims(&num_dims).ok()); EXPECT_EQ(num_dims, 2); int64_t num_elements = -1; EXPECT_TRUE(async_th->NumElements(&num_elements).ok()); EXPECT_EQ(num_elements, 4); } class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr, bool is_local) : Device(nullptr, attr), is_local_(is_local) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } bool IsLocal() const override { return is_local_; } private: const bool is_local_; }; static std::unique_ptr<FakeDevice> CreateDevice(const char* type, const char* name, bool is_local = true) { DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); int64_t incarnation = random::New64(); while (incarnation == 0) { incarnation = random::New64(); } attr.set_incarnation(incarnation); return std::make_unique<FakeDevice>(attr, is_local); } } class PackedTensorHandleTest : public ::testing::Test { public: PackedTensorHandleTest() { std::vector<std::unique_ptr<Device>> devices; devices.push_back(CreateDevice("CPU", host_name_)); for (const char* name : device_names_) { devices.push_back(CreateDevice("GPU", name)); } device_mgr_ = new StaticDeviceMgr(std::move(devices)); context_ = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr_, false, nullptr, nullptr, nullptr, true); } ~PackedTensorHandleTest() override { delete device_mgr_; context_->Unref(); } EagerContext* context() { return context_; } std::vector<Device*> ListGPUDevices() const { auto all_devices = device_mgr_->ListDevices(); return std::vector<Device*>(all_devices.begin() + 1, all_devices.end()); } bool IsReady(TensorHandle* handle) const { return handle->IsReady(); } Status WaitReady(TensorHandle* handle) const { return handle->WaitReady("Test"); } private: const std::vector<const char*> device_names_ = { "/job:worker/replica:0/task:0/device:GPU:0", "/job:worker/replica:0/task:0/device:GPU:1", "/job:worker/replica:0/task:1/device:GPU:0", "/job:worker/replica:0/task:1/device:GPU:1"}; const char* host_name_ = "/job:worker/replica:0/task:0/device:CPU:0"; StaticDeviceMgr* device_mgr_; EagerContext* context_; }; TEST_F(PackedTensorHandleTest, PackedHandle) { tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; DtypeAndPartialTensorShape dtype_and_shape = {DT_FLOAT, {2, 2}}; std::vector<TensorHandle*> handles; Tensor t0(dtype, shape); Device* d0 = ListGPUDevices().at(0); TensorHandle* h0 = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context()); absl::Cleanup h0_cleanup = [&]() { h0->Unref(); }; h0->SetResourceHandleDtypeAndShape({dtype_and_shape}); handles.push_back(h0); Tensor t1(dtype, shape); Device* d1 = ListGPUDevices().at(1); TensorHandle* h1 = TensorHandle::CreateLocalHandle(std::move(t1), d1, d1, d1, context()); absl::Cleanup h1_cleanup = [&]() { h1->Unref(); }; h1->SetResourceHandleDtypeAndShape({dtype_and_shape}); handles.push_back(h1); const string remote_task = "/job:worker/replica:0/task:1"; Device* d2 = ListGPUDevices().at(2); TensorHandle* h2 = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d2, context()); absl::Cleanup h2_cleanup = [&]() { h2->Unref(); }; handles.push_back(h2); Device* d3 = ListGPUDevices().at(3); TensorHandle* h3 = TensorHandle::CreateUnshapedRemoteHandle( 1, 0, remote_task, dtype, d3, context()); absl::Cleanup h3_cleanup = [&]() { h3->Unref(); }; handles.push_back(h3); TensorHandle* packed_handle = nullptr; TF_EXPECT_OK(TensorHandle::CreatePackedHandle(std::move(handles), context(), &packed_handle)); absl::Cleanup packed_handle_cleanup = [&]() { packed_handle->Unref(); }; EXPECT_EQ(packed_handle->NumPackedHandles(), 4); EXPECT_EQ(packed_handle->Type(), TensorHandle::PACKED); EXPECT_EQ(packed_handle->dtype, dtype); TensorShape packed_shape; TF_ASSERT_OK(packed_handle->Shape(&packed_shape)); EXPECT_EQ(packed_shape, shape); std::vector<DtypeAndPartialTensorShape> dtypes_and_shapes; TF_ASSERT_OK( packed_handle->GetResourceHandleDtypesAndShapes(&dtypes_and_shapes)); EXPECT_EQ(dtypes_and_shapes.size(), 1); EXPECT_EQ(dtypes_and_shapes.at(0).dtype, DT_FLOAT); EXPECT_EQ(dtypes_and_shapes.at(0).shape.IsIdenticalTo({2, 2}), true); CompositeDevice* device = reinterpret_cast<CompositeDevice*>(packed_handle->device()); EXPECT_EQ(device->name(), "/job:worker/replica:0/task:0/device:COMPOSITE:0"); EXPECT_EQ(device->underlying_devices()->size(), 4); const std::vector<TensorHandle::HandleType> expected_handle_types = { TensorHandle::LOCAL, TensorHandle::LOCAL, TensorHandle::REMOTE, TensorHandle::REMOTE}; for (int i = 0; i < packed_handle->NumPackedHandles(); ++i) { TensorHandle* h = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(i, &h)); EXPECT_EQ(h->device(), ListGPUDevices().at(i)); EXPECT_EQ(h->Type(), expected_handle_types.at(i)); EXPECT_EQ(h->FullType().type_id(), TFT_UNSET); } EXPECT_FALSE(IsReady(packed_handle)); TF_ASSERT_OK(h2->SetRemoteShape(shape, ListGPUDevices().at(2), context()->GetContextViewId())); EXPECT_FALSE(IsReady(packed_handle)); TF_ASSERT_OK(h3->SetRemoteShape(shape, ListGPUDevices().at(3), context()->GetContextViewId())); EXPECT_TRUE(IsReady(packed_handle)); } TEST_F(PackedTensorHandleTest, PackedSingleHandle) { tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; Tensor t(dtype, shape); Device* d = ListGPUDevices().at(0); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t), d, d, d, context()); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; std::vector<TensorHandle*> handles = {h}; TensorHandle* packed_handle = nullptr; TF_EXPECT_OK(TensorHandle::CreatePackedHandle(std::move(handles), context(), &packed_handle)); absl::Cleanup packed_handle_cleanup = [&]() { packed_handle->Unref(); }; EXPECT_EQ(packed_handle->Type(), TensorHandle::PACKED); EXPECT_EQ(packed_handle->dtype, dtype); TensorShape packed_shape; TF_ASSERT_OK(packed_handle->Shape(&packed_shape)); EXPECT_EQ(packed_shape, shape); CompositeDevice* device = reinterpret_cast<CompositeDevice*>(packed_handle->device()); EXPECT_EQ(device->name(), "/job:worker/replica:0/task:0/device:COMPOSITE:0"); EXPECT_EQ(device->underlying_devices()->size(), 1); EXPECT_EQ(packed_handle->NumPackedHandles(), 1); TensorHandle* h0 = nullptr; TF_ASSERT_OK(packed_handle->ExtractPackedHandle(0, &h0)); EXPECT_EQ(h0->device(), d); EXPECT_TRUE(IsReady(packed_handle)); } TEST_F(PackedTensorHandleTest, PoisonHandle) { tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; Tensor t(dtype, shape); Device* d = ListGPUDevices().at(0); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t), d, d, d, context()); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; std::vector<TensorHandle*> handles = {h}; TensorHandle* packed_handle = nullptr; TF_EXPECT_OK(TensorHandle::CreatePackedHandle(std::move(handles), context(), &packed_handle)); absl::Cleanup packed_handle_cleanup = [&]() { packed_handle->Unref(); }; TF_EXPECT_OK(WaitReady(packed_handle)); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); packed_handle->Poison(fake_failure_status, packed_handle->device()); EXPECT_THAT(WaitReady(packed_handle), StatusIs(fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST(TensorHandle_ResourceDeviceTest, OnLocalDevice) { std::unique_ptr<Device> d0( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); StaticDeviceMgr local_device_mgr(std::move(d0)); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {2}; Tensor t(dtype, shape); Device* d = local_device_mgr.ListDevices()[0]; TensorHandle* th = TensorHandle::CreateLocalHandle(std::move(t), d, d, d, ctx); absl::Cleanup th_cleanup = [&]() { th->Unref(); }; EXPECT_EQ(0, th->resource_remote_device_incarnation()); EXPECT_TRUE(local_device_mgr.ContainsDevice( th->resource_device()->attributes().incarnation())); std::unique_ptr<Device> d1( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); StaticDeviceMgr new_device_mgr(std::move(d1)); EXPECT_FALSE(new_device_mgr.ContainsDevice( th->resource_device()->attributes().incarnation())); } TEST(TensorHandle_ResourceDeviceTest, OnRemoteDevice) { std::unique_ptr<Device> d_local( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); StaticDeviceMgr local_device_mgr(std::move(d_local)); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; std::unique_ptr<Device> d0( CreateDevice("CPU", "/job:worker/task:0/device:CPU:0", false)); Device* d0_ptr = d0.get(); std::unique_ptr<Device> d1( CreateDevice("CPU", "/job:worker/task:1/device:CPU:0", false)); Device* d1_ptr = d1.get(); DynamicDeviceMgr remote_device_mgr; std::vector<std::unique_ptr<Device>> vector_d0; vector_d0.push_back(std::move(d0)); TF_ASSERT_OK(remote_device_mgr.AddDevices(std::move(vector_d0))); TensorHandle* th0 = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, "", DT_RESOURCE, d0_ptr, ctx); absl::Cleanup th0_cleanup = [&]() { th0->Unref(); }; EXPECT_TRUE(remote_device_mgr.ContainsDevice( th0->resource_remote_device_incarnation())); std::vector<std::unique_ptr<Device>> vector_d1; vector_d1.push_back(std::move(d1)); TF_ASSERT_OK(remote_device_mgr.AddDevices(std::move(vector_d1))); EXPECT_TRUE(remote_device_mgr.ContainsDevice( th0->resource_remote_device_incarnation())); TensorHandle* th1 = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, "", DT_RESOURCE, d1_ptr, ctx); absl::Cleanup th1_cleanup = [&]() { th1->Unref(); }; EXPECT_TRUE(remote_device_mgr.ContainsDevice( th1->resource_remote_device_incarnation())); std::vector<Device*> remove_d1{d1_ptr}; TF_ASSERT_OK(remote_device_mgr.RemoveDevices(std::move(remove_d1))); EXPECT_FALSE(remote_device_mgr.ContainsDevice( th1->resource_remote_device_incarnation())); EXPECT_TRUE(remote_device_mgr.ContainsDevice( th0->resource_remote_device_incarnation())); } class RemoteTensorHandleTest : public ::testing::Test { public: RemoteTensorHandleTest() { std::vector<std::unique_ptr<Device>> devices; for (const char* name : device_names_) { devices.push_back(CreateDevice("CPU", name)); } device_mgr_ = new StaticDeviceMgr(std::move(devices)); context_ = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, device_mgr_, false, nullptr, nullptr, nullptr, true); } ~RemoteTensorHandleTest() override { delete device_mgr_; context_->Unref(); } EagerContext* context() { return context_; } std::vector<Device*> ListDevices() const { return device_mgr_->ListDevices(); } private: const std::vector<const char*> device_names_ = { "/job:worker/replica:0/task:0/device:CPU:0", "/job:worker/replica:0/task:1/device:CPU:0", "/job:worker/replica:0/task:2/device:CPU:0"}; StaticDeviceMgr* device_mgr_; EagerContext* context_; }; TEST_F(RemoteTensorHandleTest, UnknownRemoteDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d2->name())); Status s; EXPECT_EQ(h->BackingDeviceName(&s), d2->name()); TF_EXPECT_OK(s); EXPECT_EQ(h->device(), d2); } TEST_F(RemoteTensorHandleTest, PoisonRemote) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); h->PoisonRemote(fake_failure_status, d1, context->GetContextViewId()); Device* d2 = device_mgr.ListDevices().at(2); EXPECT_THAT(h->SetRemoteShapeAndDevice(shape, d1, context->GetContextViewId(), d2->name()), StatusIs(fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST_F(RemoteTensorHandleTest, PoisonRemoteMirror) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); int64_t op_id = 1; int output_num = 2; TF_ASSERT_OK( h->AddUnshapedRemoteMirror(d2, op_id, output_num, remote_task, context)); tensorflow::Status fake_failure_status(absl::StatusCode::kAborted, "Fake failure."); h->PoisonRemote(fake_failure_status, d2, context->GetContextViewId()); EXPECT_THAT(h->SetRemoteShapeAndDevice(shape, d2, context->GetContextViewId(), d2->name()), StatusIs(fake_failure_status.code(), std::string(fake_failure_status.message()))); } TEST_F(RemoteTensorHandleTest, SetRemoteTensorHandleShapeTwice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); int64_t op_id = 1; int output_num = 2; TF_ASSERT_OK( h->AddUnshapedRemoteMirror(d2, op_id, output_num, remote_task, context)); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d2, context->GetContextViewId(), d2->name())); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d1->name())); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d1->name())); TensorShape another_shape({1}); EXPECT_THAT(h->SetRemoteShapeAndDevice( another_shape, d1, context->GetContextViewId(), d1->name()), StatusIs(tensorflow::error::INTERNAL, HasSubstr("Trying to change shape to"))); } TEST_F(RemoteTensorHandleTest, SetRemoteMirrorShapeTwice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:1/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; const string remote_task = "/job:worker/replica:0/task:1"; Device* d1 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateUnshapedRemoteHandle( 0, 0, remote_task, dtype, d1, context, true); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; EXPECT_EQ(h->device(), d1); Device* d2 = device_mgr.ListDevices().at(2); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d2->name())); int64_t op_id = 1; int output_num = 2; TF_ASSERT_OK( h->AddUnshapedRemoteMirror(d1, op_id, output_num, remote_task, context)); TF_ASSERT_OK(h->SetRemoteShapeAndDevice( shape, d1, context->GetContextViewId(), d2->name())); TensorShape another_shape({1}); EXPECT_THAT(h->SetRemoteShapeAndDevice( another_shape, d1, context->GetContextViewId(), d2->name()), StatusIs(tensorflow::error::INTERNAL, HasSubstr("Trying to change shape to"))); } TEST(TensorHandle_LocalTest, TensorFromDeviceSameDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; const Tensor* tensor_from_device; TF_EXPECT_OK(h->TensorFromDevice(d0, &tensor_from_device)); } TEST(TensorHandle_LocalTest, TensorFromDeviceDifferentDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; Device* d1 = device_mgr.ListDevices().at(2); tensorflow::Tensor tensor; TF_EXPECT_OK(h->CopyToDevice(*context, d1, &tensor)); TF_EXPECT_OK(h->AddLocalMirror(std::move(tensor), d1)); const Tensor* tensor_from_device; TF_EXPECT_OK(h->TensorFromDevice(d1, &tensor_from_device)); } TEST(TensorHandle_LocalTest, TensorFromDeviceInvalidDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); devices.push_back( CreateDevice("CPU", "/job:worker/replica:0/task:2/device:CPU:0")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_FLOAT; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; Device* d1 = device_mgr.ListDevices().at(2); const Tensor* tensor_from_device; EXPECT_THAT(h->TensorFromDevice(d1, &tensor_from_device), StatusIs(tensorflow::error::INTERNAL)); } TEST(TensorHandle_ResourceShapeMirror, CreateAndCheckMirror) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:1")); devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:2")); StaticDeviceMgr device_mgr(std::move(devices)); EagerContext* context = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup context_cleanup = [&]() { context->Unref(); }; tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {}; Tensor t0(dtype, shape); Device* d0 = device_mgr.ListDevices().at(1); TensorHandle* h = TensorHandle::CreateLocalHandle(std::move(t0), d0, d0, d0, context); absl::Cleanup h_cleanup = [&]() { h->Unref(); }; Device* d1 = device_mgr.ListDevices().at(2); int64_t op_id = 1; int output_num = 2; EXPECT_FALSE(h->HasResourceShapeMirror(d1, context->GetContextViewId())); TF_EXPECT_OK(h->AddResourceShapeMirror(d1, op_id, output_num, context)); EXPECT_TRUE(h->HasResourceShapeMirror(d1, context->GetContextViewId())); TF_EXPECT_OK(h->AddResourceShapeMirror(d1, op_id, output_num, context)); EXPECT_THAT(h->AddResourceShapeMirror(d1, op_id + 1, output_num, context), StatusIs(tensorflow::error::INTERNAL)); } TEST(TensorHandle_DeviceNameTest, OnLocalDevice) { std::vector<std::unique_ptr<Device>> devices; devices.push_back( CreateDevice("CPU", "/job:localhost/replica:0/task:0/device:CPU:0")); devices.push_back( CreateDevice("GPU", "/job:localhost/replica:0/task:0/device:GPU:0")); StaticDeviceMgr local_device_mgr(std::move(devices)); auto ctx = new EagerContext( SessionOptions(), tensorflow::ContextDevicePlacementPolicy::DEVICE_PLACEMENT_SILENT, false, &local_device_mgr, false, nullptr, nullptr, nullptr, true); absl::Cleanup ctx_cleanup = [&]() { ctx->Unref(); }; Device* dcpu = local_device_mgr.ListDevices()[0]; Device* dgpu = local_device_mgr.ListDevices()[1]; tensorflow::DataType dtype = DT_RESOURCE; TensorShape shape = {2}; Tensor tcpu(dtype, shape); Tensor tgpu(dtype, shape); Status s; TensorHandle* th_cpu = TensorHandle::CreateLocalHandle(std::move(tcpu), dcpu, dcpu, dcpu, ctx); const char* device_name = th_cpu->DeviceName(&s); absl::Cleanup th_cpu_cleanup = [&]() { th_cpu->Unref(); }; TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_name, "CPU")) << device_name; const char* backing_device_name = th_cpu->BackingDeviceName(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(backing_device_name, "CPU")) << backing_device_name; const char* device_type = th_cpu->DeviceType(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_type, "CPU")) << device_type; int device_id = th_cpu->DeviceId(&s); TF_EXPECT_OK(s); ASSERT_EQ(0, device_id) << device_id; TensorHandle* th_gpu = TensorHandle::CreateLocalHandle(std::move(tgpu), dgpu, dgpu, dgpu, ctx); absl::Cleanup th_gpu_cleanup = [&]() { th_gpu->Unref(); }; device_name = th_gpu->DeviceName(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_name, "GPU")) << device_name; backing_device_name = th_gpu->BackingDeviceName(&s); TF_EXPECT_OK(s); std::cout << "backing_device_name for GPU: " << backing_device_name << std::endl; ASSERT_TRUE(absl::StrContains(backing_device_name, "GPU")) << backing_device_name; device_type = th_gpu->DeviceType(&s); TF_EXPECT_OK(s); ASSERT_TRUE(absl::StrContains(device_type, "GPU")) << device_type; device_id = th_gpu->DeviceId(&s); TF_EXPECT_OK(s); ASSERT_EQ(0, device_id) << device_id; } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/tensor_handle.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/tensor_handle_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
15e81774-698f-4cbc-a34a-ff70cdd6ccf9
cpp
google/cel-cpp
well_known_types
internal/well_known_types.cc
internal/well_known_types_test.cc
#include "internal/well_known_types.h" #include <cstddef> #include <cstdint> #include <functional> #include <string> #include <utility> #include <vector> #include "google/protobuf/any.pb.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/timestamp.pb.h" #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/base/attributes.h" #include "absl/base/no_destructor.h" #include "absl/base/nullability.h" #include "absl/base/optimization.h" #include "absl/functional/overload.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/time/time.h" #include "absl/types/variant.h" #include "common/json.h" #include "common/memory.h" #include "extensions/protobuf/internal/map_reflection.h" #include "internal/status_macros.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/map_field.h" #include "google/protobuf/message.h" #include "google/protobuf/message_lite.h" #include "google/protobuf/reflection.h" #include "google/protobuf/util/time_util.h" namespace cel::well_known_types { namespace { using ::google::protobuf::Descriptor; using ::google::protobuf::DescriptorPool; using ::google::protobuf::EnumDescriptor; using ::google::protobuf::FieldDescriptor; using ::google::protobuf::OneofDescriptor; using ::google::protobuf::util::TimeUtil; using CppStringType = ::google::protobuf::FieldDescriptor::CppStringType; absl::string_view FlatStringValue( const StringValue& value ABSL_ATTRIBUTE_LIFETIME_BOUND, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { return absl::visit( absl::Overload( [](absl::string_view string) -> absl::string_view { return string; }, [&](const absl::Cord& cord) -> absl::string_view { if (auto flat = cord.TryFlat(); flat) { return *flat; } scratch = static_cast<std::string>(cord); return scratch; }), AsVariant(value)); } StringValue CopyStringValue(const StringValue& value, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { return absl::visit( absl::Overload( [&](absl::string_view string) -> StringValue { if (string.data() != scratch.data()) { scratch.assign(string.data(), string.size()); return scratch; } return string; }, [](const absl::Cord& cord) -> StringValue { return cord; }), AsVariant(value)); } BytesValue CopyBytesValue(const BytesValue& value, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { return absl::visit( absl::Overload( [&](absl::string_view string) -> BytesValue { if (string.data() != scratch.data()) { scratch.assign(string.data(), string.size()); return scratch; } return string; }, [](const absl::Cord& cord) -> BytesValue { return cord; }), AsVariant(value)); } google::protobuf::Reflection::ScratchSpace& GetScratchSpace() { static absl::NoDestructor<google::protobuf::Reflection::ScratchSpace> scratch_space; return *scratch_space; } template <typename Variant> Variant GetStringField(absl::Nonnull<const google::protobuf::Reflection*> reflection, const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, CppStringType string_type, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { ABSL_DCHECK(field->cpp_string_type() == string_type); switch (string_type) { case CppStringType::kCord: return reflection->GetCord(message, field); case CppStringType::kView: ABSL_FALLTHROUGH_INTENDED; case CppStringType::kString: return reflection->GetStringView(message, field, GetScratchSpace()); default: return absl::string_view( reflection->GetStringReference(message, field, &scratch)); } } template <typename Variant> Variant GetStringField(const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, CppStringType string_type, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { return GetStringField<Variant>(message.GetReflection(), message, field, string_type, scratch); } template <typename Variant> Variant GetRepeatedStringField( absl::Nonnull<const google::protobuf::Reflection*> reflection, const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, CppStringType string_type, int index, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { ABSL_DCHECK(field->cpp_string_type() == string_type); switch (string_type) { case CppStringType::kView: ABSL_FALLTHROUGH_INTENDED; case CppStringType::kString: return reflection->GetRepeatedStringView(message, field, index, GetScratchSpace()); default: return absl::string_view(reflection->GetRepeatedStringReference( message, field, index, &scratch)); } } template <typename Variant> Variant GetRepeatedStringField( const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, CppStringType string_type, int index, std::string& scratch ABSL_ATTRIBUTE_LIFETIME_BOUND) { return GetRepeatedStringField<Variant>(message.GetReflection(), message, field, string_type, index, scratch); } absl::StatusOr<absl::Nonnull<const Descriptor*>> GetMessageTypeByName( absl::Nonnull<const DescriptorPool*> pool, absl::string_view name) { const auto* descriptor = pool->FindMessageTypeByName(name); if (ABSL_PREDICT_FALSE(descriptor == nullptr)) { return absl::InvalidArgumentError(absl::StrCat( "descriptor missing for protocol buffer message well known type: ", name)); } return descriptor; } absl::StatusOr<absl::Nonnull<const EnumDescriptor*>> GetEnumTypeByName( absl::Nonnull<const DescriptorPool*> pool, absl::string_view name) { const auto* descriptor = pool->FindEnumTypeByName(name); if (ABSL_PREDICT_FALSE(descriptor == nullptr)) { return absl::InvalidArgumentError(absl::StrCat( "descriptor missing for protocol buffer enum well known type: ", name)); } return descriptor; } absl::StatusOr<absl::Nonnull<const OneofDescriptor*>> GetOneofByName( absl::Nonnull<const Descriptor*> descriptor, absl::string_view name) { const auto* oneof = descriptor->FindOneofByName(name); if (ABSL_PREDICT_FALSE(oneof == nullptr)) { return absl::InvalidArgumentError(absl::StrCat( "oneof missing for protocol buffer message well known type: ", descriptor->full_name(), ".", name)); } return oneof; } absl::StatusOr<absl::Nonnull<const FieldDescriptor*>> GetFieldByNumber( absl::Nonnull<const Descriptor*> descriptor, int32_t number) { const auto* field = descriptor->FindFieldByNumber(number); if (ABSL_PREDICT_FALSE(field == nullptr)) { return absl::InvalidArgumentError(absl::StrCat( "field missing for protocol buffer message well known type: ", descriptor->full_name(), ".", number)); } return field; } absl::Status CheckFieldType(absl::Nonnull<const FieldDescriptor*> field, FieldDescriptor::Type type) { if (ABSL_PREDICT_FALSE(field->type() != type)) { return absl::InvalidArgumentError(absl::StrCat( "unexpected field type for protocol buffer message well known type: ", field->full_name(), " ", field->type_name())); } return absl::OkStatus(); } absl::Status CheckFieldCppType(absl::Nonnull<const FieldDescriptor*> field, FieldDescriptor::CppType cpp_type) { if (ABSL_PREDICT_FALSE(field->cpp_type() != cpp_type)) { return absl::InvalidArgumentError(absl::StrCat( "unexpected field type for protocol buffer message well known type: ", field->full_name(), " ", field->cpp_type_name())); } return absl::OkStatus(); } absl::string_view LabelToString(FieldDescriptor::Label label) { switch (label) { case FieldDescriptor::LABEL_REPEATED: return "REPEATED"; case FieldDescriptor::LABEL_REQUIRED: return "REQUIRED"; case FieldDescriptor::LABEL_OPTIONAL: return "OPTIONAL"; default: return "ERROR"; } } absl::Status CheckFieldCardinality(absl::Nonnull<const FieldDescriptor*> field, FieldDescriptor::Label label) { if (ABSL_PREDICT_FALSE(field->label() != label)) { return absl::InvalidArgumentError( absl::StrCat("unexpected field cardinality for protocol buffer message " "well known type: ", field->full_name(), " ", LabelToString(field->label()))); } return absl::OkStatus(); } absl::string_view WellKnownTypeToString( Descriptor::WellKnownType well_known_type) { switch (well_known_type) { case Descriptor::WELLKNOWNTYPE_BOOLVALUE: return "BOOLVALUE"; case Descriptor::WELLKNOWNTYPE_INT32VALUE: return "INT32VALUE"; case Descriptor::WELLKNOWNTYPE_INT64VALUE: return "INT64VALUE"; case Descriptor::WELLKNOWNTYPE_UINT32VALUE: return "UINT32VALUE"; case Descriptor::WELLKNOWNTYPE_UINT64VALUE: return "UINT64VALUE"; case Descriptor::WELLKNOWNTYPE_FLOATVALUE: return "FLOATVALUE"; case Descriptor::WELLKNOWNTYPE_DOUBLEVALUE: return "DOUBLEVALUE"; case Descriptor::WELLKNOWNTYPE_BYTESVALUE: return "BYTESVALUE"; case Descriptor::WELLKNOWNTYPE_STRINGVALUE: return "STRINGVALUE"; case Descriptor::WELLKNOWNTYPE_ANY: return "ANY"; case Descriptor::WELLKNOWNTYPE_DURATION: return "DURATION"; case Descriptor::WELLKNOWNTYPE_TIMESTAMP: return "TIMESTAMP"; case Descriptor::WELLKNOWNTYPE_VALUE: return "VALUE"; case Descriptor::WELLKNOWNTYPE_LISTVALUE: return "LISTVALUE"; case Descriptor::WELLKNOWNTYPE_STRUCT: return "STRUCT"; case Descriptor::WELLKNOWNTYPE_FIELDMASK: return "FIELDMASK"; default: return "ERROR"; } } absl::Status CheckWellKnownType(absl::Nonnull<const Descriptor*> descriptor, Descriptor::WellKnownType well_known_type) { if (ABSL_PREDICT_FALSE(descriptor->well_known_type() != well_known_type)) { return absl::InvalidArgumentError(absl::StrCat( "expected message to be well known type: ", descriptor->full_name(), " ", WellKnownTypeToString(descriptor->well_known_type()))); } return absl::OkStatus(); } absl::Status CheckFieldWellKnownType( absl::Nonnull<const FieldDescriptor*> field, Descriptor::WellKnownType well_known_type) { ABSL_DCHECK_EQ(field->cpp_type(), FieldDescriptor::CPPTYPE_MESSAGE); if (ABSL_PREDICT_FALSE(field->message_type()->well_known_type() != well_known_type)) { return absl::InvalidArgumentError(absl::StrCat( "expected message field to be well known type for protocol buffer " "message well known type: ", field->full_name(), " ", WellKnownTypeToString(field->message_type()->well_known_type()))); } return absl::OkStatus(); } absl::Status CheckFieldOneof(absl::Nonnull<const FieldDescriptor*> field, absl::Nonnull<const OneofDescriptor*> oneof, int index) { if (ABSL_PREDICT_FALSE(field->containing_oneof() != oneof)) { return absl::InvalidArgumentError( absl::StrCat("expected field to be member of oneof for protocol buffer " "message well known type: ", field->full_name())); } if (ABSL_PREDICT_FALSE(field->index_in_oneof() != index)) { return absl::InvalidArgumentError(absl::StrCat( "expected field to have index in oneof of ", index, " for protocol buffer " "message well known type: ", field->full_name(), " oneof_index=", field->index_in_oneof())); } return absl::OkStatus(); } absl::Status CheckMapField(absl::Nonnull<const FieldDescriptor*> field) { if (ABSL_PREDICT_FALSE(!field->is_map())) { return absl::InvalidArgumentError( absl::StrCat("expected field to be map for protocol buffer " "message well known type: ", field->full_name())); } return absl::OkStatus(); } } bool StringValue::ConsumePrefix(absl::string_view prefix) { return absl::visit(absl::Overload( [&](absl::string_view& value) { return absl::ConsumePrefix(&value, prefix); }, [&](absl::Cord& cord) { if (cord.StartsWith(prefix)) { cord.RemovePrefix(prefix.size()); return true; } return false; }), AsVariant(*this)); } StringValue GetStringField(absl::Nonnull<const google::protobuf::Reflection*> reflection, const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, std::string& scratch) { ABSL_DCHECK_EQ(reflection, message.GetReflection()); ABSL_DCHECK(!field->is_map() && !field->is_repeated()); ABSL_DCHECK_EQ(field->type(), FieldDescriptor::TYPE_STRING); ABSL_DCHECK_EQ(field->cpp_type(), FieldDescriptor::CPPTYPE_STRING); return GetStringField<StringValue>(reflection, message, field, field->cpp_string_type(), scratch); } BytesValue GetBytesField(absl::Nonnull<const google::protobuf::Reflection*> reflection, const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, std::string& scratch) { ABSL_DCHECK_EQ(reflection, message.GetReflection()); ABSL_DCHECK(!field->is_map() && !field->is_repeated()); ABSL_DCHECK_EQ(field->type(), FieldDescriptor::TYPE_BYTES); ABSL_DCHECK_EQ(field->cpp_type(), FieldDescriptor::CPPTYPE_STRING); return GetStringField<BytesValue>(reflection, message, field, field->cpp_string_type(), scratch); } StringValue GetRepeatedStringField( absl::Nonnull<const google::protobuf::Reflection*> reflection, const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, int index, std::string& scratch) { ABSL_DCHECK_EQ(reflection, message.GetReflection()); ABSL_DCHECK(!field->is_map() && field->is_repeated()); ABSL_DCHECK_EQ(field->type(), FieldDescriptor::TYPE_STRING); ABSL_DCHECK_EQ(field->cpp_type(), FieldDescriptor::CPPTYPE_STRING); return GetRepeatedStringField<StringValue>( reflection, message, field, field->cpp_string_type(), index, scratch); } BytesValue GetRepeatedBytesField( absl::Nonnull<const google::protobuf::Reflection*> reflection, const google::protobuf::Message& message, absl::Nonnull<const FieldDescriptor*> field, int index, std::string& scratch) { ABSL_DCHECK_EQ(reflection, message.GetReflection()); ABSL_DCHECK(!field->is_map() && field->is_repeated()); ABSL_DCHECK_EQ(field->type(), FieldDescriptor::TYPE_BYTES); ABSL_DCHECK_EQ(field->cpp_type(), FieldDescriptor::CPPTYPE_STRING); return GetRepeatedStringField<BytesValue>( reflection, message, field, field->cpp_string_type(), index, scratch); } absl::Status NullValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetEnumTypeByName(pool, "google.protobuf.NullValue")); return Initialize(descriptor); } absl::Status NullValueReflection::Initialize( absl::Nonnull<const EnumDescriptor*> descriptor) { if (descriptor_ != descriptor) { if (ABSL_PREDICT_FALSE(descriptor->full_name() != "google.protobuf.NullValue")) { return absl::InvalidArgumentError(absl::StrCat( "expected enum to be well known type: ", descriptor->full_name(), " google.protobuf.NullValue")); } descriptor_ = nullptr; value_ = descriptor->FindValueByNumber(0); if (ABSL_PREDICT_FALSE(value_ == nullptr)) { return absl::InvalidArgumentError( "well known protocol buffer enum missing value: " "google.protobuf.NullValue.NULL_VALUE"); } if (ABSL_PREDICT_FALSE(descriptor->value_count() != 1)) { std::vector<absl::string_view> values; values.reserve(static_cast<size_t>(descriptor->value_count())); for (int i = 0; i < descriptor->value_count(); ++i) { values.push_back(descriptor->value(i)->name()); } return absl::InvalidArgumentError( absl::StrCat("well known protocol buffer enum has multiple values: [", absl::StrJoin(values, ", "), "]")); } descriptor_ = descriptor; } return absl::OkStatus(); } absl::Status BoolValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.BoolValue")); return Initialize(descriptor); } absl::Status BoolValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_BOOL)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } bool BoolValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetBool(message, value_field_); } void BoolValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, bool value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetBool(message, value_field_, value); } absl::StatusOr<BoolValueReflection> GetBoolValueReflection( absl::Nonnull<const Descriptor*> descriptor) { BoolValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status Int32ValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Int32Value")); return Initialize(descriptor); } absl::Status Int32ValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_INT32)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } int32_t Int32ValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetInt32(message, value_field_); } void Int32ValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, int32_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetInt32(message, value_field_, value); } absl::StatusOr<Int32ValueReflection> GetInt32ValueReflection( absl::Nonnull<const Descriptor*> descriptor) { Int32ValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status Int64ValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Int64Value")); return Initialize(descriptor); } absl::Status Int64ValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_INT64)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } int64_t Int64ValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetInt64(message, value_field_); } void Int64ValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, int64_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetInt64(message, value_field_, value); } absl::StatusOr<Int64ValueReflection> GetInt64ValueReflection( absl::Nonnull<const Descriptor*> descriptor) { Int64ValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status UInt32ValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.UInt32Value")); return Initialize(descriptor); } absl::Status UInt32ValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_UINT32)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } uint32_t UInt32ValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetUInt32(message, value_field_); } void UInt32ValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, uint32_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetUInt32(message, value_field_, value); } absl::StatusOr<UInt32ValueReflection> GetUInt32ValueReflection( absl::Nonnull<const Descriptor*> descriptor) { UInt32ValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status UInt64ValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.UInt64Value")); return Initialize(descriptor); } absl::Status UInt64ValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_UINT64)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } uint64_t UInt64ValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetUInt64(message, value_field_); } void UInt64ValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, uint64_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetUInt64(message, value_field_, value); } absl::StatusOr<UInt64ValueReflection> GetUInt64ValueReflection( absl::Nonnull<const Descriptor*> descriptor) { UInt64ValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status FloatValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.FloatValue")); return Initialize(descriptor); } absl::Status FloatValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_FLOAT)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } float FloatValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetFloat(message, value_field_); } void FloatValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, float value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetFloat(message, value_field_, value); } absl::StatusOr<FloatValueReflection> GetFloatValueReflection( absl::Nonnull<const Descriptor*> descriptor) { FloatValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status DoubleValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.DoubleValue")); return Initialize(descriptor); } absl::Status DoubleValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(value_field_, FieldDescriptor::CPPTYPE_DOUBLE)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } double DoubleValueReflection::GetValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetDouble(message, value_field_); } void DoubleValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, double value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetDouble(message, value_field_, value); } absl::StatusOr<DoubleValueReflection> GetDoubleValueReflection( absl::Nonnull<const Descriptor*> descriptor) { DoubleValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status BytesValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.BytesValue")); return Initialize(descriptor); } absl::Status BytesValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldType(value_field_, FieldDescriptor::TYPE_BYTES)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); value_field_string_type_ = value_field_->cpp_string_type(); descriptor_ = descriptor; } return absl::OkStatus(); } BytesValue BytesValueReflection::GetValue(const google::protobuf::Message& message, std::string& scratch) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return GetStringField<BytesValue>(message, value_field_, value_field_string_type_, scratch); } void BytesValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, absl::string_view value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, value_field_, std::string(value)); } void BytesValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, const absl::Cord& value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, value_field_, value); } absl::StatusOr<BytesValueReflection> GetBytesValueReflection( absl::Nonnull<const Descriptor*> descriptor) { BytesValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status StringValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN( const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.StringValue")); return Initialize(descriptor); } absl::Status StringValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldType(value_field_, FieldDescriptor::TYPE_STRING)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); value_field_string_type_ = value_field_->cpp_string_type(); descriptor_ = descriptor; } return absl::OkStatus(); } StringValue StringValueReflection::GetValue(const google::protobuf::Message& message, std::string& scratch) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return GetStringField<StringValue>(message, value_field_, value_field_string_type_, scratch); } void StringValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, absl::string_view value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, value_field_, std::string(value)); } void StringValueReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, const absl::Cord& value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, value_field_, value); } absl::StatusOr<StringValueReflection> GetStringValueReflection( absl::Nonnull<const Descriptor*> descriptor) { StringValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status AnyReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Any")); return Initialize(descriptor); } absl::Status AnyReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(type_url_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldType(type_url_field_, FieldDescriptor::TYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(type_url_field_, FieldDescriptor::LABEL_OPTIONAL)); type_url_field_string_type_ = type_url_field_->cpp_string_type(); CEL_ASSIGN_OR_RETURN(value_field_, GetFieldByNumber(descriptor, 2)); CEL_RETURN_IF_ERROR( CheckFieldType(value_field_, FieldDescriptor::TYPE_BYTES)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(value_field_, FieldDescriptor::LABEL_OPTIONAL)); value_field_string_type_ = value_field_->cpp_string_type(); descriptor_ = descriptor; } return absl::OkStatus(); } void AnyReflection::SetTypeUrl(absl::Nonnull<google::protobuf::Message*> message, absl::string_view type_url) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, type_url_field_, std::string(type_url)); } void AnyReflection::SetValue(absl::Nonnull<google::protobuf::Message*> message, const absl::Cord& value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, value_field_, value); } StringValue AnyReflection::GetTypeUrl(const google::protobuf::Message& message, std::string& scratch) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return GetStringField<StringValue>(message, type_url_field_, type_url_field_string_type_, scratch); } BytesValue AnyReflection::GetValue(const google::protobuf::Message& message, std::string& scratch) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return GetStringField<BytesValue>(message, value_field_, value_field_string_type_, scratch); } absl::StatusOr<AnyReflection> GetAnyReflection( absl::Nonnull<const Descriptor*> descriptor) { AnyReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } AnyReflection GetAnyReflectionOrDie( absl::Nonnull<const google::protobuf::Descriptor*> descriptor) { AnyReflection reflection; ABSL_CHECK_OK(reflection.Initialize(descriptor)); return reflection; } absl::Status DurationReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Duration")); return Initialize(descriptor); } absl::Status DurationReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(seconds_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(seconds_field_, FieldDescriptor::CPPTYPE_INT64)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(seconds_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_ASSIGN_OR_RETURN(nanos_field_, GetFieldByNumber(descriptor, 2)); CEL_RETURN_IF_ERROR( CheckFieldCppType(nanos_field_, FieldDescriptor::CPPTYPE_INT32)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(nanos_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } int64_t DurationReflection::GetSeconds(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetInt64(message, seconds_field_); } int32_t DurationReflection::GetNanos(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetInt32(message, nanos_field_); } void DurationReflection::SetSeconds(absl::Nonnull<google::protobuf::Message*> message, int64_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetInt64(message, seconds_field_, value); } void DurationReflection::SetNanos(absl::Nonnull<google::protobuf::Message*> message, int32_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetInt32(message, nanos_field_, value); } absl::StatusOr<absl::Duration> DurationReflection::ToAbslDuration( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); int64_t seconds = GetSeconds(message); if (ABSL_PREDICT_FALSE(seconds < TimeUtil::kDurationMinSeconds || seconds > TimeUtil::kDurationMaxSeconds)) { return absl::InvalidArgumentError( absl::StrCat("invalid duration seconds: ", seconds)); } int32_t nanos = GetNanos(message); if (ABSL_PREDICT_FALSE(nanos < TimeUtil::kDurationMinNanoseconds || nanos > TimeUtil::kDurationMaxNanoseconds)) { return absl::InvalidArgumentError( absl::StrCat("invalid duration nanoseconds: ", nanos)); } if ((seconds < 0 && nanos > 0) || (seconds > 0 && nanos < 0)) { return absl::InvalidArgumentError(absl::StrCat( "duration sign mismatch: seconds=", seconds, ", nanoseconds=", nanos)); } return absl::Seconds(seconds) + absl::Nanoseconds(nanos); } absl::StatusOr<DurationReflection> GetDurationReflection( absl::Nonnull<const Descriptor*> descriptor) { DurationReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status TimestampReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Timestamp")); return Initialize(descriptor); } absl::Status TimestampReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(seconds_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(seconds_field_, FieldDescriptor::CPPTYPE_INT64)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(seconds_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_ASSIGN_OR_RETURN(nanos_field_, GetFieldByNumber(descriptor, 2)); CEL_RETURN_IF_ERROR( CheckFieldCppType(nanos_field_, FieldDescriptor::CPPTYPE_INT32)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(nanos_field_, FieldDescriptor::LABEL_OPTIONAL)); descriptor_ = descriptor; } return absl::OkStatus(); } int64_t TimestampReflection::GetSeconds(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetInt64(message, seconds_field_); } int32_t TimestampReflection::GetNanos(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetInt32(message, nanos_field_); } void TimestampReflection::SetSeconds(absl::Nonnull<google::protobuf::Message*> message, int64_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetInt64(message, seconds_field_, value); } void TimestampReflection::SetNanos(absl::Nonnull<google::protobuf::Message*> message, int32_t value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetInt32(message, nanos_field_, value); } absl::StatusOr<absl::Time> TimestampReflection::ToAbslTime( const google::protobuf::Message& message) const { int64_t seconds = GetSeconds(message); if (ABSL_PREDICT_FALSE(seconds < TimeUtil::kTimestampMinSeconds || seconds > TimeUtil::kTimestampMaxSeconds)) { return absl::InvalidArgumentError( absl::StrCat("invalid timestamp seconds: ", seconds)); } int32_t nanos = GetNanos(message); if (ABSL_PREDICT_FALSE(nanos < TimeUtil::kTimestampMinNanoseconds || nanos > TimeUtil::kTimestampMaxNanoseconds)) { return absl::InvalidArgumentError( absl::StrCat("invalid timestamp nanoseconds: ", nanos)); } return absl::UnixEpoch() + absl::Seconds(seconds) + absl::Nanoseconds(nanos); } absl::StatusOr<TimestampReflection> GetTimestampReflection( absl::Nonnull<const Descriptor*> descriptor) { TimestampReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } void ValueReflection::SetNumberValue( absl::Nonnull<google::protobuf::Value*> message, int64_t value) { if (value < kJsonMinInt || value > kJsonMaxInt) { SetStringValue(message, absl::StrCat(value)); return; } SetNumberValue(message, static_cast<double>(value)); } void ValueReflection::SetNumberValue( absl::Nonnull<google::protobuf::Value*> message, uint64_t value) { if (value > kJsonMaxUint) { SetStringValue(message, absl::StrCat(value)); return; } SetNumberValue(message, static_cast<double>(value)); } absl::Status ValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Value")); return Initialize(descriptor); } absl::Status ValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(kind_field_, GetOneofByName(descriptor, "kind")); CEL_ASSIGN_OR_RETURN(null_value_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(null_value_field_, FieldDescriptor::CPPTYPE_ENUM)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(null_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldOneof(null_value_field_, kind_field_, 0)); CEL_ASSIGN_OR_RETURN(bool_value_field_, GetFieldByNumber(descriptor, 4)); CEL_RETURN_IF_ERROR( CheckFieldCppType(bool_value_field_, FieldDescriptor::CPPTYPE_BOOL)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(bool_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldOneof(bool_value_field_, kind_field_, 3)); CEL_ASSIGN_OR_RETURN(number_value_field_, GetFieldByNumber(descriptor, 2)); CEL_RETURN_IF_ERROR(CheckFieldCppType(number_value_field_, FieldDescriptor::CPPTYPE_DOUBLE)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(number_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldOneof(number_value_field_, kind_field_, 1)); CEL_ASSIGN_OR_RETURN(string_value_field_, GetFieldByNumber(descriptor, 3)); CEL_RETURN_IF_ERROR(CheckFieldCppType(string_value_field_, FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(string_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldOneof(string_value_field_, kind_field_, 2)); string_value_field_string_type_ = string_value_field_->cpp_string_type(); CEL_ASSIGN_OR_RETURN(list_value_field_, GetFieldByNumber(descriptor, 6)); CEL_RETURN_IF_ERROR( CheckFieldCppType(list_value_field_, FieldDescriptor::CPPTYPE_MESSAGE)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(list_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldOneof(list_value_field_, kind_field_, 5)); CEL_RETURN_IF_ERROR(CheckFieldWellKnownType( list_value_field_, Descriptor::WELLKNOWNTYPE_LISTVALUE)); CEL_ASSIGN_OR_RETURN(struct_value_field_, GetFieldByNumber(descriptor, 5)); CEL_RETURN_IF_ERROR(CheckFieldCppType(struct_value_field_, FieldDescriptor::CPPTYPE_MESSAGE)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(struct_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldOneof(struct_value_field_, kind_field_, 4)); CEL_RETURN_IF_ERROR(CheckFieldWellKnownType( struct_value_field_, Descriptor::WELLKNOWNTYPE_STRUCT)); descriptor_ = descriptor; } return absl::OkStatus(); } google::protobuf::Value::KindCase ValueReflection::GetKindCase( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); const auto* field = message.GetReflection()->GetOneofFieldDescriptor(message, kind_field_); return field != nullptr ? static_cast<google::protobuf::Value::KindCase>( field->index_in_oneof() + 1) : google::protobuf::Value::KIND_NOT_SET; } bool ValueReflection::GetBoolValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetBool(message, bool_value_field_); } double ValueReflection::GetNumberValue(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetDouble(message, number_value_field_); } StringValue ValueReflection::GetStringValue(const google::protobuf::Message& message, std::string& scratch) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return GetStringField<StringValue>(message, string_value_field_, string_value_field_string_type_, scratch); } const google::protobuf::Message& ValueReflection::GetListValue( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetMessage(message, list_value_field_); } const google::protobuf::Message& ValueReflection::GetStructValue( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetMessage(message, struct_value_field_); } void ValueReflection::SetNullValue( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetEnumValue(message, null_value_field_, 0); } void ValueReflection::SetBoolValue(absl::Nonnull<google::protobuf::Message*> message, bool value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetBool(message, bool_value_field_, value); } void ValueReflection::SetNumberValue(absl::Nonnull<google::protobuf::Message*> message, int64_t value) const { if (value < kJsonMinInt || value > kJsonMaxInt) { SetStringValue(message, absl::StrCat(value)); return; } SetNumberValue(message, static_cast<double>(value)); } void ValueReflection::SetNumberValue(absl::Nonnull<google::protobuf::Message*> message, uint64_t value) const { if (value > kJsonMaxUint) { SetStringValue(message, absl::StrCat(value)); return; } SetNumberValue(message, static_cast<double>(value)); } void ValueReflection::SetNumberValue(absl::Nonnull<google::protobuf::Message*> message, double value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetDouble(message, number_value_field_, value); } void ValueReflection::SetStringValue(absl::Nonnull<google::protobuf::Message*> message, absl::string_view value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, string_value_field_, std::string(value)); } void ValueReflection::SetStringValue(absl::Nonnull<google::protobuf::Message*> message, const absl::Cord& value) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); message->GetReflection()->SetString(message, string_value_field_, value); } absl::Nonnull<google::protobuf::Message*> ValueReflection::MutableListValue( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); return message->GetReflection()->MutableMessage(message, list_value_field_); } absl::Nonnull<google::protobuf::Message*> ValueReflection::MutableStructValue( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); return message->GetReflection()->MutableMessage(message, struct_value_field_); } Unique<google::protobuf::Message> ValueReflection::ReleaseListValue( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); const auto* reflection = message->GetReflection(); if (!reflection->HasField(*message, list_value_field_)) { reflection->MutableMessage(message, list_value_field_); } return WrapUnique( reflection->UnsafeArenaReleaseMessage(message, list_value_field_), message->GetArena()); } Unique<google::protobuf::Message> ValueReflection::ReleaseStructValue( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); const auto* reflection = message->GetReflection(); if (!reflection->HasField(*message, struct_value_field_)) { reflection->MutableMessage(message, struct_value_field_); } return WrapUnique( reflection->UnsafeArenaReleaseMessage(message, struct_value_field_), message->GetArena()); } absl::StatusOr<ValueReflection> GetValueReflection( absl::Nonnull<const Descriptor*> descriptor) { ValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } ValueReflection GetValueReflectionOrDie( absl::Nonnull<const google::protobuf::Descriptor*> descriptor) { ValueReflection reflection; ABSL_CHECK_OK(reflection.Initialize(descriptor)); return reflection; } absl::Status ListValueReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.ListValue")); return Initialize(descriptor); } absl::Status ListValueReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(values_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(values_field_, FieldDescriptor::CPPTYPE_MESSAGE)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(values_field_, FieldDescriptor::LABEL_REPEATED)); CEL_RETURN_IF_ERROR(CheckFieldWellKnownType( values_field_, Descriptor::WELLKNOWNTYPE_VALUE)); descriptor_ = descriptor; } return absl::OkStatus(); } int ListValueReflection::ValuesSize(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->FieldSize(message, values_field_); } google::protobuf::RepeatedFieldRef<google::protobuf::Message> ListValueReflection::Values( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetRepeatedFieldRef<google::protobuf::Message>( message, values_field_); } const google::protobuf::Message& ListValueReflection::Values( const google::protobuf::Message& message ABSL_ATTRIBUTE_LIFETIME_BOUND, int index) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->GetRepeatedMessage(message, values_field_, index); } google::protobuf::MutableRepeatedFieldRef<google::protobuf::Message> ListValueReflection::MutableValues( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); return message->GetReflection()->GetMutableRepeatedFieldRef<google::protobuf::Message>( message, values_field_); } absl::Nonnull<google::protobuf::Message*> ListValueReflection::AddValues( absl::Nonnull<google::protobuf::Message*> message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); return message->GetReflection()->AddMessage(message, values_field_); } void ListValueReflection::ReserveValues(absl::Nonnull<google::protobuf::Message*> message, int capacity) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); if (capacity > 0) { MutableValues(message).Reserve(capacity); } } absl::StatusOr<ListValueReflection> GetListValueReflection( absl::Nonnull<const Descriptor*> descriptor) { ListValueReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } ListValueReflection GetListValueReflectionOrDie( absl::Nonnull<const google::protobuf::Descriptor*> descriptor) { ListValueReflection reflection; ABSL_CHECK_OK(reflection.Initialize(descriptor)); return reflection; } absl::Status StructReflection::Initialize( absl::Nonnull<const DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.Struct")); return Initialize(descriptor); } absl::Status StructReflection::Initialize( absl::Nonnull<const Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(fields_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR(CheckMapField(fields_field_)); fields_key_field_ = fields_field_->message_type()->map_key(); CEL_RETURN_IF_ERROR( CheckFieldCppType(fields_key_field_, FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(fields_key_field_, FieldDescriptor::LABEL_OPTIONAL)); fields_value_field_ = fields_field_->message_type()->map_value(); CEL_RETURN_IF_ERROR(CheckFieldCppType(fields_value_field_, FieldDescriptor::CPPTYPE_MESSAGE)); CEL_RETURN_IF_ERROR(CheckFieldCardinality(fields_value_field_, FieldDescriptor::LABEL_OPTIONAL)); CEL_RETURN_IF_ERROR(CheckFieldWellKnownType( fields_value_field_, Descriptor::WELLKNOWNTYPE_VALUE)); descriptor_ = descriptor; } return absl::OkStatus(); } int StructReflection::FieldsSize(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return cel::extensions::protobuf_internal::MapSize(*message.GetReflection(), message, *fields_field_); } google::protobuf::MapIterator StructReflection::BeginFields( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return cel::extensions::protobuf_internal::MapBegin(*message.GetReflection(), message, *fields_field_); } google::protobuf::MapIterator StructReflection::EndFields( const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return cel::extensions::protobuf_internal::MapEnd(*message.GetReflection(), message, *fields_field_); } bool StructReflection::ContainsField(const google::protobuf::Message& message, absl::string_view name) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); std::string key_scratch(name); google::protobuf::MapKey key; key.SetStringValue(key_scratch); return cel::extensions::protobuf_internal::ContainsMapKey( *message.GetReflection(), message, *fields_field_, key); } absl::Nullable<const google::protobuf::Message*> StructReflection::FindField( const google::protobuf::Message& message, absl::string_view name) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); std::string key_scratch(name); google::protobuf::MapKey key; key.SetStringValue(key_scratch); google::protobuf::MapValueConstRef value; if (cel::extensions::protobuf_internal::LookupMapValue( *message.GetReflection(), message, *fields_field_, key, &value)) { return &value.GetMessageValue(); } return nullptr; } absl::Nonnull<google::protobuf::Message*> StructReflection::InsertField( absl::Nonnull<google::protobuf::Message*> message, absl::string_view name) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); std::string key_scratch(name); google::protobuf::MapKey key; key.SetStringValue(key_scratch); google::protobuf::MapValueRef value; cel::extensions::protobuf_internal::InsertOrLookupMapValue( *message->GetReflection(), message, *fields_field_, key, &value); return value.MutableMessageValue(); } bool StructReflection::DeleteField(absl::Nonnull<google::protobuf::Message*> message, absl::string_view name) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message->GetDescriptor(), descriptor_); std::string key_scratch(name); google::protobuf::MapKey key; key.SetStringValue(key_scratch); return cel::extensions::protobuf_internal::DeleteMapValue( message->GetReflection(), message, fields_field_, key); } absl::StatusOr<StructReflection> GetStructReflection( absl::Nonnull<const Descriptor*> descriptor) { StructReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } StructReflection GetStructReflectionOrDie( absl::Nonnull<const google::protobuf::Descriptor*> descriptor) { StructReflection reflection; ABSL_CHECK_OK(reflection.Initialize(descriptor)); return reflection; } absl::Status FieldMaskReflection::Initialize( absl::Nonnull<const google::protobuf::DescriptorPool*> pool) { CEL_ASSIGN_OR_RETURN(const auto* descriptor, GetMessageTypeByName(pool, "google.protobuf.FieldMask")); return Initialize(descriptor); } absl::Status FieldMaskReflection::Initialize( absl::Nonnull<const google::protobuf::Descriptor*> descriptor) { if (descriptor_ != descriptor) { CEL_RETURN_IF_ERROR(CheckWellKnownType(descriptor, kWellKnownType)); descriptor_ = nullptr; CEL_ASSIGN_OR_RETURN(paths_field_, GetFieldByNumber(descriptor, 1)); CEL_RETURN_IF_ERROR( CheckFieldCppType(paths_field_, FieldDescriptor::CPPTYPE_STRING)); CEL_RETURN_IF_ERROR( CheckFieldCardinality(paths_field_, FieldDescriptor::LABEL_REPEATED)); paths_field_string_type_ = paths_field_->cpp_string_type(); descriptor_ = descriptor; } return absl::OkStatus(); } int FieldMaskReflection::PathsSize(const google::protobuf::Message& message) const { ABSL_DCHECK(IsInitialized()); ABSL_DCHECK_EQ(message.GetDescriptor(), descriptor_); return message.GetReflection()->FieldSize(message, paths_field_); } StringValue FieldMaskReflection::Paths(const google::protobuf::Message& message, int index, std::string& scratch) const { return GetRepeatedStringField<StringValue>( message, paths_field_, paths_field_string_type_, index, scratch); } absl::StatusOr<FieldMaskReflection> GetFieldMaskReflection( absl::Nonnull<const google::protobuf::Descriptor*> descriptor) { FieldMaskReflection reflection; CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); return reflection; } absl::Status Reflection::Initialize(absl::Nonnull<const DescriptorPool*> pool) { CEL_RETURN_IF_ERROR(NullValue().Initialize(pool)); CEL_RETURN_IF_ERROR(BoolValue().Initialize(pool)); CEL_RETURN_IF_ERROR(Int32Value().Initialize(pool)); CEL_RETURN_IF_ERROR(Int64Value().Initialize(pool)); CEL_RETURN_IF_ERROR(UInt32Value().Initialize(pool)); CEL_RETURN_IF_ERROR(UInt64Value().Initialize(pool)); CEL_RETURN_IF_ERROR(FloatValue().Initialize(pool)); CEL_RETURN_IF_ERROR(DoubleValue().Initialize(pool)); CEL_RETURN_IF_ERROR(BytesValue().Initialize(pool)); CEL_RETURN_IF_ERROR(StringValue().Initialize(pool)); CEL_RETURN_IF_ERROR(Any().Initialize(pool)); CEL_RETURN_IF_ERROR(Duration().Initialize(pool)); CEL_RETURN_IF_ERROR(Timestamp().Initialize(pool)); CEL_RETURN_IF_ERROR(Value().Initialize(pool)); CEL_RETURN_IF_ERROR(ListValue().Initialize(pool)); CEL_RETURN_IF_ERROR(Struct().Initialize(pool)); if (const auto* descriptor = pool->FindMessageTypeByName("google.protobuf.FieldMask"); descriptor != nullptr) { CEL_RETURN_IF_ERROR(FieldMask().Initialize(descriptor)); } return absl::OkStatus(); } namespace { absl::StatusOr<ListValue> AdaptListValue(absl::Nullable<google::protobuf::Arena*> arena, const google::protobuf::Message& message, Unique<google::protobuf::Message> adapted) { ABSL_DCHECK(!adapted || &message == cel::to_address(adapted)); const auto* descriptor = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(descriptor == nullptr)) { return absl::InvalidArgumentError( absl::StrCat("missing descriptor for protocol buffer message: ", message.GetTypeName())); } CEL_RETURN_IF_ERROR(GetListValueReflection(descriptor).status()); if (adapted) { return ListValue(std::move(adapted)); } return ListValue(std::cref(message)); } absl::StatusOr<Struct> AdaptStruct(absl::Nullable<google::protobuf::Arena*> arena, const google::protobuf::Message& message, Unique<google::protobuf::Message> adapted) { ABSL_DCHECK(!adapted || &message == cel::to_address(adapted)); const auto* descriptor = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(descriptor == nullptr)) { return absl::InvalidArgumentError( absl::StrCat("missing descriptor for protocol buffer message: ", message.GetTypeName())); } CEL_RETURN_IF_ERROR(GetStructReflection(descriptor).status()); if (adapted) { return Struct(std::move(adapted)); } return Struct(std::cref(message)); } absl::StatusOr<Unique<google::protobuf::Message>> AdaptAny( absl::Nullable<google::protobuf::Arena*> arena, AnyReflection& reflection, const google::protobuf::Message& message, absl::Nonnull<const Descriptor*> descriptor, absl::Nonnull<const DescriptorPool*> pool, absl::Nonnull<google::protobuf::MessageFactory*> factory, bool error_if_unresolveable) { ABSL_DCHECK_EQ(descriptor->well_known_type(), Descriptor::WELLKNOWNTYPE_ANY); absl::Nonnull<const google::protobuf::Message*> to_unwrap = &message; Unique<google::protobuf::Message> unwrapped; std::string type_url_scratch; std::string value_scratch; do { CEL_RETURN_IF_ERROR(reflection.Initialize(descriptor)); StringValue type_url = reflection.GetTypeUrl(*to_unwrap, type_url_scratch); absl::string_view type_url_view = FlatStringValue(type_url, type_url_scratch); if (!absl::ConsumePrefix(&type_url_view, "type.googleapis.com/") && !absl::ConsumePrefix(&type_url_view, "type.googleprod.com/")) { if (!error_if_unresolveable) { break; } return absl::InvalidArgumentError(absl::StrCat( "unable to find descriptor for type URL: ", type_url_view)); } const auto* packed_descriptor = pool->FindMessageTypeByName(type_url_view); if (packed_descriptor == nullptr) { if (!error_if_unresolveable) { break; } return absl::InvalidArgumentError(absl::StrCat( "unable to find descriptor for type name: ", type_url_view)); } const auto* prototype = factory->GetPrototype(packed_descriptor); if (prototype == nullptr) { return absl::InvalidArgumentError(absl::StrCat( "unable to build prototype for type name: ", type_url_view)); } BytesValue value = reflection.GetValue(*to_unwrap, value_scratch); Unique<google::protobuf::Message> unpacked = WrapUnique(prototype->New(arena), arena); const bool ok = absl::visit(absl::Overload( [&](absl::string_view string) -> bool { return unpacked->ParseFromString(string); }, [&](const absl::Cord& cord) -> bool { return unpacked->ParseFromCord(cord); }), AsVariant(value)); if (!ok) { return absl::InvalidArgumentError(absl::StrCat( "failed to unpack protocol buffer message: ", type_url_view)); } unwrapped = std::move(unpacked); to_unwrap = cel::to_address(unwrapped); descriptor = to_unwrap->GetDescriptor(); if (descriptor == nullptr) { return absl::InvalidArgumentError( absl::StrCat("missing descriptor for protocol buffer message: ", to_unwrap->GetTypeName())); } } while (descriptor->well_known_type() == Descriptor::WELLKNOWNTYPE_ANY); return unwrapped; } } absl::StatusOr<Unique<google::protobuf::Message>> UnpackAnyFrom( absl::Nullable<google::protobuf::Arena*> arena, AnyReflection& reflection, const google::protobuf::Message& message, absl::Nonnull<const google::protobuf::DescriptorPool*> pool, absl::Nonnull<google::protobuf::MessageFactory*> factory) { ABSL_DCHECK_EQ(message.GetDescriptor()->well_known_type(), Descriptor::WELLKNOWNTYPE_ANY); return AdaptAny(arena, reflection, message, message.GetDescriptor(), pool, factory, true); } absl::StatusOr<Unique<google::protobuf::Message>> UnpackAnyIfResolveable( absl::Nullable<google::protobuf::Arena*> arena, AnyReflection& reflection, const google::protobuf::Message& message, absl::Nonnull<const google::protobuf::DescriptorPool*> pool, absl::Nonnull<google::protobuf::MessageFactory*> factory) { ABSL_DCHECK_EQ(message.GetDescriptor()->well_known_type(), Descriptor::WELLKNOWNTYPE_ANY); return AdaptAny(arena, reflection, message, message.GetDescriptor(), pool, factory, false); } absl::StatusOr<well_known_types::Value> AdaptFromMessage( absl::Nullable<google::protobuf::Arena*> arena, const google::protobuf::Message& message, absl::Nonnull<const DescriptorPool*> pool, absl::Nonnull<google::protobuf::MessageFactory*> factory, std::string& scratch) { const auto* descriptor = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(descriptor == nullptr)) { return absl::InvalidArgumentError( absl::StrCat("missing descriptor for protocol buffer message: ", message.GetTypeName())); } absl::Nonnull<const google::protobuf::Message*> to_adapt; Unique<google::protobuf::Message> adapted; Descriptor::WellKnownType well_known_type = descriptor->well_known_type(); if (well_known_type == Descriptor::WELLKNOWNTYPE_ANY) { AnyReflection reflection; CEL_ASSIGN_OR_RETURN( adapted, UnpackAnyFrom(arena, reflection, message, pool, factory)); to_adapt = cel::to_address(adapted); descriptor = to_adapt->GetDescriptor(); well_known_type = descriptor->well_known_type(); } else { to_adapt = &message; } switch (descriptor->well_known_type()) { case Descriptor::WELLKNOWNTYPE_DOUBLEVALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetDoubleValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_FLOATVALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetFloatValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_INT64VALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetInt64ValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_UINT64VALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetUInt64ValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_INT32VALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetInt32ValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_UINT32VALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetUInt32ValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_STRINGVALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetStringValueReflection(descriptor)); auto value = reflection.GetValue(*to_adapt, scratch); if (adapted) { value = CopyStringValue(value, scratch); } return value; } case Descriptor::WELLKNOWNTYPE_BYTESVALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetBytesValueReflection(descriptor)); auto value = reflection.GetValue(*to_adapt, scratch); if (adapted) { value = CopyBytesValue(value, scratch); } return value; } case Descriptor::WELLKNOWNTYPE_BOOLVALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetBoolValueReflection(descriptor)); return reflection.GetValue(*to_adapt); } case Descriptor::WELLKNOWNTYPE_ANY: ABSL_UNREACHABLE(); case Descriptor::WELLKNOWNTYPE_DURATION: { CEL_ASSIGN_OR_RETURN(auto reflection, GetDurationReflection(descriptor)); return reflection.ToAbslDuration(*to_adapt); } case Descriptor::WELLKNOWNTYPE_TIMESTAMP: { CEL_ASSIGN_OR_RETURN(auto reflection, GetTimestampReflection(descriptor)); return reflection.ToAbslTime(*to_adapt); } case Descriptor::WELLKNOWNTYPE_VALUE: { CEL_ASSIGN_OR_RETURN(auto reflection, GetValueReflection(descriptor)); const auto kind_case = reflection.GetKindCase(*to_adapt); switch (kind_case) { case google::protobuf::Value::KIND_NOT_SET: ABSL_FALLTHROUGH_INTENDED; case google::protobuf::Value::kNullValue: return nullptr; case google::protobuf::Value::kNumberValue: return reflection.GetNumberValue(*to_adapt); case google::protobuf::Value::kStringValue: { auto value = reflection.GetStringValue(*to_adapt, scratch); if (adapted) { value = CopyStringValue(value, scratch); } return value; } case google::protobuf::Value::kBoolValue: return reflection.GetBoolValue(*to_adapt); case google::protobuf::Value::kStructValue: { if (adapted) { adapted = reflection.ReleaseStructValue(cel::to_address(adapted)); to_adapt = cel::to_address(adapted); } else { to_adapt = &reflection.GetStructValue(*to_adapt); } return AdaptStruct(arena, *to_adapt, std::move(adapted)); } case google::protobuf::Value::kListValue: { if (adapted) { adapted = reflection.ReleaseListValue(cel::to_address(adapted)); to_adapt = cel::to_address(adapted); } else { to_adapt = &reflection.GetListValue(*to_adapt); } return AdaptListValue(arena, *to_adapt, std::move(adapted)); } default: return absl::InvalidArgumentError( absl::StrCat("unexpected value kind case: ", kind_case)); } } case Descriptor::WELLKNOWNTYPE_LISTVALUE: return AdaptListValue(arena, *to_adapt, std::move(adapted)); case Descriptor::WELLKNOWNTYPE_STRUCT: return AdaptStruct(arena, *to_adapt, std::move(adapted)); default: if (adapted) { return adapted; } return absl::monostate{}; } } }
#include "internal/well_known_types.h" #include <cstddef> #include <cstdint> #include <string> #include "google/protobuf/any.pb.h" #include "google/protobuf/duration.pb.h" #include "google/protobuf/field_mask.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/timestamp.pb.h" #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/log/die_if_null.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/variant.h" #include "common/memory.h" #include "internal/message_type_name.h" #include "internal/minimal_descriptor_pool.h" #include "internal/parse_text_proto.h" #include "internal/testing.h" #include "internal/testing_descriptor_pool.h" #include "internal/testing_message_factory.h" #include "proto/test/v1/proto3/test_all_types.pb.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace cel::well_known_types { namespace { using ::absl_testing::IsOk; using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::cel::internal::GetMinimalDescriptorPool; using ::cel::internal::GetTestingDescriptorPool; using ::cel::internal::GetTestingMessageFactory; using ::testing::_; using ::testing::HasSubstr; using ::testing::IsNull; using ::testing::NotNull; using ::testing::Test; using ::testing::VariantWith; using TestAllTypesProto3 = ::google::api::expr::test::v1::proto3::TestAllTypes; class ReflectionTest : public Test { public: absl::Nonnull<google::protobuf::Arena*> arena() ABSL_ATTRIBUTE_LIFETIME_BOUND { return &arena_; } std::string& scratch_space() ABSL_ATTRIBUTE_LIFETIME_BOUND { return scratch_space_; } absl::Nonnull<const google::protobuf::DescriptorPool*> descriptor_pool() { return GetTestingDescriptorPool(); } absl::Nonnull<google::protobuf::MessageFactory*> message_factory() { return GetTestingMessageFactory(); } template <typename T> absl::Nonnull<T*> MakeGenerated() { return google::protobuf::Arena::Create<T>(arena()); } template <typename T> absl::Nonnull<google::protobuf::Message*> MakeDynamic() { const auto* descriptor = ABSL_DIE_IF_NULL(descriptor_pool()->FindMessageTypeByName( internal::MessageTypeNameFor<T>())); const auto* prototype = ABSL_DIE_IF_NULL(message_factory()->GetPrototype(descriptor)); return prototype->New(arena()); } private: google::protobuf::Arena arena_; std::string scratch_space_; }; TEST_F(ReflectionTest, MinimalDescriptorPool) { EXPECT_THAT(Reflection().Initialize(GetMinimalDescriptorPool()), IsOk()); } TEST_F(ReflectionTest, TestingDescriptorPool) { EXPECT_THAT(Reflection().Initialize(GetTestingDescriptorPool()), IsOk()); } TEST_F(ReflectionTest, BoolValue_Generated) { auto* value = MakeGenerated<google::protobuf::BoolValue>(); EXPECT_EQ(BoolValueReflection::GetValue(*value), false); BoolValueReflection::SetValue(value, true); EXPECT_EQ(BoolValueReflection::GetValue(*value), true); } TEST_F(ReflectionTest, BoolValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::BoolValue>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetBoolValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), false); reflection.SetValue(value, true); EXPECT_EQ(reflection.GetValue(*value), true); } TEST_F(ReflectionTest, Int32Value_Generated) { auto* value = MakeGenerated<google::protobuf::Int32Value>(); EXPECT_EQ(Int32ValueReflection::GetValue(*value), 0); Int32ValueReflection::SetValue(value, 1); EXPECT_EQ(Int32ValueReflection::GetValue(*value), 1); } TEST_F(ReflectionTest, Int32Value_Dynamic) { auto* value = MakeDynamic<google::protobuf::Int32Value>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetInt32ValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), 0); reflection.SetValue(value, 1); EXPECT_EQ(reflection.GetValue(*value), 1); } TEST_F(ReflectionTest, Int64Value_Generated) { auto* value = MakeGenerated<google::protobuf::Int64Value>(); EXPECT_EQ(Int64ValueReflection::GetValue(*value), 0); Int64ValueReflection::SetValue(value, 1); EXPECT_EQ(Int64ValueReflection::GetValue(*value), 1); } TEST_F(ReflectionTest, Int64Value_Dynamic) { auto* value = MakeDynamic<google::protobuf::Int64Value>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetInt64ValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), 0); reflection.SetValue(value, 1); EXPECT_EQ(reflection.GetValue(*value), 1); } TEST_F(ReflectionTest, UInt32Value_Generated) { auto* value = MakeGenerated<google::protobuf::UInt32Value>(); EXPECT_EQ(UInt32ValueReflection::GetValue(*value), 0); UInt32ValueReflection::SetValue(value, 1); EXPECT_EQ(UInt32ValueReflection::GetValue(*value), 1); } TEST_F(ReflectionTest, UInt32Value_Dynamic) { auto* value = MakeDynamic<google::protobuf::UInt32Value>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetUInt32ValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), 0); reflection.SetValue(value, 1); EXPECT_EQ(reflection.GetValue(*value), 1); } TEST_F(ReflectionTest, UInt64Value_Generated) { auto* value = MakeGenerated<google::protobuf::UInt64Value>(); EXPECT_EQ(UInt64ValueReflection::GetValue(*value), 0); UInt64ValueReflection::SetValue(value, 1); EXPECT_EQ(UInt64ValueReflection::GetValue(*value), 1); } TEST_F(ReflectionTest, UInt64Value_Dynamic) { auto* value = MakeDynamic<google::protobuf::UInt64Value>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetUInt64ValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), 0); reflection.SetValue(value, 1); EXPECT_EQ(reflection.GetValue(*value), 1); } TEST_F(ReflectionTest, FloatValue_Generated) { auto* value = MakeGenerated<google::protobuf::FloatValue>(); EXPECT_EQ(FloatValueReflection::GetValue(*value), 0); FloatValueReflection::SetValue(value, 1); EXPECT_EQ(FloatValueReflection::GetValue(*value), 1); } TEST_F(ReflectionTest, FloatValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::FloatValue>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetFloatValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), 0); reflection.SetValue(value, 1); EXPECT_EQ(reflection.GetValue(*value), 1); } TEST_F(ReflectionTest, DoubleValue_Generated) { auto* value = MakeGenerated<google::protobuf::DoubleValue>(); EXPECT_EQ(DoubleValueReflection::GetValue(*value), 0); DoubleValueReflection::SetValue(value, 1); EXPECT_EQ(DoubleValueReflection::GetValue(*value), 1); } TEST_F(ReflectionTest, DoubleValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::DoubleValue>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetDoubleValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value), 0); reflection.SetValue(value, 1); EXPECT_EQ(reflection.GetValue(*value), 1); } TEST_F(ReflectionTest, BytesValue_Generated) { auto* value = MakeGenerated<google::protobuf::BytesValue>(); EXPECT_EQ(BytesValueReflection::GetValue(*value), ""); BytesValueReflection::SetValue(value, absl::Cord("Hello World!")); EXPECT_EQ(BytesValueReflection::GetValue(*value), "Hello World!"); } TEST_F(ReflectionTest, BytesValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::BytesValue>(); std::string scratch; ASSERT_OK_AND_ASSIGN( auto reflection, GetBytesValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value, scratch), ""); reflection.SetValue(value, "Hello World!"); EXPECT_EQ(reflection.GetValue(*value, scratch), "Hello World!"); reflection.SetValue(value, absl::Cord()); EXPECT_EQ(reflection.GetValue(*value, scratch), ""); } TEST_F(ReflectionTest, StringValue_Generated) { auto* value = MakeGenerated<google::protobuf::StringValue>(); EXPECT_EQ(StringValueReflection::GetValue(*value), ""); StringValueReflection::SetValue(value, "Hello World!"); EXPECT_EQ(StringValueReflection::GetValue(*value), "Hello World!"); } TEST_F(ReflectionTest, StringValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::StringValue>(); std::string scratch; ASSERT_OK_AND_ASSIGN( auto reflection, GetStringValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetValue(*value, scratch), ""); reflection.SetValue(value, "Hello World!"); EXPECT_EQ(reflection.GetValue(*value, scratch), "Hello World!"); reflection.SetValue(value, absl::Cord()); EXPECT_EQ(reflection.GetValue(*value, scratch), ""); } TEST_F(ReflectionTest, Any_Generated) { auto* value = MakeGenerated<google::protobuf::Any>(); EXPECT_EQ(AnyReflection::GetTypeUrl(*value), ""); AnyReflection::SetTypeUrl(value, "Hello World!"); EXPECT_EQ(AnyReflection::GetTypeUrl(*value), "Hello World!"); EXPECT_EQ(AnyReflection::GetValue(*value), ""); AnyReflection::SetValue(value, absl::Cord("Hello World!")); EXPECT_EQ(AnyReflection::GetValue(*value), "Hello World!"); } TEST_F(ReflectionTest, Any_Dynamic) { auto* value = MakeDynamic<google::protobuf::Any>(); std::string scratch; ASSERT_OK_AND_ASSIGN( auto reflection, GetAnyReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetTypeUrl(*value, scratch), ""); reflection.SetTypeUrl(value, "Hello World!"); EXPECT_EQ(reflection.GetTypeUrl(*value, scratch), "Hello World!"); EXPECT_EQ(reflection.GetValue(*value, scratch), ""); reflection.SetValue(value, absl::Cord("Hello World!")); EXPECT_EQ(reflection.GetValue(*value, scratch), "Hello World!"); } TEST_F(ReflectionTest, Duration_Generated) { auto* value = MakeGenerated<google::protobuf::Duration>(); EXPECT_EQ(DurationReflection::GetSeconds(*value), 0); DurationReflection::SetSeconds(value, 1); EXPECT_EQ(DurationReflection::GetSeconds(*value), 1); EXPECT_EQ(DurationReflection::GetNanos(*value), 0); DurationReflection::SetNanos(value, 1); EXPECT_EQ(DurationReflection::GetNanos(*value), 1); } TEST_F(ReflectionTest, Duration_Dynamic) { auto* value = MakeDynamic<google::protobuf::Duration>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetDurationReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetSeconds(*value), 0); reflection.SetSeconds(value, 1); EXPECT_EQ(reflection.GetSeconds(*value), 1); EXPECT_EQ(reflection.GetNanos(*value), 0); reflection.SetNanos(value, 1); EXPECT_EQ(reflection.GetNanos(*value), 1); } TEST_F(ReflectionTest, Timestamp_Generated) { auto* value = MakeGenerated<google::protobuf::Timestamp>(); EXPECT_EQ(TimestampReflection::GetSeconds(*value), 0); TimestampReflection::SetSeconds(value, 1); EXPECT_EQ(TimestampReflection::GetSeconds(*value), 1); EXPECT_EQ(TimestampReflection::GetNanos(*value), 0); TimestampReflection::SetNanos(value, 1); EXPECT_EQ(TimestampReflection::GetNanos(*value), 1); } TEST_F(ReflectionTest, Timestamp_Dynamic) { auto* value = MakeDynamic<google::protobuf::Timestamp>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetTimestampReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetSeconds(*value), 0); reflection.SetSeconds(value, 1); EXPECT_EQ(reflection.GetSeconds(*value), 1); EXPECT_EQ(reflection.GetNanos(*value), 0); reflection.SetNanos(value, 1); EXPECT_EQ(reflection.GetNanos(*value), 1); } TEST_F(ReflectionTest, Value_Generated) { auto* value = MakeGenerated<google::protobuf::Value>(); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::KIND_NOT_SET); ValueReflection::SetNullValue(value); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::kNullValue); ValueReflection::SetBoolValue(value, true); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::kBoolValue); EXPECT_EQ(ValueReflection::GetBoolValue(*value), true); ValueReflection::SetNumberValue(value, 1.0); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::kNumberValue); EXPECT_EQ(ValueReflection::GetNumberValue(*value), 1.0); ValueReflection::SetStringValue(value, "Hello World!"); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::kStringValue); EXPECT_EQ(ValueReflection::GetStringValue(*value), "Hello World!"); ValueReflection::MutableListValue(value); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::kListValue); EXPECT_EQ(ValueReflection::GetListValue(*value).ByteSizeLong(), 0); ValueReflection::MutableStructValue(value); EXPECT_EQ(ValueReflection::GetKindCase(*value), google::protobuf::Value::kStructValue); EXPECT_EQ(ValueReflection::GetStructValue(*value).ByteSizeLong(), 0); } TEST_F(ReflectionTest, Value_Dynamic) { auto* value = MakeDynamic<google::protobuf::Value>(); std::string scratch; ASSERT_OK_AND_ASSIGN( auto reflection, GetValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::KIND_NOT_SET); reflection.SetNullValue(value); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::kNullValue); reflection.SetBoolValue(value, true); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::kBoolValue); EXPECT_EQ(reflection.GetBoolValue(*value), true); reflection.SetNumberValue(value, 1.0); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::kNumberValue); EXPECT_EQ(reflection.GetNumberValue(*value), 1.0); reflection.SetStringValue(value, "Hello World!"); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::kStringValue); EXPECT_EQ(reflection.GetStringValue(*value, scratch), "Hello World!"); reflection.MutableListValue(value); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::kListValue); EXPECT_EQ(reflection.GetListValue(*value).ByteSizeLong(), 0); EXPECT_THAT(reflection.ReleaseListValue(value), NotNull()); reflection.MutableStructValue(value); EXPECT_EQ(reflection.GetKindCase(*value), google::protobuf::Value::kStructValue); EXPECT_EQ(reflection.GetStructValue(*value).ByteSizeLong(), 0); EXPECT_THAT(reflection.ReleaseStructValue(value), NotNull()); } TEST_F(ReflectionTest, ListValue_Generated) { auto* value = MakeGenerated<google::protobuf::ListValue>(); EXPECT_EQ(ListValueReflection::ValuesSize(*value), 0); EXPECT_EQ(ListValueReflection::Values(*value).size(), 0); EXPECT_EQ(ListValueReflection::MutableValues(value).size(), 0); } TEST_F(ReflectionTest, ListValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::ListValue>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetListValueReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.ValuesSize(*value), 0); EXPECT_EQ(reflection.Values(*value).size(), 0); EXPECT_EQ(reflection.MutableValues(value).size(), 0); } TEST_F(ReflectionTest, StructValue_Generated) { auto* value = MakeGenerated<google::protobuf::Struct>(); EXPECT_EQ(StructReflection::FieldsSize(*value), 0); EXPECT_EQ(StructReflection::BeginFields(*value), StructReflection::EndFields(*value)); EXPECT_FALSE(StructReflection::ContainsField(*value, "foo")); EXPECT_THAT(StructReflection::FindField(*value, "foo"), IsNull()); EXPECT_THAT(StructReflection::InsertField(value, "foo"), NotNull()); EXPECT_TRUE(StructReflection::DeleteField(value, "foo")); } TEST_F(ReflectionTest, StructValue_Dynamic) { auto* value = MakeDynamic<google::protobuf::Struct>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetStructReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.FieldsSize(*value), 0); EXPECT_EQ(reflection.BeginFields(*value), reflection.EndFields(*value)); EXPECT_FALSE(reflection.ContainsField(*value, "foo")); EXPECT_THAT(reflection.FindField(*value, "foo"), IsNull()); EXPECT_THAT(reflection.InsertField(value, "foo"), NotNull()); EXPECT_TRUE(reflection.DeleteField(value, "foo")); } TEST_F(ReflectionTest, FieldMask_Generated) { auto* value = MakeGenerated<google::protobuf::FieldMask>(); EXPECT_EQ(FieldMaskReflection::PathsSize(*value), 0); value->add_paths("foo"); EXPECT_EQ(FieldMaskReflection::PathsSize(*value), 1); EXPECT_EQ(FieldMaskReflection::Paths(*value, 0), "foo"); } TEST_F(ReflectionTest, FieldMask_Dynamic) { auto* value = MakeDynamic<google::protobuf::FieldMask>(); ASSERT_OK_AND_ASSIGN( auto reflection, GetFieldMaskReflection(ABSL_DIE_IF_NULL(value->GetDescriptor()))); EXPECT_EQ(reflection.PathsSize(*value), 0); value->GetReflection()->AddString( &*value, ABSL_DIE_IF_NULL(value->GetDescriptor()->FindFieldByName("paths")), "foo"); EXPECT_EQ(reflection.PathsSize(*value), 1); EXPECT_EQ(reflection.Paths(*value, 0, scratch_space()), "foo"); } TEST_F(ReflectionTest, NullValue_MissingValue) { google::protobuf::DescriptorPool descriptor_pool; { google::protobuf::FileDescriptorProto file_proto; file_proto.set_name("google/protobuf/struct.proto"); file_proto.set_syntax("editions"); file_proto.set_edition(google::protobuf::EDITION_2023); file_proto.set_package("google.protobuf"); auto* enum_proto = file_proto.add_enum_type(); enum_proto->set_name("NullValue"); auto* value_proto = enum_proto->add_value(); value_proto->set_number(1); value_proto->set_name("NULL_VALUE"); enum_proto->mutable_options()->mutable_features()->set_enum_type( google::protobuf::FeatureSet::CLOSED); ASSERT_THAT(descriptor_pool.BuildFile(file_proto), NotNull()); } EXPECT_THAT( NullValueReflection().Initialize(&descriptor_pool), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("well known protocol buffer enum missing value: "))); } TEST_F(ReflectionTest, NullValue_MultipleValues) { google::protobuf::DescriptorPool descriptor_pool; { google::protobuf::FileDescriptorProto file_proto; file_proto.set_name("google/protobuf/struct.proto"); file_proto.set_syntax("proto3"); file_proto.set_package("google.protobuf"); auto* enum_proto = file_proto.add_enum_type(); enum_proto->set_name("NullValue"); auto* value_proto = enum_proto->add_value(); value_proto->set_number(0); value_proto->set_name("NULL_VALUE"); value_proto = enum_proto->add_value(); value_proto->set_number(1); value_proto->set_name("NULL_VALUE2"); ASSERT_THAT(descriptor_pool.BuildFile(file_proto), NotNull()); } EXPECT_THAT( NullValueReflection().Initialize(&descriptor_pool), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("well known protocol buffer enum has multiple values: "))); } TEST_F(ReflectionTest, EnumDescriptorMissing) { google::protobuf::DescriptorPool descriptor_pool; EXPECT_THAT(NullValueReflection().Initialize(&descriptor_pool), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("descriptor missing for protocol buffer enum " "well known type: "))); } TEST_F(ReflectionTest, MessageDescriptorMissing) { google::protobuf::DescriptorPool descriptor_pool; EXPECT_THAT(BoolValueReflection().Initialize(&descriptor_pool), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("descriptor missing for protocol buffer " "message well known type: "))); } class AdaptFromMessageTest : public Test { public: absl::Nonnull<google::protobuf::Arena*> arena() ABSL_ATTRIBUTE_LIFETIME_BOUND { return &arena_; } std::string& scratch_space() ABSL_ATTRIBUTE_LIFETIME_BOUND { return scratch_space_; } absl::Nonnull<const google::protobuf::DescriptorPool*> descriptor_pool() { return GetTestingDescriptorPool(); } absl::Nonnull<google::protobuf::MessageFactory*> message_factory() { return GetTestingMessageFactory(); } template <typename T> absl::Nonnull<google::protobuf::Message*> MakeDynamic() { const auto* descriptor_pool = GetTestingDescriptorPool(); const auto* descriptor = ABSL_DIE_IF_NULL(descriptor_pool->FindMessageTypeByName( internal::MessageTypeNameFor<T>())); const auto* prototype = ABSL_DIE_IF_NULL(GetTestingMessageFactory()->GetPrototype(descriptor)); return prototype->New(arena()); } template <typename T> Owned<google::protobuf::Message> DynamicParseTextProto(absl::string_view text) { return ::cel::internal::DynamicParseTextProto<T>( arena(), text, descriptor_pool(), message_factory()); } absl::StatusOr<Value> AdaptFromMessage(const google::protobuf::Message& message) { return well_known_types::AdaptFromMessage( arena(), message, descriptor_pool(), message_factory(), scratch_space()); } private: google::protobuf::Arena arena_; std::string scratch_space_; }; TEST_F(AdaptFromMessageTest, BoolValue) { auto message = DynamicParseTextProto<google::protobuf::BoolValue>(R"pb(value: true)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<bool>(true))); } TEST_F(AdaptFromMessageTest, Int32Value) { auto message = DynamicParseTextProto<google::protobuf::Int32Value>(R"pb(value: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<int32_t>(1))); } TEST_F(AdaptFromMessageTest, Int64Value) { auto message = DynamicParseTextProto<google::protobuf::Int64Value>(R"pb(value: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<int64_t>(1))); } TEST_F(AdaptFromMessageTest, UInt32Value) { auto message = DynamicParseTextProto<google::protobuf::UInt32Value>(R"pb(value: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<uint32_t>(1))); } TEST_F(AdaptFromMessageTest, UInt64Value) { auto message = DynamicParseTextProto<google::protobuf::UInt64Value>(R"pb(value: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<uint64_t>(1))); } TEST_F(AdaptFromMessageTest, FloatValue) { auto message = DynamicParseTextProto<google::protobuf::FloatValue>(R"pb(value: 1.0)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<float>(1))); } TEST_F(AdaptFromMessageTest, DoubleValue) { auto message = DynamicParseTextProto<google::protobuf::DoubleValue>(R"pb(value: 1.0)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<double>(1))); } TEST_F(AdaptFromMessageTest, BytesValue) { auto message = DynamicParseTextProto<google::protobuf::BytesValue>( R"pb(value: "foo")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<BytesValue>(BytesValue("foo")))); } TEST_F(AdaptFromMessageTest, StringValue) { auto message = DynamicParseTextProto<google::protobuf::StringValue>( R"pb(value: "foo")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<StringValue>(StringValue("foo")))); } TEST_F(AdaptFromMessageTest, Duration) { auto message = DynamicParseTextProto<google::protobuf::Duration>( R"pb(seconds: 1 nanos: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<absl::Duration>(absl::Seconds(1) + absl::Nanoseconds(1)))); } TEST_F(AdaptFromMessageTest, Duration_SecondsOutOfRange) { auto message = DynamicParseTextProto<google::protobuf::Duration>( R"pb(seconds: 0x7fffffffffffffff nanos: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid duration seconds: "))); } TEST_F(AdaptFromMessageTest, Duration_NanosOutOfRange) { auto message = DynamicParseTextProto<google::protobuf::Duration>( R"pb(seconds: 1 nanos: 0x7fffffff)pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid duration nanoseconds: "))); } TEST_F(AdaptFromMessageTest, Duration_SignMismatch) { auto message = DynamicParseTextProto<google::protobuf::Duration>(R"pb(seconds: -1 nanos: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("duration sign mismatch: "))); } TEST_F(AdaptFromMessageTest, Timestamp) { auto message = DynamicParseTextProto<google::protobuf::Timestamp>(R"pb(seconds: 1 nanos: 1)pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<absl::Time>( absl::UnixEpoch() + absl::Seconds(1) + absl::Nanoseconds(1)))); } TEST_F(AdaptFromMessageTest, Timestamp_SecondsOutOfRange) { auto message = DynamicParseTextProto<google::protobuf::Timestamp>( R"pb(seconds: 0x7fffffffffffffff nanos: 1)pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid timestamp seconds: "))); } TEST_F(AdaptFromMessageTest, Timestamp_NanosOutOfRange) { auto message = DynamicParseTextProto<google::protobuf::Timestamp>( R"pb(seconds: 1 nanos: 0x7fffffff)pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid timestamp nanoseconds: "))); } TEST_F(AdaptFromMessageTest, Value_NullValue) { auto message = DynamicParseTextProto<google::protobuf::Value>( R"pb(null_value: NULL_VALUE)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<std::nullptr_t>(nullptr))); } TEST_F(AdaptFromMessageTest, Value_BoolValue) { auto message = DynamicParseTextProto<google::protobuf::Value>(R"pb(bool_value: true)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<bool>(true))); } TEST_F(AdaptFromMessageTest, Value_NumberValue) { auto message = DynamicParseTextProto<google::protobuf::Value>( R"pb(number_value: 1.0)pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<double>(1.0))); } TEST_F(AdaptFromMessageTest, Value_StringValue) { auto message = DynamicParseTextProto<google::protobuf::Value>( R"pb(string_value: "foo")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<StringValue>(StringValue("foo")))); } TEST_F(AdaptFromMessageTest, Value_ListValue) { auto message = DynamicParseTextProto<google::protobuf::Value>(R"pb(list_value: {})pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<ListValue>(VariantWith<ListValueConstRef>(_)))); } TEST_F(AdaptFromMessageTest, Value_StructValue) { auto message = DynamicParseTextProto<google::protobuf::Value>(R"pb(struct_value: {})pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<Struct>(VariantWith<StructConstRef>(_)))); } TEST_F(AdaptFromMessageTest, ListValue) { auto message = DynamicParseTextProto<google::protobuf::ListValue>(R"pb()pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<ListValue>(VariantWith<ListValueConstRef>(_)))); } TEST_F(AdaptFromMessageTest, Struct) { auto message = DynamicParseTextProto<google::protobuf::Struct>(R"pb()pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<Struct>(VariantWith<StructConstRef>(_)))); } TEST_F(AdaptFromMessageTest, TestAllTypesProto3) { auto message = DynamicParseTextProto<TestAllTypesProto3>(R"pb()pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<absl::monostate>(absl::monostate()))); } TEST_F(AdaptFromMessageTest, Any_BoolValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.BoolValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<bool>(false))); } TEST_F(AdaptFromMessageTest, Any_Int32Value) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Int32Value")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<int32_t>(0))); } TEST_F(AdaptFromMessageTest, Any_Int64Value) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Int64Value")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<int64_t>(0))); } TEST_F(AdaptFromMessageTest, Any_UInt32Value) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.UInt32Value")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<uint32_t>(0))); } TEST_F(AdaptFromMessageTest, Any_UInt64Value) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.UInt64Value")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<uint64_t>(0))); } TEST_F(AdaptFromMessageTest, Any_FloatValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.FloatValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<float>(0))); } TEST_F(AdaptFromMessageTest, Any_DoubleValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.DoubleValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<double>(0))); } TEST_F(AdaptFromMessageTest, Any_BytesValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.BytesValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<BytesValue>(BytesValue()))); } TEST_F(AdaptFromMessageTest, Any_StringValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.StringValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<StringValue>(StringValue()))); } TEST_F(AdaptFromMessageTest, Any_Duration) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Duration")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<absl::Duration>(absl::ZeroDuration()))); } TEST_F(AdaptFromMessageTest, Any_Timestamp) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Timestamp")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<absl::Time>(absl::UnixEpoch()))); } TEST_F(AdaptFromMessageTest, Any_Value_NullValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Value")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<std::nullptr_t>(nullptr))); } TEST_F(AdaptFromMessageTest, Any_Value_BoolValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Value" value: "\x20\x01")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<bool>(true))); } TEST_F(AdaptFromMessageTest, Any_Value_NumberValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Value" value: "\x11\x00\x00\x00\x00\x00\x00\x00\x00")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<double>(0.0))); } TEST_F(AdaptFromMessageTest, Any_Value_StringValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Value" value: "\x1a\x03\x66\x6f\x6f")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<StringValue>(StringValue("foo")))); } TEST_F(AdaptFromMessageTest, Any_Value_ListValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Value" value: "\x32\x00")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<ListValue>( VariantWith<ListValuePtr>(NotNull())))); } TEST_F(AdaptFromMessageTest, Any_Value_StructValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Value" value: "\x2a\x00")pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<Struct>(VariantWith<StructPtr>(NotNull())))); } TEST_F(AdaptFromMessageTest, Any_ListValue) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.ListValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<ListValue>( VariantWith<ListValuePtr>(NotNull())))); } TEST_F(AdaptFromMessageTest, Any_Struct) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.protobuf.Struct")pb"); EXPECT_THAT( AdaptFromMessage(*message), IsOkAndHolds(VariantWith<Struct>(VariantWith<StructPtr>(NotNull())))); } TEST_F(AdaptFromMessageTest, Any_TestAllTypesProto3) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/google.api.expr.test.v1.proto3.TestAllTypes")pb"); EXPECT_THAT(AdaptFromMessage(*message), IsOkAndHolds(VariantWith<Unique<google::protobuf::Message>>(NotNull()))); } TEST_F(AdaptFromMessageTest, Any_BadTypeUrlDomain) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.example.com/google.protobuf.BoolValue")pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("unable to find descriptor for type URL: "))); } TEST_F(AdaptFromMessageTest, Any_UnknownMessage) { auto message = DynamicParseTextProto<google::protobuf::Any>( R"pb(type_url: "type.googleapis.com/message.that.does.not.Exist")pb"); EXPECT_THAT(AdaptFromMessage(*message), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("unable to find descriptor for type name: "))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/well_known_types.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/well_known_types_test.cc
4552db5798fb0853b131b783d8875794334fae7f
03576d5c-5806-40cf-9612-b9f8e63477e0
cpp
tensorflow/tensorflow
multi_output_fusion
third_party/xla/xla/service/gpu/transforms/multi_output_fusion.cc
third_party/xla/xla/service/gpu/transforms/multi_output_fusion_test.cc
#include "xla/service/gpu/transforms/multi_output_fusion.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_dfs_reachability.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/hlo_graph_dumper.h" #include "xla/service/instruction_fusion.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { bool IsProfitableOperand(HloInstruction* instr) { return !ShapeUtil::IsEffectiveScalar(instr->shape()); } const HloSliceInstruction* FindUniqueSlice(const HloInstruction* parent, const HloInstruction* instr) { if (const auto* slice = DynCast<HloSliceInstruction>(instr)) { return slice; } else if (const auto* fusion = DynCast<HloFusionInstruction>(instr)) { const HloSliceInstruction* result = nullptr; for (size_t i = 0; i < fusion->operand_count(); ++i) { if (fusion->operand(i) == parent) { if (result) return nullptr; auto* called_param = fusion->fused_parameter(i); if (called_param->user_count() != 1) return nullptr; result = FindUniqueSlice(called_param, called_param->users()[0]); if (!result) return nullptr; } } return result; } else { return nullptr; } } FusionDecision ParameterSlicesAreNonOverlapping(const HloInstruction& instr1, const HloInstruction& instr2, const HloInstruction* parent) { if (parent->shape().IsTuple()) return FusionDecision::Allow(); if (ShapeUtil::ByteSizeOfElements(parent->shape()) < 1024) { return FusionDecision::Allow(); } const HloSliceInstruction* slice1 = FindUniqueSlice(parent, &instr1); const HloSliceInstruction* slice2 = FindUniqueSlice(parent, &instr2); if (!slice1 || !slice2) return FusionDecision::Allow(); auto& starts1 = slice1->slice_starts(); auto& starts2 = slice2->slice_starts(); auto& limits1 = slice1->slice_limits(); auto& limits2 = slice2->slice_limits(); for (int64_t dim = 0; dim < parent->shape().rank(); ++dim) { bool overlap = starts1[dim] < limits2[dim] && starts2[dim] < limits1[dim]; if (!overlap) { return FusionDecision::Forbid("slices are non-overlapping"); } } return FusionDecision::Allow(); } FusionDecision LegalToFuse(const HloInstruction& instr1, const HloInstruction& instr2, const se::DeviceDescription& device_info, FusionInfoCache* fusion_info_cache) { CHECK(instr1.opcode() == HloOpcode::kFusion); if (instr1.fused_expression_root()->opcode() == HloOpcode::kDynamicUpdateSlice || (instr2.opcode() == HloOpcode::kFusion && instr2.fused_expression_root()->opcode() == HloOpcode::kDynamicUpdateSlice)) { return FusionDecision::Forbid("can't fuse multiple DUSs"); } return FusionFitsInBudget(instr1, instr2, device_info, false, fusion_info_cache); } int FusionPriority(const HloInstruction* instr) { if (instr->IsMultiOutputFusion()) { return 2; } if (instr->opcode() == HloOpcode::kFusion) { return 1; } return 0; } HloInstruction* SelectPreferredFusionCandidate( const std::vector<HloInstruction*> candidates) { if (candidates.empty()) { return nullptr; } return *std::max_element( candidates.begin(), candidates.end(), [](const HloInstruction* a, const HloInstruction* b) { return FusionPriority(a) < FusionPriority(b); }); } FusionDecision OperandReachableFromProducer( const HloInstruction& producer, const HloInstruction& consumer, const HloDfsReachability& reachability) { for (const auto* operand : consumer.operands()) { if (!reachability.IsPresent(operand) && operand->opcode() == HloOpcode::kGetTupleElement) { operand = operand->operand(0); } CHECK(reachability.IsPresent(operand) && reachability.IsPresent(&producer)) << "Reachability map is incomplete. This should never " "happen."; if (&producer != operand && reachability.IsReachable(&producer, operand)) { return FusionDecision::Forbid( absl::StrCat(producer.name(), " would introduce a cycle when fused")); } } return FusionDecision::Allow(); } FusionDecision ProducerCandidateIsFusible( const HloInstruction& producer, const HloInstruction& consumer, const HloDfsReachability& reachability, FusionInfoCache* fusion_info_cache, const se::DeviceDescription& device_info, GpuHloCostAnalysis* cost_analysis) { if (!IsFusibleAsMultiOutputFusionRoot(consumer)) { return FusionDecision::Forbid( "consumer not eligible as multi-output fusion root."); } RETURN_IF_NOT_FUSIBLE( ShapesCompatibleForMultiOutputFusion(consumer, producer)); RETURN_IF_NOT_FUSIBLE( OperandReachableFromProducer(producer, consumer, reachability)); RETURN_IF_NOT_FUSIBLE(FusionFitsInBudget( producer, consumer, device_info, false, fusion_info_cache)); if (cost_analysis->ProducerConsumerMergedTooLarge(producer, consumer)) { return FusionDecision::Forbid("will generate too large IR"); } GpuPerformanceModel::RunTimes t = GpuPerformanceModel::EstimateRunTimes( &producer, device_info, cost_analysis, GpuPerformanceModelOptions::Default(), {&consumer}, true); if (t.time_fused > t.time_unfused) { return FusionDecision::Forbid("will execute slower if fused"); } return FusionDecision::Allow(); } std::vector<HloInstruction*> GetProducerConsumerMultiOutputFusionCandidates( const HloInstruction* producer, const HloDfsReachability& reachability, FusionInfoCache* fusion_info_cache, const se::DeviceDescription& device_info, GpuHloCostAnalysis* cost_analysis) { std::vector<HloInstruction*> fusion_candidates; const HloComputation* computation = producer->parent(); const HloModule* module = computation->parent(); bool dump_fusion = module->config().debug_options().xla_dump_fusion_visualization(); if (!IsProducerMultiOutputFusible(*producer)) { return fusion_candidates; } if (producer->user_count() == 1 && !producer->users()[0]->IsMultiOutputFusion()) { return fusion_candidates; } for (HloInstruction* consumer : producer->users()) { VLOG(3) << "Looking at producer " << producer->name() << " and its consumer " << consumer->name(); if (auto decision = ProducerCandidateIsFusible( *producer, *consumer, reachability, fusion_info_cache, device_info, cost_analysis)) { fusion_candidates.push_back(consumer); } else if (dump_fusion) { RegisterFusionState( *computation, absl::StrCat("Not considering fusion of producer |", producer->name(), "| into consumer |", consumer->name(), "| due to: ", decision.Explain()), *consumer, producer); } } return fusion_candidates; } bool IsSiblingFusionCandidate(const HloInstruction* instr) { if (instr->users().empty() || !IsFusibleAsMultiOutputFusionRoot(*instr) || IsNestableVariadicReduction(*instr)) { return false; } return (!instr->IsMultiOutputFusion() || absl::c_all_of(instr->users(), [&](const HloInstruction* user) { return user->opcode() == HloOpcode::kGetTupleElement; })); } FusionDecision CanFuseSiblings(const HloInstruction& sibling_consumer_1, const HloInstruction& sibling_consumer_2, const HloInstruction& common_producer, const HloDfsReachability& reachability, FusionInfoCache* fusion_info_cache, const se::DeviceDescription& device_info) { if (reachability.IsConnected(&sibling_consumer_1, &sibling_consumer_2)) { return FusionDecision::Forbid( absl::StrCat(sibling_consumer_1.name(), " and ", sibling_consumer_2.name(), " are connected")); } RETURN_IF_NOT_FUSIBLE(ShapesCompatibleForMultiOutputFusion( sibling_consumer_1, sibling_consumer_2)); RETURN_IF_NOT_FUSIBLE(ParameterSlicesAreNonOverlapping( sibling_consumer_1, sibling_consumer_2, &common_producer)); RETURN_IF_NOT_FUSIBLE(LegalToFuse(sibling_consumer_1, sibling_consumer_2, device_info, fusion_info_cache)); return FusionDecision::Allow(); } } void MultiOutputFusion::RecomputeReachability() { reachability_ = HloDfsReachability::Build(computation_); } bool MultiOutputFusion::FuseSiblings(HloInstruction* parent, FusionInfoCache* fusion_info_cache, GpuHloCostAnalysis* cost_analysis) { const HloComputation* computation = parent->parent(); const HloModule* module = computation->parent(); bool dump_fusion = module->config().debug_options().xla_dump_fusion_visualization(); if (!IsProfitableOperand(parent)) { VLOG(3) << "Operand " << parent->ToShortString() << " is not profitable"; return false; } bool changed = false; std::vector<HloInstruction*> siblings; absl::c_copy_if(parent->users(), std::back_inserter(siblings), IsSiblingFusionCandidate); absl::c_stable_sort(siblings, [](const HloInstruction* a, const HloInstruction* b) { return FusionPriority(a) > FusionPriority(b); }); for (auto i = siblings.begin(); i != siblings.end(); ++i) { VLOG(3) << "Considering " << (*i)->name(); if ((*i)->opcode() != HloOpcode::kFusion) { continue; } for (auto j = i + 1; j != siblings.end();) { VLOG(3) << "Considering " << (*i)->name() << " and " << (*j)->name(); if (auto fusible = CanFuseSiblings(**i, **j, *parent, *reachability_, fusion_info_cache, device_info_); !fusible) { if (dump_fusion) { RegisterFusionState( *computation, absl::StrCat("Not fusing siblings |", (**i).name(), "| and |", (**j).name(), "| due to: ", fusible.Explain()), **i, parent); } ++j; continue; } if (!ConsumeFuel(name(), [&] { return absl::StrFormat("Not fusing siblings %s and %s.", (*i)->name(), (*j)->name()); })) { ++j; continue; } VLOG(2) << "Fuse siblings " << (*i)->name() << " and " << (*j)->name(); fusion_info_cache->Invalidate(*i); fusion_info_cache->Invalidate(*j); HloInstruction* remaining = *i; HloInstruction* fused = *j; TF_CHECK_OK(cost_analysis->RemoveInstruction(remaining)); TF_CHECK_OK(cost_analysis->RemoveInstruction(fused)); DumpFusionState(*remaining, absl::StrCat("About to fuse sibling |", fused->name(), "| into sibling |", remaining->name(), "| inside multi-output fusion"), fused); if (fused->opcode() == HloOpcode::kFusion) { remaining->MergeFusionInstructionIntoMultiOutput(fused); if (fused->IsInputFusion()) { remaining->set_fusion_kind(HloInstruction::FusionKind::kInput); } } else { remaining->FuseInstructionIntoMultiOutput(fused); CHECK_EQ(0, fused->user_count()); TF_CHECK_OK(computation_->RemoveInstruction(fused)); } DumpFusionState(*remaining, absl::StrCat("Fused into |", remaining->name(), "| inside multi-output fusion")); TF_CHECK_OK(cost_analysis->RevisitInstruction(remaining)); changed = true; siblings.erase(j); RecomputeReachability(); } } return changed; } absl::StatusOr<bool> MultiOutputFusion::DoMultiOutputFusion() { bool changed = false; RecomputeReachability(); GpuHloCostAnalysis cost_analysis({shape_size_function_, {}, {}, true}, device_info_); TF_RETURN_IF_ERROR(computation_->Accept(&cost_analysis)); std::vector<HloInstruction*> defs_before_uses = computation_->MakeInstructionPostOrder(); FusionInfoCache fusion_info_cache; for (auto it = defs_before_uses.rbegin(); it != defs_before_uses.rend(); ++it) { auto* producer = *it; if (producer->opcode() == HloOpcode::kConstant) { VLOG(3) << producer->name() << " is a constant."; continue; } if (producer->IsCustomFusion()) { continue; } if (FuseSiblings(producer, &fusion_info_cache, &cost_analysis)) { changed = true; } const auto candidates = GetProducerConsumerMultiOutputFusionCandidates( producer, *reachability_, &fusion_info_cache, device_info_, &cost_analysis); auto* consumer_for_fusion = SelectPreferredFusionCandidate(candidates); if (consumer_for_fusion == nullptr) { continue; } if (!ConsumeFuel(name(), [&] { return absl::StrFormat("Not fusing %s and %s.", producer->name(), consumer_for_fusion->name()); })) { continue; } changed = true; fusion_info_cache.Invalidate(producer); fusion_info_cache.Invalidate(consumer_for_fusion); TF_RETURN_IF_ERROR(cost_analysis.RemoveInstruction(producer)); TF_RETURN_IF_ERROR(cost_analysis.RemoveInstruction(consumer_for_fusion)); HloInstruction* input_fusion; if (consumer_for_fusion->opcode() == HloOpcode::kFusion) { input_fusion = consumer_for_fusion; VLOG(2) << "Fuse producer " << producer->name() << " into its consumer " << consumer_for_fusion->name(); } else { input_fusion = computation_->AddInstruction(HloInstruction::CreateFusion( consumer_for_fusion->shape(), ChooseFusionKind(*producer, *consumer_for_fusion), consumer_for_fusion)); VLOG(2) << "Fuse producer " << producer->name() << " and its consumer " << consumer_for_fusion->name() << " into " << input_fusion->name(); TF_CHECK_OK( computation_->ReplaceInstruction(consumer_for_fusion, input_fusion)); } DumpFusionState(*input_fusion, absl::StrCat("About to fuse producer |", producer->name(), "| into consumer |", input_fusion->name(), "| inside multi-output fusion"), producer); if (producer->opcode() == HloOpcode::kFusion) { input_fusion->MergeFusionInstructionIntoMultiOutput(producer); } else { input_fusion->FuseInstructionIntoMultiOutput(producer); CHECK_EQ(0, producer->user_count()); TF_CHECK_OK(computation_->RemoveInstruction(producer)); } TF_RETURN_IF_ERROR(cost_analysis.RevisitInstruction(input_fusion)); DumpFusionState(*input_fusion, absl::StrCat("Fused into |", input_fusion->name(), "| inside multi-output fusion")); RecomputeReachability(); } return changed; } void MultiOutputFusion::DumpFusionState(const HloInstruction& consumer, absl::string_view label, const HloInstruction* producer) { if (consumer.GetModule() ->config() .debug_options() .xla_dump_fusion_visualization()) { RegisterFusionState(*computation_, label, consumer, producer); } } absl::StatusOr<bool> MultiOutputFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (auto* computation : GetFusibleComputations(*module, execution_threads)) { computation_ = computation; TF_ASSIGN_OR_RETURN(bool computation_changed, DoMultiOutputFusion()); changed |= computation_changed; } return changed; } } }
#include "xla/service/gpu/transforms/multi_output_fusion.h" #include <cstdint> #include <optional> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace m = ::xla::match; class MultiOutputFusionTest : public HloTestBase { HloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } public: MultiOutputFusion mof_{TestGpuDeviceInfo::RTXA6000DeviceInfo(), ShapeSizeBytesFunction()}; void CheckMultiOutputFusion(absl::string_view hlo, std::optional<absl::string_view> expected) { RunAndFilecheckHloRewrite( hlo, MultiOutputFusion{TestGpuDeviceInfo::RTXA6000DeviceInfo(), ShapeSizeBytesFunction()}, expected); } }; const char kModulePrefix[] = R"( HloModule test_module scalar_add_computation { scalar_lhs.0 = f32[] parameter(0) scalar_rhs.0 = f32[] parameter(1) ROOT add.0 = f32[] add(scalar_lhs.0, scalar_rhs.0) } scalar_mul_computation { scalar_lhs.1 = f32[] parameter(0) scalar_rhs.1 = f32[] parameter(1) ROOT mul.1 = f32[] multiply(scalar_lhs.1, scalar_rhs.1) })"; static int64_t CountMultiOutputFusions(const HloModule* module) { int multi_output_fusion_count = 0; for (auto* computation : module->MakeNonfusionComputations()) { for (auto* instr : computation->instructions()) { if (instr->IsMultiOutputFusion()) { multi_output_fusion_count++; } } } return multi_output_fusion_count; } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingReduceAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(1) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[512]{0} reduce(mul, const.1), dimensions={0,2,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) const.2 = f32[] constant(1) fusion = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation reduce.2 = f32[512]{0} reduce(p1, const.2), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT root = (f32[512]{0}, f32[512]{0}) tuple(fusion, reduce.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionDifferentReduceInputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[6400]{0} parameter(1) mul = f32[6400]{0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[] reduce(mul, const.1), dimensions={0}, to_apply=scalar_add_computation } fused_computation_2 { p1.2 = f32[6400]{0} parameter(1) r1 = f32[64,100]{0,1} reshape(p1.2) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[] reduce(r1, const.2), dimensions={1,0}, to_apply=scalar_mul_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[6400]{0} parameter(1) fusion.1 = f32[] fusion(p0, p1), kind=kInput, calls=fused_computation_1 fusion.2 = f32[] fusion(p0, p1), kind=kInput, calls=fused_computation_2 ROOT root = (f32[], f32[]) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ReduceMofDifferentTypes) { const char* hlo = R"( HloModule module scalar_add_computation { scalar_lhs.1 = f32[] parameter(0) scalar_rhs.1 = f32[] parameter(1) ROOT add.1 = f32[] add(scalar_lhs.1, scalar_rhs.1) } scalar_add_computation_f16 { scalar_lhs.0 = f16[] parameter(0) scalar_rhs.0 = f16[] parameter(1) ROOT add.0 = f16[] add(scalar_lhs.0, scalar_rhs.0) } fused_computation { param_0.2 = f32[128,512,28,28]{3,2,1,0} parameter(0) c.1 = f16[128,512,28,28]{3,2,1,0} convert(param_0.2) const.0 = f16[] constant(0) ROOT reduce.0 = f16[512]{0} reduce(c.1, const.0), dimensions={0,2,3}, to_apply=scalar_add_computation_f16 } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) const.2 = f32[] constant(0) reduce.1 = f32[512]{0} reduce(p1, const.2), dimensions={0,2,3}, to_apply=scalar_add_computation fusion = f16[512]{0} fusion(p1), kind=kInput, calls=fused_computation ROOT root = (f32[512]{0}, f16[512]{0}) tuple(reduce.1, fusion) })"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(MultiOutputFusionTest, MultiOutputFusionDifferentReduceOutputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[10,10]{1,0} parameter(1) mul = f32[10,10]{1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[] reduce(mul, const.1), dimensions={0,1}, to_apply=scalar_add_computation } fused_computation_2 { p1.2 = f32[10,10]{1,0} parameter(1) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[10]{0} reduce(p1.2, const.2), dimensions={0}, to_apply=scalar_mul_computation } ENTRY entry { p0 = f32[] parameter(0) p1.3 = f32[10,10]{1,0} parameter(1) fusion.1 = f32[] fusion(p0, p1.3), kind=kInput, calls=fused_computation_1 p2 = f32[] parameter(2) fusion.2 = f32[10]{0} fusion(p2, p1.3), kind=kInput, calls=fused_computation_2 ROOT root = (f32[], f32[10]{0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingReduceFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[128,512,28,28]{3,2,1,0} parameter(1) mul = f32[128,512,28,28]{3,2,1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) ROOT reduce.1 = f32[512]{0} reduce(mul, const.1), dimensions={0,2,3}, to_apply=scalar_add_computation } fused_computation_2 { p1.2 = f32[128,512,28,28]{3,2,1,0} parameter(1) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[512]{0} reduce(p1.2, const.2), dimensions={0,2,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[128,512,28,28]{3,2,1,0} parameter(1) fusion.1 = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation_1 fusion.2 = f32[512] fusion(p0, p1), kind=kInput, calls=fused_computation_2 ROOT root = (f32[512]{0}, f32[512]{0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionNoSiblingFusionForCommonScalar) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { param_0.87 = bf16[32,4096,16384]{2,1,0} parameter(0) param_1.4620 = s32[] parameter(1) constant_3949 = s32[] constant(0) compare.1026 = pred[] compare(param_1.4620, constant_3949), direction=LT constant_5437 = s32[] constant(32) add.6859 = s32[] add(param_1.4620, constant_5437) select.1599 = s32[] select(compare.1026, add.6859, param_1.4620) dynamic-slice.59 = bf16[1,4096,16384]{2,1,0} dynamic-slice(param_0.87, select.1599, constant_3949, constant_3949), dynamic_slice_sizes={1,4096,16384} ROOT bitcast.41089 = bf16[4096,16384]{1,0} bitcast(dynamic-slice.59) } fused_computation_2 { param_0 = bf16[32,4096,16384]{2,1,0} parameter(0) param_1 = s32[] parameter(1) constant = s32[] constant(0) compare = pred[] compare(param_1, constant), direction=LT constant.32 = s32[] constant(32) add = s32[] add(param_1, constant.32) select = s32[] select(compare, add, param_1) dynamic-slice = bf16[1,4096,16384]{2,1,0} dynamic-slice(param_0, select, constant, constant), dynamic_slice_sizes={1,4096,16384} ROOT bitcast.41087 = bf16[4096,16384]{1,0} bitcast(dynamic-slice) } ENTRY entry { p0 = s32[] parameter(0) p1 = bf16[32,4096,16384]{2,1,0} parameter(1) p2 = bf16[32,4096,16384]{2,1,0} parameter(2) fusion.1 = bf16[4096,16384]{1,0} fusion(p1, p0), kind=kLoop, calls=fused_computation_1 fusion.2 = bf16[4096,16384]{1,0} fusion(p2, p0), kind=kLoop, calls=fused_computation_2 ROOT root = (bf16[4096,16384]{1,0}, bf16[4096,16384]{1,0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingReduceAndReduceMultiOutputFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation (p0: f32[128,512,28,28]) -> (f32[512], f32[512]) { const.1 = f32[] constant(1) p0.1 = f32[128,512,28,28]{3,2,1,0} parameter(0) mul = f32[128,512,28,28]{3,2,1,0} multiply(f32[128,512,28,28]{3,2,1,0} p0.1, f32[128,512,28,28]{3,2,1,0} p0.1) reduce.1 = f32[512]{0} reduce(f32[128,512,28,28]{3,2,1,0} mul, f32[] const.1), dimensions={0,2,3}, to_apply=scalar_add_computation reduce.2 = f32[512]{0} reduce(f32[128,512,28,28]{3,2,1,0} p0.1, f32[] const.1), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT tuple = (f32[512]{0}, f32[512]{0}) tuple(f32[512]{0} reduce.1, f32[512]{0} reduce.2) } ENTRY entry (p0: f32[128,512,28,28]) -> (f32[512], f32[512], f32[512]) { p0 = f32[128,512,28,28]{3,2,1,0} parameter(0) const = f32[] constant(1) fusion = (f32[512]{0}, f32[512]{0}) fusion(f32[128,512,28,28]{3,2,1,0} p0), kind=kInput, calls=fused_computation get-tuple-element = f32[512]{0} get-tuple-element((f32[512]{0}, f32[512]{0}) fusion), index=0 get-tuple-element.1 = f32[512]{0} get-tuple-element((f32[512]{0}, f32[512]{0}) fusion), index=1 reduce.3 = f32[512]{0} reduce(p0, const), dimensions={0,2,3}, to_apply=scalar_add_computation ROOT root = (f32[512]{0}, f32[512]{0}, f32[512]{0}) tuple(f32[512]{0} get-tuple-element, f32[512]{0} get-tuple-element.1, f32[512]{0} reduce.3) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingFusionCheckAgainstReduceOperand) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p1.1 = f32[10,10]{1,0} parameter(1) mul = f32[10,10]{1,0} multiply(p1.1, p1.1) const.1 = f32[] parameter(0) reduce.1 = f32[] reduce(p1.1, const.1), dimensions={0,1}, to_apply=scalar_add_computation ROOT tuple = (f32[10,10], f32[]) tuple(mul, reduce.1) } fused_computation_2 { p1.2 = f32[10,10]{1,0} parameter(1) const.2 = f32[] parameter(0) ROOT reduce.2 = f32[10] reduce(p1.2, const.2), dimensions={0}, to_apply=scalar_mul_computation } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[10,10]{1,0} parameter(1) p2 = f32[] parameter(2) fusion.1 = (f32[10,10], f32[]) fusion(p0, p1), kind=kInput, calls=fused_computation_1 get-tuple-element.1 = f32[10,10] get-tuple-element((f32[10,10], f32[]) fusion.1), index=0 get-tuple-element.2 = f32[] get-tuple-element((f32[10,10], f32[]) fusion.1), index=1 fusion.2 = f32[10] fusion(p2, p1), kind=kInput, calls=fused_computation_2 ROOT root = (f32[10,10], f32[], f32[10]) tuple(get-tuple-element.1, get-tuple-element.2, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, LoopVariadicReductionFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation.94 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(1) tmp_2 = pred[] compare(tmp_0, tmp_1), direction=GE tmp_3 = f32[] select(tmp_2, tmp_0, tmp_1) tmp_4 = pred[] compare(tmp_0, tmp_1), direction=EQ tmp_5 = s32[] parameter(2) tmp_6 = s32[] parameter(3) tmp_7 = s32[] minimum(tmp_5, tmp_6) tmp_8 = s32[] select(tmp_2, tmp_5, tmp_6) tmp_9 = s32[] select(tmp_4, tmp_7, tmp_8) ROOT tmp_10 = (f32[], s32[]) tuple(tmp_3, tmp_9) } minmax_func.1536 { tmp_0 = f32[] parameter(0) tmp_1 = f32[] parameter(2) tmp_2 = s32[] parameter(1) tmp_3 = s32[] parameter(3) ROOT tmp_4 = (f32[], s32[]) fusion(tmp_0, tmp_1, tmp_2, tmp_3), kind=kLoop, calls=fused_computation.94 } fused_computation { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(-inf) tmp_3 = s32[] constant(0) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } fused_computation2 { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = s32[554112,10]{1,0} iota(), iota_dimension=1 tmp_2 = f32[] constant(inf) tmp_3 = s32[] constant(1) ROOT tmp_4 = (f32[554112]{0}, s32[554112]{0}) reduce(tmp_0, tmp_1, tmp_2, tmp_3), dimensions={1}, to_apply=minmax_func.1536 } ENTRY e { tmp_0 = f32[554112,10]{1,0} parameter(0) tmp_1 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_0), kind=kLoop, calls=fused_computation tmp_2 = s32[554112]{0} get-tuple-element(tmp_1), index=1 tmp_4 = (f32[554112]{0}, s32[554112]{0}) fusion(tmp_0), kind=kLoop, calls=fused_computation2 tmp_5 = s32[554112]{0} get-tuple-element(tmp_4), index=1 ROOT tmp_6 = s32[554112]{0} add(tmp_2, tmp_5) })")) .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, InputVariadicReductionFusions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation.1117 { param_0.2433 = f32[] parameter(0) param_1.2571 = f32[] parameter(1) compare.1770 = pred[] compare(param_0.2433, param_1.2571), direction=LE select.682 = f32[] select(compare.1770, param_0.2433, param_1.2571) compare.1303.clone.1 = pred[] compare(param_0.2433, param_1.2571), direction=EQ param_2.6460 = s32[] parameter(2) param_3.6755 = s32[] parameter(3) minimum.633.clone.1 = s32[] minimum(param_2.6460, param_3.6755) select.398.clone.1 = s32[] select(compare.1770, param_2.6460, param_3.6755) select.397.clone.1 = s32[] select(compare.1303.clone.1, minimum.633.clone.1, select.398.clone.1) ROOT tuple.151 = (f32[], s32[]) tuple(select.682, select.397.clone.1) } minmax_func.223 { lhs_value.224 = f32[] parameter(0) rhs_value.226 = f32[] parameter(2) lhs_index.225 = s32[] parameter(1) rhs_index.227 = s32[] parameter(3) ROOT fusion.1117 = (f32[], s32[]) fusion(lhs_value.224, rhs_value.226, lhs_index.225, rhs_index.227), kind=kLoop, calls=fused_computation.1117 } fused_computation.73 { bitcast.86661 = f32[3,1024,300]{2,1,0} parameter(0) iota.734 = s32[3,1,1024,300]{3,2,1,0} iota(), iota_dimension=3 bitcast.97555 = s32[3,1024,300]{2,1,0} bitcast(iota.734) constant_3917 = f32[] constant(inf) constant_3918 = s32[] constant(0) ROOT reduce.1069 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) reduce(bitcast.86661, bitcast.97555, constant_3917, constant_3918), dimensions={2}, to_apply=minmax_func.223 } fused_computation.84 { bitcast.86676 = f32[3,1024,300]{2,1,0} parameter(0) iota.732 = s32[3,1,1024,300]{3,2,1,0} iota(), iota_dimension=3 bitcast.97553 = s32[3,1024,300]{2,1,0} bitcast(iota.732) constant_3915 = f32[] constant(inf) constant_3916 = s32[] constant(0) ROOT reduce.1070 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) reduce(bitcast.86676, bitcast.97553, constant_3915, constant_3916), dimensions={2}, to_apply=minmax_func.223 } ENTRY e { p0 = f32[3,1024,300]{2,1,0} parameter(0) fusion.84 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) fusion(p0), kind=kInput, calls=fused_computation.84 gte.391 = s32[3,1024]{1,0} get-tuple-element(fusion.84), index=1 fusion.73 = (f32[3,1024]{1,0}, s32[3,1024]{1,0}) fusion(p0), kind=kInput, calls=fused_computation.73 gte.393 = s32[3,1024]{1,0} get-tuple-element(fusion.73), index=1 ROOT r = s32[3,1024]{1,0} add(gte.391, gte.393) })")) .value(); EXPECT_TRUE(mof_.Run(module.get()).value()); EXPECT_EQ(module->entry_computation()->parameter_instruction(0)->user_count(), 1); const HloInstruction* fusion = module->entry_computation()->parameter_instruction(0)->users()[0]; EXPECT_THAT(fusion, GmockMatch(m::Fusion())); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionTwoLoops) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[6400]{0} parameter(0) const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} ROOT div = f32[6400]{0} divide(p0.2, broadcast) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Divide()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionLoopElementwise) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[6400]{0} parameter(0) ROOT mul = f32[6400]{0} multiply(p0.1, p0.1) } ENTRY entry { p0 = f32[6400]{0} parameter(0) fusion.1 = f32[6400]{0} fusion(p0), kind=kLoop, calls=fused_computation_1 const.2 = f32[] constant(1) broadcast = f32[6400]{0} broadcast(const.2), dimensions={} div = f32[6400]{0} divide(p0, broadcast) ROOT root = (f32[6400]{0}, f32[6400]{0}) tuple(fusion.1, div) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Divide()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingLoopsDifferentShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) ROOT mul = f32[8,1,5,16,1,2]{5,4,3,2,1,0} multiply(p0.1, p0.1) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) ROOT reduce = f32[1,5,1,2]{3,2,1,0} reduce(p0.2, const.2), dimensions={0,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) fusion.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[1,5,1,2]{3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[1,5,1,2]{3,2,1,0}) tuple(fusion.1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingLoopAndMultiOutputLoop) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,1]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,1]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,1,5,16,1,1]{5,4,3,2,1,0} broadcast(const.2), dimensions={} ROOT add = f32[8,1,5,16,1,1]{5,4,3,2,1,0} add(p0.2, broadcast) } ENTRY entry { p0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,1]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}, f32[8,1,5,16,1,1]{5,4,3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Exp(), m::Add()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingMultiOutputLoopAndMultiOutputLoop) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,16]{1,0} parameter(0) mul = f32[8,16]{1,0} multiply(p0.1, p0.1) exp = f32[8,16]{1,0} exponential(p0.1) ROOT tuple = (f32[8,16]{1,0}, f32[8,16]{1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,16]{1,0} parameter(0) const.2 = f32[] constant(0) broadcast = f32[8,16]{1,0} broadcast(const.2), dimensions={} add = f32[8,16]{1,0} add(p0.2, broadcast) ROOT tuple.1 = (f32[8,16]{1,0}, f32[8,16]{1,0}) tuple(add, broadcast) } ENTRY entry { p0 = f32[8,16]{1,0} parameter(0) fusion.1 = (f32[8,16]{1,0}, f32[8,16]{1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = (f32[8,16]{1,0}, f32[8,16]{1,0}) fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,16]{1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,16]{1,0} get-tuple-element(fusion.1), index=1 gte2 = f32[8,16]{1,0} get-tuple-element(fusion.2), index=0 gte3 = f32[8,16]{1,0} get-tuple-element(fusion.2), index=1 ROOT root = (f32[8,16]{1,0}, f32[8,16]{1,0}, f32[8,16]{1,0}, f32[8,16]{1,0}) tuple(gte0, gte1, gte2, gte3) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* fusion = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT( fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Multiply(), m::Exp(), m::Add(), m::Broadcast()))); } TEST_F(MultiOutputFusionTest, MultiOutputFusionSiblingLoopAndMultiOutputLoopDifferentShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation_1 { p0.1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) mul = f32[8,1,5,16,1,2]{5,4,3,2,1,0} multiply(p0.1, p0.1) exp = f32[8,1,5,16,1,2]{5,4,3,2,1,0} exponential(p0.1) ROOT tuple = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[8,1,5,16,1,2]{5,4,3,2,1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) const.2 = f32[] constant(0) ROOT reduce = f32[1,5,1,2]{3,2,1,0} reduce(p0.2, const.2), dimensions={0,3}, to_apply=scalar_add_computation } ENTRY entry { p0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} parameter(0) fusion.1 = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[8,1,5,16,1,2]{5,4,3,2,1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 fusion.2 = f32[1,5,1,2]{3,2,1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 gte0 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[8,1,5,16,1,2]{5,4,3,2,1,0} get-tuple-element(fusion.1), index=1 ROOT root = (f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[8,1,5,16,1,2]{5,4,3,2,1,0}, f32[1,5,1,2]{3,2,1,0}) tuple(gte0, gte1, fusion.2) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, SiblingFusionBitcastAndLoopFusionNotFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test fused_computation_1 { p0.1 = f32[2048,16000]{1,0} parameter(0) bitcast = f32[2048,1,16000]{2,1,0} bitcast(p0.1) ROOT exp = f32[2048,1,16000]{2,1,0} exponential(bitcast) } ENTRY main { param_0 = f32[2048,16000]{1,0} parameter(0) fusion = f32[2048,1,16000]{2,1,0} fusion(param_0), kind=kLoop, calls=fused_computation_1 bitcast = f32[16000,1,2048]{2,1,0} bitcast(param_0) ROOT tuple.143 = (f32[16000,1,2048]{2,1,0}, f32[2048,1,16000]{2,1,0}) tuple(bitcast, fusion) })") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionBitcastAndElementwiseNotFused) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test ENTRY main { param_0 = f32[2048,16000]{1,0} parameter(0) convert = bf16[2048,16000]{1,0} convert(param_0) bitcast = bf16[16000,1,2048]{2,1,0} bitcast(convert) ROOT tuple.143 = (bf16[16000,1,2048]{2,1,0}, bf16[2048,16000]{1,0}) tuple(bitcast, convert) })") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionElementwiseAndReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) c0 = f32[] constant(0) exp = f32[32,32,32]{2,1,0} exponential(p0) reduce = f32[32,32]{1,0} reduce(exp, c0), dimensions={2}, to_apply=scalar_add_computation ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, exp) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Exp()))); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionLoopFusionAndReduce) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0.1 = f32[32,32,32]{2,1,0} parameter(0) p1.1 = f32[32,32,32]{2,1,0} parameter(1) ROOT add = f32[32,32,32]{2,1,0} add(p0.1, p1.1) } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) add = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_add reduce = f32[32,32]{1,0} reduce(add, c0), dimensions={2}, to_apply=scalar_add_computation ROOT root = (f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(reduce, add) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement()))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Add()))); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionLoopFusionAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_select { p1.1 = f32[32,32,32]{2,1,0} parameter(1) c0 = f32[] constant(0) broadcast = f32[32,32,32]{2,1,0} broadcast(f32[] c0), dimensions={} greater-than = pred[32,32,32]{2,1,0} compare(f32[32,32,32]{2,1,0} p1.1, f32[32,32,32]{2,1,0} broadcast), direction=GT p0.1 = f32[32,32,32]{2,1,0} parameter(0) ROOT select = f32[32,32,32]{2,1,0} select(pred[32,32,32]{2,1,0} greater-than, f32[32,32,32]{2,1,0} p0.1, f32[32,32,32]{2,1,0} broadcast) } fused_reduce { p0.2 = f32[32,32,32]{2,1,0} parameter(0) c1 = f32[] constant(0) r1 = f32[32,32]{1,0} reduce(p0.2, c1), dimensions={2}, to_apply=scalar_add_computation mul = f32[32,32,32]{2,1,0} multiply(p0.2, p0.2) r2 = f32[32,32]{1,0} reduce(mul, c1), dimensions={2}, to_apply=scalar_add_computation ROOT tuple = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(r1, r2) } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) select = f32[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_select fusion = (f32[32,32]{1,0}, f32[32,32]{1,0}) fusion(select), kind=kInput, calls=fused_reduce gte0 = f32[32,32]{1,0} get-tuple-element(fusion), index=0 gte1 = f32[32,32]{1,0} get-tuple-element(fusion), index=1 ROOT root = (f32[32,32]{1,0}, f32[32,32]{1,0}, f32[32,32,32]{2,1,0}) tuple(gte1, gte1, select) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(), m::GetTupleElement()))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce(), m::Select()))); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionDoNotFuseLoopReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_element_wise { p0.1 = f32[2,2,2]{2,1,0} parameter(0) p1.1 = f32[2,2,2]{2,1,0} parameter(1) ROOT root = f32[2,2,2]{2,1,0} add(p0.1, p1.1) } fused_reduce { p0.2 = f32[2,2,2]{2,1,0} parameter(0) mul = f32[2,2,2]{2,1,0} multiply(f32[2,2,2]{2,1,0} p0.2, f32[2,2,2]{2,1,0} p0.2) broadcast = f32[2,2,2,2]{3,2,1,0} broadcast(mul), dimensions={3,2,1} c1 = f32[] constant(0) ROOT reduce = f32[2,2]{1,0} reduce(f32[2,2,2,2]{3,2,1,0} broadcast, f32[] c1), dimensions={1,3}, to_apply=scalar_add_computation } ENTRY reduce { p0 = f32[2,2,2]{2,1,0} parameter(0) p1 = f32[2,2,2]{2,1,0} parameter(1) element_wise = f32[2,2,2]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_element_wise fusion = f32[2,2]{1,0} fusion(element_wise), kind=kLoop, calls=fused_reduce ROOT root = (f32[2,2]{1,0}, f32[2,2,2]{2,1,0}) tuple(fusion, element_wise) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionFp16LoopFusionAndReduceFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_select { p1.1 = f16[32,32,32]{2,1,0} parameter(1) c0 = f16[] constant(0) broadcast = f16[32,32,32]{2,1,0} broadcast(f16[] c0), dimensions={} greater-than = pred[32,32,32]{2,1,0} compare(f16[32,32,32]{2,1,0} p1.1, f16[32,32,32]{2,1,0} broadcast), direction=GT p0.1 = f16[32,32,32]{2,1,0} parameter(0) ROOT select = f16[32,32,32]{2,1,0} select(pred[32,32,32]{2,1,0} greater-than, f16[32,32,32]{2,1,0} p0.1, f16[32,32,32]{2,1,0} broadcast) } fused_reduce { p0.2 = f16[32,32,32]{2,1,0} parameter(0) convert = f32[32,32,32]{2,1,0} convert(p0.2) c1 = f32[] constant(0) r1 = f32[32,32]{1,0} reduce(convert, c1), dimensions={2}, to_apply=scalar_add_computation mul = f32[32,32,32]{2,1,0} multiply(convert, convert) r2 = f32[32,32]{1,0} reduce(mul, c1), dimensions={2}, to_apply=scalar_add_computation ROOT tuple = (f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(r1, r2) } ENTRY reduce { p0 = f16[32,32,32]{2,1,0} parameter(0) p1 = f16[32,32,32]{2,1,0} parameter(1) select = f16[32,32,32]{2,1,0} fusion(p0, p1), kind=kLoop, calls=fused_select fusion = (f32[32,32]{1,0}, f32[32,32]{1,0}) fusion(select), kind=kInput, calls=fused_reduce gte0 = f32[32,32]{1,0} get-tuple-element(fusion), index=0 gte1 = f32[32,32]{1,0} get-tuple-element(fusion), index=1 ROOT root = (f32[32,32]{1,0}, f32[32,32]{1,0}, f16[32,32,32]{2,1,0}) tuple(gte1, gte1, select) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(m::Fusion(&fusion)), m::GetTupleElement(), m::GetTupleElement()))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce(), m::Select()))); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionReduceUnfriendlyLoopFusion) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( mixed_input_layouts_computation { p0.1 = f16[128,32,32,1024]{3,2,1,0} parameter(0) p1.1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) transpose = f16[128,32,32,1024]{3,2,1,0} transpose(p1.1), dimensions={0,2,3,1} c0 = f16[] constant(0) broadcast = f16[128,32,32,1024]{3,2,1,0} broadcast(c0), dimensions={} greater-than = pred[128,32,32,1024]{3,2,1,0} compare(transpose, broadcast), direction=GT ROOT root = f16[128,32,32,1024]{3,2,1,0} select(greater-than, p0.1, broadcast) } fused_reduce { p0.2 = f16[128,32,32,1024]{3,2,1,0} parameter(0) convert = f32[128,32,32,1024]{3,2,1,0} convert(p0.2) c0.2 = f32[] constant(0) ROOT reduce = f32[1024]{0} reduce(convert, c0.2), dimensions={0,1,2}, to_apply=scalar_add_computation } ENTRY reduce { p0 = f16[128,32,32,1024]{3,2,1,0} parameter(0) p1 = f16[128,1024,32,32]{3,2,1,0} parameter(1) loop_fusion = f16[128,32,32,1024]{3,2,1,0} fusion(p0, p1), kind=kLoop, calls=mixed_input_layouts_computation reduce_fusion = f32[1024]{0} fusion(loop_fusion), kind=kInput, calls=fused_reduce ROOT root = (f32[1024]{0}, f16[128,32,32,1024]{3,2,1,0}) tuple(reduce_fusion, loop_fusion) })")) .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, ProducerConsumerFusionAvoidsCycles) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) ROOT add = f32[32,32,32]{2,1,0} add(p0, p1) } fused_mul { p2 = f32[64,64,64]{2,1,0} parameter(0) p3 = f32[64,64,64]{2,1,0} parameter(1) ROOT multiply = f32[64,64,64]{2,1,0} multiply(p2, p3) } fused_reduce_1 { p4 = f32[32,32,32]{2,1,0} parameter(0) p5 = f32[64,64,64]{2,1,0} parameter(1) slice = f32[32,32,32]{2,1,0} slice(p5), slice={[0:32], [0:32], [0:32]} add = f32[32,32,32]{2,1,0} add(p4, slice) c0 = f32[] constant(0) ROOT r1 = f32[32,32]{1,0} reduce(add, c0), dimensions={2}, to_apply=scalar_add_computation } fused_reduce_2 { p6 = f32[32,32,32]{2,1,0} parameter(0) p7 = f32[64,64,64]{2,1,0} parameter(1) c0 = f32[] constant(0) pad = f32[64,64,64]{2,1,0} pad(p6, c0), padding=16_16x16_16x16_16 mul = f32[64,64,64]{2,1,0} multiply(pad, p7) ROOT r1 = f32[64,64]{1,0} reduce(mul, c0), dimensions={2}, to_apply=scalar_add_computation } ENTRY reduce { p8 = f32[32,32,32]{2,1,0} parameter(0) p9 = f32[64,64,64]{2,1,0} parameter(1) add = f32[32,32,32]{2,1,0} fusion(p8, p8), kind=kLoop, calls=fused_add mul = f32[64,64,64]{2,1,0} fusion(p9, p9), kind=kLoop, calls=fused_mul reduce1 = f32[32,32]{1,0} fusion(add, mul), kind=kInput, calls=fused_reduce_1 reduce2 = f32[64,64]{1,0} fusion(add, mul), kind=kInput, calls=fused_reduce_2 ROOT root = (f32[32,32,32]{2,1,0}, f32[32,32]{1,0}, f32[64,64]{1,0}, f32[64,64,64]{2,1,0}) tuple(add, reduce1, reduce2, mul) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); EXPECT_EQ(1, CountMultiOutputFusions(module.get())); } TEST_F(MultiOutputFusionTest, PreferFuseProducerIntoFusionConsumer) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_add { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[32,32,32]{2,1,0} parameter(1) ROOT add = f32[32,32,32]{2,1,0} add(p0, p1) } fused_reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[64,64,64]{2,1,0} parameter(1) slice = f32[32,32,32]{2,1,0} slice(p1), slice={[0:32], [0:32], [0:32]} add = f32[32,32,32]{2,1,0} add(p0, slice) c0 = f32[] constant(0) ROOT r1 = f32[32,32]{1,0} reduce(add, c0), dimensions={2}, to_apply=scalar_add_computation } ENTRY reduce { p0 = f32[32,32,32]{2,1,0} parameter(0) p1 = f32[64,64,64]{2,1,0} parameter(1) add = f32[32,32,32]{2,1,0} fusion(p0, p0), kind=kLoop, calls=fused_add c0 = f32[] constant(0) reduce2 = f32[32,32]{1,0} reduce(add, c0), dimensions={2}, to_apply=scalar_add_computation reduce = f32[32,32]{1,0} fusion(add, p1), kind=kInput, calls=fused_reduce ROOT root = (f32[32,32,32]{2,1,0}, f32[32,32]{1,0}, f32[32,32]{1,0}) tuple(add, reduce, reduce2) })")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); int multi_output_fusion_count = 0; for (auto* computation : module->MakeNonfusionComputations()) { for (auto* instr : computation->instructions()) { if (instr->IsMultiOutputFusion()) { multi_output_fusion_count++; } } } EXPECT_EQ(1, multi_output_fusion_count); } TEST_F(MultiOutputFusionTest, AvoidsLargeFusion) { constexpr int64_t kNumParams = 200; ASSERT_GT(kNumParams, MaxOperandsAndOutputsPerFusion()); auto module = CreateNewVerifiedModule(); HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {10, 100}); std::vector<HloInstruction*> params; for (int64_t i = 0; i < kNumParams; ++i) { params.push_back( b.AddInstruction(HloInstruction::CreateParameter(i, shape, "p"))); } auto make_fusion = [&](HloInstruction* x, HloInstruction* y) { HloComputation::Builder sub_builder("subcomp"); auto* p0 = sub_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p")); auto* p1 = sub_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p")); sub_builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, p0, p1)); HloComputation* subcomp = module->AddEmbeddedComputation(sub_builder.Build()); return HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kLoop, {x, y}, subcomp); }; auto* sum = b.AddInstruction(make_fusion(params[0], params[1])); for (int64_t i = 2; i < kNumParams; ++i) { sum = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, sum, b.AddInstruction(make_fusion(params[i - 1], params[i])))); } auto computation = module->AddEntryComputation(b.Build()); EXPECT_TRUE(mof_.Run(module.get()).value()); SCOPED_TRACE(module->ToString()); for (const HloInstruction* instr : computation->instructions()) { EXPECT_LE(instr->operand_count() + ShapeUtil::SubshapeCount(instr->shape()), MaxOperandsAndOutputsPerFusion()) << instr->ToString(); } } TEST_F(MultiOutputFusionTest, MultiOutputFusionDUS) { auto module = ParseAndReturnVerifiedModule(R"(HloModule dus_mof fusion.1 { p.0 = f16[50,96,1024]{2,1,0} parameter(0) p.1 = f16[1,96,1024]{2,1,0} parameter(1) c.0 = s32[3]{0} constant({0, 0, 0}) ROOT %dynamic-update-slice = f16[50,96,1024]{2,1,0} dynamic-update-slice(p.0, p.1, c.0) } fusion.2 { p.0 = f16[50,96,1024]{2,1,0} parameter(0) p.1 = f16[1,96,1024]{2,1,0} parameter(1) c.0 = s32[3]{0} constant({0, 0, 0}) ROOT %dynamic-update-slice = f16[50,96,1024]{2,1,0} dynamic-update-slice(p.0, p.1, c.0) } ENTRY entry { p.00 = f16[50,96,1024]{2,1,0} parameter(0) p.01 = f16[50,96,1024]{2,1,0} parameter(1) p.1 = f16[1,96,1024]{2,1,0} parameter(2) f1 = f16[50,96,1024] fusion(p.00, p.1), kind=kLoop, calls=fusion.1 f2 = f16[50,96,1024] fusion(p.01, p.1), kind=kLoop, calls=fusion.2 ROOT tuple = (f16[50,96,1024],f16[50,96,1024]) tuple(f1, f2) })") .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, SharedMemoryBudget) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation0 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation1 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation2 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation3 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation4 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation5 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation6 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation7 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation8 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } fused_computation9 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={0}, to_apply=scalar_add_computation } ENTRY computation { zero = f32[] constant(0) param0 = f32[64,64] parameter(0) param1 = f32[64,64] parameter(1) param2 = f32[64,64] parameter(2) param3 = f32[64,64] parameter(3) param4 = f32[64,64] parameter(4) param5 = f32[64,64] parameter(5) param6 = f32[64,64] parameter(6) param7 = f32[64,64] parameter(7) param8 = f32[64,64] parameter(8) param9 = f32[64,64] parameter(9) out0 = f32[64] fusion(param0, param1, zero), kind=kInput, calls=fused_computation0 out1 = f32[64] fusion(param1, param2, zero), kind=kInput, calls=fused_computation1 out2 = f32[64] fusion(param2, param3, zero), kind=kInput, calls=fused_computation2 out3 = f32[64] fusion(param3, param4, zero), kind=kInput, calls=fused_computation3 out4 = f32[64] fusion(param4, param5, zero), kind=kInput, calls=fused_computation4 out5 = f32[64] fusion(param5, param6, zero), kind=kInput, calls=fused_computation5 out6 = f32[64] fusion(param6, param7, zero), kind=kInput, calls=fused_computation6 out7 = f32[64] fusion(param7, param8, zero), kind=kInput, calls=fused_computation7 out8 = f32[64] fusion(param8, param9, zero), kind=kInput, calls=fused_computation8 out9 = f32[64] fusion(param9, param0, zero), kind=kInput, calls=fused_computation9 ROOT out = (f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64]) tuple(f32[64] out0, f32[64] out1, f32[64] out2, f32[64] out3, f32[64] out4, f32[64] out5, f32[64] out6, f32[64] out7, f32[64] out8, f32[64] out9) } )")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); EXPECT_EQ(5, CountMultiOutputFusions(module.get())); } TEST_F(MultiOutputFusionTest, DoNotGroupTooManyReductions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_computation0 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation1 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation2 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation3 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation4 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation5 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation6 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation7 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation8 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } fused_computation9 { p0 = f32[64,64] parameter(0) p1 = f32[64,64] parameter(1) p2 = f32[] parameter(2) add = f32[64,64] add(p0, p1) ROOT reduce = f32[64] reduce(f32[64,64] add, f32[] p2), dimensions={1}, to_apply=scalar_add_computation } ENTRY computation { zero = f32[] constant(0) param0 = f32[64,64] parameter(0) param1 = f32[64,64] parameter(1) param2 = f32[64,64] parameter(2) param3 = f32[64,64] parameter(3) param4 = f32[64,64] parameter(4) param5 = f32[64,64] parameter(5) param6 = f32[64,64] parameter(6) param7 = f32[64,64] parameter(7) param8 = f32[64,64] parameter(8) param9 = f32[64,64] parameter(9) out0 = f32[64] fusion(param0, param1, zero), kind=kInput, calls=fused_computation0 out1 = f32[64] fusion(param1, param2, zero), kind=kInput, calls=fused_computation1 out2 = f32[64] fusion(param2, param3, zero), kind=kInput, calls=fused_computation2 out3 = f32[64] fusion(param3, param4, zero), kind=kInput, calls=fused_computation3 out4 = f32[64] fusion(param4, param5, zero), kind=kInput, calls=fused_computation4 out5 = f32[64] fusion(param5, param6, zero), kind=kInput, calls=fused_computation5 out6 = f32[64] fusion(param6, param7, zero), kind=kInput, calls=fused_computation6 out7 = f32[64] fusion(param7, param8, zero), kind=kInput, calls=fused_computation7 out8 = f32[64] fusion(param8, param9, zero), kind=kInput, calls=fused_computation8 out9 = f32[64] fusion(param9, param0, zero), kind=kInput, calls=fused_computation9 ROOT out = (f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64], f32[64]) tuple(f32[64] out0, f32[64] out1, f32[64] out2, f32[64] out3, f32[64] out4, f32[64] out5, f32[64] out6, f32[64] out7, f32[64] out8, f32[64] out9) } )")) .value(); ASSERT_TRUE(mof_.Run(module.get()).value()); EXPECT_EQ(2, CountMultiOutputFusions(module.get())); } TEST_F(MultiOutputFusionTest, NoFusionToAvoidUsingTooMuchSharedMemory) { auto module = ParseAndReturnVerifiedModule(R"( HloModule xla_computation_update_step.10931 %scalar_add_computation.1 (scalar_lhs.1: f64[], scalar_rhs.1: f64[]) -> f64[] { %scalar_lhs.1 = f64[] parameter(0) %scalar_rhs.1 = f64[] parameter(1) ROOT %add.1257 = f64[] add(f64[] %scalar_lhs.1, f64[] %scalar_rhs.1) } %fused_computation.1 (param_0.8: f64[64,64], param_1.11: f64[64,64], param_2.9: f64[64,64]) -> (f64[64], f64[64]) { %param_0.8 = f64[64,64]{1,0} parameter(0) %param_1.11 = f64[64,64]{1,0} parameter(1) %multiply.2 = f64[64,64]{1,0} multiply(f64[64,64]{1,0} %param_0.8, f64[64,64]{1,0} %param_1.11) %constant_5217.3 = f64[] constant(0) %broadcast.1 = f64[64,64]{1,0} broadcast(f64[] %constant_5217.3), dimensions={} %multiply.0 = f64[64,64]{1,0} multiply(f64[64,64]{1,0} %multiply.2, f64[64,64]{1,0} %broadcast.1) %reduce.0 = f64[64]{0} reduce(f64[64,64]{1,0} %multiply.0, f64[] %constant_5217.3), dimensions={0}, to_apply=%scalar_add_computation.1 %param_2.9 = f64[64,64]{1,0} parameter(2) %multiply.1514.clone.0.clone.1 = f64[64,64]{1,0} multiply(f64[64,64]{1,0} %param_2.9, f64[64,64]{1,0} %param_1.11) %constant_5217.1.clone.1 = f64[] constant(0) %broadcast.0.clone.1 = f64[64,64]{1,0} broadcast(f64[] %constant_5217.1.clone.1), dimensions={} %multiply.1341.clone.0.clone.1 = f64[64,64]{1,0} multiply(f64[64,64]{1,0} %multiply.1514.clone.0.clone.1, f64[64,64]{1,0} %broadcast.0.clone.1) %reduce.630.clone.0.clone.1 = f64[64]{0} reduce(f64[64,64]{1,0} %multiply.1341.clone.0.clone.1, f64[] %constant_5217.1.clone.1), dimensions={0}, to_apply=%scalar_add_computation.1 ROOT %tuple = (f64[64]{0}, f64[64]{0}) tuple(f64[64]{0} %reduce.0, f64[64]{0} %reduce.630.clone.0.clone.1) } %primitive_computation_add__1.6426 (parameter.6427: f64[], parameter.6428: f64[]) -> f64[] { %parameter.6427 = f64[] parameter(0) %parameter.6428 = f64[] parameter(1) ROOT %add.6429 = f64[] add(f64[] %parameter.6427, f64[] %parameter.6428) } %fused_computation.2 (param_0.7: f64[64,64], param_1.9: f64[64,64]) -> f64[64] { %param_0.7 = f64[64,64]{1,0} parameter(0) %param_1.9 = f64[64,64]{1,0} parameter(1) %multiply.1 = f64[64,64]{1,0} multiply(f64[64,64]{1,0} %param_0.7, f64[64,64]{1,0} %param_1.9) %constant_5217.2 = f64[] constant(0) ROOT %reduce.740.clone.0 = f64[64]{0} reduce(f64[64,64]{1,0} %multiply.1, f64[] %constant_5217.2), dimensions={0}, to_apply=%primitive_computation_add__1.6426 } ENTRY %reproducer (param_0.1090: f64[64,64], param_1.1377: f64[64,64], param_2.1948: f64[64,64]) -> (f64[64], f64[64], f64[64]) { %param_0.1090 = f64[64,64]{1,0} parameter(0) %param_1.1377 = f64[64,64]{1,0} parameter(1) %param_2.1948 = f64[64,64]{1,0} parameter(2) %fusion.1 = (f64[64]{0}, f64[64]{0}) fusion(f64[64,64]{1,0} %param_0.1090, f64[64,64]{1,0} %param_1.1377, f64[64,64]{1,0} %param_2.1948), kind=kInput, calls=%fused_computation.1 %get-tuple-element = f64[64]{0} get-tuple-element((f64[64]{0}, f64[64]{0}) %fusion.1), index=0 %fusion.2 = f64[64]{0} fusion(f64[64,64]{1,0} %param_0.1090, f64[64,64]{1,0} %param_1.1377), kind=kInput, calls=%fused_computation.2 %get-tuple-element.1 = f64[64]{0} get-tuple-element((f64[64]{0}, f64[64]{0}) %fusion.1), index=1 ROOT %tuple.428 = (f64[64]{0}, f64[64]{0}, f64[64]{0}) tuple(f64[64]{0} %get-tuple-element, f64[64]{0} %fusion.2, f64[64]{0} %get-tuple-element.1) } )") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, NoFusionToAvoidCodeDuplication) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module and.reduce_sub_computation { x = pred[] parameter(0) y = pred[] parameter(1) ROOT and = pred[] and(x, y) } fused_computation.1 { param_4.658 = f32[2,20,256]{2,0,1} parameter(4) slice.1385 = f32[2,1,256]{2,0,1} slice(param_4.658), slice={[0:2], [11:12], [0:256]} constant.6847 = s32[] constant(0) broadcast.4823 = s32[3]{0} broadcast(constant.6847), dimensions={} param_9.415 = s32[3]{0} parameter(9) compare.700 = pred[3]{0} compare(broadcast.4823, param_9.415), direction=LE constant.6846 = pred[] constant(true) reduce.221 = pred[] reduce(compare.700, constant.6846), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2933 = pred[2,1,256]{2,0,1} broadcast(reduce.221), dimensions={} param_5.528 = f32[2,512]{1,0} parameter(5) slice.1384 = f32[2,256]{1,0} slice(param_5.528), slice={[0:2], [0:256]} bitcast.341 = f32[2,1,256]{2,0,1} bitcast(slice.1384) constant.5418 = f32[] constant(0) broadcast.3227 = f32[2,1,256]{2,0,1} broadcast(constant.5418), dimensions={} select.173 = f32[2,1,256]{2,0,1} select(broadcast.2933, bitcast.341, broadcast.3227) add.573 = f32[2,1,256]{2,0,1} add(slice.1385, select.173) param_0.299 = s32[] parameter(0) constant.5157 = s32[] constant(11) dynamic-update-slice.189 = f32[2,20,256]{2,0,1} dynamic-update-slice(param_4.658, add.573, param_0.299, constant.5157, param_0.299) slice.1383 = f32[2,1,256]{2,0,1} slice(dynamic-update-slice.189), slice={[0:2], [10:11], [0:256]} constant.6800 = s32[] constant(0) broadcast.4803 = s32[3]{0} broadcast(constant.6800), dimensions={} param_8.484 = s32[3]{0} parameter(8) compare.681 = pred[3]{0} compare(broadcast.4803, param_8.484), direction=LE constant.6798 = pred[] constant(true) reduce.203 = pred[] reduce(compare.681, constant.6798), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2932 = pred[2,1,256]{2,0,1} broadcast(reduce.203), dimensions={} param_3.1169 = f32[2,512]{1,0} parameter(3) slice.1382 = f32[2,256]{1,0} slice(param_3.1169), slice={[0:2], [0:256]} bitcast.340 = f32[2,1,256]{2,0,1} bitcast(slice.1382) select.172 = f32[2,1,256]{2,0,1} select(broadcast.2932, bitcast.340, broadcast.3227) add.572 = f32[2,1,256]{2,0,1} add(slice.1383, select.172) constant.5154 = s32[] constant(10) dynamic-update-slice.188 = f32[2,20,256]{2,0,1} dynamic-update-slice(dynamic-update-slice.189, add.572, param_0.299, constant.5154, param_0.299) slice.1381 = f32[2,1,256]{2,0,1} slice(dynamic-update-slice.188), slice={[0:2], [9:10], [0:256]} constant.6794 = s32[] constant(0) broadcast.4801 = s32[3]{0} broadcast(constant.6794), dimensions={} param_7.478 = s32[3]{0} parameter(7) compare.679 = pred[3]{0} compare(broadcast.4801, param_7.478), direction=LE constant.6793 = pred[] constant(true) reduce.201 = pred[] reduce(compare.679, constant.6793), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2930 = pred[2,1,256]{2,0,1} broadcast(reduce.201), dimensions={} param_2.1685 = f32[2,512]{1,0} parameter(2) slice.1380 = f32[2,256]{1,0} slice(param_2.1685), slice={[0:2], [0:256]} bitcast.339 = f32[2,1,256]{2,0,1} bitcast(slice.1380) select.171 = f32[2,1,256]{2,0,1} select(broadcast.2930, bitcast.339, broadcast.3227) add.571 = f32[2,1,256]{2,0,1} add(slice.1381, select.171) constant.5153 = s32[] constant(9) dynamic-update-slice.187 = f32[2,20,256]{2,0,1} dynamic-update-slice(dynamic-update-slice.188, add.571, param_0.299, constant.5153, param_0.299) slice.1379 = f32[2,1,256]{2,0,1} slice(dynamic-update-slice.187), slice={[0:2], [8:9], [0:256]} constant.6788 = s32[] constant(0) broadcast.4799 = s32[3]{0} broadcast(constant.6788), dimensions={} param_6.495 = s32[3]{0} parameter(6) compare.677 = pred[3]{0} compare(broadcast.4799, param_6.495), direction=LE constant.6786 = pred[] constant(true) reduce.199 = pred[] reduce(compare.677, constant.6786), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2929 = pred[2,1,256]{2,0,1} broadcast(reduce.199), dimensions={} param_1.1408 = f32[2,512]{1,0} parameter(1) slice.1378 = f32[2,256]{1,0} slice(param_1.1408), slice={[0:2], [0:256]} bitcast.338 = f32[2,1,256]{2,0,1} bitcast(slice.1378) select.170 = f32[2,1,256]{2,0,1} select(broadcast.2929, bitcast.338, broadcast.3227) add.570 = f32[2,1,256]{2,0,1} add(slice.1379, select.170) constant.5152 = s32[] constant(8) ROOT dynamic-update-slice.186 = f32[2,20,256]{2,0,1} dynamic-update-slice(dynamic-update-slice.187, add.570, param_0.299, constant.5152, param_0.299) } fused_computation.2 { param_4.655 = f32[2,20,256]{2,0,1} parameter(4) slice.1369 = f32[2,1,256]{2,0,1} slice(param_4.655), slice={[0:2], [7:8], [0:256]} param_6.483 = pred[] parameter(6) broadcast.2927 = pred[2,1,256]{2,0,1} broadcast(param_6.483), dimensions={} param_5.525 = f32[2,512]{1,0} parameter(5) slice.1368 = f32[2,256]{1,0} slice(param_5.525), slice={[0:2], [0:256]} bitcast.333 = f32[2,1,256]{2,0,1} bitcast(slice.1368) constant.5415 = f32[] constant(0) broadcast.3225 = f32[2,1,256]{2,0,1} broadcast(constant.5415), dimensions={} select.161 = f32[2,1,256]{2,0,1} select(broadcast.2927, bitcast.333, broadcast.3225) add.549 = f32[2,1,256]{2,0,1} add(slice.1369, select.161) param_0.265 = s32[] parameter(0) constant.5151 = s32[] constant(7) dynamic-update-slice.185 = f32[2,20,256]{2,0,1} dynamic-update-slice(param_4.655, add.549, param_0.265, constant.5151, param_0.265) slice.1367 = f32[2,1,256]{2,0,1} slice(dynamic-update-slice.185), slice={[0:2], [6:7], [0:256]} constant.6782 = s32[] constant(0) broadcast.4797 = s32[3]{0} broadcast(constant.6782), dimensions={} param_9.391 = s32[3]{0} parameter(9) compare.675 = pred[3]{0} compare(broadcast.4797, param_9.391), direction=LE constant.6781 = pred[] constant(true) reduce.197 = pred[] reduce(compare.675, constant.6781), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2926 = pred[2,1,256]{2,0,1} broadcast(reduce.197), dimensions={} param_3.1167 = f32[2,512]{1,0} parameter(3) slice.1366 = f32[2,256]{1,0} slice(param_3.1167), slice={[0:2], [0:256]} bitcast.332 = f32[2,1,256]{2,0,1} bitcast(slice.1366) select.160 = f32[2,1,256]{2,0,1} select(broadcast.2926, bitcast.332, broadcast.3225) add.548 = f32[2,1,256]{2,0,1} add(slice.1367, select.160) constant.5150 = s32[] constant(6) dynamic-update-slice.184 = f32[2,20,256]{2,0,1} dynamic-update-slice(dynamic-update-slice.185, add.548, param_0.265, constant.5150, param_0.265) slice.1365 = f32[2,1,256]{2,0,1} slice(dynamic-update-slice.184), slice={[0:2], [5:6], [0:256]} constant.6776 = s32[] constant(0) broadcast.4794 = s32[3]{0} broadcast(constant.6776), dimensions={} param_8.464 = s32[3]{0} parameter(8) compare.673 = pred[3]{0} compare(broadcast.4794, param_8.464), direction=LE constant.6775 = pred[] constant(true) reduce.195 = pred[] reduce(compare.673, constant.6775), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2925 = pred[2,1,256]{2,0,1} broadcast(reduce.195), dimensions={} param_2.1684 = f32[2,512]{1,0} parameter(2) slice.1364 = f32[2,256]{1,0} slice(param_2.1684), slice={[0:2], [0:256]} bitcast.331 = f32[2,1,256]{2,0,1} bitcast(slice.1364) select.159 = f32[2,1,256]{2,0,1} select(broadcast.2925, bitcast.331, broadcast.3225) add.547 = f32[2,1,256]{2,0,1} add(slice.1365, select.159) constant.5149 = s32[] constant(5) dynamic-update-slice.183 = f32[2,20,256]{2,0,1} dynamic-update-slice(dynamic-update-slice.184, add.547, param_0.265, constant.5149, param_0.265) slice.1363 = f32[2,1,256]{2,0,1} slice(dynamic-update-slice.183), slice={[0:2], [4:5], [0:256]} constant.6770 = s32[] constant(0) broadcast.4792 = s32[3]{0} broadcast(constant.6770), dimensions={} param_7.458 = s32[3]{0} parameter(7) compare.671 = pred[3]{0} compare(broadcast.4792, param_7.458), direction=LE constant.6769 = pred[] constant(true) reduce.193 = pred[] reduce(compare.671, constant.6769), dimensions={0}, to_apply=and.reduce_sub_computation broadcast.2924 = pred[2,1,256]{2,0,1} broadcast(reduce.193), dimensions={} param_1.1405 = f32[2,512]{1,0} parameter(1) slice.1362 = f32[2,256]{1,0} slice(param_1.1405), slice={[0:2], [0:256]} bitcast.330 = f32[2,1,256]{2,0,1} bitcast(slice.1362) select.158 = f32[2,1,256]{2,0,1} select(broadcast.2924, bitcast.330, broadcast.3225) add.546 = f32[2,1,256]{2,0,1} add(slice.1363, select.158) constant.5148 = s32[] constant(4) ROOT dynamic-update-slice.182 = f32[2,20,256]{2,0,1} dynamic-update-slice(dynamic-update-slice.183, add.546, param_0.265, constant.5148, param_0.265) } ENTRY main { param_0.0 = s32[] parameter(0) param_1.0 = f32[2,512]{1,0} parameter(1) param_2.0 = f32[2,512]{1,0} parameter(2) param_3.0 = f32[2,512]{1,0} parameter(3) param_4.0 = f32[2,20,256]{2,1,0} parameter(4) param_5.0 = f32[2,512]{1,0} parameter(5) param_6.0 = s32[3]{0} parameter(6) param_7.0 = s32[3]{0} parameter(7) param_8.0 = s32[3]{0} parameter(8) param_9.0 = s32[3]{0} parameter(9) fusion.1 = f32[2,20,256]{2,0,1} fusion(param_0.0, param_1.0, param_2.0, param_3.0, param_4.0, param_5.0, param_6.0, param_7.0, param_8.0, param_9.0), kind=kLoop, calls=fused_computation.1 param_10 = pred[] parameter(10) fusion.2 = f32[2,20,256]{2,0,1} fusion(param_0.0, param_1.0, param_2.0, param_3.0, fusion.1, param_5.0, param_10, param_7.0, param_8.0, param_9.0), kind=kLoop, calls=fused_computation.2 ROOT root = (f32[2,20,256]{2,0,1}, f32[2,20,256]{2,0,1}) tuple(fusion.1, fusion.2) } )") .value(); auto& debug_options = module->mutable_config().mutable_debug_options(); debug_options.set_xla_gpu_mlir_emitter_level(3); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, DoNotFuseRoot) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module no_op { arg_empty_tuple = () parameter(0) ROOT tuple = () tuple() } fused_computation { param_0 = f32[] parameter(0) ROOT convert = s32[] convert(param_0) } ENTRY main { param_0 = f32[] parameter(0) fusion = s32[] fusion(param_0), kind=kLoop, calls=fused_computation tuple = () tuple() conditional = () conditional(fusion, tuple, tuple), branch_computations={no_op, no_op} constant = f32[] constant(1) ROOT root = f32[] add(param_0, constant) } )") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, CostBasedNoMerge) { auto module = ParseAndReturnVerifiedModule(R"( HloModule m region_3.63 { Arg_0.64 = f32[] parameter(0) Arg_1.65 = f32[] parameter(1) ROOT add.66 = f32[] add(Arg_0.64, Arg_1.65) } fused_computation.29 { param_0.161 = f32[5,32,32,1]{3,2,1,0} parameter(0) multiply.208 = f32[5,32,32,1]{3,2,1,0} multiply(param_0.161, param_0.161) bitcast.67 = f32[5,32,32]{2,1,0} bitcast(multiply.208) constant.265 = f32[] constant(0) reduce-window.81 = f32[5,30,31]{2,1,0} reduce-window(bitcast.67, constant.265), window={size=1x3x2}, to_apply=region_3.63 constant.264 = f32[] constant(0.166666672) broadcast.204 = f32[5,30,31]{2,1,0} broadcast(constant.264), dimensions={} multiply.205 = f32[5,30,31]{2,1,0} multiply(reduce-window.81, broadcast.204) constant.263 = f32[] constant(0) reduce-window.80 = f32[5,30,31]{2,1,0} reduce-window(multiply.205, constant.263), window={size=1x2x3 pad=0_0x0_1x1_1}, to_apply=region_3.63 constant.262 = f32[] constant(0.0138888899) broadcast.201 = f32[5,30,31]{2,1,0} broadcast(constant.262), dimensions={} multiply.204 = f32[5,30,31]{2,1,0} multiply(reduce-window.80, broadcast.201) constant.261 = f32[] constant(0) reduce-window.78 = f32[5,30,31]{2,1,0} reduce-window(multiply.204, constant.261), window={size=1x1x2 pad=0_0x0_0x0_1}, to_apply=region_3.63 constant.113 = f32[] constant(0.5) broadcast.137 = f32[5,30,31]{2,1,0} broadcast(constant.113), dimensions={} multiply.125 = f32[5,30,31]{2,1,0} multiply(reduce-window.78, broadcast.137) constant.114 = f32[] constant(0) ROOT reduce-window.17 = f32[5,30,31]{2,1,0} reduce-window(multiply.125, constant.114), window={size=1x2x1 pad=0_0x0_1x0_0}, to_apply=region_3.63 } fused_computation.15 { constant.108 = f32[] constant(0.5) broadcast.105 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.108), dimensions={} param_3.126 = f32[5,30,31]{2,1,0} parameter(3) constant.295 = f32[] constant(0.25) broadcast.234 = f32[5,30,31]{2,1,0} broadcast(constant.295), dimensions={} multiply.242 = f32[5,30,31]{2,1,0} multiply(param_3.126, broadcast.234) broadcast.233 = f32[5,5,30,31]{3,2,1,0} broadcast(multiply.242), dimensions={0,2,3} param_2.154 = f32[5,30,31]{2,1,0} parameter(2) multiply.241 = f32[5,30,31]{2,1,0} multiply(param_2.154, broadcast.234) broadcast.232 = f32[5,5,30,31]{3,2,1,0} broadcast(multiply.241), dimensions={1,2,3} multiply.240 = f32[5,5,30,31]{3,2,1,0} multiply(broadcast.233, broadcast.232) param_1.188 = f32[5,5,30,31]{3,2,1,0} parameter(1) constant.294 = f32[] constant(0.159154937) broadcast.231 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.294), dimensions={} multiply.239 = f32[5,5,30,31]{3,2,1,0} multiply(param_1.188, broadcast.231) param_0.164 = f32[5,5,30,31]{3,2,1,0} parameter(0) add.19 = f32[5,5,30,31]{3,2,1,0} add(multiply.239, param_0.164) constant.293 = f32[] constant(0) reduce-window.90 = f32[5,5,30,31]{3,2,1,0} reduce-window(add.19, constant.293), window={size=1x1x1x2 pad=0_0x0_0x0_0x0_1}, to_apply=region_3.63 constant.292 = f32[] constant(0.5) broadcast.230 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.292), dimensions={} multiply.238 = f32[5,5,30,31]{3,2,1,0} multiply(reduce-window.90, broadcast.230) constant.291 = f32[] constant(0) reduce-window.89 = f32[5,5,30,31]{3,2,1,0} reduce-window(multiply.238, constant.291), window={size=1x1x2x1 pad=0_0x0_0x0_1x0_0}, to_apply=region_3.63 constant.290 = f32[] constant(0.25) broadcast.229 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.290), dimensions={} multiply.237 = f32[5,5,30,31]{3,2,1,0} multiply(reduce-window.89, broadcast.229) multiply.236 = f32[5,5,30,31]{3,2,1,0} multiply(multiply.237, multiply.237) subtract.10 = f32[5,5,30,31]{3,2,1,0} subtract(multiply.240, multiply.236) constant.289 = f32[] constant(0) broadcast.228 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.289), dimensions={} maximum.6 = f32[5,5,30,31]{3,2,1,0} maximum(subtract.10, broadcast.228) sqrt.6 = f32[5,5,30,31]{3,2,1,0} sqrt(maximum.6) constant.110 = f32[] constant(0) broadcast.107 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.110), dimensions={} compare.4 = pred[5,5,30,31]{3,2,1,0} compare(sqrt.6, broadcast.107), direction=EQ constant.243 = f32[] constant(0.159154937) broadcast.193 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.243), dimensions={} multiply.194 = f32[5,5,30,31]{3,2,1,0} multiply(param_1.188, broadcast.193) add.15 = f32[5,5,30,31]{3,2,1,0} add(multiply.194, param_0.164) constant.242 = f32[] constant(0) reduce-window.66 = f32[5,5,30,31]{3,2,1,0} reduce-window(add.15, constant.242), window={size=1x1x1x2 pad=0_0x0_0x0_0x0_1}, to_apply=region_3.63 constant.241 = f32[] constant(0.5) broadcast.192 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.241), dimensions={} multiply.193 = f32[5,5,30,31]{3,2,1,0} multiply(reduce-window.66, broadcast.192) constant.240 = f32[] constant(0) reduce-window.65 = f32[5,5,30,31]{3,2,1,0} reduce-window(multiply.193, constant.240), window={size=1x1x2x1 pad=0_0x0_0x0_1x0_0}, to_apply=region_3.63 constant.239 = f32[] constant(0.25) broadcast.191 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.239), dimensions={} multiply.192 = f32[5,5,30,31]{3,2,1,0} multiply(reduce-window.65, broadcast.191) compare.3 = pred[5,5,30,31]{3,2,1,0} compare(multiply.192, broadcast.107), direction=EQ and.1 = pred[5,5,30,31]{3,2,1,0} and(compare.4, compare.3) constant.109 = f32[] constant(1.57079637) broadcast.104 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.109), dimensions={} atan2.1 = f32[5,5,30,31]{3,2,1,0} atan2(sqrt.6, multiply.192) select.4 = f32[5,5,30,31]{3,2,1,0} select(and.1, broadcast.104, atan2.1) constant.107 = f32[] constant(0.159154937) broadcast.106 = f32[5,5,30,31]{3,2,1,0} broadcast(constant.107), dimensions={} multiply.100 = f32[5,5,30,31]{3,2,1,0} multiply(select.4, broadcast.106) ROOT subtract.3 = f32[5,5,30,31]{3,2,1,0} subtract(broadcast.105, multiply.100) } fused_computation.4 { param_0.172 = f32[5,30,31]{2,1,0} parameter(0) constant.315 = f32[] constant(0.125) broadcast.242 = f32[5,30,31]{2,1,0} broadcast(constant.315), dimensions={} multiply.250 = f32[5,30,31]{2,1,0} multiply(param_0.172, broadcast.242) constant.314 = f32[] constant(0) reduce-window.100 = f32[5,30,31]{2,1,0} reduce-window(multiply.250, constant.314), window={size=1x3x3 pad=0_0x1_1x1_1}, to_apply=region_3.63 constant.79 = f32[] constant(0.055555556) broadcast.85 = f32[5,30,31]{2,1,0} broadcast(constant.79), dimensions={} multiply.80 = f32[5,30,31]{2,1,0} multiply(reduce-window.100, broadcast.85) constant.81 = f32[] constant(0) reduce-window.1 = f32[5,30,31]{2,1,0} reduce-window(multiply.80, constant.81), window={size=1x3x3 pad=0_0x1_1x1_1}, to_apply=region_3.63 constant.80 = f32[] constant(0.111111112) broadcast.86 = f32[5,30,31]{2,1,0} broadcast(constant.80), dimensions={} multiply.79 = f32[5,30,31]{2,1,0} multiply(reduce-window.1, broadcast.86) bitcast.26 = f32[5,930]{1,0} bitcast(multiply.79) ROOT reduce.8 = f32[5]{0} reduce(bitcast.26, constant.81), dimensions={1}, to_apply=region_3.63 } ENTRY e { Arg_0.1 = f32[5,32,32,1]{3,2,1,0} parameter(0) p1 = f32[5,5,30,31]{3,2,1,0} parameter(1) p2 = f32[5,5,30,31]{3,2,1,0} parameter(2) p3 = f32[5,30,31]{2,1,0} parameter(3) fusion.29 = f32[5,30,31]{2,1,0} fusion(Arg_0.1), kind=kLoop, calls=fused_computation.29 fusion.15 = f32[5,5,30,31]{3,2,1,0} fusion(p2, p1, p3, fusion.29), kind=kLoop, calls=fused_computation.15 ROOT fusion.4 = f32[5]{0} fusion(fusion.29), kind=kInput, calls=fused_computation.4 })") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, NoOverlappingRead) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fused_computation_1 { p0.1 = f32[100,200]{1,0} parameter(0) slice.0 = f32[50,100]{1,0} slice(p0.1), slice={[0:50],[0:100]} mul = f32[50,100]{1,0} multiply(slice.0, slice.0) exp = f32[50,100]{1,0} exponential(slice.0) ROOT tuple = (f32[50,100]{1,0}, f32[50,100]{1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[100,200]{1,0} parameter(0) slice.1 = f32[50,100]{1,0} slice(p0.2), slice={[0:50],[100:200]} const.2 = f32[] constant(0) broadcast = f32[50,100]{1,0} broadcast(const.2), dimensions={} ROOT add = f32[50,100]{1,0} add(slice.1, broadcast) } ENTRY entry { p0 = f32[100,200]{1,0} parameter(0) fusion.1 = (f32[50,100]{1,0}, f32[50,100]{1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 gte0 = f32[50,100]{1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[50,100]{1,0} get-tuple-element(fusion.1), index=1 fusion.2 = f32[50,100]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[50,100]{1,0}, f32[50,100]{1,0}, f32[50,100]{1,0}) tuple(gte0, gte1, fusion.2) })") .value(); EXPECT_FALSE(mof_.Run(module.get()).value()); } TEST_F(MultiOutputFusionTest, OverlappingRead) { auto module = ParseAndReturnVerifiedModule(R"( HloModule module fused_computation_1 { p0.1 = f32[100,200]{1,0} parameter(0) slice.0 = f32[50,100]{1,0} slice(p0.1), slice={[0:50],[50:150]} mul = f32[50,100]{1,0} multiply(slice.0, slice.0) exp = f32[50,100]{1,0} exponential(slice.0) ROOT tuple = (f32[50,100]{1,0}, f32[50,100]{1,0}) tuple(mul, exp) } fused_computation_2 { p0.2 = f32[100,200]{1,0} parameter(0) slice.1 = f32[50,100]{1,0} slice(p0.2), slice={[30:80],[20:120]} const.2 = f32[] constant(0) broadcast = f32[50,100]{1,0} broadcast(const.2), dimensions={} ROOT add = f32[50,100]{1,0} add(slice.1, broadcast) } ENTRY entry { p0 = f32[100,200]{1,0} parameter(0) fusion.1 = (f32[50,100]{1,0}, f32[50,100]{1,0}) fusion(p0), kind=kLoop, calls=fused_computation_1 gte0 = f32[50,100]{1,0} get-tuple-element(fusion.1), index=0 gte1 = f32[50,100]{1,0} get-tuple-element(fusion.1), index=1 fusion.2 = f32[50,100]{1,0} fusion(p0), kind=kLoop, calls=fused_computation_2 ROOT root = (f32[50,100]{1,0}, f32[50,100]{1,0}, f32[50,100]{1,0}) tuple(gte0, gte1, fusion.2) })") .value(); EXPECT_TRUE(mof_.Run(module.get()).value()); } class TransposeMultiOutputFusionTest : public MultiOutputFusionTest { DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = MultiOutputFusionTest::GetDebugOptionsForTest(); debug_options.set_xla_gpu_mlir_emitter_level(3); return debug_options; } }; TEST_F(TransposeMultiOutputFusionTest, MultipleTransposes) { const char* hlo = R"( HloModule module fused_computation { param_0.1 = f32[16,32]{1,0} parameter(0) s.1 = f32[16,32]{1,0} sqrt(param_0.1) ROOT t.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY main { p = f32[16,32]{1,0} parameter(0) fusion = f32[32,16]{1,0} fusion(p), kind=kInput, calls=fused_computation t1 = f32[32,16]{1,0} transpose(p), dimensions={1,0} ROOT t = (f32[32,16]{1,0}, f32[32,16]{1,0}) tuple(fusion, t1) } )"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(TransposeMultiOutputFusionTest, MultipleTransposesDifferentTypes) { const char* hlo = R"( HloModule module fused_computation { param_0.1 = f16[16,32]{1,0} parameter(0) s.1 = f32[16,32]{1,0} convert(param_0.1) ROOT t.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY main { p = f16[16,32]{1,0} parameter(0) fusion = f32[32,16]{1,0} fusion(p), kind=kInput, calls=fused_computation t1 = f16[32,16]{1,0} transpose(p), dimensions={1,0} ROOT t = (f32[32,16]{1,0}, f16[32,16]{1,0}) tuple(fusion, t1) } )"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(TransposeMultiOutputFusionTest, TiledReduceTranspose) { const char* hlo = R"( HloModule module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = add(lhs, rhs) } fused_computation { param_0.1 = f32[16,32]{1,0} parameter(0) s.1 = f32[16,32]{1,0} sqrt(param_0.1) ROOT t.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY main { p = f32[16,32]{1,0} parameter(0) fusion = f32[32,16]{1,0} fusion(p), kind=kInput, calls=fused_computation z = f32[] constant(0) r1 = f32[32]{0} reduce(p, z), dimensions={0}, to_apply=add ROOT t = (f32[32,16]{1,0}, f32[32]{0}) tuple(fusion, r1) } )"; CheckMultiOutputFusion(hlo, std::nullopt); } TEST_F(TransposeMultiOutputFusionTest, IncompatibleTransposes) { const char* hlo = R"( HloModule module fused_computation { param_0.1 = f32[18,16,32]{2,1,0} parameter(0) param_1.1 = f32[32,16,18]{2,1,0} parameter(1) s.1 = f32[18,16,32]{2,1,0} sqrt(param_0.1) t.1 = f32[32,16,18]{2,1,0} transpose(s.1), dimensions={2,1,0} sub.1 = f32[32,16,18]{2,1,0} subtract(t.1, param_1.1) exp.1 = f32[32,16,18]{2,1,0} exponential(sub.1) ROOT add.1 = f32[32,16,18]{2,1,0} add(exp.1, exp.1) } fused_computation.2 { param_0.2 = f32[18,16,32]{2,1,0} parameter(0) s.2 = f32[18,16,32]{2,1,0} sqrt(param_0.2) ROOT t.2 = f32[18,32,16]{2,1,0} transpose(s.2), dimensions={0,2,1} } ENTRY main { p = f32[18,16,32]{2,1,0} parameter(0) p2 = f32[32,16,18]{2,1,0} parameter(1) fusion = f32[32,16,18]{2,1,0} fusion(p, p2), kind=kLoop, calls=fused_computation fusion2 = f32[18,32,16]{2,1,0} fusion(p), kind=kInput, calls=fused_computation.2 ROOT t = (f32[32,16,18]{2,1,0}, f32[18,32,16]{2,1,0}) tuple(fusion, fusion2) } )"; CheckMultiOutputFusion(hlo, std::nullopt); } TEST_F(TransposeMultiOutputFusionTest, TransposesNoCSE) { const char* hlo = R"( HloModule module fused_computation { param_0.1 = f32[18,16,32]{2,1,0} parameter(0) param_1.1 = f32[32,16,18]{2,1,0} parameter(1) s.1 = f32[18,16,32]{2,1,0} sqrt(param_0.1) t.1 = f32[32,16,18]{2,1,0} transpose(s.1), dimensions={2,1,0} sub.1 = f32[32,16,18]{2,1,0} subtract(t.1, param_1.1) exp.1 = f32[32,16,18]{2,1,0} exponential(sub.1) exp.2 = f32[32,16,18]{2,1,0} exponential(sub.1) ROOT add.1 = f32[32,16,18]{2,1,0} add(exp.1, exp.2) } fused_computation.2 { param_0.2 = f32[18,16,32]{2,1,0} parameter(0) s.2 = f32[18,16,32]{2,1,0} sqrt(param_0.2) ROOT t.2 = f32[18,32,16]{2,1,0} transpose(s.2), dimensions={0,2,1} } ENTRY main { p = f32[18,16,32]{2,1,0} parameter(0) p2 = f32[32,16,18]{2,1,0} parameter(1) fusion = f32[32,16,18]{2,1,0} fusion(p, p2), kind=kLoop, calls=fused_computation fusion2 = f32[18,32,16]{2,1,0} fusion(p), kind=kInput, calls=fused_computation.2 ROOT t = (f32[32,16,18]{2,1,0}, f32[18,32,16]{2,1,0}) tuple(fusion, fusion2) } )"; CheckMultiOutputFusion(hlo, std::nullopt); } TEST_F(TransposeMultiOutputFusionTest, TransposeAndInput) { const char* hlo = R"( HloModule module fused_computation { param_0.1 = f32[16,32]{1,0} parameter(0) s.1 = f32[16,32]{1,0} sqrt(param_0.1) ROOT t.1 = f32[32,16]{1,0} transpose(s.1), dimensions={1,0} } ENTRY main { p = f32[16,32]{1,0} parameter(0) fusion = f32[32,16]{1,0} fusion(p), kind=kInput, calls=fused_computation c1 = f32[16,32]{1,0} exponential(p) ROOT t = (f32[32,16]{1,0}, f32[16,32]{1,0}) tuple(fusion, c1) } )"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(TransposeMultiOutputFusionTest, TransposeAndInputEpilogueFusion) { const char* hlo = R"( HloModule module fused_computation { param_0.1 = f32[1,16,32]{2,1,0} parameter(0) s.1 = f32[1,16,32]{2,1,0} sqrt(param_0.1) t.1 = f32[1,32,16]{2,1,0} transpose(s.1), dimensions={0,2,1} ROOT out = f32[32,16,1]{2,1,0} bitcast(t.1) } ENTRY main { p = f32[1,16,32]{2,1,0} parameter(0) fusion = f32[32,16,1]{2,1,0} fusion(p), kind=kInput, calls=fused_computation c1 = f32[1,16,32]{2,1,0} exponential(p) ROOT t = (f32[32,16,1]{2,1,0}, f32[1,16,32]{2,1,0}) tuple(fusion, c1) } )"; CheckMultiOutputFusion(hlo, R"( )"); } class ReduceMultiOutputFusionTest : public MultiOutputFusionTest {}; TEST_F(ReduceMultiOutputFusionTest, ReduceAndLoop) { const char* hlo = R"( HloModule module add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a, b) } fused_reduction { p = f32[200] parameter(0) z = f32[] constant(0) e = f32[200] exponential(p) ROOT r = f32[] reduce(e, z), dimensions={0}, to_apply=add } fused_elementwise { p = f32[200] parameter(0) ROOT r = f32[200] sqrt(p) } ENTRY computation { p = f32[200] parameter(0) o1 = f32[200] fusion(p), kind=kLoop, calls=fused_elementwise o2 = f32[] fusion(p), kind=kInput, calls=fused_reduction ROOT out = (f32[200], f32[]) tuple(o1, o2) } )"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(ReduceMultiOutputFusionTest, ReduceAndLoopDifferentShape) { const char* hlo = R"( HloModule module add { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] add(a, b) } fused_reduction { p = f32[10,20] parameter(0) z = f32[] constant(0) e = f32[10,20] exponential(p) b = f32[200] bitcast(e) ROOT r = f32[] reduce(b, z), dimensions={0}, to_apply=add } fused_elementwise { p = f32[10,20] parameter(0) ROOT r = f32[10,20] sqrt(p) } ENTRY computation { p = f32[10,20] parameter(0) o1 = f32[10,20] fusion(p), kind=kLoop, calls=fused_elementwise o2 = f32[] fusion(p), kind=kInput, calls=fused_reduction ROOT out = (f32[10,20], f32[]) tuple(o1, o2) } )"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(ReduceMultiOutputFusionTest, ReduceAndLoopDifferentShapeDifferentType) { const char* hlo = R"( HloModule module, entry_computation_layout={(f16[100,200]{1,0},f32[],f32[])->(f16[100,200]{1,0}, f32[])} max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] maximum(a, b) } fused_computation { one_5 = f32[] constant(1) one_b.5 = f32[100,200]{1,0} broadcast(one_5), dimensions={} param_1.15 = f16[100,200]{1,0} parameter(1) c.6 = f32[100,200]{1,0} convert(param_1.15) param_0.11 = f32[] parameter(0) b.6 = f32[100,200]{1,0} broadcast(param_0.11), dimensions={} d.5 = f32[100,200]{1,0} divide(c.6, b.6) a.6 = f32[100,200]{1,0} add(one_b.5, d.5) bitcast.1 = f32[20000]{0} bitcast(a.6) z_1 = f32[] constant(0) ROOT r.1 = f32[] reduce(bitcast.1, z_1), dimensions={0}, to_apply=max } fused_computation.1 { one_3 = f32[] constant(1) one_b.3 = f32[100,200]{1,0} broadcast(one_3), dimensions={} param_2.7 = f16[100,200]{1,0} parameter(2) c.4 = f32[100,200]{1,0} convert(param_2.7) param_1.10 = f32[] parameter(1) b.4 = f32[100,200]{1,0} broadcast(param_1.10), dimensions={} d.3 = f32[100,200]{1,0} divide(c.4, b.4) a.4 = f32[100,200]{1,0} add(one_b.3, d.3) param_0.8 = f32[] parameter(0) output_scale_broadcast.1 = f32[100,200]{1,0} broadcast(param_0.8), dimensions={} a_scaled.1 = f32[100,200]{1,0} multiply(a.4, output_scale_broadcast.1) ROOT a_scaled_converted.1 = f16[100,200]{1,0} convert(a_scaled.1) } ENTRY computation { output_scale = f32[] parameter(2) input_scale = f32[] parameter(1) p = f16[100,200]{1,0} parameter(0) fusion.1 = f16[100,200]{1,0} fusion(output_scale, input_scale, p), kind=kLoop, calls=fused_computation.1 fusion = f32[] fusion(input_scale, p), kind=kInput, calls=fused_computation ROOT out = (f16[100,200]{1,0}, f32[]) tuple(fusion.1, fusion) } )"; CheckMultiOutputFusion(hlo, R"( )"); } TEST_F(ReduceMultiOutputFusionTest, GetTupleElementMakeTupleSequence) { auto module = ParseAndReturnVerifiedModule(R"( HloModule test_module fusion { p0 = s32[] parameter(0) p1 = s32[32] parameter(1) custom-call = (bf16[], s32[], u32[]) custom-call(p1), custom_call_target="my_custom_call" get-tuple-element.0 = bf16[] get-tuple-element(custom-call), index=0 get-tuple-element.1 = s32[] get-tuple-element(custom-call), index=1 bitcast = s32[1] bitcast(get-tuple-element.1) dynamic-update-slice = s32[32] dynamic-update-slice(p1, bitcast, p0) get-tuple-element.2 = u32[] get-tuple-element(custom-call), index=2 ROOT tuple.30 = (bf16[], s32[32], u32[]) tuple(get-tuple-element.0, dynamic-update-slice, get-tuple-element.2) } ENTRY entry{ p0 = s32[] parameter(0) bitcast = s32[32] bitcast(p0) ROOT address_computation.7.0 = (bf16[], s32[32], u32[]) fusion(p0, bitcast), kind=kCustom, calls=fusion } )") .value(); ASSERT_FALSE(mof_.Run(module.get()).value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/multi_output_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/multi_output_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
da2b505e-fc9f-4953-95f5-53652fefab01
cpp
tensorflow/tensorflow
save_report
tensorflow/compiler/mlir/quantization/stablehlo/instrumentations/save_report.cc
tensorflow/compiler/mlir/quantization/stablehlo/instrumentations/save_report_test.cc
#include "tensorflow/compiler/mlir/quantization/stablehlo/instrumentations/save_report.h" #include <optional> #include <string> #include "absl/base/nullability.h" #include "absl/log/log.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Operation.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/report.h" namespace mlir::quant::stablehlo { namespace { std::optional<std::string> OptionalStringViewToOptionalString( std::optional<absl::string_view> view) { if (view == std::nullopt) return std::nullopt; return std::make_optional<std::string>(*view); } bool IsQuantizeCompositeFunctionPass(absl::Nullable<Pass*> pass, absl::Nullable<Operation*> op) { return pass != nullptr && pass->getArgument() == "stablehlo-quantize-composite-functions" && isa_and_nonnull<ModuleOp>(op); } bool ShouldSaveReport(absl::Nullable<Pass*> pass, absl::Nullable<Operation*> op, const std::optional<std::string>& file_path) { return file_path != std::nullopt && IsQuantizeCompositeFunctionPass(pass, op); } void SaveReport(const QuantizationReport& report, const absl::string_view file_path) { if (const absl::Status save_status = report.Save(file_path); save_status.ok()) { LOG(INFO) << "Successfully saved quantization report to: " << file_path; } else { LOG(ERROR) << "Failed to save quantization report to: " << file_path << " with status: " << save_status; } } } SaveQuantizationReportInstrumentation::SaveQuantizationReportInstrumentation( std::optional<absl::string_view> file_path) : file_path_(OptionalStringViewToOptionalString(file_path)) {} void SaveQuantizationReportInstrumentation::runAfterPass(Pass* pass, Operation* op) { if (!IsQuantizeCompositeFunctionPass(pass, op)) return; auto module_op = cast<ModuleOp>(op); const QuantizationReport report(module_op); report.Print(); if (!ShouldSaveReport(pass, op, file_path_)) return; SaveReport(report, *file_path_); } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/instrumentations/save_report.h" #include <memory> #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/common/test_base.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/cc/io.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/passes/passes.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_config.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status_matchers.h" namespace mlir::quant::stablehlo { namespace { using ::stablehlo::quantization::QuantizationResults; using ::stablehlo::quantization::io::ReadFileToString; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::protobuf::TextFormat; using ::tsl::testing::IsOk; using ::tsl::testing::StatusIs; using SaveQuantizationReportInstrumentationTest = QuantizationTestBase; TEST_F(SaveQuantizationReportInstrumentationTest, SaveReport) { constexpr absl::string_view kModuleWithCompositeDotGeneral = R"mlir( func.func @main(%arg0: tensor<1x2xf32>) -> tensor<1x3xf32> { %cst = "tf.Const"() {value = dense<3.00000000e-1> : tensor<2x3xf32>} : () -> tensor<2x3xf32> %0 = "quantfork.stats"(%arg0) {layerStats = dense<[6.00000000e-6, 9.00000000e-1]> : tensor<2xf32>} : (tensor<1x2xf32>) -> tensor<1x2xf32> %1 = "tf.XlaCallModule"(%0, %cst) {Sout = [#tf_type.shape<1x3>], _entry_function = @composite_dot_general_fn, _original_entry_function = "composite_dot_general_fn", _quantization_method = "static_range_ptq { }", _stablehlo_module_attrs = {}, _tfl_quant_trait = "fully_quantizable", device = "", dim_args_spec = [], disabled_checks = [], has_token_input_output = false, module = "", platforms = [], version = 5 : i64} : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> %2 = "quantfork.stats"(%1) {layerStats = dense<[5.00000000e-6, 7.00000000e-1]> : tensor<2xf32>} : (tensor<1x3xf32>) -> tensor<1x3xf32> return %2 : tensor<1x3xf32> } func.func private @composite_dot_general_fn(%arg0: tensor<1x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<1x3xf32> attributes {_from_xla_call_module} { %0 = stablehlo.dot_general %arg0, %arg1, contracting_dims = [1] x [0] : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> return %0 : tensor<1x3xf32> } )mlir"; const OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithCompositeDotGeneral); ASSERT_TRUE(module_op); PassManager pm(ctx_.get()); QuantizeCompositeFunctionsPassOptions options; pm.addPass(createQuantizeCompositeFunctionsPass(options)); const std::string report_file_path = absl::StrCat(testing::TempDir(), "/save_report.txtpb"); pm.addInstrumentation(std::make_unique<SaveQuantizationReportInstrumentation>( report_file_path)); const LogicalResult run_result = pm.run(*module_op); ASSERT_TRUE(succeeded(run_result)); const absl::StatusOr<std::string> file_data = ReadFileToString(report_file_path); ASSERT_THAT(file_data, IsOk()); QuantizationResults results{}; ASSERT_TRUE(TextFormat::ParseFromString(*file_data, &results)); ASSERT_THAT(results.results(), SizeIs(1)); EXPECT_THAT(results.results(0).quantizable_unit().name(), StrEq("composite_dot_general_fn")); EXPECT_TRUE(results.results(0).method().has_static_range_ptq()); } TEST_F(SaveQuantizationReportInstrumentationTest, ReportNotSavedWhenNoQuantizeCompositeFunctionsPass) { constexpr absl::string_view kModuleWithCompositeDotGeneral = R"mlir( func.func @main(%arg0: tensor<1x2xf32>) -> tensor<1x3xf32> { %cst = "stablehlo.constant"() {value = dense<3.00000000e-1> : tensor<2x3xf32>} : () -> tensor<2x3xf32> %0 = "quantfork.stats"(%arg0) {layerStats = dense<[6.00000000e-6, 9.00000000e-1]> : tensor<2xf32>} : (tensor<1x2xf32>) -> tensor<1x2xf32> %1 = "tf.XlaCallModule"(%0, %cst) {Sout = [#tf_type.shape<1x3>], _entry_function = @composite_dot_general_fn, _original_entry_function = "composite_dot_general_fn", _quantization_method = "static_range_ptq { }", _stablehlo_module_attrs = {}, _tfl_quant_trait = "fully_quantizable", device = "", dim_args_spec = [], disabled_checks = [], has_token_input_output = false, module = "", platforms = [], version = 5 : i64} : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> %2 = "quantfork.stats"(%1) {layerStats = dense<[5.00000000e-6, 7.00000000e-1]> : tensor<2xf32>} : (tensor<1x3xf32>) -> tensor<1x3xf32> return %2 : tensor<1x3xf32> } func.func private @composite_dot_general_fn(%arg0: tensor<1x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<1x3xf32> attributes {_from_xla_call_module} { %0 = stablehlo.dot_general %arg0, %arg1, contracting_dims = [1] x [0] : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> return %0 : tensor<1x3xf32> } )mlir"; const OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithCompositeDotGeneral); ASSERT_TRUE(module_op); PassManager pm(ctx_.get()); pm.addPass(createPrepareQuantizePass()); const std::string report_file_path = absl::StrCat( testing::TempDir(), "/report_not_saved_no_quantize_composite_functions_pass.txtpb"); pm.addInstrumentation(std::make_unique<SaveQuantizationReportInstrumentation>( report_file_path)); const LogicalResult run_result = pm.run(*module_op); ASSERT_TRUE(succeeded(run_result)); EXPECT_THAT(ReadFileToString(report_file_path), StatusIs(absl::StatusCode::kNotFound)); } TEST_F(SaveQuantizationReportInstrumentationTest, ReportNotSavedWhenReportFilePathIsNullopt) { constexpr absl::string_view kModuleWithCompositeDotGeneral = R"mlir( func.func @main(%arg0: tensor<1x2xf32>) -> tensor<1x3xf32> { %cst = "stablehlo.constant"() {value = dense<3.00000000e-1> : tensor<2x3xf32>} : () -> tensor<2x3xf32> %0 = "quantfork.stats"(%arg0) {layerStats = dense<[6.00000000e-6, 9.00000000e-1]> : tensor<2xf32>} : (tensor<1x2xf32>) -> tensor<1x2xf32> %1 = "tf.XlaCallModule"(%0, %cst) {Sout = [#tf_type.shape<1x3>], _entry_function = @composite_dot_general_fn, _original_entry_function = "composite_dot_general_fn", _quantization_method = "static_range_ptq { }", _stablehlo_module_attrs = {}, _tfl_quant_trait = "fully_quantizable", device = "", dim_args_spec = [], disabled_checks = [], has_token_input_output = false, module = "", platforms = [], version = 5 : i64} : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> %2 = "quantfork.stats"(%1) {layerStats = dense<[5.00000000e-6, 7.00000000e-1]> : tensor<2xf32>} : (tensor<1x3xf32>) -> tensor<1x3xf32> return %2 : tensor<1x3xf32> } func.func private @composite_dot_general_fn(%arg0: tensor<1x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<1x3xf32> attributes {_from_xla_call_module} { %0 = stablehlo.dot_general %arg0, %arg1, contracting_dims = [1] x [0] : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> return %0 : tensor<1x3xf32> } )mlir"; const OwningOpRef<ModuleOp> module_op = ParseModuleOpString(kModuleWithCompositeDotGeneral); ASSERT_TRUE(module_op); PassManager pm(ctx_.get()); QuantizeCompositeFunctionsPassOptions options; pm.addPass(createQuantizeCompositeFunctionsPass(options)); pm.addInstrumentation(std::make_unique<SaveQuantizationReportInstrumentation>( std::nullopt)); const LogicalResult run_result = pm.run(*module_op); ASSERT_TRUE(succeeded(run_result)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/instrumentations/save_report.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/instrumentations/save_report_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f724d8e5-774c-4366-8f95-a977c6960432
cpp
tensorflow/tensorflow
grpc_client_session
third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session.cc
third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session_test.cc
#include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/call_once.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "grpc/grpc.h" #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/channel_arguments.h" #include "xla/pjrt/distributed/util.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/threadpool.h" #include "tsl/platform/unbounded_work_queue.h" namespace xla { namespace ifrt { namespace proxy { class GrpcClientSession::ResponseCallbackTable { public: absl::Status Add(OpId op_id, ResponseCallback callback) { absl::MutexLock l(&mu_); const bool inserted = table_.insert({op_id, std::move(callback)}).second; if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("Op id ", op_id, " already exists")); } return absl::OkStatus(); } std::optional<ResponseCallback> Pop(OpId op_id) { absl::MutexLock l(&mu_); auto it = table_.find(op_id); if (it == table_.end()) { return std::nullopt; } auto cb = std::move(it->second); table_.erase(it); return std::move(cb); } absl::flat_hash_map<OpId, ResponseCallback> PopAll() { absl::flat_hash_map<OpId, ResponseCallback> result; absl::MutexLock l(&mu_); result = std::move(table_); table_ = absl::flat_hash_map<OpId, ResponseCallback>(); return result; } private: absl::Mutex mu_; absl::flat_hash_map<OpId, ResponseCallback> table_ ABSL_GUARDED_BY(mu_); }; std::shared_ptr<GrpcClientSession> GrpcClientSession::Create( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, GrpcIfrtSessionMetadata metadata, StreamTerminatedCallback stream_terminated_cb) { auto context = std::make_unique<::grpc::ClientContext>(); context->AddMetadata("ifrt-proxy-grpc-ifrt-session-metadata-bin", metadata.SerializeAsString()); std::shared_ptr<GrpcClientSession> result(new GrpcClientSession( std::move(stub), std::move(context), std::move(stream_terminated_cb))); return result; } GrpcClientSession::GrpcClientSession( std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub, std::unique_ptr<::grpc::ClientContext> context, StreamTerminatedCallback stream_terminated_cb) : response_callbacks_(std::make_unique<ResponseCallbackTable>()), reader_thread_(std::make_unique<tsl::thread::ThreadPool>( tsl::Env::Default(), "ifrt_proxy_client_grpc_reader", 1)), stub_(std::move(stub)), context_(std::move(context)), stream_(stub_->IfrtSession(context_.get())), stream_terminated_cb_(std::move(stream_terminated_cb)), user_futures_work_queue_(std::make_unique<tsl::UnboundedWorkQueue>( tsl::Env::Default(), "GrpcClientSessionUserFuturesWorkQueue")) { reader_thread_->Schedule( absl::bind_front(&GrpcClientSession::ReadLoop, this)); } Future<std::shared_ptr<IfrtResponse>> GrpcClientSession::Enqueue( std::unique_ptr<IfrtRequest> request) { auto promise = Future<std::shared_ptr<IfrtResponse>>::CreatePromise(); absl::Status status = Enqueue( std::move(request), [promise, queue = user_futures_work_queue_.get()]( absl::StatusOr<std::shared_ptr<IfrtResponse>> response) mutable { queue->Schedule([promise = std::move(promise), response = std::move(response)]() mutable -> void { promise.Set(std::move(response)); }); }); if (!status.ok()) { user_futures_work_queue_->Schedule([promise, status]() mutable -> void { promise.Set(std::move(status)); }); } return Future<std::shared_ptr<IfrtResponse>>(std::move(promise)); } absl::Status GrpcClientSession::Enqueue(std::unique_ptr<IfrtRequest> req, ResponseCallback callback) { absl::MutexLock l(&writer_mu_); const OpId op_id = writer_next_op_id_++; if (writes_stopped_) { return absl::FailedPreconditionError( "GrpcClientSession: writes no longer allowed."); } TF_RETURN_IF_ERROR(response_callbacks_->Add(op_id, std::move(callback))); CHECK_EQ(req->mutable_request_metadata()->op_id(), 0); req->mutable_request_metadata()->set_op_id(op_id); if (!stream_->Write(*req)) { CHECK(response_callbacks_->Pop(op_id).has_value()); return absl::UnknownError("GrpcClientSession: writing to stream failed."); } return absl::OkStatus(); } void GrpcClientSession::ReadLoop() { while (true) { auto read_buffer = std::make_unique<IfrtResponse>(); if (!stream_->Read(read_buffer.get())) { LOG(INFO) << "GrpcClientSession: reader loop is exiting."; break; } const OpId op_id = read_buffer->response_metadata().op_id(); std::optional<ResponseCallback> callback = response_callbacks_->Pop(op_id); if (callback.has_value()) { VLOG(1) << "GrpcClientSession: Issuing callback for " << op_id; (*callback)(std::move(read_buffer)); VLOG(1) << "GrpcClientSession: Done with callback for " << op_id; } else { LOG(ERROR) << "Received response with no remaining registered callback: " << read_buffer->DebugString(); } } reader_thread_stopped_.Notify(); Finish(absl::OkStatus()); } void GrpcClientSession::Finish(const absl::Status& client_status) { LOG(INFO) << "GrpcClientSession: Finish() called with client status " << client_status; absl::call_once(finish_once_, [&] { context_->TryCancel(); LOG(INFO) << "GrpcClientSession: Waiting for reader thread to stop."; reader_thread_stopped_.WaitForNotification(); auto finish_stream_and_get_server_status = [&]() -> absl::Status { LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish()"; absl::MutexLock l(&writer_mu_); LOG(INFO) << "GrpClientSession: Attempting to call stream->Finish(), " "mutex acquired"; absl::Status server_status = xla::FromGrpcStatus(stream_->Finish()); LOG(INFO) << "GrpClientSession: stream->Finish() returned server status " << server_status; CHECK(!writes_stopped_); writes_stopped_ = true; return server_status; }; absl::Status combined_status = finish_stream_and_get_server_status(); combined_status.Update(client_status); auto all_callbacks = response_callbacks_->PopAll(); for (auto& [_, cb] : all_callbacks) { if (combined_status.ok()) { cb(absl::AbortedError("Finish(OK) called.")); } else { cb(combined_status); } } LOG(INFO) << "GrpClientSession::Finish(): calling terminated cb with " << combined_status; stream_terminated_cb_(combined_status); }); } GrpcClientSession::~GrpcClientSession() { GrpcClientSession::Finish(absl::CancelledError("~GrpcClientSession called.")); reader_thread_.reset(); LOG(INFO) << "Deleting GrpcClientSession.user_futures_work_queue_ ..."; user_futures_work_queue_.reset(); LOG(INFO) << "Deleted GrpcClientSession.user_futures_work_queue_."; } std::shared_ptr<grpc::GrpcIfrtService::StubInterface> CreateGrpcStub( absl::string_view server_address) { ::grpc::ChannelArguments args; args.SetInt(GRPC_ARG_MAX_SEND_MESSAGE_LENGTH, -1); args.SetInt(GRPC_ARG_MAX_RECEIVE_MESSAGE_LENGTH, -1); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateCustomChannel( std::string(server_address), GetClientCredentials(), args); VLOG(0) << " Established channel."; CHECK(channel != nullptr); std::shared_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); VLOG(0) << " Created stub."; CHECK(stub != nullptr); return stub; } } } }
#include "xla/python/ifrt_proxy/client/grpc_client_session.h" #include <atomic> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/log/log_sink_registry.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "grpc/support/time.h" #include "grpcpp/channel.h" #include "grpcpp/create_channel.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "xla/python/ifrt_proxy/client/version.h" #include "xla/python/ifrt_proxy/common/grpc_credentials.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.grpc.pb.h" #include "xla/python/ifrt_proxy/common/grpc_ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/test_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::Not; using ::tsl::testing::IsOk; constexpr absl::Duration kSufficientTime = absl::Seconds(5); GrpcIfrtSessionMetadata Metadata() { GrpcIfrtSessionMetadata metadata; metadata.mutable_version()->set_protocol_version(kClientMaxVersion); return metadata; } absl::Status TestError() { return absl::UnknownError("test error"); } struct Queue : public TestQueue<absl::Status> { Queue() : TestQueue<absl::Status>(kSufficientTime) {} }; void ExpectHeadAndTail( std::vector<std::variant<absl::StatusOr<Queue*>, absl::Status>> var_list) { std::vector<absl::Status> status_list; for (const auto& v : var_list) { if (std::holds_alternative<absl::StatusOr<Queue*>>(v)) { status_list.push_back(std::get<absl::StatusOr<Queue*>>(v).status()); } else { status_list.push_back(std::get<absl::Status>(v)); } } bool seen_not_ok = false; std::string str; for (const auto& s : status_list) { absl::StrAppend(&str, "\n", s.ToString(), "\n-----\n"); } for (const auto& s : status_list) { if (!s.ok()) seen_not_ok = true; if (seen_not_ok) { EXPECT_THAT(s, Not(IsOk())) << str; } } } using ServerStream = ::grpc::ServerReaderWriter<IfrtResponse, IfrtRequest>; using SessionAction = bool; constexpr SessionAction kContinueSession = true; constexpr SessionAction kStopSession = false; using OnSessionStart = std::function<SessionAction()>; using OnReqReceived = std::function<SessionAction(const IfrtRequest&, ServerStream*)>; class SimpleIfrtService : public grpc::GrpcIfrtService::Service { public: SimpleIfrtService(OnReqReceived on_req_received, OnSessionStart on_session_start) : on_req_received_(std::move(on_req_received)), on_session_start_(std::move(on_session_start)) {} ::grpc::Status IfrtSession(::grpc::ServerContext* context, ServerStream* stream) override { if (on_session_start_ && on_session_start_() == kStopSession) { return ::grpc::Status::OK; } { absl::MutexLock l(&mu_); CHECK(contexts_.insert(context).second); } while (true) { IfrtRequest request; LOG(INFO) << "Server: waiting on Read()."; if (!stream->Read(&request)) { LOG(INFO) << "Server: Read() returned false."; break; } LOG(INFO) << "Server: Read() returned true."; if (!on_req_received_) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( request.request_metadata().op_id()); stream->Write(response); } else if (on_req_received_(request, stream) == kStopSession) { break; } } { absl::MutexLock l(&mu_); CHECK_EQ(contexts_.erase(context), 1); } LOG(INFO) << "Finishing IFRT session"; return ::grpc::Status::OK; } void CancelAllServerSessions() { absl::MutexLock l(&mu_); for (const auto& context : contexts_) { context->TryCancel(); } } private: const OnReqReceived on_req_received_; const OnSessionStart on_session_start_; absl::Mutex mu_; absl::flat_hash_set<::grpc::ServerContext*> contexts_ ABSL_GUARDED_BY(mu_); }; class ClientAndServer { public: explicit ClientAndServer(OnReqReceived on_req_received = nullptr, OnSessionStart on_session_start = nullptr) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); ::grpc::ServerBuilder builder; builder.AddListeningPort(address, GetServerCredentials()); ifrt_service_ = std::make_unique<SimpleIfrtService>(on_req_received, on_session_start); builder.RegisterService(ifrt_service_.get()); server_ = builder.BuildAndStart(); LOG(INFO) << "Server started and listening on " << address; absl::FlushLogSinks(); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); channel->WaitForConnected(gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(10, GPR_TIMESPAN))); LOG(INFO) << "conn_state = " << channel->GetState(false); auto stub = grpc::GrpcIfrtService::NewStub(channel); CHECK(stub != nullptr); client_session_ = GrpcClientSession::Create( std::move(stub), Metadata(), [this](absl::Status s) { client_finished_q_.Push(s); client_finished_notification_.Notify(); }); client_finished_q_.AllowNonEmptyDestruction(true); } void StopServer() { ifrt_service_->CancelAllServerSessions(); server_->Shutdown(); server_->Wait(); } ~ClientAndServer() { StopServer(); client_session_->Finish(absl::CancelledError("~ClientAndServer")); client_finished_notification_.WaitForNotificationWithTimeout( kSufficientTime); CHECK(client_finished_notification_.HasBeenNotified()); } GrpcClientSession* client_session() { return client_session_.get(); } Queue* client_finished_q() { return &client_finished_q_; } absl::StatusOr<Queue*> SendSimpleRequest() { owned_queues_.push_back(std::make_unique<Queue>()); Queue* q = owned_queues_.back().get(); auto req = std::make_unique<IfrtRequest>(); TF_RETURN_IF_ERROR(client_session_->Enqueue( std::move(req), [q](absl::StatusOr<GrpcClientSession::Response> resp) { q->Push(resp.status()); })); return q; } private: std::vector<std::unique_ptr<Queue>> owned_queues_; Queue client_finished_q_; absl::Notification client_finished_notification_; std::shared_ptr<GrpcClientSession> client_session_; std::unique_ptr<::grpc::Server> server_; std::unique_ptr<SimpleIfrtService> ifrt_service_; }; TEST(GrpcClientSessionTest, HappyCaseOneRequestWithServerTermination) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest()); EXPECT_THAT(response_q->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.StopServer(); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, HappyCaseTwoRequestsWithClientFinish) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_2, cs.SendSimpleRequest()); EXPECT_THAT(response_q_1->Pop(), IsOk()); EXPECT_THAT(response_q_2->Pop(), IsOk()); EXPECT_EQ(cs.client_finished_q()->PopOrTimeout(), std::nullopt); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringFirstRead) { ClientAndServer cs( [](auto, auto) { return kStopSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ServerFinishesDuringConstruction) { ClientAndServer cs(nullptr, []() { return kStopSession; }); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); ExpectHeadAndTail({response_q_1, response_q_2}); if (response_q_1.ok()) EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); if (response_q_2.ok()) EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerConsumesFirstRequest) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](auto, auto) { session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); EXPECT_THAT(response_q_1->Pop(), Not(IsOk())); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); EXPECT_THAT(response_q_2.status(), Not(IsOk())); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesAfterServerWritesFirstResponse) { std::atomic<GrpcClientSession*> session_ptr; ClientAndServer cs( [session_ptr = &session_ptr](const IfrtRequest& r, ServerStream* s) { IfrtResponse response; response.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(response); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); response_q_1->Pop().IgnoreError(); if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, ClientFinishesDuringServerConstruction) { std::atomic<GrpcClientSession*> session_ptr; absl::Notification init_done; ClientAndServer cs(nullptr, [session_ptr = &session_ptr, init_done = &init_done]() { init_done->WaitForNotification(); session_ptr->load()->Finish(TestError()); return kContinueSession; }); session_ptr.store(cs.client_session()); init_done.Notify(); absl::StatusOr<Queue*> response_q_1 = cs.SendSimpleRequest(); absl::StatusOr<Queue*> response_q_2 = cs.SendSimpleRequest(); if (response_q_1.ok()) { EXPECT_THAT(response_q_1.value()->Pop(), Not(IsOk())); } if (response_q_2.ok()) { EXPECT_THAT(response_q_2.value()->Pop(), Not(IsOk())); } ExpectHeadAndTail({response_q_1, response_q_2}); EXPECT_THAT(cs.client_finished_q()->Pop(), Not(IsOk())); } TEST(GrpcClientSessionTest, MethodsAfterFinishReturnError) { ClientAndServer cs; TF_ASSERT_OK_AND_ASSIGN(Queue * response_q_1, cs.SendSimpleRequest()); cs.client_session()->Finish(TestError()); EXPECT_THAT(cs.SendSimpleRequest(), Not(IsOk())); response_q_1->AllowNonEmptyDestruction(true); } TEST(GrpcClientSessionTest, ReceivingBadIfrtResponseDoesNotCrash) { ClientAndServer cs( [](const IfrtRequest& r, ServerStream* s) mutable { IfrtResponse resp; resp.mutable_response_metadata()->set_op_id(2000); s->Write(resp); resp.mutable_response_metadata()->set_op_id( r.request_metadata().op_id()); s->Write(resp); return kContinueSession; }); TF_ASSERT_OK_AND_ASSIGN(Queue * response_q, cs.SendSimpleRequest()); EXPECT_THAT(response_q->Pop(), IsOk()); } TEST(GrpcClientSessionTest, BadInitialChannelFailsPromptly) { std::string address = absl::StrCat("localhost:", tsl::testing::PickUnusedPortOrDie()); std::shared_ptr<::grpc::Channel> channel = ::grpc::CreateChannel(address, GetClientCredentials()); std::unique_ptr<grpc::GrpcIfrtService::StubInterface> stub = grpc::GrpcIfrtService::NewStub(channel); EXPECT_TRUE(stub != nullptr); auto session_finished = std::make_shared<Queue>(); auto session = GrpcClientSession::Create( std::move(stub), Metadata(), [session_finished](absl::Status s) { session_finished->Push(s); }); EXPECT_THAT(session_finished->Pop(), Not(IsOk())); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/client/grpc_client_session_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
91d2793d-e918-49f9-b4b2-ff37091c2a24
cpp
tensorflow/tensorflow
quantize_and_dequantize_op
tensorflow/compiler/tf2xla/kernels/quantize_and_dequantize_op.cc
tensorflow/core/kernels/quantize_and_dequantize_op_test.cc
#include <cstddef> #include <vector> #include "absl/types/span.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/math.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/builder/xla_computation.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { enum QuantizerRoundMode { ROUND_HALF_UP, ROUND_HALF_TO_EVEN, }; class QuantizeAndDequantizeOp : public XlaOpKernel { public: explicit QuantizeAndDequantizeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("signed_input", &signed_input_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("range_given", &range_given_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("narrow_range", &narrow_range_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &axis_)); round_mode_ = ROUND_HALF_TO_EVEN; } void Compile(XlaOpKernelContext* ctx) override { xla::XlaOp input = ctx->Input(0); const DataType data_type = ctx->input_type(0); xla::PrimitiveType xla_type; OP_REQUIRES_OK(ctx, DataTypeToPrimitiveType(data_type, &xla_type)); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp min_range, max_range; if (range_given_) { min_range = ctx->Input(1); max_range = ctx->Input(2); } else { const xla::XlaComputation* fmax = ctx->GetOrCreateMax(data_type); const xla::XlaComputation* fmin = ctx->GetOrCreateMin(data_type); if (axis_ == -1) { min_range = ReduceAll(input, xla::MaxValue(b, xla_type), *fmin); max_range = ReduceAll(input, xla::MinValue(b, xla_type), *fmax); } else { std::vector<int64_t> dimensions_to_reduce; TensorShape input_shape = ctx->InputShape(0); int64_t input_rank = input_shape.dims(); OP_REQUIRES(ctx, input_rank >= 1, errors::Unimplemented("QuantizeAndDequantizeOp with axis " "!= -1 requires minimum rank 1")); OP_REQUIRES( ctx, axis_ >= 0 && axis_ < input_rank, errors::Unimplemented("QuantizeAndDequantizeOp with invalid axis")); dimensions_to_reduce.reserve(input_rank - 1); for (int64_t i = 0; i < input_rank; ++i) { if (i != axis_) { dimensions_to_reduce.push_back(i); } } min_range = Reduce(input, xla::MaxValue(b, xla_type), *fmin, dimensions_to_reduce); max_range = Reduce(input, xla::MinValue(b, xla_type), *fmax, dimensions_to_reduce); } } xla::XlaOp num_bits; if (num_bits_ < 0) { OP_REQUIRES( ctx, ctx->num_inputs() == 4, errors::Internal("Expected 4 inputs to QuantizeAndDequantize")); num_bits = ctx->Input(3); } else { num_bits = xla::ConstantR0<int32>(b, num_bits_); } const xla::XlaOp zero = XlaHelpers::Zero(b, data_type); const xla::XlaOp one = XlaHelpers::One(b, data_type); const xla::XlaOp two = XlaHelpers::FloatLiteral(b, data_type, 2.0); const xla::XlaOp half = XlaHelpers::FloatLiteral(b, data_type, 0.5); xla::XlaOp min_quantized, max_quantized; if (signed_input_) { if (narrow_range_) { min_quantized = -Pow(two, ConvertElementType( num_bits - xla::ConstantR0<int32>(b, 1), xla_type)) + one; } else { min_quantized = -Pow(two, ConvertElementType( num_bits - xla::ConstantR0<int32>(b, 1), xla_type)); } max_quantized = Pow(two, ConvertElementType(num_bits - xla::ConstantR0<int32>(b, 1), xla_type)) - one; } else { min_quantized = zero; max_quantized = Pow(two, ConvertElementType(num_bits, xla_type)) - one; } xla::XlaOp scale_from_min_side = Select(Gt(min_quantized * min_range, zero), min_quantized / min_range, xla::MaxFiniteValue(b, xla_type)); xla::XlaOp scale_from_max_side = Select(Gt(max_quantized * max_range, zero), max_quantized / max_range, xla::MaxFiniteValue(b, xla_type)); xla::XlaOp cond = Lt(scale_from_min_side, scale_from_max_side); xla::XlaOp scale = Select(cond, scale_from_min_side, scale_from_max_side); xla::XlaOp inverse_scale = Select(cond, min_range / min_quantized, max_range / max_quantized); min_range = Select(cond, min_range, min_quantized * inverse_scale); max_range = Select(cond, max_quantized * inverse_scale, max_range); xla::Shape axis_shape = b->GetShape(min_range).value(); if (!xla::ShapeUtil::IsScalar(axis_shape)) { xla::Shape input_shape = b->GetShape(input).value(); absl::Span<const int64_t> input_dimensions = input_shape.dimensions(); auto convert_to_input_shape = [&](const xla::XlaOp op) { return xla::BroadcastInDim(op, input_dimensions, {axis_}); }; min_range = convert_to_input_shape(min_range); max_range = convert_to_input_shape(max_range); scale = convert_to_input_shape(scale); inverse_scale = convert_to_input_shape(inverse_scale); } if (range_given_) { input = Clamp(min_range, input, max_range); } xla::XlaOp result; switch (round_mode_) { case ROUND_HALF_TO_EVEN: { result = xla::RoundToEven(input * scale) * inverse_scale; break; } case ROUND_HALF_UP: { result = Floor(input * scale + half) * inverse_scale; break; } } ctx->SetOutput(0, result); } protected: int64_t num_bits_ = -1; int axis_; bool signed_input_; bool range_given_; bool narrow_range_; QuantizerRoundMode round_mode_; }; class QuantizeAndDequantizeV2Op : public QuantizeAndDequantizeOp { public: explicit QuantizeAndDequantizeV2Op(OpKernelConstruction* ctx) : QuantizeAndDequantizeOp(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("num_bits", &num_bits_)); OP_REQUIRES(ctx, num_bits_ > 0 && num_bits_ < (signed_input_ ? 62 : 63), errors::InvalidArgument("num_bits is out of range: ", num_bits_, " with signed_input_ ", signed_input_)); string round_mode_string; OP_REQUIRES_OK(ctx, ctx->GetAttr("round_mode", &round_mode_string)); OP_REQUIRES( ctx, (round_mode_string == "HALF_UP" || round_mode_string == "HALF_TO_EVEN"), errors::InvalidArgument("Round mode string must be " "'HALF_UP' or " "'HALF_TO_EVEN', is '" + round_mode_string + "'")); if (round_mode_string == "HALF_UP") { round_mode_ = ROUND_HALF_UP; } else if (round_mode_string == "HALF_TO_EVEN") { round_mode_ = ROUND_HALF_TO_EVEN; } } }; REGISTER_XLA_OP(Name("QuantizeAndDequantizeV2"), QuantizeAndDequantizeV2Op); REGISTER_XLA_OP(Name("QuantizeAndDequantizeV3"), QuantizeAndDequantizeOp); REGISTER_XLA_OP(Name("QuantizeAndDequantizeV4"), QuantizeAndDequantizeV2Op); } }
#include <functional> #include <memory> #include <vector> #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { using ::tensorflow::testing::StatusIs; using ::testing::MatchesRegex; class QuantizeAndDequantizeTest : public OpsTestBase {}; struct ParameterizedQuantizeAndDequantizeTest : public OpsTestBase, public ::testing::WithParamInterface<int> {}; TEST_F(QuantizeAndDequantizeTest, Convert_scalar_tensor) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1}), {-3.5}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1})); test::FillValues<float>(&expected, {-3.5}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); EXPECT_EQ(inputs_[1]->scalar<float>()(), 0.0); EXPECT_EQ(inputs_[2]->scalar<float>()(), 0.0); } TEST_F(QuantizeAndDequantizeTest, Convert_scalar_tensor_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", true) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({1}), {-3.5}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<int32>(TensorShape({}), {8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1})); test::FillValues<float>(&expected, {-3.5}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); EXPECT_EQ(inputs_[1]->scalar<float>()(), 0.0); EXPECT_EQ(inputs_[2]->scalar<float>()(), 0.0); } template <typename T> std::vector<T> ScalePerSliceAlongAxis(std::vector<int64_t> dims, int axis, const std::vector<T>& data) { uint32 seed = 123; int64_t out_size = 1; for (int dim : dims) { out_size *= dim; } int minor_size = 1; for (int i = axis + 1; i < dims.size(); ++i) { minor_size *= dims[i]; } std::vector<T> out(out_size); int num_slices = (axis == -1) ? 1 : dims[axis]; for (int out_idx = 0; out_idx < out_size; ++out_idx) { int in_idx = rand_r(&seed) % data.size(); int multiplier = ((out_idx / minor_size) % num_slices) + 1; out[out_idx] = data[in_idx] * multiplier; } return out; } TEST_P(ParameterizedQuantizeAndDequantizeTest, Convert_4D_tensor_with_int8) { const int axis = GetParam(); TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Attr("axis", axis) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const std::vector<int64_t> dims = {2, 3, 4, 5}; AddInputFromArray<float>( TensorShape(dims), ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 0.3, 0.8, 0.555, 0.50390625})); const int num_slices = (axis == -1) ? 1 : dims[axis]; const TensorShape range_shape = (axis == -1) ? TensorShape({}) : TensorShape({num_slices}); std::vector<float> init_value(num_slices, 0.0f); AddInputFromArray<float>(range_shape, init_value); AddInputFromArray<float>(range_shape, init_value); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape(dims)); test::FillValues<float>( &expected, ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 38.0 / 128, 102.0 / 128, 71.0 / 128, 0.5})); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); for (int slice_idx = 0; slice_idx < num_slices; ++slice_idx) { EXPECT_EQ(inputs_[1]->flat<float>()(slice_idx), 0.0); EXPECT_EQ(inputs_[2]->flat<float>()(slice_idx), 0.0); } } TEST_P(ParameterizedQuantizeAndDequantizeTest, Convert_4D_tensor_with_int8_round_half_up) { const int axis = GetParam(); TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Attr("round_mode", "HALF_UP") .Attr("axis", axis) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const std::vector<int64_t> dims = {5, 7, 11, 13}; AddInputFromArray<float>( TensorShape(dims), ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 0.3, 0.8, 0.555, 0.50390625})); const int num_slices = (axis == -1) ? 1 : dims[axis]; const TensorShape range_shape = (axis == -1) ? TensorShape({}) : TensorShape({num_slices}); std::vector<float> init_value(num_slices, 0.0f); AddInputFromArray<float>(range_shape, init_value); AddInputFromArray<float>(range_shape, init_value); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape(dims)); test::FillValues<float>(&expected, ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 38.0 / 128, 102.0 / 128, 71.0 / 128, 65.0 / 128})); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); for (int slice_idx = 0; slice_idx < num_slices; ++slice_idx) { EXPECT_EQ(inputs_[1]->flat<float>()(slice_idx), 0.0); EXPECT_EQ(inputs_[2]->flat<float>()(slice_idx), 0.0); } } TEST_P(ParameterizedQuantizeAndDequantizeTest, Convert_4D_tensor_with_int8_round_half_up_narrow_range) { const int axis = GetParam(); TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Attr("round_mode", "HALF_UP") .Attr("narrow_range", true) .Attr("axis", axis) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const std::vector<int64_t> dims = {2, 3, 4, 5}; AddInputFromArray<float>( TensorShape(dims), ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 0.3, 0.8, 0.555, 0.50390625})); const int num_slices = (axis == -1) ? 1 : dims[axis]; const TensorShape range_shape = (axis == -1) ? TensorShape({}) : TensorShape({num_slices}); std::vector<float> init_value(num_slices, 0.0f); AddInputFromArray<float>(range_shape, init_value); AddInputFromArray<float>(range_shape, init_value); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape(dims)); test::FillValues<float>( &expected, ScalePerSliceAlongAxis<float>(dims, axis, {-1, -63.0 / 127, 0, 38.0 / 127, 102.0 / 127, 70.0 / 127, 64.0 / 127})); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); for (int slice_idx = 0; slice_idx < num_slices; ++slice_idx) { EXPECT_EQ(inputs_[1]->flat<float>()(slice_idx), 0.0); EXPECT_EQ(inputs_[2]->flat<float>()(slice_idx), 0.0); } } TEST_F(QuantizeAndDequantizeTest, Convert_1D_tensor_with_int8_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", true) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({6}), {-1, -0.5, 0, 0.3, 0.8, 0.555}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<int32>(TensorShape({}), {8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({6})); test::FillValues<float>(&expected, {-1, -0.5, 0, 38.0 / 128, 102.0 / 128, 71.0 / 128}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); EXPECT_EQ(inputs_[1]->scalar<float>()(), 0.0); EXPECT_EQ(inputs_[2]->scalar<float>()(), 0.0); } TEST_P(ParameterizedQuantizeAndDequantizeTest, Convert_4D_tensor_with_int8_narrow_range_V3) { const int axis = GetParam(); TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", true) .Attr("range_given", false) .Attr("narrow_range", true) .Attr("axis", axis) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const std::vector<int64_t> dims = {2, 3, 4, 5}; AddInputFromArray<float>( TensorShape(dims), ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 0.3, 0.8, 0.555, 0.50390625})); const int num_slices = (axis == -1) ? 1 : dims[axis]; const TensorShape range_shape = (axis == -1) ? TensorShape({}) : TensorShape({num_slices}); std::vector<float> init_value(num_slices, 0.0f); AddInputFromArray<float>(range_shape, init_value); AddInputFromArray<float>(range_shape, init_value); AddInputFromArray<int32>(TensorShape({}), {8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape(dims)); test::FillValues<float>( &expected, ScalePerSliceAlongAxis<float>(dims, axis, {-1, -64.0 / 127, 0, 38.0 / 127, 102.0 / 127, 70.0 / 127, 64.0 / 127})); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); for (int slice_idx = 0; slice_idx < num_slices; ++slice_idx) { EXPECT_EQ(inputs_[1]->flat<float>()(slice_idx), 0.0); EXPECT_EQ(inputs_[2]->flat<float>()(slice_idx), 0.0); } } TEST_P(ParameterizedQuantizeAndDequantizeTest, GradientV4_op) { const int axis = GetParam(); TF_ASSERT_OK(NodeDefBuilder("qdq_v4_grad_op", "QuantizeAndDequantizeV4Grad") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("axis", axis) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const std::vector<int64_t> dims = {2, 3, 4, 5}; auto gradients = ScalePerSliceAlongAxis<float>( dims, axis, {1, -2, -3, 4, 5, 6, -7, -8, -9, -10, 11}); AddInputFromArray<float>(TensorShape(dims), gradients); auto inputs = ScalePerSliceAlongAxis<float>( dims, axis, {-1, -0.5, 0, 0.3, 0.8, 0.55, 0.6}); AddInputFromArray<float>(TensorShape(dims), inputs); const int num_slices = (axis == -1) ? 1 : dims[axis]; const TensorShape range_shape = (axis == -1) ? TensorShape({}) : TensorShape({num_slices}); std::vector<float> input_min_values(num_slices), input_max_values(num_slices); for (int i = 0; i < num_slices; ++i) { input_max_values[i] = 0.8f + i * 0.4f; input_min_values[i] = -input_max_values[i]; } AddInputFromArray<float>(range_shape, input_min_values); AddInputFromArray<float>(range_shape, input_max_values); std::vector<float> expected_vals(inputs.size()); int minor_size = 1; for (int i = axis + 1; i < dims.size(); ++i) { minor_size *= dims[i]; } for (int i = 0; i < inputs.size(); ++i) { int slice_idx = (i / minor_size) % num_slices; expected_vals[i] = ((inputs[i] >= input_min_values[slice_idx]) && (inputs[i] <= input_max_values[slice_idx])) ? gradients[i] : 0; } TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape(dims)); test::FillValues<float>(&expected, expected_vals); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } INSTANTIATE_TEST_SUITE_P(All, ParameterizedQuantizeAndDequantizeTest, ::testing::Values(-1, 1, 3)); TEST_F(QuantizeAndDequantizeTest, Convert_1D_tensor_with_int4) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 4) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({6}), {-1, -0.5, 0, 0.3125, 0.8, 0.555}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({6})); test::FillValues<float>(&expected, {-1, -0.5, 0, 0.25, 0.75, 0.5}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); EXPECT_EQ(inputs_[1]->scalar<float>()(), 0.0); EXPECT_EQ(inputs_[2]->scalar<float>()(), 0.0); } TEST_F(QuantizeAndDequantizeTest, Convert_1D_tensor_with_int4_round_half_up) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 4) .Attr("range_given", false) .Attr("round_mode", "HALF_UP") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({6}), {-1, -0.5, 0, 0.3125, 0.8, 0.555}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({6})); test::FillValues<float>(&expected, {-1, -0.5, 0, 0.375, 0.75, 0.5}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); EXPECT_EQ(inputs_[1]->scalar<float>()(), 0.0); EXPECT_EQ(inputs_[2]->scalar<float>()(), 0.0); } TEST_F(QuantizeAndDequantizeTest, Convert_1D_tensor_with_int4_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", true) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({6}), {-1, -0.5, 0, 0.3, 0.8, 0.555}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<int32>(TensorShape({}), {4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({6})); test::FillValues<float>(&expected, {-1, -0.5, 0, 0.25, 0.75, 0.5}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); EXPECT_EQ(inputs_[1]->scalar<float>()(), 0.0); EXPECT_EQ(inputs_[2]->scalar<float>()(), 0.0); } TEST_F(QuantizeAndDequantizeTest, Convert_2D_tensor_with_int8_range_given) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", true) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 4}), {-0.8, -0.5, 0, 0.3, 0.8, 0.555, -2, 33}); AddInputFromArray<float>(TensorShape({}), {-1.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 4})); test::FillValues<float>( &expected, {-102.0 / 127, -64.0 / 127, 0, 38.0 / 127, 102.0 / 127, 70.0 / 127, -128.0 / 127, 1}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_2D_tensor_with_int8_range_given_round_half_up) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", true) .Attr("round_mode", "HALF_UP") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 4}), {-0.8, -0.5, 0, 0.3, 0.8, 0.555, -2, 33}); AddInputFromArray<float>(TensorShape({}), {-1.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 4})); test::FillValues<float>( &expected, {-102.0 / 127, -63.0 / 127, 0, 38.0 / 127, 102.0 / 127, 70.0 / 127, -128.0 / 127, 1}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_2D_tensor_with_int8_range_given_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", true) .Attr("range_given", true) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 4}), {-0.8, -0.5, 0, 0.3, 0.8, 0.555, -2, 33}); AddInputFromArray<float>(TensorShape({}), {-1.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<int32>(TensorShape({}), {8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 4})); test::FillValues<float>( &expected, {-102.0 / 127, -64.0 / 127, 0, 38.0 / 127, 102.0 / 127, 70.0 / 127, -128.0 / 127, 1}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_4D_tensor_with_uint8_range_given) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", false) .Attr("num_bits", 8) .Attr("range_given", true) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {-0.5, 0, 0.3, 0.8}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 2, 1, 1})); test::FillValues<float>(&expected, {0, 0, 76.0 / 255, 204.0 / 255}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_4D_tensor_with_uint8_range_given_round_half_up) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", false) .Attr("num_bits", 8) .Attr("range_given", true) .Attr("round_mode", "HALF_UP") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {-0.5, 0, 0.3, 0.8}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 2, 1, 1})); test::FillValues<float>(&expected, {0, 0, 77.0 / 255, 204.0 / 255}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_4D_tensor_with_uint8_range_given_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", false) .Attr("range_given", true) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {-0.5, 0, 0.3, 0.8}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<int32>(TensorShape({}), {8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 2, 1, 1})); test::FillValues<float>(&expected, {0, 0, 76.0 / 255, 204.0 / 255}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_tensor_with_all_0) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("signed_input", false) .Attr("num_bits", 8) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {0, 0, 0, 0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 2, 1, 1})); test::FillValues<float>(&expected, {0, 0, 0, 0}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Convert_tensor_with_all_0_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("signed_input", false) .Attr("range_given", false) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {0, 0, 0, 0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<int32>(TensorShape({}), {8}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({2, 2, 1, 1})); test::FillValues<float>(&expected, {0, 0, 0, 0}); test::ExpectTensorNear<float>(expected, *GetOutput(0), 1e-5); } TEST_F(QuantizeAndDequantizeTest, Invalid_range_given) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_Op", "QuantizeAndDequantizeV2") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("num_bits", 8) .Attr("range_given", true) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {-0.5, 0, 0.3, 0.8}); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains(s.ToString(), "Invalid range: input_min 1 > input_max 0")) << s; } TEST_F(QuantizeAndDequantizeTest, Invalid_range_given_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_Op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("range_given", true) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {-0.5, 0, 0.3, 0.8}); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<int32>(TensorShape({}), {8}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains(s.ToString(), "Invalid range: input_min 1 > input_max 0")) << s; } TEST_F(QuantizeAndDequantizeTest, Invalid_axis_given_V3) { TF_ASSERT_OK( NodeDefBuilder("quantize_and_dequantize_Op", "QuantizeAndDequantizeV3") .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("range_given", false) .Attr("axis", static_cast<int32_t>(-2147483648)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); AddInputFromArray<float>(TensorShape({2, 2, 1, 1}), {-0.5, 0, 0.3, 0.8}); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<int32>(TensorShape({}), {8}); EXPECT_THAT( RunOpKernel(), StatusIs( error::INVALID_ARGUMENT, MatchesRegex("Axis requested is larger than input dimensions.*"))); } #define BM_SIMPLE_QUAN_DEQUAN(DEVICE) \ static void BM_SIMPLE_QUAN_DEQUAN_##DEVICE( \ ::testing::benchmark::State& state) { \ auto root = Scope::NewRootScope().ExitOnError(); \ ops::QuantizeAndDequantizeV2(root, -3.5, -3.5, -3.5); \ TF_CHECK_OK(root.status()); \ Graph* g = new Graph(OpRegistry::Global()); \ TF_CHECK_OK(root.ToGraph(g)); \ test::Benchmark(#DEVICE, g, false).Run(state); \ } \ BENCHMARK(BM_SIMPLE_QUAN_DEQUAN_##DEVICE); BM_SIMPLE_QUAN_DEQUAN(cpu); BM_SIMPLE_QUAN_DEQUAN(gpu); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/quantize_and_dequantize_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/quantize_and_dequantize_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce739db8-d021-48f4-9f21-a73dda38b5ef
cpp
tensorflow/tensorflow
source_writer
tensorflow/java/src/gen/cc/source_writer.cc
tensorflow/java/src/gen/cc/source_writer_test.cc
#include "tensorflow/java/src/gen/cc/source_writer.h" #include <algorithm> #include <list> #include <string> #include "absl/log/check.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/java/src/gen/cc/java_defs.h" #include "tsl/platform/status.h" namespace tensorflow { namespace java { SourceWriter::SourceWriter() { generic_namespaces_.push(new GenericNamespace()); } SourceWriter::~SourceWriter() { while (!generic_namespaces_.empty()) { GenericNamespace* generic_namespace = generic_namespaces_.top(); generic_namespaces_.pop(); delete generic_namespace; } } SourceWriter& SourceWriter::Indent(int tab) { left_margin_.resize( std::max(static_cast<int>(left_margin_.size() + tab), 0), ' '); return *this; } SourceWriter& SourceWriter::Prefix(const char* line_prefix) { line_prefix_ = line_prefix; return *this; } SourceWriter& SourceWriter::Write(const StringPiece& str) { size_t line_pos = 0; do { size_t start_pos = line_pos; line_pos = str.find('\n', start_pos); if (line_pos != string::npos) { ++line_pos; Append(str.substr(start_pos, line_pos - start_pos)); newline_ = true; } else { Append(str.substr(start_pos, str.size() - start_pos)); } } while (line_pos != string::npos && line_pos < str.size()); return *this; } SourceWriter& SourceWriter::WriteFromFile(const string& fname, Env* env) { string data_; TF_CHECK_OK(ReadFileToString(env, fname, &data_)); return Write(data_); } SourceWriter& SourceWriter::Append(const StringPiece& str) { if (!str.empty()) { if (newline_) { DoAppend(left_margin_ + line_prefix_); newline_ = false; } DoAppend(str); } return *this; } SourceWriter& SourceWriter::AppendType(const Type& type) { if (type.wildcard()) { Append("?"); } else { Append(type.name()); if (!type.parameters().empty()) { Append("<"); bool first = true; for (const Type& t : type.parameters()) { if (!first) { Append(", "); } AppendType(t); first = false; } Append(">"); } } return *this; } SourceWriter& SourceWriter::EndLine() { Append("\n"); newline_ = true; return *this; } SourceWriter& SourceWriter::BeginBlock(const string& expression) { if (!expression.empty()) { Append(expression + " {"); } else { Append(newline_ ? "{" : " {"); } return EndLine().Indent(2); } SourceWriter& SourceWriter::EndBlock() { return Indent(-2).Append("}").EndLine(); } SourceWriter& SourceWriter::BeginMethod(const Method& method, int modifiers, const Javadoc* javadoc) { GenericNamespace* generic_namespace = PushGenericNamespace(modifiers); if (!method.constructor()) { generic_namespace->Visit(method.return_type()); } for (const Variable& v : method.arguments()) { generic_namespace->Visit(v.type()); } EndLine(); if (javadoc != nullptr) { WriteJavadoc(*javadoc); } if (!method.annotations().empty()) { WriteAnnotations(method.annotations()); } WriteModifiers(modifiers); if (!generic_namespace->declared_types().empty()) { WriteGenerics(generic_namespace->declared_types()); Append(" "); } if (!method.constructor()) { AppendType(method.return_type()).Append(" "); } Append(method.name()).Append("("); bool first = true; for (const Variable& v : method.arguments()) { if (!first) { Append(", "); } AppendType(v.type()).Append(v.variadic() ? "... " : " ").Append(v.name()); first = false; } return Append(")").BeginBlock(); } SourceWriter& SourceWriter::EndMethod() { EndBlock(); PopGenericNamespace(); return *this; } SourceWriter& SourceWriter::BeginType(const Type& type, int modifiers, const std::list<Type>* extra_dependencies, const Javadoc* javadoc) { if (!type.package().empty()) { Append("package ").Append(type.package()).Append(";").EndLine(); } TypeImporter type_importer(type.package()); type_importer.Visit(type); if (extra_dependencies != nullptr) { for (const Type& t : *extra_dependencies) { type_importer.Visit(t); } } if (!type_importer.imports().empty()) { EndLine(); for (const string& s : type_importer.imports()) { Append("import ").Append(s).Append(";").EndLine(); } } return BeginInnerType(type, modifiers, javadoc); } SourceWriter& SourceWriter::BeginInnerType(const Type& type, int modifiers, const Javadoc* javadoc) { GenericNamespace* generic_namespace = PushGenericNamespace(modifiers); generic_namespace->Visit(type); EndLine(); if (javadoc != nullptr) { WriteJavadoc(*javadoc); } if (!type.annotations().empty()) { WriteAnnotations(type.annotations()); } WriteModifiers(modifiers); CHECK_EQ(Type::Kind::CLASS, type.kind()) << ": Not supported yet"; Append("class ").Append(type.name()); if (!generic_namespace->declared_types().empty()) { WriteGenerics(generic_namespace->declared_types()); } if (!type.supertypes().empty()) { bool first_interface = true; for (const Type& t : type.supertypes()) { if (t.kind() == Type::CLASS) { Append(" extends "); } else if (first_interface) { Append(" implements "); first_interface = false; } else { Append(", "); } AppendType(t); } } return BeginBlock(); } SourceWriter& SourceWriter::EndType() { EndBlock(); PopGenericNamespace(); return *this; } SourceWriter& SourceWriter::WriteField(const Variable& field, int modifiers, const Javadoc* javadoc) { if (javadoc != nullptr && !javadoc->brief().empty()) { Append("").EndLine(); } WriteModifiers(modifiers); AppendType(field.type()).Append(" ").Append(field.name()).Append(";"); EndLine(); return *this; } SourceWriter& SourceWriter::WriteModifiers(int modifiers) { if (modifiers & PUBLIC) { Append("public "); } else if (modifiers & PROTECTED) { Append("protected "); } else if (modifiers & PRIVATE) { Append("private "); } if (modifiers & STATIC) { Append("static "); } if (modifiers & FINAL) { Append("final "); } return *this; } SourceWriter& SourceWriter::WriteJavadoc(const Javadoc& javadoc) { Append("").EndLine(); } SourceWriter& SourceWriter::WriteAnnotations( const std::list<Annotation>& annotations) { for (const Annotation& a : annotations) { Append("@" + a.name()); if (!a.attributes().empty()) { Append("(").Append(a.attributes()).Append(")"); } EndLine(); } return *this; } SourceWriter& SourceWriter::WriteGenerics( const std::list<const Type*>& generics) { Append("<"); bool first = true; for (const Type* pt : generics) { if (!first) { Append(", "); } Append(pt->name()); if (!pt->supertypes().empty()) { Append(" extends ").AppendType(pt->supertypes().front()); } first = false; } return Append(">"); } SourceWriter::GenericNamespace* SourceWriter::PushGenericNamespace( int modifiers) { GenericNamespace* generic_namespace; if (modifiers & STATIC) { generic_namespace = new GenericNamespace(); } else { generic_namespace = new GenericNamespace(generic_namespaces_.top()); } generic_namespaces_.push(generic_namespace); return generic_namespace; } void SourceWriter::PopGenericNamespace() { GenericNamespace* generic_namespace = generic_namespaces_.top(); generic_namespaces_.pop(); delete generic_namespace; } void SourceWriter::TypeVisitor::Visit(const Type& type) { DoVisit(type); for (const Type& t : type.parameters()) { Visit(t); } for (const Annotation& t : type.annotations()) { DoVisit(t); } for (const Type& t : type.supertypes()) { Visit(t); } } void SourceWriter::GenericNamespace::DoVisit(const Type& type) { if (type.kind() == Type::GENERIC && !type.wildcard() && generic_names_.find(type.name()) == generic_names_.end()) { declared_types_.push_back(&type); generic_names_.insert(type.name()); } } void SourceWriter::TypeImporter::DoVisit(const Type& type) { if (!type.package().empty() && type.package() != current_package_) { imports_.insert(type.canonical_name()); } } } }
#include "tensorflow/java/src/gen/cc/source_writer.h" #include <list> #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/java/src/gen/cc/java_defs.h" namespace tensorflow { namespace java { namespace { TEST(AppendTest, SingleLineText) { SourceBufferWriter writer; writer.Append("You say goodbye and I say hello!"); const char* expected = "You say goodbye and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(AppendTest, MultiLineText) { SourceBufferWriter writer; writer.Append("You say goodbye\nand I say hello!"); const char* expected = "You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(AppendTest, MultiLineTextWithIndent) { SourceBufferWriter writer; writer.Indent(2).Append("You say goodbye\nand I say hello!"); const char* expected = " You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(AppendTest, MultiLineTextWithPrefix) { SourceBufferWriter writer; writer.Prefix("--").Append("You say goodbye\nand I say hello!"); const char* expected = "--You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(AppendTest, MultiLineTextWithIndentAndPrefix) { SourceBufferWriter writer; writer.Indent(2).Prefix("--").Append("You say goodbye\nand I say hello!"); const char* expected = " --You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteTest, SingleLineText) { SourceBufferWriter writer; writer.Write("You say goodbye and I say hello!"); const char* expected = "You say goodbye and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteTest, MultiLineText) { SourceBufferWriter writer; writer.Write("You say goodbye\nand I say hello!"); const char* expected = "You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteTest, MultiLineTextWithIndent) { SourceBufferWriter writer; writer.Indent(2).Write("You say goodbye\nand I say hello!"); const char* expected = " You say goodbye\n and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteTest, MultiLineTextWithPrefix) { SourceBufferWriter writer; writer.Prefix("--").Write("You say goodbye\nand I say hello!"); const char* expected = "--You say goodbye\n--and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteTest, MultiLineTextWithIndentAndPrefix) { SourceBufferWriter writer; writer.Indent(2).Prefix("--").Write("You say goodbye\nand I say hello!"); const char* expected = " --You say goodbye\n --and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, Basic) { SourceBufferWriter writer; writer.Append("You say goodbye").EndLine().Append("and I say hello!"); const char* expected = "You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, Indent) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Indent(2) .Append("and I say hello!"); const char* expected = "You say goodbye\n and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, IndentAndOutdent) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Indent(2) .Append("and I say hello!") .EndLine() .Indent(-2) .Append("Hello, hello!"); const char* expected = "You say goodbye\n and I say hello!\nHello, hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, Prefix) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Prefix("--") .Append("and I say hello!"); const char* expected = "You say goodbye\n--and I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, PrefixAndRemovePrefix) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Prefix("--") .Append("and I say hello!") .EndLine() .Prefix("") .Append("Hello, hello!"); const char* expected = "You say goodbye\n--and I say hello!\nHello, hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, IndentAndPrefixAndOutdentAndRemovePrefix) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Indent(2) .Prefix("--") .Append("and I say hello!") .EndLine() .Indent(-2) .Prefix("") .Append("Hello, hello!"); const char* expected = "You say goodbye\n --and I say hello!\nHello, hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, NegativeIndent) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Indent(-10) .Append("and I say hello!"); const char* expected = "You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, CumulativeIndent) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Indent(2) .Append("and I say hello!") .EndLine() .Indent(2) .Append("Hello, hello!"); const char* expected = "You say goodbye\n and I say hello!\n Hello, hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(MarginTest, EmptyPrefix) { SourceBufferWriter writer; writer.Append("You say goodbye") .EndLine() .Prefix("") .Append("and I say hello!"); const char* expected = "You say goodbye\nand I say hello!"; ASSERT_STREQ(expected, writer.str().data()); } TEST(StreamTest, BlocksAndLines) { SourceBufferWriter writer; writer.Append("int i = 0;").EndLine() .Append("int j = 10;").EndLine() .Append("if (true)") .BeginBlock() .Append("int aLongWayToTen = 0;").EndLine() .Append("while (++i <= j)") .BeginBlock() .Append("++aLongWayToTen;").EndLine() .EndBlock() .EndBlock(); const char* expected = "int i = 0;\n" "int j = 10;\n" "if (true) {\n" " int aLongWayToTen = 0;\n" " while (++i <= j) {\n" " ++aLongWayToTen;\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(StreamTest, Types) { SourceBufferWriter writer; Type generic = Type::Generic("T").add_supertype(Type::Class("Number")); writer.AppendType(Type::Int()) .Append(", ") .AppendType(Type::Class("String")) .Append(", ") .AppendType(generic) .Append(", ") .AppendType(Type::ListOf(generic)) .Append(", ") .AppendType(Type::ListOf(Type::IterableOf(generic))) .Append(", ") .AppendType(Type::ListOf(Type::Wildcard())); const char* expected = "int, String, T, List<T>, List<Iterable<T>>, List<?>"; ASSERT_STREQ(expected, writer.str().data()); } TEST(StreamTest, FileSnippet) { SourceBufferWriter writer; const string fname = tensorflow::io::JoinPath( tensorflow::testing::TensorFlowSrcRoot(), "java/src/gen/resources/test.java.snippet"); writer.WriteFromFile(fname) .BeginBlock() .WriteFromFile(fname) .EndBlock(); const char* expected = " "System.out.println(\"Hello!\");\n" "{\n" " " System.out.println(\"Hello!\");\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, SimpleClass) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); writer.BeginType(clazz, PUBLIC).EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test {\n}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, SimpleClassWithDependencies) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); std::list<Type> deps; deps.push_back(Type::Class("TypeA", "org.test.sub")); deps.push_back(Type::Class("TypeA", "org.test.sub")); deps.push_back(Type::Class("TypeB", "org.other")); deps.push_back(Type::Class("SamePackageType", "org.tensorflow")); deps.push_back(Type::Class("NoPackageType")); writer.BeginType(clazz, PUBLIC, &deps).EndType(); const char* expected = "package org.tensorflow;\n\n" "import org.other.TypeB;\n" "import org.test.sub.TypeA;\n\n" "public class Test {\n}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, AnnotatedAndDocumentedClass) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Javadoc clazz_doc = Javadoc::Create("Javadoc test") .details("This is a\nmultiline description."); clazz.add_annotation(Annotation::Create("Bean")); clazz.add_annotation(Annotation::Create("SuppressWarnings") .attributes("\"rawtypes\"")); writer.BeginType(clazz, PUBLIC, nullptr, &clazz_doc).EndType(); const char* expected = "package org.tensorflow;\n\n" "\n" "@Bean\n" "@SuppressWarnings(\"rawtypes\")\n" "public class Test {\n}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, ParameterizedClass) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); clazz.add_parameter(Type::Generic("T")); clazz.add_parameter(Type::Generic("U").add_supertype(Type::Class("Number"))); writer.BeginType(clazz, PUBLIC).EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test<T, U extends Number> {\n}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, ParameterizedClassAndSupertypes) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Type type_t = Type::Generic("T"); clazz.add_parameter(type_t); Type type_u = Type::Generic("U").add_supertype(Type::Class("Number")); clazz.add_parameter(type_u); clazz.add_supertype(Type::Interface("Parameterizable").add_parameter(type_u)); clazz.add_supertype(Type::Interface("Runnable")); clazz.add_supertype(Type::Class("SuperTest").add_parameter(type_t)); writer.BeginType(clazz, PUBLIC).EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test<T, U extends Number>" " extends SuperTest<T> implements Parameterizable<U>, Runnable {\n}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, ParameterizedClassFields) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Type type_t = Type::Generic("T").add_supertype(Type::Class("Number")); clazz.add_parameter(type_t); Variable field1 = Variable::Create("field1", Type::Class("String")); Variable field2 = Variable::Create("field2", Type::Class("String")); Variable field3 = Variable::Create("field3", type_t); Javadoc field3_doc = Javadoc::Create("This variable is documented"); writer.BeginType(clazz, PUBLIC) .WriteField(field1, STATIC | PUBLIC | FINAL) .WriteField(field2, PRIVATE) .WriteField(field3, PRIVATE, &field3_doc) .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test<T extends Number> {\n" " public static final String field1;\n" " private String field2;\n" " \n" " private T field3;\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, SimpleInnerClass) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Type inner_class = Type::Class("InnerTest"); writer.BeginType(clazz, PUBLIC) .BeginInnerType(inner_class, PUBLIC) .EndType() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test {\n" " \n" " public class InnerTest {\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteType, StaticParameterizedInnerClass) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Type type_t = Type::Generic("T").add_supertype(Type::Class("Number")); clazz.add_parameter(type_t); Type inner_class = Type::Class("InnerTest"); inner_class.add_parameter(type_t); writer.BeginType(clazz, PUBLIC) .BeginInnerType(inner_class, PUBLIC | STATIC) .EndType() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test<T extends Number> {\n" " \n" " public static class InnerTest<T extends Number> {\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteMethod, SimpleMethod) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Method method = Method::Create("doNothing", Type::Void()); writer.BeginType(clazz, PUBLIC) .BeginMethod(method, PUBLIC) .EndMethod() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test {\n" " \n" " public void doNothing() {\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteMethod, AnnotatedAndDocumentedMethod) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Method method = Method::Create("doNothing", Type::Void()); Javadoc method_doc = Javadoc::Create("Javadoc test") .details("This method has a\nmultiline description."); method.add_annotation(Annotation::Create("Override")); method.add_annotation(Annotation::Create("SuppressWarnings") .attributes("\"rawtypes\"")); writer.BeginType(clazz, PUBLIC) .BeginMethod(method, PUBLIC, &method_doc) .EndMethod() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test {\n" " \n" " \n" " @Override\n" " @SuppressWarnings(\"rawtypes\")\n" " public void doNothing() {\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteMethod, DocumentedMethodWithArguments) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Variable reverse = Variable::Create("reverse", Type::Boolean()); Method method = Method::Create("boolToInt", Type::Int()); method.add_argument(Variable::Create("b", Type::Boolean())); method.add_argument(reverse); Javadoc method_doc = Javadoc::Create("Converts a boolean to an int") .details("This method will convert\na boolean to an int") .add_param_tag(reverse.name(), "if true, value is reversed") .add_tag("return", "int value for this boolean"); writer.BeginType(clazz, PUBLIC) .BeginMethod(method, PUBLIC, &method_doc) .Append("if (b && !reverse)") .BeginBlock() .Append("return 1;") .EndLine() .EndBlock() .Append("return 0;") .EndLine() .EndMethod() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test {\n" " \n" " \n" " public int boolToInt(boolean b, boolean reverse) {\n" " if (b && !reverse) {\n" " return 1;\n" " }\n" " return 0;\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteMethod, ParameterizedMethod) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Type type_t = Type::Generic("T").add_supertype(Type::Class("Number")); clazz.add_parameter(type_t); Method method = Method::Create("doNothing", type_t); writer.BeginType(clazz, PUBLIC) .BeginMethod(method, PUBLIC) .Append("return null;") .EndLine() .EndMethod() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test<T extends Number> {\n" " \n" " public T doNothing() {\n" " return null;\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } TEST(WriteMethod, StaticParameterizedMethod) { SourceBufferWriter writer; Type clazz = Type::Class("Test", "org.tensorflow"); Type type_t = Type::Generic("T").add_supertype(Type::Class("Number")); clazz.add_parameter(type_t); Method method = Method::Create("doNothing", type_t); writer.BeginType(clazz, PUBLIC) .BeginMethod(method, PUBLIC | STATIC) .Append("return null;") .EndLine() .EndMethod() .EndType(); const char* expected = "package org.tensorflow;\n\n" "public class Test<T extends Number> {\n" " \n" " public static <T extends Number> T doNothing() {\n" " return null;\n" " }\n" "}\n"; ASSERT_STREQ(expected, writer.str().data()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/java/src/gen/cc/source_writer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/java/src/gen/cc/source_writer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f9dbdb80-c8a7-4e42-8117-cb0ca6796318
cpp
google/arolla
casting
arolla/qexpr/casting.cc
arolla/qexpr/casting_test.cc
#include "arolla/qexpr/casting.h" #include <cstddef> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/qexpr/operator_errors.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/standard_type_properties/common_qtype.h" namespace arolla { namespace { bool CanCastImplicitly(absl::Span<const QTypePtr> from_types, absl::Span<const QTypePtr> to_types) { if (from_types.size() != to_types.size()) { return false; } for (size_t i = 0; i < to_types.size(); ++i) { if (!CanCastImplicitly(from_types[i], to_types[i], true)) { return false; } } return true; } struct SignatureFormatter { void operator()(std::string* out, const QExprOperatorSignature* signature) const { absl::StrAppend(out, signature); } }; } absl::StatusOr<const QExprOperatorSignature*> FindMatchingSignature( absl::Span<const QTypePtr> input_types, QTypePtr output_type, absl::Span<const QExprOperatorSignature* const> supported_signatures, absl::string_view op_name) { const QTypePtr decayed_output_type = DecayDerivedQType(output_type); absl::InlinedVector<QTypePtr, 6> decayed_input_types(input_types.size()); for (size_t i = 0; i < input_types.size(); ++i) { decayed_input_types[i] = DecayDerivedQType(input_types[i]); } absl::InlinedVector<const QExprOperatorSignature*, 8> frontier; for (const auto& candidate : supported_signatures) { if (decayed_output_type != DecayDerivedQType(candidate->output_type())) { continue; } if (!CanCastImplicitly(input_types, candidate->input_types())) { continue; } if (decayed_input_types == candidate->input_types()) { return candidate; } bool dominates = false; bool dominated = false; auto out_it = frontier.begin(); for (auto* previous : frontier) { if (CanCastImplicitly(candidate->input_types(), previous->input_types())) { dominates = true; } else if (dominates || !CanCastImplicitly(previous->input_types(), candidate->input_types())) { *out_it++ = previous; } else { dominated = true; break; } } if (dominates) { frontier.erase(out_it, frontier.end()); } if (!dominated) { frontier.push_back(candidate); } } if (frontier.empty()) { return absl::NotFoundError(absl::StrFormat( "QExpr operator %s%v not found; %s\n%s", op_name, QExprOperatorSignature::Get(input_types, output_type), SuggestMissingDependency(), SuggestAvailableOverloads(op_name, supported_signatures))); } if (frontier.size() > 1) { return absl::FailedPreconditionError(absl::StrFormat( "ambiguous overloads for the QExpr operator %s%v: provided argument " "types can be cast to the following supported signatures: %s ", op_name, QExprOperatorSignature::Get(input_types, output_type), absl::StrJoin(frontier, ", ", SignatureFormatter()))); } return frontier[0]; } }
#include "arolla/qexpr/casting.h" #include <cstdint> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::HasSubstr; TEST(CastingTest, FindMatchingSignature) { const QTypePtr i32 = GetQType<int32_t>(); const QTypePtr i64 = GetQType<int64_t>(); const QTypePtr oi32 = GetOptionalQType<int32_t>(); const QTypePtr oi64 = GetOptionalQType<int64_t>(); const QTypePtr f32 = GetQType<float>(); const QTypePtr f64 = GetQType<double>(); const QTypePtr of64 = GetOptionalQType<double>(); EXPECT_THAT( FindMatchingSignature({i64, i32}, i32, {QExprOperatorSignature::Get({i32, i32}, i64)}, "foo") .status(), StatusIs(absl::StatusCode::kNotFound, HasSubstr("QExpr operator foo(INT64,INT32)->INT32 not found"))); EXPECT_THAT( FindMatchingSignature({i64, i32}, i64, {QExprOperatorSignature::Get({i32, i32}, i32)}, "foo") .status(), StatusIs(absl::StatusCode::kNotFound, HasSubstr("QExpr operator foo(INT64,INT32)->INT64 not found"))); EXPECT_THAT( FindMatchingSignature({i64, i32}, i64, {QExprOperatorSignature::Get({i64, i64}, i64)}, ""), IsOkAndHolds(QExprOperatorSignature::Get({i64, i64}, i64))); EXPECT_THAT( FindMatchingSignature({i32, i32}, oi32, { QExprOperatorSignature::Get({oi64, i32}, oi32), QExprOperatorSignature::Get({i64, i32}, oi32), QExprOperatorSignature::Get({i64, i64}, oi32), QExprOperatorSignature::Get({i32, i32}, i32)}, ""), IsOkAndHolds(QExprOperatorSignature::Get({i64, i32}, oi32))); EXPECT_THAT(FindMatchingSignature({GetWeakFloatQType()}, GetWeakFloatQType(), {QExprOperatorSignature::Get({f32}, f64), QExprOperatorSignature::Get({f64}, f64)}, ""), IsOkAndHolds(QExprOperatorSignature::Get({f64}, f64))); EXPECT_THAT(FindMatchingSignature({GetWeakFloatQType()}, GetWeakFloatQType(), {QExprOperatorSignature::Get({f32}, f64), QExprOperatorSignature::Get({of64}, f64)}, ""), IsOkAndHolds(QExprOperatorSignature::Get({f32}, f64))); EXPECT_THAT( FindMatchingSignature({GetWeakFloatQType()}, GetWeakFloatQType(), {QExprOperatorSignature::Get({f32}, f32), QExprOperatorSignature::Get({f64}, f32)}, ""), StatusIs(absl::StatusCode::kNotFound, HasSubstr("QExpr operator (WEAK_FLOAT)->WEAK_FLOAT not found"))); EXPECT_THAT( FindMatchingSignature({i32, i32}, i64, {QExprOperatorSignature::Get({i32, i64}, i64), QExprOperatorSignature::Get({i64, i32}, i64), QExprOperatorSignature::Get({i32, oi64}, i64), QExprOperatorSignature::Get({i32, i32}, i32)}, "") .status(), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("ambiguous overloads for the QExpr operator " "(INT32,INT32)->INT64: provided argument types " "can be cast to the following supported signatures: " "(INT32,INT64)->INT64, (INT64,INT32)->INT64"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/casting.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/casting_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
e8aae33a-e103-4f39-a719-bdecff704539
cpp
tensorflow/tensorflow
scanner
third_party/xla/third_party/tsl/tsl/platform/scanner.cc
third_party/xla/third_party/tsl/tsl/platform/scanner_test.cc
#include "tsl/platform/scanner.h" namespace tsl { namespace strings { void Scanner::ScanUntilImpl(char end_ch, bool escaped) { for (;;) { if (cur_.empty()) { Error(); return; } const char ch = cur_[0]; if (ch == end_ch) { return; } cur_.remove_prefix(1); if (escaped && ch == '\\') { if (cur_.empty()) { Error(); return; } cur_.remove_prefix(1); } } } bool Scanner::GetResult(absl::string_view* remaining, absl::string_view* capture) { if (error_) { return false; } if (remaining != nullptr) { *remaining = cur_; } if (capture != nullptr) { const char* end = capture_end_ == nullptr ? cur_.data() : capture_end_; *capture = absl::string_view(capture_start_, end - capture_start_); } return true; } } }
#include "tsl/platform/scanner.h" #include "tsl/platform/test.h" namespace tsl { namespace strings { class ScannerTest : public ::testing::Test { protected: string ClassStr(Scanner::CharClass clz) { string s; for (int i = 0; i < 256; ++i) { char ch = i; if (Scanner::Matches(clz, ch)) { s += ch; } } return s; } }; TEST_F(ScannerTest, Any) { absl::string_view remaining, match; EXPECT_TRUE(Scanner(" horse0123") .Any(Scanner::SPACE) .Any(Scanner::DIGIT) .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ(" horse", match); EXPECT_EQ("0123", remaining); EXPECT_TRUE(Scanner("") .Any(Scanner::SPACE) .Any(Scanner::DIGIT) .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("", match); EXPECT_TRUE(Scanner("----") .Any(Scanner::SPACE) .Any(Scanner::DIGIT) .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("----", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, AnySpace) { absl::string_view remaining, match; EXPECT_TRUE(Scanner(" a b ") .AnySpace() .One(Scanner::LETTER) .AnySpace() .GetResult(&remaining, &match)); EXPECT_EQ(" a ", match); EXPECT_EQ("b ", remaining); } TEST_F(ScannerTest, AnyEscapedNewline) { absl::string_view remaining, match; EXPECT_TRUE(Scanner("\\\n") .Any(Scanner::LETTER_DIGIT_UNDERSCORE) .GetResult(&remaining, &match)); EXPECT_EQ("\\\n", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, AnyEmptyString) { absl::string_view remaining, match; EXPECT_TRUE(Scanner("") .Any(Scanner::LETTER_DIGIT_UNDERSCORE) .GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, Eos) { EXPECT_FALSE(Scanner("a").Eos().GetResult()); EXPECT_TRUE(Scanner("").Eos().GetResult()); EXPECT_FALSE(Scanner("abc").OneLiteral("ab").Eos().GetResult()); EXPECT_TRUE(Scanner("abc").OneLiteral("abc").Eos().GetResult()); } TEST_F(ScannerTest, Many) { absl::string_view remaining, match; EXPECT_TRUE(Scanner("abc").Many(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("0").Many(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("").Many(Scanner::LETTER).GetResult()); EXPECT_TRUE( Scanner("abc ").Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ(" ", remaining); EXPECT_EQ("abc", match); EXPECT_TRUE( Scanner("abc").Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("abc", match); } TEST_F(ScannerTest, One) { absl::string_view remaining, match; EXPECT_TRUE(Scanner("abc").One(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("0").One(Scanner::LETTER).GetResult()); EXPECT_FALSE(Scanner("").One(Scanner::LETTER).GetResult()); EXPECT_TRUE(Scanner("abc") .One(Scanner::LETTER) .One(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("c", remaining); EXPECT_EQ("ab", match); EXPECT_TRUE(Scanner("a").One(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("a", match); } TEST_F(ScannerTest, OneLiteral) { EXPECT_FALSE(Scanner("abc").OneLiteral("abC").GetResult()); EXPECT_TRUE(Scanner("abc").OneLiteral("ab").OneLiteral("c").GetResult()); } TEST_F(ScannerTest, ScanUntil) { absl::string_view remaining, match; EXPECT_TRUE(Scanner(R"(' \1 \2 \3 \' \\'rest)") .OneLiteral("'") .ScanUntil('\'') .OneLiteral("'") .GetResult(&remaining, &match)); EXPECT_EQ(R"( \\'rest)", remaining); EXPECT_EQ(R"(' \1 \2 \3 \')", match); remaining = match = "unset"; EXPECT_FALSE(Scanner(R"(' \1 \2 \3 \\rest)") .OneLiteral("'") .ScanUntil('\'') .GetResult(&remaining, &match)); EXPECT_EQ("unset", remaining); EXPECT_EQ("unset", match); remaining = match = ""; EXPECT_TRUE( Scanner(R"(123\456)").ScanUntil('\\').GetResult(&remaining, &match)); EXPECT_EQ(R"(\456)", remaining); EXPECT_EQ("123", match); } TEST_F(ScannerTest, ScanEscapedUntil) { absl::string_view remaining, match; EXPECT_TRUE(Scanner(R"(' \1 \2 \3 \' \\'rest)") .OneLiteral("'") .ScanEscapedUntil('\'') .OneLiteral("'") .GetResult(&remaining, &match)); EXPECT_EQ("rest", remaining); EXPECT_EQ(R"(' \1 \2 \3 \' \\')", match); remaining = match = "unset"; EXPECT_FALSE(Scanner(R"(' \1 \2 \3 \' \\rest)") .OneLiteral("'") .ScanEscapedUntil('\'') .GetResult(&remaining, &match)); EXPECT_EQ("unset", remaining); EXPECT_EQ("unset", match); } TEST_F(ScannerTest, ZeroOrOneLiteral) { absl::string_view remaining, match; EXPECT_TRUE( Scanner("abc").ZeroOrOneLiteral("abC").GetResult(&remaining, &match)); EXPECT_EQ("abc", remaining); EXPECT_EQ("", match); EXPECT_TRUE( Scanner("abcd").ZeroOrOneLiteral("ab").ZeroOrOneLiteral("c").GetResult( &remaining, &match)); EXPECT_EQ("d", remaining); EXPECT_EQ("abc", match); EXPECT_TRUE( Scanner("").ZeroOrOneLiteral("abc").GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("", match); } TEST_F(ScannerTest, CaptureAndGetResult) { absl::string_view remaining, match; Scanner scan(" first second"); EXPECT_TRUE(scan.Any(Scanner::SPACE) .RestartCapture() .One(Scanner::LETTER) .Any(Scanner::LETTER_DIGIT) .StopCapture() .Any(Scanner::SPACE) .GetResult(&remaining, &match)); EXPECT_EQ("second", remaining); EXPECT_EQ("first", match); EXPECT_TRUE(scan.GetResult()); remaining = ""; EXPECT_TRUE(scan.GetResult(&remaining)); EXPECT_EQ("second", remaining); remaining = ""; match = ""; EXPECT_TRUE(scan.GetResult(&remaining, &match)); EXPECT_EQ("second", remaining); EXPECT_EQ("first", match); scan.RestartCapture().One(Scanner::LETTER).One(Scanner::LETTER); remaining = ""; match = ""; EXPECT_TRUE(scan.GetResult(&remaining, &match)); EXPECT_EQ("cond", remaining); EXPECT_EQ("se", match); } TEST_F(ScannerTest, MultipleGetResultExtendsCapture) { absl::string_view remaining, match; Scanner scan("one2three"); EXPECT_TRUE(scan.Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("2three", remaining); EXPECT_EQ("one", match); EXPECT_TRUE(scan.Many(Scanner::DIGIT).GetResult(&remaining, &match)); EXPECT_EQ("three", remaining); EXPECT_EQ("one2", match); EXPECT_TRUE(scan.Many(Scanner::LETTER).GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("one2three", match); } TEST_F(ScannerTest, FailedMatchDoesntChangeResult) { Scanner scan("name"); absl::string_view remaining = "rem"; absl::string_view match = "match"; EXPECT_FALSE(scan.One(Scanner::SPACE).GetResult(&remaining, &match)); EXPECT_EQ("rem", remaining); EXPECT_EQ("match", match); } TEST_F(ScannerTest, DefaultCapturesAll) { Scanner scan("a b"); absl::string_view remaining = "rem"; absl::string_view match = "match"; EXPECT_TRUE(scan.Any(Scanner::LETTER) .AnySpace() .Any(Scanner::LETTER) .GetResult(&remaining, &match)); EXPECT_EQ("", remaining); EXPECT_EQ("a b", match); } TEST_F(ScannerTest, AllCharClasses) { EXPECT_EQ(256, ClassStr(Scanner::ALL).size()); EXPECT_EQ("0123456789", ClassStr(Scanner::DIGIT)); EXPECT_EQ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER)); EXPECT_EQ("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT)); EXPECT_EQ( "-0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_" "abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DASH_UNDERSCORE)); EXPECT_EQ( "-./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DASH_DOT_SLASH)); EXPECT_EQ( "-./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_" "abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE)); EXPECT_EQ(".0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DOT)); EXPECT_EQ("+-.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DOT_PLUS_MINUS)); EXPECT_EQ(".0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_DOT_UNDERSCORE)); EXPECT_EQ("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LETTER_DIGIT_UNDERSCORE)); EXPECT_EQ("abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LOWERLETTER)); EXPECT_EQ("0123456789abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LOWERLETTER_DIGIT)); EXPECT_EQ("0123456789_abcdefghijklmnopqrstuvwxyz", ClassStr(Scanner::LOWERLETTER_DIGIT_UNDERSCORE)); EXPECT_EQ("123456789", ClassStr(Scanner::NON_ZERO_DIGIT)); EXPECT_EQ("\t\n\v\f\r ", ClassStr(Scanner::SPACE)); EXPECT_EQ("ABCDEFGHIJKLMNOPQRSTUVWXYZ", ClassStr(Scanner::UPPERLETTER)); EXPECT_EQ(">", ClassStr(Scanner::RANGLE)); } TEST_F(ScannerTest, Peek) { EXPECT_EQ('a', Scanner("abc").Peek()); EXPECT_EQ('a', Scanner("abc").Peek('b')); EXPECT_EQ('\0', Scanner("").Peek()); EXPECT_EQ('z', Scanner("").Peek('z')); EXPECT_EQ('A', Scanner("0123A").Any(Scanner::DIGIT).Peek()); EXPECT_EQ('\0', Scanner("0123A").Any(Scanner::LETTER_DIGIT).Peek()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/scanner.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/scanner_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2facd601-ccda-4a4e-bc77-bdae4246546d
cpp
tensorflow/tensorflow
in_topk_op
tensorflow/compiler/tf2xla/kernels/in_topk_op.cc
tensorflow/core/kernels/in_topk_op_test.cc
#include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class InTopKOp : public XlaOpKernel { public: explicit InTopKOp(OpKernelConstruction* context) : XlaOpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("T", &targets_dtype_)); OP_REQUIRES_OK(context, DataTypeToPrimitiveType(targets_dtype_, &targets_type_)); } void Compile(XlaOpKernelContext* context) override { int64_t k; OP_REQUIRES_OK(context, context->ConstantInputAsIntScalar(2, &k)); OP_REQUIRES(context, k >= 0, errors::InvalidArgument("Need k >= 0, got ", k)); const TensorShape predictions_shape = context->InputShape(0); OP_REQUIRES( context, predictions_shape.dims() == 2, errors::InvalidArgument("predictions must be == 2-D, got shape ", predictions_shape.DebugString())); const TensorShape targets_shape = context->InputShape(1); OP_REQUIRES(context, targets_shape.dims() == 1, errors::InvalidArgument("targets must be == 1-D, got shape ", targets_shape.DebugString())); int64_t batch_size = predictions_shape.dim_size(0); OP_REQUIRES(context, batch_size == targets_shape.dim_size(0), errors::InvalidArgument( "targets must have same elements as predictions rows. Had ", targets_shape.dim_size(0), ", needed ", batch_size)); xla::XlaOp predictions_r2 = context->Input(0); xla::XlaOp targets_r1 = context->Input(1); xla::XlaBuilder* xla_builder = context->builder(); xla::XlaOp iota_r1 = xla::Iota(xla_builder, targets_type_, predictions_shape.dim_size(1)); xla::XlaOp iota_r2 = xla::Broadcast(iota_r1, {batch_size}); xla::XlaOp eq_r2 = xla::Eq(targets_r1, iota_r2, {0}); xla::XlaOp zero_r0_f32 = xla::Zero(xla_builder, xla::F32); xla::XlaOp zero_r2_f32 = xla::ZerosLike(predictions_r2); xla::XlaOp select_r2 = xla::Select(eq_r2, predictions_r2, zero_r2_f32); xla::XlaOp targets_values_r1 = xla::Reduce( select_r2, zero_r0_f32, xla::CreateScalarAddComputation(xla::F32, xla_builder), {1}); xla::XlaOp gt_r2 = xla::Gt(predictions_r2, targets_values_r1, {0}); xla::XlaOp zero_r0 = xla::Zero(xla_builder, xla::S32); xla::XlaOp zero_r2 = xla::Broadcast(zero_r0, predictions_shape.dim_sizes()); xla::XlaOp one_r0 = xla::One(xla_builder, xla::S32); xla::XlaOp one_r2 = xla::Broadcast(one_r0, predictions_shape.dim_sizes()); xla::XlaOp one_hot_r2 = xla::Select(gt_r2, one_r2, zero_r2); xla::XlaOp num_gt_r1 = xla::Reduce( one_hot_r2, zero_r0, xla::CreateScalarAddComputation(xla::S32, xla_builder), {1}); xla::XlaOp result = xla::And(xla::Lt(num_gt_r1, xla::ConstantR0<int32>(xla_builder, k)), xla::IsFinite(targets_values_r1)); context->SetOutput(0, result); } protected: DataType targets_dtype_; xla::PrimitiveType targets_type_; InTopKOp(const InTopKOp&) = delete; void operator=(const InTopKOp&) = delete; }; REGISTER_XLA_OP(Name("InTopKV2") .CompileTimeConstantInput("k") .TypeConstraint("T", {DT_INT32, DT_INT64}), InTopKOp); } }
#include <vector> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { template <typename T> static Graph* InTopK(int num_targets, int num_classes, T top_k) { Graph* g = new Graph(OpRegistry::Global()); DataType dtype = DataTypeToEnum<T>::value; Tensor predictions_t(DT_FLOAT, TensorShape({num_targets, num_classes})); predictions_t.flat<float>().setRandom(); Tensor targets_t(dtype, TensorShape({num_targets})); targets_t.flat<T>().setRandom(); Tensor k_t(dtype, TensorShape({})); k_t.scalar<T>() = k_t.scalar<T>().constant(top_k); Node* predictions = test::graph::Constant(g, predictions_t, "predictions"); Node* targets = test::graph::Constant(g, targets_t, "targets"); Node* k = test::graph::Constant(g, k_t, "k"); Node* in_topk; TF_CHECK_OK(NodeBuilder(g->NewName("in_topk"), "InTopKV2") .Input(predictions) .Input(targets) .Input(k) .Attr("T", dtype) .Finalize(g, &in_topk)); return g; } #define BM_NAME(T, TARGETS, CLASSES, K, DEVICE) \ BM_InTopK##_##T##_##TARGETS##_##CLASSES##_##K##_##DEVICE #define BM_InTopK(T, TARGETS, CLASSES, K, DEVICE) \ static void BM_NAME(T, TARGETS, CLASSES, K, \ DEVICE)(::testing::benchmark::State & state) { \ test::Benchmark(#DEVICE, InTopK<T>(TARGETS, CLASSES, K), \ false) \ .Run(state); \ state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * \ TARGETS * CLASSES); \ } \ BENCHMARK(BM_NAME(T, TARGETS, CLASSES, K, DEVICE))->UseRealTime(); BM_InTopK(int64_t, 64, 1000, 10, cpu); BM_InTopK(int64_t, 64, 10000, 10, cpu); #if defined(GOOGLE_CUDA) || defined(TENSORFLOW_USE_ROCM) BM_InTopK(int64_t, 64, 1000, 10, gpu); BM_InTopK(int64_t, 64, 10000, 10, gpu); #endif }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/in_topk_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/in_topk_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5a3a6fb6-e758-4bea-854b-db3f3cb2cf0e
cpp
tensorflow/tensorflow
space_to_depth
tensorflow/lite/delegates/gpu/gl/kernels/space_to_depth.cc
tensorflow/lite/delegates/xnnpack/space_to_depth_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/space_to_depth.h" #include <any> #include <memory> #include <string> #include <utility> #include "absl/memory/memory.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { namespace { class SpaceToDepth : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const SpaceToDepthAttributes&>(ctx.op_attr); std::string code = R"( for (int i = 0; i < 4; ++i) { int dst_c = 4 * gid.z + i; int block_id = dst_c / $input_data_0_c$; int src_x = gid.x * $block_size$ + block_id % $block_size$; int src_y = gid.y * $block_size$ + block_id / $block_size$; int src_c = dst_c % $input_data_0_c$; value_0[i] = $input_data_0[src_x, src_y, src_c / 4]$[src_c % 4]; } )"; *generated_code = { { {"block_size", attr.block_size}, {"input_data_0_c", static_cast<int>(ctx.input_shapes[0][3])}, }, {}, {}, uint3(), uint3(), std::move(code), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; class DepthToSpace : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const SpaceToDepthAttributes&>(ctx.op_attr); std::string code = R"( for (int i = 0; i < 4; ++i) { int dst_c = 4 * gid.z + i; int block_x = gid.x % $block_size$; int src_x = gid.x / $block_size$; int block_y = gid.y % $block_size$; int src_y = gid.y / $block_size$; int block_id = block_y * $block_size$ + block_x; int src_c = block_id * $output_channels$ + dst_c; value_0[i] = $input_data_0[src_x, src_y, src_c / 4]$[src_c % 4]; } )"; *generated_code = { { {"block_size", attr.block_size}, {"output_channels", static_cast<int>(ctx.output_shapes[0][3])}, }, {}, {}, uint3(), uint3(), std::move(code), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewSpaceToDepthNodeShader() { return std::make_unique<SpaceToDepth>(); } std::unique_ptr<NodeShader> NewDepthToSpaceNodeShader() { return std::make_unique<DepthToSpace>(); } } } }
#include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/space_to_depth_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite::xnnpack { namespace { TEST(SpaceToDepth, SinglePixel) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); const int32_t block_size = block_rng(); SpaceToDepthTester() .BatchSize(batch_rng()) .InputHeight(block_size) .InputWidth(block_size) .InputChannels(channel_rng()) .BlockSize(block_size) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(SpaceToDepth, SingleRow) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto width_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); const int32_t block_size = block_rng(); SpaceToDepthTester() .BatchSize(batch_rng()) .InputHeight(block_size) .InputWidth(width_rng() * block_size) .InputChannels(channel_rng()) .BlockSize(block_size) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(SpaceToDepth, SingleColumn) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto height_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); const int32_t block_size = block_rng(); SpaceToDepthTester() .BatchSize(batch_rng()) .InputHeight(height_rng() * block_size) .InputWidth(block_size) .InputChannels(channel_rng()) .BlockSize(block_size) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(SpaceToDepth, FullImage) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); const int32_t block_size = block_rng(); SpaceToDepthTester() .BatchSize(batch_rng()) .InputHeight(size_rng() * block_size) .InputWidth(size_rng() * block_size) .InputChannels(channel_rng()) .BlockSize(block_size) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } TEST(SpaceToDepth, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto size_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto block_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng)); const int32_t block_size = block_rng(); SpaceToDepthTester() .BatchSize(batch_rng()) .InputHeight(size_rng() * block_size) .InputWidth(size_rng() * block_size) .InputChannels(channel_rng()) .BlockSize(block_size) .Test(TensorType_FLOAT32, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/space_to_depth.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/space_to_depth_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c05f1a72-d7c8-40ca-9a21-d6f1b89f5fcc
cpp
tensorflow/tensorflow
gen_op_registration
tensorflow/lite/tools/gen_op_registration.cc
tensorflow/lite/tools/gen_op_registration_test.cc
#include "tensorflow/lite/tools/gen_op_registration.h" #include <algorithm> #include <string> #include <vector> #include "re2/re2.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/schema/schema_utils.h" namespace tflite { string NormalizeCustomOpName(const string& op) { string method(op); RE2::GlobalReplace(&method, "([a-z])([A-Z])", "\\1_\\2"); std::transform(method.begin(), method.end(), method.begin(), ::toupper); return method; } void ReadOpsFromModel(const ::tflite::Model* model, tflite::RegisteredOpMap* builtin_ops, tflite::RegisteredOpMap* custom_ops) { if (!model) return; auto opcodes = model->operator_codes(); if (!opcodes) return; for (const auto* opcode : *opcodes) { const int version = opcode->version(); auto builtin_code = GetBuiltinCode(opcode); if (builtin_code != ::tflite::BuiltinOperator_CUSTOM) { auto iter_and_bool = builtin_ops->insert( std::make_pair(tflite::EnumNameBuiltinOperator(builtin_code), std::make_pair(version, version))); auto& versions = iter_and_bool.first->second; versions.first = std::min(versions.first, version); versions.second = std::max(versions.second, version); } else { auto iter_and_bool = custom_ops->insert(std::make_pair( opcode->custom_code()->c_str(), std::make_pair(version, version))); auto& versions = iter_and_bool.first->second; versions.first = std::min(versions.first, version); versions.second = std::max(versions.second, version); } } } }
#include "tensorflow/lite/tools/gen_op_registration.h" #include <gmock/gmock.h> #include <gtest/gtest.h> using ::testing::ElementsAreArray; namespace tflite { class GenOpRegistrationTest : public ::testing::Test { protected: GenOpRegistrationTest() {} void ReadOps(const string& model_path) { auto model = FlatBufferModel::BuildFromFile(model_path.data()); if (model) { ReadOpsFromModel(model->GetModel(), &builtin_ops_, &custom_ops_); } } std::map<string, std::pair<int, int>> builtin_ops_; std::map<string, std::pair<int, int>> custom_ops_; }; TEST_F(GenOpRegistrationTest, TestNonExistentFiles) { ReadOps("/tmp/tflite_model_1234"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestModels) { ReadOps("tensorflow/lite/testdata/test_model.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {1, 1}}}; RegisteredOpMap custom_expected{{"testing_op", {1, 1}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestVersionedModels) { ReadOps("tensorflow/lite/testdata/test_model_versioned_ops.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {3, 3}}}; RegisteredOpMap custom_expected{{"testing_op", {2, 2}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestBothModels) { ReadOps("tensorflow/lite/testdata/test_model.bin"); ReadOps("tensorflow/lite/testdata/test_model_versioned_ops.bin"); RegisteredOpMap builtin_expected{{"CONV_2D", {1, 3}}}; RegisteredOpMap custom_expected{{"testing_op", {1, 2}}}; EXPECT_THAT(builtin_ops_, ElementsAreArray(builtin_expected)); EXPECT_THAT(custom_ops_, ElementsAreArray(custom_expected)); } TEST_F(GenOpRegistrationTest, TestEmptyModels) { ReadOps("tensorflow/lite/testdata/empty_model.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestZeroSubgraphs) { ReadOps("tensorflow/lite/testdata/0_subgraphs.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestBrokenMmap) { ReadOps("tensorflow/lite/testdata/test_model_broken.bin"); EXPECT_EQ(builtin_ops_.size(), 0); EXPECT_EQ(custom_ops_.size(), 0); } TEST_F(GenOpRegistrationTest, TestNormalizeCustomOpName) { std::vector<std::pair<string, string>> testcase = { {"CustomOp", "CUSTOM_OP"}, {"a", "A"}, {"custom_op", "CUSTOM_OP"}, {"customop", "CUSTOMOP"}, }; for (const auto& test : testcase) { EXPECT_EQ(NormalizeCustomOpName(test.first), test.second); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/gen_op_registration.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/gen_op_registration_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
de709be8-4825-4ab0-be7a-004f6ea800d0
cpp
google/cel-cpp
type_checker_impl
checker/internal/type_checker_impl.cc
checker/internal/type_checker_impl_test.cc
#include "checker/internal/type_checker_impl.h" #include <cstddef> #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "base/ast_internal/ast_impl.h" #include "base/ast_internal/expr.h" #include "checker/internal/builtins_arena.h" #include "checker/internal/namespace_generator.h" #include "checker/internal/type_check_env.h" #include "checker/internal/type_inference_context.h" #include "checker/type_check_issue.h" #include "checker/validation_result.h" #include "common/ast.h" #include "common/ast_rewrite.h" #include "common/ast_traverse.h" #include "common/ast_visitor.h" #include "common/ast_visitor_base.h" #include "common/constant.h" #include "common/decl.h" #include "common/expr.h" #include "common/memory.h" #include "common/source.h" #include "common/type.h" #include "common/type_factory.h" #include "common/type_kind.h" #include "extensions/protobuf/memory_manager.h" #include "internal/status_macros.h" #include "google/protobuf/arena.h" namespace cel::checker_internal { namespace { class TrivialTypeFactory : public TypeFactory { public: explicit TrivialTypeFactory(absl::Nonnull<google::protobuf::Arena*> arena) : arena_(arena) {} MemoryManagerRef GetMemoryManager() const override { return extensions::ProtoMemoryManagerRef(arena_); } private: absl::Nonnull<google::protobuf::Arena*> arena_; }; using cel::ast_internal::AstImpl; using AstType = cel::ast_internal::Type; using Severity = TypeCheckIssue::Severity; Type FreeListType() { static absl::NoDestructor<Type> kInstance( Type(ListType(BuiltinsArena(), TypeParamType("element_type")))); return *kInstance; } Type FreeMapType() { static absl::NoDestructor<Type> kInstance( Type(MapType(BuiltinsArena(), TypeParamType("key_type"), TypeParamType("value_type")))); return *kInstance; } std::string FormatCandidate(absl::Span<const std::string> qualifiers) { return absl::StrJoin(qualifiers, "."); } SourceLocation ComputeSourceLocation(const AstImpl& ast, int64_t expr_id) { const auto& source_info = ast.source_info(); auto iter = source_info.positions().find(expr_id); if (iter == source_info.positions().end()) { return SourceLocation{}; } int32_t absolute_position = iter->second; int32_t line_idx = -1; for (int32_t offset : source_info.line_offsets()) { if (absolute_position >= offset) { break; } ++line_idx; } if (line_idx < 0 || line_idx >= source_info.line_offsets().size()) { return SourceLocation{1, absolute_position}; } int32_t rel_position = absolute_position - source_info.line_offsets()[line_idx] + 1; return SourceLocation{line_idx + 1, rel_position}; } absl::StatusOr<AstType> FlattenType(const Type& type); absl::StatusOr<AstType> FlattenAbstractType(const OpaqueType& type) { std::vector<AstType> parameter_types; parameter_types.reserve(type.GetParameters().size()); for (const auto& param : type.GetParameters()) { CEL_ASSIGN_OR_RETURN(auto param_type, FlattenType(param)); parameter_types.push_back(std::move(param_type)); } return AstType(ast_internal::AbstractType(std::string(type.name()), std::move(parameter_types))); } absl::StatusOr<AstType> FlattenMapType(const MapType& type) { CEL_ASSIGN_OR_RETURN(auto key, FlattenType(type.key())); CEL_ASSIGN_OR_RETURN(auto value, FlattenType(type.value())); return AstType( ast_internal::MapType(std::make_unique<AstType>(std::move(key)), std::make_unique<AstType>(std::move(value)))); } absl::StatusOr<AstType> FlattenListType(const ListType& type) { CEL_ASSIGN_OR_RETURN(auto elem, FlattenType(type.element())); return AstType( ast_internal::ListType(std::make_unique<AstType>(std::move(elem)))); } absl::StatusOr<AstType> FlattenMessageType(const StructType& type) { return AstType(ast_internal::MessageType(std::string(type.name()))); } absl::StatusOr<AstType> FlattenTypeType(const TypeType& type) { if (type.GetParameters().size() > 1) { return absl::InternalError( absl::StrCat("Unsupported type: ", type.DebugString())); } if (type.GetParameters().empty()) { return AstType(std::make_unique<AstType>()); } CEL_ASSIGN_OR_RETURN(auto param, FlattenType(type.GetParameters()[0])); return AstType(std::make_unique<AstType>(std::move(param))); } absl::StatusOr<AstType> FlattenType(const Type& type) { switch (type.kind()) { case TypeKind::kDyn: return AstType(ast_internal::DynamicType()); case TypeKind::kError: return AstType(ast_internal::ErrorType()); case TypeKind::kNull: return AstType(ast_internal::NullValue()); case TypeKind::kBool: return AstType(ast_internal::PrimitiveType::kBool); case TypeKind::kInt: return AstType(ast_internal::PrimitiveType::kInt64); case TypeKind::kUint: return AstType(ast_internal::PrimitiveType::kUint64); case TypeKind::kDouble: return AstType(ast_internal::PrimitiveType::kDouble); case TypeKind::kString: return AstType(ast_internal::PrimitiveType::kString); case TypeKind::kBytes: return AstType(ast_internal::PrimitiveType::kBytes); case TypeKind::kDuration: return AstType(ast_internal::WellKnownType::kDuration); case TypeKind::kTimestamp: return AstType(ast_internal::WellKnownType::kTimestamp); case TypeKind::kStruct: return FlattenMessageType(type.GetStruct()); case TypeKind::kList: return FlattenListType(type.GetList()); case TypeKind::kMap: return FlattenMapType(type.GetMap()); case TypeKind::kOpaque: return FlattenAbstractType(type.GetOpaque()); case TypeKind::kBoolWrapper: return AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kBool)); case TypeKind::kIntWrapper: return AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)); case TypeKind::kUintWrapper: return AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kUint64)); case TypeKind::kDoubleWrapper: return AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kDouble)); case TypeKind::kStringWrapper: return AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kString)); case TypeKind::kBytesWrapper: return AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kBytes)); case TypeKind::kTypeParam: return AstType(ast_internal::DynamicType()); case TypeKind::kType: return FlattenTypeType(type.GetType()); case TypeKind::kAny: return AstType(ast_internal::WellKnownType::kAny); default: return absl::InternalError( absl::StrCat("Unsupported type: ", type.DebugString())); } } class ResolveVisitor : public AstVisitorBase { public: struct FunctionResolution { const FunctionDecl* decl; bool namespace_rewrite; }; ResolveVisitor(absl::string_view container, NamespaceGenerator namespace_generator, const TypeCheckEnv& env, const AstImpl& ast, TypeInferenceContext& inference_context, std::vector<TypeCheckIssue>& issues, absl::Nonnull<google::protobuf::Arena*> arena, TypeFactory& type_factory) : container_(container), namespace_generator_(std::move(namespace_generator)), env_(&env), inference_context_(&inference_context), issues_(&issues), ast_(&ast), root_scope_(env.MakeVariableScope()), arena_(arena), type_factory_(&type_factory), current_scope_(&root_scope_) {} void PreVisitExpr(const Expr& expr) override { expr_stack_.push_back(&expr); } void PostVisitExpr(const Expr& expr) override { if (expr_stack_.empty()) { return; } expr_stack_.pop_back(); } void PostVisitConst(const Expr& expr, const Constant& constant) override; void PreVisitComprehension(const Expr& expr, const ComprehensionExpr& comprehension) override; void PostVisitComprehension(const Expr& expr, const ComprehensionExpr& comprehension) override; void PostVisitMap(const Expr& expr, const MapExpr& map) override; void PostVisitList(const Expr& expr, const ListExpr& list) override; void PreVisitComprehensionSubexpression( const Expr& expr, const ComprehensionExpr& comprehension, ComprehensionArg comprehension_arg) override; void PostVisitComprehensionSubexpression( const Expr& expr, const ComprehensionExpr& comprehension, ComprehensionArg comprehension_arg) override; void PostVisitIdent(const Expr& expr, const IdentExpr& ident) override; void PostVisitSelect(const Expr& expr, const SelectExpr& select) override; void PostVisitCall(const Expr& expr, const CallExpr& call) override; void PostVisitStruct(const Expr& expr, const StructExpr& create_struct) override; const absl::flat_hash_map<const Expr*, FunctionResolution>& functions() const { return functions_; } const absl::flat_hash_map<const Expr*, const VariableDecl*>& attributes() const { return attributes_; } const absl::flat_hash_map<const Expr*, std::string>& struct_types() const { return struct_types_; } const absl::flat_hash_map<const Expr*, Type>& types() const { return types_; } const absl::Status& status() const { return status_; } private: struct ComprehensionScope { const Expr* comprehension_expr; const VariableScope* parent; VariableScope* accu_scope; VariableScope* iter_scope; }; struct FunctionOverloadMatch { Type result_type; const FunctionDecl* decl; }; void ResolveSimpleIdentifier(const Expr& expr, absl::string_view name); void ResolveQualifiedIdentifier(const Expr& expr, absl::Span<const std::string> qualifiers); const FunctionDecl* ResolveFunctionCallShape(const Expr& expr, absl::string_view function_name, int arg_count, bool is_receiver); absl::Nullable<const VariableDecl*> LookupIdentifier(absl::string_view name); void ResolveFunctionOverloads(const Expr& expr, const FunctionDecl& decl, int arg_count, bool is_receiver, bool is_namespaced); void ResolveSelectOperation(const Expr& expr, absl::string_view field, const Expr& operand); void ReportMissingReference(const Expr& expr, absl::string_view name) { issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr.id()), absl::StrCat("undeclared reference to '", name, "' (in container '", container_, "')"))); } void ReportUndefinedField(int64_t expr_id, absl::string_view field_name, absl::string_view struct_name) { issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr_id), absl::StrCat("undefined field '", field_name, "' not found in struct '", struct_name, "'"))); } absl::Status CheckFieldAssignments(const Expr& expr, const StructExpr& create_struct, Type struct_type, absl::string_view resolved_name) { for (const auto& field : create_struct.fields()) { const Expr* value = &field.value(); Type value_type = GetTypeOrDyn(value); CEL_ASSIGN_OR_RETURN( absl::optional<StructTypeField> field_info, env_->LookupStructField(*type_factory_, resolved_name, field.name())); if (!field_info.has_value()) { ReportUndefinedField(field.id(), field.name(), resolved_name); continue; } Type field_type = field_info->GetType(); if (field.optional()) { field_type = OptionalType(arena_, field_type); } if (!inference_context_->IsAssignable(value_type, field_type)) { issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, field.id()), absl::StrCat("expected type of field '", field_info->name(), "' is '", field_type.DebugString(), "' but provided type is '", value_type.DebugString(), "'"))); continue; } } return absl::OkStatus(); } Type GetTypeOrDyn(const Expr* expr) { auto iter = types_.find(expr); return iter != types_.end() ? iter->second : DynType(); } absl::string_view container_; NamespaceGenerator namespace_generator_; absl::Nonnull<const TypeCheckEnv*> env_; absl::Nonnull<TypeInferenceContext*> inference_context_; absl::Nonnull<std::vector<TypeCheckIssue>*> issues_; absl::Nonnull<const ast_internal::AstImpl*> ast_; VariableScope root_scope_; absl::Nonnull<google::protobuf::Arena*> arena_; absl::Nonnull<TypeFactory*> type_factory_; const VariableScope* current_scope_; std::vector<const Expr*> expr_stack_; absl::flat_hash_map<const Expr*, std::vector<std::string>> maybe_namespaced_functions_; absl::flat_hash_set<const Expr*> deferred_select_operations_; absl::Status status_; std::vector<std::unique_ptr<VariableScope>> comprehension_vars_; std::vector<ComprehensionScope> comprehension_scopes_; absl::flat_hash_map<const Expr*, FunctionResolution> functions_; absl::flat_hash_map<const Expr*, const VariableDecl*> attributes_; absl::flat_hash_map<const Expr*, std::string> struct_types_; absl::flat_hash_map<const Expr*, Type> types_; }; void ResolveVisitor::PostVisitIdent(const Expr& expr, const IdentExpr& ident) { if (expr_stack_.size() == 1) { ResolveSimpleIdentifier(expr, ident.name()); return; } int stack_pos = expr_stack_.size() - 1; std::vector<std::string> qualifiers; qualifiers.push_back(ident.name()); const Expr* receiver_call = nullptr; const Expr* root_candidate = expr_stack_[stack_pos]; while (stack_pos > 0) { --stack_pos; const Expr* parent = expr_stack_[stack_pos]; if (parent->has_call_expr() && (&parent->call_expr().target() == root_candidate)) { receiver_call = parent; break; } else if (!parent->has_select_expr()) { break; } qualifiers.push_back(parent->select_expr().field()); deferred_select_operations_.insert(parent); root_candidate = parent; if (parent->select_expr().test_only()) { break; } } if (receiver_call == nullptr) { ResolveQualifiedIdentifier(*root_candidate, qualifiers); } else { maybe_namespaced_functions_[receiver_call] = std::move(qualifiers); } } void ResolveVisitor::PostVisitConst(const Expr& expr, const Constant& constant) { switch (constant.kind().index()) { case ConstantKindIndexOf<std::nullptr_t>(): types_[&expr] = NullType(); break; case ConstantKindIndexOf<bool>(): types_[&expr] = BoolType(); break; case ConstantKindIndexOf<int64_t>(): types_[&expr] = IntType(); break; case ConstantKindIndexOf<uint64_t>(): types_[&expr] = UintType(); break; case ConstantKindIndexOf<double>(): types_[&expr] = DoubleType(); break; case ConstantKindIndexOf<BytesConstant>(): types_[&expr] = BytesType(); break; case ConstantKindIndexOf<StringConstant>(): types_[&expr] = StringType(); break; case ConstantKindIndexOf<absl::Duration>(): types_[&expr] = DurationType(); break; case ConstantKindIndexOf<absl::Time>(): types_[&expr] = TimestampType(); break; default: issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr.id()), absl::StrCat("unsupported constant type: ", constant.kind().index()))); break; } } bool IsSupportedKeyType(const Type& type) { switch (type.kind()) { case TypeKind::kBool: case TypeKind::kInt: case TypeKind::kUint: case TypeKind::kString: case TypeKind::kDyn: return true; default: return false; } } void ResolveVisitor::PostVisitMap(const Expr& expr, const MapExpr& map) { absl::optional<Type> overall_key_type; absl::optional<Type> overall_value_type; for (const auto& entry : map.entries()) { const Expr* key = &entry.key(); Type key_type = GetTypeOrDyn(key); if (!IsSupportedKeyType(key_type)) { issues_->push_back(TypeCheckIssue( Severity::kWarning, ComputeSourceLocation(*ast_, key->id()), absl::StrCat("unsupported map key type: ", key_type.DebugString()))); } if (overall_key_type.has_value()) { if (key_type != *overall_key_type) { overall_key_type = DynType(); } } else { overall_key_type = key_type; } const Expr* value = &entry.value(); Type value_type = GetTypeOrDyn(value); if (entry.optional()) { if (value_type.IsOptional()) { value_type = value_type.GetOptional().GetParameter(); } } if (overall_value_type.has_value()) { if (value_type != *overall_value_type) { overall_value_type = DynType(); } } else { overall_value_type = value_type; } } if (overall_value_type.has_value() && overall_key_type.has_value()) { types_[&expr] = MapType(arena_, *overall_key_type, *overall_value_type); return; } else if (overall_value_type.has_value() != overall_key_type.has_value()) { status_.Update(absl::InternalError( "Map has mismatched key and value type inference resolution")); return; } types_[&expr] = inference_context_->InstantiateTypeParams(FreeMapType()); } void ResolveVisitor::PostVisitList(const Expr& expr, const ListExpr& list) { absl::optional<Type> overall_value_type; for (const auto& element : list.elements()) { const Expr* value = &element.expr(); Type value_type = GetTypeOrDyn(value); if (element.optional()) { if (value_type.IsOptional()) { value_type = value_type.GetOptional().GetParameter(); } } if (overall_value_type.has_value()) { if (value_type != *overall_value_type) { overall_value_type = DynType(); } } else { overall_value_type = value_type; } } if (overall_value_type.has_value()) { types_[&expr] = ListType(arena_, *overall_value_type); return; } types_[&expr] = inference_context_->InstantiateTypeParams(FreeListType()); } void ResolveVisitor::PostVisitStruct(const Expr& expr, const StructExpr& create_struct) { absl::Status status; std::string resolved_name; Type resolved_type; namespace_generator_.GenerateCandidates( create_struct.name(), [&](const absl::string_view name) { auto type = env_->LookupTypeName(*type_factory_, name); if (!type.ok()) { status.Update(type.status()); return false; } else if (type->has_value()) { resolved_name = name; resolved_type = **type; return false; } return true; }); if (!status.ok()) { status_.Update(status); return; } if (resolved_name.empty()) { ReportMissingReference(expr, create_struct.name()); return; } if (resolved_type.kind() != TypeKind::kStruct && !IsWellKnownMessageType(resolved_name)) { issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr.id()), absl::StrCat("type '", resolved_name, "' does not support message creation"))); return; } types_[&expr] = resolved_type; struct_types_[&expr] = resolved_name; status_.Update( CheckFieldAssignments(expr, create_struct, resolved_type, resolved_name)); } void ResolveVisitor::PostVisitCall(const Expr& expr, const CallExpr& call) { if (auto iter = maybe_namespaced_functions_.find(&expr); iter != maybe_namespaced_functions_.end()) { std::string namespaced_name = absl::StrCat(FormatCandidate(iter->second), ".", call.function()); const FunctionDecl* decl = ResolveFunctionCallShape(expr, namespaced_name, call.args().size(), false); if (decl != nullptr) { ResolveFunctionOverloads(expr, *decl, call.args().size(), false, true); return; } ResolveQualifiedIdentifier(call.target(), iter->second); } int arg_count = call.args().size(); if (call.has_target()) { ++arg_count; } const FunctionDecl* decl = ResolveFunctionCallShape( expr, call.function(), arg_count, call.has_target()); if (decl != nullptr) { ResolveFunctionOverloads(expr, *decl, arg_count, call.has_target(), false); return; } ReportMissingReference(expr, call.function()); } void ResolveVisitor::PreVisitComprehension( const Expr& expr, const ComprehensionExpr& comprehension) { std::unique_ptr<VariableScope> accu_scope = current_scope_->MakeNestedScope(); auto* accu_scope_ptr = accu_scope.get(); std::unique_ptr<VariableScope> iter_scope = accu_scope->MakeNestedScope(); auto* iter_scope_ptr = iter_scope.get(); comprehension_vars_.push_back(std::move(accu_scope)); comprehension_vars_.push_back(std::move(iter_scope)); comprehension_scopes_.push_back( {&expr, current_scope_, accu_scope_ptr, iter_scope_ptr}); } void ResolveVisitor::PostVisitComprehension( const Expr& expr, const ComprehensionExpr& comprehension) { comprehension_scopes_.pop_back(); types_[&expr] = GetTypeOrDyn(&comprehension.result()); } void ResolveVisitor::PreVisitComprehensionSubexpression( const Expr& expr, const ComprehensionExpr& comprehension, ComprehensionArg comprehension_arg) { if (comprehension_scopes_.empty()) { status_.Update(absl::InternalError( "Comprehension scope stack is empty in comprehension")); return; } auto& scope = comprehension_scopes_.back(); if (scope.comprehension_expr != &expr) { status_.Update(absl::InternalError("Comprehension scope stack broken")); return; } switch (comprehension_arg) { case ComprehensionArg::LOOP_CONDITION: current_scope_ = scope.accu_scope; break; case ComprehensionArg::LOOP_STEP: current_scope_ = scope.iter_scope; break; case ComprehensionArg::RESULT: current_scope_ = scope.accu_scope; break; default: current_scope_ = scope.parent; break; } } void ResolveVisitor::PostVisitComprehensionSubexpression( const Expr& expr, const ComprehensionExpr& comprehension, ComprehensionArg comprehension_arg) { if (comprehension_scopes_.empty()) { status_.Update(absl::InternalError( "Comprehension scope stack is empty in comprehension")); return; } auto& scope = comprehension_scopes_.back(); if (scope.comprehension_expr != &expr) { status_.Update(absl::InternalError("Comprehension scope stack broken")); return; } current_scope_ = scope.parent; switch (comprehension_arg) { case ComprehensionArg::ACCU_INIT: scope.accu_scope->InsertVariableIfAbsent(MakeVariableDecl( comprehension.accu_var(), GetTypeOrDyn(&comprehension.accu_init()))); break; case ComprehensionArg::ITER_RANGE: { Type range_type = GetTypeOrDyn(&comprehension.iter_range()); Type iter_type = DynType(); switch (range_type.kind()) { case TypeKind::kList: iter_type = range_type.GetList().element(); break; case TypeKind::kMap: iter_type = range_type.GetMap().key(); break; case TypeKind::kDyn: break; default: issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr.id()), absl::StrCat("expression of type '", range_type.DebugString(), "' cannot be the range of a comprehension (must be " "list, map, or dynamic)"))); break; } scope.iter_scope->InsertVariableIfAbsent( MakeVariableDecl(comprehension.iter_var(), iter_type)); break; } case ComprehensionArg::RESULT: types_[&expr] = types_[&expr]; break; default: break; } } void ResolveVisitor::PostVisitSelect(const Expr& expr, const SelectExpr& select) { if (!deferred_select_operations_.contains(&expr)) { ResolveSelectOperation(expr, select.field(), select.operand()); } } const FunctionDecl* ResolveVisitor::ResolveFunctionCallShape( const Expr& expr, absl::string_view function_name, int arg_count, bool is_receiver) { const FunctionDecl* decl = nullptr; namespace_generator_.GenerateCandidates( function_name, [&, this](absl::string_view candidate) -> bool { decl = env_->LookupFunction(candidate); if (decl == nullptr) { return true; } for (const auto& ovl : decl->overloads()) { if (ovl.member() == is_receiver && ovl.args().size() == arg_count) { return false; } } decl = nullptr; return true; }); return decl; } void ResolveVisitor::ResolveFunctionOverloads(const Expr& expr, const FunctionDecl& decl, int arg_count, bool is_receiver, bool is_namespaced) { std::vector<Type> arg_types; arg_types.reserve(arg_count); if (is_receiver) { arg_types.push_back(GetTypeOrDyn(&expr.call_expr().target())); } for (int i = 0; i < expr.call_expr().args().size(); ++i) { arg_types.push_back(GetTypeOrDyn(&expr.call_expr().args()[i])); } absl::optional<TypeInferenceContext::OverloadResolution> resolution = inference_context_->ResolveOverload(decl, arg_types, is_receiver); if (!resolution.has_value()) { issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr.id()), absl::StrCat("found no matching overload for '", decl.name(), "' applied to (", absl::StrJoin(arg_types, ", ", [](std::string* out, const Type& type) { out->append(type.DebugString()); }), ")"))); return; } auto* result_decl = google::protobuf::Arena::Create<FunctionDecl>(arena_); result_decl->set_name(decl.name()); for (const auto& ovl : resolution->overloads) { absl::Status s = result_decl->AddOverload(ovl); if (!s.ok()) { status_.Update(absl::InternalError(absl::StrCat( "failed to add overload to resolved function declaration: ", s))); } } functions_[&expr] = {result_decl, is_namespaced}; types_[&expr] = resolution->result_type; } absl::Nullable<const VariableDecl*> ResolveVisitor::LookupIdentifier( absl::string_view name) { if (const VariableDecl* decl = current_scope_->LookupVariable(name); decl != nullptr) { return decl; } absl::StatusOr<absl::optional<VariableDecl>> constant = env_->LookupTypeConstant(*type_factory_, arena_, name); if (!constant.ok()) { status_.Update(constant.status()); return nullptr; } if (constant->has_value()) { if (constant->value().type().kind() == TypeKind::kEnum) { constant->value().set_type(IntType()); } return google::protobuf::Arena::Create<VariableDecl>( arena_, std::move(constant).value().value()); } return nullptr; } void ResolveVisitor::ResolveSimpleIdentifier(const Expr& expr, absl::string_view name) { const VariableDecl* decl = nullptr; namespace_generator_.GenerateCandidates( name, [&decl, this](absl::string_view candidate) { decl = LookupIdentifier(candidate); return decl == nullptr; }); if (decl == nullptr) { ReportMissingReference(expr, name); return; } attributes_[&expr] = decl; types_[&expr] = inference_context_->InstantiateTypeParams(decl->type()); } void ResolveVisitor::ResolveQualifiedIdentifier( const Expr& expr, absl::Span<const std::string> qualifiers) { if (qualifiers.size() == 1) { ResolveSimpleIdentifier(expr, qualifiers[0]); return; } absl::Nullable<const VariableDecl*> decl = nullptr; int segment_index_out = -1; namespace_generator_.GenerateCandidates( qualifiers, [&decl, &segment_index_out, this](absl::string_view candidate, int segment_index) { decl = LookupIdentifier(candidate); if (decl != nullptr) { segment_index_out = segment_index; return false; } return true; }); if (decl == nullptr) { ReportMissingReference(expr, FormatCandidate(qualifiers)); return; } const int num_select_opts = qualifiers.size() - segment_index_out - 1; const Expr* root = &expr; std::vector<const Expr*> select_opts; select_opts.reserve(num_select_opts); for (int i = 0; i < num_select_opts; ++i) { select_opts.push_back(root); root = &root->select_expr().operand(); } attributes_[root] = decl; types_[root] = inference_context_->InstantiateTypeParams(decl->type()); for (auto iter = select_opts.rbegin(); iter != select_opts.rend(); ++iter) { ResolveSelectOperation(**iter, (*iter)->select_expr().field(), (*iter)->select_expr().operand()); } } void ResolveVisitor::ResolveSelectOperation(const Expr& expr, absl::string_view field, const Expr& operand) { auto impl = [&](const Type& operand_type) -> absl::optional<Type> { if (operand_type.kind() == TypeKind::kDyn || operand_type.kind() == TypeKind::kAny) { return DynType(); } if (operand_type.kind() == TypeKind::kStruct) { StructType struct_type = operand_type.GetStruct(); auto field_info = env_->LookupStructField(*type_factory_, struct_type.name(), field); if (!field_info.ok()) { status_.Update(field_info.status()); return absl::nullopt; } if (!field_info->has_value()) { ReportUndefinedField(expr.id(), field, struct_type.name()); return absl::nullopt; } auto type = field_info->value().GetType(); if (type.kind() == TypeKind::kEnum) { return IntType(); } return type; } if (operand_type.kind() == TypeKind::kMap) { MapType map_type = operand_type.GetMap(); if (inference_context_->IsAssignable(StringType(), map_type.GetKey())) { return map_type.GetValue(); } } issues_->push_back(TypeCheckIssue::CreateError( ComputeSourceLocation(*ast_, expr.id()), absl::StrCat("expression of type '", operand_type.DebugString(), "' cannot be the operand of a select operation"))); return absl::nullopt; }; const Type& operand_type = GetTypeOrDyn(&operand); absl::optional<Type> result_type; if (operand_type.IsOptional()) { auto optional_type = operand_type.GetOptional(); Type held_type = optional_type.GetParameter(); result_type = impl(held_type); } else { result_type = impl(operand_type); } if (result_type.has_value()) { if (expr.select_expr().test_only()) { types_[&expr] = BoolType(); } else { types_[&expr] = *result_type; } } } class ResolveRewriter : public AstRewriterBase { public: explicit ResolveRewriter(const ResolveVisitor& visitor, const TypeInferenceContext& inference_context, AstImpl::ReferenceMap& references, AstImpl::TypeMap& types) : visitor_(visitor), inference_context_(inference_context), reference_map_(references), type_map_(types) {} bool PostVisitRewrite(Expr& expr) override { bool rewritten = false; if (auto iter = visitor_.attributes().find(&expr); iter != visitor_.attributes().end()) { const VariableDecl* decl = iter->second; auto& ast_ref = reference_map_[expr.id()]; ast_ref.set_name(decl->name()); if (decl->has_value()) { ast_ref.set_value(decl->value()); } expr.mutable_ident_expr().set_name(decl->name()); rewritten = true; } else if (auto iter = visitor_.functions().find(&expr); iter != visitor_.functions().end()) { const FunctionDecl* decl = iter->second.decl; const bool needs_rewrite = iter->second.namespace_rewrite; auto& ast_ref = reference_map_[expr.id()]; ast_ref.set_name(decl->name()); for (const auto& overload : decl->overloads()) { ast_ref.mutable_overload_id().push_back(overload.id()); } expr.mutable_call_expr().set_function(decl->name()); if (needs_rewrite && expr.call_expr().has_target()) { expr.mutable_call_expr().set_target(nullptr); } rewritten = true; } else if (auto iter = visitor_.struct_types().find(&expr); iter != visitor_.struct_types().end()) { auto& ast_ref = reference_map_[expr.id()]; ast_ref.set_name(iter->second); if (expr.has_struct_expr()) { expr.mutable_struct_expr().set_name(iter->second); } rewritten = true; } if (auto iter = visitor_.types().find(&expr); iter != visitor_.types().end()) { auto flattened_type = FlattenType(inference_context_.FinalizeType(iter->second)); if (!flattened_type.ok()) { status_.Update(flattened_type.status()); return rewritten; } type_map_[expr.id()] = *std::move(flattened_type); rewritten = true; } return rewritten; } const absl::Status& status() const { return status_; } private: absl::Status status_; const ResolveVisitor& visitor_; const TypeInferenceContext& inference_context_; AstImpl::ReferenceMap& reference_map_; AstImpl::TypeMap& type_map_; }; } absl::StatusOr<ValidationResult> TypeCheckerImpl::Check( std::unique_ptr<Ast> ast) const { auto& ast_impl = AstImpl::CastFromPublicAst(*ast); google::protobuf::Arena type_arena; std::vector<TypeCheckIssue> issues; CEL_ASSIGN_OR_RETURN(auto generator, NamespaceGenerator::Create(env_.container())); TypeInferenceContext type_inference_context(&type_arena); TrivialTypeFactory type_factory(&type_arena); ResolveVisitor visitor(env_.container(), std::move(generator), env_, ast_impl, type_inference_context, issues, &type_arena, type_factory); TraversalOptions opts; opts.use_comprehension_callbacks = true; AstTraverse(ast_impl.root_expr(), visitor, opts); CEL_RETURN_IF_ERROR(visitor.status()); for (const auto& issue : issues) { if (issue.severity() == Severity::kError) { return ValidationResult(std::move(issues)); } } ResolveRewriter rewriter(visitor, type_inference_context, ast_impl.reference_map(), ast_impl.type_map()); AstRewrite(ast_impl.root_expr(), rewriter); CEL_RETURN_IF_ERROR(rewriter.status()); ast_impl.set_is_checked(true); return ValidationResult(std::move(ast), std::move(issues)); } }
#include "checker/internal/type_checker_impl.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/base/nullability.h" #include "absl/container/flat_hash_set.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "base/ast_internal/ast_impl.h" #include "base/ast_internal/expr.h" #include "checker/internal/test_ast_helpers.h" #include "checker/internal/type_check_env.h" #include "checker/type_check_issue.h" #include "checker/validation_result.h" #include "common/ast.h" #include "common/decl.h" #include "common/type.h" #include "common/type_introspector.h" #include "extensions/protobuf/type_reflector.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "proto/test/v1/proto2/test_all_types.pb.h" #include "proto/test/v1/proto3/test_all_types.pb.h" #include "google/protobuf/arena.h" #include "google/protobuf/message.h" namespace cel { namespace checker_internal { namespace { using ::absl_testing::IsOk; using ::cel::ast_internal::AstImpl; using ::cel::ast_internal::Reference; using ::google::api::expr::test::v1::proto3::TestAllTypes; using ::testing::_; using ::testing::Contains; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::Pair; using ::testing::Property; using AstType = ast_internal::Type; using Severity = TypeCheckIssue::Severity; namespace testpb3 = ::google::api::expr::test::v1::proto3; std::string SevString(Severity severity) { switch (severity) { case Severity::kDeprecated: return "Deprecated"; case Severity::kError: return "Error"; case Severity::kWarning: return "Warning"; case Severity::kInformation: return "Information"; } } } } template <typename Sink> void AbslStringify(Sink& sink, const TypeCheckIssue& issue) { absl::Format(&sink, "TypeCheckIssue(%s): %s", checker_internal::SevString(issue.severity()), issue.message()); } namespace checker_internal { namespace { absl::Nonnull<google::protobuf::Arena*> TestTypeArena() { static absl::NoDestructor<google::protobuf::Arena> kArena; return &(*kArena); } FunctionDecl MakeIdentFunction() { auto decl = MakeFunctionDecl( "identity", MakeOverloadDecl("identity", TypeParamType("A"), TypeParamType("A"))); ABSL_CHECK_OK(decl.status()); return decl.value(); } MATCHER_P2(IsIssueWithSubstring, severity, substring, "") { const TypeCheckIssue& issue = arg; if (issue.severity() == severity && absl::StrContains(issue.message(), substring)) { return true; } *result_listener << "expected: " << SevString(severity) << " " << substring << "\nactual: " << SevString(issue.severity()) << " " << issue.message(); return false; } MATCHER_P(IsVariableReference, var_name, "") { const Reference& reference = arg; if (reference.name() == var_name) { return true; } *result_listener << "expected: " << var_name << "\nactual: " << reference.name(); return false; } MATCHER_P2(IsFunctionReference, fn_name, overloads, "") { const Reference& reference = arg; if (reference.name() != fn_name) { *result_listener << "expected: " << fn_name << "\nactual: " << reference.name(); } absl::flat_hash_set<std::string> got_overload_set( reference.overload_id().begin(), reference.overload_id().end()); absl::flat_hash_set<std::string> want_overload_set(overloads.begin(), overloads.end()); if (got_overload_set != want_overload_set) { *result_listener << "expected overload_ids: " << absl::StrJoin(want_overload_set, ",") << "\nactual: " << absl::StrJoin(got_overload_set, ","); } return reference.name() == fn_name && got_overload_set == want_overload_set; } absl::Status RegisterMinimalBuiltins(absl::Nonnull<google::protobuf::Arena*> arena, TypeCheckEnv& env) { Type list_of_a = ListType(arena, TypeParamType("A")); FunctionDecl add_op; add_op.set_name("_+_"); CEL_RETURN_IF_ERROR(add_op.AddOverload( MakeOverloadDecl("add_int_int", IntType(), IntType(), IntType()))); CEL_RETURN_IF_ERROR(add_op.AddOverload( MakeOverloadDecl("add_uint_uint", UintType(), UintType(), UintType()))); CEL_RETURN_IF_ERROR(add_op.AddOverload(MakeOverloadDecl( "add_double_double", DoubleType(), DoubleType(), DoubleType()))); CEL_RETURN_IF_ERROR(add_op.AddOverload( MakeOverloadDecl("add_list", list_of_a, list_of_a, list_of_a))); FunctionDecl not_op; not_op.set_name("!_"); CEL_RETURN_IF_ERROR(not_op.AddOverload( MakeOverloadDecl("logical_not", BoolType{}, BoolType{}))); FunctionDecl not_strictly_false; not_strictly_false.set_name("@not_strictly_false"); CEL_RETURN_IF_ERROR(not_strictly_false.AddOverload( MakeOverloadDecl("not_strictly_false", BoolType{}, DynType{}))); FunctionDecl mult_op; mult_op.set_name("_*_"); CEL_RETURN_IF_ERROR(mult_op.AddOverload( MakeOverloadDecl("mult_int_int", IntType(), IntType(), IntType()))); FunctionDecl or_op; or_op.set_name("_||_"); CEL_RETURN_IF_ERROR(or_op.AddOverload( MakeOverloadDecl("logical_or", BoolType{}, BoolType{}, BoolType{}))); FunctionDecl and_op; and_op.set_name("_&&_"); CEL_RETURN_IF_ERROR(and_op.AddOverload( MakeOverloadDecl("logical_and", BoolType{}, BoolType{}, BoolType{}))); FunctionDecl lt_op; lt_op.set_name("_<_"); CEL_RETURN_IF_ERROR(lt_op.AddOverload( MakeOverloadDecl("lt_int_int", BoolType{}, IntType(), IntType()))); FunctionDecl gt_op; gt_op.set_name("_>_"); CEL_RETURN_IF_ERROR(gt_op.AddOverload( MakeOverloadDecl("gt_int_int", BoolType{}, IntType(), IntType()))); FunctionDecl eq_op; eq_op.set_name("_==_"); CEL_RETURN_IF_ERROR(eq_op.AddOverload(MakeOverloadDecl( "equals", BoolType{}, TypeParamType("A"), TypeParamType("A")))); FunctionDecl ternary_op; ternary_op.set_name("_?_:_"); CEL_RETURN_IF_ERROR(eq_op.AddOverload(MakeOverloadDecl( "conditional", TypeParamType("A"), BoolType{}, TypeParamType("A"), TypeParamType("A")))); FunctionDecl to_int; to_int.set_name("int"); CEL_RETURN_IF_ERROR(to_int.AddOverload( MakeOverloadDecl("to_int", IntType(), DynType()))); FunctionDecl to_duration; to_duration.set_name("duration"); CEL_RETURN_IF_ERROR(to_duration.AddOverload( MakeOverloadDecl("to_duration", DurationType(), StringType()))); FunctionDecl to_timestamp; to_timestamp.set_name("timestamp"); CEL_RETURN_IF_ERROR(to_timestamp.AddOverload( MakeOverloadDecl("to_timestamp", TimestampType(), IntType()))); FunctionDecl to_dyn; to_dyn.set_name("dyn"); CEL_RETURN_IF_ERROR(to_dyn.AddOverload( MakeOverloadDecl("to_dyn", DynType(), TypeParamType("A")))); FunctionDecl to_type; to_type.set_name("type"); CEL_RETURN_IF_ERROR(to_type.AddOverload( MakeOverloadDecl("to_type", TypeType(arena, TypeParamType("A")), TypeParamType("A")))); env.InsertFunctionIfAbsent(std::move(not_op)); env.InsertFunctionIfAbsent(std::move(not_strictly_false)); env.InsertFunctionIfAbsent(std::move(add_op)); env.InsertFunctionIfAbsent(std::move(mult_op)); env.InsertFunctionIfAbsent(std::move(or_op)); env.InsertFunctionIfAbsent(std::move(and_op)); env.InsertFunctionIfAbsent(std::move(lt_op)); env.InsertFunctionIfAbsent(std::move(gt_op)); env.InsertFunctionIfAbsent(std::move(to_int)); env.InsertFunctionIfAbsent(std::move(eq_op)); env.InsertFunctionIfAbsent(std::move(ternary_op)); env.InsertFunctionIfAbsent(std::move(to_dyn)); env.InsertFunctionIfAbsent(std::move(to_type)); env.InsertFunctionIfAbsent(std::move(to_duration)); env.InsertFunctionIfAbsent(std::move(to_timestamp)); return absl::OkStatus(); } TEST(TypeCheckerImplTest, SmokeTest) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("1 + 2")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, SimpleIdentsResolved) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x + y")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, ReportMissingIdentDecl) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x + y")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetIssues(), ElementsAre(IsIssueWithSubstring(Severity::kError, "undeclared reference to 'y'"))); } TEST(TypeCheckerImplTest, QualifiedIdentsResolved) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x.y", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("x.z", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x.y + x.z")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, ReportMissingQualifiedIdentDecl) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("y.x")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetIssues(), ElementsAre(IsIssueWithSubstring( Severity::kError, "undeclared reference to 'y.x'"))); } TEST(TypeCheckerImplTest, ResolveMostQualfiedIdent) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("x.y", MapType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x.y.z")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.reference_map(), Contains(Pair(_, IsVariableReference("x.y")))); } TEST(TypeCheckerImplTest, MemberFunctionCallResolved) { TypeCheckEnv env; env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", IntType())); FunctionDecl foo; foo.set_name("foo"); ASSERT_THAT(foo.AddOverload(MakeMemberOverloadDecl("int_foo_int", IntType(), IntType(), IntType())), IsOk()); env.InsertFunctionIfAbsent(std::move(foo)); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x.foo(y)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, MemberFunctionCallNotDeclared) { TypeCheckEnv env; env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x.foo(y)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetIssues(), ElementsAre(IsIssueWithSubstring( Severity::kError, "undeclared reference to 'foo'"))); } TEST(TypeCheckerImplTest, FunctionShapeMismatch) { TypeCheckEnv env; ASSERT_OK_AND_ASSIGN( auto foo, MakeFunctionDecl("foo", MakeOverloadDecl("foo_int_int", IntType(), IntType(), IntType()))); env.InsertFunctionIfAbsent(foo); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("foo(1, 2, 3)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetIssues(), ElementsAre(IsIssueWithSubstring( Severity::kError, "undeclared reference to 'foo'"))); } TEST(TypeCheckerImplTest, NamespaceFunctionCallResolved) { TypeCheckEnv env; env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", IntType())); FunctionDecl foo; foo.set_name("x.foo"); ASSERT_THAT( foo.AddOverload(MakeOverloadDecl("x_foo_int", IntType(), IntType())), IsOk()); env.InsertFunctionIfAbsent(std::move(foo)); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x.foo(y)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_TRUE(ast_impl.root_expr().has_call_expr()) << absl::StrCat("kind: ", ast_impl.root_expr().kind().index()); EXPECT_EQ(ast_impl.root_expr().call_expr().function(), "x.foo"); EXPECT_FALSE(ast_impl.root_expr().call_expr().has_target()); } TEST(TypeCheckerImplTest, NamespacedFunctionSkipsFieldCheck) { TypeCheckEnv env; env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); FunctionDecl foo; foo.set_name("x.y.foo"); ASSERT_THAT( foo.AddOverload(MakeOverloadDecl("x_y_foo_int", IntType(), IntType())), IsOk()); env.InsertFunctionIfAbsent(std::move(foo)); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x.y.foo(x)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_TRUE(ast_impl.root_expr().has_call_expr()) << absl::StrCat("kind: ", ast_impl.root_expr().kind().index()); EXPECT_EQ(ast_impl.root_expr().call_expr().function(), "x.y.foo"); EXPECT_FALSE(ast_impl.root_expr().call_expr().has_target()); } TEST(TypeCheckerImplTest, MixedListTypeToDyn) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("[1, 'a']")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); auto& ast_impl = AstImpl::CastFromPublicAst(*result.GetAst()); EXPECT_TRUE(ast_impl.type_map().at(1).list_type().elem_type().has_dyn()); } TEST(TypeCheckerImplTest, FreeListTypeToDyn) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("[]")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); auto& ast_impl = AstImpl::CastFromPublicAst(*result.GetAst()); EXPECT_TRUE(ast_impl.type_map().at(1).list_type().elem_type().has_dyn()); } TEST(TypeCheckerImplTest, FreeMapTypeToDyn) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("{}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); auto& ast_impl = AstImpl::CastFromPublicAst(*result.GetAst()); EXPECT_TRUE(ast_impl.type_map().at(1).map_type().key_type().has_dyn()); EXPECT_TRUE(ast_impl.type_map().at(1).map_type().value_type().has_dyn()); } TEST(TypeCheckerImplTest, MapTypeWithMixedKeys) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("{'a': 1, 2: 3}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); auto& ast_impl = AstImpl::CastFromPublicAst(*result.GetAst()); EXPECT_TRUE(ast_impl.type_map().at(1).map_type().key_type().has_dyn()); EXPECT_EQ(ast_impl.type_map().at(1).map_type().value_type().primitive(), ast_internal::PrimitiveType::kInt64); } TEST(TypeCheckerImplTest, MapTypeUnsupportedKeyWarns) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("{{}: 'a'}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), ElementsAre(IsIssueWithSubstring(Severity::kWarning, "unsupported map key type:"))); } TEST(TypeCheckerImplTest, MapTypeWithMixedValues) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("{'a': 1, 'b': '2'}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); auto& ast_impl = AstImpl::CastFromPublicAst(*result.GetAst()); EXPECT_EQ(ast_impl.type_map().at(1).map_type().key_type().primitive(), ast_internal::PrimitiveType::kString); EXPECT_TRUE(ast_impl.type_map().at(1).map_type().value_type().has_dyn()); } TEST(TypeCheckerImplTest, ComprehensionVariablesResolved) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("[1, 2, 3].exists(x, x * x > 10)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, MapComprehensionVariablesResolved) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("{1: 3, 2: 4}.exists(x, x == 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, NestedComprehensions) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN( auto ast, MakeTestParsedAst("[1, 2].all(x, ['1', '2'].exists(y, int(y) == x))")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, ComprehensionVarsFollowNamespacePriorityRules) { TypeCheckEnv env; env.set_container("com"); google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("com.x", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("['1', '2'].all(x, x == 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.reference_map(), Contains(Pair(_, IsVariableReference("com.x")))); } TEST(TypeCheckerImplTest, ComprehensionVarsFollowQualifiedIdentPriority) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x.y", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("[{'y': '2'}].all(x, x.y == 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.reference_map(), Contains(Pair(_, IsVariableReference("x.y")))); } struct PrimitiveLiteralsTestCase { std::string expr; ast_internal::PrimitiveType expected_type; }; class PrimitiveLiteralsTest : public testing::TestWithParam<PrimitiveLiteralsTestCase> {}; TEST_P(PrimitiveLiteralsTest, LiteralsTypeInferred) { TypeCheckEnv env; const PrimitiveLiteralsTestCase& test_case = GetParam(); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst(test_case.expr)); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_EQ(ast_impl.type_map()[1].primitive(), test_case.expected_type); } INSTANTIATE_TEST_SUITE_P( PrimitiveLiteralsTests, PrimitiveLiteralsTest, ::testing::Values( PrimitiveLiteralsTestCase{ .expr = "1", .expected_type = ast_internal::PrimitiveType::kInt64, }, PrimitiveLiteralsTestCase{ .expr = "1.0", .expected_type = ast_internal::PrimitiveType::kDouble, }, PrimitiveLiteralsTestCase{ .expr = "1u", .expected_type = ast_internal::PrimitiveType::kUint64, }, PrimitiveLiteralsTestCase{ .expr = "'string'", .expected_type = ast_internal::PrimitiveType::kString, }, PrimitiveLiteralsTestCase{ .expr = "b'bytes'", .expected_type = ast_internal::PrimitiveType::kBytes, }, PrimitiveLiteralsTestCase{ .expr = "false", .expected_type = ast_internal::PrimitiveType::kBool, })); struct AstTypeConversionTestCase { Type decl_type; ast_internal::Type expected_type; }; class AstTypeConversionTest : public testing::TestWithParam<AstTypeConversionTestCase> {}; TEST_P(AstTypeConversionTest, TypeConversion) { TypeCheckEnv env; ASSERT_TRUE( env.InsertVariableIfAbsent(MakeVariableDecl("x", GetParam().decl_type))); const AstTypeConversionTestCase& test_case = GetParam(); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_EQ(ast_impl.type_map()[1], test_case.expected_type) << GetParam().decl_type.DebugString(); } INSTANTIATE_TEST_SUITE_P( Primitives, AstTypeConversionTest, ::testing::Values( AstTypeConversionTestCase{ .decl_type = NullType(), .expected_type = AstType(ast_internal::NullValue()), }, AstTypeConversionTestCase{ .decl_type = DynType(), .expected_type = AstType(ast_internal::DynamicType()), }, AstTypeConversionTestCase{ .decl_type = BoolType(), .expected_type = AstType(ast_internal::PrimitiveType::kBool), }, AstTypeConversionTestCase{ .decl_type = IntType(), .expected_type = AstType(ast_internal::PrimitiveType::kInt64), }, AstTypeConversionTestCase{ .decl_type = UintType(), .expected_type = AstType(ast_internal::PrimitiveType::kUint64), }, AstTypeConversionTestCase{ .decl_type = DoubleType(), .expected_type = AstType(ast_internal::PrimitiveType::kDouble), }, AstTypeConversionTestCase{ .decl_type = StringType(), .expected_type = AstType(ast_internal::PrimitiveType::kString), }, AstTypeConversionTestCase{ .decl_type = BytesType(), .expected_type = AstType(ast_internal::PrimitiveType::kBytes), }, AstTypeConversionTestCase{ .decl_type = TimestampType(), .expected_type = AstType(ast_internal::WellKnownType::kTimestamp), }, AstTypeConversionTestCase{ .decl_type = DurationType(), .expected_type = AstType(ast_internal::WellKnownType::kDuration), })); INSTANTIATE_TEST_SUITE_P( Wrappers, AstTypeConversionTest, ::testing::Values( AstTypeConversionTestCase{ .decl_type = IntWrapperType(), .expected_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)), }, AstTypeConversionTestCase{ .decl_type = UintWrapperType(), .expected_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kUint64)), }, AstTypeConversionTestCase{ .decl_type = DoubleWrapperType(), .expected_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kDouble)), }, AstTypeConversionTestCase{ .decl_type = BoolWrapperType(), .expected_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kBool)), }, AstTypeConversionTestCase{ .decl_type = StringWrapperType(), .expected_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kString)), }, AstTypeConversionTestCase{ .decl_type = BytesWrapperType(), .expected_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kBytes)), })); INSTANTIATE_TEST_SUITE_P( ComplexTypes, AstTypeConversionTest, ::testing::Values( AstTypeConversionTestCase{ .decl_type = ListType(TestTypeArena(), IntType()), .expected_type = AstType(ast_internal::ListType(std::make_unique<AstType>( ast_internal::PrimitiveType::kInt64))), }, AstTypeConversionTestCase{ .decl_type = MapType(TestTypeArena(), IntType(), IntType()), .expected_type = AstType(ast_internal::MapType( std::make_unique<AstType>(ast_internal::PrimitiveType::kInt64), std::make_unique<AstType>( ast_internal::PrimitiveType::kInt64))), }, AstTypeConversionTestCase{ .decl_type = TypeType(TestTypeArena(), IntType()), .expected_type = AstType( std::make_unique<AstType>(ast_internal::PrimitiveType::kInt64)), }, AstTypeConversionTestCase{ .decl_type = OpaqueType(TestTypeArena(), "tuple", {IntType(), IntType()}), .expected_type = AstType(ast_internal::AbstractType( "tuple", {AstType(ast_internal::PrimitiveType::kInt64), AstType(ast_internal::PrimitiveType::kInt64)})), }, AstTypeConversionTestCase{ .decl_type = StructType(MessageType(TestAllTypes::descriptor())), .expected_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes"))})); TEST(TypeCheckerImplTest, NullLiteral) { TypeCheckEnv env; TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("null")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_TRUE(result.IsValid()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_TRUE(ast_impl.type_map()[1].has_null()); } TEST(TypeCheckerImplTest, ComprehensionUnsupportedRange) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("y", IntType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("'abc'.all(x, y == 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetIssues(), Contains(IsIssueWithSubstring( Severity::kError, "expression of type 'string' cannot be " "the range of a comprehension"))); } TEST(TypeCheckerImplTest, ComprehensionDynRange) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("range", DynType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("range.all(x, x == 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); } TEST(TypeCheckerImplTest, BasicOvlResolution) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", DoubleType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", DoubleType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x + y")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.reference_map()[2], IsFunctionReference( "_+_", std::vector<std::string>{"add_double_double"})); } TEST(TypeCheckerImplTest, OvlResolutionMultipleOverloads) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", DoubleType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", DoubleType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("dyn(x) + dyn(y)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.reference_map()[3], IsFunctionReference("_+_", std::vector<std::string>{ "add_double_double", "add_int_int", "add_list", "add_uint_uint"})); } TEST(TypeCheckerImplTest, BasicFunctionResultTypeResolution) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", DoubleType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", DoubleType())); env.InsertVariableIfAbsent(MakeVariableDecl("z", DoubleType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x + y + z")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetIssues(), IsEmpty()); ASSERT_OK_AND_ASSIGN(auto checked_ast, result.ReleaseAst()); auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.reference_map()[2], IsFunctionReference( "_+_", std::vector<std::string>{"add_double_double"})); EXPECT_THAT(ast_impl.reference_map()[4], IsFunctionReference( "_+_", std::vector<std::string>{"add_double_double"})); int64_t root_id = ast_impl.root_expr().id(); EXPECT_EQ(ast_impl.type_map()[root_id].primitive(), ast_internal::PrimitiveType::kDouble); } TEST(TypeCheckerImplTest, BasicOvlResolutionNoMatch) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", StringType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x + y")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetIssues(), Contains(IsIssueWithSubstring(Severity::kError, "no matching overload for '_+_'" " applied to (int, string)"))); } TEST(TypeCheckerImplTest, ParmeterizedOvlResolutionMatch) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertVariableIfAbsent(MakeVariableDecl("x", IntType())); env.InsertVariableIfAbsent(MakeVariableDecl("y", StringType())); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("([x] + []) == [x]")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); } TEST(TypeCheckerImplTest, AliasedTypeVarSameType) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("[].exists(x, x == 10 || x == '10')")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_FALSE(result.IsValid()); EXPECT_THAT( result.GetIssues(), ElementsAre(IsIssueWithSubstring( Severity::kError, "no matching overload for '_==_' applied to"))); } TEST(TypeCheckerImplTest, TypeVarRange) { TypeCheckEnv env; google::protobuf::Arena arena; ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); env.InsertFunctionIfAbsent(MakeIdentFunction()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("identity([]).exists(x, x == 10 )")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); EXPECT_TRUE(result.IsValid()) << absl::StrJoin(result.GetIssues(), "\n"); } TEST(TypeCheckerImplTest, WellKnownTypeCreation) { TypeCheckEnv env; env.AddTypeProvider(std::make_unique<TypeIntrospector>()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN( auto ast, MakeTestParsedAst("google.protobuf.Int32Value{value: 10}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> checked_ast, result.ReleaseAst()); const auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.type_map(), Contains(Pair(ast_impl.root_expr().id(), Eq(AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)))))); EXPECT_THAT(ast_impl.reference_map(), Contains(Pair(ast_impl.root_expr().id(), Property(&ast_internal::Reference::name, "google.protobuf.Int32Value")))); } TEST(TypeCheckerImplTest, TypeInferredFromStructCreation) { TypeCheckEnv env; env.AddTypeProvider(std::make_unique<TypeIntrospector>()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("google.protobuf.Struct{fields: {}}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> checked_ast, result.ReleaseAst()); const auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); int64_t map_expr_id = ast_impl.root_expr().struct_expr().fields().at(0).value().id(); ASSERT_NE(map_expr_id, 0); EXPECT_THAT( ast_impl.type_map(), Contains(Pair( map_expr_id, Eq(AstType(ast_internal::MapType( std::make_unique<AstType>(ast_internal::PrimitiveType::kString), std::make_unique<AstType>(ast_internal::DynamicType()))))))); } TEST(TypeCheckerImplTest, ContainerLookupForMessageCreation) { TypeCheckEnv env; env.set_container("google.protobuf"); env.AddTypeProvider(std::make_unique<TypeIntrospector>()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("Int32Value{value: 10}")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> checked_ast, result.ReleaseAst()); const auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.type_map(), Contains(Pair(ast_impl.root_expr().id(), Eq(AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)))))); EXPECT_THAT(ast_impl.reference_map(), Contains(Pair(ast_impl.root_expr().id(), Property(&ast_internal::Reference::name, "google.protobuf.Int32Value")))); } TEST(TypeCheckerImplTest, EnumValueCopiedToReferenceMap) { TypeCheckEnv env; env.set_container("google.api.expr.test.v1.proto3"); env.AddTypeProvider(std::make_unique<cel::extensions::ProtoTypeReflector>()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("TestAllTypes.NestedEnum.BAZ")); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> checked_ast, result.ReleaseAst()); const auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); auto ref_iter = ast_impl.reference_map().find(ast_impl.root_expr().id()); ASSERT_NE(ref_iter, ast_impl.reference_map().end()); EXPECT_EQ(ref_iter->second.name(), "google.api.expr.test.v1.proto3.TestAllTypes.NestedEnum.BAZ"); EXPECT_EQ(ref_iter->second.value().int_value(), 2); } struct CheckedExprTestCase { std::string expr; ast_internal::Type expected_result_type; std::string error_substring; }; class WktCreationTest : public testing::TestWithParam<CheckedExprTestCase> {}; TEST_P(WktCreationTest, MessageCreation) { const CheckedExprTestCase& test_case = GetParam(); TypeCheckEnv env; env.AddTypeProvider(std::make_unique<TypeIntrospector>()); env.set_container("google.protobuf"); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst(test_case.expr)); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); if (!test_case.error_substring.empty()) { EXPECT_THAT(result.GetIssues(), Contains(IsIssueWithSubstring(Severity::kError, test_case.error_substring))); return; } ASSERT_TRUE(result.IsValid()) << absl::StrJoin(result.GetIssues(), "\n", [](std::string* out, const TypeCheckIssue& issue) { absl::StrAppend(out, issue.message()); }); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> checked_ast, result.ReleaseAst()); const auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.type_map(), Contains(Pair(ast_impl.root_expr().id(), Eq(test_case.expected_result_type)))); } INSTANTIATE_TEST_SUITE_P( WellKnownTypes, WktCreationTest, ::testing::Values( CheckedExprTestCase{ .expr = "google.protobuf.Int32Value{value: 10}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)), }, CheckedExprTestCase{ .expr = ".google.protobuf.Int32Value{value: 10}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)), }, CheckedExprTestCase{ .expr = "Int32Value{value: 10}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)), }, CheckedExprTestCase{ .expr = "google.protobuf.Int32Value{value: '10'}", .expected_result_type = AstType(), .error_substring = "expected type of field 'value' is 'int' but " "provided type is 'string'"}, CheckedExprTestCase{ .expr = "google.protobuf.Int32Value{not_a_field: '10'}", .expected_result_type = AstType(), .error_substring = "undefined field 'not_a_field' not found in " "struct 'google.protobuf.Int32Value'"}, CheckedExprTestCase{ .expr = "NotAType{not_a_field: '10'}", .expected_result_type = AstType(), .error_substring = "undeclared reference to 'NotAType' (in container " "'google.protobuf')"}, CheckedExprTestCase{ .expr = ".protobuf.Int32Value{value: 10}", .expected_result_type = AstType(), .error_substring = "undeclared reference to '.protobuf.Int32Value' (in container " "'google.protobuf')"}, CheckedExprTestCase{ .expr = "Int32Value{value: 10}.value", .expected_result_type = AstType(), .error_substring = "expression of type 'google.protobuf.Int64Value' cannot be the " "operand of a select operation"}, CheckedExprTestCase{ .expr = "Int64Value{value: 10}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)), }, CheckedExprTestCase{ .expr = "BoolValue{value: true}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kBool)), }, CheckedExprTestCase{ .expr = "UInt64Value{value: 10u}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kUint64)), }, CheckedExprTestCase{ .expr = "UInt32Value{value: 10u}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kUint64)), }, CheckedExprTestCase{ .expr = "FloatValue{value: 1.25}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kDouble)), }, CheckedExprTestCase{ .expr = "DoubleValue{value: 1.25}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kDouble)), }, CheckedExprTestCase{ .expr = "StringValue{value: 'test'}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kString)), }, CheckedExprTestCase{ .expr = "BytesValue{value: b'test'}", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kBytes)), }, CheckedExprTestCase{ .expr = "Duration{seconds: 10, nanos: 11}", .expected_result_type = AstType(ast_internal::WellKnownType::kDuration), }, CheckedExprTestCase{ .expr = "Timestamp{seconds: 10, nanos: 11}", .expected_result_type = AstType(ast_internal::WellKnownType::kTimestamp), }, CheckedExprTestCase{ .expr = "Struct{fields: {'key': 'value'}}", .expected_result_type = AstType(ast_internal::MapType( std::make_unique<AstType>(ast_internal::PrimitiveType::kString), std::make_unique<AstType>(ast_internal::DynamicType()))), }, CheckedExprTestCase{ .expr = "ListValue{values: [1, 2, 3]}", .expected_result_type = AstType(ast_internal::ListType( std::make_unique<AstType>(ast_internal::DynamicType()))), }, CheckedExprTestCase{ .expr = R"cel( Any{ type_url:'type.googleapis.com/google.protobuf.Int32Value', value: b'' })cel", .expected_result_type = AstType(ast_internal::WellKnownType::kAny), })); class GenericMessagesTest : public testing::TestWithParam<CheckedExprTestCase> { }; TEST_P(GenericMessagesTest, TypeChecksProto3) { const CheckedExprTestCase& test_case = GetParam(); google::protobuf::Arena arena; TypeCheckEnv env; env.AddTypeProvider(std::make_unique<cel::extensions::ProtoTypeReflector>()); env.set_container("google.api.expr.test.v1.proto3"); google::protobuf::LinkMessageReflection<testpb3::TestAllTypes>(); ASSERT_TRUE(env.InsertVariableIfAbsent(MakeVariableDecl( "test_msg", MessageType(testpb3::TestAllTypes::descriptor())))); ASSERT_THAT(RegisterMinimalBuiltins(&arena, env), IsOk()); TypeCheckerImpl impl(std::move(env)); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst(test_case.expr)); ASSERT_OK_AND_ASSIGN(ValidationResult result, impl.Check(std::move(ast))); if (!test_case.error_substring.empty()) { EXPECT_THAT(result.GetIssues(), Contains(IsIssueWithSubstring(Severity::kError, test_case.error_substring))); return; } ASSERT_TRUE(result.IsValid()) << absl::StrJoin(result.GetIssues(), "\n", [](std::string* out, const TypeCheckIssue& issue) { absl::StrAppend(out, issue.message()); }); ASSERT_OK_AND_ASSIGN(std::unique_ptr<Ast> checked_ast, result.ReleaseAst()); const auto& ast_impl = AstImpl::CastFromPublicAst(*checked_ast); EXPECT_THAT(ast_impl.type_map(), Contains(Pair(ast_impl.root_expr().id(), Eq(test_case.expected_result_type)))); } INSTANTIATE_TEST_SUITE_P( TestAllTypesCreation, GenericMessagesTest, ::testing::Values( CheckedExprTestCase{ .expr = "TestAllTypes{not_a_field: 10}", .expected_result_type = AstType(), .error_substring = "undefined field 'not_a_field' not found in " "struct 'google.api.expr.test.v1.proto3.TestAllTypes'"}, CheckedExprTestCase{ .expr = "TestAllTypes{single_int64: 10}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_int64: 'string'}", .expected_result_type = AstType(), .error_substring = "expected type of field 'single_int64' is 'int' but " "provided type is 'string'"}, CheckedExprTestCase{ .expr = "TestAllTypes{single_int32: 10}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_uint64: 10u}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_uint32: 10u}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_sint64: 10}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_sint32: 10}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_fixed64: 10u}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_fixed32: 10u}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_sfixed64: 10}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_sfixed32: 10}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_double: 1.25}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_float: 1.25}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_string: 'string'}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_bool: true}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_bytes: b'string'}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_any: TestAllTypes{single_int64: 10}}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_any: 1}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_any: 'string'}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_any: ['string']}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_duration: duration('1s')}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_timestamp: timestamp(0)}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_struct: {}}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_struct: {'key': 'value'}}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_struct: {1: 2}}", .expected_result_type = AstType(), .error_substring = "expected type of field 'single_struct' is " "'map<string, dyn>' but " "provided type is 'map<int, int>'"}, CheckedExprTestCase{ .expr = "TestAllTypes{list_value: [1, 2, 3]}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{list_value: []}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{list_value: 1}", .expected_result_type = AstType(), .error_substring = "expected type of field 'list_value' is 'list<dyn>' but " "provided type is 'int'"}, CheckedExprTestCase{ .expr = "TestAllTypes{single_int64_wrapper: 1}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_int64_wrapper: null}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_value: null}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_value: 1.0}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_value: 'string'}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_value: {'string': 'string'}}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_value: ['string']}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{repeated_int64: [1, 2, 3]}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{repeated_int64: ['string']}", .expected_result_type = AstType(), .error_substring = "expected type of field 'repeated_int64' is 'list<int>'"}, CheckedExprTestCase{ .expr = "TestAllTypes{map_string_int64: ['string']}", .expected_result_type = AstType(), .error_substring = "expected type of field 'map_string_int64' is " "'map<string, int>'"}, CheckedExprTestCase{ .expr = "TestAllTypes{map_string_int64: {'string': 1}}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_nested_enum: 1}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes{single_nested_enum: TestAllTypes.NestedEnum.BAR}", .expected_result_type = AstType(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes")), }, CheckedExprTestCase{ .expr = "TestAllTypes.NestedEnum.BAR", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "TestAllTypes", .expected_result_type = AstType(std::make_unique<AstType>(ast_internal::MessageType( "google.api.expr.test.v1.proto3.TestAllTypes"))), }, CheckedExprTestCase{ .expr = "TestAllTypes == type(TestAllTypes{})", .expected_result_type = AstType(ast_internal::PrimitiveType::kBool), })); INSTANTIATE_TEST_SUITE_P( TestAllTypesFieldSelection, GenericMessagesTest, ::testing::Values( CheckedExprTestCase{ .expr = "test_msg.not_a_field", .expected_result_type = AstType(), .error_substring = "undefined field 'not_a_field' not found in " "struct 'google.api.expr.test.v1.proto3.TestAllTypes'"}, CheckedExprTestCase{ .expr = "test_msg.single_int64", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_nested_enum", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_nested_enum == 1", .expected_result_type = AstType(ast_internal::PrimitiveType::kBool), }, CheckedExprTestCase{ .expr = "test_msg.single_nested_enum == TestAllTypes.NestedEnum.BAR", .expected_result_type = AstType(ast_internal::PrimitiveType::kBool), }, CheckedExprTestCase{ .expr = "has(test_msg.not_a_field)", .expected_result_type = AstType(), .error_substring = "undefined field 'not_a_field' not found in " "struct 'google.api.expr.test.v1.proto3.TestAllTypes'"}, CheckedExprTestCase{ .expr = "has(test_msg.single_int64)", .expected_result_type = AstType(ast_internal::PrimitiveType::kBool), }, CheckedExprTestCase{ .expr = "test_msg.single_int32", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_uint64", .expected_result_type = AstType(ast_internal::PrimitiveType::kUint64), }, CheckedExprTestCase{ .expr = "test_msg.single_uint32", .expected_result_type = AstType(ast_internal::PrimitiveType::kUint64), }, CheckedExprTestCase{ .expr = "test_msg.single_sint64", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_sint32", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_fixed64", .expected_result_type = AstType(ast_internal::PrimitiveType::kUint64), }, CheckedExprTestCase{ .expr = "test_msg.single_fixed32", .expected_result_type = AstType(ast_internal::PrimitiveType::kUint64), }, CheckedExprTestCase{ .expr = "test_msg.single_sfixed64", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_sfixed32", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_float", .expected_result_type = AstType(ast_internal::PrimitiveType::kDouble), }, CheckedExprTestCase{ .expr = "test_msg.single_double", .expected_result_type = AstType(ast_internal::PrimitiveType::kDouble), }, CheckedExprTestCase{ .expr = "test_msg.single_string", .expected_result_type = AstType(ast_internal::PrimitiveType::kString), }, CheckedExprTestCase{ .expr = "test_msg.single_bool", .expected_result_type = AstType(ast_internal::PrimitiveType::kBool), }, CheckedExprTestCase{ .expr = "test_msg.single_bytes", .expected_result_type = AstType(ast_internal::PrimitiveType::kBytes), }, CheckedExprTestCase{ .expr = "test_msg.repeated_int32", .expected_result_type = AstType(ast_internal::ListType(std::make_unique<AstType>( ast_internal::PrimitiveType::kInt64))), }, CheckedExprTestCase{ .expr = "test_msg.repeated_string", .expected_result_type = AstType(ast_internal::ListType(std::make_unique<AstType>( ast_internal::PrimitiveType::kString))), }, CheckedExprTestCase{ .expr = "test_msg.map_bool_bool", .expected_result_type = AstType(ast_internal::MapType( std::make_unique<AstType>(ast_internal::PrimitiveType::kBool), std::make_unique<AstType>(ast_internal::PrimitiveType::kBool))), }, CheckedExprTestCase{ .expr = "test_msg.map_bool_bool.field_like_key", .expected_result_type = AstType(), .error_substring = "expression of type 'map<bool, bool>' cannot be the operand" " of a select operation", }, CheckedExprTestCase{ .expr = "test_msg.map_string_int64", .expected_result_type = AstType(ast_internal::MapType( std::make_unique<AstType>(ast_internal::PrimitiveType::kString), std::make_unique<AstType>( ast_internal::PrimitiveType::kInt64))), }, CheckedExprTestCase{ .expr = "test_msg.map_string_int64.field_like_key", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), }, CheckedExprTestCase{ .expr = "test_msg.single_duration", .expected_result_type = AstType(ast_internal::WellKnownType::kDuration), }, CheckedExprTestCase{ .expr = "test_msg.single_timestamp", .expected_result_type = AstType(ast_internal::WellKnownType::kTimestamp), }, CheckedExprTestCase{ .expr = "test_msg.single_any", .expected_result_type = AstType(ast_internal::WellKnownType::kAny), }, CheckedExprTestCase{ .expr = "test_msg.single_int64_wrapper", .expected_result_type = AstType(ast_internal::PrimitiveTypeWrapper( ast_internal::PrimitiveType::kInt64)), }, CheckedExprTestCase{ .expr = "test_msg.single_struct", .expected_result_type = AstType(ast_internal::MapType( std::make_unique<AstType>(ast_internal::PrimitiveType::kString), std::make_unique<AstType>(ast_internal::DynamicType()))), }, CheckedExprTestCase{ .expr = "test_msg.list_value", .expected_result_type = AstType(ast_internal::ListType( std::make_unique<AstType>(ast_internal::DynamicType()))), }, CheckedExprTestCase{ .expr = "test_msg.list_value", .expected_result_type = AstType(ast_internal::ListType( std::make_unique<AstType>(ast_internal::DynamicType()))), }, CheckedExprTestCase{ .expr = "NestedTestAllTypes{}.child.child.payload.single_int64", .expected_result_type = AstType(ast_internal::PrimitiveType::kInt64), } )); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/internal/type_checker_impl.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/internal/type_checker_impl_test.cc
4552db5798fb0853b131b783d8875794334fae7f
2d57c5af-e081-4997-99fd-8108d330293d
cpp
google/tensorstore
zstd_compressor
tensorstore/internal/compression/zstd_compressor.cc
tensorstore/driver/n5/zstd_compressor_test.cc
#include "tensorstore/internal/compression/zstd_compressor.h" #include <cstddef> #include <memory> #include <utility> #include "riegeli/bytes/writer.h" #include "riegeli/zstd/zstd_reader.h" #include "riegeli/zstd/zstd_writer.h" namespace tensorstore { namespace internal { std::unique_ptr<riegeli::Writer> ZstdCompressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { using Writer = riegeli::ZstdWriter<std::unique_ptr<riegeli::Writer>>; Writer::Options options; options.set_compression_level(level); return std::make_unique<Writer>(std::move(base_writer), options); } std::unique_ptr<riegeli::Reader> ZstdCompressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { using Reader = riegeli::ZstdReader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<Reader>(std::move(base_reader)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/driver/n5/compressor.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_n5::Compressor; TEST(ZstdCompressorTest, SmallRoundtrip) { auto compressor = Compressor::FromJson({{"type", "zstd"}, {"level", 6}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result, decode_result; TENSORSTORE_ASSERT_OK(compressor->Encode(input, &encode_result, 1)); TENSORSTORE_ASSERT_OK(compressor->Decode(encode_result, &decode_result, 1)); EXPECT_EQ(input, decode_result); } TEST(ZstdCompressorTest, DefaultLevel) { auto compressor1 = Compressor::FromJson({{"type", "zstd"}}).value(); auto compressor2 = Compressor::FromJson({{"type", "zstd"}, {"level", 1}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; TENSORSTORE_ASSERT_OK(compressor1->Encode(input, &encode_result1, 1)); TENSORSTORE_ASSERT_OK(compressor2->Encode(input, &encode_result2, 1)); EXPECT_EQ(encode_result1, encode_result2); } TEST(ZstdCompressorTest, NonDefaultLevel) { auto compressor = Compressor::FromJson({{"type", "zstd"}, {"level", 9}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result; TENSORSTORE_ASSERT_OK(compressor->Encode(input, &encode_result, 1)); absl::Cord decode_result; TENSORSTORE_ASSERT_OK(compressor->Decode(encode_result, &decode_result, 1)); EXPECT_EQ(input, decode_result); } TEST(ZstdCompressorTest, InvalidParameter) { EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"level", "6"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"level", -131073}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"level", 23}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"foo", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Object includes extra members: \"foo\"")); } TEST(ZstdCompressorTest, ToJson) { auto compressor = Compressor::FromJson({{"type", "zstd"}, {"level", 5}}).value(); EXPECT_EQ(nlohmann::json({{"type", "zstd"}, {"level", 5}}), compressor.ToJson()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/zstd_compressor.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/n5/zstd_compressor_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8867b303-3760-4c6a-ae22-deb8039dc228
cpp
google/quiche
null_decrypter
quiche/quic/core/crypto/null_decrypter.cc
quiche/quic/core/crypto/null_decrypter_test.cc
#include "quiche/quic/core/crypto/null_decrypter.h" #include <cstdint> #include <limits> #include <string> #include "absl/numeric/int128.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/common/quiche_endian.h" namespace quic { NullDecrypter::NullDecrypter(Perspective perspective) : perspective_(perspective) {} bool NullDecrypter::SetKey(absl::string_view key) { return key.empty(); } bool NullDecrypter::SetNoncePrefix(absl::string_view nonce_prefix) { return nonce_prefix.empty(); } bool NullDecrypter::SetIV(absl::string_view iv) { return iv.empty(); } bool NullDecrypter::SetHeaderProtectionKey(absl::string_view key) { return key.empty(); } bool NullDecrypter::SetPreliminaryKey(absl::string_view ) { QUIC_BUG(quic_bug_10652_1) << "Should not be called"; return false; } bool NullDecrypter::SetDiversificationNonce( const DiversificationNonce& ) { QUIC_BUG(quic_bug_10652_2) << "Should not be called"; return true; } bool NullDecrypter::DecryptPacket(uint64_t , absl::string_view associated_data, absl::string_view ciphertext, char* output, size_t* output_length, size_t max_output_length) { QuicDataReader reader(ciphertext.data(), ciphertext.length(), quiche::HOST_BYTE_ORDER); absl::uint128 hash; if (!ReadHash(&reader, &hash)) { return false; } absl::string_view plaintext = reader.ReadRemainingPayload(); if (plaintext.length() > max_output_length) { QUIC_BUG(quic_bug_10652_3) << "Output buffer must be larger than the plaintext."; return false; } if (hash != ComputeHash(associated_data, plaintext)) { return false; } memcpy(output, plaintext.data(), plaintext.length()); *output_length = plaintext.length(); return true; } std::string NullDecrypter::GenerateHeaderProtectionMask( QuicDataReader* ) { return std::string(5, 0); } size_t NullDecrypter::GetKeySize() const { return 0; } size_t NullDecrypter::GetNoncePrefixSize() const { return 0; } size_t NullDecrypter::GetIVSize() const { return 0; } absl::string_view NullDecrypter::GetKey() const { return absl::string_view(); } absl::string_view NullDecrypter::GetNoncePrefix() const { return absl::string_view(); } uint32_t NullDecrypter::cipher_id() const { return 0; } QuicPacketCount NullDecrypter::GetIntegrityLimit() const { return std::numeric_limits<QuicPacketCount>::max(); } bool NullDecrypter::ReadHash(QuicDataReader* reader, absl::uint128* hash) { uint64_t lo; uint32_t hi; if (!reader->ReadUInt64(&lo) || !reader->ReadUInt32(&hi)) { return false; } *hash = absl::MakeUint128(hi, lo); return true; } absl::uint128 NullDecrypter::ComputeHash(const absl::string_view data1, const absl::string_view data2) const { absl::uint128 correct_hash; if (perspective_ == Perspective::IS_CLIENT) { correct_hash = QuicUtils::FNV1a_128_Hash_Three(data1, data2, "Server"); } else { correct_hash = QuicUtils::FNV1a_128_Hash_Three(data1, data2, "Client"); } absl::uint128 mask = absl::MakeUint128(UINT64_C(0x0), UINT64_C(0xffffffff)); mask <<= 96; correct_hash &= ~mask; return correct_hash; } }
#include "quiche/quic/core/crypto/null_decrypter.h" #include "absl/base/macros.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { class NullDecrypterTest : public QuicTestWithParam<bool> {}; TEST_F(NullDecrypterTest, DecryptClient) { unsigned char expected[] = { 0x97, 0xdc, 0x27, 0x2f, 0x18, 0xa8, 0x56, 0x73, 0xdf, 0x8d, 0x1d, 0xd0, 'g', 'o', 'o', 'd', 'b', 'y', 'e', '!', }; const char* data = reinterpret_cast<const char*>(expected); size_t len = ABSL_ARRAYSIZE(expected); NullDecrypter decrypter(Perspective::IS_SERVER); char buffer[256]; size_t length = 0; ASSERT_TRUE(decrypter.DecryptPacket( 0, "hello world!", absl::string_view(data, len), buffer, &length, 256)); EXPECT_LT(0u, length); EXPECT_EQ("goodbye!", absl::string_view(buffer, length)); } TEST_F(NullDecrypterTest, DecryptServer) { unsigned char expected[] = { 0x63, 0x5e, 0x08, 0x03, 0x32, 0x80, 0x8f, 0x73, 0xdf, 0x8d, 0x1d, 0x1a, 'g', 'o', 'o', 'd', 'b', 'y', 'e', '!', }; const char* data = reinterpret_cast<const char*>(expected); size_t len = ABSL_ARRAYSIZE(expected); NullDecrypter decrypter(Perspective::IS_CLIENT); char buffer[256]; size_t length = 0; ASSERT_TRUE(decrypter.DecryptPacket( 0, "hello world!", absl::string_view(data, len), buffer, &length, 256)); EXPECT_LT(0u, length); EXPECT_EQ("goodbye!", absl::string_view(buffer, length)); } TEST_F(NullDecrypterTest, BadHash) { unsigned char expected[] = { 0x46, 0x11, 0xea, 0x5f, 0xcf, 0x1d, 0x66, 0x5b, 0xba, 0xf0, 0xbc, 0xfd, 'g', 'o', 'o', 'd', 'b', 'y', 'e', '!', }; const char* data = reinterpret_cast<const char*>(expected); size_t len = ABSL_ARRAYSIZE(expected); NullDecrypter decrypter(Perspective::IS_CLIENT); char buffer[256]; size_t length = 0; ASSERT_FALSE(decrypter.DecryptPacket( 0, "hello world!", absl::string_view(data, len), buffer, &length, 256)); } TEST_F(NullDecrypterTest, ShortInput) { unsigned char expected[] = { 0x46, 0x11, 0xea, 0x5f, 0xcf, 0x1d, 0x66, 0x5b, 0xba, 0xf0, 0xbc, }; const char* data = reinterpret_cast<const char*>(expected); size_t len = ABSL_ARRAYSIZE(expected); NullDecrypter decrypter(Perspective::IS_CLIENT); char buffer[256]; size_t length = 0; ASSERT_FALSE(decrypter.DecryptPacket( 0, "hello world!", absl::string_view(data, len), buffer, &length, 256)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/null_decrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/null_decrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
e022bc24-e0e7-4a97-befe-c3cdf0fbf2d6
cpp
tensorflow/tensorflow
kernel
tensorflow/lite/delegates/flex/kernel.cc
tensorflow/lite/delegates/flex/kernel_test.cc
#include "tensorflow/lite/delegates/flex/kernel.h" #include <algorithm> #include <map> #include <memory> #include <set> #include <string> #include <utility> #include <vector> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/common_runtime/eager/context.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/error_codes.pb.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/flex/delegate.h" #include "tensorflow/lite/delegates/flex/delegate_data.h" #include "tensorflow/lite/delegates/flex/util.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/minimal_logging.h" #include "tensorflow/lite/string_type.h" using tensorflow::shape_inference::DimensionHandle; using tensorflow::shape_inference::InferenceContext; using tensorflow::shape_inference::ShapeAndType; using tensorflow::shape_inference::ShapeHandle; namespace tflite { namespace flex { constexpr char kReadVariableOp[] = "ReadVariableOp"; constexpr char kInterOpParallelismAttrName[] = "use_inter_op_parallelism"; struct OpNode; struct TensorSource { OpNode* node; int node_output_index; }; class OpInputs { public: explicit OpInputs(const TfLiteIntArray* indexes) { for (int index : TfLiteIntArrayView(indexes)) { inputs_.push_back(index); } forwardable_.resize(inputs_.size()); } ~OpInputs() = default; int Size() const { return inputs_.size(); } int TfLiteIndex(int i) const { return inputs_[i]; } void InitializeTensorSources( const std::map<int, TensorSource>& tflite_tensor_sources) { sources_.clear(); for (int i : inputs_) { auto it = tflite_tensor_sources.find(i); if (it == tflite_tensor_sources.end()) { sources_.push_back({nullptr, 0}); } else { sources_.push_back(it->second); } } } void SetForwardable(int i, bool v) { forwardable_[i] = v; } bool IsForwardable(int i) const { return forwardable_[i]; } TensorSource GetTensorSource(int i) const { return sources_[i]; } private: std::vector<int> inputs_; std::vector<TensorSource> sources_; std::vector<int> forwardable_; }; class OpOutputs { public: explicit OpOutputs(const TfLiteIntArray* indexes) { for (int index : TfLiteIntArrayView(indexes)) { outputs_.push_back(index); } vector_.resize(outputs_.size()); } ~OpOutputs() = default; void InitializeGraphOutputs(const std::set<int>& subgraph_outputs) { subgraph_outputs_.clear(); for (int i : outputs_) { subgraph_outputs_.push_back(subgraph_outputs.count(i) > 0); } } bool IsSubgraphOutput(int i) const { return subgraph_outputs_[i]; } const tensorflow::Tensor& GetTensor(int i) const { return vector_[i]; } tensorflow::Tensor ReleaseTensor(int i) { return std::move(vector_[i]); } int Size() const { return outputs_.size(); } int TfLiteIndex(int i) const { return outputs_[i]; } absl::InlinedVector<tensorflow::Tensor, 2UL>* GetTensors() { return &vector_; } private: std::vector<int> outputs_; std::vector<bool> subgraph_outputs_; absl::InlinedVector<tensorflow::Tensor, 2UL> vector_; }; struct OpDataInfo { BufferMap* buffer_map; std::map<int, int>* tensor_release_map; std::set<int> already_transferred_outputs; }; class OpNode { public: OpNode(const TfLiteIntArray* inputs, const TfLiteIntArray* outputs) : inputs_(inputs), outputs_(outputs) {} ~OpNode() = default; const string& name() const { return name_; } void set_name(const string& name) { name_ = name; } int index() const { return index_; } void set_index(int index) { index_ = index; } const tensorflow::NodeDef& nodedef() const { return nodedef_; } const tensorflow::OpRegistrationData* op_reg_data() const { return op_reg_data_; } const OpInputs& inputs() const { return inputs_; } OpInputs* mutable_inputs() { return &inputs_; } const OpOutputs& outputs() const { return outputs_; } OpOutputs* mutable_outputs() { return &outputs_; } int NumInputs() const { return inputs_.Size(); } int NumOutputs() const { return outputs_.Size(); } const tensorflow::tfrt_stub::OpKernelRunner& op_kernel_runner() const { return op_kernel_runner_; } tensorflow::Status InitializeNodeDef(const void* custom_initial_data, int custom_initial_data_size) { if (!custom_initial_data) { return tensorflow::errors::Internal( "Cannot convert empty data into a valid NodeDef"); } const flexbuffers::Vector& v = flexbuffers::GetRoot( reinterpret_cast<const uint8_t*>(custom_initial_data), custom_initial_data_size) .AsVector(); name_ = v[0].AsString().str(); if (!nodedef_.ParseFromString(v[1].AsString().str())) { nodedef_.Clear(); return tensorflow::errors::Internal( "Failed to parse data into a valid NodeDef"); } TF_RETURN_IF_ERROR( tensorflow::OpRegistry::Global()->LookUp(nodedef_.op(), &op_reg_data_)); AddDefaultsToNodeDef(op_reg_data_->op_def, &nodedef_); const auto& op_def = op_reg_data_->op_def; for (const auto& attr : op_def.attr()) { if (attr.name() == kInterOpParallelismAttrName) { (*nodedef_.mutable_attr())[kInterOpParallelismAttrName].set_b(false); break; } } return absl::OkStatus(); } tensorflow::Status BuildOpKernelRunner( tensorflow::EagerContext* eager_context) { TF_ASSIGN_OR_RETURN(op_kernel_runner_, tensorflow::tfrt_stub::OpKernelRunner::Create( name_, inputs_.Size(), [this](tensorflow::AttrValueMap* attr_value_map) { *attr_value_map = nodedef_.attr(); return absl::OkStatus(); }, *eager_context->pflr(), eager_context->local_device_mgr()->HostCPU())); return absl::OkStatus(); } tensorflow::Status BuildOpKernelInputs( const BufferMap* buffer_map, tensorflow::tfrt_stub::OpKernelRunState* run_state) { run_state->input_tf_tensors.resize(inputs_.Size()); run_state->input_tf_tensor_values.resize(inputs_.Size()); for (int i = 0; i < inputs_.Size(); ++i) { int input_index = inputs_.TfLiteIndex(i); TensorSource s = inputs_.GetTensorSource(i); if (!s.node) { if (!buffer_map->HasTensor(input_index)) { return tensorflow::errors::Internal( "Cannot read from invalid tensor index ", input_index); } run_state->input_tf_tensors[i] = buffer_map->GetTensor(input_index); } else { if (inputs_.IsForwardable(i)) { run_state->input_tf_tensors[i] = s.node->outputs_.ReleaseTensor(s.node_output_index); } else { run_state->input_tf_tensors[i] = s.node->outputs_.GetTensor(s.node_output_index); } } run_state->input_tf_tensor_values[i].tensor = &run_state->input_tf_tensors[i]; } return absl::OkStatus(); } bool ShouldPersistTensorflowTensor(TfLiteContext* context, const OpDataInfo* shared_info, int tensor_index, int node_index) { TfLiteTensor* tensor = &context->tensors[tensor_index]; if (IsResourceOrVariant(tensor) || tensor->type == kTfLiteString) { return true; } auto it = shared_info->tensor_release_map->find(tensor_index); return it != shared_info->tensor_release_map->end() && it->second > node_index; } TfLiteStatus CopyToTfLiteTensor(TfLiteContext* context, OpDataInfo* shared_info, TfLiteTensor* tensor, tensorflow::Tensor* tf_tensor, int tensor_index) const { if (tensor->allocation_type == kTfLiteDynamic) { CopyShapeAndType(context, *tf_tensor, tensor); } tensorflow::StringPiece t_data = tf_tensor->tensor_data(); if (tf_tensor->NumElements() != NumElements(tensor) || tf_tensor->TotalBytes() != tensor->bytes) { TF_LITE_KERNEL_LOG(context, "FlexDelegate: Tensor %s(%d) buffer size mismatch " "%zu(%lld) != %ld(%ld)", tensor->name, tensor_index, tf_tensor->TotalBytes(), tf_tensor->NumElements(), tensor->bytes, NumElements(tensor)); return kTfLiteError; } memcpy(tensor->data.raw, t_data.data(), t_data.size()); *tf_tensor = {}; shared_info->already_transferred_outputs.insert(tensor_index); return kTfLiteOk; } tensorflow::Status MaybePersistTensorflowOutputs(TfLiteContext* context, OpDataInfo* shared_info, int node_index) { auto* tensors = outputs_.GetTensors(); for (int i = 0; i < outputs_.Size(); ++i) { if (outputs_.IsSubgraphOutput(i)) { tensorflow::Tensor& tf_tensor = tensors->at(i); const int tflite_index = outputs_.TfLiteIndex(i); TfLiteTensor* tensor = &context->tensors[tflite_index]; if (!ShouldPersistTensorflowTensor(context, shared_info, tflite_index, node_index)) { if (CopyToTfLiteTensor(context, shared_info, tensor, &tf_tensor, tflite_index) != kTfLiteOk) { return tensorflow::Status(absl::StatusCode::kInternal, "failed to copy data from TF tensor"); } } else { shared_info->buffer_map->SetFromTensorFlow(outputs_.TfLiteIndex(i), tf_tensor); } } } return absl::OkStatus(); } private: OpNode(const OpNode&) = delete; OpNode& operator=(const OpNode&) = delete; string name_; int index_; tensorflow::NodeDef nodedef_; const tensorflow::OpRegistrationData* op_reg_data_; OpInputs inputs_; OpOutputs outputs_; tensorflow::tfrt_stub::OpKernelRunner op_kernel_runner_; }; struct OpData { tensorflow::EagerContext* eager_context; tensorflow::CancellationManager* cancellation_manager; std::vector<std::unique_ptr<OpNode>> nodes; std::vector<int> subgraph_inputs; std::vector<int> subgraph_outputs; std::set<int> disable_reusing_buffer_tensors; OpDataInfo shared_info; }; tensorflow::Status DelegateKernel::ExecuteOpKernelRunner( tensorflow::tfrt_stub::OpKernelRunState* run_state, TfLiteContext* context, OpNode* node_data) { const auto& op_kernel_runner = node_data->op_kernel_runner(); if (op_kernel_runner.op_kernel()->num_outputs() != node_data->NumOutputs()) { return tensorflow::errors::Internal( "Unexpected number of outputs from tensorflow::OpKernel"); } TF_RETURN_IF_ERROR(node_data->BuildOpKernelInputs( op_data_->shared_info.buffer_map, run_state)); run_state->params.inputs = run_state->input_tf_tensor_values; run_state->params.op_kernel = op_kernel_runner.op_kernel(); run_state->params.input_alloc_attrs = op_kernel_runner.input_alloc_attrs(); run_state->params.output_attr_array = op_kernel_runner.output_alloc_attrs().data(); run_state->params.function_library = op_kernel_runner.function_library_runtime(); tensorflow::OpKernelContext tf_context(&run_state->params, node_data->NumOutputs()); op_kernel_runner.Run(&tf_context); TF_RETURN_IF_ERROR(tf_context.status()); auto& outputs = *node_data->mutable_outputs()->GetTensors(); for (int i = 0; i < tf_context.num_outputs(); ++i) { outputs[i] = std::move(*tf_context.mutable_output(i)); } return node_data->MaybePersistTensorflowOutputs( context, &(op_data_->shared_info), node_data->index()); } DelegateKernel::DelegateKernel() : op_data_(new OpData) {} DelegateKernel::~DelegateKernel() = default; TfLiteStatus DelegateKernel::Init(TfLiteContext* context, const TfLiteDelegateParams* params) { auto* flex_delegate_data = reinterpret_cast<FlexDelegate*>(params->delegate->data_)->mutable_data(); op_data_->eager_context = flex_delegate_data->GetEagerContext(); op_data_->cancellation_manager = flex_delegate_data->GetCancellationManager(); op_data_->shared_info.buffer_map = flex_delegate_data->GetBufferMap(context); op_data_->shared_info.tensor_release_map = flex_delegate_data->GetTensorReleaseMap(context); CHECK(params->output_tensors); std::set<int> output_set; for (auto tensor_index : TfLiteIntArrayView(params->output_tensors)) { op_data_->subgraph_outputs.push_back(tensor_index); output_set.insert(tensor_index); } CHECK(params->input_tensors); for (auto tensor_index : TfLiteIntArrayView(params->input_tensors)) { op_data_->subgraph_inputs.push_back(tensor_index); } std::set<int> subgraph_inputs(op_data_->subgraph_inputs.begin(), op_data_->subgraph_inputs.end()); op_data_->nodes.reserve(params->nodes_to_replace->size); CHECK(params->nodes_to_replace); tensorflow::Status status; auto check_if_op_reuses_input = [](const string& op_name) { return op_name == "TensorListPushBack" || op_name == "TensorListSetItem" || op_name == "SparseReshape" || op_name == "StridedSlice" || op_name == "RaggedTensorToVariant" || op_name == "TensorMapInsert"; }; for (auto node_index : TfLiteIntArrayView(params->nodes_to_replace)) { TfLiteNode* node; TfLiteRegistration* reg; context->GetNodeAndRegistration(context, node_index, &node, &reg); op_data_->nodes.emplace_back(new OpNode(node->inputs, node->outputs)); OpNode& node_data = *op_data_->nodes.back(); node_data.set_index(node_index); node_data.set_name(""); status = node_data.InitializeNodeDef(node->custom_initial_data, node->custom_initial_data_size); if (!status.ok()) break; status = node_data.BuildOpKernelRunner(op_data_->eager_context); if (!status.ok()) break; for (auto tensor_index : TfLiteIntArrayView(node->inputs)) { int node_id = node_index; if (const std::map<int, int>::iterator it = op_data_->shared_info.tensor_release_map->find(tensor_index); it != op_data_->shared_info.tensor_release_map->end()) { node_id = std::max(it->second, node_index); } (*op_data_->shared_info.tensor_release_map)[tensor_index] = node_id; if (subgraph_inputs.count(tensor_index) && check_if_op_reuses_input(node_data.nodedef().op())) { op_data_->disable_reusing_buffer_tensors.insert(tensor_index); } } } TF_LITE_ENSURE_STATUS(ConvertStatus(context, status)); std::map<int, TensorSource> tflite_tensor_sources; for (auto& node_data : op_data_->nodes) { node_data->mutable_outputs()->InitializeGraphOutputs(output_set); for (int i = 0; i < node_data->outputs().Size(); ++i) { int output_index = node_data->outputs().TfLiteIndex(i); tflite_tensor_sources[output_index] = TensorSource{node_data.get(), i}; } } for (auto& node_data : op_data_->nodes) { node_data->mutable_inputs()->InitializeTensorSources(tflite_tensor_sources); } return kTfLiteOk; } TfLiteStatus DelegateKernel::Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_MSG( context, op_data_->eager_context != nullptr, "Failed to initialize eager context. This often happens when a CPU " "device has not been registered, presumably because some symbols from " "tensorflow/core:core_cpu_impl were not linked into the binary."); std::map<int, int> tensor_ref_count; BufferMap* buffer_map = op_data_->shared_info.buffer_map; for (auto tensor_index : op_data_->subgraph_inputs) { TfLiteTensor* tensor = &context->tensors[tensor_index]; if (IsConstantTensor(tensor)) { if (!tensor->data_is_stale || !buffer_map->HasTensor(tensor_index)) { buffer_map->SetFromTfLite(tensor_index, tensor); } } tensor_ref_count[tensor_index] += 2; } if (shapes_are_valid_) { shapes_are_valid_ = (ValidateOutputTensorShapeConsistency(context) == kTfLiteOk); if (shapes_are_valid_) { TFLITE_LOG(tflite::TFLITE_LOG_INFO, "FlexDelegate: All tensor shapes are consistent."); } else { TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "FlexDelegate: Some tensor shapes are inconsistent."); } } for (auto tensor_index : op_data_->subgraph_outputs) { if (!shapes_are_valid_) { SetTensorToDynamic(&context->tensors[tensor_index]); } ++tensor_ref_count[tensor_index]; } for (const auto& node_data : op_data_->nodes) { if (node_data->nodedef().op().empty()) { TF_LITE_KERNEL_LOG(context, "Invalid NodeDef in Flex op '%s'", node_data->name().c_str()); return kTfLiteError; } TF_LITE_ENSURE(context, node_data->op_kernel_runner()); for (int i = 0; i < node_data->inputs().Size(); ++i) { ++tensor_ref_count[node_data->inputs().TfLiteIndex(i)]; } } for (auto& node_data : op_data_->nodes) { for (int i = 0; i < node_data->inputs().Size(); ++i) { bool f = (tensor_ref_count[node_data->inputs().TfLiteIndex(i)] == 1); node_data->mutable_inputs()->SetForwardable(i, f); } } return kTfLiteOk; } TfLiteStatus DelegateKernel::ValidateOutputTensorShapeConsistency( TfLiteContext* context) const { for (const auto& node_data : op_data_->nodes) { auto op_name = node_data->name().c_str(); auto num_inputs = node_data->inputs().Size(); std::vector<const tensorflow::Tensor*> input_tensors_vector(num_inputs, nullptr); InferenceContext c( TF_GRAPH_DEF_VERSION, node_data->nodedef(), node_data->op_reg_data()->op_def, std::vector<ShapeHandle>(num_inputs), input_tensors_vector, {}, std::vector<std::unique_ptr<std::vector<ShapeAndType>>>()); for (int i = 0; i < num_inputs; ++i) { const auto input_tensor_index = node_data->inputs().TfLiteIndex(i); TfLiteTensor* tfl_tensor = &context->tensors[input_tensor_index]; if (IsConstantTensor(tfl_tensor)) { input_tensors_vector[i] = op_data_->shared_info.buffer_map->GetTensorPtr(input_tensor_index); } const auto dims_array = tfl_tensor->dims; std::vector<DimensionHandle> dims(dims_array->size); for (int j = 0; j < dims_array->size; ++j) { dims[j] = c.MakeDim(dims_array->data[j]); } c.SetInput(i, c.MakeShape(dims)); } c.set_input_tensors(input_tensors_vector); tensorflow::Status status = c.construction_status(); if (!status.ok()) { TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "Shape construction failed for op '%s'", op_name); return kTfLiteError; } if (node_data->op_reg_data()->shape_inference_fn == nullptr) { TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "No shape inference function exists for op '%s'", op_name); return kTfLiteError; } status = c.Run(node_data->op_reg_data()->shape_inference_fn); auto num_outputs = node_data->outputs().Size(); if (num_outputs != c.num_outputs()) { TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "Number of output tensors are mismatched for op '%s' %d != %d", op_name, num_outputs, c.num_outputs()); return kTfLiteError; } for (int i = 0; i < num_outputs; ++i) { const auto output_tensor_index = node_data->outputs().TfLiteIndex(i); TfLiteTensor* tfl_tensor = &context->tensors[output_tensor_index]; const std::string tfl_shape_string = GetShapeDebugString(tfl_tensor->dims); const std::string calculated_shape_string = c.DebugString(c.output(i)); if (tfl_shape_string != calculated_shape_string) { if ((strcmp(op_name, kReadVariableOp) == 0) && (tfl_tensor->dims->size > 0)) { continue; } TFLITE_LOG(tflite::TFLITE_LOG_WARNING, "op '%s' output%d tensor#%d shape mismatch for %s != %s", op_name, i, output_tensor_index, tfl_shape_string.c_str(), calculated_shape_string.c_str()); return kTfLiteError; } } } return kTfLiteOk; } static tensorflow::CancellationManager* GetDefaultCancellationManager() { static auto* const cancellation_manager = new tensorflow::CancellationManager; return cancellation_manager; } TfLiteStatus DelegateKernel::Eval(TfLiteContext* context, TfLiteNode* node) { BufferMap* buffer_map = op_data_->shared_info.buffer_map; for (auto tensor_index : op_data_->subgraph_inputs) { TfLiteTensor* tensor = &context->tensors[tensor_index]; if (!IsConstantTensor(tensor)) { if (!tensor->data_is_stale || !buffer_map->HasTensor(tensor_index)) { buffer_map->SetFromTfLite( tensor_index, tensor, !op_data_->disable_reusing_buffer_tensors.count(tensor_index)); } } } auto& eager_context = *op_data_->eager_context; { tensorflow::tfrt_stub::OpKernelRunState run_state; run_state.params.step_container = eager_context.StepContainer(); auto* device = eager_context.local_device_mgr()->HostCPU(); run_state.params.device = device; run_state.params.resource_manager = device->resource_manager(); run_state.params.runner = eager_context.runner(); run_state.params.cancellation_manager = op_data_->cancellation_manager ? op_data_->cancellation_manager : GetDefaultCancellationManager(); for (auto& node_data : op_data_->nodes) { TFLITE_SCOPED_DELEGATE_PROFILED_OPERATOR_PROFILE( reinterpret_cast<Profiler*>(context->profiler), node_data->name().c_str(), node_data->index()); if (op_data_->cancellation_manager != nullptr && op_data_->cancellation_manager->IsCancelled()) { TF_LITE_KERNEL_LOG( context, "Client requested cancel during DelegateKernel::Eval"); return kTfLiteError; } auto status = ExecuteOpKernelRunner(&run_state, context, node_data.get()); TF_LITE_ENSURE_OK(context, ConvertStatus(context, status)); } } for (auto tensor_index : op_data_->subgraph_outputs) { if (op_data_->shared_info.already_transferred_outputs.count(tensor_index) != 0) { continue; } if (!buffer_map->HasTensor(tensor_index)) { TF_LITE_KERNEL_LOG(context, "Cannot write to invalid tensor index %d", tensor_index); return kTfLiteError; } TfLiteTensor* tensor = &context->tensors[tensor_index]; const tensorflow::Tensor& tf_tensor = buffer_map->GetTensor(tensor_index); if (tensor->allocation_type == kTfLiteDynamic) { TF_LITE_ENSURE_OK(context, CopyShapeAndType(context, tf_tensor, tensor)); tensor->buffer_handle = tensor_index; tensor->data_is_stale = true; continue; } if (tf_tensor.NumElements() != NumElements(tensor) || tf_tensor.TotalBytes() != tensor->bytes) { TF_LITE_KERNEL_LOG(context, "FlexDelegate: Tensor %s(%d) buffer size mismatch " "%zu(%lld) != %ld(%ld)", tensor->name, tensor_index, tf_tensor.TotalBytes(), tf_tensor.NumElements(), tensor->bytes, NumElements(tensor)); return kTfLiteError; } tensorflow::StringPiece t_data = tf_tensor.tensor_data(); memcpy(tensor->data.raw, t_data.data(), t_data.size()); } return kTfLiteOk; } const std::map<int, int>& DelegateKernel::GetTensorReleaseMap() const { return *(op_data_->shared_info.tensor_release_map); } } }
#include "tensorflow/lite/delegates/flex/kernel.h" #include <functional> #include <initializer_list> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/flex/delegate.h" #include "tensorflow/lite/delegates/flex/delegate_data.h" #include "tensorflow/lite/delegates/flex/test_util.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace flex { namespace testing { using ::testing::ContainsRegex; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Pair; using ::testing::UnorderedElementsAre; class TestFlexDelegate : public FlexDelegate { protected: bool IsNodeSupportedByDelegate(const TfLiteRegistration* registration, const TfLiteNode* node, TfLiteContext* context) const override { return true; } }; class KernelTest : public testing::FlexModelTest { public: static constexpr int kOnes = 1; static constexpr int kTwos = 2; static constexpr int kMaxTensors = 30; KernelTest() { interpreter_ = std::make_unique<Interpreter>(&error_reporter_); } void ApplyFlexDelegate(std::unique_ptr<FlexDelegate> delegate = nullptr) { auto flex_delegate = FlexDelegate::Create(std::move(delegate)); delegate_data_ = reinterpret_cast<FlexDelegate*>(flex_delegate->data_)->mutable_data(); CHECK(delegate_data_->Prepare(tensorflow::SessionOptions{}).ok()); CHECK(interpreter_->ModifyGraphWithDelegate(std::move(flex_delegate)) == kTfLiteOk); } const std::map<int, int>& GetTensorReleaseMap(DelegateKernel* kernel) { return kernel->GetTensorReleaseMap(); } protected: tflite::flex::DelegateData* delegate_data_; }; TEST_F(KernelTest, FullGraph) { AddTensors(9, {0, 3}, {8}, kTfLiteFloat32, {3}); AddTfOp(testing::kUnpack, {0}, {1, 2}); AddTfOp(testing::kUnpack, {3}, {4, 5}); AddTfOp(testing::kAdd, {1, 4}, {6}); AddTfOp(testing::kAdd, {2, 5}, {7}); AddTfOp(testing::kMul, {6, 7}, {8}); ApplyFlexDelegate(); SetShape(0, {2, 2, 1}); SetValues(0, {1.1f, 2.2f, 3.3f, 4.4f}); SetShape(3, {2, 2, 1}); SetValues(3, {1.1f, 2.2f, 3.3f, 4.4f}); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetShape(8), ElementsAre(2, 1)); ASSERT_THAT(GetValues(8), ElementsAre(14.52f, 38.72f)); SetShape(0, {2, 3, 1}); SetValues(0, {2.0f, 2.0f, 3.0f, 3.0f, 4.0f, 4.0f}); SetShape(3, {2, 3, 1}); SetValues(3, {2.0f, 2.0f, 3.0f, 3.0f, 4.0f, 4.0f}); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetShape(8), ElementsAre(3, 1)); ASSERT_THAT(GetValues(8), ElementsAre(24.0f, 32.0f, 48.0f)); } TEST_F(KernelTest, ValidateTensorReleaseMap) { AddTensors(9, {0, 3}, {8}, kTfLiteFloat32, {3}); AddTfOp(testing::kUnpack, {0}, {1, 2}); AddTfOp(testing::kUnpack, {3}, {4, 5}); AddTfOp(testing::kAdd, {1, 4}, {6}); AddTfOp(testing::kAdd, {2, 5}, {7}); AddTfOp(testing::kMul, {6, 7}, {8}); ApplyFlexDelegate(); const int node_size = interpreter_->primary_subgraph().nodes_size(); const std::pair<TfLiteNode, TfLiteRegistration>* node_and_reg = interpreter_->primary_subgraph().node_and_registration(node_size - 1); DelegateKernel* delegate_kernel = reinterpret_cast<DelegateKernel*>(node_and_reg->first.user_data); const auto& tensor_release_map = GetTensorReleaseMap(delegate_kernel); EXPECT_THAT( tensor_release_map, UnorderedElementsAre(Pair(0, 0), Pair(1, 2), Pair(2, 3), Pair(3, 1), Pair(4, 2), Pair(5, 3), Pair(6, 4), Pair(7, 4))); } TEST_F(KernelTest, PersistEagerTensor) { AddTensors(10, {0, 3}, {9}, kTfLiteFloat32, {3}); AddTfOp(testing::kUnpack, {0}, {1, 2}); AddTfOp(testing::kUnpack, {3}, {4, 5}); AddTfOp(testing::kAdd, {1, 4}, {6}); AddTfOp(testing::kAdd, {2, 5}, {7}); AddTfLiteMulOp({6, 7}, {8}); AddTfOp(testing::kAdd, {6, 8}, {9}); ApplyFlexDelegate(); SetShape(0, {2, 2, 1}); SetValues(0, {1.1f, 2.2f, 3.3f, 4.4f}); SetShape(3, {2, 2, 1}); SetValues(3, {1.1f, 2.2f, 3.3f, 4.4f}); ASSERT_TRUE(Invoke()); auto* buffer_map = delegate_data_->GetBufferMap(interpreter_->primary_subgraph().context()); EXPECT_TRUE(buffer_map->HasTensor(6)); EXPECT_FALSE(buffer_map->HasTensor(7)); } TEST_F(KernelTest, BadTensorFlowOp) { AddTensors(2, {0}, {1}, kTfLiteFloat32, {3}); AddTfOp(testing::kNonExistent, {0}, {1}); ApplyFlexDelegate(std::unique_ptr<FlexDelegate>(new TestFlexDelegate())); ASSERT_NE(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_THAT(error_reporter().error_messages(), ContainsRegex("Op type not registered 'NonExistentOp'")); } TEST_F(KernelTest, BadNumberOfOutputs) { AddTensors(3, {0}, {1, 2}, kTfLiteFloat32, {3}); AddTfOp(testing::kIdentity, {0}, {1, 2}); ApplyFlexDelegate(); SetShape(0, {2, 2, 1}); SetValues(0, {1.1f, 2.2f, 3.3f, 4.4f}); ASSERT_FALSE(Invoke()); ASSERT_THAT(error_reporter().error_messages(), ContainsRegex("Unexpected number of outputs")); } TEST_F(KernelTest, IncompatibleNodeDef) { AddTensors(2, {0}, {1}, kTfLiteFloat32, {3}); AddTfOp(testing::kIncompatibleNodeDef, {0}, {1}); ApplyFlexDelegate(); ASSERT_NE(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_THAT(error_reporter().error_messages(), ContainsRegex("No attr named 'SrcT' in NodeDef")); } TEST_F(KernelTest, WrongSetOfNodes) { AddTensors(4, {0}, {3}, kTfLiteFloat32, {3}); AddTfOp(testing::kUnpack, {0}, {1, 2}); AddTfLiteMulOp({1, 2}, {3}); ApplyFlexDelegate(std::unique_ptr<FlexDelegate>(new TestFlexDelegate())); ASSERT_NE(interpreter_->AllocateTensors(), kTfLiteOk); ASSERT_THAT(error_reporter().error_messages(), ContainsRegex("Cannot convert empty data into a valid NodeDef")); } TEST_F(KernelTest, MixedGraph) { AddTensors(9, {0, 3}, {8}, kTfLiteFloat32, {3}); AddTfOp(testing::kUnpack, {0}, {1, 2}); AddTfOp(testing::kUnpack, {3}, {4, 5}); AddTfOp(testing::kAdd, {1, 4}, {6}); AddTfOp(testing::kAdd, {2, 5}, {7}); AddTfLiteMulOp({6, 7}, {8}); ApplyFlexDelegate(); SetShape(0, {2, 2, 1}); SetValues(0, {1.1f, 2.2f, 3.3f, 4.4f}); SetShape(3, {2, 2, 1}); SetValues(3, {1.1f, 2.2f, 3.3f, 4.4f}); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetShape(8), ElementsAre(2, 1)); ASSERT_THAT(GetValues(8), ElementsAre(14.52f, 38.72f)); } TEST_F(KernelTest, SplitGraph) { std::vector<float> a = {3.0f, 1.0f, 0.5f, -1.0f, 4.0f, -1.0f, -2.0f, 5.0f}; std::vector<float> b = {0.0f, 1.0f, 1.5f, 3.0f}; AddTensors(18, {0, 1}, {17}, kTfLiteFloat32, {3}); AddTfOp(testing::kUnpack, {0}, {2, 10}); AddTfOp(testing::kAdd, {1, 2}, {3}); AddTfOp(testing::kUnpack, {3}, {4, 5}); AddTfLiteMulOp({4, 5}, {6}); AddTfOp(testing::kUnpack, {6}, {7, 8}); AddTfOp(testing::kAdd, {7, 8}, {9}); AddTfOp(testing::kUnpack, {10}, {11, 12}); AddTfOp(testing::kAdd, {11, 12}, {13}); AddTfOp(testing::kUnpack, {13}, {14, 15}); AddTfOp(testing::kAdd, {14, 15}, {16}); AddTfOp(testing::kAdd, {9, 16}, {17}); ApplyFlexDelegate(); SetShape(0, {2, 2, 2, 1}); SetValues(0, a); SetShape(1, {2, 2, 1}); SetValues(1, b); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetShape(17), ElementsAre(1)); ASSERT_THAT(GetValues(17), ElementsAre(16.0f)); SetShape(0, {2, 2, 2, 1}); SetValues(0, {4.0f, 1.0f, 1.5f, -2.0f, 2.0f, 0.0f, -2.0f, 3.0f}); SetShape(1, {2, 2, 1}); SetValues(1, {0.0f, 2.0f, 1.5f, 3.0f}); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetShape(17), ElementsAre(1)); ASSERT_THAT(GetValues(17), ElementsAre(18.0f)); } class MultipleSubgraphsTest : public KernelTest { public: static constexpr int kInput = 0; void PrepareInterpreter(const std::vector<float>& input) { ApplyFlexDelegate(); SetShape(kOnes, {3}); SetValues(kOnes, {1.0f, 1.0f, 1.0f}); SetShape(kTwos, {3}); SetValues(kTwos, {2.0f, 2.0f, 2.0f}); SetValues(kInput, input); } std::vector<float> Apply(const std::vector<float>& input, std::function<float(float)> function) { std::vector<float> result; for (float f : input) { result.push_back(function(f)); } return result; } }; TEST_F(MultipleSubgraphsTest, ForwardabilityIsLocal) { AddTensors(kMaxTensors, {kInput, kOnes, kTwos}, {12}, kTfLiteFloat32, {3}); AddTfOp(testing::kAdd, {0, kOnes}, {3}); AddTfOp(testing::kAdd, {0, kOnes}, {10}); AddTfLiteMulOp({3, kTwos}, {4}); AddTfOp(testing::kAdd, {10, 4}, {11}); AddTfOp(testing::kAdd, {11, 10}, {7}); AddTfLiteMulOp({10, 7}, {12}); auto input = {3.0f, 4.0f, 5.0f}; PrepareInterpreter(input); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetValues(12), ElementsAreArray(Apply(input, [](float in) { return (4 * in + 4) * (in + 1); }))); } TEST_F(MultipleSubgraphsTest, DoNotRemoveInputTensors) { AddTensors(kMaxTensors, {kInput, kOnes, kTwos}, {12}, kTfLiteFloat32, {3}); AddTfOp(testing::kAdd, {0, kOnes}, {3}); AddTfOp(testing::kAdd, {0, kOnes}, {10}); AddTfOp(testing::kAdd, {10, kOnes}, {15}); AddTfOp(testing::kAdd, {10, kOnes}, {16}); AddTfLiteMulOp({3, kTwos}, {4}); AddTfOp(testing::kAdd, {10, 4}, {11}); AddTfOp(testing::kAdd, {10, 11}, {7}); AddTfLiteMulOp({10, 7}, {12}); auto input = {3.0f, 4.0f, 5.0f}; PrepareInterpreter(input); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetValues(12), ElementsAreArray(Apply(input, [](float in) { return (4 * in + 4) * (in + 1); }))); } TEST_F(MultipleSubgraphsTest, DoNotForwardInputTensors) { AddTensors(kMaxTensors, {kInput, kOnes, kTwos}, {12}, kTfLiteFloat32, {3}); AddTfOp(testing::kAdd, {0, kOnes}, {3}); AddTfOp(testing::kAdd, {0, kOnes}, {10}); AddTfLiteMulOp({3, kTwos}, {4}); AddTfOp(testing::kAdd, {10, 4}, {11}); AddTfOp(testing::kAdd, {11, 4}, {7}); AddTfLiteMulOp({10, 7}, {12}); auto input = {3.0f, 4.0f, 5.0f}; PrepareInterpreter(input); ASSERT_TRUE(Invoke()); ASSERT_THAT(GetValues(12), ElementsAreArray(Apply(input, [](float in) { return (5 * in + 5) * (in + 1); }))); } tensorflow::OpDef MakeOpDef(int num_inputs, int num_outputs) { tensorflow::OpRegistrationData op_reg_data; tensorflow::OpDefBuilder b("dummy"); for (int i = 0; i < num_inputs; ++i) { b.Input(tensorflow::strings::StrCat("i", i, ": float")); } for (int i = 0; i < num_outputs; ++i) { b.Output(tensorflow::strings::StrCat("o", i, ": float")); } CHECK(b.Attr("foo:string").Finalize(&op_reg_data).ok()); return op_reg_data.op_def; } tensorflow::PartialTensorShape S(std::initializer_list<int64_t> dims) { return tensorflow::PartialTensorShape(dims); } TEST(ValidateOutputTensorShapeConsistencyTest, ShapeHandleDebugString) { tensorflow::OpDef op_def = MakeOpDef(4, 1); tensorflow::NodeDef def; tensorflow::shape_inference::InferenceContext c( 0, def, op_def, {S({1}), S({2, 3}), S({4, 5, 6}), {}}, {}, {}, {}); c.SetInput(3, c.UnknownShape()); std::vector<tensorflow::shape_inference::ShapeHandle> shapes; EXPECT_EQ("[1]", c.DebugString(c.input(0))); EXPECT_EQ("[2,3]", c.DebugString(c.input(1))); EXPECT_EQ("[4,5,6]", c.DebugString(c.input(2))); EXPECT_EQ("?", c.DebugString(c.input(3))); } TEST(ValidateOutputTensorShapeConsistencyTest, GetShapeDebugString) { TfLiteIntArray* dims1 = TfLiteIntArrayCreate(1); dims1->data[0] = 1; EXPECT_EQ("[1]", GetShapeDebugString(dims1)); TfLiteIntArrayFree(dims1); TfLiteIntArray* dims2 = TfLiteIntArrayCreate(2); dims2->data[0] = 2; dims2->data[1] = 3; EXPECT_EQ("[2,3]", GetShapeDebugString(dims2)); TfLiteIntArrayFree(dims2); TfLiteIntArray* dims3 = TfLiteIntArrayCreate(3); dims3->data[0] = 4; dims3->data[1] = 5; dims3->data[2] = 6; EXPECT_EQ("[4,5,6]", GetShapeDebugString(dims3)); TfLiteIntArrayFree(dims3); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/flex/kernel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/flex/kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2653932b-4768-456b-9d5e-d90084229d4f
cpp
google/libaddressinput
null_storage
cpp/src/null_storage.cc
cpp/test/null_storage_test.cc
#include <libaddressinput/null_storage.h> #include <cassert> #include <cstddef> #include <string> namespace i18n { namespace addressinput { NullStorage::NullStorage() = default; NullStorage::~NullStorage() = default; void NullStorage::Put(const std::string& key, std::string* data) { assert(data != nullptr); delete data; } void NullStorage::Get(const std::string& key, const Callback& data_ready) const { data_ready(false, key, nullptr); } } }
#include <libaddressinput/null_storage.h> #include <libaddressinput/callback.h> #include <libaddressinput/storage.h> #include <cstddef> #include <memory> #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::BuildCallback; using i18n::addressinput::NullStorage; using i18n::addressinput::Storage; class NullStorageTest : public testing::Test { public: NullStorageTest(const NullStorageTest&) = delete; NullStorageTest& operator=(const NullStorageTest&) = delete; protected: NullStorageTest() : data_ready_(BuildCallback(this, &NullStorageTest::OnDataReady)) {} NullStorage storage_; bool success_; std::string key_; std::string data_; const std::unique_ptr<const Storage::Callback> data_ready_; static const char kKey[]; private: void OnDataReady(bool success, const std::string& key, std::string* data) { ASSERT_FALSE(success && data == nullptr); success_ = success; key_ = key; if (data != nullptr) { data_ = *data; delete data; } } }; const char NullStorageTest::kKey[] = "foo"; TEST_F(NullStorageTest, Put) { storage_.Put(kKey, new std::string("bar")); } TEST_F(NullStorageTest, Get) { storage_.Get(kKey, *data_ready_); EXPECT_FALSE(success_); EXPECT_EQ(kKey, key_); EXPECT_TRUE(data_.empty()); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/null_storage.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/null_storage_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
1167bf89-fa47-4662-a7a7-1034deab377c
cpp
google/arolla
expr_stack_trace
arolla/expr/expr_stack_trace.cc
arolla/expr/expr_stack_trace_test.cc
#include "arolla/expr/expr_stack_trace.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/strings/str_cat.h" #include "arolla/dense_array/dense_array.h" #include "arolla/expr/expr_debug_string.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_visitor.h" #include "arolla/util/fingerprint.h" #include "arolla/util/text.h" namespace arolla::expr { void DetailedExprStackTrace::AddTrace(ExprNodePtr target_node, ExprNodePtr source_node, TransformationType t) { if (!target_node->is_op()) { return; } if (target_node->fingerprint() == source_node->fingerprint()) { return; } traceback_.insert( {target_node->fingerprint(), {source_node->fingerprint(), t}}); if (traceback_.find(source_node->fingerprint()) == traceback_.end()) { repr_[source_node->fingerprint()] = source_node; } if (t != TransformationType::kUntraced) { repr_[target_node->fingerprint()] = target_node; } } std::optional<std::pair<Fingerprint, TransformationType>> DetailedExprStackTrace::GetTrace(Fingerprint fp) const { auto it = traceback_.find(fp); if (it == traceback_.end()) { return std::nullopt; } return it->second; } std::string DetailedExprStackTrace::GetRepr(Fingerprint fp) const { if (auto it = repr_.find(fp); it != repr_.end()) { return GetDebugSnippet(it->second); } else { return absl::StrCat("Could not find representation for node ", fp.AsString()); } } std::vector<DetailedExprStackTrace::Transformation> DetailedExprStackTrace::GetTransformations(Fingerprint fp) const { auto current_fp = fp; std::vector<Transformation> transformations; absl::flat_hash_set<Fingerprint> visited; visited.insert(current_fp); auto nxt = GetTrace(current_fp); while (nxt.has_value()) { if (nxt->second != TransformationType::kUntraced) { transformations.push_back({current_fp, nxt->first, nxt->second}); } current_fp = nxt->first; if (!visited.insert(current_fp).second) { break; } nxt = GetTrace(current_fp); } std::reverse(transformations.begin(), transformations.end()); if (!transformations.empty()) { transformations.begin()->source_fp = current_fp; } return transformations; } std::string DetailedExprStackTrace::FullTrace(Fingerprint fp) const { auto transformations = GetTransformations(fp); if (transformations.empty()) return ""; std::string stack_trace = absl::StrCat( "ORIGINAL NODE: ", GetRepr(transformations.front().source_fp), "\nCOMPILED NODE: ", GetRepr(transformations.back().target_fp)); if (transformations.size() == 1) return stack_trace; stack_trace += absl::StrCat("\nDETAILED STACK TRACE:\n", GetRepr(transformations.begin()->source_fp)); for (auto it = transformations.begin(); it != transformations.end(); ++it) { stack_trace += absl::StrCat("\n ", TransformationString(it->type), "\n", GetRepr(it->target_fp)); } return stack_trace; } void LightweightExprStackTrace::AddTrace(ExprNodePtr target_node, ExprNodePtr source_node, TransformationType t) { if (!target_node->is_op()) { return; } if (target_node->fingerprint() == source_node->fingerprint()) { return; } auto original_it = original_node_mapping_.find(source_node->fingerprint()); bool source_node_is_original = (original_it == original_node_mapping_.end()); if (source_node_is_original) { original_node_mapping_.insert( {target_node->fingerprint(), source_node->fingerprint()}); } else { DCHECK(!original_node_mapping_.contains(original_it->second)); original_node_mapping_.insert( {target_node->fingerprint(), original_it->second}); } } void LightweightExprStackTrace::AddRepresentations(ExprNodePtr compiled_node, ExprNodePtr original_node) { auto compiled_post_order = PostOrder(compiled_node); for (const auto& node : compiled_post_order.nodes()) { repr_.insert({node->fingerprint(), node}); } auto original_post_order = PostOrder(original_node); for (const auto& node : original_post_order.nodes()) { repr_.insert({node->fingerprint(), node}); } } std::string LightweightExprStackTrace::GetRepr(Fingerprint fp) const { if (auto it = repr_.find(fp); it != repr_.end()) { return GetDebugSnippet(it->second); } else { return "?"; } } std::string LightweightExprStackTrace::FullTrace(Fingerprint fp) const { if (auto it = original_node_mapping_.find(fp); it != original_node_mapping_.end()) { return absl::StrCat("ORIGINAL NODE: ", GetRepr(it->second), "\nCOMPILED NODE: ", GetRepr(fp)); } else { return absl::StrCat("NODE: ", GetRepr(fp)); } } BoundExprStackTraceBuilder::BoundExprStackTraceBuilder( std::shared_ptr<const ExprStackTrace> stack_trace) : stack_trace_(stack_trace) {} void BoundExprStackTraceBuilder::RegisterIp(int64_t ip, const ExprNodePtr& node) { ip_to_fingerprint_.insert({ip, node->fingerprint()}); } DenseArray<Text> BoundExprStackTraceBuilder::Build( int64_t num_operators) const { DenseArrayBuilder<Text> traces_array_builder(num_operators); for (int64_t i = 0; i < num_operators; ++i) { if (auto it = ip_to_fingerprint_.find(i); it != ip_to_fingerprint_.end()) { traces_array_builder.Add(i, Text{stack_trace_->FullTrace(it->second)}); } } return std::move(traces_array_builder).Build(); } }
#include "arolla/expr/expr_stack_trace.h" #include "gtest/gtest.h" #include "arolla/util/fingerprint.h" namespace arolla::expr { namespace { TEST(ExprStackTraceTest, ExprStackTraceSafeReturnsOnUnregisteredFingerprint) { DetailedExprStackTrace stack_trace; EXPECT_EQ(stack_trace.FullTrace(Fingerprint{0}), ""); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_stack_trace.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/expr_stack_trace_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
071aecc4-70a3-4954-804b-28a2aced5282
cpp
google/arolla
dynamic_compiled_operator
arolla/expr/eval/dynamic_compiled_operator.cc
arolla/expr/eval/dynamic_compiled_operator_test.cc
#include "arolla/expr/eval/dynamic_compiled_operator.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/eval/dynamic_compiled_expr.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/executable_builder.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr::eval_internal { template <typename T, typename U> std::unique_ptr<T> dynamic_unique_ptr_cast(std::unique_ptr<U> unique) { T* casted = dynamic_cast<T*>(unique.get()); if (casted != nullptr) { unique.release(); } return std::unique_ptr<T>(casted); } absl::StatusOr<DynamicCompiledOperator> DynamicCompiledOperator::Build( const DynamicEvaluationEngineOptions& options, const ExprOperatorPtr& op, std::vector<QTypePtr> input_qtypes) { std::vector<absl::StatusOr<ExprNodePtr>> inputs; std::vector<std::string> input_arg_names; absl::flat_hash_map<std::string, QTypePtr> input_qtypes_map; inputs.reserve(input_qtypes.size()); input_qtypes_map.reserve(input_qtypes.size()); input_arg_names.reserve(input_qtypes.size()); for (size_t i = 0; i < input_qtypes.size(); ++i) { std::string name = absl::StrFormat("_%d", i); inputs.push_back(Leaf(name)); input_qtypes_map.emplace(name, input_qtypes[i]); input_arg_names.emplace_back(std::move(name)); } ASSIGN_OR_RETURN(auto expr, CallOp(op, inputs)); ASSIGN_OR_RETURN(auto compiled_expr, CompileForDynamicEvaluation( options, expr, input_qtypes_map)); std::unique_ptr<const DynamicCompiledExpr> dynamic_compiled_expr = dynamic_unique_ptr_cast<const DynamicCompiledExpr>( std::move(compiled_expr)); DCHECK(dynamic_compiled_expr); return DynamicCompiledOperator( std::string(op->display_name()), std::move(input_qtypes), std::move(dynamic_compiled_expr), std::move(input_arg_names), FingerprintHasher("arolla::expr::eval_internal::DynamicCompiledOperator") .Combine(op->fingerprint()) .CombineSpan(input_qtypes) .Finish()); } absl::Status DynamicCompiledOperator::BindTo( ExecutableBuilder& executable_builder, absl::Span<const TypedSlot> input_slots, TypedSlot output_slot) const { if (input_slots.size() != input_arg_names_.size()) { return absl::InternalError(absl::StrFormat( "input count mismatch in DynamicCompiledOperator: expected %d, got %d", input_arg_names_.size(), input_slots.size())); } absl::flat_hash_map<std::string, TypedSlot> input_slots_map; input_slots_map.reserve(input_slots.size()); for (size_t i = 0; i < input_slots.size(); ++i) { input_slots_map.emplace(input_arg_names_[i], input_slots[i]); } return compiled_expr_->BindToExecutableBuilder(executable_builder, input_slots_map, output_slot); } DynamicCompiledOperator::DynamicCompiledOperator( std::string display_name, std::vector<QTypePtr> input_qtypes, std::unique_ptr<const DynamicCompiledExpr> compiled_expr, std::vector<std::string> input_arg_names, Fingerprint fingerprint) : display_name_(std::move(display_name)), input_qtypes_(input_qtypes.begin(), input_qtypes.end()), compiled_expr_(std::move(compiled_expr)), input_arg_names_(std::move(input_arg_names)), fingerprint_(fingerprint) { DCHECK_EQ(input_qtypes_.size(), input_arg_names_.size()); } }
#include "arolla/expr/eval/dynamic_compiled_operator.h" #include <memory> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/expr/eval/eval.h" #include "arolla/expr/eval/executable_builder.h" #include "arolla/expr/eval/test_utils.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/memory/frame.h" #include "arolla/qexpr/evaluation_engine.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" namespace arolla::expr::eval_internal { namespace { using ::absl_testing::StatusIs; using ::testing::HasSubstr; TEST(DynamicCompiledOperatorTest, DynamicCompiledOperator) { ASSERT_OK_AND_ASSIGN( auto lambda, MakeLambdaOperator( ExprOperatorSignature::Make("x, y"), CallOp("math.add", {CallOp("math.add", {Placeholder("x"), Placeholder("y")}), Literal(1.)}))); ASSERT_OK_AND_ASSIGN( DynamicCompiledOperator op, DynamicCompiledOperator::Build(DynamicEvaluationEngineOptions{}, lambda, {GetQType<float>(), GetQType<double>()})); FrameLayout::Builder layout_builder; auto x_slot = layout_builder.AddSlot<float>(); auto y_slot = layout_builder.AddSlot<double>(); auto output_slot = layout_builder.AddSlot<double>(); ExecutableBuilder executable_builder(&layout_builder, true); EXPECT_THAT(op.BindTo(executable_builder, {TypedSlot::FromSlot(x_slot)}, TypedSlot::FromSlot(output_slot)), StatusIs(absl::StatusCode::kInternal, "input count mismatch in DynamicCompiledOperator: " "expected 2, got 1")); EXPECT_THAT( op.BindTo(executable_builder, {TypedSlot::FromSlot(x_slot), TypedSlot::FromSlot(x_slot)}, TypedSlot::FromSlot(output_slot)), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("slot types mismatch"))); ASSERT_OK( op.BindTo(executable_builder, {TypedSlot::FromSlot(x_slot), TypedSlot::FromSlot(y_slot)}, TypedSlot::FromSlot(output_slot))); std::unique_ptr<BoundExpr> executable_expr = std::move(executable_builder) .Build({{"x", TypedSlot::FromSlot(x_slot)}, {"y", TypedSlot::FromSlot(y_slot)}}, TypedSlot::FromSlot(output_slot)); EXPECT_THAT( executable_expr, AllOf(InitOperationsAre("FLOAT64 [0x28] = float64{1}"), EvalOperationsAre( "FLOAT64 [0x18] = core.to_float64(FLOAT32 [0x00])", "FLOAT64 [0x20] = math.add(FLOAT64 [0x18], FLOAT64 [0x08])", "FLOAT64 [0x10] = math.add(FLOAT64 [0x20], FLOAT64 [0x28])"))); } TEST(DynamicCompiledOperatorTest, DynamicCompiledOperator_Literal) { ASSERT_OK_AND_ASSIGN( auto lambda, MakeLambdaOperator(ExprOperatorSignature{}, Literal(1.))); ASSERT_OK_AND_ASSIGN(DynamicCompiledOperator op, DynamicCompiledOperator::Build( DynamicEvaluationEngineOptions{}, lambda, {})); FrameLayout::Builder layout_builder; auto output_slot = layout_builder.AddSlot<double>(); ExecutableBuilder executable_builder(&layout_builder, true); ASSERT_OK( op.BindTo(executable_builder, {}, TypedSlot::FromSlot(output_slot))); std::unique_ptr<BoundExpr> executable_expr = std::move(executable_builder).Build({}, TypedSlot::FromSlot(output_slot)); EXPECT_THAT( executable_expr, AllOf(InitOperationsAre("FLOAT64 [0x08] = float64{1}"), EvalOperationsAre("FLOAT64 [0x00] = core._copy(FLOAT64 [0x08])"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/dynamic_compiled_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/eval/dynamic_compiled_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
0d018e54-5730-4a78-9799-48cd0f7ff152
cpp
tensorflow/tensorflow
gpu_plugin
tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.cc
tensorflow/lite/core/acceleration/configuration/c/gpu_plugin_test.cc
#include "tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/acceleration/configuration/gpu_plugin.h" #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #include "tensorflow/lite/core/c/common.h" #if TFLITE_SUPPORTS_GPU_DELEGATE #include "tensorflow/lite/delegates/gpu/delegate.h" #elif defined(REAL_IPHONE_DEVICE) #include "tensorflow/lite/delegates/gpu/metal_delegate.h" #endif extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); tflite::delegates::GpuPlugin gpu_plugin(*tflite_settings); #if TFLITE_SUPPORTS_GPU_DELEGATE return TfLiteGpuDelegateV2Create(&gpu_plugin.Options()); #elif defined(REAL_IPHONE_DEVICE) return TFLGpuDelegateCreate(&gpu_plugin.Options()); #else return nullptr; #endif } static void DestroyDelegate(TfLiteDelegate* delegate) { #if TFLITE_SUPPORTS_GPU_DELEGATE TfLiteGpuDelegateV2Delete(delegate); #elif defined(REAL_IPHONE_DEVICE) TFLGpuDelegateDelete(delegate); #endif } static int DelegateErrno(TfLiteDelegate* from_delegate) { return 0; } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteGpuDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { class GpuTest : public testing::Test { public: void SetUp() override { GPUSettingsBuilder gpu_settings_builder(flatbuffer_builder_); flatbuffers::Offset<GPUSettings> gpu_settings = gpu_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_gpu_settings(gpu_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~GpuTest() override {} protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; TEST_F(GpuTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteGpuDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteGpuDelegatePluginCApi()->destroy(delegate); } TEST_F(GpuTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteGpuDelegatePluginCApi()->create(settings_); int error_number = TfLiteGpuDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteGpuDelegatePluginCApi()->destroy(delegate); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/c/gpu_plugin.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/core/acceleration/configuration/c/gpu_plugin_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c92b34de-4bee-4567-aaac-b8cb9c8886ee
cpp
google/quiche
hpack_decoder_adapter
quiche/http2/hpack/hpack_decoder_adapter.cc
quiche/http2/hpack/hpack_decoder_adapter_test.cc
#include "quiche/http2/hpack/hpack_decoder_adapter.h" #include <cstddef> #include <string> #include "absl/strings/string_view.h" #include "quiche/http2/core/spdy_headers_handler_interface.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/hpack/decoder/hpack_decoding_error.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_logging.h" namespace spdy { namespace { const size_t kMaxDecodeBufferSizeBytes = 32 * 1024; } HpackDecoderAdapter::HpackDecoderAdapter() : hpack_decoder_(&listener_adapter_, kMaxDecodeBufferSizeBytes), max_decode_buffer_size_bytes_(kMaxDecodeBufferSizeBytes), max_header_block_bytes_(0), header_block_started_(false), error_(http2::HpackDecodingError::kOk) {} HpackDecoderAdapter::~HpackDecoderAdapter() = default; void HpackDecoderAdapter::ApplyHeaderTableSizeSetting(size_t size_setting) { QUICHE_DVLOG(2) << "HpackDecoderAdapter::ApplyHeaderTableSizeSetting"; hpack_decoder_.ApplyHeaderTableSizeSetting(size_setting); } size_t HpackDecoderAdapter::GetCurrentHeaderTableSizeSetting() const { return hpack_decoder_.GetCurrentHeaderTableSizeSetting(); } void HpackDecoderAdapter::HandleControlFrameHeadersStart( SpdyHeadersHandlerInterface* handler) { QUICHE_DVLOG(2) << "HpackDecoderAdapter::HandleControlFrameHeadersStart"; QUICHE_DCHECK(!header_block_started_); listener_adapter_.set_handler(handler); } bool HpackDecoderAdapter::HandleControlFrameHeadersData( const char* headers_data, size_t headers_data_length) { QUICHE_DVLOG(2) << "HpackDecoderAdapter::HandleControlFrameHeadersData: len=" << headers_data_length; if (!header_block_started_) { header_block_started_ = true; if (!hpack_decoder_.StartDecodingBlock()) { header_block_started_ = false; error_ = hpack_decoder_.error(); return false; } } if (headers_data_length > 0) { QUICHE_DCHECK_NE(headers_data, nullptr); if (headers_data_length > max_decode_buffer_size_bytes_) { QUICHE_DVLOG(1) << "max_decode_buffer_size_bytes_ < headers_data_length: " << max_decode_buffer_size_bytes_ << " < " << headers_data_length; error_ = http2::HpackDecodingError::kFragmentTooLong; return false; } listener_adapter_.AddToTotalHpackBytes(headers_data_length); if (max_header_block_bytes_ != 0 && listener_adapter_.total_hpack_bytes() > max_header_block_bytes_) { error_ = http2::HpackDecodingError::kCompressedHeaderSizeExceedsLimit; return false; } http2::DecodeBuffer db(headers_data, headers_data_length); bool ok = hpack_decoder_.DecodeFragment(&db); QUICHE_DCHECK(!ok || db.Empty()) << "Remaining=" << db.Remaining(); if (!ok) { error_ = hpack_decoder_.error(); } return ok; } return true; } bool HpackDecoderAdapter::HandleControlFrameHeadersComplete() { QUICHE_DVLOG(2) << "HpackDecoderAdapter::HandleControlFrameHeadersComplete"; if (!hpack_decoder_.EndDecodingBlock()) { QUICHE_DVLOG(3) << "EndDecodingBlock returned false"; error_ = hpack_decoder_.error(); return false; } header_block_started_ = false; return true; } void HpackDecoderAdapter::set_max_decode_buffer_size_bytes( size_t max_decode_buffer_size_bytes) { QUICHE_DVLOG(2) << "HpackDecoderAdapter::set_max_decode_buffer_size_bytes"; max_decode_buffer_size_bytes_ = max_decode_buffer_size_bytes; hpack_decoder_.set_max_string_size_bytes(max_decode_buffer_size_bytes); } void HpackDecoderAdapter::set_max_header_block_bytes( size_t max_header_block_bytes) { max_header_block_bytes_ = max_header_block_bytes; } HpackDecoderAdapter::ListenerAdapter::ListenerAdapter() : no_op_handler_(nullptr), handler_(&no_op_handler_) {} HpackDecoderAdapter::ListenerAdapter::~ListenerAdapter() = default; void HpackDecoderAdapter::ListenerAdapter::set_handler( SpdyHeadersHandlerInterface* handler) { QUICHE_CHECK_NE(handler, nullptr); handler_ = handler; } void HpackDecoderAdapter::ListenerAdapter::OnHeaderListStart() { QUICHE_DVLOG(2) << "HpackDecoderAdapter::ListenerAdapter::OnHeaderListStart"; total_hpack_bytes_ = 0; total_uncompressed_bytes_ = 0; handler_->OnHeaderBlockStart(); } void HpackDecoderAdapter::ListenerAdapter::OnHeader(absl::string_view name, absl::string_view value) { QUICHE_DVLOG(2) << "HpackDecoderAdapter::ListenerAdapter::OnHeader:\n name: " << name << "\n value: " << value; total_uncompressed_bytes_ += name.size() + value.size(); handler_->OnHeader(name, value); } void HpackDecoderAdapter::ListenerAdapter::OnHeaderListEnd() { QUICHE_DVLOG(2) << "HpackDecoderAdapter::ListenerAdapter::OnHeaderListEnd"; handler_->OnHeaderBlockEnd(total_uncompressed_bytes_, total_hpack_bytes_); handler_ = &no_op_handler_; } void HpackDecoderAdapter::ListenerAdapter::OnHeaderErrorDetected( absl::string_view error_message) { QUICHE_VLOG(1) << error_message; } }
#include "quiche/http2/hpack/hpack_decoder_adapter.h" #include <stdint.h> #include <cstddef> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/http2/core/recording_headers_handler.h" #include "quiche/http2/hpack/decoder/hpack_decoder.h" #include "quiche/http2/hpack/decoder/hpack_decoder_state.h" #include "quiche/http2/hpack/decoder/hpack_decoder_tables.h" #include "quiche/http2/hpack/hpack_constants.h" #include "quiche/http2/hpack/hpack_encoder.h" #include "quiche/http2/hpack/hpack_output_stream.h" #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/http2/test_tools/hpack_block_builder.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/common/http/http_header_block.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_text_utils.h" using ::http2::HpackEntryType; using ::http2::HpackStringPair; using ::http2::test::HpackBlockBuilder; using ::http2::test::HpackDecoderPeer; using ::testing::ElementsAre; using ::testing::Pair; namespace http2 { namespace test { class HpackDecoderStatePeer { public: static HpackDecoderTables* GetDecoderTables(HpackDecoderState* state) { return &state->decoder_tables_; } }; class HpackDecoderPeer { public: static HpackDecoderState* GetDecoderState(HpackDecoder* decoder) { return &decoder->decoder_state_; } static HpackDecoderTables* GetDecoderTables(HpackDecoder* decoder) { return HpackDecoderStatePeer::GetDecoderTables(GetDecoderState(decoder)); } }; } } namespace spdy { namespace test { class HpackDecoderAdapterPeer { public: explicit HpackDecoderAdapterPeer(HpackDecoderAdapter* decoder) : decoder_(decoder) {} void HandleHeaderRepresentation(const std::string& name, const std::string& value) { decoder_->listener_adapter_.OnHeader(name, value); } http2::HpackDecoderTables* GetDecoderTables() { return HpackDecoderPeer::GetDecoderTables(&decoder_->hpack_decoder_); } const HpackStringPair* GetTableEntry(uint32_t index) { return GetDecoderTables()->Lookup(index); } size_t current_header_table_size() { return GetDecoderTables()->current_header_table_size(); } size_t header_table_size_limit() { return GetDecoderTables()->header_table_size_limit(); } void set_header_table_size_limit(size_t size) { return GetDecoderTables()->DynamicTableSizeUpdate(size); } private: HpackDecoderAdapter* decoder_; }; class HpackEncoderPeer { public: static void CookieToCrumbs(const HpackEncoder::Representation& cookie, HpackEncoder::Representations* crumbs_out) { HpackEncoder::CookieToCrumbs(cookie, crumbs_out); } }; namespace { const bool kNoCheckDecodedSize = false; const char* kCookieKey = "cookie"; class HpackDecoderAdapterTest : public quiche::test::QuicheTestWithParam<bool> { protected: HpackDecoderAdapterTest() : decoder_(), decoder_peer_(&decoder_) {} void SetUp() override { randomly_split_input_buffer_ = GetParam(); } void HandleControlFrameHeadersStart() { bytes_passed_in_ = 0; decoder_.HandleControlFrameHeadersStart(&handler_); } bool HandleControlFrameHeadersData(absl::string_view str) { QUICHE_VLOG(3) << "HandleControlFrameHeadersData:\n" << quiche::QuicheTextUtils::HexDump(str); bytes_passed_in_ += str.size(); return decoder_.HandleControlFrameHeadersData(str.data(), str.size()); } bool HandleControlFrameHeadersComplete() { bool rc = decoder_.HandleControlFrameHeadersComplete(); return rc; } bool DecodeHeaderBlock(absl::string_view str, bool check_decoded_size = true) { EXPECT_FALSE(decode_has_failed_); HandleControlFrameHeadersStart(); if (randomly_split_input_buffer_) { do { size_t bytes = str.size(); if (!str.empty()) { bytes = random_.Uniform(str.size()) + 1; } EXPECT_LE(bytes, str.size()); if (!HandleControlFrameHeadersData(str.substr(0, bytes))) { decode_has_failed_ = true; return false; } str.remove_prefix(bytes); } while (!str.empty()); } else if (!HandleControlFrameHeadersData(str)) { decode_has_failed_ = true; return false; } if (!HandleControlFrameHeadersComplete()) { decode_has_failed_ = true; return false; } EXPECT_EQ(handler_.compressed_header_bytes(), bytes_passed_in_); if (check_decoded_size) { EXPECT_EQ(handler_.uncompressed_header_bytes(), SizeOfHeaders(decoded_block())); } return true; } bool EncodeAndDecodeDynamicTableSizeUpdates(size_t first, size_t second) { HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(first); if (second != first) { hbb.AppendDynamicTableSizeUpdate(second); } return DecodeHeaderBlock(hbb.buffer()); } const quiche::HttpHeaderBlock& decoded_block() const { return handler_.decoded_block(); } static size_t SizeOfHeaders(const quiche::HttpHeaderBlock& headers) { size_t size = 0; for (const auto& kv : headers) { if (kv.first == kCookieKey) { HpackEncoder::Representations crumbs; HpackEncoderPeer::CookieToCrumbs(kv, &crumbs); for (const auto& crumb : crumbs) { size += crumb.first.size() + crumb.second.size(); } } else { size += kv.first.size() + kv.second.size(); } } return size; } const quiche::HttpHeaderBlock& DecodeBlockExpectingSuccess( absl::string_view str) { EXPECT_TRUE(DecodeHeaderBlock(str)); return decoded_block(); } void expectEntry(size_t index, size_t size, const std::string& name, const std::string& value) { const HpackStringPair* entry = decoder_peer_.GetTableEntry(index); EXPECT_EQ(name, entry->name) << "index " << index; EXPECT_EQ(value, entry->value); EXPECT_EQ(size, entry->size()); } quiche::HttpHeaderBlock MakeHeaderBlock( const std::vector<std::pair<std::string, std::string>>& headers) { quiche::HttpHeaderBlock result; for (const auto& kv : headers) { result.AppendValueOrAddHeader(kv.first, kv.second); } return result; } http2::test::Http2Random random_; HpackDecoderAdapter decoder_; test::HpackDecoderAdapterPeer decoder_peer_; RecordingHeadersHandler handler_; const quiche::HttpHeaderBlock dummy_block_; bool randomly_split_input_buffer_; bool decode_has_failed_ = false; size_t bytes_passed_in_; }; INSTANTIATE_TEST_SUITE_P(NoHandler, HpackDecoderAdapterTest, ::testing::Bool()); INSTANTIATE_TEST_SUITE_P(WithHandler, HpackDecoderAdapterTest, ::testing::Bool()); TEST_P(HpackDecoderAdapterTest, ApplyHeaderTableSizeSetting) { EXPECT_EQ(4096u, decoder_.GetCurrentHeaderTableSizeSetting()); decoder_.ApplyHeaderTableSizeSetting(12 * 1024); EXPECT_EQ(12288u, decoder_.GetCurrentHeaderTableSizeSetting()); } TEST_P(HpackDecoderAdapterTest, AddHeaderDataWithHandleControlFrameHeadersData) { HandleControlFrameHeadersStart(); const size_t kMaxBufferSizeBytes = 50; const std::string a_value = std::string(49, 'x'); decoder_.set_max_decode_buffer_size_bytes(kMaxBufferSizeBytes); HpackBlockBuilder hbb; hbb.AppendLiteralNameAndValue(HpackEntryType::kNeverIndexedLiteralHeader, false, "a", false, a_value); const std::string& s = hbb.buffer(); EXPECT_GT(s.size(), kMaxBufferSizeBytes); EXPECT_TRUE(HandleControlFrameHeadersData(s.substr(0, s.size() / 2))); EXPECT_TRUE(HandleControlFrameHeadersData(s.substr(s.size() / 2))); EXPECT_FALSE(HandleControlFrameHeadersData(s)); quiche::HttpHeaderBlock expected_block = MakeHeaderBlock({{"a", a_value}}); EXPECT_EQ(expected_block, decoded_block()); } TEST_P(HpackDecoderAdapterTest, NameTooLong) { const size_t kMaxBufferSizeBytes = 50; const std::string name = std::string(2 * kMaxBufferSizeBytes, 'x'); const std::string value = "abc"; decoder_.set_max_decode_buffer_size_bytes(kMaxBufferSizeBytes); HpackBlockBuilder hbb; hbb.AppendLiteralNameAndValue(HpackEntryType::kNeverIndexedLiteralHeader, false, name, false, value); const size_t fragment_size = (3 * kMaxBufferSizeBytes) / 2; const std::string fragment = hbb.buffer().substr(0, fragment_size); HandleControlFrameHeadersStart(); EXPECT_FALSE(HandleControlFrameHeadersData(fragment)); } TEST_P(HpackDecoderAdapterTest, HeaderTooLongToBuffer) { const std::string name = "some-key"; const std::string value = "some-value"; const size_t kMaxBufferSizeBytes = name.size() + value.size() - 2; decoder_.set_max_decode_buffer_size_bytes(kMaxBufferSizeBytes); HpackBlockBuilder hbb; hbb.AppendLiteralNameAndValue(HpackEntryType::kNeverIndexedLiteralHeader, false, name, false, value); const size_t fragment_size = hbb.size() - 1; const std::string fragment = hbb.buffer().substr(0, fragment_size); HandleControlFrameHeadersStart(); EXPECT_FALSE(HandleControlFrameHeadersData(fragment)); } TEST_P(HpackDecoderAdapterTest, HeaderBlockTooLong) { const std::string name = "some-key"; const std::string value = "some-value"; const size_t kMaxBufferSizeBytes = 1024; HpackBlockBuilder hbb; hbb.AppendLiteralNameAndValue(HpackEntryType::kIndexedLiteralHeader, false, name, false, value); while (hbb.size() < kMaxBufferSizeBytes) { hbb.AppendLiteralNameAndValue(HpackEntryType::kIndexedLiteralHeader, false, "", false, ""); } HandleControlFrameHeadersStart(); EXPECT_TRUE(HandleControlFrameHeadersData(hbb.buffer())); EXPECT_TRUE(HandleControlFrameHeadersComplete()); decoder_.set_max_header_block_bytes(kMaxBufferSizeBytes); HandleControlFrameHeadersStart(); EXPECT_FALSE(HandleControlFrameHeadersData(hbb.buffer())); } TEST_P(HpackDecoderAdapterTest, DecodeWithIncompleteData) { HandleControlFrameHeadersStart(); EXPECT_TRUE(HandleControlFrameHeadersData("\x82\x85\x82")); std::vector<std::pair<std::string, std::string>> expected_headers = { {":method", "GET"}, {":path", "/index.html"}, {":method", "GET"}}; quiche::HttpHeaderBlock expected_block1 = MakeHeaderBlock(expected_headers); EXPECT_EQ(expected_block1, decoded_block()); EXPECT_TRUE( HandleControlFrameHeadersData("\x40\x03goo" "\x03gar\xbe\x40\x04spam")); expected_headers.push_back({"goo", "gar"}); expected_headers.push_back({"goo", "gar"}); quiche::HttpHeaderBlock expected_block2 = MakeHeaderBlock(expected_headers); EXPECT_EQ(expected_block2, decoded_block()); EXPECT_TRUE(HandleControlFrameHeadersData("\x04gggs")); EXPECT_TRUE(HandleControlFrameHeadersComplete()); expected_headers.push_back({"spam", "gggs"}); quiche::HttpHeaderBlock expected_block3 = MakeHeaderBlock(expected_headers); EXPECT_EQ(expected_block3, decoded_block()); } TEST_P(HpackDecoderAdapterTest, HandleHeaderRepresentation) { HandleControlFrameHeadersStart(); HandleControlFrameHeadersData(""); decoder_peer_.HandleHeaderRepresentation("cookie", " part 1"); decoder_peer_.HandleHeaderRepresentation("cookie", "part 2 "); decoder_peer_.HandleHeaderRepresentation("cookie", "part3"); decoder_peer_.HandleHeaderRepresentation("passed-through", std::string("foo\0baz", 7)); decoder_peer_.HandleHeaderRepresentation("joined", "joined"); decoder_peer_.HandleHeaderRepresentation("joineD", "value 1"); decoder_peer_.HandleHeaderRepresentation("joineD", "value 2"); decoder_peer_.HandleHeaderRepresentation("empty", ""); decoder_peer_.HandleHeaderRepresentation("empty-joined", ""); decoder_peer_.HandleHeaderRepresentation("empty-joined", "foo"); decoder_peer_.HandleHeaderRepresentation("empty-joined", ""); decoder_peer_.HandleHeaderRepresentation("empty-joined", ""); decoder_peer_.HandleHeaderRepresentation("cookie", " fin!"); decoder_.HandleControlFrameHeadersComplete(); EXPECT_THAT( decoded_block(), ElementsAre( Pair("cookie", " part 1; part 2 ; part3; fin!"), Pair("passed-through", absl::string_view("foo\0baz", 7)), Pair("joined", absl::string_view("joined\0value 1\0value 2", 22)), Pair("empty", ""), Pair("empty-joined", absl::string_view("\0foo\0\0", 6)))); } TEST_P(HpackDecoderAdapterTest, IndexedHeaderStatic) { const quiche::HttpHeaderBlock& header_set1 = DecodeBlockExpectingSuccess("\x82\x85"); quiche::HttpHeaderBlock expected_header_set1; expected_header_set1[":method"] = "GET"; expected_header_set1[":path"] = "/index.html"; EXPECT_EQ(expected_header_set1, header_set1); const quiche::HttpHeaderBlock& header_set2 = DecodeBlockExpectingSuccess("\x82"); quiche::HttpHeaderBlock expected_header_set2; expected_header_set2[":method"] = "GET"; EXPECT_EQ(expected_header_set2, header_set2); } TEST_P(HpackDecoderAdapterTest, IndexedHeaderDynamic) { const quiche::HttpHeaderBlock& header_set1 = DecodeBlockExpectingSuccess( "\x40\x03" "foo" "\x03" "bar"); quiche::HttpHeaderBlock expected_header_set1; expected_header_set1["foo"] = "bar"; EXPECT_EQ(expected_header_set1, header_set1); const quiche::HttpHeaderBlock& header_set2 = DecodeBlockExpectingSuccess( "\xbe\x40\x04" "spam" "\x04" "eggs"); quiche::HttpHeaderBlock expected_header_set2; expected_header_set2["foo"] = "bar"; expected_header_set2["spam"] = "eggs"; EXPECT_EQ(expected_header_set2, header_set2); const quiche::HttpHeaderBlock& header_set3 = DecodeBlockExpectingSuccess("\xbe"); quiche::HttpHeaderBlock expected_header_set3; expected_header_set3["spam"] = "eggs"; EXPECT_EQ(expected_header_set3, header_set3); } TEST_P(HpackDecoderAdapterTest, InvalidIndexedHeader) { EXPECT_FALSE(DecodeHeaderBlock("\xbe")); } TEST_P(HpackDecoderAdapterTest, ContextUpdateMaximumSize) { EXPECT_EQ(kDefaultHeaderTableSizeSetting, decoder_peer_.header_table_size_limit()); std::string input; { HpackOutputStream output_stream; output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(126); input = output_stream.TakeString(); EXPECT_TRUE(DecodeHeaderBlock(input)); EXPECT_EQ(126u, decoder_peer_.header_table_size_limit()); } { HpackOutputStream output_stream; output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(kDefaultHeaderTableSizeSetting); input = output_stream.TakeString(); EXPECT_TRUE(DecodeHeaderBlock(input)); EXPECT_EQ(kDefaultHeaderTableSizeSetting, decoder_peer_.header_table_size_limit()); } { HpackOutputStream output_stream; output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(kDefaultHeaderTableSizeSetting + 1); input = output_stream.TakeString(); EXPECT_FALSE(DecodeHeaderBlock(input)); EXPECT_EQ(kDefaultHeaderTableSizeSetting, decoder_peer_.header_table_size_limit()); } } TEST_P(HpackDecoderAdapterTest, TwoTableSizeUpdates) { std::string input; { HpackOutputStream output_stream; output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(0); output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(122); input = output_stream.TakeString(); EXPECT_TRUE(DecodeHeaderBlock(input)); EXPECT_EQ(122u, decoder_peer_.header_table_size_limit()); } } TEST_P(HpackDecoderAdapterTest, ThreeTableSizeUpdatesError) { std::string input; { HpackOutputStream output_stream; output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(5); output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(10); output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(15); input = output_stream.TakeString(); EXPECT_FALSE(DecodeHeaderBlock(input)); EXPECT_EQ(10u, decoder_peer_.header_table_size_limit()); } } TEST_P(HpackDecoderAdapterTest, TableSizeUpdateSecondError) { std::string input; { HpackOutputStream output_stream; output_stream.AppendBytes("\x82\x85"); output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(123); input = output_stream.TakeString(); EXPECT_FALSE(DecodeHeaderBlock(input)); EXPECT_EQ(kDefaultHeaderTableSizeSetting, decoder_peer_.header_table_size_limit()); } } TEST_P(HpackDecoderAdapterTest, TableSizeUpdateFirstThirdError) { std::string input; { HpackOutputStream output_stream; output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(60); output_stream.AppendBytes("\x82\x85"); output_stream.AppendPrefix(kHeaderTableSizeUpdateOpcode); output_stream.AppendUint32(125); input = output_stream.TakeString(); EXPECT_FALSE(DecodeHeaderBlock(input)); EXPECT_EQ(60u, decoder_peer_.header_table_size_limit()); } } TEST_P(HpackDecoderAdapterTest, LiteralHeaderNoIndexing) { const char input[] = "\x04\x0c/sample/path\x00\x06:path2\x0e/sample/path/2"; const quiche::HttpHeaderBlock& header_set = DecodeBlockExpectingSuccess( absl::string_view(input, ABSL_ARRAYSIZE(input) - 1)); quiche::HttpHeaderBlock expected_header_set; expected_header_set[":path"] = "/sample/path"; expected_header_set[":path2"] = "/sample/path/2"; EXPECT_EQ(expected_header_set, header_set); } TEST_P(HpackDecoderAdapterTest, LiteralHeaderIncrementalIndexing) { const char input[] = "\x44\x0c/sample/path\x40\x06:path2\x0e/sample/path/2"; const quiche::HttpHeaderBlock& header_set = DecodeBlockExpectingSuccess( absl::string_view(input, ABSL_ARRAYSIZE(input) - 1)); quiche::HttpHeaderBlock expected_header_set; expected_header_set[":path"] = "/sample/path"; expected_header_set[":path2"] = "/sample/path/2"; EXPECT_EQ(expected_header_set, header_set); } TEST_P(HpackDecoderAdapterTest, LiteralHeaderWithIndexingInvalidNameIndex) { decoder_.ApplyHeaderTableSizeSetting(0); EXPECT_TRUE(EncodeAndDecodeDynamicTableSizeUpdates(0, 0)); EXPECT_TRUE(DecodeHeaderBlock(absl::string_view("\x7d\x03ooo"))); EXPECT_FALSE(DecodeHeaderBlock(absl::string_view("\x7e\x03ooo"))); } TEST_P(HpackDecoderAdapterTest, LiteralHeaderNoIndexingInvalidNameIndex) { EXPECT_TRUE(DecodeHeaderBlock(absl::string_view("\x0f\x2e\x03ooo"))); EXPECT_FALSE(DecodeHeaderBlock(absl::string_view("\x0f\x2f\x03ooo"))); } TEST_P(HpackDecoderAdapterTest, LiteralHeaderNeverIndexedInvalidNameIndex) { EXPECT_TRUE(DecodeHeaderBlock(absl::string_view("\x1f\x2e\x03ooo"))); EXPECT_FALSE(DecodeHeaderBlock(absl::string_view("\x1f\x2f\x03ooo"))); } TEST_P(HpackDecoderAdapterTest, TruncatedIndex) { EXPECT_FALSE(DecodeHeaderBlock("\xff")); } TEST_P(HpackDecoderAdapterTest, TruncatedHuffmanLiteral) { std::string first; ASSERT_TRUE(absl::HexStringToBytes("418cf1e3c2e5f23a6ba0ab90f4ff", &first)); EXPECT_TRUE(DecodeHeaderBlock(first)); first.pop_back(); EXPECT_FALSE(DecodeHeaderBlock(first)); } TEST_P(HpackDecoderAdapterTest, HuffmanEOSError) { std::string first; ASSERT_TRUE(absl::HexStringToBytes("418cf1e3c2e5f23a6ba0ab90f4ff", &first)); EXPECT_TRUE(DecodeHeaderBlock(first)); ASSERT_TRUE(absl::HexStringToBytes("418df1e3c2e5f23a6ba0ab90f4ffff", &first)); EXPECT_FALSE(DecodeHeaderBlock(first)); } TEST_P(HpackDecoderAdapterTest, BasicC31) { HpackEncoder encoder; quiche::HttpHeaderBlock expected_header_set; expected_header_set[":method"] = "GET"; expected_header_set[":scheme"] = "http"; expected_header_set[":path"] = "/"; expected_header_set[":authority"] = "www.example.com"; std::string encoded_header_set = encoder.EncodeHeaderBlock(expected_header_set); EXPECT_TRUE(DecodeHeaderBlock(encoded_header_set)); EXPECT_EQ(expected_header_set, decoded_block()); } TEST_P(HpackDecoderAdapterTest, SectionC4RequestHuffmanExamples) { std::string first; ASSERT_TRUE( absl::HexStringToBytes("828684418cf1e3c2e5f23a6ba0ab90f4ff", &first)); const quiche::HttpHeaderBlock& first_header_set = DecodeBlockExpectingSuccess(first); EXPECT_THAT(first_header_set, ElementsAre( Pair(":method", "GET"), Pair(":scheme", "http"), Pair(":path", "/"), Pair(":authority", "www.example.com"))); expectEntry(62, 57, ":authority", "www.example.com"); EXPECT_EQ(57u, decoder_peer_.current_header_table_size()); std::string second; ASSERT_TRUE(absl::HexStringToBytes("828684be5886a8eb10649cbf", &second)); const quiche::HttpHeaderBlock& second_header_set = DecodeBlockExpectingSuccess(second); EXPECT_THAT(second_header_set, ElementsAre( Pair(":method", "GET"), Pair(":scheme", "http"), Pair(":path", "/"), Pair(":authority", "www.example.com"), Pair("cache-control", "no-cache"))); expectEntry(62, 53, "cache-control", "no-cache"); expectEntry(63, 57, ":authority", "www.example.com"); EXPECT_EQ(110u, decoder_peer_.current_header_table_size()); std::string third; ASSERT_TRUE(absl::HexStringToBytes( "828785bf408825a849e95ba97d7f8925a849e95bb8e8b4bf", &third)); const quiche::HttpHeaderBlock& third_header_set = DecodeBlockExpectingSuccess(third); EXPECT_THAT( third_header_set, ElementsAre( Pair(":method", "GET"), Pair(":scheme", "https"), Pair(":path", "/index.html"), Pair(":authority", "www.example.com"), Pair("custom-key", "custom-value"))); expectEntry(62, 54, "custom-key", "custom-value"); expectEntry(63, 53, "cache-control", "no-cache"); expectEntry(64, 57, ":authority", "www.example.com"); EXPECT_EQ(164u, decoder_peer_.current_header_table_size()); } TEST_P(HpackDecoderAdapterTest, SectionC6ResponseHuffmanExamples) { decoder_peer_.set_header_table_size_limit(256); std::string first; ASSERT_TRUE(absl::HexStringToBytes( "488264025885aec3771a4b6196d07abe941054d444a8200595040b8166e082a62d1bff6e" "919d29ad171863c78f0b97c8e9ae82ae43d3", &first)); const quiche::HttpHeaderBlock& first_header_set = DecodeBlockExpectingSuccess(first); EXPECT_THAT(first_header_set, ElementsAre( Pair(":status", "302"), Pair("cache-control", "private"), Pair("date", "Mon, 21 Oct 2013 20:13:21 GMT"), Pair("location", "https: expectEntry(62, 63, "location", "https: expectEntry(63, 65, "date", "Mon, 21 Oct 2013 20:13:21 GMT"); expectEntry(64, 52, "cache-control", "private"); expectEntry(65, 42, ":status", "302"); EXPECT_EQ(222u, decoder_peer_.current_header_table_size()); std::string second; ASSERT_TRUE(absl::HexStringToBytes("4883640effc1c0bf", &second)); const quiche::HttpHeaderBlock& second_header_set = DecodeBlockExpectingSuccess(second); EXPECT_THAT(second_header_set, ElementsAre( Pair(":status", "307"), Pair("cache-control", "private"), Pair("date", "Mon, 21 Oct 2013 20:13:21 GMT"), Pair("location", "https: expectEntry(62, 42, ":status", "307"); expectEntry(63, 63, "location", "https: expectEntry(64, 65, "date", "Mon, 21 Oct 2013 20:13:21 GMT"); expectEntry(65, 52, "cache-control", "private"); EXPECT_EQ(222u, decoder_peer_.current_header_table_size()); std::string third; ASSERT_TRUE(absl::HexStringToBytes( "88c16196d07abe941054d444a8200595040b8166e084a62d1bffc05a839bd9ab77ad94e7" "821dd7f2e6c7b335dfdfcd5b3960d5af27087f3672c1ab270fb5291f9587316065c003ed" "4ee5b1063d5007", &third)); const quiche::HttpHeaderBlock& third_header_set = DecodeBlockExpectingSuccess(third); EXPECT_THAT(third_header_set, ElementsAre( Pair(":status", "200"), Pair("cache-control", "private"), Pair("date", "Mon, 21 Oct 2013 20:13:22 GMT"), Pair("location", "https: Pair("content-encoding", "gzip"), Pair("set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU;" " max-age=3600; version=1"))); expectEntry(62, 98, "set-cookie", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU;" " max-age=3600; version=1"); expectEntry(63, 52, "content-encoding", "gzip"); expectEntry(64, 65, "date", "Mon, 21 Oct 2013 20:13:22 GMT"); EXPECT_EQ(215u, decoder_peer_.current_header_table_size()); } TEST_P(HpackDecoderAdapterTest, ReuseNameOfEvictedEntry) { decoder_.ApplyHeaderTableSizeSetting(63); HpackBlockBuilder hbb; hbb.AppendDynamicTableSizeUpdate(0); hbb.AppendDynamicTableSizeUpdate(63); const absl::string_view name("some-name"); const absl::string_view value1("some-value"); const absl::string_view value2("another-value"); const absl::string_view value3("yet-another-value"); hbb.AppendLiteralNameAndValue(HpackEntryType::kIndexedLiteralHeader, false, name, false, value1); hbb.AppendIndexedHeader(62); hbb.AppendNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 62, false, value2); hbb.AppendIndexedHeader(62); hbb.AppendNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 62, false, value3); hbb.AppendIndexedHeader(62); EXPECT_TRUE(DecodeHeaderBlock(hbb.buffer(), kNoCheckDecodedSize)); quiche::HttpHeaderBlock expected_header_set; expected_header_set.AppendValueOrAddHeader(name, value1); expected_header_set.AppendValueOrAddHeader(name, value1); expected_header_set.AppendValueOrAddHeader(name, value2); expected_header_set.AppendValueOrAddHeader(name, value2); expected_header_set.AppendValueOrAddHeader(name, value3); expected_header_set.AppendValueOrAddHeader(name, value3); std::string joined_values = expected_header_set[name].as_string(); EXPECT_EQ(joined_values.size(), 2 * value1.size() + 2 * value2.size() + 2 * value3.size() + 5); EXPECT_EQ(expected_header_set, decoded_block()); EXPECT_EQ(handler_.uncompressed_header_bytes(), 6 * name.size() + 2 * value1.size() + 2 * value2.size() + 2 * value3.size()); } TEST_P(HpackDecoderAdapterTest, Cookies) { quiche::HttpHeaderBlock expected_header_set; expected_header_set["cookie"] = "foo; bar"; std::string encoded_block; ASSERT_TRUE(absl::HexStringToBytes("608294e76003626172", &encoded_block)); EXPECT_TRUE(DecodeHeaderBlock(encoded_block)); EXPECT_EQ(expected_header_set, decoded_block()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/hpack_decoder_adapter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/hpack_decoder_adapter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
31a835cc-caae-4afb-b0a3-525ca43c83f7
cpp
tensorflow/tensorflow
pjrt_util
tensorflow/core/tfrt/common/pjrt_util.cc
tensorflow/core/tfrt/common/pjrt_util_test.cc
#include "tensorflow/core/tfrt/common/pjrt_util.h" #include <memory> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/pjrt/pjrt_client.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/common/global_state.h" #include "tensorflow/core/tfrt/common/pjrt_state.h" #include "tsl/platform/errors.h" namespace tensorflow { Status SetPjRtClientInTFGlobalResourceManager( const DeviceType& device_type, std::unique_ptr<xla::PjRtClient> client) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); if (client == nullptr) { return errors::InvalidArgument("PJRT client is nullptr."); } TF_RETURN_IF_ERROR(pjrt_state->SetPjRtClient(device_type, std::move(client))); return absl::OkStatus(); } absl::StatusOr<xla::PjRtClient*> GetPjRtClient(const DeviceType& device_type) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); return pjrt_state->GetPjRtClient(device_type); } absl::Status SetPjRtGpuClientCreationInfoInTFGlobalResourceManager( std::unique_ptr<PjRtGpuClientCreationInfo> info) { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); if (info == nullptr) { return absl::InvalidArgumentError("PJRT client creation info is nullptr."); } TF_RETURN_IF_ERROR(pjrt_state->SetPjRtGpuClientCreationInfo(std::move(info))); return absl::OkStatus(); } absl::StatusOr<PjRtGpuClientCreationInfo*> GetPjRtGpuClientCreationInfo() { ResourceMgr* rmgr = tfrt_global::GetTFGlobalResourceMgr(); PjRtState* pjrt_state; TF_RETURN_IF_ERROR(rmgr->LookupOrCreate<PjRtState>( rmgr->default_container(), kPjRtStateResourceName, &pjrt_state, [&](PjRtState** ret) { *ret = PjRtState::Create(); return absl::OkStatus(); })); core::ScopedUnref pjrt_state_ref(pjrt_state); return pjrt_state->GetPjRtGpuClientCreationInfo(); } }
#include "tensorflow/core/tfrt/common/pjrt_util.h" #include <memory> #include <utility> #include "xla/pjrt/cpu/cpu_client.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/tfrt/common/pjrt_state.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(PjRtUtilTest, SetGetAndDeletePjRtClient) { TF_ASSERT_OK(SetPjRtClientInTFGlobalResourceManager( DEVICE_CPU, xla::GetTfrtCpuClient(true, 1) .value())); TF_ASSERT_OK_AND_ASSIGN(auto pjrt_client, GetPjRtClient(DEVICE_CPU)); EXPECT_THAT(pjrt_client, ::testing::NotNull()); } TEST(PjRtStateResourceManagerTest, SetNullPjRtClient) { EXPECT_THAT( SetPjRtClientInTFGlobalResourceManager(DEVICE_CPU, nullptr), StatusIs(error::INVALID_ARGUMENT, HasSubstr("PJRT client is nullptr"))); } TEST(PjRtGpuClientCreationInfoTest, SetAndGet) { auto info = std::make_unique<PjRtGpuClientCreationInfo>(); info->allowed_devices.insert(123); TF_ASSERT_OK( SetPjRtGpuClientCreationInfoInTFGlobalResourceManager(std::move(info))); TF_ASSERT_OK_AND_ASSIGN(PjRtGpuClientCreationInfo * retrieved_info, GetPjRtGpuClientCreationInfo()); EXPECT_THAT(retrieved_info->allowed_devices, ElementsAre(123)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/common/pjrt_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b06d8b0c-17ce-447c-92e5-73775c5dc0a2
cpp
abseil/abseil-cpp
per_thread_sem
absl/synchronization/internal/per_thread_sem.cc
absl/synchronization/internal/per_thread_sem_test.cc
#include "absl/base/internal/low_level_alloc.h" #ifndef ABSL_LOW_LEVEL_ALLOC_MISSING #include "absl/synchronization/internal/per_thread_sem.h" #include <atomic> #include "absl/base/attributes.h" #include "absl/base/internal/thread_identity.h" #include "absl/synchronization/internal/waiter.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace synchronization_internal { void PerThreadSem::SetThreadBlockedCounter(std::atomic<int> *counter) { base_internal::ThreadIdentity *identity; identity = GetOrCreateCurrentThreadIdentity(); identity->blocked_count_ptr = counter; } std::atomic<int> *PerThreadSem::GetThreadBlockedCounter() { base_internal::ThreadIdentity *identity; identity = GetOrCreateCurrentThreadIdentity(); return identity->blocked_count_ptr; } void PerThreadSem::Tick(base_internal::ThreadIdentity *identity) { const int ticker = identity->ticker.fetch_add(1, std::memory_order_relaxed) + 1; const int wait_start = identity->wait_start.load(std::memory_order_relaxed); const bool is_idle = identity->is_idle.load(std::memory_order_relaxed); if (wait_start && (ticker - wait_start > Waiter::kIdlePeriods) && !is_idle) { ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPoke)(identity); } } } ABSL_NAMESPACE_END } extern "C" { ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemInit)( absl::base_internal::ThreadIdentity *identity) { new (absl::synchronization_internal::Waiter::GetWaiter(identity)) absl::synchronization_internal::Waiter(); } ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPost)( absl::base_internal::ThreadIdentity *identity) { absl::synchronization_internal::Waiter::GetWaiter(identity)->Post(); } ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPoke)( absl::base_internal::ThreadIdentity *identity) { absl::synchronization_internal::Waiter::GetWaiter(identity)->Poke(); } ABSL_ATTRIBUTE_WEAK bool ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemWait)( absl::synchronization_internal::KernelTimeout t) { bool timeout = false; absl::base_internal::ThreadIdentity *identity; identity = absl::synchronization_internal::GetOrCreateCurrentThreadIdentity(); int ticker = identity->ticker.load(std::memory_order_relaxed); identity->wait_start.store(ticker ? ticker : 1, std::memory_order_relaxed); identity->is_idle.store(false, std::memory_order_relaxed); if (identity->blocked_count_ptr != nullptr) { identity->blocked_count_ptr->fetch_add(1, std::memory_order_relaxed); } timeout = !absl::synchronization_internal::Waiter::GetWaiter(identity)->Wait(t); if (identity->blocked_count_ptr != nullptr) { identity->blocked_count_ptr->fetch_sub(1, std::memory_order_relaxed); } identity->is_idle.store(false, std::memory_order_relaxed); identity->wait_start.store(0, std::memory_order_relaxed); return !timeout; } } #endif
#include "absl/synchronization/internal/per_thread_sem.h" #include <atomic> #include <condition_variable> #include <functional> #include <limits> #include <mutex> #include <string> #include <thread> #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/cycleclock.h" #include "absl/base/internal/thread_identity.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace synchronization_internal { class SimpleSemaphore { public: SimpleSemaphore() : count_(0) {} void Wait() { std::unique_lock<std::mutex> lock(mu_); cv_.wait(lock, [this]() { return count_ > 0; }); --count_; cv_.notify_one(); } void Post() { std::lock_guard<std::mutex> lock(mu_); ++count_; cv_.notify_one(); } private: std::mutex mu_; std::condition_variable cv_; int count_; }; struct ThreadData { int num_iterations; SimpleSemaphore identity2_written; base_internal::ThreadIdentity *identity1; base_internal::ThreadIdentity *identity2; KernelTimeout timeout; }; class PerThreadSemTest : public testing::Test { public: static void TimingThread(ThreadData* t) { t->identity2 = GetOrCreateCurrentThreadIdentity(); t->identity2_written.Post(); while (t->num_iterations--) { Wait(t->timeout); Post(t->identity1); } } void TestTiming(const char *msg, bool timeout) { static const int kNumIterations = 100; ThreadData t; t.num_iterations = kNumIterations; t.timeout = timeout ? KernelTimeout(absl::Now() + absl::Seconds(10000)) : KernelTimeout::Never(); t.identity1 = GetOrCreateCurrentThreadIdentity(); std::thread partner_thread(std::bind(TimingThread, &t)); t.identity2_written.Wait(); int64_t min_cycles = std::numeric_limits<int64_t>::max(); int64_t total_cycles = 0; for (int i = 0; i < kNumIterations; ++i) { absl::SleepFor(absl::Milliseconds(20)); int64_t cycles = base_internal::CycleClock::Now(); Post(t.identity2); Wait(t.timeout); cycles = base_internal::CycleClock::Now() - cycles; min_cycles = std::min(min_cycles, cycles); total_cycles += cycles; } std::string out = StrCat( msg, "min cycle count=", min_cycles, " avg cycle count=", absl::SixDigits(static_cast<double>(total_cycles) / kNumIterations)); printf("%s\n", out.c_str()); partner_thread.join(); } protected: static void Post(base_internal::ThreadIdentity *id) { PerThreadSem::Post(id); } static bool Wait(KernelTimeout t) { return PerThreadSem::Wait(t); } static bool Wait(absl::Time t) { return Wait(KernelTimeout(t)); } static void Tick(base_internal::ThreadIdentity *identity) { PerThreadSem::Tick(identity); } }; namespace { TEST_F(PerThreadSemTest, WithoutTimeout) { PerThreadSemTest::TestTiming("Without timeout: ", false); } TEST_F(PerThreadSemTest, WithTimeout) { PerThreadSemTest::TestTiming("With timeout: ", true); } TEST_F(PerThreadSemTest, Timeouts) { const absl::Duration delay = absl::Milliseconds(50); const absl::Time start = absl::Now(); EXPECT_FALSE(Wait(start + delay)); const absl::Duration elapsed = absl::Now() - start; absl::Duration slop = absl::Milliseconds(1); #ifdef _MSC_VER slop = absl::Milliseconds(16); #endif EXPECT_LE(delay - slop, elapsed) << "Wait returned " << delay - elapsed << " early (with " << slop << " slop), start time was " << start; absl::Time negative_timeout = absl::UnixEpoch() - absl::Milliseconds(100); EXPECT_FALSE(Wait(negative_timeout)); EXPECT_LE(negative_timeout, absl::Now() + slop); Post(GetOrCreateCurrentThreadIdentity()); EXPECT_TRUE(Wait(negative_timeout)); } TEST_F(PerThreadSemTest, ThreadIdentityReuse) { for (int i = 0; i < 10000; i++) { std::thread t([]() { GetOrCreateCurrentThreadIdentity(); }); t.join(); } } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/internal/per_thread_sem.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/internal/per_thread_sem_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
368e0049-e1af-47f0-8969-3f472eb1b158
cpp
tensorflow/tensorflow
quantize
tensorflow/compiler/mlir/quantization/tensorflow/passes/quantize.cc
tensorflow/lite/delegates/hexagon/builders/tests/quantize_test.cc
#include <memory> #include <string> #include <utility> #include "absl/container/flat_hash_set.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Quant/IR/QuantTypes.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/Types.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassRegistry.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Support/TypeID.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "tensorflow/compiler/mlir/lite/quantization/ir/QuantOps.h" #include "tensorflow/compiler/mlir/lite/transforms/passes.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_config.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_utils.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/framework/types.pb.h" namespace mlir { namespace quant { namespace { using ::tensorflow::quantization::OpSet; enum QuantizationTrait { kFullQuantization, kDynamicRangeQuantization }; template <QuantizationTrait quantization_trait, typename ConcreteT, typename RootOpT = quantfork::DequantizeCastOp> struct TFQuantizationBase : public QuantizationPattern<ConcreteT, quantfork::QuantizeCastOp, quantfork::DequantizeCastOp, void, RootOpT> { explicit TFQuantizationBase(MLIRContext* ctx, const QuantPassSpec& quant_params) : QuantizationPattern<ConcreteT, quantfork::QuantizeCastOp, quantfork::DequantizeCastOp, void, RootOpT>(ctx, quant_params) {} static bool IsQuantizableCustomOp(Operation* op, const CustomMap& custom_op_map) { return false; } static bool AllowDynamicRangeQuantizedOperand( Operation* quantized_op, const CustomMap& custom_op_map) { auto call_op = cast<TF::PartitionedCallOp>(quantized_op); StringRef function_name = call_op.getFAttr().cast<FlatSymbolRefAttr>().getValue(); const bool is_gather = function_name.contains("gather"); return quantization_trait != kFullQuantization || is_gather; } static bool AllowDynamicRangeQuantizedResult(Operation* quantized_op, const CustomMap& custom_op_map) { auto call_op = cast<TF::PartitionedCallOp>(quantized_op); StringRef function_name = call_op.getFAttr().cast<FlatSymbolRefAttr>().getValue(); bool is_gather = false; if (function_name.contains("gather")) is_gather = true; return quantization_trait != kFullQuantization || (quantization_trait == kFullQuantization && is_gather); } static bool IsWeightOnlyOp(Operation* quantized_op, absl::flat_hash_set<std::string>& ops_blocklist, bool weight_only_quantization, const CustomMap& custom_op_map) { return weight_only_quantization; } }; struct TFFullQuantization : public TFQuantizationBase<kFullQuantization, TFFullQuantization> { explicit TFFullQuantization(MLIRContext* ctx, const QuantPassSpec& quant_params) : TFQuantizationBase<kFullQuantization, TFFullQuantization>( ctx, quant_params) {} }; struct TFFullQuantizationReverse : public TFQuantizationBase<kFullQuantization, TFFullQuantizationReverse, quantfork::QuantizeCastOp> { explicit TFFullQuantizationReverse(MLIRContext* ctx, const QuantPassSpec& quant_params) : TFQuantizationBase<kFullQuantization, TFFullQuantizationReverse, quantfork::QuantizeCastOp>(ctx, quant_params) {} }; struct TFDynamicRangeQuantization : public TFQuantizationBase<kDynamicRangeQuantization, TFDynamicRangeQuantization> { explicit TFDynamicRangeQuantization(MLIRContext* ctx, const quant::QuantPassSpec& quant_params) : TFQuantizationBase<kDynamicRangeQuantization, TFDynamicRangeQuantization>(ctx, quant_params) {} }; class RemoveUnusedQdqPattern : public OpRewritePattern<quantfork::DequantizeCastOp> { public: explicit RemoveUnusedQdqPattern(MLIRContext* context) : OpRewritePattern<quantfork::DequantizeCastOp>(context) {} LogicalResult matchAndRewrite(quantfork::DequantizeCastOp dq_op, PatternRewriter& rewriter) const override { auto q_op = dq_op.getArg().getDefiningOp<quantfork::QuantizeCastOp>(); if (!q_op) return failure(); dq_op.replaceAllUsesWith(q_op.getArg()); return success(); } }; class QuantizeSameScaleOpsPattern : public OpRewritePattern<quantfork::DequantizeCastOp> { public: explicit QuantizeSameScaleOpsPattern( MLIRContext* context, OpQuantScaleSpecGetter op_quant_scale_spec_getter, OpSet target_opset) : OpRewritePattern<quantfork::DequantizeCastOp>(context, 200), op_quant_scale_spec_getter_(op_quant_scale_spec_getter), target_opset_(target_opset) {} LogicalResult matchAndRewrite(quantfork::DequantizeCastOp op, PatternRewriter& rewriter) const override { SmallVector<Operation*, 4> quantizing_ops; auto users = op.getResult().getUsers(); quantizing_ops.append(users.begin(), users.end()); bool changed = false; for (Operation* quantizing_op : quantizing_ops) { if (llvm::isa<quantfork::QuantizeCastOp, quantfork::DequantizeCastOp>( quantizing_op)) { return failure(); } if (quantizing_op->hasTrait<OpTrait::IsTerminator>()) { return failure(); } if (!op_quant_scale_spec_getter_(quantizing_op) ->has_same_scale_requirement) { continue; } if (target_opset_ == OpSet::XLA && !IsConnectedWithCompsiteFunction(quantizing_op)) { continue; } if (target_opset_ == OpSet::UNIFORM_QUANTIZED) { continue; } SmallVector<Value, 4> inputs; inputs.reserve(quantizing_op->getNumOperands()); for (const auto& operand : quantizing_op->getOperands()) { Type operand_type = operand.getType(); if (operand_type.isa<NoneType>()) { inputs.push_back(operand); continue; } Type elem_type = operand_type.cast<TensorType>().getElementType(); if (auto dq_op = dyn_cast_or_null<quantfork::DequantizeCastOp>( operand.getDefiningOp())) { auto dq_arg_type = dq_op.getArg().getType().cast<TensorType>(); auto qtype = dq_arg_type.getElementType().cast<QuantizedType>(); auto scast_op = rewriter.create<quantfork::StorageCastOp>( dq_op->getLoc(), dq_arg_type.clone(qtype.getStorageType()), dq_op.getArg()); inputs.push_back(scast_op.getResult()); } else if (!elem_type.isF32()) { inputs.push_back(operand); } else { return failure(); } } llvm::SmallDenseMap<Value, int> outputs_replaced; SmallVector<Type, 4> output_types; output_types.reserve(quantizing_op->getNumResults()); for (const auto& enumerated_result : llvm::enumerate(quantizing_op->getResults())) { Value result = enumerated_result.value(); Type result_type = result.getType(); if (result_type.isa<NoneType>()) { outputs_replaced.insert({result, enumerated_result.index()}); output_types.push_back(result_type); continue; } auto result_tensor_type = result_type.cast<TensorType>(); if (result.hasOneUse() && llvm::isa<quantfork::QuantizeCastOp>(*result.user_begin())) { auto user = llvm::cast<quantfork::QuantizeCastOp>(*result.user_begin()); outputs_replaced.insert( {user.getResult(), enumerated_result.index()}); auto qtype = user.getType() .cast<TensorType>() .getElementType() .cast<QuantizedType>(); output_types.push_back( result_tensor_type.clone(qtype.getStorageType())); } else if (!result_tensor_type.getElementType().isF32()) { outputs_replaced.insert({result, enumerated_result.index()}); output_types.push_back(result.getType()); } else { return failure(); } } rewriter.setInsertionPointAfter(quantizing_op); OperationState new_state(quantizing_op->getLoc(), quantizing_op->getName().getStringRef(), inputs, output_types, quantizing_op->getAttrs()); for (int i = 0; i < quantizing_op->getNumRegions(); ++i) { new_state.addRegion(); } Operation* quantized_op = rewriter.create(new_state); if (quantizing_op->getNumRegions() != 0) { for (const auto& indexed_regions : llvm::enumerate(quantizing_op->getRegions())) { IRMapping mapping; indexed_regions.value().cloneInto( &quantized_op->getRegion(indexed_regions.index()), mapping); } } for (const auto& output_index_pair : outputs_replaced) { Value output = output_index_pair.getFirst(); int output_index = output_index_pair.getSecond(); auto scast_op = rewriter.create<quantfork::StorageCastOp>( output.getLoc(), output.getType(), quantized_op->getResult(output_index)); output.replaceAllUsesWith(scast_op); } changed = true; } return success(changed); } private: bool IsConnectedWithCompsiteFunction(Operation* same_scale_op) const { for (const auto& operand : same_scale_op->getOperands()) { auto dq_op = dyn_cast_or_null<quantfork::DequantizeCastOp>( operand.getDefiningOp()); if (!dq_op) continue; Operation* preceding_op = dq_op.getArg().getDefiningOp(); if (!preceding_op) continue; if (llvm::isa<TF::PartitionedCallOp>(preceding_op)) { auto call_op = llvm::cast<TF::PartitionedCallOp>(preceding_op); if (!IsCompositeFunction(call_op)) continue; return true; } if (llvm::isa<quantfork::StorageCastOp>(preceding_op)) { auto sc_op = llvm::cast<quantfork::StorageCastOp>(preceding_op); auto sc_arg_type = sc_op.getArg().getType().dyn_cast<TensorType>(); if (sc_arg_type.getElementType().isInteger(8)) { return true; } } } for (const auto& result : same_scale_op->getResults()) { if (!result.hasOneUse() || !llvm::isa<quantfork::QuantizeCastOp>(*result.user_begin())) { continue; } auto q_op = llvm::cast<quantfork::QuantizeCastOp>(*result.user_begin()); for (auto following_op : q_op->getUsers()) { if (llvm::isa<TF::PartitionedCallOp>(following_op)) { auto call_op = llvm::cast<TF::PartitionedCallOp>(following_op); if (!IsCompositeFunction(call_op)) continue; return true; } if (llvm::isa<quantfork::StorageCastOp>(following_op)) { auto sc_op = llvm::cast<quantfork::StorageCastOp>(following_op); auto sc_arg_type = sc_op.getResult().getType().dyn_cast<TensorType>(); if (sc_arg_type.getElementType().isInteger(8)) { return true; } } } } return false; } bool IsCompositeFunction(TF::PartitionedCallOp call_op) const { if (!call_op->hasAttr(kQuantTraitAttrName)) { return false; } const auto f_attr = call_op.getFAttr().dyn_cast<FlatSymbolRefAttr>(); if (!f_attr || !f_attr.getValue().starts_with("composite_")) { return false; } bool has_quantized_types = false; for (Value input : call_op.getArgs()) { if (auto type = input.getType().dyn_cast<TensorType>()) { if (type.getElementType().isa<FloatType>()) { return false; } if (type.getElementType().isa<QuantizedType>()) { has_quantized_types = true; } } } for (Value output : call_op.getOutput()) { if (auto type = output.getType().dyn_cast<TensorType>()) { if (type.getElementType().isa<FloatType>()) { return false; } if (type.getElementType().isa<QuantizedType>()) { has_quantized_types = true; } } } return has_quantized_types; } OpQuantScaleSpecGetter op_quant_scale_spec_getter_; OpSet target_opset_; }; struct QuantizeAvgPoolOpPattern : public OpRewritePattern<quantfork::StorageCastOp> { explicit QuantizeAvgPoolOpPattern(MLIRContext* context) : OpRewritePattern<quantfork::StorageCastOp>(context, 100) {} LogicalResult matchAndRewrite(quantfork::StorageCastOp sc_op, PatternRewriter& rewriter) const override { auto avg_pool_op = sc_op.getArg().getDefiningOp<TF::AvgPoolOp>(); if (!avg_pool_op) return failure(); auto preceding_sc_op = dyn_cast_or_null<quantfork::StorageCastOp>( avg_pool_op.getValue().getDefiningOp()); if (!preceding_sc_op) return failure(); auto dq_arg_type = preceding_sc_op.getArg().getType().cast<TensorType>(); auto qtype = dq_arg_type.getElementType().cast<QuantizedType>(); auto q_result_type = sc_op.getType().cast<TensorType>(); auto out_qtype = q_result_type.getElementType().cast<QuantizedType>(); if (qtype != out_qtype) { avg_pool_op.emitError( "The preceding StorageCastOp and the following " "StorageCastOp must have the same quantized type"); return failure(); } OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPointAfter(preceding_sc_op); auto fcast_op = rewriter.create<TF::CastOp>( preceding_sc_op->getLoc(), dq_arg_type.clone(rewriter.getF32Type()), preceding_sc_op.getResult()); TF::AvgPoolOp float_avg_pool_op = rewriter.create<TF::AvgPoolOp>( avg_pool_op->getLoc(), avg_pool_op.getType().clone(rewriter.getF32Type()), fcast_op.getResult(), avg_pool_op->getAttrs()); auto round_val = rewriter.create<TF::RoundOp>( sc_op.getLoc(), float_avg_pool_op.getOutput()); auto icast_op = rewriter.create<TF::CastOp>( sc_op.getLoc(), q_result_type.clone(qtype.getStorageType()), round_val); avg_pool_op.getResult().replaceAllUsesWith(icast_op.getResult()); return success(); } }; class QuantizePass : public PassWrapper<QuantizePass, OperationPass<func::FuncOp>> { public: MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(QuantizePass) explicit QuantizePass() { quant_specs_.inference_type = tensorflow::DT_QINT8; } explicit QuantizePass(const QuantizationSpecs& quant_specs, OpSet target_opset) : quant_specs_(quant_specs) { weight_quantization_ = quant_specs.weight_quantization; target_opset_ = target_opset; } QuantizePass(const QuantizePass& other) : quant_specs_(other.quant_specs_) { weight_quantization_ = other.weight_quantization_; target_opset_ = other.target_opset_; } StringRef getArgument() const final { return "quant-quantize"; } StringRef getDescription() const final { return "Apply quantization on models in TensorFlow dialect"; } bool shouldKeepUnusedQdqPattern(); void runOnOperation() override; private: QuantizationSpecs quant_specs_; Option<bool> weight_quantization_{ *this, "weight-quantization", llvm::cl::init(false), llvm::cl::desc("Whether to enable weight quantization.")}; Option<OpSet> target_opset_{ *this, "target-opset", llvm::cl::init(OpSet::TF), llvm::cl::desc("Choose target opset."), llvm::cl::values( clEnumValN(OpSet::TF, "TF", "Uses TF ops that mimic quantization behavior"), clEnumValN(OpSet::XLA, "XLA", "Uses TF XLA ops"), clEnumValN(OpSet::UNIFORM_QUANTIZED, "UNIFORM_QUANTIZED", "Uses TF Uniform Quantized ops"))}; }; bool QuantizePass::shouldKeepUnusedQdqPattern() { return target_opset_ == OpSet::XLA && (quant_specs_.weight_only_quantization || quant_specs_.weight_quantization); } void QuantizePass::runOnOperation() { RewritePatternSet patterns(&getContext()); auto func = getOperation(); auto* ctx = func.getContext(); quant_specs_.weight_quantization = weight_quantization_; const QuantPassSpec quant_params = { {quant_specs_.verify_numeric, 5.0f, quant_specs_.whole_model_verify, false}, quant_specs_}; if (quant_specs_.weight_quantization) { patterns.add<TFDynamicRangeQuantization>(ctx, quant_params); } else { patterns.add<TFFullQuantization, TFFullQuantizationReverse>(ctx, quant_params); patterns.add<QuantizeSameScaleOpsPattern>(ctx, GetTfQuantScaleSpec, target_opset_); patterns.add<QuantizeAvgPoolOpPattern>(ctx); } if (failed(applyPatternsAndFoldGreedily(func, std::move(patterns)))) { func.emitWarning("Failed to converge pattern at QuantizePass."); } if (!shouldKeepUnusedQdqPattern()) { RewritePatternSet patterns_2(&getContext()); patterns_2.add<RemoveUnusedQdqPattern>(ctx); if (failed(applyPatternsAndFoldGreedily(func, std::move(patterns_2)))) { signalPassFailure(); } } } } std::unique_ptr<OperationPass<func::FuncOp>> CreateQuantizePass() { QuantizationSpecs quant_specs; return std::make_unique<QuantizePass>(quant_specs, OpSet::TF); } std::unique_ptr<OperationPass<func::FuncOp>> CreateQuantizePass( QuantizationSpecs quant_specs, OpSet target_opset) { return std::make_unique<QuantizePass>(quant_specs, target_opset); } static PassRegistration<QuantizePass> pass; } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; class QuantizeOpModel : public SingleOpModelWithHexagon { public: explicit QuantizeOpModel(const TensorData& input, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_QUANTIZE, BuiltinOptions_QuantizeOptions, CreateQuantizeOptions(builder_).Union()); BuildInterpreter({GetShape(input_)}); } template <typename T> void SetInput(const std::vector<float>& data) { QuantizeAndPopulate<T>(input_, data); } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_); } protected: BuiltinOperator op_code_; int input_; int output_; }; TEST(QuantizeOpTest, UInt8UInt8SameScale) { QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64}, {TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64}); m.SetInput<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetOutput<uint8_t>(), ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147})); } TEST(QuantizeOpTest, Uint8Uint8LargerScale) { QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64}, {TensorType_UINT8, {1, 1, 2, 5}, -127, 128}); m.SetInput<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetOutput<uint8_t>(), ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137})); } TEST(QuantizeOpTest, Uint8Uint8SmallerScale) { QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -127, 128}, {TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64}); m.SetInput<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetOutput<uint8_t>(), ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147})); } TEST(QuantizeOpTest, Int8Uint8SmallerScale) { QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128}, {TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64}); m.SetInput<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetOutput<uint8_t>(), ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147})); } TEST(QuantizeOpTest, Int8Uint8LargerScale) { QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128}, {TensorType_UINT8, {1, 1, 2, 5}, -254, 256}); m.SetInput<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT( m.GetOutput<uint8_t>(), ElementsAreArray({128, 128, 129, 129, 130, 130, 131, 131, 132, 132})); } TEST(QuantizeOpTest, UInt8Int8SameScale128Diff) { QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -127, 128}, {TensorType_INT8, {1, 1, 2, 5}, -127, 128}); m.SetInput<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})); } TEST(QuantizeOpTest, Int8Int8SameScale) { QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -63.5, 64}, {TensorType_INT8, {1, 1, 2, 5}, -63.5, 64}); m.SetInput<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19})); } TEST(QuantizeOpTest, Int8Int8LargerScale) { QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -63.5, 64}, {TensorType_INT8, {1, 1, 2, 5}, -127, 128}); m.SetInput<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})); } TEST(QuantizeOpTest, Int8Int8SmallerScale) { QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128}, {TensorType_INT8, {1, 1, 2, 5}, -63.5, 64}); m.SetInput<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); m.ApplyDelegateAndInvoke(); EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/passes/quantize.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/hexagon/builders/tests/quantize_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ab694cd8-38e1-4516-a33b-db2d3a7779e5
cpp
tensorflow/tensorflow
memory_info
tensorflow/lite/profiling/memory_info.cc
tensorflow/lite/profiling/memory_info_test.cc
#include "tensorflow/lite/profiling/memory_info.h" #include <stddef.h> #include <ostream> #ifdef __linux__ #include <malloc.h> #include <sys/resource.h> #include <sys/time.h> #elif defined(__APPLE__) #include <mach/mach.h> #include <malloc/malloc.h> #endif namespace tflite { namespace profiling { namespace memory { const size_t MemoryUsage::kValueNotSet = 0; bool MemoryUsage::IsSupported() { #if defined(__linux__) || defined(__APPLE__) return true; #endif return false; } MemoryUsage GetMemoryUsage() { MemoryUsage result; #ifdef __linux__ rusage res; if (getrusage(RUSAGE_SELF, &res) == 0) { result.mem_footprint_kb = res.ru_maxrss; } #if defined(__NO_MALLINFO__) result.total_allocated_bytes = -1; result.in_use_allocated_bytes = -1; #elif defined(__GLIBC__) && __GLIBC_MINOR__ >= 33 const auto mem = mallinfo2(); result.total_allocated_bytes = mem.arena; result.in_use_allocated_bytes = mem.uordblks; #else const auto mem = mallinfo(); result.total_allocated_bytes = mem.arena; result.in_use_allocated_bytes = mem.uordblks; #endif #elif defined(__APPLE__) struct task_vm_info vm_info; mach_msg_type_number_t count = TASK_VM_INFO_COUNT; auto status = task_info(mach_task_self(), TASK_VM_INFO, reinterpret_cast<task_info_t>(&vm_info), &count); if (status == KERN_SUCCESS) { result.mem_footprint_kb = static_cast<int64_t>(vm_info.phys_footprint / 1024.0); } struct mstats stats = mstats(); result.total_allocated_bytes = stats.bytes_total; result.in_use_allocated_bytes = stats.bytes_used; #endif return result; } void MemoryUsage::AllStatsToStream(std::ostream* stream) const { *stream << "max resident set size/physical footprint = " << mem_footprint_kb / 1000.0 << " MB, total non-mmapped heap size = " << total_allocated_bytes / 1000.0 / 1000.0 << " MB, in-use heap size = " << in_use_allocated_bytes / 1000.0 / 1000.0 << " MB"; } } } }
#include "tensorflow/lite/profiling/memory_info.h" #include <memory> #include <new> #include <sstream> #include <string> #include <gtest/gtest.h> namespace tflite { namespace profiling { namespace memory { TEST(MemoryUsage, AddAndSub) { MemoryUsage mem1, mem2; mem1.mem_footprint_kb = 5; mem1.total_allocated_bytes = 7000; mem1.in_use_allocated_bytes = 2000; mem2.mem_footprint_kb = 3; mem2.total_allocated_bytes = 7000; mem2.in_use_allocated_bytes = 4000; const auto add_mem = mem1 + mem2; EXPECT_EQ(8, add_mem.mem_footprint_kb); EXPECT_EQ(14000, add_mem.total_allocated_bytes); EXPECT_EQ(6000, add_mem.in_use_allocated_bytes); const auto sub_mem = mem1 - mem2; EXPECT_EQ(2, sub_mem.mem_footprint_kb); EXPECT_EQ(0, sub_mem.total_allocated_bytes); EXPECT_EQ(-2000, sub_mem.in_use_allocated_bytes); } TEST(MemoryUsage, GetMemoryUsage) { MemoryUsage result; EXPECT_EQ(MemoryUsage::kValueNotSet, result.mem_footprint_kb); EXPECT_EQ(MemoryUsage::kValueNotSet, result.total_allocated_bytes); EXPECT_EQ(MemoryUsage::kValueNotSet, result.in_use_allocated_bytes); #if defined(__linux__) || defined(__APPLE__) constexpr int size = 10 * 1024 * 1024; std::unique_ptr<unsigned char[]> byte_array(new unsigned char[size]); for (int i = 0; i < size; ++i) { byte_array[i] = i % 256; } result = GetMemoryUsage(); for (int i = 0; i < size; ++i) { EXPECT_EQ(byte_array[i], i % 256); } EXPECT_GE(result.mem_footprint_kb, size / 1024); EXPECT_GE(result.total_allocated_bytes, size); EXPECT_GE(result.in_use_allocated_bytes, size); #endif } TEST(MemoryUsage, OutputMemoryUsageToStream) { MemoryUsage memory_usage = GetMemoryUsage(); std::stringstream stream; stream << memory_usage; std::string message = stream.str(); EXPECT_STRNE(message.c_str(), ""); } TEST(MemoryUsage, IsSupported) { #if defined(__linux__) || defined(__APPLE__) EXPECT_TRUE(MemoryUsage::IsSupported()); #else EXPECT_FALSE(MemoryUsage::IsSupported()); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/profiling/memory_info.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/profiling/memory_info_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ec5e5467-28e8-4e41-a333-1a91de739759
cpp
tensorflow/tensorflow
cpu_backend_gemm
tensorflow/lite/kernels/cpu_backend_gemm.h
tensorflow/lite/kernels/cpu_backend_gemm_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_CPU_BACKEND_GEMM_H_ #define TENSORFLOW_LITE_KERNELS_CPU_BACKEND_GEMM_H_ #include <cstdint> #include "ruy/profiler/instrumentation.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_custom_gemv.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_params.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_ruy.h" #ifndef TFLITE_WITH_RUY #include "tensorflow/lite/kernels/cpu_backend_gemm_eigen.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_gemmlowp.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_x86.h" #endif namespace tflite { namespace cpu_backend_gemm { #if !defined(TFLITE_WITH_RUY) && defined(TFLITE_X86_PLATFORM) template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar, QuantizationFlavor quantization_flavor> struct GemmImpl : detail::GemmImplX86<LhsScalar, RhsScalar, AccumScalar, DstScalar, quantization_flavor> {}; #else template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar, QuantizationFlavor quantization_flavor> struct GemmImpl : detail::GemmImplUsingRuy<LhsScalar, RhsScalar, AccumScalar, DstScalar, quantization_flavor> {}; #if !defined(TFLITE_WITH_RUY) template <typename SrcScalar, typename DstScalar, QuantizationFlavor quantization_flavor> struct GemmImpl<SrcScalar, SrcScalar, std::int32_t, DstScalar, quantization_flavor> : detail::GemmImplUsingGemmlowp<SrcScalar, SrcScalar, std::int32_t, DstScalar, quantization_flavor> {}; #if !defined(GEMMLOWP_NEON) template <typename SrcScalar, QuantizationFlavor quantization_flavor> struct GemmImpl<SrcScalar, SrcScalar, std::int32_t, std::int8_t, quantization_flavor> : detail::GemmImplUsingRuy<SrcScalar, SrcScalar, std::int32_t, std::int8_t, quantization_flavor> {}; template <typename DstScalar, QuantizationFlavor quantization_flavor> struct GemmImpl<std::int8_t, std::int8_t, std::int32_t, DstScalar, quantization_flavor> : detail::GemmImplUsingRuy<std::int8_t, std::int8_t, std::int32_t, DstScalar, quantization_flavor> {}; template <QuantizationFlavor quantization_flavor> struct GemmImpl<std::int8_t, std::int8_t, std::int32_t, std::int8_t, quantization_flavor> : detail::GemmImplUsingRuy<std::int8_t, std::int8_t, std::int32_t, std::int8_t, quantization_flavor> {}; #endif template <> struct GemmImpl<float, float, float, float, QuantizationFlavor::kFloatingPoint> : detail::GemmImplUsingEigen {}; #endif #endif template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar, QuantizationFlavor quantization_flavor> void Gemm(const MatrixParams<LhsScalar>& lhs_params, const LhsScalar* lhs_data, const MatrixParams<RhsScalar>& rhs_params, const RhsScalar* rhs_data, const MatrixParams<DstScalar>& dst_params, DstScalar* dst_data, const GemmParams<AccumScalar, DstScalar, quantization_flavor>& params, CpuBackendContext* context) { ruy::profiler::ScopeLabel label("cpu_backend_gemm::Gemm"); ValidateParams(lhs_params, rhs_params, dst_params, params); if (!IsValidGemm(lhs_params, rhs_params, dst_params)) { TFLITE_DCHECK(false); return; } bool must_use_ruy = false; if (context->use_caching()) { must_use_ruy = true; } if (lhs_params.order != Order::kRowMajor || rhs_params.order != Order::kColMajor || dst_params.order != Order::kColMajor) { must_use_ruy = true; } if (must_use_ruy) { detail::GemmImplUsingRuy<LhsScalar, RhsScalar, AccumScalar, DstScalar, quantization_flavor>::Run(lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params, context); return; } const bool try_custom_gemv = (dst_params.cols == 1); if (try_custom_gemv) { if (detail::CustomGemv(lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params, context)) { return; } } GemmImpl<LhsScalar, RhsScalar, AccumScalar, DstScalar, quantization_flavor>::Run(lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params, context); } template <QuantizationFlavor quantization_flavor> void Gemm(const MatrixParams<int8_t>& lhs_params, const int8_t* lhs_data, const MatrixParams<int16_t>& rhs_params, const int16_t* rhs_data, const MatrixParams<int16_t>& dst_params, int16_t* dst_data, const GemmParams<int32_t, int16_t, quantization_flavor>& params, CpuBackendContext* context) { ruy::profiler::ScopeLabel label("cpu_backend_gemm::Gemm"); ValidateParams(lhs_params, rhs_params, dst_params, params); if (!IsValidGemm(lhs_params, rhs_params, dst_params)) { TFLITE_DCHECK(false); return; } detail::GemmImplUsingRuy<int8_t, int16_t, int32_t, int16_t, quantization_flavor>::Run(lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params, context); } template <typename LhsScalar, typename RhsScalar, QuantizationFlavor quantization_flavor> void Gemm(const MatrixParams<LhsScalar>& lhs_params, const LhsScalar* lhs_data, const MatrixParams<RhsScalar>& rhs_params, const RhsScalar* rhs_data, const MatrixParams<int32_t>& dst_params, int32_t* dst_data, const GemmParams<int32_t, int32_t, quantization_flavor>& params, CpuBackendContext* context) { ruy::profiler::ScopeLabel label("cpu_backend_gemm::Gemm"); ValidateParams(lhs_params, rhs_params, dst_params, params); ruy::profiler::ScopeLabel label2("cpu_backend_gemm::Gemm: general GEMM"); detail::GemmImplUsingRuy<LhsScalar, RhsScalar, int32_t, int32_t, quantization_flavor>::Run(lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params, context); } } } #endif
#include "tensorflow/lite/kernels/cpu_backend_gemm.h" #include <math.h> #include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iterator> #include <limits> #include <random> #include <sstream> #include <string> #include <tuple> #include <type_traits> #include <vector> #include <gtest/gtest.h> #include "ruy/matrix.h" #include "ruy/reference_mul.h" #include "tensorflow/lite/kernels/cpu_backend_context.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_params.h" #include "tensorflow/lite/kernels/cpu_backend_gemm_ruy.h" namespace tflite { namespace { using cpu_backend_gemm::Gemm; using cpu_backend_gemm::GemmParams; using cpu_backend_gemm::MatrixParams; using cpu_backend_gemm::QuantizationFlavor; template <typename Scalar> std::string ToString(const std::vector<Scalar>& vector) { std::stringstream s; if (vector.empty()) { s << "{}"; } else { s << "{ " << static_cast<double>(vector[0]); for (int i = 1; i < vector.size(); i++) { s << ", " << static_cast<double>(vector[i]); } s << "}"; } return s.str(); } template <typename Scalar> void MakeDeterministicPseudoRandomVector(int size, std::vector<Scalar>* vector) { std::default_random_engine random_engine; (void)random_engine(); const double random_min = static_cast<double>(random_engine.min()); const double random_max = static_cast<double>(random_engine.max()); const double result_min = std::is_floating_point<Scalar>::value ? -1.0 : std::max(-256., static_cast<double>( std::numeric_limits<Scalar>::lowest())); const double result_max = std::is_floating_point<Scalar>::value ? 1.0 : std::min(256., static_cast<double>(std::numeric_limits<Scalar>::max())); const double random_scale = (result_max - result_min) / (random_max - random_min); vector->resize(size); for (int i = 0; i < size; i++) { double val = random_scale * (random_engine() - random_min); val = std::max(val, static_cast<double>(std::numeric_limits<Scalar>::lowest())); val = std::min(val, static_cast<double>(std::numeric_limits<Scalar>::max())); (*vector)[i] = static_cast<Scalar>(val); } } template <typename Scalar> void MakeVectorFilledWithConsecutiveInts(int size, std::vector<Scalar>* vector) { vector->resize(size); EXPECT_LE(size, std::numeric_limits<Scalar>::max()); for (int i = 0; i < size; i++) { (*vector)[i] = static_cast<Scalar>(i + 1); } } template <typename Scalar> Scalar Median(const std::vector<Scalar>& vector) { EXPECT_GT(vector.size(), 0); std::vector<Scalar> vector_copy = vector; std::sort(std::begin(vector_copy), std::end(vector_copy)); return vector_copy[vector_copy.size() / 2]; } template <typename Scalar> double MedianAbs(const std::vector<Scalar>& vector) { EXPECT_GT(vector.size(), 0); std::vector<double> vector_abs; vector_abs.resize(vector.size()); for (int i = 0; i < vector.size(); i++) { vector_abs[i] = std::abs(static_cast<double>(vector[i])); } std::sort(std::begin(vector_abs), std::end(vector_abs)); return vector_abs[vector_abs.size() / 2]; } template <typename Scalar> void Clamp(const std::vector<Scalar>& src, Scalar clamp_min, Scalar clamp_max, std::vector<Scalar>* dst) { dst->resize(src.size()); for (int i = 0; i < src.size(); i++) { (*dst)[i] = std::max(std::min(src[i], clamp_max), clamp_min); } } template <typename AccumScalar, typename DstScalar, QuantizationFlavor quantization_flavor> void Clamp(const GemmParams<AccumScalar, DstScalar, quantization_flavor>& src, DstScalar clamp_min, DstScalar clamp_max, GemmParams<AccumScalar, DstScalar, quantization_flavor>* dst) { *dst = src; dst->clamp_min = clamp_min; dst->clamp_max = clamp_max; } struct ErrorStats { int size; double scale_factor; double max_abs_diff; double mean_abs_diff; double abs_mean_diff; }; template <typename Scalar> void ComputeErrorStats(const std::vector<Scalar>& actual, const std::vector<Scalar>& expected, ErrorStats* error_stats) { double max_abs_diff = 0; double sum_abs_diff = 0; double sum_diff = 0; double max_abs_expected = 0; EXPECT_EQ(actual.size(), expected.size()); for (int i = 0; i < actual.size(); i++) { double actual_val = static_cast<double>(actual[i]); double expected_val = static_cast<double>(expected[i]); double diff = actual_val - expected_val; max_abs_expected = std::max(max_abs_expected, std::abs(expected_val)); sum_diff += diff; sum_abs_diff += std::abs(diff); max_abs_diff = std::max(max_abs_diff, std::abs(diff)); } error_stats->scale_factor = max_abs_expected; error_stats->max_abs_diff = max_abs_diff; error_stats->mean_abs_diff = sum_abs_diff / actual.size(); error_stats->abs_mean_diff = std::abs(sum_diff / actual.size()); error_stats->size = actual.size(); } template <typename AccumScalar, typename DstScalar> bool CheckErrorStats(const ErrorStats& error_stats, int accumulation_depth) { double tolerated_relative_max_abs_diff = 0; double tolerated_relative_mean_abs_diff = 0; double tolerated_relative_abs_mean_diff = 0; double inverse_size = 1. / error_stats.size; if (std::is_floating_point<AccumScalar>::value) { tolerated_relative_max_abs_diff = accumulation_depth * std::numeric_limits<DstScalar>::epsilon(); tolerated_relative_mean_abs_diff = std::sqrt(static_cast<double>(accumulation_depth)) * std::numeric_limits<DstScalar>::epsilon(); tolerated_relative_abs_mean_diff = tolerated_relative_mean_abs_diff * std::sqrt(inverse_size); } else { tolerated_relative_max_abs_diff = 1; tolerated_relative_mean_abs_diff = std::sqrt(inverse_size) * 0.5; tolerated_relative_abs_mean_diff = inverse_size * 2.; } double tolerated_max_abs_diff = tolerated_relative_max_abs_diff * error_stats.scale_factor; double tolerated_mean_abs_diff = tolerated_relative_mean_abs_diff * error_stats.scale_factor; double tolerated_abs_mean_diff = tolerated_relative_abs_mean_diff * error_stats.scale_factor; EXPECT_LE(error_stats.max_abs_diff, tolerated_max_abs_diff); EXPECT_LE(error_stats.mean_abs_diff, tolerated_mean_abs_diff); EXPECT_LE(error_stats.abs_mean_diff, tolerated_abs_mean_diff); return error_stats.max_abs_diff <= tolerated_max_abs_diff && error_stats.mean_abs_diff <= tolerated_mean_abs_diff && error_stats.abs_mean_diff <= tolerated_abs_mean_diff; } template <typename AccumScalar, typename DstScalar> void CheckErrorForAccumulation(int accumulation_depth, const std::vector<DstScalar>& actual, const std::vector<DstScalar>& expected) { ErrorStats error_stats; ComputeErrorStats(actual, expected, &error_stats); bool success = CheckErrorStats<AccumScalar, DstScalar>(error_stats, accumulation_depth); EXPECT_TRUE(success) << "Actual vector\n" << ToString(actual) << "\ndiffers from expected vector\n" << ToString(expected) << "\n"; } template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar, QuantizationFlavor quantization_flavor> void PerformGemmThenCompareResultsThenAgainWithClamping( const MatrixParams<LhsScalar>& lhs_params, const std::vector<LhsScalar>& lhs_data, const MatrixParams<RhsScalar>& rhs_params, const std::vector<RhsScalar>& rhs_data, const MatrixParams<DstScalar>& dst_params, std::vector<DstScalar>* dst_data, const GemmParams<AccumScalar, DstScalar, quantization_flavor>& params, const std::vector<DstScalar>& expected, CpuBackendContext* cpu_backend_context) { const int accumulation_depth = lhs_params.cols; Gemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, dst_data->data(), params, cpu_backend_context); CheckErrorForAccumulation<AccumScalar>(accumulation_depth, *dst_data, expected); DstScalar expected_median = Median(expected); std::vector<DstScalar> expected_with_clamp; GemmParams<AccumScalar, DstScalar, quantization_flavor> params_with_clamp; DstScalar clamp_min, clamp_max; clamp_min = std::numeric_limits<DstScalar>::lowest(); clamp_max = expected_median; Clamp(expected, clamp_min, clamp_max, &expected_with_clamp); Clamp(params, clamp_min, clamp_max, &params_with_clamp); Gemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, dst_data->data(), params_with_clamp, cpu_backend_context); CheckErrorForAccumulation<AccumScalar>(accumulation_depth, *dst_data, expected_with_clamp); clamp_min = expected_median; clamp_max = std::numeric_limits<DstScalar>::max(); Clamp(expected, clamp_min, clamp_max, &expected_with_clamp); Clamp(params, clamp_min, clamp_max, &params_with_clamp); Gemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, dst_data->data(), params_with_clamp, cpu_backend_context); CheckErrorForAccumulation<AccumScalar>(accumulation_depth, *dst_data, expected_with_clamp); } template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar> int BisectReasonableMultiplierExponent( int bisect_min, int bisect_max, const MatrixParams<LhsScalar>& lhs_params, const std::vector<LhsScalar>& lhs_data, const MatrixParams<RhsScalar>& rhs_params, const std::vector<RhsScalar>& rhs_data, const MatrixParams<DstScalar>& dst_params, std::vector<DstScalar>* dst_data, const GemmParams<AccumScalar, DstScalar>& params, CpuBackendContext* cpu_backend_context) { if (bisect_min == bisect_max) { return bisect_min; } int bisect_mid = static_cast<int>(std::floor(0.5 * (bisect_min + bisect_max))); GemmParams<AccumScalar, DstScalar> params_copy(params); params_copy.multiplier_exponent = bisect_mid; double clamp_abs = std::max(std::abs(static_cast<double>(params.clamp_min)), std::abs(static_cast<double>(params.clamp_max))); Gemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, dst_data->data(), params_copy, cpu_backend_context); double median_abs = MedianAbs(*dst_data); if (median_abs < 0.25 * clamp_abs) { return BisectReasonableMultiplierExponent( bisect_mid + 1, bisect_max, lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params_copy, cpu_backend_context); } else { return BisectReasonableMultiplierExponent( bisect_min, bisect_mid, lhs_params, lhs_data, rhs_params, rhs_data, dst_params, dst_data, params_copy, cpu_backend_context); } } template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar, QuantizationFlavor quantization_flavor> void ReferenceGemm( const MatrixParams<LhsScalar>& lhs_params, const LhsScalar* lhs_data, const MatrixParams<RhsScalar>& rhs_params, const RhsScalar* rhs_data, const MatrixParams<DstScalar>& dst_params, DstScalar* dst_data, const GemmParams<AccumScalar, DstScalar, quantization_flavor>& params, CpuBackendContext* context) { ruy::Matrix<LhsScalar> ruy_lhs; ruy::Matrix<RhsScalar> ruy_rhs; ruy::Matrix<DstScalar> ruy_dst; cpu_backend_gemm::detail::MakeRuyMatrix(lhs_params, lhs_data, &ruy_lhs); cpu_backend_gemm::detail::MakeRuyMatrix(rhs_params, rhs_data, &ruy_rhs); cpu_backend_gemm::detail::MakeRuyMatrix(dst_params, dst_data, &ruy_dst); ruy::MulParams<AccumScalar, DstScalar> ruy_mul_params; cpu_backend_gemm::detail::MakeRuyMulParams(params, &ruy_mul_params); ruy::ReferenceMul(ruy_lhs, ruy_rhs, ruy_mul_params, &ruy_dst); } template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar> void TestSomeGemm(int rows, int depth, int cols, const std::vector<DstScalar>& golden) { CpuBackendContext cpu_backend_context; std::default_random_engine random_engine; cpu_backend_context.SetMaxNumThreads(1 + (random_engine() % 8)); bool use_caching = static_cast<bool>(random_engine() % 2); cpu_backend_context.SetUseCaching(use_caching); const bool use_golden = !golden.empty(); std::vector<LhsScalar> lhs_data; std::vector<RhsScalar> rhs_data; std::vector<AccumScalar> bias_data; std::vector<DstScalar> dst_data; if (use_golden) { MakeVectorFilledWithConsecutiveInts(rows * depth, &lhs_data); MakeVectorFilledWithConsecutiveInts(depth * cols, &rhs_data); MakeVectorFilledWithConsecutiveInts(rows, &bias_data); } else { MakeDeterministicPseudoRandomVector(rows * depth, &lhs_data); MakeDeterministicPseudoRandomVector(depth * cols, &rhs_data); MakeDeterministicPseudoRandomVector(rows, &bias_data); } MakeDeterministicPseudoRandomVector(rows * cols, &dst_data); auto random_order = [&]() { return random_engine() % 2 ? cpu_backend_gemm::Order::kRowMajor : cpu_backend_gemm::Order::kColMajor; }; MatrixParams<LhsScalar> lhs_params; lhs_params.order = use_golden ? cpu_backend_gemm::Order::kRowMajor : random_order(); lhs_params.rows = rows; lhs_params.cols = depth; if (!std::is_floating_point<LhsScalar>::value && (!std::is_same<LhsScalar, int8_t>::value && !std::is_same<RhsScalar, int16_t>::value)) { lhs_params.zero_point = 1; if (!use_golden) { lhs_params.zero_point += random_engine() % 8; } } MatrixParams<RhsScalar> rhs_params; rhs_params.order = use_golden ? cpu_backend_gemm::Order::kColMajor : random_order(); rhs_params.rows = depth; rhs_params.cols = cols; if (!std::is_floating_point<RhsScalar>::value && (!std::is_same<LhsScalar, int8_t>::value && !std::is_same<RhsScalar, int16_t>::value)) { rhs_params.zero_point = 1; if (!use_golden) { rhs_params.zero_point += random_engine() % 8; } } MatrixParams<DstScalar> dst_params; dst_params.order = use_golden ? cpu_backend_gemm::Order::kColMajor : random_order(); dst_params.rows = rows; dst_params.cols = cols; if (!std::is_floating_point<DstScalar>::value && (!std::is_same<LhsScalar, int8_t>::value && !std::is_same<RhsScalar, int16_t>::value)) { dst_params.zero_point = 1; if (!use_golden) { dst_params.zero_point += random_engine() % 8; } } GemmParams<AccumScalar, DstScalar> params; if (use_golden || (random_engine() % 2)) { params.bias = bias_data.data(); } static constexpr std::int32_t kMultiplierFixedpointMin = 1234567890; static constexpr std::int32_t kMultiplierFixedpointMax = 1987654321; if (!std::is_floating_point<AccumScalar>::value) { params.multiplier_fixedpoint = kMultiplierFixedpointMin; int bisect_min = -8 * static_cast<int>(sizeof(AccumScalar)); int bisect_max = 0; params.multiplier_exponent = BisectReasonableMultiplierExponent( bisect_min, bisect_max, lhs_params, lhs_data, rhs_params, rhs_data, dst_params, &dst_data, params, &cpu_backend_context); } std::vector<DstScalar> expected; if (use_golden) { EXPECT_EQ(golden.size(), dst_data.size()); expected = golden; } else { expected.resize(dst_data.size()); ReferenceGemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, expected.data(), params, &cpu_backend_context); } PerformGemmThenCompareResultsThenAgainWithClamping( lhs_params, lhs_data, rhs_params, rhs_data, dst_params, &dst_data, params, expected, &cpu_backend_context); if (!use_golden && !std::is_floating_point<AccumScalar>::value) { std::vector<AccumScalar> multiplier_fixedpoint_perchannel(rows); std::vector<int> multiplier_exponent_perchannel(rows); for (int i = 0; i < rows; i++) { multiplier_fixedpoint_perchannel[i] = kMultiplierFixedpointMin + (random_engine() % (kMultiplierFixedpointMax + 1 - kMultiplierFixedpointMin)); const int exponent_min = params.multiplier_exponent - 2; const int exponent_max = params.multiplier_exponent + 2; multiplier_exponent_perchannel[i] = exponent_min + (random_engine() % (exponent_max + 1 - exponent_min)); } static constexpr QuantizationFlavor perchannel_flavor = std::is_floating_point<AccumScalar>::value ? QuantizationFlavor::kFloatingPoint : QuantizationFlavor::kIntegerWithPerRowMultiplier; GemmParams<AccumScalar, DstScalar, perchannel_flavor> params_perchannel; params_perchannel.bias = params.bias; params_perchannel.clamp_min = params.clamp_min; params_perchannel.clamp_max = params.clamp_max; params_perchannel.multiplier_fixedpoint_perchannel = multiplier_fixedpoint_perchannel.data(); params_perchannel.multiplier_exponent_perchannel = multiplier_exponent_perchannel.data(); ReferenceGemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, expected.data(), params_perchannel, &cpu_backend_context); PerformGemmThenCompareResultsThenAgainWithClamping( lhs_params, lhs_data, rhs_params, rhs_data, dst_params, &dst_data, params_perchannel, expected, &cpu_backend_context); } } template <typename LhsScalar, typename RhsScalar, typename AccumScalar, typename DstScalar> void TestMaybeValidGemm(int lhs_rows, int lhs_cols, int rhs_rows, int rhs_cols, int dst_rows, int dst_cols) { CpuBackendContext cpu_backend_context; std::default_random_engine random_engine; cpu_backend_context.SetMaxNumThreads(1 + (random_engine() % 8)); bool use_caching = static_cast<bool>(random_engine() % 2); cpu_backend_context.SetUseCaching(use_caching); std::vector<LhsScalar> lhs_data; std::vector<RhsScalar> rhs_data; std::vector<AccumScalar> bias_data; std::vector<DstScalar> dst_data; MakeDeterministicPseudoRandomVector(lhs_rows * lhs_cols, &lhs_data); MakeDeterministicPseudoRandomVector(rhs_rows * rhs_cols, &rhs_data); MakeDeterministicPseudoRandomVector(dst_rows, &bias_data); MakeDeterministicPseudoRandomVector(dst_rows * dst_cols, &dst_data); MatrixParams<LhsScalar> lhs_params; lhs_params.order = cpu_backend_gemm::Order::kRowMajor; lhs_params.rows = lhs_rows; lhs_params.cols = lhs_cols; if (!std::is_floating_point<LhsScalar>::value && (!std::is_same<LhsScalar, int8_t>::value && !std::is_same<RhsScalar, int16_t>::value)) { lhs_params.zero_point = 1; } MatrixParams<RhsScalar> rhs_params; rhs_params.order = cpu_backend_gemm::Order::kColMajor; rhs_params.rows = rhs_rows; rhs_params.cols = rhs_cols; if (!std::is_floating_point<RhsScalar>::value && (!std::is_same<LhsScalar, int8_t>::value && !std::is_same<RhsScalar, int16_t>::value)) { rhs_params.zero_point = 1; } MatrixParams<DstScalar> dst_params; dst_params.order = cpu_backend_gemm::Order::kColMajor; dst_params.rows = dst_rows; dst_params.cols = dst_cols; if (!std::is_floating_point<DstScalar>::value && (!std::is_same<LhsScalar, int8_t>::value && !std::is_same<RhsScalar, int16_t>::value)) { dst_params.zero_point = 1; } GemmParams<AccumScalar, DstScalar> params; params.bias = bias_data.data(); static constexpr std::int32_t kMultiplierFixedpointMin = 1234567890; if (!std::is_floating_point<AccumScalar>::value) { params.multiplier_fixedpoint = kMultiplierFixedpointMin; int bisect_min = -8 * static_cast<int>(sizeof(AccumScalar)); int bisect_max = 0; params.multiplier_exponent = BisectReasonableMultiplierExponent( bisect_min, bisect_max, lhs_params, lhs_data, rhs_params, rhs_data, dst_params, &dst_data, params, &cpu_backend_context); } Gemm(lhs_params, lhs_data.data(), rhs_params, rhs_data.data(), dst_params, dst_data.data(), params, &cpu_backend_context); } TEST(CpuBackendGemmSimpleTestAgainstGolden, Float) { TestSomeGemm<float, float, float, float>(2, 3, 4, {15, 34, 33, 79, 51, 124, 69, 169}); } TEST(CpuBackendGemmSimpleTestAgainstGolden, Uint8) { TestSomeGemm<std::uint8_t, std::uint8_t, std::int32_t, std::uint8_t>( 5, 2, 3, {2, 4, 6, 7, 9, 3, 10, 16, 22, 29, 4, 15, 26, 37, 48}); } TEST(CpuBackendGemmSimpleTestAgainstGolden, Int8) { TestSomeGemm<std::int8_t, std::int8_t, std::int32_t, std::int8_t>( 2, 6, 3, {13, 32, 31, 81, 50, 127}); } TEST(CpuBackendGemmInvalidGemmTest, Float) { TestMaybeValidGemm<float, float, float, float>(2, 3, 3, 4, 2, 4); #if !defined(TARGET_IPHONE_SIMULATOR) && !defined(TARGET_OS_IPHONE) ASSERT_DEBUG_DEATH( (TestMaybeValidGemm<float, float, float, float>(2, 3, 3, 0, 2, 4)), ""); ASSERT_DEBUG_DEATH( (TestMaybeValidGemm<float, float, float, float>(2, 3, 9, 4, 2, 4)), ""); #endif } TEST(CpuBackendGemmSimpleTestAgainstGolden, Int8Int16) { TestSomeGemm<std::int8_t, std::int8_t, std::int32_t, std::int16_t>( 3, 5, 4, {19, 48, 77, 48, 149, 250, 76, 249, 422, 105, 350, 595}); } template <typename tLhsScalar, typename tRhsScalar, typename tAccumScalar, typename tDstScalar> struct TypesTuple { using LhsScalar = tLhsScalar; using RhsScalar = tRhsScalar; using AccumScalar = tAccumScalar; using DstScalar = tDstScalar; }; template <typename TypesTupleType> void TestRandomGemms(const std::vector<std::tuple<int, int, int>>& shapes) { using LhsScalar = typename TypesTupleType::LhsScalar; using RhsScalar = typename TypesTupleType::RhsScalar; using AccumScalar = typename TypesTupleType::AccumScalar; using DstScalar = typename TypesTupleType::DstScalar; for (const auto& shape : shapes) { int rows = std::get<0>(shape); int depth = std::get<1>(shape); int cols = std::get<2>(shape); TestSomeGemm<LhsScalar, RhsScalar, AccumScalar, DstScalar>(rows, depth, cols, {}); } } template <typename TypesTupleType> class CpuBackendGemmTest : public testing::Test {}; TYPED_TEST_SUITE_P(CpuBackendGemmTest); typedef ::testing::Types< TypesTuple<float, float, float, float>, TypesTuple<std::uint8_t, std::uint8_t, std::int32_t, std::uint8_t>, TypesTuple<std::int8_t, std::int8_t, std::int32_t, std::int8_t>, TypesTuple<std::int8_t, std::int8_t, std::int32_t, std::int16_t>, TypesTuple<std::int8_t, std::int16_t, std::int32_t, std::int16_t>, TypesTuple<std::uint8_t, std::uint8_t, std::int32_t, std::int8_t>> CpuBackendGemmTestInstantiations; TYPED_TEST_SUITE(CpuBackendGemmTest, CpuBackendGemmTestInstantiations); TYPED_TEST(CpuBackendGemmTest, Square) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 50; size++) { shapes.push_back(std::make_tuple(size, size, size)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, SquarePowerOfTwo) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 64; size <= 128; size *= 2) { shapes.push_back(std::make_tuple(size, size, size)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, MatrixTimesVector) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 200; size++) { shapes.push_back(std::make_tuple(size, size, 1)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, VectorTimesMatrix) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 200; size++) { shapes.push_back(std::make_tuple(1, size, size)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, MatrixTimesNarrow) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 50; size++) { shapes.push_back(std::make_tuple(size, size, 2)); shapes.push_back(std::make_tuple(size, size, 3)); shapes.push_back(std::make_tuple(size, size, 4)); shapes.push_back(std::make_tuple(size, size, 8)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, Rectangular) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 50; size++) { shapes.push_back(std::make_tuple(size, size + 5, size + 1)); shapes.push_back(std::make_tuple(size + 10, size + 2, size)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, HighlyRectangular) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size <= 1000; size *= 10) { shapes.push_back(std::make_tuple(size, 10, 10)); shapes.push_back(std::make_tuple(10, size, 10)); shapes.push_back(std::make_tuple(10, 10, size)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, InnerProduct) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 200; size++) { shapes.push_back(std::make_tuple(1, size, 1)); } TestRandomGemms<TypeParam>(shapes); } TYPED_TEST(CpuBackendGemmTest, OuterProduct) { std::vector<std::tuple<int, int, int>> shapes; for (int size = 1; size < 100; size++) { shapes.push_back(std::make_tuple(size, 1, size)); } TestRandomGemms<TypeParam>(shapes); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/cpu_backend_gemm.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/cpu_backend_gemm_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
65d98835-6fe6-493b-8c8c-b0b35aa47eae
cpp
abseil/abseil-cpp
compare
absl/types/compare.h
absl/types/compare_test.cc
#ifndef ABSL_TYPES_COMPARE_H_ #define ABSL_TYPES_COMPARE_H_ #include "absl/base/config.h" #ifdef ABSL_USES_STD_ORDERING #include <compare> #include <type_traits> #include "absl/meta/type_traits.h" #else #include <cstddef> #include <cstdint> #include <cstdlib> #include <type_traits> #include "absl/base/attributes.h" #include "absl/base/macros.h" #include "absl/meta/type_traits.h" #endif namespace absl { ABSL_NAMESPACE_BEGIN #ifdef ABSL_USES_STD_ORDERING using std::partial_ordering; using std::strong_ordering; using std::weak_ordering; #else namespace compare_internal { using value_type = int8_t; class OnlyLiteralZero { public: #if ABSL_HAVE_ATTRIBUTE(enable_if) constexpr OnlyLiteralZero(int n) __attribute__((enable_if(n == 0, "Only literal `0` is allowed."))) {} #else constexpr OnlyLiteralZero(int OnlyLiteralZero::*) noexcept {} #endif template <typename T, typename = typename std::enable_if< std::is_same<T, std::nullptr_t>::value || (std::is_integral<T>::value && !std::is_same<T, int>::value)>::type> OnlyLiteralZero(T) { static_assert(sizeof(T) < 0, "Only literal `0` is allowed."); } }; enum class eq : value_type { equal = 0, equivalent = equal, nonequal = 1, nonequivalent = nonequal, }; enum class ord : value_type { less = -1, greater = 1 }; enum class ncmp : value_type { unordered = -127 }; #ifdef __cpp_inline_variables #define ABSL_COMPARE_INLINE_BASECLASS_DECL(name) static_assert(true, "") #define ABSL_COMPARE_INLINE_SUBCLASS_DECL(type, name) \ static const type name #define ABSL_COMPARE_INLINE_INIT(type, name, init) \ inline constexpr type type::name(init) #else #define ABSL_COMPARE_INLINE_BASECLASS_DECL(name) \ ABSL_CONST_INIT static const T name #define ABSL_COMPARE_INLINE_SUBCLASS_DECL(type, name) static_assert(true, "") #define ABSL_COMPARE_INLINE_INIT(type, name, init) \ template <typename T> \ const T compare_internal::type##_base<T>::name(init) #endif template <typename T> struct partial_ordering_base { ABSL_COMPARE_INLINE_BASECLASS_DECL(less); ABSL_COMPARE_INLINE_BASECLASS_DECL(equivalent); ABSL_COMPARE_INLINE_BASECLASS_DECL(greater); ABSL_COMPARE_INLINE_BASECLASS_DECL(unordered); }; template <typename T> struct weak_ordering_base { ABSL_COMPARE_INLINE_BASECLASS_DECL(less); ABSL_COMPARE_INLINE_BASECLASS_DECL(equivalent); ABSL_COMPARE_INLINE_BASECLASS_DECL(greater); }; template <typename T> struct strong_ordering_base { ABSL_COMPARE_INLINE_BASECLASS_DECL(less); ABSL_COMPARE_INLINE_BASECLASS_DECL(equal); ABSL_COMPARE_INLINE_BASECLASS_DECL(equivalent); ABSL_COMPARE_INLINE_BASECLASS_DECL(greater); }; } class partial_ordering : public compare_internal::partial_ordering_base<partial_ordering> { explicit constexpr partial_ordering(compare_internal::eq v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} explicit constexpr partial_ordering(compare_internal::ord v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} explicit constexpr partial_ordering(compare_internal::ncmp v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} friend struct compare_internal::partial_ordering_base<partial_ordering>; constexpr bool is_ordered() const noexcept { return value_ != compare_internal::value_type(compare_internal::ncmp::unordered); } public: ABSL_COMPARE_INLINE_SUBCLASS_DECL(partial_ordering, less); ABSL_COMPARE_INLINE_SUBCLASS_DECL(partial_ordering, equivalent); ABSL_COMPARE_INLINE_SUBCLASS_DECL(partial_ordering, greater); ABSL_COMPARE_INLINE_SUBCLASS_DECL(partial_ordering, unordered); friend constexpr bool operator==( partial_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.is_ordered() && v.value_ == 0; } friend constexpr bool operator!=( partial_ordering v, compare_internal::OnlyLiteralZero) noexcept { return !v.is_ordered() || v.value_ != 0; } friend constexpr bool operator<( partial_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.is_ordered() && v.value_ < 0; } friend constexpr bool operator<=( partial_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.is_ordered() && v.value_ <= 0; } friend constexpr bool operator>( partial_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.is_ordered() && v.value_ > 0; } friend constexpr bool operator>=( partial_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.is_ordered() && v.value_ >= 0; } friend constexpr bool operator==(compare_internal::OnlyLiteralZero, partial_ordering v) noexcept { return v.is_ordered() && 0 == v.value_; } friend constexpr bool operator!=(compare_internal::OnlyLiteralZero, partial_ordering v) noexcept { return !v.is_ordered() || 0 != v.value_; } friend constexpr bool operator<(compare_internal::OnlyLiteralZero, partial_ordering v) noexcept { return v.is_ordered() && 0 < v.value_; } friend constexpr bool operator<=(compare_internal::OnlyLiteralZero, partial_ordering v) noexcept { return v.is_ordered() && 0 <= v.value_; } friend constexpr bool operator>(compare_internal::OnlyLiteralZero, partial_ordering v) noexcept { return v.is_ordered() && 0 > v.value_; } friend constexpr bool operator>=(compare_internal::OnlyLiteralZero, partial_ordering v) noexcept { return v.is_ordered() && 0 >= v.value_; } friend constexpr bool operator==(partial_ordering v1, partial_ordering v2) noexcept { return v1.value_ == v2.value_; } friend constexpr bool operator!=(partial_ordering v1, partial_ordering v2) noexcept { return v1.value_ != v2.value_; } private: compare_internal::value_type value_; }; ABSL_COMPARE_INLINE_INIT(partial_ordering, less, compare_internal::ord::less); ABSL_COMPARE_INLINE_INIT(partial_ordering, equivalent, compare_internal::eq::equivalent); ABSL_COMPARE_INLINE_INIT(partial_ordering, greater, compare_internal::ord::greater); ABSL_COMPARE_INLINE_INIT(partial_ordering, unordered, compare_internal::ncmp::unordered); class weak_ordering : public compare_internal::weak_ordering_base<weak_ordering> { explicit constexpr weak_ordering(compare_internal::eq v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} explicit constexpr weak_ordering(compare_internal::ord v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} friend struct compare_internal::weak_ordering_base<weak_ordering>; public: ABSL_COMPARE_INLINE_SUBCLASS_DECL(weak_ordering, less); ABSL_COMPARE_INLINE_SUBCLASS_DECL(weak_ordering, equivalent); ABSL_COMPARE_INLINE_SUBCLASS_DECL(weak_ordering, greater); constexpr operator partial_ordering() const noexcept { return value_ == 0 ? partial_ordering::equivalent : (value_ < 0 ? partial_ordering::less : partial_ordering::greater); } friend constexpr bool operator==( weak_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ == 0; } friend constexpr bool operator!=( weak_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ != 0; } friend constexpr bool operator<( weak_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ < 0; } friend constexpr bool operator<=( weak_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ <= 0; } friend constexpr bool operator>( weak_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ > 0; } friend constexpr bool operator>=( weak_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ >= 0; } friend constexpr bool operator==(compare_internal::OnlyLiteralZero, weak_ordering v) noexcept { return 0 == v.value_; } friend constexpr bool operator!=(compare_internal::OnlyLiteralZero, weak_ordering v) noexcept { return 0 != v.value_; } friend constexpr bool operator<(compare_internal::OnlyLiteralZero, weak_ordering v) noexcept { return 0 < v.value_; } friend constexpr bool operator<=(compare_internal::OnlyLiteralZero, weak_ordering v) noexcept { return 0 <= v.value_; } friend constexpr bool operator>(compare_internal::OnlyLiteralZero, weak_ordering v) noexcept { return 0 > v.value_; } friend constexpr bool operator>=(compare_internal::OnlyLiteralZero, weak_ordering v) noexcept { return 0 >= v.value_; } friend constexpr bool operator==(weak_ordering v1, weak_ordering v2) noexcept { return v1.value_ == v2.value_; } friend constexpr bool operator!=(weak_ordering v1, weak_ordering v2) noexcept { return v1.value_ != v2.value_; } private: compare_internal::value_type value_; }; ABSL_COMPARE_INLINE_INIT(weak_ordering, less, compare_internal::ord::less); ABSL_COMPARE_INLINE_INIT(weak_ordering, equivalent, compare_internal::eq::equivalent); ABSL_COMPARE_INLINE_INIT(weak_ordering, greater, compare_internal::ord::greater); class strong_ordering : public compare_internal::strong_ordering_base<strong_ordering> { explicit constexpr strong_ordering(compare_internal::eq v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} explicit constexpr strong_ordering(compare_internal::ord v) noexcept : value_(static_cast<compare_internal::value_type>(v)) {} friend struct compare_internal::strong_ordering_base<strong_ordering>; public: ABSL_COMPARE_INLINE_SUBCLASS_DECL(strong_ordering, less); ABSL_COMPARE_INLINE_SUBCLASS_DECL(strong_ordering, equal); ABSL_COMPARE_INLINE_SUBCLASS_DECL(strong_ordering, equivalent); ABSL_COMPARE_INLINE_SUBCLASS_DECL(strong_ordering, greater); constexpr operator partial_ordering() const noexcept { return value_ == 0 ? partial_ordering::equivalent : (value_ < 0 ? partial_ordering::less : partial_ordering::greater); } constexpr operator weak_ordering() const noexcept { return value_ == 0 ? weak_ordering::equivalent : (value_ < 0 ? weak_ordering::less : weak_ordering::greater); } friend constexpr bool operator==( strong_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ == 0; } friend constexpr bool operator!=( strong_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ != 0; } friend constexpr bool operator<( strong_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ < 0; } friend constexpr bool operator<=( strong_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ <= 0; } friend constexpr bool operator>( strong_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ > 0; } friend constexpr bool operator>=( strong_ordering v, compare_internal::OnlyLiteralZero) noexcept { return v.value_ >= 0; } friend constexpr bool operator==(compare_internal::OnlyLiteralZero, strong_ordering v) noexcept { return 0 == v.value_; } friend constexpr bool operator!=(compare_internal::OnlyLiteralZero, strong_ordering v) noexcept { return 0 != v.value_; } friend constexpr bool operator<(compare_internal::OnlyLiteralZero, strong_ordering v) noexcept { return 0 < v.value_; } friend constexpr bool operator<=(compare_internal::OnlyLiteralZero, strong_ordering v) noexcept { return 0 <= v.value_; } friend constexpr bool operator>(compare_internal::OnlyLiteralZero, strong_ordering v) noexcept { return 0 > v.value_; } friend constexpr bool operator>=(compare_internal::OnlyLiteralZero, strong_ordering v) noexcept { return 0 >= v.value_; } friend constexpr bool operator==(strong_ordering v1, strong_ordering v2) noexcept { return v1.value_ == v2.value_; } friend constexpr bool operator!=(strong_ordering v1, strong_ordering v2) noexcept { return v1.value_ != v2.value_; } private: compare_internal::value_type value_; }; ABSL_COMPARE_INLINE_INIT(strong_ordering, less, compare_internal::ord::less); ABSL_COMPARE_INLINE_INIT(strong_ordering, equal, compare_internal::eq::equal); ABSL_COMPARE_INLINE_INIT(strong_ordering, equivalent, compare_internal::eq::equivalent); ABSL_COMPARE_INLINE_INIT(strong_ordering, greater, compare_internal::ord::greater); #undef ABSL_COMPARE_INLINE_BASECLASS_DECL #undef ABSL_COMPARE_INLINE_SUBCLASS_DECL #undef ABSL_COMPARE_INLINE_INIT #endif namespace compare_internal { template <typename BoolT, absl::enable_if_t<std::is_same<bool, BoolT>::value, int> = 0> constexpr bool compare_result_as_less_than(const BoolT r) { return r; } constexpr bool compare_result_as_less_than(const absl::weak_ordering r) { return r < 0; } template <typename Compare, typename K, typename LK> constexpr bool do_less_than_comparison(const Compare &compare, const K &x, const LK &y) { return compare_result_as_less_than(compare(x, y)); } template <typename Int, absl::enable_if_t<std::is_same<int, Int>::value, int> = 0> constexpr absl::weak_ordering compare_result_as_ordering(const Int c) { return c < 0 ? absl::weak_ordering::less : c == 0 ? absl::weak_ordering::equivalent : absl::weak_ordering::greater; } constexpr absl::weak_ordering compare_result_as_ordering( const absl::weak_ordering c) { return c; } template < typename Compare, typename K, typename LK, absl::enable_if_t<!std::is_same<bool, absl::result_of_t<Compare( const K &, const LK &)>>::value, int> = 0> constexpr absl::weak_ordering do_three_way_comparison(const Compare &compare, const K &x, const LK &y) { return compare_result_as_ordering(compare(x, y)); } template < typename Compare, typename K, typename LK, absl::enable_if_t<std::is_same<bool, absl::result_of_t<Compare( const K &, const LK &)>>::value, int> = 0> constexpr absl::weak_ordering do_three_way_comparison(const Compare &compare, const K &x, const LK &y) { return compare(x, y) ? absl::weak_ordering::less : compare(y, x) ? absl::weak_ordering::greater : absl::weak_ordering::equivalent; } } ABSL_NAMESPACE_END } #endif
#include "absl/types/compare.h" #include "gtest/gtest.h" #include "absl/base/casts.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace { bool Identity(bool b) { return b; } TEST(Compare, PartialOrdering) { EXPECT_TRUE(Identity(partial_ordering::less < 0)); EXPECT_TRUE(Identity(0 > partial_ordering::less)); EXPECT_TRUE(Identity(partial_ordering::less <= 0)); EXPECT_TRUE(Identity(0 >= partial_ordering::less)); EXPECT_TRUE(Identity(partial_ordering::equivalent == 0)); EXPECT_TRUE(Identity(0 == partial_ordering::equivalent)); EXPECT_TRUE(Identity(partial_ordering::greater > 0)); EXPECT_TRUE(Identity(0 < partial_ordering::greater)); EXPECT_TRUE(Identity(partial_ordering::greater >= 0)); EXPECT_TRUE(Identity(0 <= partial_ordering::greater)); EXPECT_TRUE(Identity(partial_ordering::unordered != 0)); EXPECT_TRUE(Identity(0 != partial_ordering::unordered)); EXPECT_FALSE(Identity(partial_ordering::unordered < 0)); EXPECT_FALSE(Identity(0 < partial_ordering::unordered)); EXPECT_FALSE(Identity(partial_ordering::unordered <= 0)); EXPECT_FALSE(Identity(0 <= partial_ordering::unordered)); EXPECT_FALSE(Identity(partial_ordering::unordered > 0)); EXPECT_FALSE(Identity(0 > partial_ordering::unordered)); EXPECT_FALSE(Identity(partial_ordering::unordered >= 0)); EXPECT_FALSE(Identity(0 >= partial_ordering::unordered)); const partial_ordering values[] = { partial_ordering::less, partial_ordering::equivalent, partial_ordering::greater, partial_ordering::unordered}; for (const auto& lhs : values) { for (const auto& rhs : values) { const bool are_equal = &lhs == &rhs; EXPECT_EQ(lhs == rhs, are_equal); EXPECT_EQ(lhs != rhs, !are_equal); } } } TEST(Compare, WeakOrdering) { EXPECT_TRUE(Identity(weak_ordering::less < 0)); EXPECT_TRUE(Identity(0 > weak_ordering::less)); EXPECT_TRUE(Identity(weak_ordering::less <= 0)); EXPECT_TRUE(Identity(0 >= weak_ordering::less)); EXPECT_TRUE(Identity(weak_ordering::equivalent == 0)); EXPECT_TRUE(Identity(0 == weak_ordering::equivalent)); EXPECT_TRUE(Identity(weak_ordering::greater > 0)); EXPECT_TRUE(Identity(0 < weak_ordering::greater)); EXPECT_TRUE(Identity(weak_ordering::greater >= 0)); EXPECT_TRUE(Identity(0 <= weak_ordering::greater)); const weak_ordering values[] = { weak_ordering::less, weak_ordering::equivalent, weak_ordering::greater}; for (const auto& lhs : values) { for (const auto& rhs : values) { const bool are_equal = &lhs == &rhs; EXPECT_EQ(lhs == rhs, are_equal); EXPECT_EQ(lhs != rhs, !are_equal); } } } TEST(Compare, StrongOrdering) { EXPECT_TRUE(Identity(strong_ordering::less < 0)); EXPECT_TRUE(Identity(0 > strong_ordering::less)); EXPECT_TRUE(Identity(strong_ordering::less <= 0)); EXPECT_TRUE(Identity(0 >= strong_ordering::less)); EXPECT_TRUE(Identity(strong_ordering::equal == 0)); EXPECT_TRUE(Identity(0 == strong_ordering::equal)); EXPECT_TRUE(Identity(strong_ordering::equivalent == 0)); EXPECT_TRUE(Identity(0 == strong_ordering::equivalent)); EXPECT_TRUE(Identity(strong_ordering::greater > 0)); EXPECT_TRUE(Identity(0 < strong_ordering::greater)); EXPECT_TRUE(Identity(strong_ordering::greater >= 0)); EXPECT_TRUE(Identity(0 <= strong_ordering::greater)); const strong_ordering values[] = { strong_ordering::less, strong_ordering::equal, strong_ordering::greater}; for (const auto& lhs : values) { for (const auto& rhs : values) { const bool are_equal = &lhs == &rhs; EXPECT_EQ(lhs == rhs, are_equal); EXPECT_EQ(lhs != rhs, !are_equal); } } EXPECT_TRUE(Identity(strong_ordering::equivalent == strong_ordering::equal)); } TEST(Compare, Conversions) { EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(weak_ordering::less) != 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(weak_ordering::less) < 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(weak_ordering::less) <= 0)); EXPECT_TRUE(Identity( implicit_cast<partial_ordering>(weak_ordering::equivalent) == 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(weak_ordering::greater) != 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(weak_ordering::greater) > 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(weak_ordering::greater) >= 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::less) != 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::less) < 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::less) <= 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::equal) == 0)); EXPECT_TRUE(Identity( implicit_cast<partial_ordering>(strong_ordering::equivalent) == 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::greater) != 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::greater) > 0)); EXPECT_TRUE( Identity(implicit_cast<partial_ordering>(strong_ordering::greater) >= 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::less) != 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::less) < 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::less) <= 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::equal) == 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::equivalent) == 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::greater) != 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::greater) > 0)); EXPECT_TRUE( Identity(implicit_cast<weak_ordering>(strong_ordering::greater) >= 0)); } struct WeakOrderingLess { template <typename T> absl::weak_ordering operator()(const T& a, const T& b) const { return a < b ? absl::weak_ordering::less : a == b ? absl::weak_ordering::equivalent : absl::weak_ordering::greater; } }; TEST(CompareResultAsLessThan, SanityTest) { EXPECT_FALSE(absl::compare_internal::compare_result_as_less_than(false)); EXPECT_TRUE(absl::compare_internal::compare_result_as_less_than(true)); EXPECT_TRUE( absl::compare_internal::compare_result_as_less_than(weak_ordering::less)); EXPECT_FALSE(absl::compare_internal::compare_result_as_less_than( weak_ordering::equivalent)); EXPECT_FALSE(absl::compare_internal::compare_result_as_less_than( weak_ordering::greater)); } TEST(DoLessThanComparison, SanityTest) { std::less<int> less; WeakOrderingLess weak; EXPECT_TRUE(absl::compare_internal::do_less_than_comparison(less, -1, 0)); EXPECT_TRUE(absl::compare_internal::do_less_than_comparison(weak, -1, 0)); EXPECT_FALSE(absl::compare_internal::do_less_than_comparison(less, 10, 10)); EXPECT_FALSE(absl::compare_internal::do_less_than_comparison(weak, 10, 10)); EXPECT_FALSE(absl::compare_internal::do_less_than_comparison(less, 10, 5)); EXPECT_FALSE(absl::compare_internal::do_less_than_comparison(weak, 10, 5)); } TEST(CompareResultAsOrdering, SanityTest) { EXPECT_TRUE( Identity(absl::compare_internal::compare_result_as_ordering(-1) < 0)); EXPECT_FALSE( Identity(absl::compare_internal::compare_result_as_ordering(-1) == 0)); EXPECT_FALSE( Identity(absl::compare_internal::compare_result_as_ordering(-1) > 0)); EXPECT_TRUE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::less) < 0)); EXPECT_FALSE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::less) == 0)); EXPECT_FALSE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::less) > 0)); EXPECT_FALSE( Identity(absl::compare_internal::compare_result_as_ordering(0) < 0)); EXPECT_TRUE( Identity(absl::compare_internal::compare_result_as_ordering(0) == 0)); EXPECT_FALSE( Identity(absl::compare_internal::compare_result_as_ordering(0) > 0)); EXPECT_FALSE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::equivalent) < 0)); EXPECT_TRUE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::equivalent) == 0)); EXPECT_FALSE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::equivalent) > 0)); EXPECT_FALSE( Identity(absl::compare_internal::compare_result_as_ordering(1) < 0)); EXPECT_FALSE( Identity(absl::compare_internal::compare_result_as_ordering(1) == 0)); EXPECT_TRUE( Identity(absl::compare_internal::compare_result_as_ordering(1) > 0)); EXPECT_FALSE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::greater) < 0)); EXPECT_FALSE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::greater) == 0)); EXPECT_TRUE(Identity(absl::compare_internal::compare_result_as_ordering( weak_ordering::greater) > 0)); } TEST(DoThreeWayComparison, SanityTest) { std::less<int> less; WeakOrderingLess weak; EXPECT_TRUE(Identity( absl::compare_internal::do_three_way_comparison(less, -1, 0) < 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(less, -1, 0) == 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(less, -1, 0) > 0)); EXPECT_TRUE(Identity( absl::compare_internal::do_three_way_comparison(weak, -1, 0) < 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(weak, -1, 0) == 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(weak, -1, 0) > 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(less, 10, 10) < 0)); EXPECT_TRUE(Identity( absl::compare_internal::do_three_way_comparison(less, 10, 10) == 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(less, 10, 10) > 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(weak, 10, 10) < 0)); EXPECT_TRUE(Identity( absl::compare_internal::do_three_way_comparison(weak, 10, 10) == 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(weak, 10, 10) > 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(less, 10, 5) < 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(less, 10, 5) == 0)); EXPECT_TRUE(Identity( absl::compare_internal::do_three_way_comparison(less, 10, 5) > 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(weak, 10, 5) < 0)); EXPECT_FALSE(Identity( absl::compare_internal::do_three_way_comparison(weak, 10, 5) == 0)); EXPECT_TRUE(Identity( absl::compare_internal::do_three_way_comparison(weak, 10, 5) > 0)); } #ifdef __cpp_inline_variables TEST(Compare, StaticAsserts) { static_assert(partial_ordering::less < 0, ""); static_assert(partial_ordering::equivalent == 0, ""); static_assert(partial_ordering::greater > 0, ""); static_assert(partial_ordering::unordered != 0, ""); static_assert(weak_ordering::less < 0, ""); static_assert(weak_ordering::equivalent == 0, ""); static_assert(weak_ordering::greater > 0, ""); static_assert(strong_ordering::less < 0, ""); static_assert(strong_ordering::equal == 0, ""); static_assert(strong_ordering::equivalent == 0, ""); static_assert(strong_ordering::greater > 0, ""); } #endif } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/types/compare.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/types/compare_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
18a5dc02-a8ff-4ba0-826b-14f5980d794c
cpp
tensorflow/tensorflow
resource_mgr
tensorflow/core/framework/resource_mgr.cc
tensorflow/core/framework/resource_mgr_test.cc
#include "tensorflow/core/framework/resource_mgr.h" #include <atomic> #include <memory> #include <variant> #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/strings/scanner.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/demangle.h" #include "tensorflow/core/platform/stacktrace.h" namespace tensorflow { ResourceHandle MakeResourceHandle( const string& container, const string& name, const DeviceBase& device, const TypeIndex& type_index, const std::vector<DtypeAndPartialTensorShape>& dtypes_and_shapes, const absl::optional<ManagedStackTrace>& definition_stack_trace) { ResourceHandle result; result.set_device(device.name()); result.set_container(container); result.set_definition_stack_trace(definition_stack_trace); if (name == ResourceHandle::ANONYMOUS_NAME) { result.set_name( strings::StrCat("_AnonymousVar", ResourceHandle::GenerateUniqueId())); } else { result.set_name(name); } result.set_hash_code(type_index.hash_code()); result.set_maybe_type_name(type_index.name()); result.set_dtypes_and_shapes(dtypes_and_shapes); return result; } Status MakeResourceHandleToOutput(OpKernelContext* context, int output_index, const string& container, const string& name, const TypeIndex& type_index) { Tensor* handle; TF_RETURN_IF_ERROR( context->allocate_output(output_index, TensorShape({}), &handle)); handle->scalar<ResourceHandle>()() = MakeResourceHandle(container, name, *context->device(), type_index); return absl::OkStatus(); } namespace internal { Status ValidateDevice(OpKernelContext* ctx, const ResourceHandle& p) { if (ctx->device()->attributes().name() != p.device()) { return errors::InvalidArgument( "Trying to access resource ", p.name(), " located in device ", p.device(), " from device ", ctx->device()->attributes().name()); } return absl::OkStatus(); } } Status ResourceMgr::InsertDebugTypeName(uint64 hash_code, const string& type_name) { auto iter = debug_type_names_.emplace(hash_code, type_name); if (iter.first->second != type_name) { return errors::AlreadyExists("Duplicate hash code found for type ", type_name); } return absl::OkStatus(); } const char* ResourceMgr::DebugTypeName(uint64 hash_code) const { auto type_name_iter = debug_type_names_.find(hash_code); if (type_name_iter == debug_type_names_.end()) { return "<unknown>"; } else { return type_name_iter->second.c_str(); } } ResourceMgr::ResourceAndName::ResourceAndName() : name(nullptr) {} ResourceMgr::ResourceAndName::ResourceAndName(const string& name) : name(std::make_unique<string>(name)) {} core::RefCountPtr<ResourceBase> ResourceMgr::ResourceAndName::GetResource() const { if (std::holds_alternative<core::RefCountPtr<ResourceBase>>(resource)) { ResourceBase* ptr = std::get<core::RefCountPtr<ResourceBase>>(resource).get(); ptr->Ref(); return core::RefCountPtr<ResourceBase>(ptr); } else if (std::holds_alternative<core::WeakPtr<ResourceBase>>(resource)) { return std::get<core::WeakPtr<ResourceBase>>(resource).GetNewRef(); } else { return nullptr; } } ResourceMgr::ResourceAndName::ResourceAndName( ResourceAndName&& other) noexcept { name = std::move(other.name); resource = std::move(other.resource); } ResourceMgr::ResourceAndName::~ResourceAndName() {} ResourceMgr::ResourceAndName& ResourceMgr::ResourceAndName::operator=( ResourceAndName&& other) noexcept { name = std::move(other.name); resource = std::move(other.resource); return *this; } ResourceMgr::ResourceMgr() : default_container_("localhost") {} ResourceMgr::ResourceMgr(const string& default_container) : default_container_(default_container) {} ResourceMgr::~ResourceMgr() { Clear(); } void ResourceMgr::Clear() { absl::flat_hash_map<string, Container*> tmp_containers; { mutex_lock l(mu_); tmp_containers = std::move(containers_); containers_.clear(); } for (const auto& p : tmp_containers) { delete p.second; } } string ResourceMgr::DebugString() const { mutex_lock l(mu_); struct Line { const string* container; const string type; const string* resource; const string detail; }; std::vector<Line> lines; for (const auto& p : containers_) { const string& container = p.first; for (const auto& q : *p.second) { const Key& key = q.first; const char* type = DebugTypeName(key.first); const core::RefCountPtr<ResourceBase> resource = q.second.GetResource(); Line l{&container, port::Demangle(type), q.second.name.get(), resource ? resource->DebugString() : "<nullptr>"}; lines.push_back(l); } } std::vector<string> text; text.reserve(lines.size()); for (const Line& line : lines) { text.push_back(strings::Printf( "%-20s | %-40s | %-40s | %-s", line.container->c_str(), line.type.c_str(), line.resource->c_str(), line.detail.c_str())); } std::sort(text.begin(), text.end()); return absl::StrJoin(text, "\n"); } Status ResourceMgr::DoCreate(const string& container_name, TypeIndex type, const string& name, ResourceBase* resource, bool owns_resource) { Container* container = [&]() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { Container** ptr = &containers_[container_name]; if (*ptr == nullptr) { *ptr = new Container; } return *ptr; }(); ResourceAndName resource_and_name(name); StringPiece borrowed_name(*resource_and_name.name); if (owns_resource) { resource_and_name.resource = core::RefCountPtr<ResourceBase>(resource); } else { auto cleanup_fn = [this, container, type, borrowed_name]() { mutex_lock l(mu_); auto iter = container->find({type.hash_code(), borrowed_name}); if (iter != container->end()) { container->erase(iter); } }; resource_and_name.resource = core::WeakPtr<ResourceBase>(resource, cleanup_fn); } Container::value_type key_and_value(Key(type.hash_code(), borrowed_name), std::move(resource_and_name)); auto st = container->insert(std::move(key_and_value)); if (st.second) { TF_RETURN_IF_ERROR(InsertDebugTypeName(type.hash_code(), type.name())); return absl::OkStatus(); } return errors::AlreadyExists("Resource ", container_name, "/", name, "/", type.name()); } Status ResourceMgr::Lookup(const ResourceHandle& handle, ResourceBase** resource) const { tf_shared_lock l(mu_); return DoLookup(handle.container(), handle.hash_code(), "ResourceBase", handle.name(), resource); } Status ResourceMgr::DoLookup(const string& container, TypeIndex type, const string& name, ResourceBase** resource) const { return DoLookup(container, type.hash_code(), type.name(), name, resource); } Status ResourceMgr::DoLookup(const string& container, uint64 type_hash_code, const string& type_name, const string& resource_name, ResourceBase** resource) const { const Container* b = gtl::FindPtrOrNull(containers_, container); if (b == nullptr) { return errors::NotFound("Container ", container, " does not exist. (Could not find resource: ", container, "/", resource_name, ")"); } auto iter = b->find({type_hash_code, resource_name}); if (iter == b->end()) { return errors::NotFound("Resource ", container, "/", resource_name, "/", type_name, " does not exist."); } ResourceBase* ptr = iter->second.GetResource().release(); if (ptr == nullptr) { return errors::NotFound("Resource ", container, "/", resource_name, "/", type_name, " has been destroyed."); } *resource = ptr; return absl::OkStatus(); } Status ResourceMgr::PopResourceAndName(const string& container, uint64 type_hash_code, const string& resource_name, const string& type_name, ResourceAndName& resource_and_name) { mutex_lock l(mu_); Container* b = gtl::FindPtrOrNull(containers_, container); if (b == nullptr) { return errors::NotFound("Container ", container, " does not exist."); } auto iter = b->find({type_hash_code, resource_name}); if (iter == b->end()) { return errors::NotFound("Resource ", container, "/", resource_name, "/", type_name, " does not exist."); } std::swap(resource_and_name, iter->second); b->erase(iter); return absl::OkStatus(); } Status ResourceMgr::DoDelete(const string& container, uint64 type_hash_code, const string& resource_name, const string& type_name) { ResourceAndName resource_and_name; TF_RETURN_IF_ERROR(PopResourceAndName( container, type_hash_code, resource_name, type_name, resource_and_name)); if (std::holds_alternative<core::WeakPtr<ResourceBase>>( resource_and_name.resource)) { return errors::Internal( "Cannot delete an unowned Resource ", container, "/", resource_name, "/", type_name, " from ResourceMgr. ", "This indicates ref-counting ResourceHandle is exposed to weak " "ResourceHandle code paths."); } return absl::OkStatus(); } Status ResourceMgr::DoDelete(const string& container, TypeIndex type, const string& resource_name) { return DoDelete(container, type.hash_code(), resource_name, type.name()); } Status ResourceMgr::Delete(const ResourceHandle& handle) { return DoDelete(handle.container(), handle.hash_code(), handle.name(), "<unknown>"); } Status ResourceMgr::Cleanup(const string& container) { { tf_shared_lock l(mu_); if (!gtl::FindOrNull(containers_, container)) { return absl::OkStatus(); } } Container* b = nullptr; { mutex_lock l(mu_); auto iter = containers_.find(container); if (iter == containers_.end()) { return absl::OkStatus(); } b = iter->second; containers_.erase(iter); } CHECK(b != nullptr); delete b; return absl::OkStatus(); } static bool IsValidContainerName(StringPiece s) { using ::tensorflow::strings::Scanner; return Scanner(s) .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH) .Eos() .GetResult(); } Status ContainerInfo::Init(ResourceMgr* rmgr, const NodeDef& ndef, bool use_node_name_as_default) { CHECK(rmgr); rmgr_ = rmgr; string attr_container; TF_RETURN_IF_ERROR(GetNodeAttr(ndef, "container", &attr_container)); if (!attr_container.empty() && !IsValidContainerName(attr_container)) { return errors::InvalidArgument("container contains invalid characters: ", attr_container); } string attr_shared_name; TF_RETURN_IF_ERROR(GetNodeAttr(ndef, "shared_name", &attr_shared_name)); if (!attr_shared_name.empty() && (attr_shared_name[0] == '_')) { return errors::InvalidArgument("shared_name cannot start with '_':", attr_shared_name); } if (!attr_container.empty()) { container_ = attr_container; } else { container_ = rmgr_->default_container(); } if (!attr_shared_name.empty()) { name_ = attr_shared_name; } else if (use_node_name_as_default) { name_ = ndef.name(); } else { resource_is_private_to_kernel_ = true; static std::atomic<int64_t> counter(0); name_ = strings::StrCat("_", counter.fetch_add(1), "_", ndef.name()); } return absl::OkStatus(); } string ContainerInfo::DebugString() const { return strings::StrCat("[", container(), ",", name(), ",", resource_is_private_to_kernel() ? "private" : "public", "]"); } const ResourceHandle& HandleFromInput(OpKernelContext* ctx, int input) { return ctx->input(input).flat<ResourceHandle>()(0); } Status HandleFromInput(OpKernelContext* ctx, int input, ResourceHandle* handle) { TF_ASSIGN_OR_RETURN(const Tensor* tensor, ctx->get_input(input)); if (tensor->NumElements() == 0) { return absl::InvalidArgumentError("Empty resource handle"); } *handle = tensor->flat<ResourceHandle>()(0); return absl::OkStatus(); } Status HandleFromInput(OpKernelContext* ctx, StringPiece input, ResourceHandle* handle) { const Tensor* tensor; TF_RETURN_IF_ERROR(ctx->input(input, &tensor)); if (tensor->NumElements() == 0) { return absl::InvalidArgumentError("Empty resource handle"); } *handle = tensor->flat<ResourceHandle>()(0); return absl::OkStatus(); } Status LookupResource(OpKernelContext* ctx, const ResourceHandle& p, ResourceBase** value) { TF_RETURN_IF_ERROR(internal::ValidateDevice(ctx, p)); if (p.IsRefCounting()) { TF_ASSIGN_OR_RETURN(*value, p.GetResource<ResourceBase>()); (*value)->Ref(); return absl::OkStatus(); } return ctx->resource_manager()->Lookup(p, value); } Status DeleteResource(OpKernelContext* ctx, const ResourceHandle& p) { TF_RETURN_IF_ERROR(internal::ValidateDevice(ctx, p)); if (p.IsRefCounting()) { return absl::OkStatus(); } return ctx->resource_manager()->Delete(p); } }
#include "tensorflow/core/framework/resource_mgr.h" #include <memory> #include <vector> #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/resource_handle.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/regexp.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { class Resource : public ResourceBase { public: explicit Resource(const string& label) : label_(label) {} ~Resource() override {} string DebugString() const override { return strings::StrCat("R/", label_); } private: string label_; }; class Other : public ResourceBase { public: explicit Other(const string& label) : label_(label) {} ~Other() override {} string DebugString() const override { return strings::StrCat("O/", label_); } private: string label_; }; template <typename T> string Find(const ResourceMgr& rm, const string& container, const string& name) { T* r; TF_CHECK_OK(rm.Lookup(container, name, &r)); const string ret = r->DebugString(); r->Unref(); return ret; } template <typename T> string LookupOrCreate(ResourceMgr* rm, const string& container, const string& name, const string& label) { T* r; TF_CHECK_OK(rm->LookupOrCreate<T>(container, name, &r, [&label](T** ret) { *ret = new T(label); return absl::OkStatus(); })); const string ret = r->DebugString(); r->Unref(); return ret; } static void HasError(const Status& s, const error::Code code, const string& substr) { EXPECT_EQ(s.code(), code); EXPECT_TRUE(absl::StrContains(s.message(), substr)) << s << ", expected substring " << substr; } template <typename T> Status FindErr(const ResourceMgr& rm, const string& container, const string& name) { T* r; Status s = rm.Lookup(container, name, &r); CHECK(!s.ok()); return s; } TEST(ResourceMgrTest, Basic) { ResourceMgr rm; TF_CHECK_OK(rm.Create("foo", "bar", new Resource("cat"))); TF_CHECK_OK(rm.Create("foo", "baz", new Resource("dog"))); TF_CHECK_OK(rm.Create("foo", "bar", new Other("tiger"))); HasError(rm.Create("foo", "bar", new Resource("kitty")), error::ALREADY_EXISTS, "Resource foo/bar"); EXPECT_EQ("R/cat", Find<Resource>(rm, "foo", "bar")); EXPECT_EQ("R/dog", Find<Resource>(rm, "foo", "baz")); EXPECT_EQ("O/tiger", Find<Other>(rm, "foo", "bar")); HasError(FindErr<Resource>(rm, "bar", "foo"), error::NOT_FOUND, "Container bar"); HasError(FindErr<Resource>(rm, "foo", "xxx"), error::NOT_FOUND, "Resource foo/xxx"); HasError(FindErr<Other>(rm, "foo", "baz"), error::NOT_FOUND, "Resource foo/baz"); TF_CHECK_OK(rm.Delete<Resource>("foo", "bar")); HasError(FindErr<Resource>(rm, "foo", "bar"), error::NOT_FOUND, "Resource foo/bar"); HasError(rm.Delete<Resource>("foo", "bar"), error::NOT_FOUND, "Resource foo/bar"); TF_CHECK_OK(rm.Create("foo", "bar", new Resource("kitty"))); EXPECT_EQ("R/kitty", Find<Resource>(rm, "foo", "bar")); TF_CHECK_OK(rm.Cleanup("foo")); HasError(FindErr<Resource>(rm, "foo", "bar"), error::NOT_FOUND, "Container foo"); TF_CHECK_OK(rm.Cleanup("foo")); HasError(FindErr<Resource>(rm, "foo", "bar"), error::NOT_FOUND, "Container foo"); TF_CHECK_OK(rm.Cleanup("bar")); } TEST(ResourceMgrTest, CreateUnowned) { core::RefCountPtr<Resource> cat{new Resource("cat")}; core::RefCountPtr<Resource> kitty{new Resource("kitty")}; ASSERT_TRUE(cat->RefCountIsOne()); ASSERT_TRUE(kitty->RefCountIsOne()); ResourceMgr rm; TF_CHECK_OK(rm.CreateUnowned("foo", "bar", cat.get())); EXPECT_TRUE(cat->RefCountIsOne()); HasError(rm.CreateUnowned("foo", "bar", kitty.get()), error::ALREADY_EXISTS, "Resource foo/bar"); EXPECT_TRUE(kitty->RefCountIsOne()); EXPECT_EQ("R/cat", Find<Resource>(rm, "foo", "bar")); HasError(FindErr<Resource>(rm, "bar", "foo"), error::NOT_FOUND, "Container bar"); HasError(FindErr<Resource>(rm, "foo", "xxx"), error::NOT_FOUND, "Resource foo/xxx"); HasError(rm.Delete<Resource>("foo", "bar"), error::INTERNAL, "Cannot delete an unowned Resource foo/bar"); TF_CHECK_OK(rm.CreateUnowned("foo", "bar", kitty.get())); EXPECT_TRUE(kitty->RefCountIsOne()); EXPECT_EQ("R/kitty", Find<Resource>(rm, "foo", "bar")); { core::RefCountPtr<Resource> dog{new Resource("dog")}; TF_CHECK_OK(rm.CreateUnowned("foo", "bark", dog.get())); EXPECT_EQ("R/dog", Find<Resource>(rm, "foo", "bark")); EXPECT_EQ(1, dog->WeakRefCount()); { ResourceMgr rm1; TF_CHECK_OK(rm1.CreateUnowned("foo", "bark", dog.get())); EXPECT_EQ("R/dog", Find<Resource>(rm1, "foo", "bark")); EXPECT_EQ(2, dog->WeakRefCount()); } EXPECT_EQ(1, dog->WeakRefCount()); } HasError(FindErr<Resource>(rm, "foo", "bark"), error::NOT_FOUND, "Resource foo/bark"); TF_CHECK_OK(rm.Cleanup("foo")); HasError(FindErr<Resource>(rm, "foo", "bar"), error::NOT_FOUND, "Container foo"); TF_CHECK_OK(rm.Cleanup("foo")); HasError(FindErr<Resource>(rm, "foo", "bar"), error::NOT_FOUND, "Container foo"); TF_CHECK_OK(rm.Cleanup("bar")); EXPECT_TRUE(cat->RefCountIsOne()); EXPECT_TRUE(kitty->RefCountIsOne()); } TEST(ResourceMgrTest, CreateOrLookup) { ResourceMgr rm; EXPECT_EQ("R/cat", LookupOrCreate<Resource>(&rm, "foo", "bar", "cat")); EXPECT_EQ("R/cat", LookupOrCreate<Resource>(&rm, "foo", "bar", "dog")); EXPECT_EQ("R/cat", Find<Resource>(rm, "foo", "bar")); EXPECT_EQ("O/tiger", LookupOrCreate<Other>(&rm, "foo", "bar", "tiger")); EXPECT_EQ("O/tiger", LookupOrCreate<Other>(&rm, "foo", "bar", "lion")); TF_CHECK_OK(rm.Delete<Other>("foo", "bar")); HasError(FindErr<Other>(rm, "foo", "bar"), error::NOT_FOUND, "Resource foo/bar"); } TEST(ResourceMgrTest, CreateOrLookupRaceCondition) { ResourceMgr rm; std::atomic<int> atomic_int(0); { thread::ThreadPool threads(Env::Default(), "racing_creates", 2); for (int i = 0; i < 2; i++) { threads.Schedule([&rm, &atomic_int] { Resource* r; TF_CHECK_OK(rm.LookupOrCreate<Resource>( "container", "resource-name", &r, [&atomic_int](Resource** ret) { Env::Default()->SleepForMicroseconds(1 * 1000 * 1000); atomic_int += 1; *ret = new Resource("label"); return absl::OkStatus(); })); r->Unref(); }); } } EXPECT_EQ(1, atomic_int); } Status ComputePolicy(const string& attr_container, const string& attr_shared_name, bool use_node_name_as_default, string* result) { ContainerInfo cinfo; ResourceMgr rmgr; NodeDef ndef; ndef.set_name("foo"); if (attr_container != "none") { AddNodeAttr("container", attr_container, &ndef); } if (attr_shared_name != "none") { AddNodeAttr("shared_name", attr_shared_name, &ndef); } TF_RETURN_IF_ERROR(cinfo.Init(&rmgr, ndef, use_node_name_as_default)); *result = cinfo.DebugString(); return absl::OkStatus(); } string Policy(const string& attr_container, const string& attr_shared_name, bool use_node_name_as_default) { string ret; TF_CHECK_OK(ComputePolicy(attr_container, attr_shared_name, use_node_name_as_default, &ret)); return ret; } TEST(ContainerInfo, Basic) { EXPECT_TRUE(RE2::FullMatch(Policy("", "", false), "\\[localhost,_\\d+_foo,private\\]")); EXPECT_EQ(Policy("", "", true), "[localhost,foo,public]"); EXPECT_EQ(Policy("", "bar", false), "[localhost,bar,public]"); EXPECT_EQ(Policy("", "bar", true), "[localhost,bar,public]"); EXPECT_TRUE( RE2::FullMatch(Policy("cat", "", false), "\\[cat,_\\d+_foo,private\\]")); EXPECT_EQ(Policy("cat", "", true), "[cat,foo,public]"); EXPECT_EQ(Policy("cat", "bar", false), "[cat,bar,public]"); EXPECT_EQ(Policy("cat", "bar", true), "[cat,bar,public]"); EXPECT_EQ(Policy("cat.0-dog", "bar", true), "[cat.0-dog,bar,public]"); EXPECT_EQ(Policy(".cat", "bar", true), "[.cat,bar,public]"); } Status WrongPolicy(const string& attr_container, const string& attr_shared_name, bool use_node_name_as_default) { string dbg; auto s = ComputePolicy(attr_container, attr_shared_name, use_node_name_as_default, &dbg); CHECK(!s.ok()); return s; } TEST(ContainerInfo, Error) { HasError(WrongPolicy("none", "", false), error::NOT_FOUND, "No attr"); HasError(WrongPolicy("", "none", false), error::NOT_FOUND, "No attr"); HasError(WrongPolicy("none", "none", false), error::NOT_FOUND, "No attr"); HasError(WrongPolicy("12$%", "", false), error::INVALID_ARGUMENT, "container contains invalid char"); HasError(WrongPolicy("-cat", "", false), error::INVALID_ARGUMENT, "container contains invalid char"); HasError(WrongPolicy("", "_foo", false), error::INVALID_ARGUMENT, "shared_name cannot start with '_'"); } class StubDevice : public DeviceBase { public: explicit StubDevice(const string& name) : DeviceBase(nullptr) { attr_.set_name(name); } Allocator* GetAllocator(AllocatorAttributes) override { return cpu_allocator(); } const DeviceAttributes& attributes() const override { return attr_; } const string& name() const override { return attr_.name(); } private: DeviceAttributes attr_; }; class StubResource : public ResourceBase { public: string DebugString() const override { return ""; } int value_{0}; }; TEST(ResourceHandleTest, CRUD) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 0); ResourceHandle p = MakeResourceHandle<StubResource>(&ctx, "container", "name"); { auto* r = new StubResource(); r->value_ = 42; TF_EXPECT_OK(CreateResource(&ctx, p, r)); } { core::RefCountPtr<StubResource> r; TF_ASSERT_OK(LookupResource(&ctx, p, &r)); ASSERT_TRUE(r != nullptr); EXPECT_EQ(r->value_, 42); } { TF_EXPECT_OK(DeleteResource<StubResource>(&ctx, p)); core::RefCountPtr<StubResource> unused; EXPECT_FALSE(LookupResource(&ctx, p, &unused).ok()); } } TEST(ResourceHandleTest, ResourceFromValidIntInput) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 1); ResourceHandleProto proto; proto.set_device("cpu:0"); proto.set_container("test_container"); proto.set_name("test_var"); auto handle = std::make_unique<ResourceHandle>(proto); auto expected_summary = "ResourceHandle(name=\"test_var\", device=\"cpu:0\", " "container=\"test_container\", type=\"\", dtype and shapes : \"[ ]\")"; EXPECT_EQ(handle->SummarizeValue(), expected_summary); Tensor arg0(DT_RESOURCE, TensorShape({2})); arg0.flat<ResourceHandle>()(0) = *handle; std::vector<tensorflow::TensorValue> inputs{TensorValue(new Tensor(arg0))}; params.inputs = inputs; ResourceHandle get_int_handle; TF_ASSERT_OK(HandleFromInput(&ctx, 0, &get_int_handle)); EXPECT_EQ(get_int_handle.SummarizeValue(), expected_summary); delete inputs.at(0).tensor; } TEST(ResourceHandleTest, ResourceFromInvalidIntInput) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 0); ResourceHandle get_int_handle; EXPECT_FALSE(HandleFromInput(&ctx, 0, &get_int_handle).ok()); } TEST(ResourceHandleTest, ResourceFromIntInputWithoutResource) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 1); std::vector<tensorflow::TensorValue> inputs{TensorValue(new Tensor())}; params.inputs = inputs; ResourceHandle get_int_handle; EXPECT_FALSE(HandleFromInput(&ctx, 0, &get_int_handle).ok()); delete inputs.at(0).tensor; } TEST(ResourceHandleTest, LookupDeleteGenericResource) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 0); ResourceHandle p = MakeResourceHandle<StubResource>(&ctx, "container", "name"); { auto* r = new StubResource(); r->value_ = 42; TF_EXPECT_OK(CreateResource(&ctx, p, r)); } { ResourceBase* r; TF_ASSERT_OK(LookupResource(&ctx, p, &r)); ASSERT_TRUE(r != nullptr); core::ScopedUnref unref(r); EXPECT_EQ(static_cast<StubResource*>(r)->value_, 42); } { TF_EXPECT_OK(DeleteResource(&ctx, p)); ResourceBase* unused; EXPECT_FALSE(LookupResource(&ctx, p, &unused).ok()); } } TEST(ResourceHandleTest, DifferentDevice) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 0); ResourceHandle p = MakeResourceHandle<StubResource>(&ctx, "container", "name"); ResourceMgr other_resource_mgr(""); OpKernelContext::Params other_params; other_params.resource_manager = &other_resource_mgr; StubDevice other_device("other_device_name"); other_params.device = &other_device; OpKernelContext other_ctx(&other_params, 0); auto* r = new StubResource(); ASSERT_FALSE(CreateResource(&other_ctx, p, r).ok()); r->Unref(); } class OtherStubResource : public ResourceBase { public: string DebugString() const override { return ""; } }; TEST(ResourceHandleTest, DifferentType) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 0); ResourceHandle p = MakeResourceHandle<StubResource>(&ctx, "container", "name"); auto* r = new OtherStubResource; ASSERT_FALSE(CreateResource(&ctx, p, r).ok()); r->Unref(); } TEST(ResourceHandleTest, DeleteUsingResourceHandle) { ResourceMgr resource_mgr(""); OpKernelContext::Params params; params.resource_manager = &resource_mgr; StubDevice device("device_name"); params.device = &device; OpKernelContext ctx(&params, 0); ResourceHandle p = MakeResourceHandle<StubResource>(&ctx, "container", "name"); StubResource* r = new StubResource; TF_EXPECT_OK(CreateResource(&ctx, p, r)); core::RefCountPtr<StubResource> lookup_r; TF_EXPECT_OK(LookupResource<StubResource>(&ctx, p, &lookup_r)); EXPECT_EQ(lookup_r.get(), r); TF_EXPECT_OK(DeleteResource(&ctx, p)); EXPECT_NE(LookupResource<StubResource>(&ctx, p, &lookup_r).ok(), true); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/resource_mgr.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/resource_mgr_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a807a51e-59a8-4aa7-8b7c-9ed30daf3d07
cpp
google/quiche
transport_parameters
quiche/quic/core/crypto/transport_parameters.cc
quiche/quic/core/crypto/transport_parameters_test.cc
#include "quiche/quic/core/crypto/transport_parameters.h" #include <algorithm> #include <cstdint> #include <cstring> #include <forward_list> #include <memory> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/digest.h" #include "openssl/sha.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_ip_address.h" namespace quic { enum TransportParameters::TransportParameterId : uint64_t { kOriginalDestinationConnectionId = 0, kMaxIdleTimeout = 1, kStatelessResetToken = 2, kMaxPacketSize = 3, kInitialMaxData = 4, kInitialMaxStreamDataBidiLocal = 5, kInitialMaxStreamDataBidiRemote = 6, kInitialMaxStreamDataUni = 7, kInitialMaxStreamsBidi = 8, kInitialMaxStreamsUni = 9, kAckDelayExponent = 0xa, kMaxAckDelay = 0xb, kDisableActiveMigration = 0xc, kPreferredAddress = 0xd, kActiveConnectionIdLimit = 0xe, kInitialSourceConnectionId = 0xf, kRetrySourceConnectionId = 0x10, kMaxDatagramFrameSize = 0x20, kGoogleHandshakeMessage = 0x26ab, kInitialRoundTripTime = 0x3127, kGoogleConnectionOptions = 0x3128, kGoogleQuicVersion = 0x4752, kMinAckDelay = 0xDE1A, kVersionInformation = 0xFF73DB, kReliableStreamReset = 0x17F7586D2CB571, }; namespace { constexpr QuicVersionLabel kReservedVersionMask = 0x0f0f0f0f; constexpr QuicVersionLabel kReservedVersionBits = 0x0a0a0a0a; constexpr uint64_t kMinMaxPacketSizeTransportParam = 1200; constexpr uint64_t kMaxAckDelayExponentTransportParam = 20; constexpr uint64_t kDefaultAckDelayExponentTransportParam = 3; constexpr uint64_t kMaxMaxAckDelayTransportParam = 16383; constexpr uint64_t kDefaultMaxAckDelayTransportParam = 25; constexpr uint64_t kMinActiveConnectionIdLimitTransportParam = 2; constexpr uint64_t kDefaultActiveConnectionIdLimitTransportParam = 2; std::string TransportParameterIdToString( TransportParameters::TransportParameterId param_id) { switch (param_id) { case TransportParameters::kOriginalDestinationConnectionId: return "original_destination_connection_id"; case TransportParameters::kMaxIdleTimeout: return "max_idle_timeout"; case TransportParameters::kStatelessResetToken: return "stateless_reset_token"; case TransportParameters::kMaxPacketSize: return "max_udp_payload_size"; case TransportParameters::kInitialMaxData: return "initial_max_data"; case TransportParameters::kInitialMaxStreamDataBidiLocal: return "initial_max_stream_data_bidi_local"; case TransportParameters::kInitialMaxStreamDataBidiRemote: return "initial_max_stream_data_bidi_remote"; case TransportParameters::kInitialMaxStreamDataUni: return "initial_max_stream_data_uni"; case TransportParameters::kInitialMaxStreamsBidi: return "initial_max_streams_bidi"; case TransportParameters::kInitialMaxStreamsUni: return "initial_max_streams_uni"; case TransportParameters::kAckDelayExponent: return "ack_delay_exponent"; case TransportParameters::kMaxAckDelay: return "max_ack_delay"; case TransportParameters::kDisableActiveMigration: return "disable_active_migration"; case TransportParameters::kPreferredAddress: return "preferred_address"; case TransportParameters::kActiveConnectionIdLimit: return "active_connection_id_limit"; case TransportParameters::kInitialSourceConnectionId: return "initial_source_connection_id"; case TransportParameters::kRetrySourceConnectionId: return "retry_source_connection_id"; case TransportParameters::kMaxDatagramFrameSize: return "max_datagram_frame_size"; case TransportParameters::kGoogleHandshakeMessage: return "google_handshake_message"; case TransportParameters::kInitialRoundTripTime: return "initial_round_trip_time"; case TransportParameters::kGoogleConnectionOptions: return "google_connection_options"; case TransportParameters::kGoogleQuicVersion: return "google-version"; case TransportParameters::kMinAckDelay: return "min_ack_delay_us"; case TransportParameters::kVersionInformation: return "version_information"; case TransportParameters::kReliableStreamReset: return "reliable_stream_reset"; } return absl::StrCat("Unknown(", param_id, ")"); } bool TransportParameterIdIsKnown( TransportParameters::TransportParameterId param_id) { switch (param_id) { case TransportParameters::kOriginalDestinationConnectionId: case TransportParameters::kMaxIdleTimeout: case TransportParameters::kStatelessResetToken: case TransportParameters::kMaxPacketSize: case TransportParameters::kInitialMaxData: case TransportParameters::kInitialMaxStreamDataBidiLocal: case TransportParameters::kInitialMaxStreamDataBidiRemote: case TransportParameters::kInitialMaxStreamDataUni: case TransportParameters::kInitialMaxStreamsBidi: case TransportParameters::kInitialMaxStreamsUni: case TransportParameters::kAckDelayExponent: case TransportParameters::kMaxAckDelay: case TransportParameters::kDisableActiveMigration: case TransportParameters::kPreferredAddress: case TransportParameters::kActiveConnectionIdLimit: case TransportParameters::kInitialSourceConnectionId: case TransportParameters::kRetrySourceConnectionId: case TransportParameters::kMaxDatagramFrameSize: case TransportParameters::kGoogleHandshakeMessage: case TransportParameters::kInitialRoundTripTime: case TransportParameters::kGoogleConnectionOptions: case TransportParameters::kGoogleQuicVersion: case TransportParameters::kMinAckDelay: case TransportParameters::kVersionInformation: case TransportParameters::kReliableStreamReset: return true; } return false; } } TransportParameters::IntegerParameter::IntegerParameter( TransportParameters::TransportParameterId param_id, uint64_t default_value, uint64_t min_value, uint64_t max_value) : param_id_(param_id), value_(default_value), default_value_(default_value), min_value_(min_value), max_value_(max_value), has_been_read_(false) { QUICHE_DCHECK_LE(min_value, default_value); QUICHE_DCHECK_LE(default_value, max_value); QUICHE_DCHECK_LE(max_value, quiche::kVarInt62MaxValue); } TransportParameters::IntegerParameter::IntegerParameter( TransportParameters::TransportParameterId param_id) : TransportParameters::IntegerParameter::IntegerParameter( param_id, 0, 0, quiche::kVarInt62MaxValue) {} void TransportParameters::IntegerParameter::set_value(uint64_t value) { value_ = value; } uint64_t TransportParameters::IntegerParameter::value() const { return value_; } bool TransportParameters::IntegerParameter::IsValid() const { return min_value_ <= value_ && value_ <= max_value_; } bool TransportParameters::IntegerParameter::Write( QuicDataWriter* writer) const { QUICHE_DCHECK(IsValid()); if (value_ == default_value_) { return true; } if (!writer->WriteVarInt62(param_id_)) { QUIC_BUG(quic_bug_10743_1) << "Failed to write param_id for " << *this; return false; } const quiche::QuicheVariableLengthIntegerLength value_length = QuicDataWriter::GetVarInt62Len(value_); if (!writer->WriteVarInt62(value_length)) { QUIC_BUG(quic_bug_10743_2) << "Failed to write value_length for " << *this; return false; } if (!writer->WriteVarInt62WithForcedLength(value_, value_length)) { QUIC_BUG(quic_bug_10743_3) << "Failed to write value for " << *this; return false; } return true; } bool TransportParameters::IntegerParameter::Read(QuicDataReader* reader, std::string* error_details) { if (has_been_read_) { *error_details = "Received a second " + TransportParameterIdToString(param_id_); return false; } has_been_read_ = true; if (!reader->ReadVarInt62(&value_)) { *error_details = "Failed to parse value for " + TransportParameterIdToString(param_id_); return false; } if (!reader->IsDoneReading()) { *error_details = absl::StrCat("Received unexpected ", reader->BytesRemaining(), " bytes after parsing ", this->ToString(false)); return false; } return true; } std::string TransportParameters::IntegerParameter::ToString( bool for_use_in_list) const { if (for_use_in_list && value_ == default_value_) { return ""; } std::string rv = for_use_in_list ? " " : ""; absl::StrAppend(&rv, TransportParameterIdToString(param_id_), " ", value_); if (!IsValid()) { rv += " (Invalid)"; } return rv; } std::ostream& operator<<(std::ostream& os, const TransportParameters::IntegerParameter& param) { os << param.ToString(false); return os; } TransportParameters::PreferredAddress::PreferredAddress() : ipv4_socket_address(QuicIpAddress::Any4(), 0), ipv6_socket_address(QuicIpAddress::Any6(), 0), connection_id(EmptyQuicConnectionId()), stateless_reset_token(kStatelessResetTokenLength, 0) {} TransportParameters::PreferredAddress::~PreferredAddress() {} bool TransportParameters::PreferredAddress::operator==( const PreferredAddress& rhs) const { return ipv4_socket_address == rhs.ipv4_socket_address && ipv6_socket_address == rhs.ipv6_socket_address && connection_id == rhs.connection_id && stateless_reset_token == rhs.stateless_reset_token; } bool TransportParameters::PreferredAddress::operator!=( const PreferredAddress& rhs) const { return !(*this == rhs); } std::ostream& operator<<( std::ostream& os, const TransportParameters::PreferredAddress& preferred_address) { os << preferred_address.ToString(); return os; } std::string TransportParameters::PreferredAddress::ToString() const { return "[" + ipv4_socket_address.ToString() + " " + ipv6_socket_address.ToString() + " connection_id " + connection_id.ToString() + " stateless_reset_token " + absl::BytesToHexString(absl::string_view( reinterpret_cast<const char*>(stateless_reset_token.data()), stateless_reset_token.size())) + "]"; } TransportParameters::LegacyVersionInformation::LegacyVersionInformation() : version(0) {} bool TransportParameters::LegacyVersionInformation::operator==( const LegacyVersionInformation& rhs) const { return version == rhs.version && supported_versions == rhs.supported_versions; } bool TransportParameters::LegacyVersionInformation::operator!=( const LegacyVersionInformation& rhs) const { return !(*this == rhs); } std::string TransportParameters::LegacyVersionInformation::ToString() const { std::string rv = absl::StrCat("legacy[version ", QuicVersionLabelToString(version)); if (!supported_versions.empty()) { absl::StrAppend(&rv, " supported_versions " + QuicVersionLabelVectorToString(supported_versions)); } absl::StrAppend(&rv, "]"); return rv; } std::ostream& operator<<(std::ostream& os, const TransportParameters::LegacyVersionInformation& legacy_version_information) { os << legacy_version_information.ToString(); return os; } TransportParameters::VersionInformation::VersionInformation() : chosen_version(0) {} bool TransportParameters::VersionInformation::operator==( const VersionInformation& rhs) const { return chosen_version == rhs.chosen_version && other_versions == rhs.other_versions; } bool TransportParameters::VersionInformation::operator!=( const VersionInformation& rhs) const { return !(*this == rhs); } std::string TransportParameters::VersionInformation::ToString() const { std::string rv = absl::StrCat("[chosen_version ", QuicVersionLabelToString(chosen_version)); if (!other_versions.empty()) { absl::StrAppend(&rv, " other_versions " + QuicVersionLabelVectorToString(other_versions)); } absl::StrAppend(&rv, "]"); return rv; } std::ostream& operator<<( std::ostream& os, const TransportParameters::VersionInformation& version_information) { os << version_information.ToString(); return os; } std::ostream& operator<<(std::ostream& os, const TransportParameters& params) { os << params.ToString(); return os; } std::string TransportParameters::ToString() const { std::string rv = "["; if (perspective == Perspective::IS_SERVER) { rv += "Server"; } else { rv += "Client"; } if (legacy_version_information.has_value()) { rv += " " + legacy_version_information->ToString(); } if (version_information.has_value()) { rv += " " + version_information->ToString(); } if (original_destination_connection_id.has_value()) { rv += " " + TransportParameterIdToString(kOriginalDestinationConnectionId) + " " + original_destination_connection_id->ToString(); } rv += max_idle_timeout_ms.ToString(true); if (!stateless_reset_token.empty()) { rv += " " + TransportParameterIdToString(kStatelessResetToken) + " " + absl::BytesToHexString(absl::string_view( reinterpret_cast<const char*>(stateless_reset_token.data()), stateless_reset_token.size())); } rv += max_udp_payload_size.ToString(true); rv += initial_max_data.ToString(true); rv += initial_max_stream_data_bidi_local.ToString(true); rv += initial_max_stream_data_bidi_remote.ToString(true); rv += initial_max_stream_data_uni.ToString(true); rv += initial_max_streams_bidi.ToString(true); rv += initial_max_streams_uni.ToString(true); rv += ack_delay_exponent.ToString(true); rv += max_ack_delay.ToString(true); rv += min_ack_delay_us.ToString(true); if (disable_active_migration) { rv += " " + TransportParameterIdToString(kDisableActiveMigration); } if (reliable_stream_reset) { rv += " " + TransportParameterIdToString(kReliableStreamReset); } if (preferred_address) { rv += " " + TransportParameterIdToString(kPreferredAddress) + " " + preferred_address->ToString(); } rv += active_connection_id_limit.ToString(true); if (initial_source_connection_id.has_value()) { rv += " " + TransportParameterIdToString(kInitialSourceConnectionId) + " " + initial_source_connection_id->ToString(); } if (retry_source_connection_id.has_value()) { rv += " " + TransportParameterIdToString(kRetrySourceConnectionId) + " " + retry_source_connection_id->ToString(); } rv += max_datagram_frame_size.ToString(true); if (google_handshake_message.has_value()) { absl::StrAppend(&rv, " ", TransportParameterIdToString(kGoogleHandshakeMessage), " length: ", google_handshake_message->length()); } rv += initial_round_trip_time_us.ToString(true); if (google_connection_options.has_value()) { rv += " " + TransportParameterIdToString(kGoogleConnectionOptions) + " "; bool first = true; for (const QuicTag& connection_option : *google_connection_options) { if (first) { first = false; } else { rv += ","; } rv += QuicTagToString(connection_option); } } for (const auto& kv : custom_parameters) { absl::StrAppend(&rv, " 0x", absl::Hex(static_cast<uint32_t>(kv.first)), "="); static constexpr size_t kMaxPrintableLength = 32; if (kv.second.length() <= kMaxPrintableLength) { rv += absl::BytesToHexString(kv.second); } else { absl::string_view truncated(kv.second.data(), kMaxPrintableLength); rv += absl::StrCat(absl::BytesToHexString(truncated), "...(length ", kv.second.length(), ")"); } } rv += "]"; return rv; } TransportParameters::TransportParameters() : max_idle_timeout_ms(kMaxIdleTimeout), max_udp_payload_size(kMaxPacketSize, kDefaultMaxPacketSizeTransportParam, kMinMaxPacketSizeTransportParam, quiche::kVarInt62MaxValue), initial_max_data(kInitialMaxData), initial_max_stream_data_bidi_local(kInitialMaxStreamDataBidiLocal), initial_max_stream_data_bidi_remote(kInitialMaxStreamDataBidiRemote), initial_max_stream_data_uni(kInitialMaxStreamDataUni), initial_max_streams_bidi(kInitialMaxStreamsBidi), initial_max_streams_uni(kInitialMaxStreamsUni), ack_delay_exponent(kAckDelayExponent, kDefaultAckDelayExponentTransportParam, 0, kMaxAckDelayExponentTransportParam), max_ack_delay(kMaxAckDelay, kDefaultMaxAckDelayTransportParam, 0, kMaxMaxAckDelayTransportParam), min_ack_delay_us(kMinAckDelay, 0, 0, kMaxMaxAckDelayTransportParam * kNumMicrosPerMilli), disable_active_migration(false), active_connection_id_limit(kActiveConnectionIdLimit, kDefaultActiveConnectionIdLimitTransportParam, kMinActiveConnectionIdLimitTransportParam, quiche::kVarInt62MaxValue), max_datagram_frame_size(kMaxDatagramFrameSize), reliable_stream_reset(false), initial_round_trip_time_us(kInitialRoundTripTime) {} TransportParameters::TransportParameters(const TransportParameters& other) : perspective(other.perspective), legacy_version_information(other.legacy_version_information), version_information(other.version_information), original_destination_connection_id( other.original_destination_connection_id), max_idle_timeout_ms(other.max_idle_timeout_ms), stateless_reset_token(other.stateless_reset_token), max_udp_payload_size(other.max_udp_payload_size), initial_max_data(other.initial_max_data), initial_max_stream_data_bidi_local( other.initial_max_stream_data_bidi_local), initial_max_stream_data_bidi_remote( other.initial_max_stream_data_bidi_remote), initial_max_stream_data_uni(other.initial_max_stream_data_uni), initial_max_streams_bidi(other.initial_max_streams_bidi), initial_max_streams_uni(other.initial_max_streams_uni), ack_delay_exponent(other.ack_delay_exponent), max_ack_delay(other.max_ack_delay), min_ack_delay_us(other.min_ack_delay_us), disable_active_migration(other.disable_active_migration), active_connection_id_limit(other.active_connection_id_limit), initial_source_connection_id(other.initial_source_connection_id), retry_source_connection_id(other.retry_source_connection_id), max_datagram_frame_size(other.max_datagram_frame_size), reliable_stream_reset(other.reliable_stream_reset), initial_round_trip_time_us(other.initial_round_trip_time_us), google_handshake_message(other.google_handshake_message), google_connection_options(other.google_connection_options), custom_parameters(other.custom_parameters) { if (other.preferred_address) { preferred_address = std::make_unique<TransportParameters::PreferredAddress>( *other.preferred_address); } } bool TransportParameters::operator==(const TransportParameters& rhs) const { if (!(perspective == rhs.perspective && legacy_version_information == rhs.legacy_version_information && version_information == rhs.version_information && original_destination_connection_id == rhs.original_destination_connection_id && max_idle_timeout_ms.value() == rhs.max_idle_timeout_ms.value() && stateless_reset_token == rhs.stateless_reset_token && max_udp_payload_size.value() == rhs.max_udp_payload_size.value() && initial_max_data.value() == rhs.initial_max_data.value() && initial_max_stream_data_bidi_local.value() == rhs.initial_max_stream_data_bidi_local.value() && initial_max_stream_data_bidi_remote.value() == rhs.initial_max_stream_data_bidi_remote.value() && initial_max_stream_data_uni.value() == rhs.initial_max_stream_data_uni.value() && initial_max_streams_bidi.value() == rhs.initial_max_streams_bidi.value() && initial_max_streams_uni.value() == rhs.initial_max_streams_uni.value() && ack_delay_exponent.value() == rhs.ack_delay_exponent.value() && max_ack_delay.value() == rhs.max_ack_delay.value() && min_ack_delay_us.value() == rhs.min_ack_delay_us.value() && disable_active_migration == rhs.disable_active_migration && active_connection_id_limit.value() == rhs.active_connection_id_limit.value() && initial_source_connection_id == rhs.initial_source_connection_id && retry_source_connection_id == rhs.retry_source_connection_id && max_datagram_frame_size.value() == rhs.max_datagram_frame_size.value() && reliable_stream_reset == rhs.reliable_stream_reset && initial_round_trip_time_us.value() == rhs.initial_round_trip_time_us.value() && google_handshake_message == rhs.google_handshake_message && google_connection_options == rhs.google_connection_options && custom_parameters == rhs.custom_parameters)) { return false; } if ((!preferred_address && rhs.preferred_address) || (preferred_address && !rhs.preferred_address)) { return false; } if (preferred_address && rhs.preferred_address && *preferred_address != *rhs.preferred_address) { return false; } return true; } bool TransportParameters::operator!=(const TransportParameters& rhs) const { return !(*this == rhs); } bool TransportParameters::AreValid(std::string* error_details) const { QUICHE_DCHECK(perspective == Perspective::IS_CLIENT || perspective == Perspective::IS_SERVER); if (perspective == Perspective::IS_CLIENT && !stateless_reset_token.empty()) { *error_details = "Client cannot send stateless reset token"; return false; } if (perspective == Perspective::IS_CLIENT && original_destination_connection_id.has_value()) { *error_details = "Client cannot send original_destination_connection_id"; return false; } if (!stateless_reset_token.empty() && stateless_reset_token.size() != kStatelessResetTokenLength) { *error_details = absl::StrCat("Stateless reset token has bad length ", stateless_reset_token.size()); return false; } if (perspective == Perspective::IS_CLIENT && preferred_address) { *error_details = "Client cannot send preferred address"; return false; } if (preferred_address && preferred_address->stateless_reset_token.size() != kStatelessResetTokenLength) { *error_details = absl::StrCat("Preferred address stateless reset token has bad length ", preferred_address->stateless_reset_token.size()); return false; } if (preferred_address && (!preferred_address->ipv4_socket_address.host().IsIPv4() || !preferred_address->ipv6_socket_address.host().IsIPv6())) { QUIC_BUG(quic_bug_10743_4) << "Preferred address family failure"; *error_details = "Internal preferred address family failure"; return false; } if (perspective == Perspective::IS_CLIENT && retry_source_connection_id.has_value()) { *error_details = "Client cannot send retry_source_connection_id"; return false; } for (const auto& kv : custom_parameters) { if (TransportParameterIdIsKnown(kv.first)) { *error_details = absl::StrCat("Using custom_parameters with known ID ", TransportParameterIdToString(kv.first), " is not allowed"); return false; } } if (perspective == Perspective::IS_SERVER && google_handshake_message.has_value()) { *error_details = "Server cannot send google_handshake_message"; return false; } if (perspective == Perspective::IS_SERVER && initial_round_trip_time_us.value() > 0) { *error_details = "Server cannot send initial round trip time"; return false; } if (version_information.has_value()) { const QuicVersionLabel& chosen_version = version_information->chosen_version; const QuicVersionLabelVector& other_versions = version_information->other_versions; if (chosen_version == 0) { *error_details = "Invalid chosen version"; return false; } if (perspective == Perspective::IS_CLIENT && std::find(other_versions.begin(), other_versions.end(), chosen_version) == other_versions.end()) { *error_details = "Client chosen version not in other versions"; return false; } } const bool ok = max_idle_timeout_ms.IsValid() && max_udp_payload_size.IsValid() && initial_max_data.IsValid() && initial_max_stream_data_bidi_local.IsValid() && initial_max_stream_data_bidi_remote.IsValid() && initial_max_stream_data_uni.IsValid() && initial_max_streams_bidi.IsValid() && initial_max_streams_uni.IsValid() && ack_delay_exponent.IsValid() && max_ack_delay.IsValid() && min_ack_delay_us.IsValid() && active_connection_id_limit.IsValid() && max_datagram_frame_size.IsValid() && initial_round_trip_time_us.IsValid(); if (!ok) { *error_details = "Invalid transport parameters " + this->ToString(); } return ok; } TransportParameters::~TransportParameters() = default; bool SerializeTransportParameters(const TransportParameters& in, std::vector<uint8_t>* out) { std::string error_details; if (!in.AreValid(&error_details)) { QUIC_BUG(invalid transport parameters) << "Not serializing invalid transport parameters: " << error_details; return false; } if (!in.legacy_version_information.has_value() || in.legacy_version_information->version == 0 || (in.perspective == Perspective::IS_SERVER && in.legacy_version_information->supported_versions.empty())) { QUIC_BUG(missing versions) << "Refusing to serialize without versions"; return false; } TransportParameters::ParameterMap custom_parameters = in.custom_parameters; for (const auto& kv : custom_parameters) { if (kv.first % 31 == 27) { QUIC_BUG(custom_parameters with GREASE) << "Serializing custom_parameters with GREASE ID " << kv.first << " is not allowed"; return false; } } static constexpr size_t kMaxGreaseLength = 16; static constexpr size_t kTypeAndValueLength = 2 * sizeof(uint64_t); static constexpr size_t kIntegerParameterLength = kTypeAndValueLength + sizeof(uint64_t); static constexpr size_t kStatelessResetParameterLength = kTypeAndValueLength + 16 ; static constexpr size_t kConnectionIdParameterLength = kTypeAndValueLength + 255 ; static constexpr size_t kPreferredAddressParameterLength = kTypeAndValueLength + 4 + 2 + 16 + 1 + 255 + 16 ; static constexpr size_t kKnownTransportParamLength = kConnectionIdParameterLength + kIntegerParameterLength + kStatelessResetParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kIntegerParameterLength + kTypeAndValueLength + kPreferredAddressParameterLength + kIntegerParameterLength + kConnectionIdParameterLength + kConnectionIdParameterLength + kIntegerParameterLength + kTypeAndValueLength + kIntegerParameterLength + kTypeAndValueLength + kTypeAndValueLength + kTypeAndValueLength; std::vector<TransportParameters::TransportParameterId> parameter_ids = { TransportParameters::kOriginalDestinationConnectionId, TransportParameters::kMaxIdleTimeout, TransportParameters::kStatelessResetToken, TransportParameters::kMaxPacketSize, TransportParameters::kInitialMaxData, TransportParameters::kInitialMaxStreamDataBidiLocal, TransportParameters::kInitialMaxStreamDataBidiRemote, TransportParameters::kInitialMaxStreamDataUni, TransportParameters::kInitialMaxStreamsBidi, TransportParameters::kInitialMaxStreamsUni, TransportParameters::kAckDelayExponent, TransportParameters::kMaxAckDelay, TransportParameters::kMinAckDelay, TransportParameters::kActiveConnectionIdLimit, TransportParameters::kMaxDatagramFrameSize, TransportParameters::kReliableStreamReset, TransportParameters::kGoogleHandshakeMessage, TransportParameters::kInitialRoundTripTime, TransportParameters::kDisableActiveMigration, TransportParameters::kPreferredAddress, TransportParameters::kInitialSourceConnectionId, TransportParameters::kRetrySourceConnectionId, TransportParameters::kGoogleConnectionOptions, TransportParameters::kGoogleQuicVersion, TransportParameters::kVersionInformation, }; size_t max_transport_param_length = kKnownTransportParamLength; if (in.google_connection_options.has_value()) { max_transport_param_length += in.google_connection_options->size() * sizeof(QuicTag); } if (in.legacy_version_information.has_value()) { max_transport_param_length += sizeof(in.legacy_version_information->version) + 1 + in.legacy_version_information->supported_versions.size() * sizeof(QuicVersionLabel); } if (in.version_information.has_value()) { max_transport_param_length += sizeof(in.version_information->chosen_version) + (in.version_information->other_versions.size() + 1) * sizeof(QuicVersionLabel); } if (in.google_handshake_message.has_value()) { max_transport_param_length += in.google_handshake_message->length(); } QuicRandom* random = QuicRandom::GetInstance(); uint64_t grease_id64 = random->RandUint64() % ((1ULL << 62) - 31); grease_id64 = (grease_id64 / 31) * 31 + 27; TransportParameters::TransportParameterId grease_id = static_cast<TransportParameters::TransportParameterId>(grease_id64); const size_t grease_length = random->RandUint64() % kMaxGreaseLength; QUICHE_DCHECK_GE(kMaxGreaseLength, grease_length); char grease_contents[kMaxGreaseLength]; random->RandBytes(grease_contents, grease_length); custom_parameters[grease_id] = std::string(grease_contents, grease_length); for (const auto& kv : custom_parameters) { max_transport_param_length += kTypeAndValueLength + kv.second.length(); parameter_ids.push_back(kv.first); } for (size_t i = parameter_ids.size() - 1; i > 0; i--) { std::swap(parameter_ids[i], parameter_ids[random->InsecureRandUint64() % (i + 1)]); } out->resize(max_transport_param_length); QuicDataWriter writer(out->size(), reinterpret_cast<char*>(out->data())); for (TransportParameters::TransportParameterId parameter_id : parameter_ids) { switch (parameter_id) { case TransportParameters::kOriginalDestinationConnectionId: { if (in.original_destination_connection_id.has_value()) { QUICHE_DCHECK_EQ(Perspective::IS_SERVER, in.perspective); QuicConnectionId original_destination_connection_id = *in.original_destination_connection_id; if (!writer.WriteVarInt62( TransportParameters::kOriginalDestinationConnectionId) || !writer.WriteStringPieceVarInt62(absl::string_view( original_destination_connection_id.data(), original_destination_connection_id.length()))) { QUIC_BUG(Failed to write original_destination_connection_id) << "Failed to write original_destination_connection_id " << original_destination_connection_id << " for " << in; return false; } } } break; case TransportParameters::kMaxIdleTimeout: { if (!in.max_idle_timeout_ms.Write(&writer)) { QUIC_BUG(Failed to write idle_timeout) << "Failed to write idle_timeout for " << in; return false; } } break; case TransportParameters::kStatelessResetToken: { if (!in.stateless_reset_token.empty()) { QUICHE_DCHECK_EQ(kStatelessResetTokenLength, in.stateless_reset_token.size()); QUICHE_DCHECK_EQ(Perspective::IS_SERVER, in.perspective); if (!writer.WriteVarInt62( TransportParameters::kStatelessResetToken) || !writer.WriteStringPieceVarInt62( absl::string_view(reinterpret_cast<const char*>( in.stateless_reset_token.data()), in.stateless_reset_token.size()))) { QUIC_BUG(Failed to write stateless_reset_token) << "Failed to write stateless_reset_token of length " << in.stateless_reset_token.size() << " for " << in; return false; } } } break; case TransportParameters::kMaxPacketSize: { if (!in.max_udp_payload_size.Write(&writer)) { QUIC_BUG(Failed to write max_udp_payload_size) << "Failed to write max_udp_payload_size for " << in; return false; } } break; case TransportParameters::kInitialMaxData: { if (!in.initial_max_data.Write(&writer)) { QUIC_BUG(Failed to write initial_max_data) << "Failed to write initial_max_data for " << in; return false; } } break; case TransportParameters::kInitialMaxStreamDataBidiLocal: { if (!in.initial_max_stream_data_bidi_local.Write(&writer)) { QUIC_BUG(Failed to write initial_max_stream_data_bidi_local) << "Failed to write initial_max_stream_data_bidi_local for " << in; return false; } } break; case TransportParameters::kInitialMaxStreamDataBidiRemote: { if (!in.initial_max_stream_data_bidi_remote.Write(&writer)) { QUIC_BUG(Failed to write initial_max_stream_data_bidi_remote) << "Failed to write initial_max_stream_data_bidi_remote for " << in; return false; } } break; case TransportParameters::kInitialMaxStreamDataUni: { if (!in.initial_max_stream_data_uni.Write(&writer)) { QUIC_BUG(Failed to write initial_max_stream_data_uni) << "Failed to write initial_max_stream_data_uni for " << in; return false; } } break; case TransportParameters::kInitialMaxStreamsBidi: { if (!in.initial_max_streams_bidi.Write(&writer)) { QUIC_BUG(Failed to write initial_max_streams_bidi) << "Failed to write initial_max_streams_bidi for " << in; return false; } } break; case TransportParameters::kInitialMaxStreamsUni: { if (!in.initial_max_streams_uni.Write(&writer)) { QUIC_BUG(Failed to write initial_max_streams_uni) << "Failed to write initial_max_streams_uni for " << in; return false; } } break; case TransportParameters::kAckDelayExponent: { if (!in.ack_delay_exponent.Write(&writer)) { QUIC_BUG(Failed to write ack_delay_exponent) << "Failed to write ack_delay_exponent for " << in; return false; } } break; case TransportParameters::kMaxAckDelay: { if (!in.max_ack_delay.Write(&writer)) { QUIC_BUG(Failed to write max_ack_delay) << "Failed to write max_ack_delay for " << in; return false; } } break; case TransportParameters::kMinAckDelay: { if (!in.min_ack_delay_us.Write(&writer)) { QUIC_BUG(Failed to write min_ack_delay_us) << "Failed to write min_ack_delay_us for " << in; return false; } } break; case TransportParameters::kActiveConnectionIdLimit: { if (!in.active_connection_id_limit.Write(&writer)) { QUIC_BUG(Failed to write active_connection_id_limit) << "Failed to write active_connection_id_limit for " << in; return false; } } break; case TransportParameters::kMaxDatagramFrameSize: { if (!in.max_datagram_frame_size.Write(&writer)) { QUIC_BUG(Failed to write max_datagram_frame_size) << "Failed to write max_datagram_frame_size for " << in; return false; } } break; case TransportParameters::kGoogleHandshakeMessage: { if (in.google_handshake_message.has_value()) { if (!writer.WriteVarInt62( TransportParameters::kGoogleHandshakeMessage) || !writer.WriteStringPieceVarInt62(*in.google_handshake_message)) { QUIC_BUG(Failed to write google_handshake_message) << "Failed to write google_handshake_message: " << *in.google_handshake_message << " for " << in; return false; } } } break; case TransportParameters::kInitialRoundTripTime: { if (!in.initial_round_trip_time_us.Write(&writer)) { QUIC_BUG(Failed to write initial_round_trip_time_us) << "Failed to write initial_round_trip_time_us for " << in; return false; } } break; case TransportParameters::kDisableActiveMigration: { if (in.disable_active_migration) { if (!writer.WriteVarInt62( TransportParameters::kDisableActiveMigration) || !writer.WriteVarInt62( 0)) { QUIC_BUG(Failed to write disable_active_migration) << "Failed to write disable_active_migration for " << in; return false; } } } break; case TransportParameters::kReliableStreamReset: { if (in.reliable_stream_reset) { if (!writer.WriteVarInt62( TransportParameters::kReliableStreamReset) || !writer.WriteVarInt62( 0)) { QUIC_BUG(Failed to write reliable_stream_reset) << "Failed to write reliable_stream_reset for " << in; return false; } } } break; case TransportParameters::kPreferredAddress: { if (in.preferred_address) { std::string v4_address_bytes = in.preferred_address->ipv4_socket_address.host().ToPackedString(); std::string v6_address_bytes = in.preferred_address->ipv6_socket_address.host().ToPackedString(); if (v4_address_bytes.length() != 4 || v6_address_bytes.length() != 16 || in.preferred_address->stateless_reset_token.size() != kStatelessResetTokenLength) { QUIC_BUG(quic_bug_10743_12) << "Bad lengths " << *in.preferred_address; return false; } const uint64_t preferred_address_length = v4_address_bytes.length() + sizeof(uint16_t) + v6_address_bytes.length() + sizeof(uint16_t) + sizeof(uint8_t) + in.preferred_address->connection_id.length() + in.preferred_address->stateless_reset_token.size(); if (!writer.WriteVarInt62(TransportParameters::kPreferredAddress) || !writer.WriteVarInt62( preferred_address_length) || !writer.WriteStringPiece(v4_address_bytes) || !writer.WriteUInt16( in.preferred_address->ipv4_socket_address.port()) || !writer.WriteStringPiece(v6_address_bytes) || !writer.WriteUInt16( in.preferred_address->ipv6_socket_address.port()) || !writer.WriteUInt8( in.preferred_address->connection_id.length()) || !writer.WriteBytes( in.preferred_address->connection_id.data(), in.preferred_address->connection_id.length()) || !writer.WriteBytes( in.preferred_address->stateless_reset_token.data(), in.preferred_address->stateless_reset_token.size())) { QUIC_BUG(Failed to write preferred_address) << "Failed to write preferred_address for " << in; return false; } } } break; case TransportParameters::kInitialSourceConnectionId: { if (in.initial_source_connection_id.has_value()) { QuicConnectionId initial_source_connection_id = *in.initial_source_connection_id; if (!writer.WriteVarInt62( TransportParameters::kInitialSourceConnectionId) || !writer.WriteStringPieceVarInt62( absl::string_view(initial_source_connection_id.data(), initial_source_connection_id.length()))) { QUIC_BUG(Failed to write initial_source_connection_id) << "Failed to write initial_source_connection_id " << initial_source_connection_id << " for " << in; return false; } } } break; case TransportParameters::kRetrySourceConnectionId: { if (in.retry_source_connection_id.has_value()) { QUICHE_DCHECK_EQ(Perspective::IS_SERVER, in.perspective); QuicConnectionId retry_source_connection_id = *in.retry_source_connection_id; if (!writer.WriteVarInt62( TransportParameters::kRetrySourceConnectionId) || !writer.WriteStringPieceVarInt62( absl::string_view(retry_source_connection_id.data(), retry_source_connection_id.length()))) { QUIC_BUG(Failed to write retry_source_connection_id) << "Failed to write retry_source_connection_id " << retry_source_connection_id << " for " << in; return false; } } } break; case TransportParameters::kGoogleConnectionOptions: { if (in.google_connection_options.has_value()) { static_assert(sizeof(in.google_connection_options->front()) == 4, "bad size"); uint64_t connection_options_length = in.google_connection_options->size() * 4; if (!writer.WriteVarInt62( TransportParameters::kGoogleConnectionOptions) || !writer.WriteVarInt62( connection_options_length)) { QUIC_BUG(Failed to write google_connection_options) << "Failed to write google_connection_options of length " << connection_options_length << " for " << in; return false; } for (const QuicTag& connection_option : *in.google_connection_options) { if (!writer.WriteTag(connection_option)) { QUIC_BUG(Failed to write google_connection_option) << "Failed to write google_connection_option " << QuicTagToString(connection_option) << " for " << in; return false; } } } } break; case TransportParameters::kGoogleQuicVersion: { if (!in.legacy_version_information.has_value()) { break; } static_assert(sizeof(QuicVersionLabel) == sizeof(uint32_t), "bad length"); uint64_t google_version_length = sizeof(in.legacy_version_information->version); if (in.perspective == Perspective::IS_SERVER) { google_version_length += sizeof(uint8_t) + sizeof(QuicVersionLabel) * in.legacy_version_information->supported_versions.size(); } if (!writer.WriteVarInt62(TransportParameters::kGoogleQuicVersion) || !writer.WriteVarInt62( google_version_length) || !writer.WriteUInt32(in.legacy_version_information->version)) { QUIC_BUG(Failed to write Google version extension) << "Failed to write Google version extension for " << in; return false; } if (in.perspective == Perspective::IS_SERVER) { if (!writer.WriteUInt8( sizeof(QuicVersionLabel) * in.legacy_version_information->supported_versions.size())) { QUIC_BUG(Failed to write versions length) << "Failed to write versions length for " << in; return false; } for (QuicVersionLabel version_label : in.legacy_version_information->supported_versions) { if (!writer.WriteUInt32(version_label)) { QUIC_BUG(Failed to write supported version) << "Failed to write supported version for " << in; return false; } } } } break; case TransportParameters::kVersionInformation: { if (!in.version_information.has_value()) { break; } static_assert(sizeof(QuicVersionLabel) == sizeof(uint32_t), "bad length"); QuicVersionLabelVector other_versions = in.version_information->other_versions; const size_t grease_index = random->InsecureRandUint64() % (other_versions.size() + 1); other_versions.insert( other_versions.begin() + grease_index, CreateQuicVersionLabel(QuicVersionReservedForNegotiation())); const uint64_t version_information_length = sizeof(in.version_information->chosen_version) + sizeof(QuicVersionLabel) * other_versions.size(); if (!writer.WriteVarInt62(TransportParameters::kVersionInformation) || !writer.WriteVarInt62( version_information_length) || !writer.WriteUInt32(in.version_information->chosen_version)) { QUIC_BUG(Failed to write chosen version) << "Failed to write chosen version for " << in; return false; } for (QuicVersionLabel version_label : other_versions) { if (!writer.WriteUInt32(version_label)) { QUIC_BUG(Failed to write other version) << "Failed to write other version for " << in; return false; } } } break; default: { auto it = custom_parameters.find(parameter_id); if (it == custom_parameters.end()) { QUIC_BUG(Unknown parameter) << "Unknown parameter " << parameter_id; return false; } if (!writer.WriteVarInt62(parameter_id) || !writer.WriteStringPieceVarInt62(it->second)) { QUIC_BUG(Failed to write custom parameter) << "Failed to write custom parameter " << parameter_id; return false; } } break; } } out->resize(writer.length()); QUIC_DLOG(INFO) << "Serialized " << in << " as " << writer.length() << " bytes"; return true; } bool ParseTransportParameters(ParsedQuicVersion version, Perspective perspective, const uint8_t* in, size_t in_len, TransportParameters* out, std::string* error_details) { out->perspective = perspective; QuicDataReader reader(reinterpret_cast<const char*>(in), in_len); while (!reader.IsDoneReading()) { uint64_t param_id64; if (!reader.ReadVarInt62(&param_id64)) { *error_details = "Failed to parse transport parameter ID"; return false; } TransportParameters::TransportParameterId param_id = static_cast<TransportParameters::TransportParameterId>(param_id64); absl::string_view value; if (!reader.ReadStringPieceVarInt62(&value)) { *error_details = "Failed to read length and value of transport parameter " + TransportParameterIdToString(param_id); return false; } QuicDataReader value_reader(value); bool parse_success = true; switch (param_id) { case TransportParameters::kOriginalDestinationConnectionId: { if (out->original_destination_connection_id.has_value()) { *error_details = "Received a second original_destination_connection_id"; return false; } const size_t connection_id_length = value_reader.BytesRemaining(); if (!QuicUtils::IsConnectionIdLengthValidForVersion( connection_id_length, version.transport_version)) { *error_details = absl::StrCat( "Received original_destination_connection_id of invalid length ", connection_id_length); return false; } QuicConnectionId original_destination_connection_id; if (!value_reader.ReadConnectionId(&original_destination_connection_id, connection_id_length)) { *error_details = "Failed to read original_destination_connection_id"; return false; } out->original_destination_connection_id = original_destination_connection_id; } break; case TransportParameters::kMaxIdleTimeout: parse_success = out->max_idle_timeout_ms.Read(&value_reader, error_details); break; case TransportParameters::kStatelessResetToken: { if (!out->stateless_reset_token.empty()) { *error_details = "Received a second stateless_reset_token"; return false; } absl::string_view stateless_reset_token = value_reader.ReadRemainingPayload(); if (stateless_reset_token.length() != kStatelessResetTokenLength) { *error_details = absl::StrCat("Received stateless_reset_token of invalid length ", stateless_reset_token.length()); return false; } out->stateless_reset_token.assign( stateless_reset_token.data(), stateless_reset_token.data() + stateless_reset_token.length()); } break; case TransportParameters::kMaxPacketSize: parse_success = out->max_udp_payload_size.Read(&value_reader, error_details); break; case TransportParameters::kInitialMaxData: parse_success = out->initial_max_data.Read(&value_reader, error_details); break; case TransportParameters::kInitialMaxStreamDataBidiLocal: parse_success = out->initial_max_stream_data_bidi_local.Read( &value_reader, error_details); break; case TransportParameters::kInitialMaxStreamDataBidiRemote: parse_success = out->initial_max_stream_data_bidi_remote.Read( &value_reader, error_details); break; case TransportParameters::kInitialMaxStreamDataUni: parse_success = out->initial_max_stream_data_uni.Read(&value_reader, error_details); break; case TransportParameters::kInitialMaxStreamsBidi: parse_success = out->initial_max_streams_bidi.Read(&value_reader, error_details); break; case TransportParameters::kInitialMaxStreamsUni: parse_success = out->initial_max_streams_uni.Read(&value_reader, error_details); break; case TransportParameters::kAckDelayExponent: parse_success = out->ack_delay_exponent.Read(&value_reader, error_details); break; case TransportParameters::kMaxAckDelay: parse_success = out->max_ack_delay.Read(&value_reader, error_details); break; case TransportParameters::kDisableActiveMigration: if (out->disable_active_migration) { *error_details = "Received a second disable_active_migration"; return false; } out->disable_active_migration = true; break; case TransportParameters::kPreferredAddress: { TransportParameters::PreferredAddress preferred_address; uint16_t ipv4_port, ipv6_port; in_addr ipv4_address; in6_addr ipv6_address; preferred_address.stateless_reset_token.resize( kStatelessResetTokenLength); if (!value_reader.ReadBytes(&ipv4_address, sizeof(ipv4_address)) || !value_reader.ReadUInt16(&ipv4_port) || !value_reader.ReadBytes(&ipv6_address, sizeof(ipv6_address)) || !value_reader.ReadUInt16(&ipv6_port) || !value_reader.ReadLengthPrefixedConnectionId( &preferred_address.connection_id) || !value_reader.ReadBytes(&preferred_address.stateless_reset_token[0], kStatelessResetTokenLength)) { *error_details = "Failed to read preferred_address"; return false; } preferred_address.ipv4_socket_address = QuicSocketAddress(QuicIpAddress(ipv4_address), ipv4_port); preferred_address.ipv6_socket_address = QuicSocketAddress(QuicIpAddress(ipv6_address), ipv6_port); if (!preferred_address.ipv4_socket_address.host().IsIPv4() || !preferred_address.ipv6_socket_address.host().IsIPv6()) { *error_details = "Received preferred_address of bad families " + preferred_address.ToString(); return false; } if (!QuicUtils::IsConnectionIdValidForVersion( preferred_address.connection_id, version.transport_version)) { *error_details = "Received invalid preferred_address connection ID " + preferred_address.ToString(); return false; } out->preferred_address = std::make_unique<TransportParameters::PreferredAddress>( preferred_address); } break; case TransportParameters::kActiveConnectionIdLimit: parse_success = out->active_connection_id_limit.Read(&value_reader, error_details); break; case TransportParameters::kInitialSourceConnectionId: { if (out->initial_source_connection_id.has_value()) { *error_details = "Received a second initial_source_connection_id"; return false; } const size_t connection_id_length = value_reader.BytesRemaining(); if (!QuicUtils::IsConnectionIdLengthValidForVersion( connection_id_length, version.transport_version)) { *error_details = absl::StrCat( "Received initial_source_connection_id of invalid length ", connection_id_length); return false; } QuicConnectionId initial_source_connection_id; if (!value_reader.ReadConnectionId(&initial_source_connection_id, connection_id_length)) { *error_details = "Failed to read initial_source_connection_id"; return false; } out->initial_source_connection_id = initial_source_connection_id; } break; case TransportParameters::kRetrySourceConnectionId: { if (out->retry_source_connection_id.has_value()) { *error_details = "Received a second retry_source_connection_id"; return false; } const size_t connection_id_length = value_reader.BytesRemaining(); if (!QuicUtils::IsConnectionIdLengthValidForVersion( connection_id_length, version.transport_version)) { *error_details = absl::StrCat( "Received retry_source_connection_id of invalid length ", connection_id_length); return false; } QuicConnectionId retry_source_connection_id; if (!value_reader.ReadConnectionId(&retry_source_connection_id, connection_id_length)) { *error_details = "Failed to read retry_source_connection_id"; return false; } out->retry_source_connection_id = retry_source_connection_id; } break; case TransportParameters::kMaxDatagramFrameSize: parse_success = out->max_datagram_frame_size.Read(&value_reader, error_details); break; case TransportParameters::kGoogleHandshakeMessage: if (out->google_handshake_message.has_value()) { *error_details = "Received a second google_handshake_message"; return false; } out->google_handshake_message = std::string(value_reader.ReadRemainingPayload()); break; case TransportParameters::kInitialRoundTripTime: parse_success = out->initial_round_trip_time_us.Read(&value_reader, error_details); break; case TransportParameters::kReliableStreamReset: if (out->reliable_stream_reset) { *error_details = "Received a second reliable_stream_reset"; return false; } out->reliable_stream_reset = true; break; case TransportParameters::kGoogleConnectionOptions: { if (out->google_connection_options.has_value()) { *error_details = "Received a second google_connection_options"; return false; } out->google_connection_options = QuicTagVector{}; while (!value_reader.IsDoneReading()) { QuicTag connection_option; if (!value_reader.ReadTag(&connection_option)) { *error_details = "Failed to read a google_connection_options"; return false; } out->google_connection_options->push_back(connection_option); } } break; case TransportParameters::kGoogleQuicVersion: { if (!out->legacy_version_information.has_value()) { out->legacy_version_information = TransportParameters::LegacyVersionInformation(); } if (!value_reader.ReadUInt32( &out->legacy_version_information->version)) { *error_details = "Failed to read Google version extension version"; return false; } if (perspective == Perspective::IS_SERVER) { uint8_t versions_length; if (!value_reader.ReadUInt8(&versions_length)) { *error_details = "Failed to parse Google supported versions length"; return false; } const uint8_t num_versions = versions_length / sizeof(uint32_t); for (uint8_t i = 0; i < num_versions; ++i) { QuicVersionLabel parsed_version; if (!value_reader.ReadUInt32(&parsed_version)) { *error_details = "Failed to parse Google supported version"; return false; } out->legacy_version_information->supported_versions.push_back( parsed_version); } } } break; case TransportParameters::kVersionInformation: { if (out->version_information.has_value()) { *error_details = "Received a second version_information"; return false; } out->version_information = TransportParameters::VersionInformation(); if (!value_reader.ReadUInt32( &out->version_information->chosen_version)) { *error_details = "Failed to read chosen version"; return false; } while (!value_reader.IsDoneReading()) { QuicVersionLabel other_version; if (!value_reader.ReadUInt32(&other_version)) { *error_details = "Failed to parse other version"; return false; } out->version_information->other_versions.push_back(other_version); } } break; case TransportParameters::kMinAckDelay: parse_success = out->min_ack_delay_us.Read(&value_reader, error_details); break; default: if (out->custom_parameters.find(param_id) != out->custom_parameters.end()) { *error_details = "Received a second unknown parameter" + TransportParameterIdToString(param_id); return false; } out->custom_parameters[param_id] = std::string(value_reader.ReadRemainingPayload()); break; } if (!parse_success) { QUICHE_DCHECK(!error_details->empty()); return false; } if (!value_reader.IsDoneReading()) { *error_details = absl::StrCat( "Received unexpected ", value_reader.BytesRemaining(), " bytes after parsing ", TransportParameterIdToString(param_id)); return false; } } if (!out->AreValid(error_details)) { QUICHE_DCHECK(!error_details->empty()); return false; } QUIC_DLOG(INFO) << "Parsed transport parameters " << *out << " from " << in_len << " bytes"; return true; } namespace { bool DigestUpdateIntegerParam( EVP_MD_CTX* hash_ctx, const TransportParameters::IntegerParameter& param) { uint64_t value = param.value(); return EVP_DigestUpdate(hash_ctx, &value, sizeof(value)); } } bool SerializeTransportParametersForTicket( const TransportParameters& in, const std::vector<uint8_t>& application_data, std::vector<uint8_t>* out) { std::string error_details; if (!in.AreValid(&error_details)) { QUIC_BUG(quic_bug_10743_26) << "Not serializing invalid transport parameters: " << error_details; return false; } out->resize(SHA256_DIGEST_LENGTH + 1); const uint8_t serialization_version = 0; (*out)[0] = serialization_version; bssl::ScopedEVP_MD_CTX hash_ctx; uint64_t app_data_len = application_data.size(); const uint64_t parameter_version = 0; if (!EVP_DigestInit(hash_ctx.get(), EVP_sha256()) || !EVP_DigestUpdate(hash_ctx.get(), &app_data_len, sizeof(app_data_len)) || !EVP_DigestUpdate(hash_ctx.get(), application_data.data(), application_data.size()) || !EVP_DigestUpdate(hash_ctx.get(), &parameter_version, sizeof(parameter_version))) { QUIC_BUG(quic_bug_10743_27) << "Unexpected failure of EVP_Digest functions when hashing " "Transport Parameters for ticket"; return false; } if (!DigestUpdateIntegerParam(hash_ctx.get(), in.initial_max_data) || !DigestUpdateIntegerParam(hash_ctx.get(), in.initial_max_stream_data_bidi_local) || !DigestUpdateIntegerParam(hash_ctx.get(), in.initial_max_stream_data_bidi_remote) || !DigestUpdateIntegerParam(hash_ctx.get(), in.initial_max_stream_data_uni) || !DigestUpdateIntegerParam(hash_ctx.get(), in.initial_max_streams_bidi) || !DigestUpdateIntegerParam(hash_ctx.get(), in.initial_max_streams_uni) || !DigestUpdateIntegerParam(hash_ctx.get(), in.active_connection_id_limit)) { QUIC_BUG(quic_bug_10743_28) << "Unexpected failure of EVP_Digest functions when hashing " "Transport Parameters for ticket"; return false; } uint8_t disable_active_migration = in.disable_active_migration ? 1 : 0; uint8_t reliable_stream_reset = in.reliable_stream_reset ? 1 : 0; if (!EVP_DigestUpdate(hash_ctx.get(), &disable_active_migration, sizeof(disable_active_migration)) || (reliable_stream_reset && !EVP_DigestUpdate(hash_ctx.get(), "ResetStreamAt", 13)) || !EVP_DigestFinal(hash_ctx.get(), out->data() + 1, nullptr)) { QUIC_BUG(quic_bug_10743_29) << "Unexpected failure of EVP_Digest functions when hashing " "Transport Parameters for ticket"; return false; } return true; } void DegreaseTransportParameters(TransportParameters& parameters) { for (auto it = parameters.custom_parameters.begin(); it != parameters.custom_parameters.end(); ) { if (it->first % 31 == 27) { parameters.custom_parameters.erase(it++); } else { ++it; } } if (parameters.version_information.has_value()) { QuicVersionLabelVector clean_versions; for (QuicVersionLabel version : parameters.version_information->other_versions) { if ((version & kReservedVersionMask) != kReservedVersionBits) { clean_versions.push_back(version); } } parameters.version_information->other_versions = std::move(clean_versions); } } }
#include "quiche/quic/core/crypto/transport_parameters.h" #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_tag.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { const QuicVersionLabel kFakeVersionLabel = 0x01234567; const QuicVersionLabel kFakeVersionLabel2 = 0x89ABCDEF; const uint64_t kFakeIdleTimeoutMilliseconds = 12012; const uint64_t kFakeInitialMaxData = 101; const uint64_t kFakeInitialMaxStreamDataBidiLocal = 2001; const uint64_t kFakeInitialMaxStreamDataBidiRemote = 2002; const uint64_t kFakeInitialMaxStreamDataUni = 3000; const uint64_t kFakeInitialMaxStreamsBidi = 21; const uint64_t kFakeInitialMaxStreamsUni = 22; const bool kFakeDisableMigration = true; const bool kFakeReliableStreamReset = true; const uint64_t kFakeInitialRoundTripTime = 53; const uint8_t kFakePreferredStatelessResetTokenData[16] = { 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F}; const auto kCustomParameter1 = static_cast<TransportParameters::TransportParameterId>(0xffcd); const char* kCustomParameter1Value = "foo"; const auto kCustomParameter2 = static_cast<TransportParameters::TransportParameterId>(0xff34); const char* kCustomParameter2Value = "bar"; const char kFakeGoogleHandshakeMessage[] = "01000106030392655f5230270d4964a4f99b15bbad220736d972aea97bf9ac494ead62e6"; QuicConnectionId CreateFakeOriginalDestinationConnectionId() { return TestConnectionId(0x1337); } QuicConnectionId CreateFakeInitialSourceConnectionId() { return TestConnectionId(0x2345); } QuicConnectionId CreateFakeRetrySourceConnectionId() { return TestConnectionId(0x9876); } QuicConnectionId CreateFakePreferredConnectionId() { return TestConnectionId(0xBEEF); } std::vector<uint8_t> CreateFakePreferredStatelessResetToken() { return std::vector<uint8_t>( kFakePreferredStatelessResetTokenData, kFakePreferredStatelessResetTokenData + sizeof(kFakePreferredStatelessResetTokenData)); } QuicSocketAddress CreateFakeV4SocketAddress() { QuicIpAddress ipv4_address; if (!ipv4_address.FromString("65.66.67.68")) { QUIC_LOG(FATAL) << "Failed to create IPv4 address"; return QuicSocketAddress(); } return QuicSocketAddress(ipv4_address, 0x4884); } QuicSocketAddress CreateFakeV6SocketAddress() { QuicIpAddress ipv6_address; if (!ipv6_address.FromString("6061:6263:6465:6667:6869:6A6B:6C6D:6E6F")) { QUIC_LOG(FATAL) << "Failed to create IPv6 address"; return QuicSocketAddress(); } return QuicSocketAddress(ipv6_address, 0x6336); } std::unique_ptr<TransportParameters::PreferredAddress> CreateFakePreferredAddress() { TransportParameters::PreferredAddress preferred_address; preferred_address.ipv4_socket_address = CreateFakeV4SocketAddress(); preferred_address.ipv6_socket_address = CreateFakeV6SocketAddress(); preferred_address.connection_id = CreateFakePreferredConnectionId(); preferred_address.stateless_reset_token = CreateFakePreferredStatelessResetToken(); return std::make_unique<TransportParameters::PreferredAddress>( preferred_address); } TransportParameters::LegacyVersionInformation CreateFakeLegacyVersionInformationClient() { TransportParameters::LegacyVersionInformation legacy_version_information; legacy_version_information.version = kFakeVersionLabel; return legacy_version_information; } TransportParameters::LegacyVersionInformation CreateFakeLegacyVersionInformationServer() { TransportParameters::LegacyVersionInformation legacy_version_information = CreateFakeLegacyVersionInformationClient(); legacy_version_information.supported_versions.push_back(kFakeVersionLabel); legacy_version_information.supported_versions.push_back(kFakeVersionLabel2); return legacy_version_information; } TransportParameters::VersionInformation CreateFakeVersionInformation() { TransportParameters::VersionInformation version_information; version_information.chosen_version = kFakeVersionLabel; version_information.other_versions.push_back(kFakeVersionLabel); version_information.other_versions.push_back(kFakeVersionLabel2); return version_information; } QuicTagVector CreateFakeGoogleConnectionOptions() { return {kALPN, MakeQuicTag('E', 'F', 'G', 0x00), MakeQuicTag('H', 'I', 'J', 0xff)}; } void RemoveGreaseParameters(TransportParameters* params) { std::vector<TransportParameters::TransportParameterId> grease_params; for (const auto& kv : params->custom_parameters) { if (kv.first % 31 == 27) { grease_params.push_back(kv.first); } } EXPECT_EQ(grease_params.size(), 1u); for (TransportParameters::TransportParameterId param_id : grease_params) { params->custom_parameters.erase(param_id); } if (params->version_information.has_value()) { QuicVersionLabelVector& other_versions = params->version_information.value().other_versions; for (auto it = other_versions.begin(); it != other_versions.end();) { if ((*it & 0x0f0f0f0f) == 0x0a0a0a0a) { it = other_versions.erase(it); } else { ++it; } } } } } class TransportParametersTest : public QuicTestWithParam<ParsedQuicVersion> { protected: TransportParametersTest() : version_(GetParam()) {} ParsedQuicVersion version_; }; INSTANTIATE_TEST_SUITE_P(TransportParametersTests, TransportParametersTest, ::testing::ValuesIn(AllSupportedVersionsWithTls()), ::testing::PrintToStringParamName()); TEST_P(TransportParametersTest, Comparator) { TransportParameters orig_params; TransportParameters new_params; orig_params.perspective = Perspective::IS_CLIENT; new_params.perspective = Perspective::IS_SERVER; EXPECT_NE(orig_params, new_params); EXPECT_FALSE(orig_params == new_params); EXPECT_TRUE(orig_params != new_params); new_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); new_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.version_information = CreateFakeVersionInformation(); new_params.version_information = CreateFakeVersionInformation(); orig_params.disable_active_migration = true; new_params.disable_active_migration = true; orig_params.reliable_stream_reset = true; new_params.reliable_stream_reset = true; EXPECT_EQ(orig_params, new_params); EXPECT_TRUE(orig_params == new_params); EXPECT_FALSE(orig_params != new_params); orig_params.legacy_version_information.value().supported_versions.push_back( kFakeVersionLabel); new_params.legacy_version_information.value().supported_versions.push_back( kFakeVersionLabel2); EXPECT_NE(orig_params, new_params); EXPECT_FALSE(orig_params == new_params); EXPECT_TRUE(orig_params != new_params); new_params.legacy_version_information.value().supported_versions.pop_back(); new_params.legacy_version_information.value().supported_versions.push_back( kFakeVersionLabel); orig_params.stateless_reset_token = CreateStatelessResetTokenForTest(); new_params.stateless_reset_token = CreateStatelessResetTokenForTest(); EXPECT_EQ(orig_params, new_params); EXPECT_TRUE(orig_params == new_params); EXPECT_FALSE(orig_params != new_params); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); new_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest + 1); EXPECT_NE(orig_params, new_params); EXPECT_FALSE(orig_params == new_params); EXPECT_TRUE(orig_params != new_params); new_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); EXPECT_EQ(orig_params, new_params); EXPECT_TRUE(orig_params == new_params); EXPECT_FALSE(orig_params != new_params); orig_params.preferred_address = CreateFakePreferredAddress(); EXPECT_NE(orig_params, new_params); EXPECT_FALSE(orig_params == new_params); EXPECT_TRUE(orig_params != new_params); new_params.preferred_address = CreateFakePreferredAddress(); EXPECT_EQ(orig_params, new_params); EXPECT_TRUE(orig_params == new_params); EXPECT_FALSE(orig_params != new_params); orig_params.custom_parameters[kCustomParameter1] = kCustomParameter1Value; orig_params.custom_parameters[kCustomParameter2] = kCustomParameter2Value; new_params.custom_parameters[kCustomParameter2] = kCustomParameter2Value; new_params.custom_parameters[kCustomParameter1] = kCustomParameter1Value; EXPECT_EQ(orig_params, new_params); EXPECT_TRUE(orig_params == new_params); EXPECT_FALSE(orig_params != new_params); orig_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); new_params.initial_source_connection_id = std::nullopt; EXPECT_NE(orig_params, new_params); EXPECT_FALSE(orig_params == new_params); EXPECT_TRUE(orig_params != new_params); new_params.initial_source_connection_id = TestConnectionId(0xbadbad); EXPECT_NE(orig_params, new_params); EXPECT_FALSE(orig_params == new_params); EXPECT_TRUE(orig_params != new_params); new_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); EXPECT_EQ(orig_params, new_params); EXPECT_TRUE(orig_params == new_params); EXPECT_FALSE(orig_params != new_params); } TEST_P(TransportParametersTest, CopyConstructor) { TransportParameters orig_params; orig_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.version_information = CreateFakeVersionInformation(); orig_params.original_destination_connection_id = CreateFakeOriginalDestinationConnectionId(); orig_params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); orig_params.stateless_reset_token = CreateStatelessResetTokenForTest(); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); orig_params.initial_max_data.set_value(kFakeInitialMaxData); orig_params.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal); orig_params.initial_max_stream_data_bidi_remote.set_value( kFakeInitialMaxStreamDataBidiRemote); orig_params.initial_max_stream_data_uni.set_value( kFakeInitialMaxStreamDataUni); orig_params.initial_max_streams_bidi.set_value(kFakeInitialMaxStreamsBidi); orig_params.initial_max_streams_uni.set_value(kFakeInitialMaxStreamsUni); orig_params.ack_delay_exponent.set_value(kAckDelayExponentForTest); orig_params.max_ack_delay.set_value(kMaxAckDelayForTest); orig_params.min_ack_delay_us.set_value(kMinAckDelayUsForTest); orig_params.disable_active_migration = kFakeDisableMigration; orig_params.reliable_stream_reset = kFakeReliableStreamReset; orig_params.preferred_address = CreateFakePreferredAddress(); orig_params.active_connection_id_limit.set_value( kActiveConnectionIdLimitForTest); orig_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); orig_params.retry_source_connection_id = CreateFakeRetrySourceConnectionId(); orig_params.initial_round_trip_time_us.set_value(kFakeInitialRoundTripTime); std::string google_handshake_message; ASSERT_TRUE(absl::HexStringToBytes(kFakeGoogleHandshakeMessage, &google_handshake_message)); orig_params.google_handshake_message = std::move(google_handshake_message); orig_params.google_connection_options = CreateFakeGoogleConnectionOptions(); orig_params.custom_parameters[kCustomParameter1] = kCustomParameter1Value; orig_params.custom_parameters[kCustomParameter2] = kCustomParameter2Value; TransportParameters new_params(orig_params); EXPECT_EQ(new_params, orig_params); } TEST_P(TransportParametersTest, RoundTripClient) { TransportParameters orig_params; orig_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.version_information = CreateFakeVersionInformation(); orig_params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); orig_params.initial_max_data.set_value(kFakeInitialMaxData); orig_params.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal); orig_params.initial_max_stream_data_bidi_remote.set_value( kFakeInitialMaxStreamDataBidiRemote); orig_params.initial_max_stream_data_uni.set_value( kFakeInitialMaxStreamDataUni); orig_params.initial_max_streams_bidi.set_value(kFakeInitialMaxStreamsBidi); orig_params.initial_max_streams_uni.set_value(kFakeInitialMaxStreamsUni); orig_params.ack_delay_exponent.set_value(kAckDelayExponentForTest); orig_params.max_ack_delay.set_value(kMaxAckDelayForTest); orig_params.min_ack_delay_us.set_value(kMinAckDelayUsForTest); orig_params.disable_active_migration = kFakeDisableMigration; orig_params.reliable_stream_reset = kFakeReliableStreamReset; orig_params.active_connection_id_limit.set_value( kActiveConnectionIdLimitForTest); orig_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); orig_params.initial_round_trip_time_us.set_value(kFakeInitialRoundTripTime); std::string google_handshake_message; ASSERT_TRUE(absl::HexStringToBytes(kFakeGoogleHandshakeMessage, &google_handshake_message)); orig_params.google_handshake_message = std::move(google_handshake_message); orig_params.google_connection_options = CreateFakeGoogleConnectionOptions(); orig_params.custom_parameters[kCustomParameter1] = kCustomParameter1Value; orig_params.custom_parameters[kCustomParameter2] = kCustomParameter2Value; std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParameters(orig_params, &serialized)); TransportParameters new_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_CLIENT, serialized.data(), serialized.size(), &new_params, &error_details)) << error_details; EXPECT_TRUE(error_details.empty()); RemoveGreaseParameters(&new_params); EXPECT_EQ(new_params, orig_params); } TEST_P(TransportParametersTest, RoundTripServer) { TransportParameters orig_params; orig_params.perspective = Perspective::IS_SERVER; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationServer(); orig_params.version_information = CreateFakeVersionInformation(); orig_params.original_destination_connection_id = CreateFakeOriginalDestinationConnectionId(); orig_params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); orig_params.stateless_reset_token = CreateStatelessResetTokenForTest(); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); orig_params.initial_max_data.set_value(kFakeInitialMaxData); orig_params.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal); orig_params.initial_max_stream_data_bidi_remote.set_value( kFakeInitialMaxStreamDataBidiRemote); orig_params.initial_max_stream_data_uni.set_value( kFakeInitialMaxStreamDataUni); orig_params.initial_max_streams_bidi.set_value(kFakeInitialMaxStreamsBidi); orig_params.initial_max_streams_uni.set_value(kFakeInitialMaxStreamsUni); orig_params.ack_delay_exponent.set_value(kAckDelayExponentForTest); orig_params.max_ack_delay.set_value(kMaxAckDelayForTest); orig_params.min_ack_delay_us.set_value(kMinAckDelayUsForTest); orig_params.disable_active_migration = kFakeDisableMigration; orig_params.reliable_stream_reset = kFakeReliableStreamReset; orig_params.preferred_address = CreateFakePreferredAddress(); orig_params.active_connection_id_limit.set_value( kActiveConnectionIdLimitForTest); orig_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); orig_params.retry_source_connection_id = CreateFakeRetrySourceConnectionId(); orig_params.google_connection_options = CreateFakeGoogleConnectionOptions(); std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParameters(orig_params, &serialized)); TransportParameters new_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_SERVER, serialized.data(), serialized.size(), &new_params, &error_details)) << error_details; EXPECT_TRUE(error_details.empty()); RemoveGreaseParameters(&new_params); EXPECT_EQ(new_params, orig_params); } TEST_P(TransportParametersTest, AreValid) { { TransportParameters params; std::string error_details; params.perspective = Perspective::IS_CLIENT; EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); } { TransportParameters params; std::string error_details; params.perspective = Perspective::IS_CLIENT; EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.max_idle_timeout_ms.set_value(601000); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); } { TransportParameters params; std::string error_details; params.perspective = Perspective::IS_CLIENT; EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.max_udp_payload_size.set_value(1200); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.max_udp_payload_size.set_value(65535); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.max_udp_payload_size.set_value(9999999); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.max_udp_payload_size.set_value(0); error_details = ""; EXPECT_FALSE(params.AreValid(&error_details)); EXPECT_EQ(error_details, "Invalid transport parameters [Client max_udp_payload_size 0 " "(Invalid)]"); params.max_udp_payload_size.set_value(1199); error_details = ""; EXPECT_FALSE(params.AreValid(&error_details)); EXPECT_EQ(error_details, "Invalid transport parameters [Client max_udp_payload_size 1199 " "(Invalid)]"); } { TransportParameters params; std::string error_details; params.perspective = Perspective::IS_CLIENT; EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.ack_delay_exponent.set_value(0); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.ack_delay_exponent.set_value(20); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.ack_delay_exponent.set_value(21); EXPECT_FALSE(params.AreValid(&error_details)); EXPECT_EQ(error_details, "Invalid transport parameters [Client ack_delay_exponent 21 " "(Invalid)]"); } { TransportParameters params; std::string error_details; params.perspective = Perspective::IS_CLIENT; EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.active_connection_id_limit.set_value(2); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.active_connection_id_limit.set_value(999999); EXPECT_TRUE(params.AreValid(&error_details)); EXPECT_TRUE(error_details.empty()); params.active_connection_id_limit.set_value(1); EXPECT_FALSE(params.AreValid(&error_details)); EXPECT_EQ(error_details, "Invalid transport parameters [Client active_connection_id_limit" " 1 (Invalid)]"); params.active_connection_id_limit.set_value(0); EXPECT_FALSE(params.AreValid(&error_details)); EXPECT_EQ(error_details, "Invalid transport parameters [Client active_connection_id_limit" " 0 (Invalid)]"); } } TEST_P(TransportParametersTest, NoClientParamsWithStatelessResetToken) { TransportParameters orig_params; orig_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); orig_params.stateless_reset_token = CreateStatelessResetTokenForTest(); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); std::vector<uint8_t> out; EXPECT_QUIC_BUG( EXPECT_FALSE(SerializeTransportParameters(orig_params, &out)), "Not serializing invalid transport parameters: Client cannot send " "stateless reset token"); } TEST_P(TransportParametersTest, ParseClientParams) { const uint8_t kClientParams[] = { 0x01, 0x02, 0x6e, 0xec, 0x03, 0x02, 0x63, 0x29, 0x04, 0x02, 0x40, 0x65, 0x05, 0x02, 0x47, 0xD1, 0x06, 0x02, 0x47, 0xD2, 0x07, 0x02, 0x4B, 0xB8, 0x08, 0x01, 0x15, 0x09, 0x01, 0x16, 0x0a, 0x01, 0x0a, 0x0b, 0x01, 0x33, 0x80, 0x00, 0xde, 0x1a, 0x02, 0x43, 0xe8, 0x0c, 0x00, 0xc0, 0x17, 0xf7, 0x58, 0x6d, 0x2c, 0xb5, 0x71, 0x00, 0x0e, 0x01, 0x34, 0x0f, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x23, 0x45, 0x66, 0xab, 0x24, 0x01, 0x00, 0x01, 0x06, 0x03, 0x03, 0x92, 0x65, 0x5f, 0x52, 0x30, 0x27, 0x0d, 0x49, 0x64, 0xa4, 0xf9, 0x9b, 0x15, 0xbb, 0xad, 0x22, 0x07, 0x36, 0xd9, 0x72, 0xae, 0xa9, 0x7b, 0xf9, 0xac, 0x49, 0x4e, 0xad, 0x62, 0xe6, 0x71, 0x27, 0x01, 0x35, 0x71, 0x28, 0x0c, 'A', 'L', 'P', 'N', 'E', 'F', 'G', 0x00, 'H', 'I', 'J', 0xff, 0x80, 0x00, 0x47, 0x52, 0x04, 0x01, 0x23, 0x45, 0x67, 0x80, 0xFF, 0x73, 0xDB, 0x0C, 0x01, 0x23, 0x45, 0x67, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, }; const uint8_t* client_params = reinterpret_cast<const uint8_t*>(kClientParams); size_t client_params_length = ABSL_ARRAYSIZE(kClientParams); TransportParameters new_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_CLIENT, client_params, client_params_length, &new_params, &error_details)) << error_details; EXPECT_TRUE(error_details.empty()); EXPECT_EQ(Perspective::IS_CLIENT, new_params.perspective); ASSERT_TRUE(new_params.legacy_version_information.has_value()); EXPECT_EQ(kFakeVersionLabel, new_params.legacy_version_information.value().version); EXPECT_TRUE( new_params.legacy_version_information.value().supported_versions.empty()); ASSERT_TRUE(new_params.version_information.has_value()); EXPECT_EQ(new_params.version_information.value(), CreateFakeVersionInformation()); EXPECT_FALSE(new_params.original_destination_connection_id.has_value()); EXPECT_EQ(kFakeIdleTimeoutMilliseconds, new_params.max_idle_timeout_ms.value()); EXPECT_TRUE(new_params.stateless_reset_token.empty()); EXPECT_EQ(kMaxPacketSizeForTest, new_params.max_udp_payload_size.value()); EXPECT_EQ(kFakeInitialMaxData, new_params.initial_max_data.value()); EXPECT_EQ(kFakeInitialMaxStreamDataBidiLocal, new_params.initial_max_stream_data_bidi_local.value()); EXPECT_EQ(kFakeInitialMaxStreamDataBidiRemote, new_params.initial_max_stream_data_bidi_remote.value()); EXPECT_EQ(kFakeInitialMaxStreamDataUni, new_params.initial_max_stream_data_uni.value()); EXPECT_EQ(kFakeInitialMaxStreamsBidi, new_params.initial_max_streams_bidi.value()); EXPECT_EQ(kFakeInitialMaxStreamsUni, new_params.initial_max_streams_uni.value()); EXPECT_EQ(kAckDelayExponentForTest, new_params.ack_delay_exponent.value()); EXPECT_EQ(kMaxAckDelayForTest, new_params.max_ack_delay.value()); EXPECT_EQ(kMinAckDelayUsForTest, new_params.min_ack_delay_us.value()); EXPECT_EQ(kFakeDisableMigration, new_params.disable_active_migration); EXPECT_EQ(kFakeReliableStreamReset, new_params.reliable_stream_reset); EXPECT_EQ(kActiveConnectionIdLimitForTest, new_params.active_connection_id_limit.value()); ASSERT_TRUE(new_params.initial_source_connection_id.has_value()); EXPECT_EQ(CreateFakeInitialSourceConnectionId(), new_params.initial_source_connection_id.value()); EXPECT_FALSE(new_params.retry_source_connection_id.has_value()); EXPECT_EQ(kFakeInitialRoundTripTime, new_params.initial_round_trip_time_us.value()); ASSERT_TRUE(new_params.google_connection_options.has_value()); EXPECT_EQ(CreateFakeGoogleConnectionOptions(), new_params.google_connection_options.value()); std::string expected_google_handshake_message; ASSERT_TRUE(absl::HexStringToBytes(kFakeGoogleHandshakeMessage, &expected_google_handshake_message)); EXPECT_EQ(expected_google_handshake_message, new_params.google_handshake_message); } TEST_P(TransportParametersTest, ParseClientParamsFailsWithFullStatelessResetToken) { const uint8_t kClientParamsWithFullToken[] = { 0x01, 0x02, 0x6e, 0xec, 0x02, 0x10, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0x03, 0x02, 0x63, 0x29, 0x04, 0x02, 0x40, 0x65, }; const uint8_t* client_params = reinterpret_cast<const uint8_t*>(kClientParamsWithFullToken); size_t client_params_length = ABSL_ARRAYSIZE(kClientParamsWithFullToken); TransportParameters out_params; std::string error_details; EXPECT_FALSE(ParseTransportParameters(version_, Perspective::IS_CLIENT, client_params, client_params_length, &out_params, &error_details)); EXPECT_EQ(error_details, "Client cannot send stateless reset token"); } TEST_P(TransportParametersTest, ParseClientParamsFailsWithEmptyStatelessResetToken) { const uint8_t kClientParamsWithEmptyToken[] = { 0x01, 0x02, 0x6e, 0xec, 0x02, 0x00, 0x03, 0x02, 0x63, 0x29, 0x04, 0x02, 0x40, 0x65, }; const uint8_t* client_params = reinterpret_cast<const uint8_t*>(kClientParamsWithEmptyToken); size_t client_params_length = ABSL_ARRAYSIZE(kClientParamsWithEmptyToken); TransportParameters out_params; std::string error_details; EXPECT_FALSE(ParseTransportParameters(version_, Perspective::IS_CLIENT, client_params, client_params_length, &out_params, &error_details)); EXPECT_EQ(error_details, "Received stateless_reset_token of invalid length 0"); } TEST_P(TransportParametersTest, ParseClientParametersRepeated) { const uint8_t kClientParamsRepeated[] = { 0x01, 0x02, 0x6e, 0xec, 0x03, 0x02, 0x63, 0x29, 0x01, 0x02, 0x6e, 0xec, }; const uint8_t* client_params = reinterpret_cast<const uint8_t*>(kClientParamsRepeated); size_t client_params_length = ABSL_ARRAYSIZE(kClientParamsRepeated); TransportParameters out_params; std::string error_details; EXPECT_FALSE(ParseTransportParameters(version_, Perspective::IS_CLIENT, client_params, client_params_length, &out_params, &error_details)); EXPECT_EQ(error_details, "Received a second max_idle_timeout"); } TEST_P(TransportParametersTest, ParseServerParams) { const uint8_t kServerParams[] = { 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x37, 0x01, 0x02, 0x6e, 0xec, 0x02, 0x10, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0x03, 0x02, 0x63, 0x29, 0x04, 0x02, 0x40, 0x65, 0x05, 0x02, 0x47, 0xD1, 0x06, 0x02, 0x47, 0xD2, 0x07, 0x02, 0x4B, 0xB8, 0x08, 0x01, 0x15, 0x09, 0x01, 0x16, 0x0a, 0x01, 0x0a, 0x0b, 0x01, 0x33, 0x80, 0x00, 0xde, 0x1a, 0x02, 0x43, 0xe8, 0x0c, 0x00, 0xc0, 0x17, 0xf7, 0x58, 0x6d, 0x2c, 0xb5, 0x71, 0x00, 0x0d, 0x31, 0x41, 0x42, 0x43, 0x44, 0x48, 0x84, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x63, 0x36, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xBE, 0xEF, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x0e, 0x01, 0x34, 0x0f, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x23, 0x45, 0x10, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x98, 0x76, 0x71, 0x28, 0x0c, 'A', 'L', 'P', 'N', 'E', 'F', 'G', 0x00, 'H', 'I', 'J', 0xff, 0x80, 0x00, 0x47, 0x52, 0x0d, 0x01, 0x23, 0x45, 0x67, 0x08, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x80, 0xFF, 0x73, 0xDB, 0x0C, 0x01, 0x23, 0x45, 0x67, 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, }; const uint8_t* server_params = reinterpret_cast<const uint8_t*>(kServerParams); size_t server_params_length = ABSL_ARRAYSIZE(kServerParams); TransportParameters new_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_SERVER, server_params, server_params_length, &new_params, &error_details)) << error_details; EXPECT_TRUE(error_details.empty()); EXPECT_EQ(Perspective::IS_SERVER, new_params.perspective); ASSERT_TRUE(new_params.legacy_version_information.has_value()); EXPECT_EQ(kFakeVersionLabel, new_params.legacy_version_information.value().version); ASSERT_EQ( 2u, new_params.legacy_version_information.value().supported_versions.size()); EXPECT_EQ( kFakeVersionLabel, new_params.legacy_version_information.value().supported_versions[0]); EXPECT_EQ( kFakeVersionLabel2, new_params.legacy_version_information.value().supported_versions[1]); ASSERT_TRUE(new_params.version_information.has_value()); EXPECT_EQ(new_params.version_information.value(), CreateFakeVersionInformation()); ASSERT_TRUE(new_params.original_destination_connection_id.has_value()); EXPECT_EQ(CreateFakeOriginalDestinationConnectionId(), new_params.original_destination_connection_id.value()); EXPECT_EQ(kFakeIdleTimeoutMilliseconds, new_params.max_idle_timeout_ms.value()); EXPECT_EQ(CreateStatelessResetTokenForTest(), new_params.stateless_reset_token); EXPECT_EQ(kMaxPacketSizeForTest, new_params.max_udp_payload_size.value()); EXPECT_EQ(kFakeInitialMaxData, new_params.initial_max_data.value()); EXPECT_EQ(kFakeInitialMaxStreamDataBidiLocal, new_params.initial_max_stream_data_bidi_local.value()); EXPECT_EQ(kFakeInitialMaxStreamDataBidiRemote, new_params.initial_max_stream_data_bidi_remote.value()); EXPECT_EQ(kFakeInitialMaxStreamDataUni, new_params.initial_max_stream_data_uni.value()); EXPECT_EQ(kFakeInitialMaxStreamsBidi, new_params.initial_max_streams_bidi.value()); EXPECT_EQ(kFakeInitialMaxStreamsUni, new_params.initial_max_streams_uni.value()); EXPECT_EQ(kAckDelayExponentForTest, new_params.ack_delay_exponent.value()); EXPECT_EQ(kMaxAckDelayForTest, new_params.max_ack_delay.value()); EXPECT_EQ(kMinAckDelayUsForTest, new_params.min_ack_delay_us.value()); EXPECT_EQ(kFakeDisableMigration, new_params.disable_active_migration); EXPECT_EQ(kFakeReliableStreamReset, new_params.reliable_stream_reset); ASSERT_NE(nullptr, new_params.preferred_address.get()); EXPECT_EQ(CreateFakeV4SocketAddress(), new_params.preferred_address->ipv4_socket_address); EXPECT_EQ(CreateFakeV6SocketAddress(), new_params.preferred_address->ipv6_socket_address); EXPECT_EQ(CreateFakePreferredConnectionId(), new_params.preferred_address->connection_id); EXPECT_EQ(CreateFakePreferredStatelessResetToken(), new_params.preferred_address->stateless_reset_token); EXPECT_EQ(kActiveConnectionIdLimitForTest, new_params.active_connection_id_limit.value()); ASSERT_TRUE(new_params.initial_source_connection_id.has_value()); EXPECT_EQ(CreateFakeInitialSourceConnectionId(), new_params.initial_source_connection_id.value()); ASSERT_TRUE(new_params.retry_source_connection_id.has_value()); EXPECT_EQ(CreateFakeRetrySourceConnectionId(), new_params.retry_source_connection_id.value()); ASSERT_TRUE(new_params.google_connection_options.has_value()); EXPECT_EQ(CreateFakeGoogleConnectionOptions(), new_params.google_connection_options.value()); } TEST_P(TransportParametersTest, ParseServerParametersRepeated) { const uint8_t kServerParamsRepeated[] = { 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x37, 0x01, 0x02, 0x6e, 0xec, 0x02, 0x10, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x01, 0x02, 0x6e, 0xec, }; const uint8_t* server_params = reinterpret_cast<const uint8_t*>(kServerParamsRepeated); size_t server_params_length = ABSL_ARRAYSIZE(kServerParamsRepeated); TransportParameters out_params; std::string error_details; EXPECT_FALSE(ParseTransportParameters(version_, Perspective::IS_SERVER, server_params, server_params_length, &out_params, &error_details)); EXPECT_EQ(error_details, "Received a second max_idle_timeout"); } TEST_P(TransportParametersTest, ParseServerParametersEmptyOriginalConnectionId) { const uint8_t kServerParamsEmptyOriginalConnectionId[] = { 0x00, 0x00, 0x01, 0x02, 0x6e, 0xec, 0x02, 0x10, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, }; const uint8_t* server_params = reinterpret_cast<const uint8_t*>(kServerParamsEmptyOriginalConnectionId); size_t server_params_length = ABSL_ARRAYSIZE(kServerParamsEmptyOriginalConnectionId); TransportParameters out_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_SERVER, server_params, server_params_length, &out_params, &error_details)) << error_details; ASSERT_TRUE(out_params.original_destination_connection_id.has_value()); EXPECT_EQ(out_params.original_destination_connection_id.value(), EmptyQuicConnectionId()); } TEST_P(TransportParametersTest, VeryLongCustomParameter) { std::string custom_value(70000, '?'); TransportParameters orig_params; orig_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.custom_parameters[kCustomParameter1] = custom_value; std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParameters(orig_params, &serialized)); TransportParameters new_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_CLIENT, serialized.data(), serialized.size(), &new_params, &error_details)) << error_details; EXPECT_TRUE(error_details.empty()); RemoveGreaseParameters(&new_params); EXPECT_EQ(new_params, orig_params); } TEST_P(TransportParametersTest, SerializationOrderIsRandom) { TransportParameters orig_params; orig_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); orig_params.initial_max_data.set_value(kFakeInitialMaxData); orig_params.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal); orig_params.initial_max_stream_data_bidi_remote.set_value( kFakeInitialMaxStreamDataBidiRemote); orig_params.initial_max_stream_data_uni.set_value( kFakeInitialMaxStreamDataUni); orig_params.initial_max_streams_bidi.set_value(kFakeInitialMaxStreamsBidi); orig_params.initial_max_streams_uni.set_value(kFakeInitialMaxStreamsUni); orig_params.ack_delay_exponent.set_value(kAckDelayExponentForTest); orig_params.max_ack_delay.set_value(kMaxAckDelayForTest); orig_params.min_ack_delay_us.set_value(kMinAckDelayUsForTest); orig_params.disable_active_migration = kFakeDisableMigration; orig_params.reliable_stream_reset = kFakeReliableStreamReset; orig_params.active_connection_id_limit.set_value( kActiveConnectionIdLimitForTest); orig_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); orig_params.initial_round_trip_time_us.set_value(kFakeInitialRoundTripTime); orig_params.google_connection_options = CreateFakeGoogleConnectionOptions(); orig_params.custom_parameters[kCustomParameter1] = kCustomParameter1Value; orig_params.custom_parameters[kCustomParameter2] = kCustomParameter2Value; std::vector<uint8_t> first_serialized; ASSERT_TRUE(SerializeTransportParameters(orig_params, &first_serialized)); for (int i = 0; i < 1000; i++) { std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParameters(orig_params, &serialized)); if (serialized != first_serialized) { return; } } } TEST_P(TransportParametersTest, Degrease) { TransportParameters orig_params; orig_params.perspective = Perspective::IS_CLIENT; orig_params.legacy_version_information = CreateFakeLegacyVersionInformationClient(); orig_params.version_information = CreateFakeVersionInformation(); orig_params.max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); orig_params.max_udp_payload_size.set_value(kMaxPacketSizeForTest); orig_params.initial_max_data.set_value(kFakeInitialMaxData); orig_params.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal); orig_params.initial_max_stream_data_bidi_remote.set_value( kFakeInitialMaxStreamDataBidiRemote); orig_params.initial_max_stream_data_uni.set_value( kFakeInitialMaxStreamDataUni); orig_params.initial_max_streams_bidi.set_value(kFakeInitialMaxStreamsBidi); orig_params.initial_max_streams_uni.set_value(kFakeInitialMaxStreamsUni); orig_params.ack_delay_exponent.set_value(kAckDelayExponentForTest); orig_params.max_ack_delay.set_value(kMaxAckDelayForTest); orig_params.min_ack_delay_us.set_value(kMinAckDelayUsForTest); orig_params.disable_active_migration = kFakeDisableMigration; orig_params.reliable_stream_reset = kFakeReliableStreamReset; orig_params.active_connection_id_limit.set_value( kActiveConnectionIdLimitForTest); orig_params.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); orig_params.initial_round_trip_time_us.set_value(kFakeInitialRoundTripTime); std::string google_handshake_message; ASSERT_TRUE(absl::HexStringToBytes(kFakeGoogleHandshakeMessage, &google_handshake_message)); orig_params.google_handshake_message = std::move(google_handshake_message); orig_params.google_connection_options = CreateFakeGoogleConnectionOptions(); orig_params.custom_parameters[kCustomParameter1] = kCustomParameter1Value; orig_params.custom_parameters[kCustomParameter2] = kCustomParameter2Value; std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParameters(orig_params, &serialized)); TransportParameters new_params; std::string error_details; ASSERT_TRUE(ParseTransportParameters(version_, Perspective::IS_CLIENT, serialized.data(), serialized.size(), &new_params, &error_details)) << error_details; EXPECT_TRUE(error_details.empty()); EXPECT_NE(new_params, orig_params); DegreaseTransportParameters(new_params); EXPECT_EQ(new_params, orig_params); } class TransportParametersTicketSerializationTest : public QuicTest { protected: void SetUp() override { original_params_.perspective = Perspective::IS_SERVER; original_params_.legacy_version_information = CreateFakeLegacyVersionInformationServer(); original_params_.original_destination_connection_id = CreateFakeOriginalDestinationConnectionId(); original_params_.max_idle_timeout_ms.set_value( kFakeIdleTimeoutMilliseconds); original_params_.stateless_reset_token = CreateStatelessResetTokenForTest(); original_params_.max_udp_payload_size.set_value(kMaxPacketSizeForTest); original_params_.initial_max_data.set_value(kFakeInitialMaxData); original_params_.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal); original_params_.initial_max_stream_data_bidi_remote.set_value( kFakeInitialMaxStreamDataBidiRemote); original_params_.initial_max_stream_data_uni.set_value( kFakeInitialMaxStreamDataUni); original_params_.initial_max_streams_bidi.set_value( kFakeInitialMaxStreamsBidi); original_params_.initial_max_streams_uni.set_value( kFakeInitialMaxStreamsUni); original_params_.ack_delay_exponent.set_value(kAckDelayExponentForTest); original_params_.max_ack_delay.set_value(kMaxAckDelayForTest); original_params_.min_ack_delay_us.set_value(kMinAckDelayUsForTest); original_params_.disable_active_migration = kFakeDisableMigration; original_params_.reliable_stream_reset = kFakeReliableStreamReset; original_params_.preferred_address = CreateFakePreferredAddress(); original_params_.active_connection_id_limit.set_value( kActiveConnectionIdLimitForTest); original_params_.initial_source_connection_id = CreateFakeInitialSourceConnectionId(); original_params_.retry_source_connection_id = CreateFakeRetrySourceConnectionId(); original_params_.google_connection_options = CreateFakeGoogleConnectionOptions(); ASSERT_TRUE(SerializeTransportParametersForTicket( original_params_, application_state_, &original_serialized_params_)); } TransportParameters original_params_; std::vector<uint8_t> application_state_ = {0, 1}; std::vector<uint8_t> original_serialized_params_; }; TEST_F(TransportParametersTicketSerializationTest, StatelessResetTokenDoesntChangeOutput) { TransportParameters new_params = original_params_; new_params.stateless_reset_token = CreateFakePreferredStatelessResetToken(); EXPECT_NE(new_params, original_params_); std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParametersForTicket( new_params, application_state_, &serialized)); EXPECT_EQ(original_serialized_params_, serialized); } TEST_F(TransportParametersTicketSerializationTest, ConnectionIDDoesntChangeOutput) { TransportParameters new_params = original_params_; new_params.original_destination_connection_id = TestConnectionId(0xCAFE); EXPECT_NE(new_params, original_params_); std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParametersForTicket( new_params, application_state_, &serialized)); EXPECT_EQ(original_serialized_params_, serialized); } TEST_F(TransportParametersTicketSerializationTest, StreamLimitChangesOutput) { TransportParameters new_params = original_params_; new_params.initial_max_stream_data_bidi_local.set_value( kFakeInitialMaxStreamDataBidiLocal + 1); EXPECT_NE(new_params, original_params_); std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParametersForTicket( new_params, application_state_, &serialized)); EXPECT_NE(original_serialized_params_, serialized); } TEST_F(TransportParametersTicketSerializationTest, ApplicationStateChangesOutput) { std::vector<uint8_t> new_application_state = {0}; EXPECT_NE(new_application_state, application_state_); std::vector<uint8_t> serialized; ASSERT_TRUE(SerializeTransportParametersForTicket( original_params_, new_application_state, &serialized)); EXPECT_NE(original_serialized_params_, serialized); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/transport_parameters.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/transport_parameters_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
64411ee4-506a-45b4-acc7-4283142cc2d5
cpp
tensorflow/tensorflow
xla_expression
tensorflow/compiler/tf2xla/xla_expression.cc
tensorflow/compiler/tf2xla/xla_expression_test.cc
#include "tensorflow/compiler/tf2xla/xla_expression.h" #include "tensorflow/compiler/tf2xla/literal_util.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "xla/hlo/builder/value_inference.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { XlaExpression::XlaExpression() = default; XlaExpression XlaExpression::Invalid() { XlaExpression e; e.kind_ = Kind::kInvalid; return e; } XlaExpression XlaExpression::Constant(Tensor value) { XlaExpression e; e.kind_ = Kind::kConstant; e.dtype_ = value.dtype(); e.constant_value_ = value; return e; } XlaExpression XlaExpression::ConstantResource(Tensor value, XlaResource* resource) { XlaExpression e; e.kind_ = Kind::kResource; e.dtype_ = DT_RESOURCE; e.resource_ = resource; e.constant_value_ = value; return e; } XlaExpression XlaExpression::XlaOp(xla::XlaOp value, DataType dtype) { XlaExpression e; e.kind_ = Kind::kXlaOp; e.dtype_ = dtype; e.handle_ = value; return e; } XlaExpression XlaExpression::TensorList(xla::XlaOp tensor_list) { XlaExpression e; e.kind_ = Kind::kTensorList; e.dtype_ = DT_VARIANT; e.handle_ = tensor_list; return e; } XlaExpression XlaExpression::Resource(XlaResource* resource) { XlaExpression e; e.kind_ = Kind::kResource; e.dtype_ = DT_RESOURCE; e.resource_ = resource; return e; } string XlaExpression::HumanString() const { switch (kind_) { case Kind::kInvalid: return "invalid"; case Kind::kConstant: return "constant"; case Kind::kXlaOp: return "xla_op"; case Kind::kResource: return "resource"; case Kind::kTensorList: return "tensor_list"; } } xla::XlaOp XlaExpression::AsXlaOp(xla::XlaBuilder* builder) const { return builder->ReportErrorOrReturn([&]() -> absl::StatusOr<xla::XlaOp> { switch (kind_) { case Kind::kConstant: { xla::BorrowingLiteral literal; TF_RETURN_IF_ERROR( HostTensorToBorrowingLiteral(*constant_value_, &literal)); return xla::ConstantLiteral(builder, literal); } case Kind::kTensorList: TF_FALLTHROUGH_INTENDED; case Kind::kXlaOp: if (builder != handle_.builder()) { return errors::InvalidArgument( "Mismatched builders in XlaExpression::AsXlaOp"); } return handle_; default: return errors::InvalidArgument("AsXlaOp called on XlaExpression: ", HumanString()); } }); } absl::StatusOr<Tensor> XlaExpression::ResolveDynamism() const { switch (kind()) { case Kind::kConstant: { Tensor constant_false(DT_BOOL, constant_value()->shape()); auto flat = constant_false.flat<bool>(); for (int64_t i = 0; i < flat.size(); ++i) flat(i) = false; return constant_false; } case Kind::kXlaOp: break; case Kind::kTensorList: TF_FALLTHROUGH_INTENDED; case Kind::kResource: TF_FALLTHROUGH_INTENDED; case Kind::kInvalid: return errors::InvalidArgument( "ResolveDynamism called on unsupported XlaExpression: ", HumanString()); } TF_ASSIGN_OR_RETURN(TensorShape shape, GetShape()); std::vector<int64_t> layout_indices(shape.dims()); std::iota(layout_indices.rbegin(), layout_indices.rend(), 0); xla::ValueInference value_inference(handle().builder()); TF_ASSIGN_OR_RETURN(xla::LiteralSlice literal, value_inference.AnalyzeIsDynamic(handle())); Tensor tensor(DT_BOOL); TF_RETURN_IF_ERROR(LiteralToHostTensor(literal, DT_BOOL, &tensor)); return tensor; } absl::StatusOr<std::optional<Tensor>> XlaExpression::ResolveConstant( xla::Client* client, bool dynamic_dimension_is_minus_one, xla::ValueInferenceMode mode) const { switch (kind()) { case Kind::kConstant: case Kind::kResource: return constant_value(); case Kind::kXlaOp: break; case Kind::kTensorList: TF_FALLTHROUGH_INTENDED; case Kind::kInvalid: return errors::InvalidArgument( "ResolveConstant called on XlaExpression: ", HumanString()); } TF_ASSIGN_OR_RETURN(TensorShape shape, GetShape()); std::vector<int64_t> layout_indices(shape.dims()); std::iota(layout_indices.rbegin(), layout_indices.rend(), 0); xla::Layout layout = xla::LayoutUtil::MakeLayout(layout_indices); if (mode == xla::ValueInferenceMode::kLowerBound || mode == xla::ValueInferenceMode::kUpperBound || mode == xla::ValueInferenceMode::kValue) { std::vector<int64_t> layout_indices(shape.dims()); std::iota(layout_indices.rbegin(), layout_indices.rend(), 0); xla::ValueInference value_inference(handle().builder()); TF_ASSIGN_OR_RETURN(xla::OptionalLiteral literal, value_inference.AnalyzeConstant(handle(), mode)); if (!literal.GetValue().has_value()) { return {std::nullopt}; } Tensor tensor; TF_RETURN_IF_ERROR(LiteralToHostTensor( literal.GetValue().value().Relayout(layout), dtype(), &tensor)); return {tensor}; } TF_ASSIGN_OR_RETURN(bool is_constant, handle().builder()->IsConstant(handle())); if (!is_constant) { return {std::nullopt}; } if (!client) return errors::InvalidArgument("client is required to resolve constant"); TF_ASSIGN_OR_RETURN(xla::XlaComputation constant_graph, handle().builder()->BuildConstantSubGraph( handle(), dynamic_dimension_is_minus_one)); TF_ASSIGN_OR_RETURN(xla::Literal literal, client->ComputeConstant(constant_graph, &layout)); Tensor tensor; TF_RETURN_IF_ERROR(LiteralToHostTensor(literal, dtype(), &tensor)); return {tensor}; } absl::StatusOr<TensorShape> XlaExpression::GetShape() const { switch (kind_) { case Kind::kConstant: return constant_value()->shape(); case Kind::kResource: if (constant_value()) { return constant_value()->shape(); } return TensorShape({}); case Kind::kXlaOp: { TF_ASSIGN_OR_RETURN(xla::Shape xla_shape, handle().builder()->GetShape(handle())); TensorShape shape; TF_RETURN_IF_ERROR(XLAShapeToTensorShape(xla_shape, &shape)); return shape; } case Kind::kTensorList: return TensorShape({}); case Kind::kInvalid: return errors::InvalidArgument( "GetShape() called on invalid XlaExpression"); } } absl::StatusOr<xla::Shape> XlaExpression::GetXlaShape() const { if (kind_ == Kind::kXlaOp) { return handle().builder()->GetShape(handle()); } TF_ASSIGN_OR_RETURN(TensorShape shape, GetShape()); return TensorShapeToXLAShape(dtype_, shape); } const XlaExpression* XlaExpression::CastExpressionFromTensor( const Tensor& tensor) { const XlaExpression* expression = reinterpret_cast<const XlaExpression*>(tensor.tensor_data().data()); CHECK(expression->kind() != XlaExpression::Kind::kInvalid) << expression->HumanString(); return expression; } void XlaExpression::AssignExpressionToTensor(const XlaExpression& value, Tensor* tensor) { const XlaExpression* expression = reinterpret_cast<const XlaExpression*>(tensor->tensor_data().data()); CHECK(expression->kind() == XlaExpression::Kind::kInvalid) << expression->HumanString(); *const_cast<XlaExpression*>(expression) = value; } }
#include "tensorflow/compiler/tf2xla/xla_expression.h" #include <memory> #include "absl/memory/memory.h" #include "tensorflow/compiler/tf2xla/xla_resource.h" #include "xla/client/client_library.h" #include "xla/client/local_client.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tests/literal_test_util.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class XlaExpressionTest : public ::testing::Test { protected: void SetUp() override { client_ = xla::ClientLibrary::LocalClientOrDie(); builder_ = std::make_unique<xla::XlaBuilder>("acomputation"); constant_ = test::AsScalar<int32>(42); op_ = xla::ConstantR0<int32>(builder_.get(), 7); non_constant_op_ = xla::Parameter( builder_.get(), 0, xla::ShapeUtil::MakeShape(xla::F32, {}), "x"); resource_ = std::make_unique<XlaResource>( XlaResource::kVariable, 0, string("avariable"), DT_INT32, TensorShape({17, 3}), op_, -1, std::set<string>(), false); } xla::Client* client_; std::unique_ptr<xla::XlaBuilder> builder_; Tensor constant_; xla::XlaOp op_; xla::XlaOp non_constant_op_; std::unique_ptr<XlaResource> resource_; }; TEST_F(XlaExpressionTest, Kind) { EXPECT_TRUE(XlaExpression::Kind::kInvalid == XlaExpression().kind()); EXPECT_TRUE(XlaExpression::Kind::kInvalid == XlaExpression::Invalid().kind()); EXPECT_TRUE(XlaExpression::Kind::kConstant == XlaExpression::Constant(constant_).kind()); EXPECT_TRUE(XlaExpression::Kind::kXlaOp == XlaExpression::XlaOp(op_, DT_INT32).kind()); EXPECT_TRUE(XlaExpression::Kind::kResource == XlaExpression::Resource(resource_.get()).kind()); } TEST_F(XlaExpressionTest, HumanString) { EXPECT_EQ("invalid", XlaExpression().HumanString()); EXPECT_EQ("invalid", XlaExpression::Invalid().HumanString()); EXPECT_EQ("constant", XlaExpression::Constant(constant_).HumanString()); EXPECT_EQ("xla_op", XlaExpression::XlaOp(op_, DT_INT32).HumanString()); EXPECT_EQ("resource", XlaExpression::Resource(resource_.get()).HumanString()); } TEST_F(XlaExpressionTest, AsXlaOp) { xla::XlaOp op_as_op = XlaExpression::XlaOp(op_, DT_INT32).AsXlaOp(builder_.get()); EXPECT_TRUE(op_.IsIdenticalTo(op_as_op)); xla::XlaOp const_as_op = XlaExpression::Constant(constant_).AsXlaOp(builder_.get()); TF_ASSERT_OK_AND_ASSIGN(xla::XlaComputation computation, builder_->BuildConstantSubGraph(const_as_op)); TF_ASSERT_OK_AND_ASSIGN(xla::Literal value, client_->ComputeConstant(computation)); EXPECT_TRUE(xla::LiteralTestUtil::Equal(xla::LiteralUtil::CreateR0<int32>(42), value)); } TEST_F(XlaExpressionTest, GetShape) { EXPECT_FALSE(XlaExpression().GetShape().ok()); EXPECT_FALSE(XlaExpression::Invalid().GetShape().ok()); TF_ASSERT_OK_AND_ASSIGN(TensorShape resource_shape, XlaExpression::Resource(resource_.get()).GetShape()); EXPECT_EQ(TensorShape({}), resource_shape); TF_ASSERT_OK_AND_ASSIGN(TensorShape op_shape, XlaExpression::XlaOp(op_, DT_INT32).GetShape()); EXPECT_EQ(TensorShape({}), op_shape); TF_ASSERT_OK_AND_ASSIGN(TensorShape constant_shape, XlaExpression::Constant(constant_).GetShape()); EXPECT_EQ(TensorShape({}), constant_shape); } TEST_F(XlaExpressionTest, ResolveConstant) { EXPECT_FALSE(XlaExpression().ResolveConstant(client_).ok()); EXPECT_FALSE(XlaExpression::Invalid().ResolveConstant(client_).ok()); EXPECT_FALSE(XlaExpression::Resource(resource_.get()) .ResolveConstant(client_) ->has_value()); TF_ASSERT_OK_AND_ASSIGN( std::optional<Tensor> op_constant, XlaExpression::XlaOp(op_, DT_INT32).ResolveConstant(client_)); ASSERT_TRUE(op_constant.has_value()); test::ExpectTensorEqual<int32>(test::AsScalar<int32>(7), *op_constant); TF_ASSERT_OK_AND_ASSIGN(std::optional<Tensor> op_nonconstant, XlaExpression::XlaOp(non_constant_op_, DT_FLOAT) .ResolveConstant(client_)); EXPECT_FALSE(op_nonconstant.has_value()); TF_ASSERT_OK_AND_ASSIGN( std::optional<Tensor> constant_constant, XlaExpression::Constant(constant_).ResolveConstant(client_)); ASSERT_TRUE(constant_constant.has_value()); test::ExpectTensorEqual<int32>(constant_, *constant_constant); } TEST_F(XlaExpressionTest, ResolveConstantOnResource) { XlaExpression constant_resource = XlaExpression::ConstantResource(constant_, resource_.get()); EXPECT_TRUE(constant_resource.ResolveConstant(client_).ok()); EXPECT_TRUE(resource_->SetZeroValue(builder_.get()).ok()); LOG(ERROR) << "Resource is overwritten: " << resource_->IsOverwritten(); absl::StatusOr<std::optional<Tensor>> resolved_constant = constant_resource.ResolveConstant(client_); EXPECT_TRUE(resolved_constant.ok()); EXPECT_FALSE(resolved_constant->has_value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/xla_expression.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/xla_expression_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f83be770-40eb-47f8-bdc5-9088f094734f
cpp
abseil/abseil-cpp
container_memory
absl/container/internal/container_memory.h
absl/container/internal/container_memory_test.cc
#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ #include <cassert> #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <new> #include <tuple> #include <type_traits> #include <utility> #include "absl/base/config.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" #include "absl/utility/utility.h" #ifdef ABSL_HAVE_ADDRESS_SANITIZER #include <sanitizer/asan_interface.h> #endif #ifdef ABSL_HAVE_MEMORY_SANITIZER #include <sanitizer/msan_interface.h> #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <size_t Alignment> struct alignas(Alignment) AlignedType {}; template <size_t Alignment, class Alloc> void* Allocate(Alloc* alloc, size_t n) { static_assert(Alignment > 0, ""); assert(n && "n must be positive"); using M = AlignedType<Alignment>; using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; A my_mem_alloc(*alloc); void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && "allocator does not respect alignment"); return p; } template <class Allocator, class ValueType> constexpr auto IsDestructionTrivial() { constexpr bool result = std::is_trivially_destructible<ValueType>::value && std::is_same<typename absl::allocator_traits< Allocator>::template rebind_alloc<char>, std::allocator<char>>::value; return std::integral_constant<bool, result>(); } template <size_t Alignment, class Alloc> void Deallocate(Alloc* alloc, void* p, size_t n) { static_assert(Alignment > 0, ""); assert(n && "n must be positive"); using M = AlignedType<Alignment>; using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; A my_mem_alloc(*alloc); AT::deallocate(my_mem_alloc, static_cast<M*>(p), (n + sizeof(M) - 1) / sizeof(M)); } namespace memory_internal { template <class Alloc, class T, class Tuple, size_t... I> void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, absl::index_sequence<I...>) { absl::allocator_traits<Alloc>::construct( *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); } template <class T, class F> struct WithConstructedImplF { template <class... Args> decltype(std::declval<F>()(std::declval<T>())) operator()( Args&&... args) const { return std::forward<F>(f)(T(std::forward<Args>(args)...)); } F&& f; }; template <class T, class Tuple, size_t... Is, class F> decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( Tuple&& t, absl::index_sequence<Is...>, F&& f) { return WithConstructedImplF<T, F>{std::forward<F>(f)}( std::get<Is>(std::forward<Tuple>(t))...); } template <class T, size_t... Is> auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); } template <class T> auto TupleRef(T&& t) -> decltype(TupleRefImpl( std::forward<T>(t), absl::make_index_sequence< std::tuple_size<typename std::decay<T>::type>::value>())) { return TupleRefImpl( std::forward<T>(t), absl::make_index_sequence< std::tuple_size<typename std::decay<T>::type>::value>()); } template <class F, class K, class V> decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, std::declval<std::tuple<K>>(), std::declval<V>())) DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { const auto& key = std::get<0>(p.first); return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), std::move(p.second)); } } template <class Alloc, class T, class Tuple> void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { memory_internal::ConstructFromTupleImpl( alloc, ptr, std::forward<Tuple>(t), absl::make_index_sequence< std::tuple_size<typename std::decay<Tuple>::type>::value>()); } template <class T, class Tuple, class F> decltype(std::declval<F>()(std::declval<T>())) WithConstructed(Tuple&& t, F&& f) { return memory_internal::WithConstructedImpl<T>( std::forward<Tuple>(t), absl::make_index_sequence< std::tuple_size<typename std::decay<Tuple>::type>::value>(), std::forward<F>(f)); } inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } template <class F, class S> std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), std::forward_as_tuple(std::forward<S>(s))}; } template <class F, class S> std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( const std::pair<F, S>& p) { return PairArgs(p.first, p.second); } template <class F, class S> std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); } template <class F, class S> auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), memory_internal::TupleRef(std::forward<S>(s)))) { return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), memory_internal::TupleRef(std::forward<S>(s))); } template <class F, class... Args> auto DecomposePair(F&& f, Args&&... args) -> decltype(memory_internal::DecomposePairImpl( std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { return memory_internal::DecomposePairImpl( std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); } template <class F, class Arg> decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) DecomposeValue(F&& f, Arg&& arg) { const auto& key = arg; return std::forward<F>(f)(key, std::forward<Arg>(arg)); } inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { #ifdef ABSL_HAVE_ADDRESS_SANITIZER ASAN_POISON_MEMORY_REGION(m, s); #endif #ifdef ABSL_HAVE_MEMORY_SANITIZER __msan_poison(m, s); #endif (void)m; (void)s; } inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { #ifdef ABSL_HAVE_ADDRESS_SANITIZER ASAN_UNPOISON_MEMORY_REGION(m, s); #endif #ifdef ABSL_HAVE_MEMORY_SANITIZER __msan_unpoison(m, s); #endif (void)m; (void)s; } template <typename T> inline void SanitizerPoisonObject(const T* object) { SanitizerPoisonMemoryRegion(object, sizeof(T)); } template <typename T> inline void SanitizerUnpoisonObject(const T* object) { SanitizerUnpoisonMemoryRegion(object, sizeof(T)); } namespace memory_internal { template <class Pair, class = std::true_type> struct OffsetOf { static constexpr size_t kFirst = static_cast<size_t>(-1); static constexpr size_t kSecond = static_cast<size_t>(-1); }; template <class Pair> struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { static constexpr size_t kFirst = offsetof(Pair, first); static constexpr size_t kSecond = offsetof(Pair, second); }; template <class K, class V> struct IsLayoutCompatible { private: struct Pair { K first; V second; }; template <class P> static constexpr bool LayoutCompatible() { return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && alignof(P) == alignof(Pair) && memory_internal::OffsetOf<P>::kFirst == memory_internal::OffsetOf<Pair>::kFirst && memory_internal::OffsetOf<P>::kSecond == memory_internal::OffsetOf<Pair>::kSecond; } public: static constexpr bool value = std::is_standard_layout<K>() && std::is_standard_layout<Pair>() && memory_internal::OffsetOf<Pair>::kFirst == 0 && LayoutCompatible<std::pair<K, V>>() && LayoutCompatible<std::pair<const K, V>>(); }; } template <class K, class V> union map_slot_type { map_slot_type() {} ~map_slot_type() = delete; using value_type = std::pair<const K, V>; using mutable_value_type = std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>; value_type value; mutable_value_type mutable_value; absl::remove_const_t<K> key; }; template <class K, class V> struct map_slot_policy { using slot_type = map_slot_type<K, V>; using value_type = std::pair<const K, V>; using mutable_value_type = std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>; private: static void emplace(slot_type* slot) { new (slot) slot_type; } using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; public: static value_type& element(slot_type* slot) { return slot->value; } static const value_type& element(const slot_type* slot) { return slot->value; } #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 static K& mutable_key(slot_type* slot) { return kMutableKeys::value ? slot->key : *std::launder(const_cast<K*>( std::addressof(slot->value.first))); } #else static const K& mutable_key(slot_type* slot) { return key(slot); } #endif static const K& key(const slot_type* slot) { return kMutableKeys::value ? slot->key : slot->value.first; } template <class Allocator, class... Args> static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { emplace(slot); if (kMutableKeys::value) { absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, std::forward<Args>(args)...); } else { absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, std::forward<Args>(args)...); } } template <class Allocator> static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { emplace(slot); if (kMutableKeys::value) { absl::allocator_traits<Allocator>::construct( *alloc, &slot->mutable_value, std::move(other->mutable_value)); } else { absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, std::move(other->value)); } } template <class Allocator> static void construct(Allocator* alloc, slot_type* slot, const slot_type* other) { emplace(slot); absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, other->value); } template <class Allocator> static auto destroy(Allocator* alloc, slot_type* slot) { if (kMutableKeys::value) { absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); } else { absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); } return IsDestructionTrivial<Allocator, value_type>(); } template <class Allocator> static auto transfer(Allocator* alloc, slot_type* new_slot, slot_type* old_slot) { auto is_relocatable = typename absl::is_trivially_relocatable<value_type>::type(); emplace(new_slot); #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 if (is_relocatable) { std::memcpy(static_cast<void*>(std::launder(&new_slot->value)), static_cast<const void*>(&old_slot->value), sizeof(value_type)); return is_relocatable; } #endif if (kMutableKeys::value) { absl::allocator_traits<Allocator>::construct( *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); } else { absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, std::move(old_slot->value)); } destroy(alloc, old_slot); return is_relocatable; } }; using HashSlotFn = size_t (*)(const void* hash_fn, void* slot); template <class Fn, class T> size_t TypeErasedApplyToSlotFn(const void* fn, void* slot) { const auto* f = static_cast<const Fn*>(fn); return (*f)(*static_cast<const T*>(slot)); } template <class Fn, class T> size_t TypeErasedDerefAndApplyToSlotFn(const void* fn, void* slot_ptr) { const auto* f = static_cast<const Fn*>(fn); const T* slot = *static_cast<const T**>(slot_ptr); return (*f)(*slot); } } ABSL_NAMESPACE_END } #endif
#include "absl/container/internal/container_memory.h" #include <cstddef> #include <cstdint> #include <memory> #include <tuple> #include <type_traits> #include <typeindex> #include <typeinfo> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/no_destructor.h" #include "absl/container/internal/test_instance_tracker.h" #include "absl/meta/type_traits.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace { using ::absl::test_internal::CopyableMovableInstance; using ::absl::test_internal::InstanceTracker; using ::testing::_; using ::testing::ElementsAre; using ::testing::Gt; using ::testing::Pair; TEST(Memory, AlignmentLargerThanBase) { std::allocator<int8_t> alloc; void* mem = Allocate<2>(&alloc, 3); EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2); memcpy(mem, "abc", 3); Deallocate<2>(&alloc, mem, 3); } TEST(Memory, AlignmentSmallerThanBase) { std::allocator<int64_t> alloc; void* mem = Allocate<2>(&alloc, 3); EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2); memcpy(mem, "abc", 3); Deallocate<2>(&alloc, mem, 3); } std::map<std::type_index, int>& AllocationMap() { static absl::NoDestructor<std::map<std::type_index, int>> map; return *map; } template <typename T> struct TypeCountingAllocator { TypeCountingAllocator() = default; template <typename U> TypeCountingAllocator(const TypeCountingAllocator<U>&) {} using value_type = T; T* allocate(size_t n, const void* = nullptr) { AllocationMap()[typeid(T)] += n; return std::allocator<T>().allocate(n); } void deallocate(T* p, std::size_t n) { AllocationMap()[typeid(T)] -= n; return std::allocator<T>().deallocate(p, n); } }; TEST(Memory, AllocateDeallocateMatchType) { TypeCountingAllocator<int> alloc; void* mem = Allocate<1>(&alloc, 1); EXPECT_THAT(AllocationMap(), ElementsAre(Pair(_, Gt(0)))); Deallocate<1>(&alloc, mem, 1); EXPECT_THAT(AllocationMap(), ElementsAre(Pair(_, 0))); } class Fixture : public ::testing::Test { using Alloc = std::allocator<std::string>; public: Fixture() { ptr_ = std::allocator_traits<Alloc>::allocate(*alloc(), 1); } ~Fixture() override { std::allocator_traits<Alloc>::destroy(*alloc(), ptr_); std::allocator_traits<Alloc>::deallocate(*alloc(), ptr_, 1); } std::string* ptr() { return ptr_; } Alloc* alloc() { return &alloc_; } private: Alloc alloc_; std::string* ptr_; }; TEST_F(Fixture, ConstructNoArgs) { ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple()); EXPECT_EQ(*ptr(), ""); } TEST_F(Fixture, ConstructOneArg) { ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple("abcde")); EXPECT_EQ(*ptr(), "abcde"); } TEST_F(Fixture, ConstructTwoArg) { ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple(5, 'a')); EXPECT_EQ(*ptr(), "aaaaa"); } TEST(PairArgs, NoArgs) { EXPECT_THAT(PairArgs(), Pair(std::forward_as_tuple(), std::forward_as_tuple())); } TEST(PairArgs, TwoArgs) { EXPECT_EQ( std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), PairArgs(1, 'A')); } TEST(PairArgs, Pair) { EXPECT_EQ( std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), PairArgs(std::make_pair(1, 'A'))); } TEST(PairArgs, Piecewise) { EXPECT_EQ( std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')), PairArgs(std::piecewise_construct, std::forward_as_tuple(1), std::forward_as_tuple('A'))); } TEST(WithConstructed, Simple) { EXPECT_EQ(1, WithConstructed<absl::string_view>( std::make_tuple(std::string("a")), [](absl::string_view str) { return str.size(); })); } template <class F, class Arg> decltype(DecomposeValue(std::declval<F>(), std::declval<Arg>())) DecomposeValueImpl(int, F&& f, Arg&& arg) { return DecomposeValue(std::forward<F>(f), std::forward<Arg>(arg)); } template <class F, class Arg> const char* DecomposeValueImpl(char, F&& f, Arg&& arg) { return "not decomposable"; } template <class F, class Arg> decltype(DecomposeValueImpl(0, std::declval<F>(), std::declval<Arg>())) TryDecomposeValue(F&& f, Arg&& arg) { return DecomposeValueImpl(0, std::forward<F>(f), std::forward<Arg>(arg)); } TEST(DecomposeValue, Decomposable) { auto f = [](const int& x, int&& y) { EXPECT_EQ(&x, &y); EXPECT_EQ(42, x); return 'A'; }; EXPECT_EQ('A', TryDecomposeValue(f, 42)); } TEST(DecomposeValue, NotDecomposable) { auto f = [](void*) { ADD_FAILURE() << "Must not be called"; return 'A'; }; EXPECT_STREQ("not decomposable", TryDecomposeValue(f, 42)); } template <class F, class... Args> decltype(DecomposePair(std::declval<F>(), std::declval<Args>()...)) DecomposePairImpl(int, F&& f, Args&&... args) { return DecomposePair(std::forward<F>(f), std::forward<Args>(args)...); } template <class F, class... Args> const char* DecomposePairImpl(char, F&& f, Args&&... args) { return "not decomposable"; } template <class F, class... Args> decltype(DecomposePairImpl(0, std::declval<F>(), std::declval<Args>()...)) TryDecomposePair(F&& f, Args&&... args) { return DecomposePairImpl(0, std::forward<F>(f), std::forward<Args>(args)...); } TEST(DecomposePair, Decomposable) { auto f = [](const int& x, std::piecewise_construct_t, std::tuple<int&&> k, std::tuple<double>&& v) { EXPECT_EQ(&x, &std::get<0>(k)); EXPECT_EQ(42, x); EXPECT_EQ(0.5, std::get<0>(v)); return 'A'; }; EXPECT_EQ('A', TryDecomposePair(f, 42, 0.5)); EXPECT_EQ('A', TryDecomposePair(f, std::make_pair(42, 0.5))); EXPECT_EQ('A', TryDecomposePair(f, std::piecewise_construct, std::make_tuple(42), std::make_tuple(0.5))); } TEST(DecomposePair, NotDecomposable) { auto f = [](...) { ADD_FAILURE() << "Must not be called"; return 'A'; }; EXPECT_STREQ("not decomposable", TryDecomposePair(f)); EXPECT_STREQ("not decomposable", TryDecomposePair(f, std::piecewise_construct, std::make_tuple(), std::make_tuple(0.5))); } TEST(MapSlotPolicy, ConstKeyAndValue) { using slot_policy = map_slot_policy<const CopyableMovableInstance, const CopyableMovableInstance>; using slot_type = typename slot_policy::slot_type; union Slots { Slots() {} ~Slots() {} slot_type slots[100]; } slots; std::allocator< std::pair<const CopyableMovableInstance, const CopyableMovableInstance>> alloc; InstanceTracker tracker; slot_policy::construct(&alloc, &slots.slots[0], CopyableMovableInstance(1), CopyableMovableInstance(1)); for (int i = 0; i < 99; ++i) { slot_policy::transfer(&alloc, &slots.slots[i + 1], &slots.slots[i]); } slot_policy::destroy(&alloc, &slots.slots[99]); EXPECT_EQ(tracker.copies(), 0); } TEST(MapSlotPolicy, TransferReturnsTrue) { { using slot_policy = map_slot_policy<int, float>; EXPECT_TRUE( (std::is_same<decltype(slot_policy::transfer<std::allocator<char>>( nullptr, nullptr, nullptr)), std::true_type>::value)); } { struct NonRelocatable { NonRelocatable() = default; NonRelocatable(NonRelocatable&&) {} NonRelocatable& operator=(NonRelocatable&&) { return *this; } void* self = nullptr; }; EXPECT_FALSE(absl::is_trivially_relocatable<NonRelocatable>::value); using slot_policy = map_slot_policy<int, NonRelocatable>; EXPECT_TRUE( (std::is_same<decltype(slot_policy::transfer<std::allocator<char>>( nullptr, nullptr, nullptr)), std::false_type>::value)); } } TEST(MapSlotPolicy, DestroyReturnsTrue) { { using slot_policy = map_slot_policy<int, float>; EXPECT_TRUE( (std::is_same<decltype(slot_policy::destroy<std::allocator<char>>( nullptr, nullptr)), std::true_type>::value)); } { EXPECT_FALSE(std::is_trivially_destructible<std::unique_ptr<int>>::value); using slot_policy = map_slot_policy<int, std::unique_ptr<int>>; EXPECT_TRUE( (std::is_same<decltype(slot_policy::destroy<std::allocator<char>>( nullptr, nullptr)), std::false_type>::value)); } } TEST(ApplyTest, TypeErasedApplyToSlotFn) { size_t x = 7; auto fn = [](size_t v) { return v * 2; }; EXPECT_EQ((TypeErasedApplyToSlotFn<decltype(fn), size_t>(&fn, &x)), 14); } TEST(ApplyTest, TypeErasedDerefAndApplyToSlotFn) { size_t x = 7; auto fn = [](size_t v) { return v * 2; }; size_t* x_ptr = &x; EXPECT_EQ( (TypeErasedDerefAndApplyToSlotFn<decltype(fn), size_t>(&fn, &x_ptr)), 14); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/container_memory.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/internal/container_memory_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
eb5aeb38-bfcb-4297-bbdf-da5dfa1107c5
cpp
tensorflow/tensorflow
memory
third_party/xla/xla/python/ifrt/memory.cc
third_party/xla/xla/python/ifrt/memory_test.cc
#include "xla/python/ifrt/memory.h" #include <optional> #include <string> #include <utility> #include "absl/base/thread_annotations.h" #include "absl/container/node_hash_set.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "xla/python/ifrt/device.h" namespace xla { namespace ifrt { namespace { struct MemoryKindsSet { absl::Mutex mu; absl::node_hash_set<std::string> memory_kinds_set ABSL_GUARDED_BY(mu); }; } MemoryKind::MemoryKind(std::optional<absl::string_view> memory_kind) { static auto* const global_set = new MemoryKindsSet(); if (!memory_kind.has_value()) { return; } absl::MutexLock lock(&global_set->mu); auto it = global_set->memory_kinds_set.find(*memory_kind); if (it == global_set->memory_kinds_set.end()) { memory_kind_ = *global_set->memory_kinds_set.insert(std::string(*memory_kind)).first; } else { memory_kind_ = *it; } } std::string MemoryKind::ToString() const { if (memory_kind_.has_value()) { return std::string(*memory_kind_); } return "(default)"; } MemoryKind CanonicalizeMemoryKind(MemoryKind memory_kind, Device* device) { if (memory_kind.memory_kind().has_value()) { return memory_kind; } auto default_memory = device->DefaultMemory(); if (default_memory.ok()) { return (*default_memory)->Kind(); } return MemoryKind(); } char Memory::ID = 0; } }
#include "xla/python/ifrt/memory.h" #include <memory> #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" using ::testing::Optional; namespace xla { namespace ifrt { namespace { TEST(MemoryKindTest, EqualityForUnspecified) { MemoryKind memory_kind1; MemoryKind memory_kind2; EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, EqualityForSameString) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2("abc"); EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, EqualityForSameStringContent) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2(absl::StrCat("ab", "c")); EXPECT_EQ(memory_kind1, memory_kind2); } TEST(MemoryKindTest, InequalityForDifferentStringContent) { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2("def"); EXPECT_NE(memory_kind1, memory_kind2); } TEST(MemoryKindTest, InequalityBetweenSpecifiedAndUnspecified) { { MemoryKind memory_kind1("abc"); MemoryKind memory_kind2; EXPECT_NE(memory_kind1, memory_kind2); } { MemoryKind memory_kind1; MemoryKind memory_kind2("abc"); EXPECT_NE(memory_kind1, memory_kind2); } } TEST(MemoryKindTest, MemorySafety) { auto memory_kind_str = std::make_unique<std::string>("abc"); MemoryKind memory_kind(*memory_kind_str); memory_kind_str.reset(); EXPECT_THAT(memory_kind.memory_kind(), Optional(absl::string_view("abc"))); } TEST(MemoryKindTest, EqualityForUnspecifiedAndNullopt) { MemoryKind memory_kind1; MemoryKind memory_kind2(std::nullopt); EXPECT_EQ(memory_kind1, memory_kind2); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/memory.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/memory_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
65b81fe1-98d0-44ae-8c4a-5403dc3066f5
cpp
tensorflow/tensorflow
mean
tensorflow/lite/delegates/gpu/gl/kernels/mean.cc
tensorflow/lite/delegates/xnnpack/mean_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/mean.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" namespace tflite { namespace gpu { namespace gl { namespace { bool UseSubgroupBasedImpl(const GpuInfo& gpu_info) { return gpu_info.IsApiVulkan() && (gpu_info.vulkan_info.api_version_major > 1 || gpu_info.vulkan_info.api_version_minor >= 1) && gpu_info.vulkan_info.subgroup_size >= 32 && gpu_info.vulkan_info.supports_subgroup_arithmetic; } void GenerateSubgroupBasedMean(const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { int height = ctx.input_shapes[0][1]; int width = ctx.input_shapes[0][2]; int depth = ctx.input_shapes[0][3]; std::vector<Variable> parameters = { {"input_data_0_h", height}, {"input_data_0_w", width}, {"output_data_0_h", 1}, {"output_data_0_w", 1}, }; std::string source = R"( const uint columns_per_invocation = ($input_data_0_w$ + (gl_WorkGroupSize.x - 1))/gl_WorkGroupSize.x; const uint rows_per_invocation = ($input_data_0_h$ + (gl_WorkGroupSize.y - 1))/gl_WorkGroupSize.y; const uint first_row = gl_GlobalInvocationID.y*rows_per_invocation; const uint first_col = gl_GlobalInvocationID.x*columns_per_invocation; const uint last_row_exclusive = min(first_row+rows_per_invocation, $input_data_0_h$); const uint last_column_exclusive = min(first_col+columns_per_invocation, $input_data_0_w$); vec4 value = vec4(0); for (uint h = first_row; h < last_row_exclusive; ++h) { for (uint w = first_col; w < last_column_exclusive; ++w) { value += $input_data_0[w, h, gid.z]$; } } highp vec4 subgroup_sum = subgroupAdd(value); if(subgroupElect()) { subgroup_sums[gl_SubgroupID] = subgroup_sum; } memoryBarrierShared(); barrier(); if(gl_SubgroupID == 0) { highp vec4 subtotal = vec4(0); if (gl_SubgroupInvocationID < gl_NumSubgroups) { subtotal = subgroup_sums[gl_SubgroupInvocationID]; } highp vec4 grand_total = subgroupAdd(subtotal); if(subgroupElect()) { highp vec4 result = grand_total / $input_data_0_w$ / $input_data_0_h$; $output_data_0[0, 0, gid.z] = result$; } } )"; const uint32_t subgroup_size = ctx.gpu_info->vulkan_info.subgroup_size; const uint32_t max_wg_size_x = ctx.gpu_info->GetMaxWorkGroupSizeForX(); const uint32_t max_wg_size_y = ctx.gpu_info->GetMaxWorkGroupSizeForY(); const uint32_t max_wg_size = std::min(static_cast<uint32_t>(ctx.gpu_info->GetMaxWorkGroupTotalSize()), subgroup_size * subgroup_size); const uint32_t max_number_of_subgroups = max_wg_size / subgroup_size; uint32_t wg_size_x = 0; uint32_t wg_size_y = 0; if (width * height <= max_wg_size && width <= max_wg_size_x && height <= max_wg_size_y) { wg_size_x = width; wg_size_y = height; } else { wg_size_x = std::min({static_cast<uint32_t>(std::sqrt(max_wg_size)), max_wg_size_x, static_cast<uint32_t>(width)}); wg_size_y = std::min({max_wg_size / wg_size_x, max_wg_size_y, static_cast<uint32_t>(height)}); } std::vector<Variable> shared_variables = { {"subgroup_sums", std::vector<float4>(max_number_of_subgroups)}, }; *generated_code = { std::move(parameters), {}, {std::move(shared_variables)}, uint3(wg_size_x, wg_size_y, uint32_t(DivideRoundUp(depth, 4))), uint3(wg_size_x, wg_size_y, 1u), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::ONLY_DEFINITIONS, }; } void GenerateTrivialMean(const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}}; std::string source = R"( highp vec4 sum = vec4(0.0); highp float size = float($input_data_0_w$ * $input_data_0_h$); for (int w = 0; w < $input_data_0_w$; w++) { for (int h = 0; h < $input_data_0_h$; h++) { sum += $input_data_0[w, h, gid.z]$; } } value_0 = sum / size; )"; *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(1, 1, 4), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; } constexpr uint3 kTileSize = {8, 8, 1}; inline bool UseTiledImpl(const NodeShader::GenerationContext& ctx) { const int h = ctx.input_shapes[0][1]; const int w = ctx.input_shapes[0][2]; const int c = ctx.input_shapes[0][3]; return h % kTileSize.y == 0 && w % kTileSize.x == 0 && c % 4 == 0 && (h / kTileSize.y) * (w / kTileSize.x) * c * sizeof(float) <= 32768; } void GenerateTiledMean(const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { const int h = ctx.input_shapes[0][1]; const int w = ctx.input_shapes[0][2]; const int s = DivideRoundUp(ctx.input_shapes[0][3], 4); std::vector<Variable> parameters = { {"input_data_0_h", h}, {"input_data_0_w", w}, {"tile_size_h", kTileSize.y}, {"tile_size_w", kTileSize.x}, }; std::vector<Variable> shared_variables = { {"tile_sum", std::vector<float4>((w / kTileSize.x) * (h / kTileSize.y) * s)}}; std::string source = R"( ivec2 tile_size = ivec2($tile_size_w$, $tile_size_h$); ivec2 num_tiles = ivec2($input_data_0_w$, $input_data_0_h$) / tile_size; highp vec4 partial_sum = vec4(0.0); for (int x = gid.x * tile_size.x; x < (gid.x + 1) * tile_size.x; ++x) { for (int y = gid.y * tile_size.y; y < (gid.y + 1) * tile_size.y; ++y) { partial_sum += $input_data_0[x, y, gid.z]$; } } $tile_sum$[num_tiles.x * num_tiles.y * gid.z + num_tiles.x * gid.y + gid.x] = partial_sum; memoryBarrierShared(); barrier(); if (gid.x == 0 && gid.y == 0) { highp vec4 sum = vec4(0.0); for (int i = 0; i < num_tiles.x * num_tiles.y; ++i) { sum += $tile_sum$[num_tiles.x * num_tiles.y * gid.z + i]; } highp vec4 mean = sum / float($input_data_0_w$ * $input_data_0_h$); $output_data_0[0, 0, gid.z] = mean$; } )"; *generated_code = { std::move(parameters), {}, std::move(shared_variables), uint3(kTileSize.x, kTileSize.y, static_cast<uint32_t>(s)), kTileSize, std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::ONLY_DEFINITIONS, }; } class Mean : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const MeanAttributes&>(ctx.op_attr); if (attr.dims != std::set<Axis>({Axis::HEIGHT, Axis::WIDTH})) { return absl::InvalidArgumentError( "Mean calculation is supported only for height and width."); } if (!(ctx.input_shapes.size() == 1 && ctx.output_shapes.size() == 1 && ctx.output_shapes[0][1] == 1 && ctx.output_shapes[0][2] == 1 && ctx.output_shapes[0][3] == ctx.input_shapes[0][3])) { return absl::InvalidArgumentError( "Mean calculation is supported for one input and one 1x1 output with " "the same channel count."); } if (UseSubgroupBasedImpl(*ctx.gpu_info)) { GenerateSubgroupBasedMean(ctx, generated_code); } else if (UseTiledImpl(ctx)) { GenerateTiledMean(ctx, generated_code); } else { GenerateTrivialMean(ctx, generated_code); } return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewMeanNodeShader() { return std::make_unique<Mean>(); } } } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/reduce_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Mean, 4DReduceBatchSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({0}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceBatchKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({0}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceHeightSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({1}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceHeightKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({1}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceWidthSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({2}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceWidthKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({2}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceHeightWidthSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({1, 2}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({2, 1}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceHeightWidthKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({1, 2}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({2, 1}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceChannelsSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({3}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 4DReduceChannelsKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({3}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 3DReduceBatchSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, width, channels}) .Axes({0}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 3DReduceBatchKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, width, channels}) .Axes({0}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 3DReduceWidthSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, width, channels}) .Axes({1}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 3DReduceWidthKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, width, channels}) .Axes({1}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 3DReduceChannelsSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, width, channels}) .Axes({2}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 3DReduceChannelsKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, width, channels}) .Axes({2}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 2DReduceBatchSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, channels}) .Axes({0}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 2DReduceBatchKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, channels}) .Axes({0}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 2DReduceChannelsSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, channels}) .Axes({1}) .KeepDims(false) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 2DReduceChannelsKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, channels}) .Axes({1}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 1DSqueezeDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); ReduceTester().InputShape({batch}).Axes({0}).KeepDims(false).Test( BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, 1DKeepDims) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); ReduceTester().InputShape({batch}).Axes({0}).KeepDims(true).Test( BuiltinOperator_MEAN, xnnpack_delegate.get()); } TEST(Mean, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); ReduceTester() .InputShape({batch, height, width, channels}) .Axes({1, 2}) .KeepDims(true) .Test(BuiltinOperator_MEAN, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/mean.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/mean_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4590b1c7-332b-4543-a56c-801e115dd511
cpp
abseil/abseil-cpp
barrier
absl/synchronization/barrier.cc
absl/synchronization/barrier_test.cc
#include "absl/synchronization/barrier.h" #include "absl/base/internal/raw_logging.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN static bool IsZero(void *arg) { return 0 == *reinterpret_cast<int *>(arg); } bool Barrier::Block() { MutexLock l(&this->lock_); this->num_to_block_--; if (this->num_to_block_ < 0) { ABSL_RAW_LOG( FATAL, "Block() called too many times. num_to_block_=%d out of total=%d", this->num_to_block_, this->num_to_exit_); } this->lock_.Await(Condition(IsZero, &this->num_to_block_)); this->num_to_exit_--; ABSL_RAW_CHECK(this->num_to_exit_ >= 0, "barrier underflow"); return this->num_to_exit_ == 0; } ABSL_NAMESPACE_END }
#include "absl/synchronization/barrier.h" #include <thread> #include <vector> #include "gtest/gtest.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" TEST(Barrier, SanityTest) { constexpr int kNumThreads = 10; absl::Barrier* barrier = new absl::Barrier(kNumThreads); absl::Mutex mutex; int counter = 0; auto thread_func = [&] { if (barrier->Block()) { delete barrier; } absl::MutexLock lock(&mutex); ++counter; }; std::vector<std::thread> threads; for (int i = 0; i < kNumThreads - 1; ++i) { threads.push_back(std::thread(thread_func)); } absl::SleepFor(absl::Seconds(1)); { absl::MutexLock lock(&mutex); EXPECT_EQ(counter, 0); } threads.push_back(std::thread(thread_func)); for (auto& thread : threads) { thread.join(); } absl::MutexLock lock(&mutex); EXPECT_EQ(counter, kNumThreads); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/barrier.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/barrier_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
75346150-76eb-46bf-af45-eced291a9d7e
cpp
tensorflow/tensorflow
cpu_layout_assignment
third_party/xla/xla/service/cpu/cpu_layout_assignment.cc
third_party/xla/xla/service/cpu/cpu_layout_assignment_test.cc
#include "xla/service/cpu/cpu_layout_assignment.h" #include <cstdint> #include <numeric> #include <optional> #include <vector> #include "absl/container/flat_hash_map.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/map_util.h" #include "xla/service/cpu/dot_op_emitter.h" #include "xla/service/cpu/ir_emission_utils.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla { namespace cpu { namespace { using std::nullopt; using std::optional; using ShouldMakeOperandColMajorCache = absl::flat_hash_map<const HloInstruction*, bool>; } static bool ShouldMakeAllUsersColMajor(const HloInstruction* instruction) { for (auto* user : instruction->users()) { optional<int64_t> operand_idx = ProfitableToMakeDotOperandColumnMajor(*user); if (!operand_idx || user->operand(*operand_idx) != instruction || absl::c_count(user->operands(), instruction) != 1) { return false; } } return true; } static optional<int64_t> ShouldMakeOperandColumnMajor( ShouldMakeOperandColMajorCache* cache, const HloInstruction& instruction) { optional<int64_t> operand_idx = ProfitableToMakeDotOperandColumnMajor(instruction); if (!operand_idx) { return nullopt; } const HloInstruction* operand = instruction.operand(*operand_idx); if (operand->opcode() != HloOpcode::kConstant) { return nullopt; } auto it = cache->find(operand); if (it == cache->end()) { auto insert_result = cache->insert({operand, ShouldMakeAllUsersColMajor(operand)}); CHECK(insert_result.second); it = insert_result.first; } return it->second ? operand_idx : nullopt; } static Shape RowMajorShape(Shape shape) { ShapeUtil::ForEachMutableSubshape( &shape, [](Shape* subshape, const ShapeIndex& index) { if (!subshape->IsArray()) { return; } std::vector<int64_t> dimension_order(subshape->dimensions_size()); std::iota(dimension_order.rbegin(), dimension_order.rend(), 0); *subshape->mutable_layout() = LayoutUtil::MakeLayout(dimension_order); }); return shape; } static Shape ColMajorShape(const Shape& old_shape) { Shape new_shape(old_shape); std::vector<int64_t> dimension_order(new_shape.dimensions_size()); std::iota(dimension_order.begin(), dimension_order.end(), 0); *new_shape.mutable_layout() = LayoutUtil::MakeLayout(dimension_order); return new_shape; } static bool OperandsAndResultMustHaveRowMajorLayout( const HloInstruction& instr, const TargetMachineFeatures& target_machine_features) { if (instr.opcode() == HloOpcode::kConvolution) { return PotentiallyImplementedAsEigenConvolution(instr, target_machine_features); } else if (instr.opcode() == HloOpcode::kDot) { return DotOperandsAndResultMustHaveRowMajorLayout(instr, target_machine_features); } else if (instr.opcode() == HloOpcode::kCustomCall) { return instr.custom_call_target() == "TopK"; } return false; } absl::Status CpuLayoutAssignment::AddBackendConstraints( LayoutConstraints* constraints) { ShouldMakeOperandColMajorCache cache; const HloComputation* computation = constraints->computation(); for (auto* instruction : computation->instructions()) { if (OperandsAndResultMustHaveRowMajorLayout(*instruction, target_machine_features_)) { TF_RETURN_IF_ERROR(SetInstructionLayout( RowMajorShape(instruction->shape()), instruction)); for (int i = 0; i < instruction->operand_count(); i++) { TF_RETURN_IF_ERROR(SetOperandLayout( RowMajorShape(instruction->operand(i)->shape()), instruction, i)); } } else if (optional<int64_t> op_idx = ShouldMakeOperandColumnMajor(&cache, *instruction)) { const HloInstruction* op = instruction->operand(*op_idx); TF_RETURN_IF_ERROR( SetOperandLayout(ColMajorShape(op->shape()), instruction, *op_idx)); } else if (instruction->opcode() == HloOpcode::kReduceScatter) { auto ars = Cast<HloReduceScatterInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(ars->shape(), ars->scatter_dimension()), ars)); } else if (instruction->opcode() == HloOpcode::kAllGather) { auto ag = Cast<HloAllGatherInstruction>(instruction); TF_RETURN_IF_ERROR(SetInstructionLayout( ShapeUtil::MoveDimToMajor(ag->shape(), ag->all_gather_dimension()), ag)); } else { for (int64_t operand_no = 0; operand_no < instruction->operand_count(); ++operand_no) { if (constraints->OperandLayout(instruction, operand_no) != nullptr) { continue; } if (AnyOperandBufferForwarded(instruction, operand_no)) { continue; } if (!instruction->operand(operand_no)->shape().IsArray()) { continue; } Shape operand_shape( RowMajorShape(instruction->operand(operand_no)->shape())); TF_RETURN_IF_ERROR( SetOperandLayout(operand_shape, instruction, operand_no)); } if (computation->parent()->entry_computation() == computation && computation->root_instruction() == instruction) { continue; } if (!instruction->shape().IsArray()) { continue; } } } return absl::OkStatus(); } } }
#include "xla/service/cpu/cpu_layout_assignment.h" #include <initializer_list> #include <memory> #include <utility> #include <vector> #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/algebraic_simplifier.h" #include "xla/service/computation_layout.h" #include "xla/service/cpu/target_machine_features_fake.h" #include "xla/shape_layout.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/status.h" namespace op = xla::testing::opcode_matchers; namespace xla { namespace { class CpuLayoutAssignmentTest : public HloTestBase { protected: void AssignLayouts(HloModule* module, ComputationLayout* entry_computation_layout) { cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); cpu::CpuLayoutAssignment layout_assignment(entry_computation_layout, &target_machine_features); EXPECT_IS_OK(layout_assignment.Run(module).status()); } }; TEST_F(CpuLayoutAssignmentTest, DotWithConstantRhsTensor) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12}, {0}); Shape rhs_shape = ShapeUtil::MakeShape(F32, {12, 24}); Shape result_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {24}, {0}); auto dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "param0")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(rhs_shape))); auto result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_lhs, dot_rhs)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0}), dot_lhs->shape().layout())); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1}), dot_rhs->shape().layout())); EXPECT_TRUE( LayoutUtil::Equal(LayoutUtil::MakeLayout({0}), result->shape().layout())); for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, MultipleDotsWithSameConstantRhsTensor0) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12}, {0}); Shape rhs_shape = ShapeUtil::MakeShape(F32, {12, 24}); Shape result_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {24}, {0}); auto dot_a_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "param0")); auto dot_b_lhs = builder.AddInstruction( HloInstruction::CreateParameter(1, lhs_shape, "param1")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(rhs_shape))); auto dot_a_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_a_lhs, dot_rhs)); auto dot_b_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_b_lhs, dot_rhs)); builder.AddInstruction(HloInstruction::CreateBinary( result_shape, HloOpcode::kAdd, dot_a_result, dot_b_result)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0, 1}), dot_rhs->shape().layout())); for (HloInstruction* instruction : {dot_a_lhs, dot_b_lhs, dot_a_result, dot_b_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, MultipleDotsWithSameConstantRhsTensor1) { auto builder = HloComputation::Builder(TestName()); Shape lhs_a_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 12}, {0, 1}); Shape lhs_b_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 12}, {0, 1}); Shape rhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12, 24}, {0, 1}); Shape result_a_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 24}, {0, 1}); Shape result_b_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 24}, {0, 1}); auto dot_a_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_a_shape, "param0")); auto dot_b_lhs = builder.AddInstruction( HloInstruction::CreateParameter(1, lhs_b_shape, "param1")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(rhs_shape))); auto dot_a_result = builder.AddInstruction( CreateCanonicalDot(result_a_shape, dot_a_lhs, dot_rhs)); auto dot_b_result = builder.AddInstruction( CreateCanonicalDot(result_b_shape, dot_b_lhs, dot_rhs)); auto tuple_result = builder.AddInstruction( HloInstruction::CreateTuple({dot_a_result, dot_b_result})); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_a_shape)); *computation_layout.mutable_parameter_layout(1) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_b_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(tuple_result->shape())); AssignLayouts(module.get(), &computation_layout); for (HloInstruction* instruction : {dot_rhs, dot_a_lhs, dot_b_lhs, dot_a_result, dot_b_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({1, 0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, DotWithConstantLhsTensor) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 12}, {0, 1}); Shape rhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12, 24}, {0, 1}); Shape result_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 24}, {0, 1}); auto dot_lhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(lhs_shape))); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateParameter(0, rhs_shape, "param0")); auto dot_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_lhs, dot_rhs)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(rhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); for (HloInstruction* instruction : {dot_lhs, dot_rhs, dot_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({1, 0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } TEST_F(CpuLayoutAssignmentTest, DotWithConstantRhsTensorThroughGTE) { auto builder = HloComputation::Builder(TestName()); Shape lhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 12}, {0, 1}); Shape rhs_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {12, 24}, {0, 1}); Shape other_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {100, 24}, {0, 1}); auto constant_shape = ShapeUtil::MakeTupleShape({other_shape, rhs_shape}); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(constant_shape))); Shape result_shape = ShapeUtil::MakeShape(F32, {1, 24}); auto dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "param0")); auto dot_rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, constant, 1)); auto dot_result = builder.AddInstruction( CreateCanonicalDot(result_shape, dot_lhs, dot_rhs)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(lhs_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(result_shape)); AssignLayouts(module.get(), &computation_layout); for (HloInstruction* instruction : {dot_lhs, dot_rhs, dot_result}) { EXPECT_TRUE(LayoutUtil::Equal(LayoutUtil::MakeLayout({1, 0}), instruction->shape().layout())); } for (const auto& instruction : computation->instructions()) { EXPECT_NE(instruction->opcode(), HloOpcode::kCopy); } } struct DotOutputFusionLayoutAssignmentResult { bool layout_assignment_changed_something; const HloInstruction* dot_lhs_fusion_param; const HloInstruction* dot_rhs_fusion_param; const HloInstruction* addend_fusion_param; }; static absl::StatusOr<DotOutputFusionLayoutAssignmentResult> RunDotOutputFusion( HloModule* module, const std::string& test_name, int m, int k, int n, const int64_t dot_operand_idx_in_add) { DotOutputFusionLayoutAssignmentResult result; CHECK(dot_operand_idx_in_add == 0 || dot_operand_idx_in_add == 1); auto builder = HloComputation::Builder(test_name); Shape dot_lhs_shape = ShapeUtil::MakeShape(F32, {m, k}); Shape dot_rhs_shape = ShapeUtil::MakeShape(F32, {k, n}); Shape dot_shape = ShapeUtil::MakeShape(F32, {m, n}); if (m == 1) { dot_lhs_shape = ShapeUtil::MakeShape(F32, {k}); dot_shape = ShapeUtil::MakeShape(F32, {n}); } else if (n == 1) { dot_rhs_shape = ShapeUtil::MakeShape(F32, {k}); dot_shape = ShapeUtil::MakeShape(F32, {m}); } HloInstruction* dot_lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, dot_lhs_shape, "param0")); HloInstruction* addend = builder.AddInstruction( HloInstruction::CreateParameter(1, dot_shape, "param1")); HloInstruction* dot_rhs = builder.AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(dot_rhs_shape))); HloInstruction* dot_result = builder.AddInstruction(CreateCanonicalDot(dot_shape, dot_lhs, dot_rhs)); HloInstruction* add_result; if (dot_operand_idx_in_add == 0) { add_result = builder.AddInstruction(HloInstruction::CreateBinary( dot_shape, HloOpcode::kAdd, dot_result, addend)); } else { add_result = builder.AddInstruction(HloInstruction::CreateBinary( dot_shape, HloOpcode::kAdd, addend, dot_result)); } HloComputation* computation = module->AddEntryComputation(builder.Build()); HloInstruction* fusion_instruction = module->entry_computation()->AddInstruction(HloInstruction::CreateFusion( dot_shape, HloInstruction::FusionKind::kOutput, add_result)); TF_RETURN_IF_ERROR( computation->ReplaceInstruction(add_result, fusion_instruction)); HloInstruction* fused_add = fusion_instruction->fused_instructions_computation()->root_instruction(); HloInstruction* fused_dot = fusion_instruction->FuseInstruction(dot_result); TF_RETURN_IF_ERROR( computation->RemoveInstructionAndUnusedOperands(dot_result)); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(dot_lhs_shape)); *computation_layout.mutable_parameter_layout(1) = ShapeLayout(LayoutUtil::GetWithDefaultLayout(dot_shape)); *computation_layout.mutable_result_layout() = ShapeLayout(LayoutUtil::GetWithDefaultLayout(dot_shape)); result.dot_lhs_fusion_param = fusion_instruction->operand(fused_dot->operand(0)->parameter_number()); result.dot_rhs_fusion_param = fusion_instruction->operand(fused_dot->operand(1)->parameter_number()); result.addend_fusion_param = fusion_instruction->operand( fused_add->operand(1 - dot_operand_idx_in_add)->parameter_number()); cpu::TargetMachineFeaturesWithFakeAlignmentLogic target_machine_features( [](int64_t shape_size) { return cpu::TargetMachineFeatures::kEigenExpectedTensorAlignment; }); cpu::CpuLayoutAssignment layout_assignment(&computation_layout, &target_machine_features); TF_ASSIGN_OR_RETURN(result.layout_assignment_changed_something, layout_assignment.Run(module)); return result; } static void AssertCorrectLayoutForDotOutputFusion( const HloComputation* computation, const DotOutputFusionLayoutAssignmentResult& layout_assignment_result, bool expect_col_major_dot_rhs) { Layout expected_dot_rhs_layout = expect_col_major_dot_rhs ? LayoutUtil::MakeLayout({0, 1}) : LayoutUtil::MakeLayout({1, 0}); if (layout_assignment_result.dot_rhs_fusion_param->shape().rank() == 1) { expected_dot_rhs_layout = LayoutUtil::MakeLayout({0}); } EXPECT_TRUE(LayoutUtil::Equal( expected_dot_rhs_layout, layout_assignment_result.dot_rhs_fusion_param->shape().layout())); EXPECT_TRUE(LayoutUtil::Equal( LayoutUtil::MakeDescendingLayout( layout_assignment_result.dot_lhs_fusion_param->shape().rank()), layout_assignment_result.dot_lhs_fusion_param->shape().layout())); EXPECT_TRUE(LayoutUtil::Equal( LayoutUtil::MakeDescendingLayout( layout_assignment_result.addend_fusion_param->shape().rank()), layout_assignment_result.addend_fusion_param->shape().layout())); EXPECT_THAT(computation->instructions(), Each(Not(op::Copy()))); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_1x50x19_dot_idx_0) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 1, 50, 19, 0)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, true); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_1x50x19_dot_idx_1) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 1, 50, 19, 1)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, true); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x1_dot_idx_0) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 1, 0)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x1_dot_idx_1) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 1, 1)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x19_dot_idx_0) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 19, 0)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, DotOutputFusion_19x50x19_dot_idx_1) { std::unique_ptr<HloModule> module = CreateNewVerifiedModule(); TF_ASSERT_OK_AND_ASSIGN( DotOutputFusionLayoutAssignmentResult layout_assignment_result, RunDotOutputFusion(module.get(), TestName(), 19, 50, 19, 1)); ASSERT_TRUE(layout_assignment_result.layout_assignment_changed_something); AssertCorrectLayoutForDotOutputFusion(module->entry_computation(), layout_assignment_result, false); } TEST_F(CpuLayoutAssignmentTest, BatchDotLayoutMustBeRowMajor) { const char* hlo_string = R"( HloModule BatchDotLayoutMustBeRowMajor ENTRY BatchDotLayoutMustBeRowMajor { p0 = f32[10,1,10] parameter(0) p1 = f32[10,10,1] parameter(1) ROOT dot = f32[10,1,1] dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloComputation* computation = module->entry_computation(); ComputationLayout computation_layout(computation->ComputeProgramShape()); *computation_layout.mutable_parameter_layout(0) = ShapeLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 1, 10}, {2, 1, 0})); *computation_layout.mutable_parameter_layout(1) = ShapeLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 10, 1}, {2, 1, 0})); *computation_layout.mutable_result_layout() = ShapeLayout( ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 1, 1}, {1, 2, 0})); AssignLayouts(module.get(), &computation_layout); Shape expected_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {10, 1, 1}, {2, 1, 0}); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Copy(op::ShapeWithLayout(expected_shape))); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Copy(op::Dot( op::ShapeWithLayout(computation_layout.parameter_layout(0).shape()), op::ShapeWithLayout( computation_layout.parameter_layout(1).shape())))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/cpu_layout_assignment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/cpu_layout_assignment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
34ca573c-4dda-4c6b-af92-9ccafd413f77
cpp
google/quiche
quiche_simple_arena
quiche/common/quiche_simple_arena.cc
quiche/common/quiche_simple_arena_test.cc
#include "quiche/common/quiche_simple_arena.h" #include <algorithm> #include <cstring> #include <utility> #include "quiche/common/platform/api/quiche_logging.h" namespace quiche { QuicheSimpleArena::QuicheSimpleArena(size_t block_size) : block_size_(block_size) {} QuicheSimpleArena::~QuicheSimpleArena() = default; QuicheSimpleArena::QuicheSimpleArena(QuicheSimpleArena&& other) = default; QuicheSimpleArena& QuicheSimpleArena::operator=(QuicheSimpleArena&& other) = default; char* QuicheSimpleArena::Alloc(size_t size) { Reserve(size); Block& b = blocks_.back(); QUICHE_DCHECK_GE(b.size, b.used + size); char* out = b.data.get() + b.used; b.used += size; return out; } char* QuicheSimpleArena::Realloc(char* original, size_t oldsize, size_t newsize) { QUICHE_DCHECK(!blocks_.empty()); Block& last = blocks_.back(); if (last.data.get() <= original && original < last.data.get() + last.size) { QUICHE_DCHECK_GE(last.data.get() + last.used, original + oldsize); if (original + oldsize == last.data.get() + last.used) { if (original + newsize < last.data.get() + last.size) { last.used += newsize - oldsize; return original; } } } char* out = Alloc(newsize); memcpy(out, original, oldsize); return out; } char* QuicheSimpleArena::Memdup(const char* data, size_t size) { char* out = Alloc(size); memcpy(out, data, size); return out; } void QuicheSimpleArena::Free(char* data, size_t size) { if (blocks_.empty()) { return; } Block& b = blocks_.back(); if (size <= b.used && data + size == b.data.get() + b.used) { b.used -= size; } } void QuicheSimpleArena::Reset() { blocks_.clear(); status_.bytes_allocated_ = 0; } void QuicheSimpleArena::Reserve(size_t additional_space) { if (blocks_.empty()) { AllocBlock(std::max(additional_space, block_size_)); } else { const Block& last = blocks_.back(); if (last.size < last.used + additional_space) { AllocBlock(std::max(additional_space, block_size_)); } } } void QuicheSimpleArena::AllocBlock(size_t size) { blocks_.push_back(Block(size)); status_.bytes_allocated_ += size; } QuicheSimpleArena::Block::Block(size_t s) : data(new char[s]), size(s), used(0) {} QuicheSimpleArena::Block::~Block() = default; QuicheSimpleArena::Block::Block(QuicheSimpleArena::Block&& other) : size(other.size), used(other.used) { data = std::move(other.data); } QuicheSimpleArena::Block& QuicheSimpleArena::Block::operator=( QuicheSimpleArena::Block&& other) { size = other.size; used = other.used; data = std::move(other.data); return *this; } }
#include "quiche/common/quiche_simple_arena.h" #include <string> #include <vector> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace { size_t kDefaultBlockSize = 2048; const char kTestString[] = "This is a decently long test string."; TEST(QuicheSimpleArenaTest, NoAllocationOnConstruction) { QuicheSimpleArena arena(kDefaultBlockSize); EXPECT_EQ(0u, arena.status().bytes_allocated()); } TEST(QuicheSimpleArenaTest, Memdup) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c = arena.Memdup(kTestString, length); EXPECT_NE(nullptr, c); EXPECT_NE(c, kTestString); EXPECT_EQ(absl::string_view(c, length), kTestString); } TEST(QuicheSimpleArenaTest, MemdupLargeString) { QuicheSimpleArena arena(10 ); const size_t length = strlen(kTestString); char* c = arena.Memdup(kTestString, length); EXPECT_NE(nullptr, c); EXPECT_NE(c, kTestString); EXPECT_EQ(absl::string_view(c, length), kTestString); } TEST(QuicheSimpleArenaTest, MultipleBlocks) { QuicheSimpleArena arena(40 ); std::vector<std::string> strings = { "One decently long string.", "Another string.", "A third string that will surely go in a different block."}; std::vector<absl::string_view> copies; for (const std::string& s : strings) { absl::string_view sp(arena.Memdup(s.data(), s.size()), s.size()); copies.push_back(sp); } EXPECT_EQ(strings.size(), copies.size()); for (size_t i = 0; i < strings.size(); ++i) { EXPECT_EQ(copies[i], strings[i]); } } TEST(QuicheSimpleArenaTest, UseAfterReset) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c = arena.Memdup(kTestString, length); arena.Reset(); c = arena.Memdup(kTestString, length); EXPECT_NE(nullptr, c); EXPECT_NE(c, kTestString); EXPECT_EQ(absl::string_view(c, length), kTestString); } TEST(QuicheSimpleArenaTest, Free) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); arena.Free(const_cast<char*>(kTestString), length); char* c1 = arena.Memdup("Foo", 3); char* c2 = arena.Memdup(kTestString, length); arena.Free(const_cast<char*>(kTestString), length); char* c3 = arena.Memdup("Bar", 3); char* c4 = arena.Memdup(kTestString, length); EXPECT_NE(c1, c2); EXPECT_NE(c1, c3); EXPECT_NE(c1, c4); EXPECT_NE(c2, c3); EXPECT_NE(c2, c4); EXPECT_NE(c3, c4); arena.Free(c4, length); arena.Free(c2, length); char* c5 = arena.Memdup("Baz", 3); EXPECT_EQ(c4, c5); } TEST(QuicheSimpleArenaTest, Alloc) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c1 = arena.Alloc(length); char* c2 = arena.Alloc(2 * length); char* c3 = arena.Alloc(3 * length); char* c4 = arena.Memdup(kTestString, length); EXPECT_EQ(c1 + length, c2); EXPECT_EQ(c2 + 2 * length, c3); EXPECT_EQ(c3 + 3 * length, c4); EXPECT_EQ(absl::string_view(c4, length), kTestString); } TEST(QuicheSimpleArenaTest, Realloc) { QuicheSimpleArena arena(kDefaultBlockSize); const size_t length = strlen(kTestString); char* c1 = arena.Memdup(kTestString, length); char* c2 = arena.Realloc(c1, length, 2 * length); EXPECT_TRUE(c1); EXPECT_EQ(c1, c2); EXPECT_EQ(absl::string_view(c1, length), kTestString); char* c3 = arena.Memdup(kTestString, length); EXPECT_EQ(c2 + 2 * length, c3); EXPECT_EQ(absl::string_view(c3, length), kTestString); char* c4 = arena.Realloc(c3, length, 2 * length); EXPECT_EQ(c3, c4); EXPECT_EQ(absl::string_view(c4, length), kTestString); char* c5 = arena.Realloc(c4, 2 * length, 3 * length); EXPECT_EQ(c4, c5); EXPECT_EQ(absl::string_view(c5, length), kTestString); char* c6 = arena.Memdup(kTestString, length); EXPECT_EQ(c5 + 3 * length, c6); EXPECT_EQ(absl::string_view(c6, length), kTestString); char* c7 = arena.Realloc(c6, length, kDefaultBlockSize); EXPECT_EQ(absl::string_view(c7, length), kTestString); arena.Free(c7, kDefaultBlockSize); char* c8 = arena.Memdup(kTestString, length); EXPECT_NE(c6, c7); EXPECT_EQ(c7, c8); EXPECT_EQ(absl::string_view(c8, length), kTestString); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_simple_arena.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_simple_arena_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
6907e617-e772-409b-9aa1-787ccb9693f8
cpp
tensorflow/tensorflow
cumsum
tensorflow/lite/delegates/gpu/common/tasks/cumsum.cc
tensorflow/lite/delegates/gpu/cl/kernels/cumsum_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/cumsum.h" #include <string> #include <utility> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" namespace tflite { namespace gpu { void Cumsum::GetCumsumCode(const OperationDef& op_def) { AddSrcTensor("src_tensor", op_def.src_tensors[0]); AddDstTensor("dst_tensor", op_def.dst_tensors[0]); std::map<Axis, std::string> task_sizes = { {Axis::WIDTH, "args.src_tensor.Width()"}, {Axis::HEIGHT, "args.src_tensor.Height()"}, {Axis::DEPTH, "args.src_tensor.Depth()"}, {Axis::CHANNELS, "args.src_tensor.Slices()"}, {Axis::BATCH, "args.src_tensor.Batch()"}, }; std::string limit = task_sizes[axis_]; task_sizes[axis_] = "1"; std::map<Axis, std::string> index_name = { {Axis::WIDTH, "X"}, {Axis::HEIGHT, "Y"}, {Axis::DEPTH, "Z"}, {Axis::CHANNELS, "S"}, {Axis::BATCH, "B"}, }; std::string indexes = "X, Y"; std::string c; c += "MAIN_FUNCTION($0) {\n"; if (definition_.dst_tensors[0].HasAxis(Axis::DEPTH)) { indexes += ", Z"; c += " int linear_id = GLOBAL_ID_1;\n"; c += " int Y = linear_id % " + task_sizes[Axis::HEIGHT] + ";\n"; c += " int D = linear_id / " + task_sizes[Axis::HEIGHT] + ";\n"; c += " if (D >= " + task_sizes[Axis::DEPTH] + ") return;\n"; } else { c += " int Y = GLOBAL_ID_1;\n"; c += " if (Y >= " + task_sizes[Axis::HEIGHT] + ") return;\n"; } indexes += ", S"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { indexes += ", B"; c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / " + task_sizes[Axis::BATCH] + ";\n"; c += " int B = linear_id % " + task_sizes[Axis::BATCH] + ";\n"; c += " if (X >= " + task_sizes[Axis::WIDTH] + ") return;\n"; } else { c += " int X = GLOBAL_ID_0;\n"; c += " if (X >= " + task_sizes[Axis::WIDTH] + ") return;\n"; } c += " int S = GLOBAL_ID_2;\n"; c += " if (S >= " + task_sizes[Axis::CHANNELS] + ") return;\n"; c += " args.src_tensor::type res = args.src_tensor::zero_value;\n"; c += " for (; " + index_name[axis_] + " < " + limit + "; " + index_name[axis_] + "++) {\n"; c += " args.src_tensor::type curr = args.src_tensor.Read(" + indexes + ");\n"; if (axis_ == Axis::CHANNELS) { c += " res.x = res.w + curr.x;\n"; c += " res.y = res.x + curr.y;\n"; c += " res.z = res.y + curr.z;\n"; c += " res.w = res.z + curr.w;\n"; } else { c += " res += curr;\n"; } c += " args.dst_tensor.Write(res, " + indexes + ");\n"; c += " }\n"; c += "}\n"; code_ = c; } int3 Cumsum::GetGridSize() const { const int width = axis_ == Axis::WIDTH ? 1 : src_[0]->Width(); const int height = axis_ == Axis::HEIGHT ? 1 : src_[0]->Height(); const int depth = axis_ == Axis::DEPTH ? 1 : src_[0]->Depth(); const int batch = axis_ == Axis::BATCH ? 1 : src_[0]->Batch(); const int slices = axis_ == Axis::CHANNELS ? 1 : src_[0]->Slices(); const int grid_x = width * batch; const int grid_y = height * depth; const int grid_z = slices; return int3(grid_x, grid_y, grid_z); } Cumsum::Cumsum(Cumsum&& operation) : GPUOperation(std::move(operation)), axis_(operation.axis_) {} Cumsum& Cumsum::operator=(Cumsum&& operation) { if (this != &operation) { axis_ = operation.axis_; GPUOperation::operator=(std::move(operation)); } return *this; } Cumsum CreateCumsum(const OperationDef& definition, const CumsumAttributes& attr) { Cumsum op(definition, attr.axis); op.GetCumsumCode(definition); return op; } } }
#include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/tasks/cumsum_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, CumsumHWCTest) { absl::Status status = CumsumHWCTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, CumsumBHWCTest) { absl::Status status = CumsumBHWCTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/cumsum.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/cumsum_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
990e754e-57b8-469c-adf1-c1785a3f9738
cpp
tensorflow/tensorflow
list_from_tensor
tensorflow/lite/kernels/variants/list_kernels/list_from_tensor.cc
tensorflow/lite/kernels/variants/list_kernels/list_from_tensor_test.cc
#include <cstring> #include <utility> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/kernels/variants/list_ops_util.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/util.h" namespace tflite { namespace variants { namespace ops { namespace { constexpr int kTensorInput = 0; constexpr int kElementShapeInput = 1; constexpr int kListOut = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); const TfLiteTensor* element_shape; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kElementShapeInput, &element_shape)); TF_LITE_ENSURE(context, element_shape->type == kTfLiteInt32); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kListOut, &output)); TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteVariant); output->allocation_type = kTfLiteVariantObject; return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* tensor_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kTensorInput, &tensor_input)); const int rank = tensor_input->dims->size; TF_LITE_ENSURE(context, rank > 0); const int list_len = tensor_input->dims->data[0]; IntArrayUniquePtr element_shape_for_tensors = BuildTfLiteArray(rank - 1, tensor_input->dims->data + 1); const TfLiteTensor* element_shape_tensor; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kElementShapeInput, &element_shape_tensor)); TF_LITE_ENSURE(context, (element_shape_tensor->dims->size == 1 && element_shape_tensor->dims->data[0] == rank - 1) || element_shape_tensor->dims->size == 0); IntArrayUniquePtr element_shape_for_list = TensorAsShape(*element_shape_tensor); if (element_shape_for_list->size > 0) { TF_LITE_ENSURE_EQ(context, element_shape_for_list->size, element_shape_for_tensors->size); for (int i = 0; i < element_shape_for_tensors->size; ++i) { const int lhs = element_shape_for_list->data[i]; const int rhs = element_shape_for_tensors->data[i]; TF_LITE_ENSURE(context, lhs == -1 || rhs == -1 || lhs == rhs); } } TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kListOut, &output)); TF_LITE_ENSURE_OK(context, TfLiteTensorVariantRealloc<TensorArray>( output, tensor_input->type, BuildTfLiteArray(*element_shape_for_list))); TensorArray* arr = static_cast<TensorArray*>(static_cast<VariantData*>(output->data.data)); arr->Resize(list_len); size_t data_offset = 0; for (int i = 0; i < list_len; ++i) { TensorUniquePtr tensor_to_set = BuildTfLiteTensor( tensor_input->type, BuildTfLiteArray(*element_shape_for_tensors), kTfLiteDynamic); memcpy(tensor_to_set->data.raw, tensor_input->data.raw + data_offset, tensor_to_set->bytes); data_offset += tensor_to_set->bytes; TF_LITE_ENSURE(context, arr->Set(i, std::move(tensor_to_set))); } return kTfLiteOk; } } TfLiteRegistration* Register_LIST_FROM_TENSOR() { static TfLiteRegistration r = {nullptr, nullptr, Prepare, Eval}; return &r; } } } }
#include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" #include "tensorflow/lite/schema/schema_generated.h" using ::testing::ElementsAre; namespace tflite { namespace variants { namespace ops { namespace { class ListFromTensorModel : public SingleOpModel { public: ListFromTensorModel(TensorData tensor_data, TensorData shape_data) { tensor_id_ = AddInput(tensor_data); shape_id_ = AddInput(shape_data); list_id_ = AddOutput({TensorType_VARIANT, {1}}); SetCustomOp("TensorListFromTensor", {}, Register_LIST_FROM_TENSOR); BuildInterpreter({tensor_data.shape, shape_data.shape}); } const TensorArray* GetOutputTensorArray(int tensor_id) { TfLiteTensor* tensor = interpreter_->tensor(tensor_id); TFLITE_CHECK(tensor != nullptr && tensor->type == kTfLiteVariant && tensor->allocation_type == kTfLiteVariantObject); return static_cast<const TensorArray*>( static_cast<const VariantData*>(tensor->data.data)); } int tensor_id_; int shape_id_; int list_id_; }; TEST(ListFromTensorTest, MatrixInput_ReturnsListWithVectorElements) { ListFromTensorModel m({TensorType_INT32, {2, 2}}, {TensorType_INT32, {1}}); m.PopulateTensor<int>(m.tensor_id_, {1, 2, 3, 4}); m.PopulateTensor<int>(m.shape_id_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* arr = m.GetOutputTensorArray(m.list_id_); ASSERT_EQ(arr->NumElements(), 2); ASSERT_THAT(arr->ElementShape(), DimsAre({2})); ASSERT_EQ(arr->ElementType(), kTfLiteInt32); { const TfLiteTensor* element = arr->At(0); ASSERT_THAT(element, DimsAre({2})); EXPECT_THAT(std::make_tuple(GetTensorData<int>(element), 2), ElementsAre(1, 2)); } { const TfLiteTensor* element = arr->At(1); ASSERT_THAT(element, DimsAre({2})); EXPECT_THAT(std::make_tuple(GetTensorData<int>(element), 2), ElementsAre(3, 4)); } } TEST(ListFromTensorTest, VectorInput_ReturnsListWithScalarElements) { ListFromTensorModel m({TensorType_INT32, {2}}, {TensorType_INT32, {0}}); m.PopulateTensor<int>(m.tensor_id_, {1, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* arr = m.GetOutputTensorArray(m.list_id_); ASSERT_EQ(arr->NumElements(), 2); ASSERT_THAT(arr->ElementShape(), DimsAre({})); ASSERT_EQ(arr->ElementType(), kTfLiteInt32); { const TfLiteTensor* element = arr->At(0); ASSERT_THAT(element, DimsAre({})); EXPECT_THAT(std::make_tuple(GetTensorData<int>(element), 1), ElementsAre(1)); } { const TfLiteTensor* element = arr->At(1); ASSERT_THAT(element, DimsAre({})); EXPECT_THAT(std::make_tuple(GetTensorData<int>(element), 1), ElementsAre(2)); } } TEST(ListFromTensorTest, 3DInput_ReturnsListWithMatrixElements) { ListFromTensorModel m({TensorType_INT32, {2, 2, 2}}, {TensorType_INT32, {2}}); m.PopulateTensor<int>(m.tensor_id_, {1, 2, 3, 4, 5, 6, 7, 8}); m.PopulateTensor<int>(m.shape_id_, {2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TensorArray* arr = m.GetOutputTensorArray(m.list_id_); ASSERT_EQ(arr->NumElements(), 2); ASSERT_THAT(arr->ElementShape(), DimsAre({2, 2})); ASSERT_EQ(arr->ElementType(), kTfLiteInt32); { const TfLiteTensor* element = arr->At(0); ASSERT_THAT(element, DimsAre({2, 2})); EXPECT_THAT(std::make_tuple(GetTensorData<int>(element), 4), ElementsAre(1, 2, 3, 4)); } { const TfLiteTensor* element = arr->At(1); ASSERT_THAT(element, DimsAre({2, 2})); EXPECT_THAT(std::make_tuple(GetTensorData<int>(element), 4), ElementsAre(5, 6, 7, 8)); } } TEST(ListFromTensorTest, MismatchedShapeInputTensorShape_Fails) { ListFromTensorModel m({TensorType_INT32, {2, 2, 2}}, {TensorType_INT32, {2}}); m.PopulateTensor<int>(m.shape_id_, {2, 3}); ASSERT_EQ(m.Invoke(), kTfLiteError); } TEST(ListFromTensorTest, ScalarInput_Fails) { ListFromTensorModel m({TensorType_INT32, {}}, {TensorType_INT32, {}}); ASSERT_EQ(m.Invoke(), kTfLiteError); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_from_tensor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_from_tensor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
924450a7-b081-4c29-b3f6-2bb71a1b42d4
cpp
tensorflow/tensorflow
xnnpack_delegate_provider
tensorflow/lite/tools/delegates/xnnpack_delegate_provider.cc
tensorflow/lite/tools/delegates/xnnpack_delegate_provider_test.cc
#include <string> #include <utility> #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/evaluation/utils.h" namespace tflite { namespace tools { class XnnpackDelegateProvider : public DelegateProvider { public: XnnpackDelegateProvider() { default_params_.AddParam("use_xnnpack", ToolParam::Create<bool>(false)); default_params_.AddParam("xnnpack_force_fp16", ToolParam::Create<bool>(false)); default_params_.AddParam("xnnpack_weight_cache_file_path", ToolParam::Create<std::string>("")); } std::vector<Flag> CreateFlags(ToolParams* params) const final; void LogParams(const ToolParams& params, bool verbose) const final; TfLiteDelegatePtr CreateTfLiteDelegate(const ToolParams& params) const final; std::pair<TfLiteDelegatePtr, int> CreateRankedTfLiteDelegate( const ToolParams& params) const final; std::string GetName() const final { return "XNNPACK"; } }; REGISTER_DELEGATE_PROVIDER(XnnpackDelegateProvider); std::vector<Flag> XnnpackDelegateProvider::CreateFlags( ToolParams* params) const { std::vector<Flag> flags = { CreateFlag<bool>("use_xnnpack", params, "explicitly apply the XNNPACK delegate. Note the " "XNNPACK delegate could " "be implicitly applied by the TF Lite runtime " "regardless the value of " "this parameter. To disable this implicit application, " "set the value to " "false explicitly."), CreateFlag<bool>("xnnpack_force_fp16", params, "enforce float16 inference."), CreateFlag<std::string>("xnnpack_weight_cache_file_path", params, "enable file-backed weight caching."), }; return flags; } void XnnpackDelegateProvider::LogParams(const ToolParams& params, bool verbose) const { LOG_TOOL_PARAM(params, bool, "use_xnnpack", "Use xnnpack", verbose); LOG_TOOL_PARAM(params, bool, "xnnpack_force_fp16", "xnnpack_force_fp16", verbose); LOG_TOOL_PARAM(params, std::string, "xnnpack_weight_cache_file_path", "xnnpack_weight_cache_file_path", verbose); } TfLiteDelegatePtr XnnpackDelegateProvider::CreateTfLiteDelegate( const ToolParams& params) const { if (params.Get<bool>("use_xnnpack")) { return evaluation::CreateXNNPACKDelegate( params.Get<int32_t>("num_threads"), params.Get<bool>("xnnpack_force_fp16"), params.Get<std::string>("xnnpack_weight_cache_file_path").c_str()); } return CreateNullDelegate(); } std::pair<TfLiteDelegatePtr, int> XnnpackDelegateProvider::CreateRankedTfLiteDelegate( const ToolParams& params) const { auto ptr = CreateTfLiteDelegate(params); return std::make_pair(std::move(ptr), params.GetPosition<bool>("use_xnnpack")); } } }
#include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/tools/delegates/delegate_provider.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { TEST(XNNPackDelegateProviderTest, Test) { const std::string kFakeCacheParam = testing::TempDir() + "/XNNPackDelegateProviderTest.xnnpack_cache"; const auto& providers = GetRegisteredDelegateProviders(); ASSERT_EQ(providers.size(), 1); ToolParams params; const auto& xnnpack_provider = providers[0]; ASSERT_NE(xnnpack_provider, nullptr); params.Merge(xnnpack_provider->DefaultParams()); params.AddParam("num_threads", ToolParam::Create<int32_t>(-1)); EXPECT_TRUE(params.HasParam("use_xnnpack")); EXPECT_FALSE(params.HasValueSet<bool>("use_xnnpack")); ASSERT_NE(params.GetParam("use_xnnpack"), nullptr); EXPECT_TRUE(params.HasParam("xnnpack_force_fp16")); EXPECT_FALSE(params.HasValueSet<bool>("xnnpack_force_fp16")); ASSERT_NE(params.GetParam("xnnpack_force_fp16"), nullptr); EXPECT_TRUE(params.HasParam("xnnpack_weight_cache_file_path")); EXPECT_FALSE( params.HasValueSet<std::string>("xnnpack_weight_cache_file_path")); ASSERT_NE(params.GetParam("xnnpack_weight_cache_file_path"), nullptr); params.Set<bool>("use_xnnpack", true, 0); { TfLiteDelegatePtr delegate = xnnpack_provider->CreateTfLiteDelegate(params); const TfLiteXNNPackDelegateOptions* options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_NE(options, nullptr); EXPECT_EQ(options->weight_cache_file_path, nullptr); } params.Set<bool>("xnnpack_force_fp16", true, 1); params.Set<std::string>("xnnpack_weight_cache_file_path", kFakeCacheParam, 2); { TfLiteDelegatePtr delegate = xnnpack_provider->CreateTfLiteDelegate(params); const TfLiteXNNPackDelegateOptions* options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_NE(options, nullptr); EXPECT_THAT(options->weight_cache_file_path, testing::StrEq(kFakeCacheParam)); EXPECT_TRUE(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_FORCE_FP16); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/xnnpack_delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/xnnpack_delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8d045eae-f78b-47ac-9a3d-4ba595aa190d
cpp
google/arolla
strings
arolla/qexpr/operators/strings/strings.cc
arolla/qexpr/operators/strings/strings_test.cc
#include "arolla/qexpr/operators/strings/strings.h" #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/no_destructor.h" #include "absl/base/nullability.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "icu4c/source/common/unicode/bytestream.h" #include "icu4c/source/common/unicode/casemap.h" #include "icu4c/source/common/unicode/errorcode.h" #include "icu4c/source/common/unicode/stringoptions.h" #include "icu4c/source/common/unicode/umachine.h" #include "icu4c/source/common/unicode/utf8.h" #include "double-conversion/double-to-string.h" #include "double-conversion/utils.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/strings/regex.h" #include "arolla/util/bytes.h" #include "arolla/util/text.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { absl::Status ValidateUtf8(absl::string_view bytes) { if (bytes.size() > size_t{std::numeric_limits<int32_t>::max()}) { return absl::UnimplementedError("string is too long to convert to UTF-8"); } int32_t offset = 0; while (offset < bytes.size()) { UChar32 character; int32_t previous_offset = offset; U8_NEXT(bytes.data(), offset, bytes.size(), character); if (character < 0) { return absl::InvalidArgumentError(absl::StrFormat( "invalid UTF-8 sequence at position %d", previous_offset)); } } return absl::OkStatus(); } } absl::StatusOr<Text> LowerOp::operator()( absl::string_view in, std::optional<absl::string_view> locale) const { std::string result; icu::StringByteSink<std::string> sink(&result); icu::ErrorCode error_code; const char* locale_ptr = locale.has_value() ? locale->data() : nullptr; icu::CaseMap::utf8ToLower(locale_ptr, U_FOLD_CASE_DEFAULT, absl::string_view(in), sink, nullptr, error_code); if (error_code.isFailure()) { return absl::InvalidArgumentError(absl::StrFormat( "utf8ToLower failed with error: %s", error_code.errorName())); } return Text(std::move(result)); } absl::StatusOr<Text> UpperOp::operator()( absl::string_view in, std::optional<absl::string_view> locale) const { std::string result; icu::StringByteSink<std::string> sink(&result); icu::ErrorCode error_code; const char* locale_ptr = locale.has_value() ? locale->data() : nullptr; icu::CaseMap::utf8ToUpper(locale_ptr, U_FOLD_CASE_DEFAULT, absl::string_view(in), sink, nullptr, error_code); if (error_code.isFailure()) { return absl::InvalidArgumentError(absl::StrFormat( "utf8ToUpper failed with error: %s", error_code.errorName())); } return Text(std::move(result)); } absl::StatusOr<Text> DecodeOp::operator()(absl::string_view s) const { RETURN_IF_ERROR(ValidateUtf8(s)); return Text(s); } absl::StatusOr<std::string> ReplaceOp::operator()( absl::string_view s, absl::string_view old_sub, absl::string_view new_sub, OptionalValue<int32_t> max_subs) const { size_t count = std::numeric_limits<size_t>::max(); if (max_subs.present) { if (max_subs.value == 0) { return std::string(s); } count = max_subs.value; } std::string res; size_t offset = 0; if (old_sub.empty()) { absl::StrAppend(&res, new_sub); while ((--count > 0) && (offset < s.length())) { absl::StrAppend(&res, s.substr(offset, 1), new_sub); ++offset; } } else { while (count-- > 0) { const size_t start = s.find(old_sub, offset); if (start == std::string::npos) break; absl::StrAppend(&res, s.substr(offset, start - offset), new_sub); offset = start + old_sub.size(); } } res.append(s.begin() + offset, s.end()); return res; } absl::StatusOr<absl::Nonnull<RegexPtr>> CompileRegexOp::operator()( absl::string_view pattern) const { return CompileRegex(pattern); } OptionalUnit ContainsRegexOp::operator()(absl::string_view text, const RegexPtr& regex) const { return OptionalUnit(regex != nullptr && regex->PartialMatch(text)); } OptionalUnit ContainsRegexOp::operator()(OptionalValue<absl::string_view> text, const RegexPtr& regex) const { return OptionalUnit(text.present && regex != nullptr && regex->PartialMatch(text.value)); } absl::StatusOr<OptionalValue<Text>> ExtractRegexOp::operator()( const Text& text, const RegexPtr& regex) const { if (regex == nullptr) { return std::nullopt; } if (regex->NumberOfCapturingGroups() != 1) { return absl::InvalidArgumentError( absl::StrFormat("ExtractRegexOp expected regular expression with " "exactly one capturing group; got `%s` which " "contains %d capturing groups", regex->pattern(), regex->NumberOfCapturingGroups())); } std::string match; if (regex->PartialMatch(text.view(), &match)) { return Text(std::move(match)); } return std::nullopt; } absl::StatusOr<OptionalValue<Text>> ExtractRegexOp::operator()( const OptionalValue<Text>& text, const RegexPtr& regex) const { if (text.present) { return (*this)(text.value, regex); } return std::nullopt; } namespace { template <class T> Text SignedIntegerToText(T x) { return Text(absl::StrFormat("%d", x)); } } Text AsTextOp::operator()(absl::string_view s) const { return Text(absl::StrFormat("b'%s'", absl::Utf8SafeCHexEscape(s))); } Text AsTextOp::operator()(const Bytes& x) const { return operator()(absl::string_view(x)); } Text AsTextOp::operator()(Unit) const { return Text("present"); } Text AsTextOp::operator()(int32_t x) const { return SignedIntegerToText(x); } Text AsTextOp::operator()(int64_t x) const { return SignedIntegerToText(x); } Text AsTextOp::operator()(uint64_t x) const { return Text(absl::StrFormat("%d", x)); } Text AsTextOp::operator()(bool x) const { return x ? Text("true") : Text("false"); } Text AsTextOp::operator()(float x) const { static const absl::NoDestructor<double_conversion::DoubleToStringConverter> converter(double_conversion::DoubleToStringConverter::NO_FLAGS, "inf", "nan", 'e', -6, 21, 6, 0); char buf[128]; double_conversion::StringBuilder builder(buf, sizeof(buf)); converter->ToShortestSingle(x, &builder); return Text(builder.Finalize()); } Text AsTextOp::operator()(double x) const { static const absl::NoDestructor<double_conversion::DoubleToStringConverter> converter(double_conversion::DoubleToStringConverter::NO_FLAGS, "inf", "nan", 'e', -6, 21, 6, 0); char buf[128]; double_conversion::StringBuilder builder(buf, sizeof(buf)); converter->ToShortest(x, &builder); return Text(builder.Finalize()); } Text TextAsTextOp::operator()(absl::string_view s) const { return Text(s); } Text TextAsTextOp::operator()(const Text& s) const { return s; } }
#include <cstdint> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/base_types.h" #include "arolla/util/bytes.h" #include "arolla/util/text.h" #include "arolla/util/unit.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::ElementsAre; using ::testing::HasSubstr; TEST(StringsTest, AsText) { EXPECT_THAT(InvokeOperator<Text>("strings.as_text", kUnit), IsOkAndHolds(Text("present"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", Text("text")), IsOkAndHolds(Text("text"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", Bytes(std::string({0, 'b', '\'', 'e', 1}))), IsOkAndHolds(Text("b'\\x00\\x62\\'e\\x01'"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", false), IsOkAndHolds(Text("false"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", int32_t{1}), IsOkAndHolds(Text("1"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", int64_t{1}), IsOkAndHolds(Text("1"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", 2.3f), IsOkAndHolds(Text("2.3"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", 2.3), IsOkAndHolds(Text("2.3"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", 14.137167f), IsOkAndHolds(Text("14.137167"))); EXPECT_THAT(InvokeOperator<Text>("strings.as_text", 14.137167), IsOkAndHolds(Text("14.137167"))); EXPECT_THAT( InvokeOperator<DenseArray<Text>>( "strings.as_text", CreateDenseArray<Bytes>( {Bytes(std::string({0, 'b', '\'', 'e', 1}))})), IsOkAndHolds(ElementsAre(Text("b'\\x00\\x62\\'e\\x01'")))); } TEST(StringsTest, Decode) { EXPECT_THAT(InvokeOperator<Text>("strings.decode", Bytes("text")), IsOkAndHolds(Text("text"))); EXPECT_THAT(InvokeOperator<Text>("strings.decode", Bytes("te\0xt")), IsOkAndHolds(Text("te\0xt"))); EXPECT_THAT(InvokeOperator<Text>("strings.decode", Bytes("\xEF\xBF\xBD")), IsOkAndHolds(Text("\xEF\xBF\xBD"))); EXPECT_THAT(InvokeOperator<Text>("strings.decode", Bytes("\xA0text")), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid UTF-8 sequence at position 0"))); EXPECT_THAT(InvokeOperator<Text>("strings.decode", Bytes("te\xC0\0xt")), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid UTF-8 sequence at position 2"))); EXPECT_THAT(InvokeOperator<Text>("strings.decode", Bytes("text\x80")), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid UTF-8 sequence at position 4"))); } TEST(StringsTest, Lower) { Text input("Hello World."); Text expected_output("hello world."); EXPECT_THAT(InvokeOperator<Text>("strings.lower", input), IsOkAndHolds(expected_output)); } TEST(StringsTest, LowerOptional) { OptionalValue<Text> input(Text("Hello World.")); OptionalValue<Text> expected_output(Text("hello world.")); EXPECT_THAT(InvokeOperator<OptionalValue<Text>>("strings.lower", input), IsOkAndHolds(expected_output)); } TEST(StringsTest, LowerWithLocale) { Text input("TITLE"); Text locale("TR_tr"); EXPECT_THAT(InvokeOperator<Text>("strings.lower", input, locale), IsOkAndHolds(Text("tıtle"))); } TEST(StringsTest, Upper) { Text input("Hello World."); EXPECT_THAT(InvokeOperator<Text>("strings.upper", input), IsOkAndHolds(Text("HELLO WORLD."))); } TEST(StringsTest, UpperWithLocale) { Text input("istanbul"); Text locale("TR_tr"); EXPECT_THAT(InvokeOperator<Text>("strings.upper", input, locale), IsOkAndHolds(Text("İSTANBUL"))); } TEST(StringsTest, BytesLength) { EXPECT_THAT(InvokeOperator<int32_t>("strings.length", Bytes("古池や蛙飛び込む水の音")), IsOkAndHolds(33)); } TEST(StringsTest, TextLength) { EXPECT_THAT( InvokeOperator<int32_t>("strings.length", Text("古池や蛙飛び込む水の音")), IsOkAndHolds(11)); } TEST(StringsTest, Replace) { Text input("Hello ello foo."); Text old_sub("ell"); Text new_sub("XX"); EXPECT_THAT(InvokeOperator<Text>("strings.replace", input, old_sub, new_sub, OptionalValue<int32_t>(-1)), IsOkAndHolds(Text("HXXo XXo foo."))); EXPECT_THAT(InvokeOperator<Text>("strings.replace", input, old_sub, new_sub, OptionalValue<int32_t>(0)), IsOkAndHolds(Text("Hello ello foo."))); EXPECT_THAT(InvokeOperator<Text>("strings.replace", input, old_sub, new_sub, OptionalValue<int32_t>(1)), IsOkAndHolds(Text("HXXo ello foo."))); EXPECT_THAT(InvokeOperator<Text>("strings.replace", input, old_sub, new_sub, OptionalValue<int32_t>(2)), IsOkAndHolds(Text("HXXo XXo foo."))); EXPECT_THAT(InvokeOperator<Text>("strings.replace", input, old_sub, new_sub, OptionalValue<int32_t>()), IsOkAndHolds(Text("HXXo XXo foo."))); EXPECT_THAT( InvokeOperator<Text>("strings.replace", input, Text(), new_sub, OptionalValue<int32_t>(-1)), IsOkAndHolds(Text("XXHXXeXXlXXlXXoXX XXeXXlXXlXXoXX XXfXXoXXoXX.XX"))); EXPECT_THAT( InvokeOperator<Text>("strings.replace", input, Text(), new_sub, OptionalValue<int32_t>()), IsOkAndHolds(Text("XXHXXeXXlXXlXXoXX XXeXXlXXlXXoXX XXfXXoXXoXX.XX"))); EXPECT_THAT(InvokeOperator<Text>("strings.replace", input, Text(), new_sub, OptionalValue<int32_t>(3)), IsOkAndHolds(Text("XXHXXeXXllo ello foo."))); EXPECT_THAT(InvokeOperator<Text>("strings.replace", Text(), Text(), new_sub, OptionalValue<int32_t>()), IsOkAndHolds(Text("XX"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/strings/strings.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/strings/strings_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
71175d7d-af7a-41c7-8175-be39824b744d
cpp
tensorflow/tensorflow
tpu_rewrite_device_util
tensorflow/compiler/mlir/tensorflow/utils/tpu_rewrite_device_util.cc
tensorflow/compiler/mlir/tensorflow/utils/tpu_rewrite_device_util_test.cc
#include "tensorflow/compiler/mlir/tensorflow/utils/tpu_rewrite_device_util.h" #include <algorithm> #include <cstdint> #include <iterator> #include <string> #include <utility> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_structs.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/compiler/mlir/tensorflow/utils/device_util.h" #include "tensorflow/compiler/mlir/utils/string_container_utils.h" #include "xla/array4d.h" #include "xla/service/computation_placer.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/protobuf/tpu/topology.pb.h" #include "tensorflow/core/util/device_name_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { constexpr int kTPUTopologyRank = 4; constexpr char kDeviceTPUSystem[] = "TPU_SYSTEM"; constexpr char kDeviceTPU[] = "TPU"; constexpr char kTPUReplicatedCore[] = "TPU_REPLICATED_CORE"; constexpr char kTPUReplicatedHost[] = "TPU_REPLICATED_HOST"; constexpr char kBadIntArrayElementMsg[] = "bad '{0}' attribute at index {1}, not an int"; using ParsedDevice = DeviceNameUtils::ParsedName; using ParsedDevices = llvm::ArrayRef<DeviceNameUtils::ParsedName>; namespace { llvm::SmallVector<ParsedDevice, 8> FindMatchingDevices( ParsedDevices devices, const ParsedDevice& spec) { llvm::SmallVector<ParsedDevice, 8> matching_devices; for (const auto& device : devices) { if (DeviceNameUtils::IsCompleteSpecification(spec, device)) { matching_devices.push_back(device); } } return matching_devices; } template <typename T> absl::Status MismatchedTPUSystemAttributeErr(absl::string_view attribute, T a, T b) { return absl::InvalidArgumentError( absl::StrCat("found ", kDeviceTPUSystem, " devices with conflicting ", attribute, "s '", a, "' and '", b, "'")); } absl::StatusOr<llvm::SmallVector<ParsedDevice, 8>> GetTPUSystemDevices( ParsedDevices devices) { ParsedDevice spec; spec.type = kDeviceTPUSystem; spec.has_type = true; spec.id = 0; spec.has_id = true; llvm::SmallVector<ParsedDevice, 8> system_devices = FindMatchingDevices(devices, spec); if (system_devices.empty()) return absl::InvalidArgumentError( absl::StrCat("no ", kDeviceTPUSystem, " devices found")); const auto& job = system_devices[0].job; auto replica = system_devices[0].replica; for (const auto& device : llvm::make_range(std::next(system_devices.begin()), system_devices.end())) { if (device.job != job) return MismatchedTPUSystemAttributeErr("job", job, device.job); if (device.replica != replica) return MismatchedTPUSystemAttributeErr("replica", replica, device.replica); } std::sort(system_devices.begin(), system_devices.end(), [](const ParsedDevice& a, const ParsedDevice& b) { return a.task < b.task; }); return system_devices; } absl::StatusOr<llvm::SmallVector<llvm::SmallVector<ParsedDevice, 8>, 8>> GetTPUDevices(ParsedDevices devices, llvm::ArrayRef<ParsedDevice> system_devices) { llvm::SmallVector<llvm::SmallVector<ParsedDevice, 8>, 8> tpu_devices; tpu_devices.reserve(system_devices.size()); auto lookup = [&devices](ParsedDevice device_spec) { device_spec.has_type = true; device_spec.type = kDeviceTPU; device_spec.has_id = false; llvm::SmallVector<ParsedDevice, 8> host_tpu_devices = FindMatchingDevices(devices, device_spec); std::sort(host_tpu_devices.begin(), host_tpu_devices.end(), [](const ParsedDevice& i, const ParsedDevice& j) { return i.id < j.id; }); return host_tpu_devices; }; int num_tpus_per_host = 0; { const auto& device = system_devices[0]; auto host_tpu_devices = lookup(device); num_tpus_per_host = host_tpu_devices.size(); tpu_devices.push_back(std::move(host_tpu_devices)); } for (const auto& device_spec : llvm::make_range( std::next(system_devices.begin()), system_devices.end())) { auto host_tpu_devices = lookup(device_spec); const int64_t host_tpu_devices_size = host_tpu_devices.size(); if (num_tpus_per_host != host_tpu_devices_size) return absl::InvalidArgumentError( absl::StrCat("expected the number of TPU devices per host to be ", num_tpus_per_host, ", got ", host_tpu_devices.size())); tpu_devices.push_back(std::move(host_tpu_devices)); } return tpu_devices; } std::string GetTPUCompilationDevice(ParsedDevice system_device) { system_device.type = tensorflow::DEVICE_CPU; return DeviceNameUtils::ParsedNameToString(system_device); } absl::StatusOr<std::string> GetCPUHostDeviceForTPUDevice( ParsedDevice tpu_device, ParsedDevices devices) { tpu_device.type = DEVICE_CPU; bool enable_multiple_local_cpu_devices = tensorflow::GetMlirCommonFlags() ->tf_mlir_enable_multiple_local_cpu_devices; if (!enable_multiple_local_cpu_devices) { tpu_device.id = 0; } if (FindMatchingDevices(devices, tpu_device).empty()) { return absl::InvalidArgumentError(absl::StrCat( "Can't find device: ", DeviceNameUtils::ParsedNameToString(tpu_device), " in the devices list.")); } return DeviceNameUtils::ParsedNameToString(tpu_device); } absl::StatusOr<TPUDevicesAndHosts> GetFullMeshTPUExecutionDeviceAssignment( int num_replicas, int num_cores_per_replica, llvm::ArrayRef<llvm::SmallVector<ParsedDevice, 8>> tpu_devices, ParsedDevices devices) { const int num_tasks = tpu_devices.size(); const int num_tpus_per_task = tpu_devices[0].size(); const int num_tpu_devices = num_tasks * num_tpus_per_task; if (num_replicas != 1 && num_replicas != num_tpu_devices) return absl::InvalidArgumentError( absl::StrCat("'num_replicas' must be equal to 1 or ", num_tpu_devices, ", got ", num_replicas)); if (num_cores_per_replica != 1) return absl::InvalidArgumentError( absl::StrCat("'num_cores_per_replica' must be equal to 1, got ", num_cores_per_replica)); TPUDevicesAndHosts devices_and_hosts; devices_and_hosts.reserve(num_replicas); for (int i = 0; i < num_replicas; ++i) { const int task = i / num_tpus_per_task; const int device = i % num_tpus_per_task; const auto& tpu_device = tpu_devices[task][device]; devices_and_hosts.push_back({TPUDeviceAndHost( tensorflow::DeviceNameUtils::ParsedNameToString(tpu_device), *GetCPUHostDeviceForTPUDevice(tpu_device, devices))}); } return devices_and_hosts; } struct TaskAndDevice { TaskAndDevice() = default; TaskAndDevice(int task, int device) : task(task), device(device) {} int task = -1; int device = -1; }; bool DeviceCoordinateOutOfBound(int x, int y, int z, int core, int bound_x, int bound_y, int bound_z, int bound_core) { return x < 0 || x >= bound_x || y < 0 || y >= bound_y || z < 0 || z >= bound_z || core < 0 || core >= bound_core; } absl::Status DeviceCoordinateErrorMsg(absl::string_view attribute, int x, int y, int z, int core, int bound_x, int bound_y, int bound_z, int bound_core) { return absl::InvalidArgumentError( absl::StrCat("device coordinate (", x, ", ", y, ", ", z, ", ", core, ") in '", attribute, "' is outside of mesh shape (", bound_x, ", ", bound_y, ", ", bound_z, ", ", bound_core, ")")); } absl::Status DuplicateCoordinateErrorMsg(absl::string_view attribute, int x, int y, int z, int core) { return absl::InvalidArgumentError( absl::StrCat("'", attribute, "' has duplicate device coordinate (", x, ", ", y, ", ", z, ", ", core, ")")); } absl::StatusOr<xla::Array4D<TaskAndDevice>> ParseTopologyAttr( llvm::StringRef topology_attr, int num_tasks, int num_tpus_per_task) { tpu::TopologyProto topology_proto; if (!topology_proto.ParseFromString(topology_attr.str())) return absl::InvalidArgumentError(absl::StrCat( "failed to parse '", kTopologyAttr, "' attribute to TopologyProto")); if (topology_proto.mesh_shape_size() != kTPUTopologyRank) return absl::InvalidArgumentError(absl::StrCat( "'", kTopologyAttr, "' 'mesh_shape' must be rank ", kTPUTopologyRank, ", got rank ", topology_proto.mesh_shape_size())); for (auto mesh_shape_dim : llvm::enumerate(topology_proto.mesh_shape())) if (mesh_shape_dim.value() <= 0) return absl::InvalidArgumentError( absl::StrCat("'", kTopologyAttr, "' 'mesh_shape' dimension ", mesh_shape_dim.index(), " must be positive, got ", mesh_shape_dim.value())); if (topology_proto.num_tasks() != num_tasks) return absl::InvalidArgumentError(absl::StrCat( "number of tasks from available TPU devices must be 'num_tasks' in '", kTopologyAttr, "' (", topology_proto.num_tasks(), "), got ", num_tasks)); if (topology_proto.num_tpu_devices_per_task() != num_tpus_per_task) return absl::InvalidArgumentError(absl::StrCat( "number of TPU devices available per task must be " "'num_tpu_devices_per_task' in '", kTopologyAttr, "' (", topology_proto.num_tpu_devices_per_task(), "), got ", num_tpus_per_task)); const int expected_device_coordinates_size = num_tasks * num_tpus_per_task * kTPUTopologyRank; if (topology_proto.device_coordinates_size() != expected_device_coordinates_size) return absl::InvalidArgumentError(absl::StrCat( "length of 'device_coordinates' in '", kTopologyAttr, "' must be 'num_tasks' * 'num_tpus_per_task' * ", kTPUTopologyRank, " (", num_tasks, " * ", num_tpus_per_task, " * ", kTPUTopologyRank, "), got ", topology_proto.device_coordinates_size())); const int bound_x = topology_proto.mesh_shape(0); const int bound_y = topology_proto.mesh_shape(1); const int bound_z = topology_proto.mesh_shape(2); const int bound_core = topology_proto.mesh_shape(3); xla::Array4D<TaskAndDevice> topology(bound_x, bound_y, bound_z, bound_core); int pos = 0; for (int task = 0; task < num_tasks; ++task) { for (int device = 0; device < num_tpus_per_task; ++device) { int x = topology_proto.device_coordinates(pos++); int y = topology_proto.device_coordinates(pos++); int z = topology_proto.device_coordinates(pos++); int core = topology_proto.device_coordinates(pos++); if (DeviceCoordinateOutOfBound(x, y, z, core, bound_x, bound_y, bound_z, bound_core)) return DeviceCoordinateErrorMsg(kTopologyAttr, x, y, z, core, bound_x, bound_y, bound_z, bound_core); auto& task_and_device = topology(x, y, z, core); if (task_and_device.task != -1) return DuplicateCoordinateErrorMsg(kTopologyAttr, x, y, z, core); task_and_device = {task, device}; } } return topology; } absl::StatusOr<std::pair<TPUDevicesAndHosts, xla::DeviceAssignmentProto>> GetGeneralTPUExecutionDeviceAssignment( int num_replicas, int num_cores_per_replica, llvm::ArrayRef<llvm::SmallVector<ParsedDevice, 8>> tpu_devices, ParsedDevices devices, llvm::StringRef topology_attr, llvm::ArrayRef<int64_t> device_assignment_attr) { const int num_tasks = tpu_devices.size(); const int num_tpus_per_task = tpu_devices[0].size(); TF_ASSIGN_OR_RETURN(auto topology, ParseTopologyAttr(topology_attr, num_tasks, num_tpus_per_task)); const int expected_device_assignment_size = num_replicas * num_cores_per_replica * kTPUTopologyRank; const int device_assignment_attr_size = device_assignment_attr.size(); if (device_assignment_attr_size != expected_device_assignment_size) return absl::InvalidArgumentError(absl::StrCat( "length of '", kDeviceAssignmentAttr, "' must be 'num_replicas' * 'num_cores_per_replica' * ", kTPUTopologyRank, " (", num_replicas, " * ", num_cores_per_replica, " * ", kTPUTopologyRank, "), got ", device_assignment_attr.size())); const int bound_x = topology.n1(); const int bound_y = topology.n2(); const int bound_z = topology.n3(); const int bound_core = topology.n4(); auto location_to_id = [&](int x, int y, int z, int core) { return (x + bound_x * (y + bound_y * z)) * bound_core + core; }; std::vector<bool> used_device_ids(bound_x * bound_y * bound_z * bound_core, false); TPUDevicesAndHosts devices_and_hosts( num_replicas, llvm::SmallVector<TPUDeviceAndHost, 8>( num_cores_per_replica, TPUDeviceAndHost())); xla::DeviceAssignment device_assignment(num_replicas, num_cores_per_replica); int pos = 0; for (int replica = 0; replica < num_replicas; ++replica) { for (int logical_core = 0; logical_core < num_cores_per_replica; ++logical_core) { int x = device_assignment_attr[pos++]; int y = device_assignment_attr[pos++]; int z = device_assignment_attr[pos++]; int core = device_assignment_attr[pos++]; if (DeviceCoordinateOutOfBound(x, y, z, core, bound_x, bound_y, bound_z, bound_core)) return DeviceCoordinateErrorMsg(kDeviceAssignmentAttr, x, y, z, core, bound_x, bound_y, bound_z, bound_core); TaskAndDevice task_and_device = topology(x, y, z, core); const int task = task_and_device.task; const int device = task_and_device.device; if (task == -1 || device == -1) return absl::InvalidArgumentError(absl::StrCat( "no TPU device found for '", kDeviceAssignmentAttr, "' device coordinate (", x, ", ", y, ", ", z, ", ", core, ")")); const int device_id = location_to_id(x, y, z, core); if (used_device_ids[device_id]) return DuplicateCoordinateErrorMsg(kDeviceAssignmentAttr, x, y, z, core); used_device_ids[device_id] = true; device_assignment(replica, logical_core) = device_id; auto& device_and_host = devices_and_hosts[replica][logical_core]; const auto& tpu_device = tpu_devices[task][device]; device_and_host.device = DeviceNameUtils::ParsedNameToString(tpu_device); device_and_host.host = *GetCPUHostDeviceForTPUDevice(tpu_device, devices); } } xla::DeviceAssignmentProto device_assignment_proto; device_assignment.Serialize(&device_assignment_proto); return std::pair<TPUDevicesAndHosts, xla::DeviceAssignmentProto>( std::move(devices_and_hosts), std::move(device_assignment_proto)); } mlir::LogicalResult GetTopology(mlir::tf_device::ClusterOp cluster, std::string& topology) { mlir::StringAttr topology_attr = cluster->getAttrOfType<mlir::StringAttr>(tensorflow::kTopologyAttr); if (topology_attr) { topology = topology_attr.getValue(); return mlir::success(); } else { return cluster.emitOpError( llvm::formatv("requires attribute '{0}'", tensorflow::kTopologyAttr) .str()); } } mlir::LogicalResult GetDeviceAssignmentCoordinates( mlir::tf_device::ClusterOp cluster, llvm::SmallVector<int64_t, 8>& device_coordinates) { mlir::ArrayAttr device_assignment_attr = cluster->getAttrOfType<mlir::ArrayAttr>( tensorflow::kDeviceAssignmentAttr); if (!device_assignment_attr) return cluster.emitOpError(llvm::formatv("requires attribute '{0}'", tensorflow::kDeviceAssignmentAttr) .str()); if (absl::StatusOr<llvm::SmallVector<int64_t, 8>> fetched_device_coordinates = tensorflow::GetDeviceCoordinates(device_assignment_attr); fetched_device_coordinates.ok()) { device_coordinates = *fetched_device_coordinates; return mlir::success(); } else { return cluster.emitError() << "error in fetching tpu device coordinates: " << fetched_device_coordinates.status().message(); } } int GetNumCoresPerReplica(mlir::tf_device::ClusterOp cluster) { mlir::IntegerAttr num_cores_per_replica_attr = cluster->getAttrOfType<mlir::IntegerAttr>(kNumCoresPerReplicaAttr); if (num_cores_per_replica_attr) { return num_cores_per_replica_attr.getInt(); } else { return 1; } } mlir::LogicalResult GetTPUDevicesAndHostsNotReplicated( mlir::TF::RuntimeDevices devices, mlir::tf_device::ClusterOp cluster, tensorflow::TPUDevicesAndHosts& devices_and_hosts) { std::string topology; if (failed(GetTopology(cluster, topology))) { return mlir::failure(); } llvm::SmallVector<int64_t, 8> device_coordinates; if (failed(GetDeviceAssignmentCoordinates(cluster, device_coordinates))) { return mlir::failure(); } if (absl::StatusOr<TPUDeviceAssignment> tpu_device_assignment = tensorflow::GetTPUCompilationAndExecutionDevices( devices.device_names(), 1, GetNumCoresPerReplica(cluster), topology, device_coordinates); tpu_device_assignment.ok()) { devices_and_hosts = tpu_device_assignment->tpu_devices; return mlir::success(); } else { return cluster.emitError() << "error in fetching TPU compilation/execution devices: " << tpu_device_assignment.status().message(); } } mlir::LogicalResult GetHostDeviceOCInTPUPipeline( mlir::TF::RuntimeDevices devices, mlir::tf_device::ClusterOp cluster, std::string& host_device) { mlir::tf_device::ReplicateOp replicate = cluster->getParentOfType<mlir::tf_device::ReplicateOp>(); if (replicate) { host_device = GetDeviceAliasForHostOfLogicalCore(0); return mlir::success(); } tensorflow::TPUDevicesAndHosts devices_and_hosts; if (failed(GetTPUDevicesAndHostsNotReplicated(devices, cluster, devices_and_hosts))) { return mlir::failure(); } else { host_device = devices_and_hosts[0][0].host; return mlir::success(); } } llvm::SmallVector<std::string, 8> GetTPUToHostMapReplicated( mlir::tf_device::ClusterOp cluster) { int num_cores_per_replica = GetNumCoresPerReplica(cluster); llvm::SmallVector<std::string, 8> core_to_host; core_to_host.reserve(num_cores_per_replica); for (int core = 0; core < num_cores_per_replica; ++core) { core_to_host.push_back(GetDeviceAliasForHostOfLogicalCore(core)); } return core_to_host; } mlir::LogicalResult GetTPUToHostMapNotReplicated( mlir::TF::RuntimeDevices devices, mlir::tf_device::ClusterOp cluster, llvm::SmallVector<std::string, 8>& core_to_host) { tensorflow::TPUDevicesAndHosts devices_and_hosts; if (failed(GetTPUDevicesAndHostsNotReplicated(devices, cluster, devices_and_hosts))) { return mlir::failure(); } core_to_host.reserve(GetNumCoresPerReplica(cluster)); for (const auto& device_and_host : devices_and_hosts[0]) { core_to_host.push_back(device_and_host.host); } return mlir::success(); } mlir::LogicalResult GetTPUToHostMap( mlir::TF::RuntimeDevices devices, mlir::tf_device::ClusterOp cluster, llvm::SmallVector<std::string, 8>& core_to_host) { if (cluster->getParentOfType<mlir::tf_device::ReplicateOp>()) { core_to_host = GetTPUToHostMapReplicated(cluster); return mlir::success(); } return GetTPUToHostMapNotReplicated(devices, cluster, core_to_host); } } absl::StatusOr<llvm::SmallVector<int64_t, 8>> GetDeviceCoordinates( mlir::ArrayAttr device_assignment_attr) { llvm::SmallVector<int64_t, 8> device_coordinates; device_coordinates.reserve(device_assignment_attr.size()); for (auto device_coordinate_and_idx : llvm::enumerate(device_assignment_attr)) { auto device_coordinate = mlir::dyn_cast<mlir::IntegerAttr>(device_coordinate_and_idx.value()); if (!device_coordinate) return absl::InvalidArgumentError( llvm::formatv(kBadIntArrayElementMsg, kDeviceAssignmentAttr, device_coordinate_and_idx.index()) .str()); device_coordinates.push_back(device_coordinate.getInt()); } return device_coordinates; } absl::StatusOr<xla::DeviceAssignmentProto> GetXlaDeviceAssignmentProto( llvm::StringRef topology_attr, int num_replicas, int num_cores_per_replica, llvm::ArrayRef<int64_t> device_assignment_attr) { tpu::TopologyProto topology_proto; if (!topology_proto.ParseFromString(topology_attr.str())) return absl::InvalidArgumentError(absl::StrCat( "failed to parse '", kTopologyAttr, "' attribute to TopologyProto")); if (topology_proto.mesh_shape_size() < 4) { return absl::InvalidArgumentError(absl::StrCat( "The size of mesh_shape must be larger than or equal to 4, but got ", topology_proto.mesh_shape_size())); } const int bound_x = topology_proto.mesh_shape(0); const int bound_y = topology_proto.mesh_shape(1); const int bound_z = topology_proto.mesh_shape(2); const int bound_core = topology_proto.mesh_shape(3); const int expected_device_assignment_size = num_replicas * num_cores_per_replica * kTPUTopologyRank; const int device_assignment_attr_size = device_assignment_attr.size(); if (device_assignment_attr_size != expected_device_assignment_size) return absl::InvalidArgumentError(absl::StrCat( "length of '", kDeviceAssignmentAttr, "' must be 'num_replicas' * 'num_cores_per_replica' * ", kTPUTopologyRank, " (", num_replicas, " * ", num_cores_per_replica, " * ", kTPUTopologyRank, "), got ", device_assignment_attr.size())); auto location_to_id = [&](int x, int y, int z, int core) { return (x + bound_x * (y + bound_y * z)) * bound_core + core; }; std::vector<bool> used_device_ids(bound_x * bound_y * bound_z * bound_core, false); xla::DeviceAssignment device_assignment(num_replicas, num_cores_per_replica); int pos = 0; for (int replica = 0; replica < num_replicas; ++replica) { for (int logical_core = 0; logical_core < num_cores_per_replica; ++logical_core) { int x = device_assignment_attr[pos++]; int y = device_assignment_attr[pos++]; int z = device_assignment_attr[pos++]; int core = device_assignment_attr[pos++]; if (DeviceCoordinateOutOfBound(x, y, z, core, bound_x, bound_y, bound_z, bound_core)) return DeviceCoordinateErrorMsg(kDeviceAssignmentAttr, x, y, z, core, bound_x, bound_y, bound_z, bound_core); const int device_id = location_to_id(x, y, z, core); if (used_device_ids[device_id]) return DuplicateCoordinateErrorMsg(kDeviceAssignmentAttr, x, y, z, core); used_device_ids[device_id] = true; device_assignment(replica, logical_core) = device_id; } } xla::DeviceAssignmentProto device_assignment_proto; device_assignment.Serialize(&device_assignment_proto); return device_assignment_proto; } absl::StatusOr<TPUDeviceAssignment> GetTPUCompilationAndExecutionDevices( ParsedDevices devices, int num_replicas, int num_cores_per_replica, llvm::StringRef topology_attr, llvm::ArrayRef<int64_t> device_assignment_attr) { TF_ASSIGN_OR_RETURN(auto system_devices, GetTPUSystemDevices(devices)); TF_ASSIGN_OR_RETURN(auto tpu_devices, GetTPUDevices(devices, system_devices)); std::string compilation_device = GetTPUCompilationDevice(system_devices[0]); if (topology_attr.empty()) { if (!device_assignment_attr.empty()) return absl::InvalidArgumentError( absl::StrCat("'", kDeviceAssignmentAttr, "' must not be set when '", kTopologyAttr, "' is not set")); TF_ASSIGN_OR_RETURN( auto execution_devices, GetFullMeshTPUExecutionDeviceAssignment( num_replicas, num_cores_per_replica, tpu_devices, devices)); return TPUDeviceAssignment(compilation_device, std::move(execution_devices)); } TF_ASSIGN_OR_RETURN(auto devices_and_ids, GetGeneralTPUExecutionDeviceAssignment( num_replicas, num_cores_per_replica, tpu_devices, devices, topology_attr, device_assignment_attr)); return TPUDeviceAssignment(compilation_device, std::move(devices_and_ids.first), std::move(devices_and_ids.second)); } std::string GetDeviceAliasForLogicalCore(const int core_index) { return llvm::formatv("{0}_{1}", kTPUReplicatedCore, core_index).str(); } std::string GetDeviceAliasForHostOfLogicalCore(const int core_index) { return llvm::formatv("{0}_{1}", kTPUReplicatedHost, core_index).str(); } bool HasModelParallelism(mlir::tf_device::ClusterOp cluster) { mlir::IntegerAttr num_cores_per_replica_attr = cluster->getAttrOfType<mlir::IntegerAttr>( tensorflow::kNumCoresPerReplicaAttr); if (!num_cores_per_replica_attr) return false; return num_cores_per_replica_attr.getInt() != 1; } bool HasTPUDevice(const mlir::TF::RuntimeDevices& devices) { for (const auto& device : devices.device_names()) { if (device.has_type && device.type == "TPU") return true; } return false; } mlir::LogicalResult GetHostDeviceOutsideCompilationInGenericPipeline( mlir::TF::RuntimeDevices devices, std::string* host_device) { for (const auto& device : devices.device_names()) { if (device.has_type && device.type == "CPU" && device.id == 0) { if (!host_device->empty()) { LOG(WARNING) << "Found multiple CPU:0 host devices"; if (device.job == "chief") *host_device = tensorflow::DeviceNameUtils::ParsedNameToString(device); continue; } *host_device = tensorflow::DeviceNameUtils::ParsedNameToString(device); } } if (host_device->empty()) { LOG(ERROR) << "Did not find any CPU:0 host devices"; return mlir::failure(); } return mlir::success(); } mlir::LogicalResult GetHostDeviceOutsideComputation( mlir::TF::RuntimeDevices devices, mlir::tf_device::ClusterOp cluster, std::string* host_device) { if (HasTPUDevice(devices) || cluster->getParentOfType<mlir::tf_device::ReplicateOp>()) { return GetHostDeviceOCInTPUPipeline(devices, cluster, *host_device); } else { return GetHostDeviceOutsideCompilationInGenericPipeline(devices, host_device); } } bool IsTPUDevice(llvm::StringRef device) { ParsedDevice parsed_device; if (!DeviceNameUtils::ParseFullName(mlir::StringRefToView(device), &parsed_device)) return false; return parsed_device.has_type && parsed_device.type == kDeviceTPU; } bool IsTPUReplicatedCore(llvm::StringRef device) { ParsedDevice parsed_device; if (!DeviceNameUtils::ParseFullName(mlir::StringRefToView(device), &parsed_device)) return false; return parsed_device.has_type && parsed_device.type == kTPUReplicatedCore; } bool TypeValidForXLA(const mlir::Type& type) { const mlir::Type elem = getElementTypeOrSelf(type); return !mlir::isa<mlir::TF::ResourceType>(elem) && !mlir::isa<mlir::TF::StringType>(elem); } mlir::LogicalResult GetDeviceToHostMap( mlir::tf_device::ClusterOp cluster, llvm::SmallVector<std::string, 8>& core_to_host) { mlir::TF::RuntimeDevices devices; if (failed(tensorflow::GetDevicesFromOp( cluster->getParentOfType<mlir::ModuleOp>(), &devices))) { return mlir::failure(); } if (tensorflow::HasTPUDevice(devices) || cluster->getParentOfType<mlir::tf_device::ReplicateOp>()) { return GetTPUToHostMap(devices, cluster, core_to_host); } std::string host_device; if (failed(tensorflow::GetHostDeviceOutsideCompilationInGenericPipeline( devices, &host_device))) { return mlir::failure(); } else { core_to_host.push_back(host_device); return mlir::success(); } } mlir::LogicalResult GetNonReplicatedTPU0(mlir::Operation* op, std::string* tpu0_device) { mlir::ModuleOp moduleOp = op->getParentOfType<mlir::ModuleOp>(); mlir::TF::RuntimeDevices devices; if (failed(tensorflow::GetDevicesFromOp(moduleOp, &devices))) return moduleOp.emitOpError() << "No available devices."; llvm::ArrayRef<tensorflow::DeviceNameUtils::ParsedName> device_names = devices.device_names(); auto status_or_system_devices = GetTPUSystemDevices(device_names); if (!status_or_system_devices.ok()) return moduleOp.emitOpError() << "error in fetching TPU_SYSTEM devices: " << status_or_system_devices.status().message(); auto status_or_tpu_devices = GetTPUDevices(device_names, status_or_system_devices.value()); if (!status_or_tpu_devices.ok()) return moduleOp.emitOpError() << "error in fetching TPU devices: " << status_or_tpu_devices.status().message(); *tpu0_device = DeviceNameUtils::ParsedNameToString(status_or_tpu_devices.value()[0][0]); return mlir::success(); } mlir::LogicalResult GetNonReplicatedCPU0(mlir::Operation* op, std::string* cpu0_device) { std::string tpu0_device; if (failed(tensorflow::GetNonReplicatedTPU0(op, &tpu0_device))) return mlir::failure(); auto status = tensorflow::DeviceNameUtils::DeviceNameToCpuDeviceName( tpu0_device, cpu0_device); if (!status.ok()) return op->emitError() << "error in converting TPU0 to CPU0. The TPU device is " << tpu0_device; return mlir::success(); } }
#include "tensorflow/compiler/mlir/tensorflow/utils/tpu_rewrite_device_util.h" #include <cstdint> #include <optional> #include <string> #include <tuple> #include <vector> #include "llvm/ADT/StringRef.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/utils/device_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/serialize_mlir_module_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/tpu/topology.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { namespace { absl::StatusOr<mlir::OwningOpRef<mlir::ModuleOp>> GetMlirModuleFromString( llvm::StringRef string, mlir::MLIRContext* context) { mlir::DialectRegistry mlir_registry; RegisterAllTensorFlowDialects(mlir_registry); context->appendDialectRegistry(mlir_registry); mlir::OwningOpRef<mlir::ModuleOp> mlir_module; auto status = tensorflow::DeserializeMlirModule(string, context, &mlir_module); if (!status.ok()) { return status; } return mlir_module; } using Device = DeviceNameUtils::ParsedName; bool DeviceNamesToParsedNames(llvm::ArrayRef<std::string> device_names, llvm::SmallVectorImpl<Device>* parsed_devices) { parsed_devices->reserve(device_names.size()); for (const auto& device_name : device_names) { Device parsed_name; if (!DeviceNameUtils::ParseFullName(device_name, &parsed_name)) return false; parsed_devices->push_back(parsed_name); } return true; } using DeviceNames = llvm::SmallVector<std::string, 8>; struct ParameterizedDeviceSetTest : ::testing::TestWithParam<std::tuple<DeviceNames, std::string>> {}; TEST_P(ParameterizedDeviceSetTest, BadDeviceSet) { llvm::SmallVector<Device, 8> devices; ASSERT_TRUE(DeviceNamesToParsedNames(std::get<0>(GetParam()), &devices)); std::string topology_attr; std::vector<int64_t> device_assignment_attr; auto status_or = GetTPUCompilationAndExecutionDevices( devices, 1, 1, topology_attr, device_assignment_attr); ASSERT_FALSE(status_or.ok()); EXPECT_EQ(status_or.status().message(), std::get<1>(GetParam())); } INSTANTIATE_TEST_SUITE_P( BadDeviceSet, ParameterizedDeviceSetTest, ::testing::Values( std::make_tuple<DeviceNames, std::string>( {"/job:localhost/replica:0/task:0/device:CPU:0"}, "no TPU_SYSTEM devices found"), std::make_tuple<DeviceNames, std::string>( {"/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0", "/job:worker/replica:0/task:0/device:TPU_SYSTEM:0"}, "found TPU_SYSTEM devices with conflicting jobs 'localhost' and " "'worker'"), std::make_tuple<DeviceNames, std::string>( {"/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0", "/job:localhost/replica:1/task:0/device:TPU_SYSTEM:0"}, "found TPU_SYSTEM devices with conflicting replicas '0' and '1'"), std::make_tuple<DeviceNames, std::string>( {"/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0", "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:TPU:1", "/job:localhost/replica:0/task:1/device:TPU_SYSTEM:0", "/job:localhost/replica:0/task:1/device:TPU:0"}, "expected the number of TPU devices per host to be 2, got 1"))); struct ParameterizedMetadataTest : ::testing::TestWithParam<std::tuple<int, int, std::string, std::vector<int64_t>, std::string>> { }; TEST_P(ParameterizedMetadataTest, BadMetadata) { llvm::SmallVector<Device, 8> devices; ASSERT_TRUE(DeviceNamesToParsedNames( {"/job:worker/replica:0/task:0/device:TPU_SYSTEM:0", "/job:worker/replica:0/task:0/device:TPU:0", "/job:worker/replica:0/task:0/device:CPU:0", "/job:worker/replica:0/task:1/device:TPU_SYSTEM:0", "/job:worker/replica:0/task:1/device:TPU:0", "/job:worker/replica:0/task:1/device:CPU:0"}, &devices)); std::string compilation_device; llvm::SmallVector<llvm::SmallVector<std::string, 8>, 8> execution_devices; std::optional<xla::DeviceAssignmentProto> xla_device_assignment; auto status_or = GetTPUCompilationAndExecutionDevices( devices, std::get<0>(GetParam()), std::get<1>(GetParam()), std::get<2>(GetParam()), std::get<3>(GetParam())); ASSERT_FALSE(status_or.ok()); EXPECT_EQ(status_or.status().message(), std::get<4>(GetParam())); } std::string TopologyWithMeshShape(llvm::ArrayRef<int> mesh_shape) { tpu::TopologyProto topology_proto; for (int mesh_dim : mesh_shape) topology_proto.add_mesh_shape(mesh_dim); return topology_proto.SerializeAsString(); } std::string TopologyWithMeshShapeAndTasks(llvm::ArrayRef<int> mesh_shape, int num_tasks, int num_tpu_devices_per_task) { tpu::TopologyProto topology_proto; for (int mesh_dim : mesh_shape) topology_proto.add_mesh_shape(mesh_dim); topology_proto.set_num_tasks(num_tasks); topology_proto.set_num_tpu_devices_per_task(num_tpu_devices_per_task); return topology_proto.SerializeAsString(); } std::string TopologyWithDeviceCoordinates( llvm::ArrayRef<int> device_coordinates) { tpu::TopologyProto topology_proto; topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(1); topology_proto.set_num_tasks(2); topology_proto.set_num_tpu_devices_per_task(1); for (int device_coordinate : device_coordinates) topology_proto.add_device_coordinates(device_coordinate); return topology_proto.SerializeAsString(); } INSTANTIATE_TEST_SUITE_P( BadFullMeshMetadata, ParameterizedMetadataTest, ::testing::Values( std::make_tuple( 2, 1, "", std::vector<int64_t>{0}, "'device_assignment' must not be set when 'topology' is not set"), std::make_tuple(8, 1, "", std::vector<int64_t>(), "'num_replicas' must be equal to 1 or 2, got 8"), std::make_tuple(2, 2, "", std::vector<int64_t>(), "'num_cores_per_replica' must be equal to 1, got 2"))); INSTANTIATE_TEST_SUITE_P( BadGeneralTopologyMetadata, ParameterizedMetadataTest, ::testing::Values( std::make_tuple( 2, 1, "BAD_TOPOLOGY", std::vector<int64_t>(), "failed to parse 'topology' attribute to TopologyProto"), std::make_tuple(4, 2, TopologyWithMeshShape({0}), std::vector<int64_t>(), "'topology' 'mesh_shape' must be rank 4, got rank 1"), std::make_tuple( 2, 1, TopologyWithMeshShape({2, 0, 1, 2}), std::vector<int64_t>(), "'topology' 'mesh_shape' dimension 1 must be positive, got 0"), std::make_tuple(2, 1, TopologyWithMeshShapeAndTasks({1, 1, 1, 1}, 1, 1), std::vector<int64_t>(), "number of tasks from available TPU devices must be " "'num_tasks' in 'topology' (1), got 2"), std::make_tuple(2, 1, TopologyWithMeshShapeAndTasks({1, 1, 1, 1}, 2, 2), std::vector<int64_t>(), "number of TPU devices available per task must be " "'num_tpu_devices_per_task' in 'topology' (2), got 1"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({}), std::vector<int64_t>(), "length of 'device_coordinates' in 'topology' must be 'num_tasks' " "* 'num_tpus_per_task' * 4 (2 * 1 * 4), got 0"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({-1, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>(), "device coordinate (-1, 0, 0, 0) in 'topology' is outside " "of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({2, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>(), "device coordinate (2, 0, 0, 0) in 'topology' is outside " "of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, -1, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>(), "device coordinate (0, -1, 0, 0) in 'topology' is outside " "of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 1, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>(), "device coordinate (0, 1, 0, 0) in 'topology' is outside " "of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, -1, 1, 0, 0, 0}), std::vector<int64_t>(), "device coordinate (0, 0, 0, -1) in 'topology' is outside " "of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 1, 1, 0, 0, 0}), std::vector<int64_t>(), "device coordinate (0, 0, 0, 1) in 'topology' is outside " "of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 0, 0, 0, 0}), std::vector<int64_t>(), "'topology' has duplicate device coordinate (0, 0, 0, 0)"))); INSTANTIATE_TEST_SUITE_P( BadGeneralDeviceAssignmentMetadata, ParameterizedMetadataTest, ::testing::Values( std::make_tuple(2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>(), "length of 'device_assignment' must be 'num_replicas' " "* 'num_cores_per_replica' * 4 (2 * 1 * 4), got 0"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{-1, 0, 0, 0, 0, 0, 0, 0}, "device coordinate (-1, 0, 0, 0) in 'device_assignment' " "is outside of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{2, 0, 0, 0, 0, 0, 0, 0}, "device coordinate (2, 0, 0, 0) in 'device_assignment' is " "outside of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{0, -1, 0, 0, 0, 0, 0, 0}, "device coordinate (0, -1, 0, 0) in 'device_assignment' " "is outside of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{0, 1, 0, 0, 0, 0, 0, 0}, "device coordinate (0, 1, 0, 0) in 'device_assignment' is " "outside of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{0, 0, 0, -1, 0, 0, 0, 0}, "device coordinate (0, 0, 0, -1) in 'device_assignment' " "is outside of mesh shape (2, 1, 1, 1)"), std::make_tuple( 2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{0, 0, 0, 1, 0, 0, 0, 0}, "device coordinate (0, 0, 0, 1) in 'device_assignment' is " "outside of mesh shape (2, 1, 1, 1)"), std::make_tuple(2, 1, TopologyWithDeviceCoordinates({0, 0, 0, 0, 1, 0, 0, 0}), std::vector<int64_t>{0, 0, 0, 0, 0, 0, 0, 0}, "'device_assignment' has duplicate device coordinate " "(0, 0, 0, 0)"))); std::vector<std::string> MakeDeviceSet(int num_tasks, int num_devices_per_task) { std::vector<std::string> devices{ "/job:localhost/replica:0/task:0/device:CPU:0"}; devices.reserve(num_tasks * num_devices_per_task + num_tasks + 1); for (int task = 0; task < num_tasks; ++task) { devices.push_back( llvm::formatv("/job:worker/replica:0/task:{0}/device:CPU:0", task) .str()); devices.push_back( llvm::formatv("/job:worker/replica:0/task:{0}/device:TPU_SYSTEM:0", task) .str()); for (int device = 0; device < num_devices_per_task; ++device) devices.push_back( llvm::formatv("/job:worker/replica:0/task:{0}/device:TPU:{1}", task, device) .str()); } return devices; } TEST(TPURewriteDeviceUtilTest, BadGeneralDeviceAssignmentMetadataMissingDevice) { tpu::TopologyProto topology_proto; { topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(1); topology_proto.set_num_tasks(1); topology_proto.set_num_tpu_devices_per_task(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); } std::string topology_attr = topology_proto.SerializeAsString(); std::vector<int64_t> device_assignment_attr{1, 0, 0, 0}; llvm::SmallVector<Device, 8> devices; std::vector<std::string> device_names = MakeDeviceSet(1, 1); ASSERT_TRUE(DeviceNamesToParsedNames(device_names, &devices)); auto status_or = GetTPUCompilationAndExecutionDevices( devices, 1, 1, topology_attr, device_assignment_attr); ASSERT_FALSE(status_or.ok()); EXPECT_EQ(status_or.status().message(), "no TPU device found for 'device_assignment' device coordinate (1, " "0, 0, 0)"); } TEST(TPURewriteDeviceUtilTest, ValidFullMeshDeviceAssignment) { llvm::SmallVector<Device, 8> devices; std::vector<std::string> device_names = MakeDeviceSet(2, 4); ASSERT_TRUE(DeviceNamesToParsedNames(device_names, &devices)); std::string topology_attr; std::vector<int64_t> device_assignment_attr; auto status_or = GetTPUCompilationAndExecutionDevices( devices, 8, 1, topology_attr, device_assignment_attr); TF_ASSERT_OK(status_or.status()); const auto& tpu_device_assignment = status_or.value(); EXPECT_EQ(tpu_device_assignment.compilation_device, "/job:worker/replica:0/task:0/device:CPU:0"); const auto& tpu_devices = tpu_device_assignment.tpu_devices; ASSERT_EQ(tpu_devices.size(), 8); for (const auto& replica_tpu_devices : tpu_devices) ASSERT_EQ(replica_tpu_devices.size(), 1); EXPECT_EQ(tpu_devices[0][0].device, "/job:worker/replica:0/task:0/device:TPU:0"); EXPECT_EQ(tpu_devices[0][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[1][0].device, "/job:worker/replica:0/task:0/device:TPU:1"); EXPECT_EQ(tpu_devices[1][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[2][0].device, "/job:worker/replica:0/task:0/device:TPU:2"); EXPECT_EQ(tpu_devices[2][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[3][0].device, "/job:worker/replica:0/task:0/device:TPU:3"); EXPECT_EQ(tpu_devices[3][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[4][0].device, "/job:worker/replica:0/task:1/device:TPU:0"); EXPECT_EQ(tpu_devices[4][0].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[5][0].device, "/job:worker/replica:0/task:1/device:TPU:1"); EXPECT_EQ(tpu_devices[5][0].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[6][0].device, "/job:worker/replica:0/task:1/device:TPU:2"); EXPECT_EQ(tpu_devices[6][0].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[7][0].device, "/job:worker/replica:0/task:1/device:TPU:3"); EXPECT_EQ(tpu_devices[7][0].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_FALSE(tpu_device_assignment.xla_device_assignment.has_value()); } TEST(TPURewriteDeviceUtilTest, ValidGeneralDeviceAssignmentMesh2x2x2) { tpu::TopologyProto topology_proto; { topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(2); topology_proto.set_num_tasks(2); topology_proto.set_num_tpu_devices_per_task(4); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); } std::string topology_attr = topology_proto.SerializeAsString(); std::vector<int64_t> device_assignment_attr{0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1}; llvm::SmallVector<Device, 8> devices; std::vector<std::string> device_names = MakeDeviceSet(2, 4); ASSERT_TRUE(DeviceNamesToParsedNames(device_names, &devices)); auto status_or = GetTPUCompilationAndExecutionDevices( devices, 4, 2, topology_attr, device_assignment_attr); TF_ASSERT_OK(status_or.status()); const auto& tpu_device_assignment = status_or.value(); EXPECT_EQ(tpu_device_assignment.compilation_device, "/job:worker/replica:0/task:0/device:CPU:0"); const auto& tpu_devices = tpu_device_assignment.tpu_devices; ASSERT_EQ(tpu_devices.size(), 4); for (const auto& replica_tpu_devices : tpu_devices) ASSERT_EQ(replica_tpu_devices.size(), 2); EXPECT_EQ(tpu_devices[0][0].device, "/job:worker/replica:0/task:0/device:TPU:0"); EXPECT_EQ(tpu_devices[0][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[0][1].device, "/job:worker/replica:0/task:1/device:TPU:3"); EXPECT_EQ(tpu_devices[0][1].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[1][0].device, "/job:worker/replica:0/task:0/device:TPU:1"); EXPECT_EQ(tpu_devices[1][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[1][1].device, "/job:worker/replica:0/task:1/device:TPU:2"); EXPECT_EQ(tpu_devices[1][1].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[2][0].device, "/job:worker/replica:0/task:0/device:TPU:3"); EXPECT_EQ(tpu_devices[2][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[2][1].device, "/job:worker/replica:0/task:1/device:TPU:0"); EXPECT_EQ(tpu_devices[2][1].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[3][0].device, "/job:worker/replica:0/task:0/device:TPU:2"); EXPECT_EQ(tpu_devices[3][0].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[3][1].device, "/job:worker/replica:0/task:1/device:TPU:1"); EXPECT_EQ(tpu_devices[3][1].host, "/job:worker/replica:0/task:1/device:CPU:0"); auto& xla_device_assignment = tpu_device_assignment.xla_device_assignment; ASSERT_TRUE(xla_device_assignment.has_value()); EXPECT_EQ(xla_device_assignment->replica_count(), 4); EXPECT_EQ(xla_device_assignment->computation_count(), 2); ASSERT_EQ(xla_device_assignment->computation_devices_size(), 2); const auto& computation_device_0 = xla_device_assignment->computation_devices(0); ASSERT_EQ(computation_device_0.replica_device_ids_size(), 4); const auto& computation_device_1 = xla_device_assignment->computation_devices(1); ASSERT_EQ(computation_device_1.replica_device_ids_size(), 4); EXPECT_EQ(computation_device_0.replica_device_ids(0), 0); EXPECT_EQ(computation_device_0.replica_device_ids(1), 4); EXPECT_EQ(computation_device_0.replica_device_ids(2), 2); EXPECT_EQ(computation_device_0.replica_device_ids(3), 6); EXPECT_EQ(computation_device_1.replica_device_ids(0), 1); EXPECT_EQ(computation_device_1.replica_device_ids(1), 5); EXPECT_EQ(computation_device_1.replica_device_ids(2), 3); EXPECT_EQ(computation_device_1.replica_device_ids(3), 7); } TEST(TPURewriteDeviceUtilTest, ValidXLADeviceAssignmentMesh1x2x1x3) { tpu::TopologyProto topology_proto; { topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(3); topology_proto.set_num_tasks(3); topology_proto.set_num_tpu_devices_per_task(2); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(2); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(2); } std::string topology_attr = topology_proto.SerializeAsString(); std::vector<int64_t> device_assignment_attr{ 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0}; llvm::SmallVector<Device, 8> devices; std::vector<std::string> device_names = MakeDeviceSet(3, 2); ASSERT_TRUE(DeviceNamesToParsedNames(device_names, &devices)); auto xla_device_assignment = GetXlaDeviceAssignmentProto( topology_attr, 2, 3, device_assignment_attr); TF_ASSERT_OK(xla_device_assignment.status()); EXPECT_EQ(xla_device_assignment->replica_count(), 2); EXPECT_EQ(xla_device_assignment->computation_count(), 3); ASSERT_EQ(xla_device_assignment->computation_devices_size(), 3); const auto& computation_device_0 = xla_device_assignment->computation_devices(0); ASSERT_EQ(computation_device_0.replica_device_ids_size(), 2); const auto& computation_device_1 = xla_device_assignment->computation_devices(1); ASSERT_EQ(computation_device_1.replica_device_ids_size(), 2); const auto& computation_device_2 = xla_device_assignment->computation_devices(2); ASSERT_EQ(computation_device_2.replica_device_ids_size(), 2); EXPECT_EQ(computation_device_0.replica_device_ids(0), 1); EXPECT_EQ(computation_device_0.replica_device_ids(1), 5); EXPECT_EQ(computation_device_1.replica_device_ids(0), 4); EXPECT_EQ(computation_device_1.replica_device_ids(1), 0); EXPECT_EQ(computation_device_2.replica_device_ids(0), 2); EXPECT_EQ(computation_device_2.replica_device_ids(1), 3); } TEST(TPURewriteDeviceUtilTest, InvalidXLADeviceAssignmentMesh1x2x1x3) { tpu::TopologyProto topology_proto; { topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(3); topology_proto.set_num_tasks(3); topology_proto.set_num_tpu_devices_per_task(2); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(2); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(2); } std::string topology_attr = topology_proto.SerializeAsString(); std::vector<int64_t> device_assignment_attr{ 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0}; llvm::SmallVector<Device, 8> devices; std::vector<std::string> device_names = MakeDeviceSet(3, 2); ASSERT_TRUE(DeviceNamesToParsedNames(device_names, &devices)); auto xla_device_assignment = GetXlaDeviceAssignmentProto( topology_attr, 2, 2, device_assignment_attr); EXPECT_THAT(xla_device_assignment, testing::StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr( "must be 'num_replicas' * 'num_cores_per_replica' * "))); } TEST(TPURewriteDeviceUtilTest, ValidGeneralDeviceAssignmentMesh1x2x1x3) { tpu::TopologyProto topology_proto; { topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(2); topology_proto.add_mesh_shape(1); topology_proto.add_mesh_shape(3); topology_proto.set_num_tasks(3); topology_proto.set_num_tpu_devices_per_task(2); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(2); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(1); topology_proto.add_device_coordinates(0); topology_proto.add_device_coordinates(2); } std::string topology_attr = topology_proto.SerializeAsString(); std::vector<int64_t> device_assignment_attr{ 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0}; llvm::SmallVector<Device, 8> devices; std::vector<std::string> device_names = MakeDeviceSet(3, 2); ASSERT_TRUE(DeviceNamesToParsedNames(device_names, &devices)); auto status_or = GetTPUCompilationAndExecutionDevices( devices, 2, 3, topology_attr, device_assignment_attr); TF_ASSERT_OK(status_or.status()); auto& tpu_device_assignment = status_or.value(); EXPECT_EQ(tpu_device_assignment.compilation_device, "/job:worker/replica:0/task:0/device:CPU:0"); auto& tpu_devices = tpu_device_assignment.tpu_devices; ASSERT_EQ(tpu_devices.size(), 2); for (const auto& replica_tpu_devices : tpu_devices) ASSERT_EQ(replica_tpu_devices.size(), 3); EXPECT_EQ(tpu_devices[0][0].device, "/job:worker/replica:0/task:1/device:TPU:1"); EXPECT_EQ(tpu_devices[0][0].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[0][1].device, "/job:worker/replica:0/task:1/device:TPU:0"); EXPECT_EQ(tpu_devices[0][1].host, "/job:worker/replica:0/task:1/device:CPU:0"); EXPECT_EQ(tpu_devices[0][2].device, "/job:worker/replica:0/task:2/device:TPU:0"); EXPECT_EQ(tpu_devices[0][2].host, "/job:worker/replica:0/task:2/device:CPU:0"); EXPECT_EQ(tpu_devices[1][0].device, "/job:worker/replica:0/task:2/device:TPU:1"); EXPECT_EQ(tpu_devices[1][0].host, "/job:worker/replica:0/task:2/device:CPU:0"); EXPECT_EQ(tpu_devices[1][1].device, "/job:worker/replica:0/task:0/device:TPU:0"); EXPECT_EQ(tpu_devices[1][1].host, "/job:worker/replica:0/task:0/device:CPU:0"); EXPECT_EQ(tpu_devices[1][2].device, "/job:worker/replica:0/task:0/device:TPU:1"); EXPECT_EQ(tpu_devices[1][2].host, "/job:worker/replica:0/task:0/device:CPU:0"); auto& xla_device_assignment = tpu_device_assignment.xla_device_assignment; ASSERT_TRUE(xla_device_assignment.has_value()); EXPECT_EQ(xla_device_assignment->replica_count(), 2); EXPECT_EQ(xla_device_assignment->computation_count(), 3); ASSERT_EQ(xla_device_assignment->computation_devices_size(), 3); const auto& computation_device_0 = xla_device_assignment->computation_devices(0); ASSERT_EQ(computation_device_0.replica_device_ids_size(), 2); const auto& computation_device_1 = xla_device_assignment->computation_devices(1); ASSERT_EQ(computation_device_1.replica_device_ids_size(), 2); const auto& computation_device_2 = xla_device_assignment->computation_devices(2); ASSERT_EQ(computation_device_2.replica_device_ids_size(), 2); EXPECT_EQ(computation_device_0.replica_device_ids(0), 1); EXPECT_EQ(computation_device_0.replica_device_ids(1), 5); EXPECT_EQ(computation_device_1.replica_device_ids(0), 4); EXPECT_EQ(computation_device_1.replica_device_ids(1), 0); EXPECT_EQ(computation_device_2.replica_device_ids(0), 2); EXPECT_EQ(computation_device_2.replica_device_ids(1), 3); } TEST(TPURewriteDeviceUtilTest, TestGetDeviceCoordinates) { mlir::MLIRContext context; mlir::Builder builder(&context); auto device_assignment_attr = builder.getI64ArrayAttr({1, 2, 3}); auto status_or_device_coodinates = GetDeviceCoordinates(device_assignment_attr); ASSERT_TRUE(status_or_device_coodinates.ok()); auto device_coordinates = status_or_device_coodinates.value(); EXPECT_EQ(device_coordinates[0], 1); EXPECT_EQ(device_coordinates[1], 2); EXPECT_EQ(device_coordinates[2], 3); } TEST(TPURewriteDeviceUtilTest, TestInvalidAttrForDeviceAssignmentDisallowed) { mlir::MLIRContext context; mlir::Builder builder(&context); auto device_assignment_attr = builder.getF32ArrayAttr({1.0, 2.0, 3.0}); auto status_or_device_coodinates = GetDeviceCoordinates(device_assignment_attr); ASSERT_TRUE(!status_or_device_coodinates.ok()); EXPECT_EQ(status_or_device_coodinates.status().message(), "bad 'device_assignment' attribute at index 0, not an int"); } TEST(TPURewriteDeviceUtilTest, TestHasModelParallelismFalse) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); EXPECT_FALSE(HasModelParallelism(cluster)); } TEST(TPURewriteDeviceUtilTest, TestHasModelParallelismTrue) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 5)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); EXPECT_TRUE(HasModelParallelism(cluster)); } TEST(TPURewriteDeviceUtilTest, TestHasModelParallelismFalseMissingCoresPerReplicaAttr) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); EXPECT_FALSE(HasModelParallelism(cluster)); } TEST(TPURewriteDeviceUtilTest, TestGetHostFailNumCoresPerReplicaMissingAttributes) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); mlir::TF::RuntimeDevices devices; std::string host_device; EXPECT_TRUE(mlir::failed( GetHostDeviceOutsideComputation(devices, cluster, &host_device))); } TEST(TPURewriteDeviceUtilTest, TestGetHostFailDeviceMissingAttributes) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); mlir::TF::RuntimeDevices devices; std::string host_device; EXPECT_TRUE(mlir::failed( GetHostDeviceOutsideComputation(devices, cluster, &host_device))); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceFailMissingTopology) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); mlir::TF::RuntimeDevices runtime_devices; std::string host_device; EXPECT_TRUE(mlir::failed( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceFailMissingDeviceAssignment) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); mlir::TF::RuntimeDevices runtime_devices; std::string host_device; EXPECT_TRUE(mlir::failed( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceFailBadDeviceAssignment) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); cluster->setAttr(kDeviceAssignmentAttr, builder.getStrArrayAttr(llvm::ArrayRef<llvm::StringRef>( {"bad_device_assigment"}))); mlir::TF::RuntimeDevices runtime_devices; std::string host_device; EXPECT_TRUE(mlir::failed( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceFailBadDeviceName) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); (*module_ref) ->setAttr("tf.devices", builder.getStrArrayAttr( llvm::ArrayRef<llvm::StringRef>({"bad_device_name"}))); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); mlir::TF::RuntimeDevices runtime_devices; (void)GetDevicesFromOp(*module_ref, &runtime_devices); std::string host_device; EXPECT_TRUE(mlir::failed( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceTPUReplicate) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); llvm::SmallDenseMap<llvm::StringRef, llvm::SmallVector<llvm::StringRef, 4>> devices; auto replicate = builder.create<mlir::tf_device::ReplicateOp>( mlir::UnknownLoc::get(&context), 2, devices, llvm::ArrayRef<std::pair<mlir::ValueRange, mlir::Type>>{}, mlir::ValueRange{}, mlir::TypeRange{}); builder.setInsertionPoint(&replicate.getBody().front(), replicate.getBody().front().begin()); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); mlir::TF::RuntimeDevices runtime_devices; std::string host_device; EXPECT_TRUE(mlir::succeeded( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); EXPECT_EQ(host_device, GetDeviceAliasForHostOfLogicalCore(0)); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceNotReplicated) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); (*module_ref) ->setAttr("tf.devices", builder.getStrArrayAttr(llvm::ArrayRef<llvm::StringRef>( {"/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0", "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:CPU:0", "/job:worker/replica:0/task:0/device:CPU:0"}))); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); cluster->setAttr(kNumCoresPerReplicaAttr, builder.getIntegerAttr(builder.getIntegerType(64), 1)); cluster->setAttr(kTopologyAttr, builder.getStringAttr("")); cluster->setAttr(kDeviceAssignmentAttr, builder.getArrayAttr({})); mlir::TF::RuntimeDevices runtime_devices; (void)GetDevicesFromOp(*module_ref, &runtime_devices); std::string host_device; EXPECT_TRUE(mlir::succeeded( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); EXPECT_EQ(host_device, "/job:localhost/replica:0/task:0/device:CPU:0"); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceInGenericPipeline) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); (*module_ref) ->setAttr("tf.devices", builder.getStrArrayAttr(llvm::ArrayRef<llvm::StringRef>( {"/job:localhost/replica:0/task:0/device:CPU:0"}))); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); mlir::TF::RuntimeDevices runtime_devices; (void)GetDevicesFromOp(*module_ref, &runtime_devices); std::string host_device; EXPECT_TRUE(mlir::succeeded( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); EXPECT_EQ(host_device, "/job:localhost/replica:0/task:0/device:CPU:0"); } TEST(TPURewriteDeviceUtilTest, TestGetHostDeviceInGenericPipelineMultiCPUs) { mlir::MLIRContext context; context.loadDialect<mlir::tf_device::TensorFlowDeviceDialect>(); mlir::OwningOpRef<mlir::ModuleOp> module_ref = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context)); mlir::OpBuilder builder(module_ref->getBodyRegion()); (*module_ref) ->setAttr("tf.devices", builder.getStrArrayAttr(llvm::ArrayRef<llvm::StringRef>( {"/job:chief/replica:0/task:0/device:CPU:0", "/job:ps/replica:0/task:0/device:CPU:0", "/job:ps/replica:0/task:1/device:CPU:0", "/job:worker/replica:0/task:2/device:CPU:0"}))); llvm::SmallVector<mlir::Type, 8> result_types; auto cluster = builder.create<mlir::tf_device::ClusterOp>( mlir::UnknownLoc::get(&context), result_types); mlir::TF::RuntimeDevices runtime_devices; (void)GetDevicesFromOp(*module_ref, &runtime_devices); std::string host_device; EXPECT_TRUE(mlir::succeeded( GetHostDeviceOutsideComputation(runtime_devices, cluster, &host_device))); EXPECT_EQ(host_device, "/job:chief/replica:0/task:0/device:CPU:0"); } TEST(TPURewriteDeviceUtilTest, TestIsTPUDevice) { EXPECT_TRUE(IsTPUDevice("/job:localhost/replica:0/task:0/device:TPU:0")); EXPECT_FALSE(IsTPUDevice("/job:localhost/replica:0/task:0/device:CPU:0")); EXPECT_FALSE(IsTPUDevice("INVALID_DEVICE")); } TEST(TPURewriteDeviceUtilTest, TestDeviceToHostMapBadTopology) { static const char* const module_str = R"( module attributes {tf.devices = {"/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:TPU:1", "/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0"}} { func.func @main() -> () { "tf_device.cluster"() ({ tf_device.return }) {device_assignment = [0, 0, 0, 0, 0, 0, 0, 1], num_cores_per_replica = 2 : i64} : () -> () func.return } })"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, GetMlirModuleFromString(module_str, &context)); mlir::tf_device::ClusterOp cluster; module->walk( [&](mlir::tf_device::ClusterOp descendant) { cluster = descendant; }); llvm::SmallVector<std::string, 8> core_to_host; EXPECT_TRUE(mlir::failed(GetDeviceToHostMap(cluster, core_to_host))); } TEST(TPURewriteDeviceUtilTest, TestDeviceToHostMapBadDeviceAssignment) { static const char* const module_str = R"( module attributes {tf.devices = {"/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:TPU:1", "/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0"}} { func.func @main() -> () { "tf_device.cluster"() ({ tf_device.return }) {num_cores_per_replica = 2 : i64, topology = "\0A\04\01\01\01\02\10\01\18\02\22\08\00\00\00\00\00\00\00\01*\02\08\01"} : () -> () func.return } })"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, GetMlirModuleFromString(module_str, &context)); mlir::tf_device::ClusterOp cluster; module->walk( [&](mlir::tf_device::ClusterOp descendant) { cluster = descendant; }); llvm::SmallVector<std::string, 8> core_to_host; EXPECT_TRUE(mlir::failed(GetDeviceToHostMap(cluster, core_to_host))); } TEST(TPURewriteDeviceUtilTest, TestDeviceToHostMapNotReplicated) { static const char* const module_str = R"( module attributes {tf.devices = {"/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:TPU:1", "/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0"}} { func.func @main() -> () { "tf_device.cluster"() ({ tf_device.return }) {device_assignment = [0, 0, 0, 0, 0, 0, 0, 1], num_cores_per_replica = 2 : i64, topology = "\0A\04\01\01\01\02\10\01\18\02\22\08\00\00\00\00\00\00\00\01*\02\08\01"} : () -> () func.return } })"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, GetMlirModuleFromString(module_str, &context)); mlir::tf_device::ClusterOp cluster; module->walk( [&](mlir::tf_device::ClusterOp descendant) { cluster = descendant; }); llvm::SmallVector<std::string, 8> core_to_host; EXPECT_TRUE(mlir::succeeded(GetDeviceToHostMap(cluster, core_to_host))); EXPECT_EQ(core_to_host.size(), 2); EXPECT_EQ(core_to_host[0], "/job:localhost/replica:0/task:0/device:CPU:0"); EXPECT_EQ(core_to_host[1], "/job:localhost/replica:0/task:0/device:CPU:0"); } TEST(TPURewriteDeviceUtilTest, TestDeviceToHostMapReplicated) { static const char* const module_str = R"( module attributes {tf.devices = {"/job:localhost/replica:0/task:0/device:CPU:0", "/job:localhost/replica:0/task:0/device:TPU:0", "/job:localhost/replica:0/task:0/device:TPU:1", "/job:localhost/replica:0/task:0/device:TPU:2", "/job:localhost/replica:0/task:0/device:TPU:3", "/job:localhost/replica:0/task:0/device:TPU:4", "/job:localhost/replica:0/task:0/device:TPU:5", "/job:localhost/replica:0/task:0/device:TPU:6", "/job:localhost/replica:0/task:0/device:TPU:7", "/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0"}} { func.func @main() -> () { tf_device.replicate() {n = 4 : i32} { "tf_device.cluster"() ({ tf_device.return }) {device_assignment = [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1], num_cores_per_replica = 2 : i64, topology = "\0A\04\02\02\01\02\10\01\18\08\22 \00\00\00\00\00\00\00\01\01\00\00\00\01\00\00\01\00\01\00\00\00\01\00\01\01\01\00\00\01\01\00\01*\02\08\01"} : () -> () tf_device.return } func.return } })"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, GetMlirModuleFromString(module_str, &context)); mlir::tf_device::ClusterOp cluster; module->walk( [&](mlir::tf_device::ClusterOp descendant) { cluster = descendant; }); llvm::SmallVector<std::string, 8> core_to_host; EXPECT_TRUE(mlir::succeeded(GetDeviceToHostMap(cluster, core_to_host))); EXPECT_EQ(core_to_host.size(), 2); EXPECT_EQ(core_to_host[0], "TPU_REPLICATED_HOST_0"); EXPECT_EQ(core_to_host[1], "TPU_REPLICATED_HOST_1"); } TEST(TPURewriteDeviceUtilTest, TestDeviceToHostMapCPU) { static const char* const module_str = R"( module attributes {tf.devices = {"/job:localhost/replica:0/task:0/device:CPU:0"}} { func.func @main() -> () { "tf_device.cluster"() ({ tf_device.return }) {} : () -> () func.return } })"; mlir::MLIRContext context; TF_ASSERT_OK_AND_ASSIGN(mlir::OwningOpRef<mlir::ModuleOp> module, GetMlirModuleFromString(module_str, &context)); mlir::tf_device::ClusterOp cluster; module->walk( [&](mlir::tf_device::ClusterOp descendant) { cluster = descendant; }); llvm::SmallVector<std::string, 8> core_to_host; EXPECT_TRUE(mlir::succeeded(GetDeviceToHostMap(cluster, core_to_host))); EXPECT_EQ(core_to_host.size(), 1); EXPECT_EQ(core_to_host[0], "/job:localhost/replica:0/task:0/device:CPU:0"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/tpu_rewrite_device_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/tpu_rewrite_device_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
85a652e9-c99d-43a7-9418-8569ec44a1db
cpp
tensorflow/tensorflow
rotate
tensorflow/lite/experimental/ml_adjacent/algo/rotate.cc
tensorflow/lite/experimental/ml_adjacent/algo/rotate_test.cc
#include <cmath> #include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace rotate { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline float DegreesToRadians(int angle) { return angle * M_PI / 180; } void ComputeNewSize(dim_t src_width, dim_t src_height, int angle, dim_t& dst_width, dim_t& dst_height) { dst_width = src_width; dst_height = src_height; if (angle % 90 == 0) { if (angle == 90 || angle == 270) { dst_width = src_height; dst_height = src_width; } } else { const float angle_rad = DegreesToRadians(angle); const float cos_angle = std::cos(angle_rad); const float sin_angle = std::sin(angle_rad); const int edge_x = src_width / 2; const int edge_y = src_height / 2; for (int y : {-edge_y, edge_y}) { for (int x : {-edge_x, edge_x}) { const int x_transformed = static_cast<int>(std::floor(cos_angle * x + sin_angle * y)); const int y_transformed = static_cast<int>(std::floor(-sin_angle * x + cos_angle * y)); if (std::abs(x_transformed) > dst_width / 2) dst_width = 2 * std::abs(x_transformed); if (std::abs(y_transformed) > dst_height / 2) dst_height = 2 * std::abs(y_transformed); } } } } void Rotate90(int batches, int input_height, int input_width, int depth, int output_height, int output_width, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = 0; y < input_height; ++y) { const float* src_ptr_row = src_data_prt + y * src_row_stride; for (int x = 0; x < input_width; ++x) { float* dst_ptr_row = dst_data_prt + x * dst_row_stride; const float* src_ptr_pixel = src_ptr_row + x * pixel_stride; float* dst_pixel_ptr = dst_ptr_row + (output_width - y - 1) * pixel_stride; for (int c = 0; c < depth; ++c) { *dst_pixel_ptr++ = *src_ptr_pixel++; } } } } } void Rotate180(int batches, int input_height, int input_width, int depth, int output_height, int output_width, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int dst_pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = 0; y < input_height; ++y) { const float* src_ptr_row = src_data_prt + y * src_row_stride; float* dst_ptr_row = dst_data_prt + (output_height - y - 1) * dst_row_stride + (output_width - 1) * dst_pixel_stride; for (int x = 0; x < input_width; ++x) { for (int c = 0; c < depth; ++c) { dst_ptr_row[c] = src_ptr_row[c]; } dst_ptr_row -= depth; src_ptr_row += depth; } } } } void Rotate270(int batches, int input_height, int input_width, int depth, int output_height, int output_width, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = 0; y < input_height; ++y) { const float* src_ptr_row = src_data_prt + y * src_row_stride; for (int x = 0; x < input_width; ++x) { float* dst_ptr_row = dst_data_prt + (output_height - x - 1) * dst_row_stride; const float* src_ptr_pixel = src_ptr_row + x * pixel_stride; float* dst_pixel_ptr = dst_ptr_row + y * pixel_stride; for (int c = 0; c < depth; ++c) { *dst_pixel_ptr++ = *src_ptr_pixel++; } } } } } void RotateGeneric(int batches, int input_height, int input_width, int depth, int output_height, int output_width, int angle, const float* input_data, float* output_data) { TFLITE_DCHECK(input_data != nullptr); TFLITE_DCHECK(output_data != nullptr); const int pixel_stride = depth; const int src_row_stride = input_width * depth; const int dst_row_stride = output_width * depth; const int src_batch_stride = src_row_stride * input_height; const int dst_batch_stride = dst_row_stride * output_height; memset( output_data, 0, batches * output_width * output_height * depth * sizeof(output_data[0])); const float angle_rad = DegreesToRadians(angle); const float cos_angle = std::cos(angle_rad); const float sin_angle = std::sin(angle_rad); for (int b = 0; b < batches; ++b) { const float* src_data_prt = input_data + b * src_batch_stride; float* dst_data_prt = output_data + b * dst_batch_stride; for (int y = -output_height / 2; y < output_height / 2; ++y) { for (int x = -output_width / 2; x < output_width / 2; ++x) { const float x_transformed = cos_angle * x + sin_angle * y; const float y_transformed = -sin_angle * x + cos_angle * y; const int x_transformed_integer = static_cast<int>(std::floor(x_transformed)); const int y_transformed_integer = static_cast<int>(std::floor(y_transformed)); const int x_src_integer = x_transformed_integer + input_width / 2; const int y_src_integer = y_transformed_integer + input_height / 2; const int x0 = x_src_integer; const int x1 = x_src_integer + 1; const int y0 = y_src_integer; const int y1 = y_src_integer + 1; if (x0 < 0 || x0 >= input_width) continue; if (x1 < 0 || x1 >= input_width) continue; if (y0 < 0 || y0 >= input_height) continue; if (y1 < 0 || y1 >= input_height) continue; const float x_dist = x_transformed - x_transformed_integer; const float y_dist = y_transformed - y_transformed_integer; const float one_minus_x_dist = 1 - x_dist; const float one_minus_y_dist = 1 - y_dist; const float* src_ptr_row0 = src_data_prt + y0 * src_row_stride; const float* src_ptr_row1 = src_data_prt + y1 * src_row_stride; float* dst_row_ptr = dst_data_prt + (y + output_height / 2) * dst_row_stride; const float* src_ptr_pixel00 = src_ptr_row0 + x0 * pixel_stride; const float* src_ptr_pixel10 = src_ptr_row0 + x1 * pixel_stride; const float* src_ptr_pixel01 = src_ptr_row1 + x0 * pixel_stride; const float* src_ptr_pixel11 = src_ptr_row1 + x1 * pixel_stride; float* dst_pixel_ptr = dst_row_ptr + (x + output_width / 2) * pixel_stride; for (int c = 0; c < depth; ++c) { const float v00 = *src_ptr_pixel00++; const float v01 = *src_ptr_pixel01++; const float v10 = *src_ptr_pixel10++; const float v11 = *src_ptr_pixel11++; *dst_pixel_ptr++ = (v10 * one_minus_y_dist + v11 * y_dist) * x_dist + (v00 * one_minus_y_dist + v01 * y_dist) * one_minus_x_dist; } } } } } void ComputeRotate(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 2); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t img_num_channels = img->Dims()[3]; const DataRef* angle = inputs[1]; const int angle_data = *reinterpret_cast<const int*>(angle->Data()); MutableDataRef* output = outputs[0]; dim_t new_width = 0; dim_t new_height = 0; ComputeNewSize(img_width, img_height, angle_data, new_width, new_height); output->Resize({img_num_batches, new_height, new_width, img_num_channels}); float* output_data = reinterpret_cast<float*>(output->Data()); if (angle_data == 90) { Rotate90(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, img_data, output_data); return; } if (angle_data == 180) { Rotate180(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, img_data, output_data); return; } if (angle_data == 270) { Rotate270(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, img_data, output_data); return; } RotateGeneric(img_num_batches, img_height, img_width, img_num_channels, new_height, new_width, angle_data, img_data, output_data); } } const Algo* Impl_Rotate() { static const Algo rotate = {&ComputeRotate, nullptr}; return &rotate; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/rotate.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace rotate { namespace { struct RotateTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const int angle; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class RotateTest : public ::testing::TestWithParam<RotateTestParams> {}; TEST_P(RotateTest, FloatPixelType) { constexpr float kAbsError = 0.01f; const RotateTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef angle(etype_t::i32); angle.Resize({1}); ASSERT_EQ(angle.Bytes(), sizeof(int)); std::memcpy(angle.Data(), &params.angle, angle.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* rotate = Impl_Rotate(); rotate->process({&img, &angle}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( RotateTests, RotateTest, testing::ValuesIn({ RotateTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, 90, {31, 21, 11, 32, 22, 12, 33, 23, 13}, {1, 3, 3, 1}}, RotateTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, 180, {33, 32, 31, 23, 22, 21, 13, 12, 11}, {1, 3, 3, 1}}, RotateTestParams{{1, 3, 3, 1}, {11, 12, 13, 21, 22, 23, 31, 32, 33}, 270, {13, 23, 33, 12, 22, 32, 11, 21, 31}, {1, 3, 3, 1}}, RotateTestParams{{1, 8, 8, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, -45, { 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.59f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.78f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.23f, 0.97f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.00f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.54f, 0.00f, 0.12f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.59f, 0.83f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, }, {1, 12, 12, 1}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rotate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rotate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b31f75b4-d54b-467f-9dff-33d3a865e33d
cpp
google/quiche
quic_tag
quiche/quic/core/quic_tag.cc
quiche/quic/core/quic_tag_test.cc
#include "quiche/quic/core/quic_tag.h" #include <algorithm> #include <string> #include <vector> #include "absl/base/macros.h" #include "absl/strings/ascii.h" #include "absl/strings/escaping.h" #include "absl/strings/str_split.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/common/quiche_text_utils.h" namespace quic { bool FindMutualQuicTag(const QuicTagVector& our_tags, const QuicTagVector& their_tags, QuicTag* out_result, size_t* out_index) { const size_t num_our_tags = our_tags.size(); const size_t num_their_tags = their_tags.size(); for (size_t i = 0; i < num_our_tags; i++) { for (size_t j = 0; j < num_their_tags; j++) { if (our_tags[i] == their_tags[j]) { *out_result = our_tags[i]; if (out_index != nullptr) { *out_index = j; } return true; } } } return false; } std::string QuicTagToString(QuicTag tag) { if (tag == 0) { return "0"; } char chars[sizeof tag]; bool ascii = true; const QuicTag orig_tag = tag; for (size_t i = 0; i < ABSL_ARRAYSIZE(chars); i++) { chars[i] = static_cast<char>(tag); if ((chars[i] == 0 || chars[i] == '\xff') && i == ABSL_ARRAYSIZE(chars) - 1) { chars[i] = ' '; } if (!absl::ascii_isprint(static_cast<unsigned char>(chars[i]))) { ascii = false; break; } tag >>= 8; } if (ascii) { return std::string(chars, sizeof(chars)); } return absl::BytesToHexString(absl::string_view( reinterpret_cast<const char*>(&orig_tag), sizeof(orig_tag))); } uint32_t MakeQuicTag(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { return static_cast<uint32_t>(a) | static_cast<uint32_t>(b) << 8 | static_cast<uint32_t>(c) << 16 | static_cast<uint32_t>(d) << 24; } bool ContainsQuicTag(const QuicTagVector& tag_vector, QuicTag tag) { return std::find(tag_vector.begin(), tag_vector.end(), tag) != tag_vector.end(); } QuicTag ParseQuicTag(absl::string_view tag_string) { quiche::QuicheTextUtils::RemoveLeadingAndTrailingWhitespace(&tag_string); std::string tag_bytes; if (tag_string.length() == 8) { tag_bytes = absl::HexStringToBytes(tag_string); tag_string = tag_bytes; } QuicTag tag = 0; for (auto it = tag_string.rbegin(); it != tag_string.rend(); ++it) { unsigned char token_char = static_cast<unsigned char>(*it); tag <<= 8; tag |= token_char; } return tag; } QuicTagVector ParseQuicTagVector(absl::string_view tags_string) { QuicTagVector tag_vector; quiche::QuicheTextUtils::RemoveLeadingAndTrailingWhitespace(&tags_string); if (!tags_string.empty()) { std::vector<absl::string_view> tag_strings = absl::StrSplit(tags_string, ','); for (absl::string_view tag_string : tag_strings) { tag_vector.push_back(ParseQuicTag(tag_string)); } } return tag_vector; } }
#include "quiche/quic/core/quic_tag.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { class QuicTagTest : public QuicTest {}; TEST_F(QuicTagTest, TagToString) { EXPECT_EQ("SCFG", QuicTagToString(kSCFG)); EXPECT_EQ("SNO ", QuicTagToString(kServerNonceTag)); EXPECT_EQ("CRT ", QuicTagToString(kCertificateTag)); EXPECT_EQ("CHLO", QuicTagToString(MakeQuicTag('C', 'H', 'L', 'O'))); EXPECT_EQ("43484c1f", QuicTagToString(MakeQuicTag('C', 'H', 'L', '\x1f'))); } TEST_F(QuicTagTest, MakeQuicTag) { QuicTag tag = MakeQuicTag('A', 'B', 'C', 'D'); char bytes[4]; memcpy(bytes, &tag, 4); EXPECT_EQ('A', bytes[0]); EXPECT_EQ('B', bytes[1]); EXPECT_EQ('C', bytes[2]); EXPECT_EQ('D', bytes[3]); } TEST_F(QuicTagTest, ParseQuicTag) { QuicTag tag_abcd = MakeQuicTag('A', 'B', 'C', 'D'); EXPECT_EQ(ParseQuicTag("ABCD"), tag_abcd); EXPECT_EQ(ParseQuicTag("ABCDE"), tag_abcd); QuicTag tag_efgh = MakeQuicTag('E', 'F', 'G', 'H'); EXPECT_EQ(ParseQuicTag("EFGH"), tag_efgh); QuicTag tag_ijk = MakeQuicTag('I', 'J', 'K', 0); EXPECT_EQ(ParseQuicTag("IJK"), tag_ijk); QuicTag tag_l = MakeQuicTag('L', 0, 0, 0); EXPECT_EQ(ParseQuicTag("L"), tag_l); QuicTag tag_hex = MakeQuicTag('M', 'N', 'O', static_cast<char>(255)); EXPECT_EQ(ParseQuicTag("4d4e4fff"), tag_hex); EXPECT_EQ(ParseQuicTag("4D4E4FFF"), tag_hex); QuicTag tag_with_numbers = MakeQuicTag('P', 'Q', '1', '2'); EXPECT_EQ(ParseQuicTag("PQ12"), tag_with_numbers); QuicTag tag_with_custom_chars = MakeQuicTag('r', '$', '_', '7'); EXPECT_EQ(ParseQuicTag("r$_7"), tag_with_custom_chars); QuicTag tag_zero = 0; EXPECT_EQ(ParseQuicTag(""), tag_zero); QuicTagVector tag_vector; EXPECT_EQ(ParseQuicTagVector(""), tag_vector); EXPECT_EQ(ParseQuicTagVector(" "), tag_vector); tag_vector.push_back(tag_abcd); EXPECT_EQ(ParseQuicTagVector("ABCD"), tag_vector); tag_vector.push_back(tag_efgh); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH"), tag_vector); tag_vector.push_back(tag_ijk); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH,IJK"), tag_vector); tag_vector.push_back(tag_l); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH,IJK,L"), tag_vector); tag_vector.push_back(tag_hex); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH,IJK,L,4d4e4fff"), tag_vector); tag_vector.push_back(tag_with_numbers); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH,IJK,L,4d4e4fff,PQ12"), tag_vector); tag_vector.push_back(tag_with_custom_chars); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH,IJK,L,4d4e4fff,PQ12,r$_7"), tag_vector); tag_vector.push_back(tag_zero); EXPECT_EQ(ParseQuicTagVector("ABCD,EFGH,IJK,L,4d4e4fff,PQ12,r$_7,"), tag_vector); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_tag.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_tag_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
096bf5ca-4d46-4bb3-b4a0-0aa0eeb250b7
cpp
tensorflow/tensorflow
list_flex_ops
tensorflow/lite/tools/list_flex_ops.cc
tensorflow/lite/tools/list_flex_ops_test.cc
#include "tensorflow/lite/tools/list_flex_ops.h" #include <fstream> #include <sstream> #include <string> #include <vector> #include "flatbuffers/flexbuffers.h" #include "json/json.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/lite/schema/schema_utils.h" #include "tensorflow/lite/util.h" namespace tflite { namespace flex { std::string OpListToJSONString(const OpKernelSet& flex_ops) { Json::Value result(Json::arrayValue); for (const OpKernel& op : flex_ops) { Json::Value op_kernel(Json::arrayValue); op_kernel.append(Json::Value(op.op_name)); op_kernel.append(Json::Value(op.kernel_name)); result.append(op_kernel); } return Json::FastWriter().write(result); } string FindTensorflowKernelClass(tensorflow::NodeDef* node_def) { if (!node_def || node_def->op().empty()) { LOG(FATAL) << "Invalid NodeDef"; } const tensorflow::OpRegistrationData* op_reg_data; auto status = tensorflow::OpRegistry::Global()->LookUp(node_def->op(), &op_reg_data); if (!status.ok()) { LOG(FATAL) << "Op " << node_def->op() << " not found: " << status; } AddDefaultsToNodeDef(op_reg_data->op_def, node_def); tensorflow::DeviceNameUtils::ParsedName parsed_name; if (!tensorflow::DeviceNameUtils::ParseFullName(node_def->device(), &parsed_name)) { LOG(FATAL) << "Failed to parse device from node_def: " << node_def->ShortDebugString(); } string class_name; if (!tensorflow::FindKernelDef( tensorflow::DeviceType(parsed_name.type.c_str()), *node_def, nullptr , &class_name) .ok()) { LOG(FATAL) << "Failed to find kernel class for op: " << node_def->op(); } return class_name; } void AddFlexOpsFromModel(const tflite::Model* model, OpKernelSet* flex_ops) { auto* subgraphs = model->subgraphs(); if (!subgraphs) return; for (int subgraph_index = 0; subgraph_index < subgraphs->size(); ++subgraph_index) { const tflite::SubGraph* subgraph = subgraphs->Get(subgraph_index); auto* operators = subgraph->operators(); auto* opcodes = model->operator_codes(); if (!operators || !opcodes) continue; for (int i = 0; i < operators->size(); ++i) { const tflite::Operator* op = operators->Get(i); const tflite::OperatorCode* opcode = opcodes->Get(op->opcode_index()); if (tflite::GetBuiltinCode(opcode) != tflite::BuiltinOperator_CUSTOM || !tflite::IsFlexOp(opcode->custom_code()->c_str())) { continue; } std::string flex_op_name(opcode->custom_code()->c_str()); std::string tf_op_name = flex_op_name.substr(strlen(tflite::kFlexCustomCodePrefix)); if (op->custom_options_format() != tflite::CustomOptionsFormat_FLEXBUFFERS) { LOG(FATAL) << "Invalid CustomOptionsFormat"; } const flatbuffers::Vector<uint8_t>* custom_opt_bytes = op->custom_options(); if (custom_opt_bytes && custom_opt_bytes->size()) { const flexbuffers::Vector& v = flexbuffers::GetRoot(custom_opt_bytes->data(), custom_opt_bytes->size()) .AsVector(); std::string nodedef_str = v[1].AsString().str(); tensorflow::NodeDef nodedef; if (nodedef_str.empty() || !nodedef.ParseFromString(nodedef_str)) { LOG(FATAL) << "Failed to parse data into a valid NodeDef"; } *nodedef.mutable_device() = "/CPU:0"; std::string kernel_class = FindTensorflowKernelClass(&nodedef); flex_ops->insert({tf_op_name, kernel_class}); } } } } } }
#include "tensorflow/lite/tools/list_flex_ops.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace flex { class FlexOpsListTest : public ::testing::Test { protected: FlexOpsListTest() {} void ReadOps(const string& path) { std::string full_path = tensorflow::GetDataDependencyFilepath(path); auto model = FlatBufferModel::BuildFromFile(full_path.data()); AddFlexOpsFromModel(model->GetModel(), &flex_ops_); output_text_ = OpListToJSONString(flex_ops_); } void ReadOps(const tflite::Model* model) { AddFlexOpsFromModel(model, &flex_ops_); output_text_ = OpListToJSONString(flex_ops_); } std::string output_text_; OpKernelSet flex_ops_; }; TfLiteRegistration* Register_TEST() { static TfLiteRegistration r = {nullptr, nullptr, nullptr, nullptr}; return &r; } std::vector<uint8_t> CreateFlexCustomOptions(std::string nodedef_raw_string) { tensorflow::NodeDef node_def; tensorflow::protobuf::TextFormat::ParseFromString(nodedef_raw_string, &node_def); std::string node_def_str = node_def.SerializeAsString(); auto flex_builder = std::make_unique<flexbuffers::Builder>(); flex_builder->Vector([&]() { flex_builder->String(node_def.op()); flex_builder->String(node_def_str); }); flex_builder->Finish(); return flex_builder->GetBuffer(); } class FlexOpModel : public SingleOpModel { public: FlexOpModel(const std::string& op_name, const TensorData& input1, const TensorData& input2, const TensorType& output, const std::vector<uint8_t>& custom_options) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetCustomOp(op_name, custom_options, Register_TEST); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; TEST_F(FlexOpsListTest, TestModelsNoFlex) { ReadOps("tensorflow/lite/testdata/test_model.bin"); EXPECT_EQ(output_text_, "[]\n"); } TEST_F(FlexOpsListTest, TestBrokenModel) { EXPECT_DEATH_IF_SUPPORTED( ReadOps("tensorflow/lite/testdata/test_model_broken.bin"), ""); } TEST_F(FlexOpsListTest, TestZeroSubgraphs) { ReadOps("tensorflow/lite/testdata/0_subgraphs.bin"); EXPECT_EQ(output_text_, "[]\n"); } TEST_F(FlexOpsListTest, TestFlexAdd) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } TEST_F(FlexOpsListTest, TestTwoModel) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); ReadOps("tensorflow/lite/testdata/softplus_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, " "functor::add<float>>\"],[\"Softplus\",\"SoftplusOp<CPUDevice, " "float>\"]]\n"); } TEST_F(FlexOpsListTest, TestDuplicatedOp) { ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); ReadOps("tensorflow/lite/testdata/multi_add_flex.bin"); EXPECT_EQ(output_text_, "[[\"AddV2\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } TEST_F(FlexOpsListTest, TestInvalidCustomOptions) { std::vector<uint8_t> random_custom_options(20); FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, random_custom_options); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Failed to parse data into a valid NodeDef"); } TEST_F(FlexOpsListTest, TestOpNameEmpty) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; std::string random_fieldname = "random string"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Invalid NodeDef"); } TEST_F(FlexOpsListTest, TestOpNotFound) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"FlexInvalidOp\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Op FlexInvalidOp not found"); } TEST_F(FlexOpsListTest, TestKernelNotFound) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"Add\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_BOOL } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); EXPECT_DEATH_IF_SUPPORTED( ReadOps(tflite::GetModel(max_model.GetModelBuffer())), "Failed to find kernel class for op: Add"); } TEST_F(FlexOpsListTest, TestFlexAddWithSingleOpModel) { std::string nodedef_raw_str = "name: \"node_1\"" "op: \"Add\"" "input: [ \"b\", \"c\" ]" "attr: { key: \"T\" value: { type: DT_FLOAT } }"; FlexOpModel max_model("FlexAdd", {TensorType_FLOAT32, {3, 1, 2, 2}}, {TensorType_FLOAT32, {3, 1, 2, 1}}, TensorType_FLOAT32, CreateFlexCustomOptions(nodedef_raw_str)); ReadOps(tflite::GetModel(max_model.GetModelBuffer())); EXPECT_EQ(output_text_, "[[\"Add\",\"BinaryOp<CPUDevice, functor::add<float>>\"]]\n"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/list_flex_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/list_flex_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d6ca0ddf-27db-4719-896a-96d263713763
cpp
abseil/abseil-cpp
ascii
absl/strings/ascii.cc
absl/strings/ascii_test.cc
#include "absl/strings/ascii.h" #include <climits> #include <cstddef> #include <cstring> #include <string> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/nullability.h" #include "absl/base/optimization.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace ascii_internal { ABSL_DLL const unsigned char kPropertyBits[256] = { 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x68, 0x48, 0x48, 0x48, 0x48, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x28, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x40, }; ABSL_DLL const char kToLower[256] = { '\x00', '\x01', '\x02', '\x03', '\x04', '\x05', '\x06', '\x07', '\x08', '\x09', '\x0a', '\x0b', '\x0c', '\x0d', '\x0e', '\x0f', '\x10', '\x11', '\x12', '\x13', '\x14', '\x15', '\x16', '\x17', '\x18', '\x19', '\x1a', '\x1b', '\x1c', '\x1d', '\x1e', '\x1f', '\x20', '\x21', '\x22', '\x23', '\x24', '\x25', '\x26', '\x27', '\x28', '\x29', '\x2a', '\x2b', '\x2c', '\x2d', '\x2e', '\x2f', '\x30', '\x31', '\x32', '\x33', '\x34', '\x35', '\x36', '\x37', '\x38', '\x39', '\x3a', '\x3b', '\x3c', '\x3d', '\x3e', '\x3f', '\x40', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '\x5b', '\x5c', '\x5d', '\x5e', '\x5f', '\x60', '\x61', '\x62', '\x63', '\x64', '\x65', '\x66', '\x67', '\x68', '\x69', '\x6a', '\x6b', '\x6c', '\x6d', '\x6e', '\x6f', '\x70', '\x71', '\x72', '\x73', '\x74', '\x75', '\x76', '\x77', '\x78', '\x79', '\x7a', '\x7b', '\x7c', '\x7d', '\x7e', '\x7f', '\x80', '\x81', '\x82', '\x83', '\x84', '\x85', '\x86', '\x87', '\x88', '\x89', '\x8a', '\x8b', '\x8c', '\x8d', '\x8e', '\x8f', '\x90', '\x91', '\x92', '\x93', '\x94', '\x95', '\x96', '\x97', '\x98', '\x99', '\x9a', '\x9b', '\x9c', '\x9d', '\x9e', '\x9f', '\xa0', '\xa1', '\xa2', '\xa3', '\xa4', '\xa5', '\xa6', '\xa7', '\xa8', '\xa9', '\xaa', '\xab', '\xac', '\xad', '\xae', '\xaf', '\xb0', '\xb1', '\xb2', '\xb3', '\xb4', '\xb5', '\xb6', '\xb7', '\xb8', '\xb9', '\xba', '\xbb', '\xbc', '\xbd', '\xbe', '\xbf', '\xc0', '\xc1', '\xc2', '\xc3', '\xc4', '\xc5', '\xc6', '\xc7', '\xc8', '\xc9', '\xca', '\xcb', '\xcc', '\xcd', '\xce', '\xcf', '\xd0', '\xd1', '\xd2', '\xd3', '\xd4', '\xd5', '\xd6', '\xd7', '\xd8', '\xd9', '\xda', '\xdb', '\xdc', '\xdd', '\xde', '\xdf', '\xe0', '\xe1', '\xe2', '\xe3', '\xe4', '\xe5', '\xe6', '\xe7', '\xe8', '\xe9', '\xea', '\xeb', '\xec', '\xed', '\xee', '\xef', '\xf0', '\xf1', '\xf2', '\xf3', '\xf4', '\xf5', '\xf6', '\xf7', '\xf8', '\xf9', '\xfa', '\xfb', '\xfc', '\xfd', '\xfe', '\xff', }; ABSL_DLL const char kToUpper[256] = { '\x00', '\x01', '\x02', '\x03', '\x04', '\x05', '\x06', '\x07', '\x08', '\x09', '\x0a', '\x0b', '\x0c', '\x0d', '\x0e', '\x0f', '\x10', '\x11', '\x12', '\x13', '\x14', '\x15', '\x16', '\x17', '\x18', '\x19', '\x1a', '\x1b', '\x1c', '\x1d', '\x1e', '\x1f', '\x20', '\x21', '\x22', '\x23', '\x24', '\x25', '\x26', '\x27', '\x28', '\x29', '\x2a', '\x2b', '\x2c', '\x2d', '\x2e', '\x2f', '\x30', '\x31', '\x32', '\x33', '\x34', '\x35', '\x36', '\x37', '\x38', '\x39', '\x3a', '\x3b', '\x3c', '\x3d', '\x3e', '\x3f', '\x40', '\x41', '\x42', '\x43', '\x44', '\x45', '\x46', '\x47', '\x48', '\x49', '\x4a', '\x4b', '\x4c', '\x4d', '\x4e', '\x4f', '\x50', '\x51', '\x52', '\x53', '\x54', '\x55', '\x56', '\x57', '\x58', '\x59', '\x5a', '\x5b', '\x5c', '\x5d', '\x5e', '\x5f', '\x60', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '\x7b', '\x7c', '\x7d', '\x7e', '\x7f', '\x80', '\x81', '\x82', '\x83', '\x84', '\x85', '\x86', '\x87', '\x88', '\x89', '\x8a', '\x8b', '\x8c', '\x8d', '\x8e', '\x8f', '\x90', '\x91', '\x92', '\x93', '\x94', '\x95', '\x96', '\x97', '\x98', '\x99', '\x9a', '\x9b', '\x9c', '\x9d', '\x9e', '\x9f', '\xa0', '\xa1', '\xa2', '\xa3', '\xa4', '\xa5', '\xa6', '\xa7', '\xa8', '\xa9', '\xaa', '\xab', '\xac', '\xad', '\xae', '\xaf', '\xb0', '\xb1', '\xb2', '\xb3', '\xb4', '\xb5', '\xb6', '\xb7', '\xb8', '\xb9', '\xba', '\xbb', '\xbc', '\xbd', '\xbe', '\xbf', '\xc0', '\xc1', '\xc2', '\xc3', '\xc4', '\xc5', '\xc6', '\xc7', '\xc8', '\xc9', '\xca', '\xcb', '\xcc', '\xcd', '\xce', '\xcf', '\xd0', '\xd1', '\xd2', '\xd3', '\xd4', '\xd5', '\xd6', '\xd7', '\xd8', '\xd9', '\xda', '\xdb', '\xdc', '\xdd', '\xde', '\xdf', '\xe0', '\xe1', '\xe2', '\xe3', '\xe4', '\xe5', '\xe6', '\xe7', '\xe8', '\xe9', '\xea', '\xeb', '\xec', '\xed', '\xee', '\xef', '\xf0', '\xf1', '\xf2', '\xf3', '\xf4', '\xf5', '\xf6', '\xf7', '\xf8', '\xf9', '\xfa', '\xfb', '\xfc', '\xfd', '\xfe', '\xff', }; template <bool ToUpper> constexpr bool AsciiInAZRange(unsigned char c) { constexpr unsigned char sub = (ToUpper ? 'a' : 'A') - SCHAR_MIN; constexpr signed char threshold = SCHAR_MIN + 26; unsigned char u = c - sub; return static_cast<signed char>(u) < threshold; } template <bool ToUpper> ABSL_ATTRIBUTE_ALWAYS_INLINE inline constexpr void AsciiStrCaseFoldImpl( absl::Nonnull<char*> dst, absl::Nullable<const char*> src, size_t size) { constexpr unsigned char kAsciiCaseBitFlip = 'a' ^ 'A'; for (size_t i = 0; i < size; ++i) { unsigned char v = static_cast<unsigned char>(src[i]); v ^= AsciiInAZRange<ToUpper>(v) ? kAsciiCaseBitFlip : 0; dst[i] = static_cast<char>(v); } } constexpr size_t kCaseFoldThreshold = 16; template <bool ToUpper> ABSL_ATTRIBUTE_NOINLINE constexpr void AsciiStrCaseFoldLong( absl::Nonnull<char*> dst, absl::Nullable<const char*> src, size_t size) { ABSL_ASSUME(size >= kCaseFoldThreshold); AsciiStrCaseFoldImpl<ToUpper>(dst, src, size); } template <bool ToUpper> constexpr void AsciiStrCaseFold(absl::Nonnull<char*> dst, absl::Nullable<const char*> src, size_t size) { size < kCaseFoldThreshold ? AsciiStrCaseFoldImpl<ToUpper>(dst, src, size) : AsciiStrCaseFoldLong<ToUpper>(dst, src, size); } void AsciiStrToLower(absl::Nonnull<char*> dst, absl::Nullable<const char*> src, size_t n) { return AsciiStrCaseFold<false>(dst, src, n); } void AsciiStrToUpper(absl::Nonnull<char*> dst, absl::Nullable<const char*> src, size_t n) { return AsciiStrCaseFold<true>(dst, src, n); } static constexpr size_t ValidateAsciiCasefold() { constexpr size_t num_chars = 1 + CHAR_MAX - CHAR_MIN; size_t incorrect_index = 0; char lowered[num_chars] = {}; char uppered[num_chars] = {}; for (unsigned int i = 0; i < num_chars; ++i) { uppered[i] = lowered[i] = static_cast<char>(i); } AsciiStrCaseFold<false>(&lowered[0], &lowered[0], num_chars); AsciiStrCaseFold<true>(&uppered[0], &uppered[0], num_chars); for (size_t i = 0; i < num_chars; ++i) { const char ch = static_cast<char>(i), ch_upper = ('a' <= ch && ch <= 'z' ? 'A' + (ch - 'a') : ch), ch_lower = ('A' <= ch && ch <= 'Z' ? 'a' + (ch - 'A') : ch); if (uppered[i] != ch_upper || lowered[i] != ch_lower) { incorrect_index = i > 0 ? i : num_chars; break; } } return incorrect_index; } static_assert(ValidateAsciiCasefold() == 0, "error in case conversion"); } void AsciiStrToLower(absl::Nonnull<std::string*> s) { char* p = &(*s)[0]; return ascii_internal::AsciiStrCaseFold<false>(p, p, s->size()); } void AsciiStrToUpper(absl::Nonnull<std::string*> s) { char* p = &(*s)[0]; return ascii_internal::AsciiStrCaseFold<true>(p, p, s->size()); } void RemoveExtraAsciiWhitespace(absl::Nonnull<std::string*> str) { auto stripped = StripAsciiWhitespace(*str); if (stripped.empty()) { str->clear(); return; } auto input_it = stripped.begin(); auto input_end = stripped.end(); auto output_it = &(*str)[0]; bool is_ws = false; for (; input_it < input_end; ++input_it) { if (is_ws) { is_ws = absl::ascii_isspace(static_cast<unsigned char>(*input_it)); if (is_ws) --output_it; } else { is_ws = absl::ascii_isspace(static_cast<unsigned char>(*input_it)); } *output_it = *input_it; ++output_it; } str->erase(static_cast<size_t>(output_it - &(*str)[0])); } ABSL_NAMESPACE_END }
#include "absl/strings/ascii.h" #include <algorithm> #include <cctype> #include <clocale> #include <cstring> #include <string> #include "gtest/gtest.h" #include "absl/base/macros.h" #include "absl/strings/string_view.h" namespace { TEST(AsciiIsFoo, All) { for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) EXPECT_TRUE(absl::ascii_isalpha(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isalpha(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if ((c >= '0' && c <= '9')) EXPECT_TRUE(absl::ascii_isdigit(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isdigit(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (absl::ascii_isalpha(c) || absl::ascii_isdigit(c)) EXPECT_TRUE(absl::ascii_isalnum(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isalnum(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i != '\0' && strchr(" \r\n\t\v\f", i)) EXPECT_TRUE(absl::ascii_isspace(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isspace(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i >= 32 && i < 127) EXPECT_TRUE(absl::ascii_isprint(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isprint(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (absl::ascii_isprint(c) && !absl::ascii_isspace(c) && !absl::ascii_isalnum(c)) { EXPECT_TRUE(absl::ascii_ispunct(c)) << ": failed on " << c; } else { EXPECT_TRUE(!absl::ascii_ispunct(c)) << ": failed on " << c; } } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i == ' ' || i == '\t') EXPECT_TRUE(absl::ascii_isblank(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isblank(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i < 32 || i == 127) EXPECT_TRUE(absl::ascii_iscntrl(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_iscntrl(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (absl::ascii_isdigit(c) || (i >= 'A' && i <= 'F') || (i >= 'a' && i <= 'f')) { EXPECT_TRUE(absl::ascii_isxdigit(c)) << ": failed on " << c; } else { EXPECT_TRUE(!absl::ascii_isxdigit(c)) << ": failed on " << c; } } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i > 32 && i < 127) EXPECT_TRUE(absl::ascii_isgraph(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isgraph(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i >= 'A' && i <= 'Z') EXPECT_TRUE(absl::ascii_isupper(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_isupper(c)) << ": failed on " << c; } for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (i >= 'a' && i <= 'z') EXPECT_TRUE(absl::ascii_islower(c)) << ": failed on " << c; else EXPECT_TRUE(!absl::ascii_islower(c)) << ": failed on " << c; } for (unsigned char c = 0; c < 128; c++) { EXPECT_TRUE(absl::ascii_isascii(c)) << ": failed on " << c; } for (int i = 128; i < 256; i++) { const auto c = static_cast<unsigned char>(i); EXPECT_TRUE(!absl::ascii_isascii(c)) << ": failed on " << c; } } TEST(AsciiIsFoo, SameAsIsFoo) { #ifndef __ANDROID__ const char* old_locale = setlocale(LC_CTYPE, "C"); ASSERT_TRUE(old_locale != nullptr); #endif for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); EXPECT_EQ(isalpha(c) != 0, absl::ascii_isalpha(c)) << c; EXPECT_EQ(isdigit(c) != 0, absl::ascii_isdigit(c)) << c; EXPECT_EQ(isalnum(c) != 0, absl::ascii_isalnum(c)) << c; EXPECT_EQ(isspace(c) != 0, absl::ascii_isspace(c)) << c; EXPECT_EQ(ispunct(c) != 0, absl::ascii_ispunct(c)) << c; EXPECT_EQ(isblank(c) != 0, absl::ascii_isblank(c)) << c; EXPECT_EQ(iscntrl(c) != 0, absl::ascii_iscntrl(c)) << c; EXPECT_EQ(isxdigit(c) != 0, absl::ascii_isxdigit(c)) << c; EXPECT_EQ(isprint(c) != 0, absl::ascii_isprint(c)) << c; EXPECT_EQ(isgraph(c) != 0, absl::ascii_isgraph(c)) << c; EXPECT_EQ(isupper(c) != 0, absl::ascii_isupper(c)) << c; EXPECT_EQ(islower(c) != 0, absl::ascii_islower(c)) << c; EXPECT_EQ(isascii(c) != 0, absl::ascii_isascii(c)) << c; } #ifndef __ANDROID__ ASSERT_TRUE(setlocale(LC_CTYPE, old_locale)); #endif } TEST(AsciiToFoo, All) { #ifndef __ANDROID__ const char* old_locale = setlocale(LC_CTYPE, "C"); ASSERT_TRUE(old_locale != nullptr); #endif for (int i = 0; i < 256; i++) { const auto c = static_cast<unsigned char>(i); if (absl::ascii_islower(c)) EXPECT_EQ(absl::ascii_toupper(c), 'A' + (i - 'a')) << c; else EXPECT_EQ(absl::ascii_toupper(c), static_cast<char>(i)) << c; if (absl::ascii_isupper(c)) EXPECT_EQ(absl::ascii_tolower(c), 'a' + (i - 'A')) << c; else EXPECT_EQ(absl::ascii_tolower(c), static_cast<char>(i)) << c; EXPECT_EQ(static_cast<char>(tolower(i)), absl::ascii_tolower(c)) << c; EXPECT_EQ(static_cast<char>(toupper(i)), absl::ascii_toupper(c)) << c; } #ifndef __ANDROID__ ASSERT_TRUE(setlocale(LC_CTYPE, old_locale)); #endif } TEST(AsciiStrTo, Lower) { const char buf[] = "ABCDEF"; const std::string str("GHIJKL"); const std::string str2("MNOPQR"); const absl::string_view sp(str2); const std::string long_str("ABCDEFGHIJKLMNOPQRSTUVWXYZ1!a"); std::string mutable_str("_`?@[{AMNOPQRSTUVWXYZ"); auto fun = []() -> std::string { return "PQRSTU"; }; EXPECT_EQ("abcdef", absl::AsciiStrToLower(buf)); EXPECT_EQ("ghijkl", absl::AsciiStrToLower(str)); EXPECT_EQ("mnopqr", absl::AsciiStrToLower(sp)); EXPECT_EQ("abcdefghijklmnopqrstuvwxyz1!a", absl::AsciiStrToLower(long_str)); EXPECT_EQ("pqrstu", absl::AsciiStrToLower(fun())); EXPECT_EQ("", absl::AsciiStrToLower(absl::string_view())); absl::AsciiStrToLower(&mutable_str); EXPECT_EQ("_`?@[{amnopqrstuvwxyz", mutable_str); char mutable_buf[] = "Mutable"; std::transform(mutable_buf, mutable_buf + strlen(mutable_buf), mutable_buf, absl::ascii_tolower); EXPECT_STREQ("mutable", mutable_buf); } TEST(AsciiStrTo, Upper) { const char buf[] = "abcdef"; const std::string str("ghijkl"); const std::string str2("_`?@[{amnopqrstuvwxyz"); const absl::string_view sp(str2); const std::string long_str("abcdefghijklmnopqrstuvwxyz1!A"); auto fun = []() -> std::string { return "pqrstu"; }; EXPECT_EQ("ABCDEF", absl::AsciiStrToUpper(buf)); EXPECT_EQ("GHIJKL", absl::AsciiStrToUpper(str)); EXPECT_EQ("_`?@[{AMNOPQRSTUVWXYZ", absl::AsciiStrToUpper(sp)); EXPECT_EQ("ABCDEFGHIJKLMNOPQRSTUVWXYZ1!A", absl::AsciiStrToUpper(long_str)); EXPECT_EQ("PQRSTU", absl::AsciiStrToUpper(fun())); EXPECT_EQ("", absl::AsciiStrToUpper(absl::string_view())); char mutable_buf[] = "Mutable"; std::transform(mutable_buf, mutable_buf + strlen(mutable_buf), mutable_buf, absl::ascii_toupper); EXPECT_STREQ("MUTABLE", mutable_buf); } TEST(StripLeadingAsciiWhitespace, FromStringView) { EXPECT_EQ(absl::string_view{}, absl::StripLeadingAsciiWhitespace(absl::string_view{})); EXPECT_EQ("foo", absl::StripLeadingAsciiWhitespace({"foo"})); EXPECT_EQ("foo", absl::StripLeadingAsciiWhitespace({"\t \n\f\r\n\vfoo"})); EXPECT_EQ("foo foo\n ", absl::StripLeadingAsciiWhitespace({"\t \n\f\r\n\vfoo foo\n "})); EXPECT_EQ(absl::string_view{}, absl::StripLeadingAsciiWhitespace( {"\t \n\f\r\v\n\t \n\f\r\v\n"})); } TEST(StripLeadingAsciiWhitespace, InPlace) { std::string str; absl::StripLeadingAsciiWhitespace(&str); EXPECT_EQ("", str); str = "foo"; absl::StripLeadingAsciiWhitespace(&str); EXPECT_EQ("foo", str); str = "\t \n\f\r\n\vfoo"; absl::StripLeadingAsciiWhitespace(&str); EXPECT_EQ("foo", str); str = "\t \n\f\r\n\vfoo foo\n "; absl::StripLeadingAsciiWhitespace(&str); EXPECT_EQ("foo foo\n ", str); str = "\t \n\f\r\v\n\t \n\f\r\v\n"; absl::StripLeadingAsciiWhitespace(&str); EXPECT_EQ(absl::string_view{}, str); } TEST(StripTrailingAsciiWhitespace, FromStringView) { EXPECT_EQ(absl::string_view{}, absl::StripTrailingAsciiWhitespace(absl::string_view{})); EXPECT_EQ("foo", absl::StripTrailingAsciiWhitespace({"foo"})); EXPECT_EQ("foo", absl::StripTrailingAsciiWhitespace({"foo\t \n\f\r\n\v"})); EXPECT_EQ(" \nfoo foo", absl::StripTrailingAsciiWhitespace({" \nfoo foo\t \n\f\r\n\v"})); EXPECT_EQ(absl::string_view{}, absl::StripTrailingAsciiWhitespace( {"\t \n\f\r\v\n\t \n\f\r\v\n"})); } TEST(StripTrailingAsciiWhitespace, InPlace) { std::string str; absl::StripTrailingAsciiWhitespace(&str); EXPECT_EQ("", str); str = "foo"; absl::StripTrailingAsciiWhitespace(&str); EXPECT_EQ("foo", str); str = "foo\t \n\f\r\n\v"; absl::StripTrailingAsciiWhitespace(&str); EXPECT_EQ("foo", str); str = " \nfoo foo\t \n\f\r\n\v"; absl::StripTrailingAsciiWhitespace(&str); EXPECT_EQ(" \nfoo foo", str); str = "\t \n\f\r\v\n\t \n\f\r\v\n"; absl::StripTrailingAsciiWhitespace(&str); EXPECT_EQ(absl::string_view{}, str); } TEST(StripAsciiWhitespace, FromStringView) { EXPECT_EQ(absl::string_view{}, absl::StripAsciiWhitespace(absl::string_view{})); EXPECT_EQ("foo", absl::StripAsciiWhitespace({"foo"})); EXPECT_EQ("foo", absl::StripAsciiWhitespace({"\t \n\f\r\n\vfoo\t \n\f\r\n\v"})); EXPECT_EQ("foo foo", absl::StripAsciiWhitespace( {"\t \n\f\r\n\vfoo foo\t \n\f\r\n\v"})); EXPECT_EQ(absl::string_view{}, absl::StripAsciiWhitespace({"\t \n\f\r\v\n\t \n\f\r\v\n"})); } TEST(StripAsciiWhitespace, InPlace) { std::string str; absl::StripAsciiWhitespace(&str); EXPECT_EQ("", str); str = "foo"; absl::StripAsciiWhitespace(&str); EXPECT_EQ("foo", str); str = "\t \n\f\r\n\vfoo\t \n\f\r\n\v"; absl::StripAsciiWhitespace(&str); EXPECT_EQ("foo", str); str = "\t \n\f\r\n\vfoo foo\t \n\f\r\n\v"; absl::StripAsciiWhitespace(&str); EXPECT_EQ("foo foo", str); str = "\t \n\f\r\v\n\t \n\f\r\v\n"; absl::StripAsciiWhitespace(&str); EXPECT_EQ(absl::string_view{}, str); } TEST(RemoveExtraAsciiWhitespace, InPlace) { const char* inputs[] = {"No extra space", " Leading whitespace", "Trailing whitespace ", " Leading and trailing ", " Whitespace \t in\v middle ", "'Eeeeep! \n Newlines!\n", "nospaces", "", "\n\t a\t\n\nb \t\n"}; const char* outputs[] = { "No extra space", "Leading whitespace", "Trailing whitespace", "Leading and trailing", "Whitespace in middle", "'Eeeeep! Newlines!", "nospaces", "", "a\nb", }; const int NUM_TESTS = ABSL_ARRAYSIZE(inputs); for (int i = 0; i < NUM_TESTS; i++) { std::string s(inputs[i]); absl::RemoveExtraAsciiWhitespace(&s); EXPECT_EQ(outputs[i], s); } } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/ascii.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/ascii_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
baaeddd6-ac64-4c73-9a7a-ec433d59b970
cpp
tensorflow/tensorflow
ctstring
tensorflow/core/platform/ctstring.h
third_party/xla/third_party/tsl/tsl/platform/ctstring_test.cc
#ifndef TENSORFLOW_CORE_PLATFORM_CTSTRING_H_ #define TENSORFLOW_CORE_PLATFORM_CTSTRING_H_ #include "tsl/platform/ctstring.h" #endif
#include "tsl/platform/ctstring.h" #include <memory> #include <string> #include "tsl/platform/ctstring_internal.h" #include "tsl/platform/test.h" static const char kLongString[] = "abcdefghij" "klmnopqrst" "uvwxyz0123" "456789ABCD" "EFGHIKLMNO"; const size_t kLongStringLen = sizeof(kLongString) / sizeof(char) - sizeof(char); TEST(TF_CTStringTest, InitAssignMoveDealloc) { EXPECT_GT(::strlen(kLongString), TF_TString_SmallCapacity); { TF_TString s10, s11, s12; TF_TString_Init(&s10); TF_TString_Init(&s11); TF_TString_Init(&s12); EXPECT_EQ(0, TF_TString_GetSize(&s10)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s10)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s10)); TF_TString_Assign(&s11, &s10); EXPECT_EQ(0, TF_TString_GetSize(&s11)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s11)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s11)); TF_TString_Move(&s12, &s11); EXPECT_EQ(0, TF_TString_GetSize(&s11)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s11)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s11)); EXPECT_EQ(0, TF_TString_GetSize(&s12)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s10)); EXPECT_STREQ("", TF_TString_GetDataPointer(&s12)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s12)); TF_TString_Dealloc(&s10); TF_TString_Dealloc(&s11); TF_TString_Dealloc(&s12); } { TF_TString s20, s21, s22; TF_TString_Init(&s20); TF_TString_Init(&s21); TF_TString_Init(&s22); TF_TString_Copy(&s20, "a", 1); EXPECT_EQ(1, TF_TString_GetSize(&s20)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s20)); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s20)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s20)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s20)); TF_TString_Assign(&s21, &s20); EXPECT_EQ(1, TF_TString_GetSize(&s21)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s21)); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s21)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s21)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s21)); TF_TString_Move(&s22, &s21); EXPECT_EQ(1, TF_TString_GetSize(&s22)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s22)); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s22)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s22)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s22)); TF_TString_Dealloc(&s20); TF_TString_Dealloc(&s21); TF_TString_Dealloc(&s22); } { TF_TString s30, s31; TF_TString_Init(&s30); TF_TString_Init(&s31); size_t s = TF_TString_SmallCapacity - 1; EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_Copy(&s30, kLongString, s); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s30)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s30)); EXPECT_GT(TF_TString_SmallCapacity, TF_TString_GetSize(&s30)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_AppendN(&s30, &kLongString[s++], 1); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s30)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s30)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetSize(&s30)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_AppendN(&s30, &kLongString[s++], 1); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s30)); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetMutableDataPointer(&s30)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s30)); EXPECT_EQ(s, TF_TString_GetSize(&s30)); EXPECT_LT(TF_TString_SmallCapacity, TF_TString_GetSize(&s30)); EXPECT_LT(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s30)); TF_TString_Move(&s31, &s30); EXPECT_STREQ("", TF_TString_GetDataPointer(&s30)); EXPECT_STREQ("", TF_TString_GetMutableDataPointer(&s30)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s30)); EXPECT_EQ(0, TF_TString_GetSize(&s30)); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetDataPointer(&s31)); EXPECT_STREQ(std::string(kLongString, s).data(), TF_TString_GetMutableDataPointer(&s31)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s31)); EXPECT_EQ(s, TF_TString_GetSize(&s31)); EXPECT_LT(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s31)); TF_TString_Dealloc(&s30); TF_TString_Dealloc(&s31); } { const char kStr[] = "abcdef"; const char kStrLen = sizeof(kStr) / sizeof(char) - sizeof(char); TF_TString s40, s41; TF_TString_Init(&s40); TF_TString_Init(&s41); TF_TString_Copy(&s40, kLongString, kLongStringLen); EXPECT_EQ(kLongStringLen, TF_TString_GetSize(&s40)); TF_TString_Assign(&s41, &s40); EXPECT_STREQ(kLongString, TF_TString_GetDataPointer(&s40)); EXPECT_STREQ(kLongString, TF_TString_GetMutableDataPointer(&s40)); EXPECT_EQ(kLongStringLen, TF_TString_GetSize(&s41)); TF_TString_AppendN(&s40, kLongString, kLongStringLen); TF_TString_Append(&s40, &s41); std::string longerString(kLongString); longerString += kLongString; longerString += kLongString; EXPECT_STREQ(longerString.data(), TF_TString_GetDataPointer(&s40)); EXPECT_STREQ(longerString.data(), TF_TString_GetMutableDataPointer(&s40)); EXPECT_EQ(longerString.size(), TF_TString_GetSize(&s40)); TF_TString_AssignView(&s40, kStr, kStrLen); EXPECT_EQ(TF_TSTR_VIEW, TF_TString_GetType(&s40)); EXPECT_EQ(kStr, TF_TString_GetDataPointer(&s40)); EXPECT_EQ(6, TF_TString_GetSize(&s40)); EXPECT_EQ(0, TF_TString_GetCapacity(&s40)); EXPECT_NE(kStr, TF_TString_GetMutableDataPointer(&s40)); EXPECT_STREQ(kStr, TF_TString_GetMutableDataPointer(&s40)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s40)); EXPECT_EQ(6, TF_TString_GetSize(&s40)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s40)); TF_TString_Dealloc(&s40); TF_TString_Dealloc(&s41); } { TF_TString s50; TF_TString_Init(&s50); TF_TString_Copy(&s50, "a", 1); EXPECT_STREQ("a", TF_TString_GetDataPointer(&s50)); EXPECT_STREQ("a", TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(1, TF_TString_GetSize(&s50)); TF_TString_Copy(&s50, kLongString, kLongStringLen); EXPECT_STREQ(kLongString, TF_TString_GetDataPointer(&s50)); EXPECT_STREQ(kLongString, TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(kLongStringLen, TF_TString_GetSize(&s50)); size_t cap1 = TF_TString_GetCapacity(&s50); TF_TString_Copy(&s50, kLongString, TF_TString_SmallCapacity + 1); size_t cap2 = TF_TString_GetCapacity(&s50); EXPECT_STREQ(std::string(kLongString, TF_TString_SmallCapacity + 1).data(), TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s50)); EXPECT_GT(cap1, cap2); TF_TString_Copy(&s50, "c", 1); EXPECT_STREQ("c", TF_TString_GetDataPointer(&s50)); EXPECT_STREQ("c", TF_TString_GetMutableDataPointer(&s50)); EXPECT_EQ(1, TF_TString_GetSize(&s50)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s50)); TF_TString_Dealloc(&s50); } } TEST(TF_CTStringTest, ResizeReserve) { { TF_TString s60; TF_TString_Init(&s60); TF_TString_Resize(&s60, 2, 'a'); EXPECT_EQ(0, ::memcmp("aa", TF_TString_GetDataPointer(&s60), 2)); TF_TString_Resize(&s60, 4, '\0'); EXPECT_EQ(0, ::memcmp("aa\0\0", TF_TString_GetDataPointer(&s60), 4)); TF_TString_Resize(&s60, 6, 'b'); EXPECT_EQ(0, ::memcmp("aa\0\0bb", TF_TString_GetDataPointer(&s60), 6)); TF_TString_Resize(&s60, 2, 'c'); EXPECT_EQ(0, ::memcmp("aa", TF_TString_GetDataPointer(&s60), 2)); TF_TString_Dealloc(&s60); } { TF_TString s70; TF_TString_Init(&s70); TF_TString_Reserve(&s70, TF_TString_SmallCapacity - 1); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Reserve(&s70, TF_TString_SmallCapacity); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Copy(&s70, "hello", 5); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Reserve(&s70, 100); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); TF_TString_AssignView(&s70, kLongString, kLongStringLen); TF_TString_Reserve(&s70, 10); EXPECT_EQ(TF_TSTR_VIEW, TF_TString_GetType(&s70)); EXPECT_EQ(0, TF_TString_GetCapacity(&s70)); TF_TString_Reserve(&s70, 100); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); TF_TString_Reserve(&s70, 200); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(207, TF_TString_GetCapacity(&s70)); TF_TString_Dealloc(&s70); } { TF_TString s70; TF_TString_Init(&s70); TF_TString_ReserveAmortized(&s70, TF_TString_SmallCapacity - 1); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_ReserveAmortized(&s70, TF_TString_SmallCapacity); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(0, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_Copy(&s70, "hello", 5); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TString_SmallCapacity, TF_TString_GetCapacity(&s70)); EXPECT_EQ(TF_TSTR_SMALL, TF_TString_GetType(&s70)); TF_TString_ReserveAmortized(&s70, 100); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); EXPECT_EQ(5, TF_TString_GetSize(&s70)); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); TF_TString_AssignView(&s70, kLongString, kLongStringLen); TF_TString_ReserveAmortized(&s70, 10); EXPECT_EQ(TF_TSTR_VIEW, TF_TString_GetType(&s70)); EXPECT_EQ(0, TF_TString_GetCapacity(&s70)); TF_TString_ReserveAmortized(&s70, 100); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(111, TF_TString_GetCapacity(&s70)); TF_TString_ReserveAmortized(&s70, 200); EXPECT_EQ(TF_TSTR_LARGE, TF_TString_GetType(&s70)); EXPECT_EQ(223, TF_TString_GetCapacity(&s70)); TF_TString_Dealloc(&s70); } } TEST(TF_CTStringTest, OffsetType) { { uint8_t str[] = "test"; constexpr size_t str_size = sizeof(str) / sizeof(str[0]); uint8_t buf[sizeof(TF_TString) + str_size]; memcpy(buf + sizeof(TF_TString), str, str_size); TF_TString *offsets = (TF_TString *)buf; TF_TString_Init(offsets); offsets[0].u.offset.size = TF_le32toh(str_size << 2 | TF_TSTR_OFFSET); offsets[0].u.offset.offset = TF_le32toh(sizeof(TF_TString)); offsets[0].u.offset.count = TF_le32toh(1); EXPECT_EQ(str_size, TF_TString_GetSize(offsets)); EXPECT_EQ(TF_TSTR_OFFSET, TF_TString_GetType(offsets)); EXPECT_EQ(0, ::memcmp(str, TF_TString_GetDataPointer(offsets), str_size)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/ctstring.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/ctstring_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f347f78b-eaa6-4792-ac4e-ae5992680692
cpp
tensorflow/tensorflow
memory_space_assignment
third_party/xla/xla/service/memory_space_assignment/memory_space_assignment.cc
third_party/xla/xla/service/memory_space_assignment/memory_space_assignment_test.cc
#include "xla/service/memory_space_assignment/memory_space_assignment.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <iterator> #include <map> #include <memory> #include <optional> #include <string> #include <string_view> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/memory_space_assignment/algorithm.h" #include "xla/service/memory_space_assignment/allocation.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/service/memory_space_assignment/options.h" #include "xla/service/memory_space_assignment/simulator.h" #include "xla/service/memory_space_assignment/slice.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/casts.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace memory_space_assignment { namespace { absl::Status InsertInstructionAndEnsureOperandsInserted( HloInstruction* new_instruction, HloInstructionSequence* new_sequence, absl::flat_hash_set<HloInstruction*>* inserted_instructions); absl::Status EnsureInstructionAndOperandsInserted( HloInstruction* new_instruction, HloInstructionSequence* new_sequence, absl::flat_hash_set<HloInstruction*>* inserted_instructions) { if (inserted_instructions->contains(new_instruction)) { return absl::OkStatus(); } return InsertInstructionAndEnsureOperandsInserted( new_instruction, new_sequence, inserted_instructions); } absl::Status InsertInstructionAndEnsureOperandsInserted( HloInstruction* new_instruction, HloInstructionSequence* new_sequence, absl::flat_hash_set<HloInstruction*>* inserted_instructions) { for (HloInstruction* operand : new_instruction->operands()) { TF_RETURN_IF_ERROR(EnsureInstructionAndOperandsInserted( operand, new_sequence, inserted_instructions)); } VLOG(4) << "inserting: " << new_instruction->ToShortString(); new_sequence->push_back(new_instruction); TF_RET_CHECK(inserted_instructions->insert(new_instruction).second); return absl::OkStatus(); } std::string InstructionScheduleToString(const HloLiveRange& hlo_live_range) { const absl::flat_hash_map<const HloInstruction*, HloLiveRange::LogicalTime>& instruction_schedule = hlo_live_range.instruction_schedule(); std::vector<std::pair<int64_t, const HloInstruction*>> instructions; instructions.reserve(instruction_schedule.size()); for (const auto& instruction : instruction_schedule) { instructions.push_back({instruction.second, instruction.first}); } std::string instruction_schedule_str = "\n"; absl::c_sort(instructions); for (auto& instruction : instructions) { absl::StrAppend(&instruction_schedule_str, "LogicalTime: ", instruction.first, " ", instruction.second->ToString(), "\n"); } return instruction_schedule_str; } void EnsureParentAllocationIsAvailableForCopy(CopyAllocation* copy_allocation) { Allocation& parent_allocation = copy_allocation->mutable_prev_allocation(); parent_allocation.Extend(copy_allocation->copy_done_schedule_before()); if (parent_allocation.is_copy_allocation()) { auto parent_copy_allocation = tensorflow::down_cast<CopyAllocation*>(&parent_allocation); parent_copy_allocation->set_copy_done_schedule_before( std::min(parent_copy_allocation->copy_done_schedule_before(), copy_allocation->start_time())); parent_copy_allocation->set_copy_start_schedule_after( std::min(parent_copy_allocation->copy_start_schedule_after(), parent_copy_allocation->copy_done_schedule_before() - 1)); } } void MakeCopyAllocationJitForSingleUse(CopyAllocation* copy_allocation, int64_t use_time) { copy_allocation->set_start_time(use_time - 1); copy_allocation->set_copy_start_schedule_after(use_time - 1); copy_allocation->set_end_time(use_time); copy_allocation->set_copy_done_schedule_before(use_time); EnsureParentAllocationIsAvailableForCopy(copy_allocation); } int64_t GetUseTime(const HloUse& use, const HloLiveRange& hlo_live_range) { return hlo_live_range.instruction_schedule().at(use.instruction); } void ProcessPrefetchesToAlternateMemory(AllocationSequence& allocations, const HloLiveRange& hlo_live_range) { std::vector<Allocation*> allocations_in_raw_pointers = GetAllocationSequenceInRawPointers(allocations); for (auto allocation : allocations_in_raw_pointers) { if (allocation->is_copy_allocation() && allocation->is_in_alternate_mem() && !allocation->uses().empty()) { CopyAllocation* prefetch = tensorflow::down_cast<CopyAllocation*>(allocation); std::vector<HloUse> uses = prefetch->uses(); prefetch->clear_uses(); prefetch->AddUse(uses[0]); MakeCopyAllocationJitForSingleUse(prefetch, GetUseTime(uses[0], hlo_live_range)); for (size_t use_index = 1; use_index < uses.size(); ++use_index) { const HloUse& use = uses[use_index]; int64_t use_time = GetUseTime(use, hlo_live_range); auto jit_single_use_prefetch = std::make_unique<CopyAllocation>( prefetch->mutable_prev_allocation(), MemorySpace::kAlternate, prefetch->chunk(), use_time - 1, use_time, use_time); jit_single_use_prefetch->set_copy_start_schedule_after(use_time - 1); jit_single_use_prefetch->AddUse(use); EnsureParentAllocationIsAvailableForCopy(jit_single_use_prefetch.get()); allocations.push_back(std::move(jit_single_use_prefetch)); } } } } void MakeEvictionImmediate(CopyAllocation* eviction) { const Allocation& parent_allocation = eviction->prev_allocation(); eviction->set_start_time(parent_allocation.start_time()); eviction->set_copy_start_schedule_after(parent_allocation.start_time()); eviction->set_copy_done_schedule_before(parent_allocation.start_time() + 1); eviction->Extend(parent_allocation.start_time() + 1); } absl::flat_hash_map<Allocation*, CopyAllocation*> GetEvictionsMap( std::vector<Allocation*>& allocations) { absl::flat_hash_map<Allocation*, CopyAllocation*> evictions_map; for (auto& allocation : allocations) { if (allocation->is_copy_allocation() && allocation->is_in_default_mem()) { auto eviction = tensorflow::down_cast<CopyAllocation*>(allocation); Allocation& parent_allocation = eviction->mutable_prev_allocation(); if (!parent_allocation.is_copy_allocation()) { evictions_map[&parent_allocation] = eviction; } } } return evictions_map; } void ProcessBuffersProducedInAlternateMemory( AllocationSequence& allocations, const HloLiveRange& hlo_live_range) { std::vector<Allocation*> allocations_in_raw_pointers = GetAllocationSequenceInRawPointers(allocations); absl::flat_hash_map<Allocation*, CopyAllocation*> evictions_map = GetEvictionsMap(allocations_in_raw_pointers); for (auto& [_, eviction] : evictions_map) { MakeEvictionImmediate(eviction); } if (VLOG_IS_ON(2)) { LOG(INFO) << "AllocationSequence after making spills immediate spills\n"; XLA_LOG_LINES(INFO, AllocationSequenceToString(allocations, true)); } for (auto allocation : allocations_in_raw_pointers) { if (!allocation->is_copy_allocation() && allocation->is_in_alternate_mem()) { std::vector<HloUse> uses = allocation->uses(); allocation->clear_uses(); allocation->set_end_time(allocation->start_time() + 1); for (const HloUse& use : uses) { int64_t use_time = GetUseTime(use, hlo_live_range); if (allocation->start_time() + 1 == use_time) { allocation->AddUse(use); continue; } if (!evictions_map.contains(allocation)) { auto eviction_unique_ptr = std::make_unique<CopyAllocation>( *allocation, MemorySpace::kDefault, std::nullopt, allocation->start_time(), allocation->start_time() + 1, allocation->start_time() + 1); eviction_unique_ptr->set_copy_start_schedule_after( allocation->start_time()); evictions_map[allocation] = eviction_unique_ptr.get(); allocations.push_back(std::move(eviction_unique_ptr)); } CopyAllocation* eviction = evictions_map[allocation]; auto jit_single_use_prefetch = std::make_unique<CopyAllocation>( *eviction, MemorySpace::kAlternate, allocation->chunk(), use_time - 1, use_time, use_time); jit_single_use_prefetch->set_copy_start_schedule_after(use_time - 1); jit_single_use_prefetch->AddUse(use); EnsureParentAllocationIsAvailableForCopy(jit_single_use_prefetch.get()); allocations.push_back(std::move(jit_single_use_prefetch)); } } } } void TransformAllocationSequenceToSpill(AllocationSequence& allocations, const HloLiveRange& hlo_live_range) { if (VLOG_IS_ON(2)) { LOG(INFO) << "InstructionSchedule before transform\n"; XLA_LOG_LINES(INFO, InstructionScheduleToString(hlo_live_range)); LOG(INFO) << "AllocationSequence before transform\n"; XLA_LOG_LINES(INFO, AllocationSequenceToString(allocations, true)); } ProcessPrefetchesToAlternateMemory(allocations, hlo_live_range); if (VLOG_IS_ON(2)) { LOG(INFO) << "AllocationSequence after processing prefetches\n"; XLA_LOG_LINES(INFO, AllocationSequenceToString(allocations, true)); } ProcessBuffersProducedInAlternateMemory(allocations, hlo_live_range); if (VLOG_IS_ON(2)) { VLOG(2) << "AllocationSequence after processing buffers produced in kAlt\n"; XLA_LOG_LINES(INFO, AllocationSequenceToString(allocations, true)); } SortAllocationSequence(allocations); } } absl::StatusOr<MemorySpaceAssignment::AsyncCopyStats> MemorySpaceAssignment::CalculateAsyncCopyStats() const { AsyncCopyStats stats; int64_t current_copies = 0; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloDataflowAnalysis> dataflow_analysis, HloDataflowAnalysis::Run(*module_)); for (const HloComputation* computation : module_->MakeNonfusionComputations()) { for (HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCopyStart || (instruction->opcode() == HloOpcode::kAsyncStart && instruction->async_wrapped_instruction()->opcode() == HloOpcode::kSlice)) { current_copies++; } else if (instruction->opcode() == HloOpcode::kCopyDone || (instruction->opcode() == HloOpcode::kAsyncDone && instruction->async_wrapped_instruction()->opcode() == HloOpcode::kSlice)) { current_copies--; int64_t size = options_.size_fn(dataflow_analysis->GetUniqueValueAt(instruction)); if (instruction->shape().layout().memory_space() == options_.alternate_memory_space) { ++stats.num_prefetches; stats.prefetch_bytes += size; if (instruction->opcode() == HloOpcode::kAsyncDone && instruction->async_wrapped_instruction()->opcode() == HloOpcode::kSlice) { ++stats.num_sliced_prefetch_slices; } } else { ++stats.num_evictions; stats.eviction_bytes += size; } } else if (instruction->IsCustomCall(kConcatBitcastCustomCall)) { ++stats.num_sliced_prefetches; } stats.max_outstanding_async_copies = std::max(stats.max_outstanding_async_copies, current_copies); } } return stats; } absl::StatusOr<std::unique_ptr<PresetAssignments>> MemorySpaceAssignment::Run(HloModule* module, const HloLiveRange& hlo_live_range, const HloAliasAnalysis& alias_analysis, const Options& options) { CHECK(module->has_schedule()); if (VLOG_IS_ON(3)) { LOG(INFO) << "Module before memory space assignment: "; XLA_LOG_LINES(INFO, module->ToString()); LOG(INFO) << "Schedule: " << module->schedule().ToString(); } MemorySpaceAssignment memory_space_assignment(module, options, hlo_live_range); return memory_space_assignment.RunMemorySpaceAssignment(hlo_live_range, alias_analysis); } absl::StatusOr<std::unique_ptr<PresetAssignments>> MemorySpaceAssignment::RunMemorySpaceAssignment( const HloLiveRange& hlo_live_range, const HloAliasAnalysis& alias_analysis) { TF_RETURN_IF_ERROR(FindAllocationSequence(hlo_live_range, alias_analysis)); std::optional<RuntimeSimulator> runtime_simulator = std::nullopt; if (options_.cost_analysis) { runtime_simulator.emplace(options_.cost_analysis, options_.alternate_memory_space); float estimated_time = runtime_simulator->SimulateElapsedTimeWithoutAsyncCopyLikes( hlo_live_range, allocations_); VLOG(1) << "Estimated elapsed time without async copies (sec): " << estimated_time; } TF_RETURN_IF_ERROR(Process(hlo_live_range)); ScheduleAsynchronousCopies(); TF_RETURN_IF_ERROR(SimplifyGraph()); TF_RETURN_IF_ERROR(FixSchedule()); TF_RETURN_IF_ERROR(ExportAndColorBuffers()); if (runtime_simulator.has_value()) { float estimated_time = runtime_simulator->SimulateElapsedTime(module_, allocations_); VLOG(1) << "Estimated elapsed time with async copies (sec): " << estimated_time; } if (VLOG_IS_ON(3)) { LOG(INFO) << "Module after memory space assignment: "; XLA_LOG_LINES(INFO, module_->ToString()); } TF_CHECK_OK(module_->schedule().Verify()); TF_ASSIGN_OR_RETURN(AsyncCopyStats stats, CalculateAsyncCopyStats()); VLOG(1) << "Maximum number of outstanding async copies/slices: " << stats.max_outstanding_async_copies; VLOG(1) << "Number of prefetches: " << stats.num_prefetches << ", in bytes: " << stats.prefetch_bytes; VLOG(1) << "Number of sliced prefetches: " << stats.num_sliced_prefetches << ", consuming number of slices: " << stats.num_sliced_prefetch_slices; VLOG(1) << "Number of evictions: " << stats.num_evictions << ", in bytes: " << stats.eviction_bytes; TF_RETURN_IF_ERROR(VerifyAndExportHeapSimulatorTrace()); return std::move(preset_assignments_); } absl::Status MemorySpaceAssignment::FindAllocationSequence( const HloLiveRange& hlo_live_range, const HloAliasAnalysis& alias_analysis) { auto algorithm = std::make_unique<MsaAlgorithm>( &allocations_, options_, alias_analysis, hlo_live_range); HeapSimulator::Options heap_simulator_options; heap_simulator_options.may_reuse_operand_buffers = false; heap_simulator_options.alloc_constants = true; TF_RETURN_IF_ERROR(HeapSimulator::Run(std::move(algorithm), *module_, module_->schedule(), alias_analysis, options_.size_fn, heap_simulator_options) .status()); return absl::OkStatus(); } absl::Status MemorySpaceAssignment::Process( const HloLiveRange& hlo_live_range) { VLOG(1) << "Processing assigned buffers..."; absl::flat_hash_set<const Allocation*> needed_allocations; if (options_.always_spill_to_default_memory) { TransformAllocationSequenceToSpill(allocations_, hlo_live_range); } for (auto& allocation : allocations_) { allocation->MarkIfNeeded(needed_allocations); } for (auto& allocation : allocations_) { VLOG(3) << "Processing: " << allocation->ToString(); if (!needed_allocations.contains(allocation.get())) { VLOG(3) << "Allocation not needed."; continue; } TF_RETURN_IF_ERROR(allocation->Process()); if (allocation->is_scoped_allocation()) { CHECK(allocation->memory_space() == MemorySpace::kAlternate); scoped_memory_assignments_.emplace_back( allocation->defining_position().instruction, allocation->chunk()); alternate_memory_size_ = std::max(alternate_memory_size_, allocation->chunk().chunk_end()); } else if (allocation->memory_space() == MemorySpace::kAlternate) { if (allocation->is_sliced_copy_allocation()) { const SlicedCopyAllocation& sliced_copy_allocation = *static_cast<const SlicedCopyAllocation*>(allocation.get()); for (const SlicedCopyAllocation::SliceDetail& details : sliced_copy_allocation.slice_details_sorted_by_start_time()) { alternate_memory_assignments_.push_back( {{details.copy_done, {}}, details.slice_decision.chunk}); alternate_memory_size_ = std::max( alternate_memory_size_, details.slice_decision.chunk.chunk_end()); } CHECK( !sliced_copy_allocation.cross_program_prefetch_index().has_value()); } alternate_memory_assignments_.emplace_back( allocation->defining_position(), allocation->chunk()); alternate_memory_size_ = std::max(alternate_memory_size_, allocation->chunk().chunk_end()); if (allocation->cross_program_prefetch_index().has_value()) { TF_RETURN_IF_ERROR(module_->SetCrossProgramPrefetchOffset( *allocation->cross_program_prefetch_index(), allocation->chunk().offset)); } } } absl::flat_hash_set<HloPosition> seen_pinned_positions; for (auto& allocation : allocations_) { if (needed_allocations.contains(allocation.get())) { VLOG(3) << "Post-Processing: " << allocation->ToString(); TF_RETURN_IF_ERROR(allocation->PostProcess()); if (allocation->is_pinned_allocation() && !allocation->is_scoped_allocation()) { auto [it, inserted] = seen_pinned_positions.insert(allocation->defining_position()); TF_RET_CHECK(inserted) << "Multiple pinned allocations defined for position " << allocation->defining_position().ToString(); } } } return absl::OkStatus(); } absl::Status MemorySpaceAssignment::ExportAndColorBuffers() { VLOG(1) << "Exporting buffers..."; TF_ASSIGN_OR_RETURN(auto alias_analysis, HloAliasAnalysis::Run(module_)); absl::flat_hash_map<int64_t, int64_t> seen_buffer_offsets; VLOG(3) << "Exported alternate memory allocations:"; for (const auto& position_and_chunk : alternate_memory_assignments_) { const HloPosition& defining_position = position_and_chunk.first; const HeapSimulator::Chunk& chunk = position_and_chunk.second; const HloBuffer& buffer = alias_analysis->GetUniqueBufferAt( defining_position.instruction, defining_position.index); auto seen_buffer_offset_it = seen_buffer_offsets.find(buffer.id()); if (seen_buffer_offset_it != seen_buffer_offsets.end()) { CHECK_EQ(chunk.offset, seen_buffer_offset_it->second) << "Mismatch in offset for positions that map to the same value: " << buffer.ToString() << ", pos: " << defining_position.ToString(); } else { VLOG(3) << " [" << chunk.offset << ", " << chunk.size << "] : " << defining_position.ToString() << " (" << buffer.ToString() << ")"; preset_assignments_->add_chunk(defining_position, chunk); seen_buffer_offsets[buffer.id()] = chunk.offset; } } VLOG(3) << "Exported scoped allocations in alternate memory:"; for (const auto& instruction_and_chunk : scoped_memory_assignments_) { HloInstruction* instruction = instruction_and_chunk.first; const HeapSimulator::Chunk& chunk = instruction_and_chunk.second; VLOG(3) << " [" << chunk.offset << ", " << chunk.size << "] : " << instruction->name(); preset_assignments_->add_scoped_allocation_chunk(instruction, chunk); } if (!preset_assignments_->chunks().empty() || !preset_assignments_->scoped_allocation_chunks().empty()) { preset_assignments_ ->assignment_information_for_space(options_.alternate_memory_space) ->size = alternate_memory_size_; } VLOG(3) << "Exported alternate memory sizes:"; for (auto& pair : preset_assignments_->assignment_informations()) { VLOG(3) << " space: " << pair.first << ", size: " << pair.second.size; } VLOG(1) << "Coloring buffers..."; for (const auto& defining_position_and_chunk : preset_assignments_->chunks()) { const HloPosition& defining_position = defining_position_and_chunk.first; for (auto& buffer : alias_analysis->ComputeBuffersAt( defining_position.instruction, defining_position.index)) { for (auto& value : buffer->values()) { for (auto& position : value->positions()) { VLOG(4) << "Coloring " << position.ToString(); Shape* shape = ShapeUtil::GetMutableSubshape( position.instruction->mutable_shape(), position.index); CHECK(shape->IsArray()) << "Coloring a shape that is not an array: " << position.ToString(); shape->mutable_layout()->set_memory_space( options_.alternate_memory_space); } } } } return absl::OkStatus(); } void MemorySpaceAssignment::RemoveAssignmentForInstruction( const HloInstruction* instruction) { auto it = alternate_memory_assignments_.begin(); auto end = alternate_memory_assignments_.end(); while (it != end) { const HloPosition& position = it->first; if (position.instruction == instruction) { VLOG(3) << "Removing instruction from alternate memory assignments."; if (std::next(it) == end) { alternate_memory_assignments_.pop_back(); break; } else { *it = alternate_memory_assignments_.back(); alternate_memory_assignments_.pop_back(); end = alternate_memory_assignments_.end(); } } else { ++it; } } } absl::Status MemorySpaceAssignment::SimplifyGraph() { VLOG(1) << "Simplifying graph..."; for (HloComputation* computation : module_->MakeNonfusionComputations()) { if (!computations_in_schedule_.contains(computation)) { VLOG(4) << "Not simplifying " << computation->name() << " because it's not in the schedule."; continue; } for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { TF_RETURN_IF_ERROR(instruction->DropAllControlDeps()); } bool computation_modified = true; while (computation_modified) { computation_modified = false; VLOG(4) << "Running simplify graph loop over " << computation->name(); for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (computation->IsSafelyRemovable(instruction) && instruction->IsDead() && !instruction->HasSideEffect() && instruction->opcode() != HloOpcode::kCopyStart && instruction->opcode() != HloOpcode::kCopyDone) { VLOG(4) << "Instruction removed: " << instruction->ToString(); RemoveAssignmentForInstruction(instruction); auto instruction_it = absl::c_find(flattened_instructions_, instruction); if (instruction_it != flattened_instructions_.end()) { *instruction_it = nullptr; } TF_RETURN_IF_ERROR(computation->RemoveInstruction(instruction)); computation_modified = true; } else if (instruction->opcode() == HloOpcode::kGetTupleElement) { HloInstruction* operand = instruction->mutable_operand(0); if (operand->opcode() == HloOpcode::kTuple) { HloInstruction* forwarded_instruction = operand->mutable_operand(instruction->tuple_index()); VLOG(4) << "Replacing uses of " << instruction->ToString() << " with " << forwarded_instruction->ToString(); TF_RETURN_IF_ERROR( instruction->ReplaceAllUsesWith(forwarded_instruction)); computation_modified = true; } } else if (instruction->opcode() == HloOpcode::kTuple) { bool can_replace = instruction->operand_count() > 0 && instruction->operand(0)->opcode() == HloOpcode::kGetTupleElement && instruction->operand(0) ->operand(0) ->shape() .tuple_shapes_size() == instruction->operand_count(); for (int operand_number = 0; operand_number < instruction->operand_count(); ++operand_number) { const HloInstruction* operand = instruction->operand(operand_number); if (operand->opcode() != HloOpcode::kGetTupleElement || operand->tuple_index() != operand_number || operand->operand(0) != instruction->operand(0)->operand(0)) { can_replace = false; break; } } if (can_replace) { HloInstruction* forwarded_instruction = instruction->mutable_operand(0)->mutable_operand(0); VLOG(4) << "Replacing uses of " << instruction->ToString() << " with " << forwarded_instruction->ToString(); TF_RETURN_IF_ERROR( instruction->ReplaceAllUsesWith(forwarded_instruction)); computation_modified = true; } } } } } return absl::OkStatus(); } namespace { class AsyncCopyStep { public: struct StartPhase { int64_t schedule_after_time; HloInstruction* instruction; }; struct DonePhase { int64_t schedule_before_time; HloInstruction* instruction; }; virtual ~AsyncCopyStep() = default; bool operator<(const AsyncCopyStep& rhs) const { std::optional<StartPhase> lhs_start_phase = start_phase(); auto lhs_tuple = std::make_tuple( done_phase().schedule_before_time, (lhs_start_phase.has_value() ? lhs_start_phase->schedule_after_time : done_phase().schedule_before_time)); std::optional<StartPhase> rhs_start_phase = rhs.start_phase(); auto rhs_tuple = std::make_tuple( rhs.done_phase().schedule_before_time, (rhs_start_phase.has_value() ? rhs_start_phase->schedule_after_time : rhs.done_phase().schedule_before_time)); return lhs_tuple < rhs_tuple; } virtual HloPosition defining_position() const = 0; virtual std::optional<StartPhase> start_phase() const = 0; virtual void set_start_phase_schedule_after_time(int64_t schedule_after) = 0; virtual DonePhase done_phase() const = 0; protected: AsyncCopyStep() = default; }; class AsyncCopyStepForCopyAllocation : public AsyncCopyStep { public: explicit AsyncCopyStepForCopyAllocation(CopyAllocation* copy_allocation) : AsyncCopyStep(), copy_allocation_(copy_allocation) {} ~AsyncCopyStepForCopyAllocation() override = default; HloPosition defining_position() const override { return copy_allocation_->defining_position(); } std::optional<StartPhase> start_phase() const override { StartPhase phase{copy_allocation_->copy_start_schedule_after(), copy_allocation_->copy_start()}; return phase; } void set_start_phase_schedule_after_time(int64_t schedule_after) override { copy_allocation_->set_copy_start_schedule_after(schedule_after); } DonePhase done_phase() const override { return {copy_allocation_->copy_done_schedule_before(), copy_allocation_->copy_done()}; } private: CopyAllocation* copy_allocation_ = nullptr; }; class AsyncCopyStepForSlice : public AsyncCopyStep { public: AsyncCopyStepForSlice(SlicedCopyAllocation* sliced_copy_allocation, size_t slice_index) : AsyncCopyStep(), sliced_copy_allocation_(sliced_copy_allocation), slice_index_(slice_index) {} ~AsyncCopyStepForSlice() override = default; HloPosition defining_position() const override { return sliced_copy_allocation_->defining_position(); } std::optional<StartPhase> start_phase() const override { const SlicedCopyAllocation::SliceDetail& slice_details = sliced_copy_allocation_ ->slice_details_sorted_by_start_time()[slice_index_]; StartPhase phase{slice_details.copy_start_after_time, slice_details.copy_start}; return phase; } void set_start_phase_schedule_after_time(int64_t schedule_after) override { sliced_copy_allocation_ ->mutable_slice_details_sorted_by_start_time()[slice_index_] .copy_start_after_time = schedule_after; } DonePhase done_phase() const override { const SlicedCopyAllocation::SliceDetail& slice_details = sliced_copy_allocation_ ->slice_details_sorted_by_start_time()[slice_index_]; DonePhase phase{slice_details.copy_done_before_time, slice_details.copy_done}; return phase; } private: SlicedCopyAllocation* sliced_copy_allocation_ = nullptr; size_t slice_index_; }; class AsyncCopyStepForSliceConcat : public AsyncCopyStep { public: explicit AsyncCopyStepForSliceConcat( SlicedCopyAllocation* sliced_copy_allocation) : AsyncCopyStep(), sliced_copy_allocation_(sliced_copy_allocation) {} ~AsyncCopyStepForSliceConcat() override = default; HloPosition defining_position() const override { return sliced_copy_allocation_->defining_position(); } std::optional<StartPhase> start_phase() const override { return std::nullopt; } void set_start_phase_schedule_after_time(int64_t schedule_after) override {} DonePhase done_phase() const override { return {sliced_copy_allocation_->earliest_available_time(), sliced_copy_allocation_->concat()}; } private: SlicedCopyAllocation* sliced_copy_allocation_ = nullptr; }; } void MemorySpaceAssignment::ScheduleAsynchronousCopies() { VLOG(1) << "Scheduling asynchronous copies..."; for (MemorySpace memory_space : {MemorySpace::kDefault, MemorySpace::kAlternate}) { std::vector<std::unique_ptr<AsyncCopyStep>> async_copy_steps; for (auto& allocation : allocations_) { if (allocation->memory_space() != memory_space) { continue; } if (allocation->is_copy_allocation()) { auto copy_allocation = static_cast<CopyAllocation*>(allocation.get()); async_copy_steps.push_back( std::make_unique<AsyncCopyStepForCopyAllocation>(copy_allocation)); } else if (allocation->is_sliced_copy_allocation()) { auto sliced_copy_allocation = static_cast<SlicedCopyAllocation*>(allocation.get()); for (int i = 0; i < sliced_copy_allocation ->mutable_slice_details_sorted_by_start_time() .size(); ++i) { async_copy_steps.push_back(std::make_unique<AsyncCopyStepForSlice>( sliced_copy_allocation, i)); } async_copy_steps.push_back( std::make_unique<AsyncCopyStepForSliceConcat>( sliced_copy_allocation)); } } absl::c_stable_sort( async_copy_steps, [](const std::unique_ptr<AsyncCopyStep>& lhs, const std::unique_ptr<AsyncCopyStep>& rhs) { return *lhs < *rhs; }); for (std::unique_ptr<AsyncCopyStep>& async_copy_step : async_copy_steps) { std::optional<AsyncCopyStep::StartPhase> start_phase = async_copy_step->start_phase(); if (start_phase.has_value()) { int64_t copy_start_schedule_after = start_phase->schedule_after_time; while ( async_copy_step->defining_position().instruction->parent() != flattened_instructions_[ std::max<int64_t>(0, copy_start_schedule_after)] ->parent()) { VLOG(4) << "Delaying CopyStart (" << copy_start_schedule_after << " to " << (copy_start_schedule_after + 1) << ") for " << start_phase->instruction->ToString() << " because it is not in the correct computation."; async_copy_step->set_start_phase_schedule_after_time( ++copy_start_schedule_after); } start_phase = async_copy_step->start_phase(); schedule_after_[start_phase->schedule_after_time].push_back( start_phase->instruction); } AsyncCopyStep::DonePhase done_phase = async_copy_step->done_phase(); schedule_before_[done_phase.schedule_before_time].push_back( done_phase.instruction); } } } absl::Status MemorySpaceAssignment::FixSchedule() { VLOG(1) << "Fixing schedule..."; TF_RET_CHECK(module_->has_schedule()); HloSchedule& schedule = module_->schedule(); for (const HloComputation* computation : module_->MakeNonfusionComputations()) { if (!computations_in_schedule_.contains(computation)) { if (computation->IsAsyncComputation()) { VLOG(4) << "Created a dummy schedule for async computation " << computation->name(); schedule.GetOrCreateSequence(computation); continue; } VLOG(4) << "Not scheduling " << computation->name() << " because it's not in the schedule."; continue; } TF_RET_CHECK(schedule.is_computation_scheduled(computation)); HloInstructionSequence new_sequence; absl::flat_hash_set<HloInstruction*> inserted_instructions; VLOG(4) << "Scheduling: " << computation->ToString(); for (int64_t instruction_index = -1;; ++instruction_index) { auto insts_before_iter = schedule_before_.find(instruction_index); if (insts_before_iter != schedule_before_.end()) { for (HloInstruction* new_instruction : insts_before_iter->second) { if (new_instruction->parent() == computation) { VLOG(4) << "before " << instruction_index << ": " << new_instruction->name(); TF_RETURN_IF_ERROR(InsertInstructionAndEnsureOperandsInserted( new_instruction, &new_sequence, &inserted_instructions)); } } } if (instruction_index != -1) { if (instruction_index >= flattened_instructions_.size()) { break; } HloInstruction* instruction = flattened_instructions_[instruction_index]; if (instruction != nullptr && instruction->parent() == computation && instruction->opcode() != HloOpcode::kBitcast && instruction->opcode() != HloOpcode::kTuple && !inserted_instructions.contains(instruction)) { VLOG(4) << "inst " << instruction_index << ": " << instruction->name(); TF_RETURN_IF_ERROR(InsertInstructionAndEnsureOperandsInserted( instruction, &new_sequence, &inserted_instructions)); } } auto insts_after_iter = schedule_after_.find(instruction_index); if (insts_after_iter != schedule_after_.end()) { for (HloInstruction* new_instruction : insts_after_iter->second) { if (new_instruction->parent() == computation) { VLOG(4) << "after " << instruction_index << ": " << new_instruction->name(); TF_RETURN_IF_ERROR(InsertInstructionAndEnsureOperandsInserted( new_instruction, &new_sequence, &inserted_instructions)); } } } } TF_RETURN_IF_ERROR(EnsureInstructionAndOperandsInserted( computation->root_instruction(), &new_sequence, &inserted_instructions)); CHECK_EQ(new_sequence.size(), computation->instruction_count()) << "New sequence for computation " << computation->name() << " has " << new_sequence.size() << " instructions, expects " << computation->instruction_count() << "."; schedule.set_sequence(computation, new_sequence); } TF_RETURN_IF_ERROR(schedule.Update()); return absl::OkStatus(); } absl::Status MemorySpaceAssignment::VerifyAndExportHeapSimulatorTrace() { VLOG(1) << "Verifying..."; TF_ASSIGN_OR_RETURN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module_)); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(module_->schedule(), *alias_analysis, module_->entry_computation())); BufferIntervalTree interval_tree; absl::flat_hash_set<int64_t> seen_buffers; std::map<std::tuple<int64_t, bool, int64_t>, std::tuple<const HloValue*, HeapSimulator::Chunk, HeapSimulatorTrace::Event::Kind>> events; auto add_allocation_and_verify = [&](int64_t start_time, int64_t end_time, const HeapSimulator::Chunk& chunk, const HloValue* value) -> absl::Status { events[std::make_tuple(start_time, false, value->id())] = std::make_tuple(value, chunk, HeapSimulatorTrace::Event::ALLOC); events[std::make_tuple(end_time, true, value->id())] = std::make_tuple(value, chunk, HeapSimulatorTrace::Event::FREE); for (const HeapSimulator::Chunk& overlapping_chunk : interval_tree.ChunksOverlappingInTime(start_time, end_time - 1)) { if (chunk.OverlapsWith(overlapping_chunk)) { return Internal( ("Value %s (%d, %d) off: %d size: %d overlaps with another chunk" " off: %d size: %d"), value->ToShortString(), start_time, end_time, chunk.offset, chunk.size, overlapping_chunk.offset, overlapping_chunk.size); } } interval_tree.Add(start_time, end_time - 1, chunk); return absl::OkStatus(); }; for (const HloComputation* computation : module_->MakeNonfusionComputations()) { for (const HloInstruction* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kCopyStart) { int64_t from_memory_space = ShapeUtil::GetSubshape(instruction->shape(), {1}) .layout() .memory_space(); int64_t to_memory_space = ShapeUtil::GetSubshape(instruction->shape(), {0}) .layout() .memory_space(); CHECK_NE(from_memory_space, to_memory_space) << "Asynchronous copy to the same memory space: " << instruction->ToString(); } } } for (const auto& position_and_chunk : preset_assignments_->chunks()) { const HloPosition& position = position_and_chunk.first; const HeapSimulator::Chunk& chunk = position_and_chunk.second; const HloBuffer& buffer = alias_analysis->GetUniqueBufferAt(position.instruction, position.index); CHECK(!seen_buffers.contains(buffer.id())) << "Multiple preset assignments for the same buffer: " << buffer.ToString() << ", pos: " << position.ToString() << ", off: " << chunk.offset << ", size: " << chunk.size; seen_buffers.insert(buffer.id()); for (const HloValue* value : buffer.values()) { const HloLiveRange::TimeBound& time_bound = hlo_live_range->buffer_live_ranges().at(value); const HloInstruction* last_use_instruction = nullptr; int64_t last_use_time = time_bound.start; for (const HloUse& use : value->GetUses()) { int64_t use_time = hlo_live_range->instruction_schedule().at(use.instruction); if (use_time > last_use_time) { last_use_time = use_time; last_use_instruction = use.instruction; } } std::function<absl::Status(const HloInstruction*, int64_t, int64_t, absl::string_view)> split_conditional_buffer; split_conditional_buffer = [&](const HloInstruction* use_instruction, int64_t start_time, int64_t end_time, absl::string_view indent_string) { VLOG(3) << indent_string << "Splitting conditional buffer: " << buffer.ToString() << " value: " << value->ToShortString() << ": (" << start_time << ", " << end_time << ") off: " << chunk.offset << ", size: " << chunk.size; int64_t earliest_computation_start_time = end_time; for (const HloComputation* called_computation : use_instruction->called_computations()) { int64_t computation_start_time = hlo_live_range->computation_span_times() .at(called_computation) .start; earliest_computation_start_time = std::min(earliest_computation_start_time, computation_start_time); int64_t last_use_time = -1; const HloInstruction* last_use_instruction = nullptr; for (const HloUse& use : value->GetUses()) { int64_t use_time = hlo_live_range->instruction_schedule().at(use.instruction); if (use.instruction->parent() == called_computation && use_time > last_use_time) { last_use_time = use_time; last_use_instruction = use.instruction; } } if (last_use_time != -1) { VLOG(3) << indent_string << " computation: " << called_computation->name() << ": (" << computation_start_time << ", " << last_use_time << ")"; CHECK(last_use_instruction); last_use_time = std::min(last_use_time, end_time); if (last_use_instruction->opcode() == HloOpcode::kConditional) { TF_RETURN_IF_ERROR(split_conditional_buffer( last_use_instruction, computation_start_time, last_use_time, absl::StrCat(indent_string, " "))); } else { TF_RETURN_IF_ERROR(add_allocation_and_verify( computation_start_time, last_use_time, chunk, value)); } } } VLOG(3) << indent_string << " from beginning until first computation: (" << start_time << ", " << (earliest_computation_start_time - 1) << ")"; TF_RETURN_IF_ERROR(add_allocation_and_verify( start_time, earliest_computation_start_time - 1, chunk, value)); return absl::OkStatus(); }; if (last_use_instruction && last_use_instruction->opcode() == HloOpcode::kConditional) { TF_RETURN_IF_ERROR(split_conditional_buffer( last_use_instruction, time_bound.start, time_bound.end, " ")); } else if (!value->GetUses().empty()) { last_use_time = std::min(last_use_time, time_bound.end); VLOG(3) << " buffer: " << buffer.ToString() << " value: " << value->ToShortString() << ": (" << time_bound.start << ", " << last_use_time << ") off: " << chunk.offset << ", size: " << chunk.size; TF_RETURN_IF_ERROR(add_allocation_and_verify( time_bound.start, last_use_time, chunk, value)); } } } HeapSimulatorTrace* heap_trace = &preset_assignments_ ->assignment_information_for_space(options_.alternate_memory_space) ->heap_simulator_trace; int64_t memory_usage = 0; int64_t max_memory_usage = 0; int64_t prev_time = 0; int64_t prev_memory_usage = 0; for (const auto& event : events) { int64_t time; bool is_free; int64_t buffer_id; std::tie(time, is_free, buffer_id) = event.first; const HloValue* value; HeapSimulator::Chunk chunk; HeapSimulatorTrace::Event::Kind kind; std::tie(value, chunk, kind) = event.second; HeapSimulatorTrace::Event* heap_trace_event = heap_trace->add_events(); heap_trace_event->set_kind(kind); heap_trace_event->set_buffer_id(buffer_id); *heap_trace_event->mutable_instruction_name() = std::string(value->instruction()->name()); *heap_trace_event->mutable_computation_name() = std::string(value->instruction()->parent()->name()); if (prev_time != time) { VLOG(2) << "Memory usage: " << std::max(memory_usage, prev_memory_usage) << " at time: " << prev_time << " (" << hlo_live_range->flattened_instruction_sequence() .instructions() .at(prev_time) ->name() << ")"; prev_time = time; prev_memory_usage = memory_usage; } if (kind == HeapSimulatorTrace::Event::ALLOC) { memory_usage += chunk.size; } else { CHECK_EQ(kind, HeapSimulatorTrace::Event::FREE); memory_usage -= chunk.size; } prev_memory_usage = std::max(prev_memory_usage, memory_usage); max_memory_usage = std::max(max_memory_usage, memory_usage); VLOG(4) << "Memory usage: " << memory_usage << " at time: " << time; } VLOG(1) << "Max memory usage ignoring fragmentation: " << max_memory_usage; return absl::OkStatus(); } } }
#include "xla/service/memory_space_assignment/memory_space_assignment.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <numeric> #include <optional> #include <ostream> #include <string> #include <string_view> #include <tuple> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/hlo/utils/hlo_live_range.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/service/buffer_value.h" #include "xla/service/heap_simulator/allocation_block.h" #include "xla/service/heap_simulator/heap_simulator.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_dataflow_analysis.h" #include "xla/service/hlo_value.h" #include "xla/service/instruction_hoister.h" #include "xla/service/memory_space_assignment/algorithm.h" #include "xla/service/memory_space_assignment/allocation.h" #include "xla/service/memory_space_assignment/buffer_interval_comparator.h" #include "xla/service/memory_space_assignment/cost_analysis.h" #include "xla/service/memory_space_assignment/memory_space_assignment.pb.h" #include "xla/service/memory_space_assignment/options.h" #include "xla/service/memory_space_assignment/prefetch_interval_picker.h" #include "xla/service/memory_space_assignment/repacking.h" #include "xla/service/memory_space_assignment/slice.h" #include "xla/service/memory_space_assignment/testing_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_utils.h" #include "xla/tests/verified_hlo_module.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace memory_space_assignment { namespace { namespace op = xla::testing::opcode_matchers; using Chunk = HeapSimulator::Chunk; using ::testing::_; using ::testing::Return; using ::testing::UnorderedElementsAre; constexpr int64_t kPointerSize = 8; constexpr float kAsyncCopyBandwidth = 100; constexpr float kAlternateMemBandwidth = 1000; constexpr float kBytesPerSecond = 100; constexpr float kFlopsPerSecond = 1000; constexpr float kTranscendentalsPerSecond = 10; int64_t ShapeSize(const Shape& shape) { return ShapeUtil::ByteSizeOf(shape, kPointerSize); } int64_t SizeFunction(const BufferValue& value) { return ShapeSize(value.shape()); } int64_t ReservedScopedMemoryFn( const HloInstruction* instruction, const absl::flat_hash_set<std::pair<int, ShapeIndex>>& operands_in_alternate_memory, const absl::flat_hash_set<ShapeIndex>& outputs_in_alternate_memory) { return 0; } class TestBufferIntervalComparator : public BufferIntervalComparator { public: explicit TestBufferIntervalComparator(MsaBufferIntervalCompare compare_method) : BufferIntervalComparator(), compare_method_(compare_method) {} ~TestBufferIntervalComparator() override = default; std::string DescribeComparisonCriteria() const override { return "internal to test"; } std::string CriteriaToString( const MsaBufferInterval& buffer_interval) override { return "internal to test"; } bool LessThan(const MsaBufferInterval& lhs, const MsaBufferInterval& rhs) override { return compare_method_(lhs, rhs); } private: MsaBufferIntervalCompare compare_method_; }; class MemorySpaceAssignmentTestBase : public HloTestBase { protected: const int64_t kDefaultMemorySpace = 0; const int64_t kAlternateMemorySpace = 1; HloCostAnalysis::Options DefaultHloCostAnalysisOptions() { HloCostAnalysis::Options options; options.shape_size = ShapeSize; options.set_flops_per_second(kFlopsPerSecond); options.set_bytes_per_second(kBytesPerSecond); options.set_transcendentals_per_second(kTranscendentalsPerSecond); return options; } Options DefaultMemorySpaceOptions() { Options options; options.max_size_in_bytes = 128; options.alignment_in_bytes = 8; options.verify = true; options.alternate_memory_space = kAlternateMemorySpace; options.max_outstanding_prefetches = -1; options.max_outstanding_evictions = -1; return options; } CostAnalysisOptions DefaultCostAnalysisOptions() { CostAnalysisOptions options; options.async_copy_bandwidth_bytes_per_second = kAsyncCopyBandwidth; options.alternate_mem_bandwidth_bytes_per_second = kAlternateMemBandwidth; return options; } Options UpdateMaxAsyncCopies(Options options, int64_t max_async_copies) { options.max_outstanding_prefetches = max_async_copies; options.max_outstanding_evictions = max_async_copies; return options; } std::unique_ptr<PresetAssignments> AssignMemorySpaceUsingCostAnalysis( HloModule* module, std::optional<Options> memory_space_options_override = std::nullopt, std::optional<CostAnalysisOptions> cost_analysis_options_override = std::nullopt, std::optional<HloCostAnalysis::Options> hlo_cost_options_override = std::nullopt, std::optional<MsaSortOrderOverrides> optional_msa_sort_order_overrides = std::nullopt) { HloCostAnalysis::Options hlo_cost_options = DefaultHloCostAnalysisOptions(); if (hlo_cost_options_override) { hlo_cost_options = *hlo_cost_options_override; } HloCostAnalysis hlo_cost_analysis(hlo_cost_options); for (HloComputation* computation : module->MakeNonfusionComputations()) { TF_CHECK_OK(computation->Accept(&hlo_cost_analysis)); } auto alias_analysis = HloAliasAnalysis::Run(module).value(); Options memory_space_options = DefaultMemorySpaceOptions(); if (memory_space_options_override) { memory_space_options = *memory_space_options_override; } CostAnalysisOptions cost_analysis_options = DefaultCostAnalysisOptions(); if (cost_analysis_options_override) { cost_analysis_options = *cost_analysis_options_override; } HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); auto cost_analysis = CostAnalysis::Create(hlo_cost_analysis_costs, cost_analysis_options, *module) .value(); memory_space_options.cost_analysis = cost_analysis.get(); CostAnalysisPrefetchIntervalPicker prefetch_interval_picker( CostAnalysisPrefetchIntervalPicker( *cost_analysis, 0.8, 1.5, 10.0, memory_space_options.max_size_in_bytes)); MsaSortOrderOverrides msa_sort_order_overrides; if (optional_msa_sort_order_overrides.has_value()) { msa_sort_order_overrides = optional_msa_sort_order_overrides.value(); } MemoryBoundednessBufferIntervalComparator comparator( *cost_analysis, &cache_, msa_sort_order_overrides); return AssignMemorySpace( module, memory_space_options, [&comparator](const MsaBufferInterval& lhs, const MsaBufferInterval& rhs) { return comparator.LessThan(lhs, rhs); }, &prefetch_interval_picker); } std::unique_ptr<PresetAssignments> AssignMemorySpace( HloModule* module, std::optional<Options> options_override = std::nullopt, int64_t max_prefetch_interval = 10, int64_t min_prefetch_interval = 2) { InstructionHoister instruction_hoister; TF_CHECK_OK(instruction_hoister.Run(module).status()); InstructionCountPrefetchIntervalPicker prefetch_interval_picker( min_prefetch_interval, max_prefetch_interval); return AssignMemorySpace(module, options_override, {}, &prefetch_interval_picker); } std::unique_ptr<PresetAssignments> AssignMemorySpace( HloModule* module, std::optional<Options> options_override, std::optional<MsaBufferIntervalCompare> buffer_interval_compare, PrefetchIntervalPicker* prefetch_interval_picker) { auto status_or = AssignMemorySpaceAndReturnStatus(module, options_override, buffer_interval_compare, prefetch_interval_picker); TF_EXPECT_OK(status_or.status()); return std::move(status_or.value()); } absl::StatusOr<std::unique_ptr<PresetAssignments>> AssignMemorySpaceAndReturnStatus( HloModule* module, std::optional<Options> options_override, std::optional<MsaBufferIntervalCompare> buffer_interval_compare, PrefetchIntervalPicker* prefetch_interval_picker) { auto size_fn = [](const BufferValue& buffer) { return ShapeUtil::ByteSizeOf(buffer.shape(), 8); }; auto is_allowed_in_alternate_mem = [](const HloValue& value) { HloInstruction* instruction = value.instruction(); HloComputation* computation = instruction->parent(); bool in_entry_computation = (computation == computation->parent()->entry_computation()); if (in_entry_computation && instruction->opcode() == HloOpcode::kParameter) { return false; } return true; }; bool check_parameters_in_default_memory = true; for (const HloInstruction* parameter : module->entry_computation()->parameter_instructions()) { ShapeUtil::ForEachSubshape( parameter->shape(), [&](const Shape& subshape, const ShapeIndex& ) { if (subshape.has_layout() && subshape.layout().memory_space() == kAlternateMemorySpace) { check_parameters_in_default_memory = false; } }); } Options options = DefaultMemorySpaceOptions(); if (options_override) { options = *options_override; } std::unique_ptr<TestBufferIntervalComparator> test_comparator; if (buffer_interval_compare.has_value()) { test_comparator = std::make_unique<TestBufferIntervalComparator>( *buffer_interval_compare); options.buffer_interval_comparator = test_comparator.get(); } options.prefetch_interval_picker = prefetch_interval_picker; options.size_fn = size_fn; if (options.is_allowed_in_alternate_mem_fn == nullptr) { options.is_allowed_in_alternate_mem_fn = is_allowed_in_alternate_mem; } TF_ASSIGN_OR_RETURN(auto alias_analysis, HloAliasAnalysis::Run(module)); TF_ASSIGN_OR_RETURN(std::unique_ptr<HloLiveRange> hlo_live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); TF_ASSIGN_OR_RETURN(std::unique_ptr<PresetAssignments> preset_assignments, MemorySpaceAssignment::Run(module, *hlo_live_range, *alias_analysis, options)); if (check_parameters_in_default_memory) { CheckParametersInDefaultMemory(module); } CheckRootInDefaultMemory(module); CheckPresetAssignments(preset_assignments.get()); return preset_assignments; } void CheckPresetAssignments(const PresetAssignments* preset_assignments) { std::set<HloPosition> positions_in_preset_assignments; for (auto& position_and_chunk : preset_assignments->chunks()) { HloPosition position = position_and_chunk.first; EXPECT_EQ(positions_in_preset_assignments.find(position), positions_in_preset_assignments.end()); positions_in_preset_assignments.insert(position); const Shape& subshape = ShapeUtil::GetSubshape(position.instruction->shape(), position.index); EXPECT_EQ(subshape.layout().memory_space(), kAlternateMemorySpace) << "Exported position is not in alternate mem: " << position.ToString(); } } void CheckParametersInDefaultMemory(const HloModule* module) { const HloComputation* entry_computation = module->entry_computation(); for (const HloInstruction* parameter : entry_computation->parameter_instructions()) { ShapeUtil::ForEachSubshape( parameter->shape(), [&](const Shape& subshape, const ShapeIndex& ) { if (subshape.has_layout()) { EXPECT_NE(subshape.layout().memory_space(), kAlternateMemorySpace) << "Parameter not in default memory: " << parameter->ToString(); } }); } } void CheckRootInDefaultMemory(const HloModule* module) { const HloInstruction* root = module->entry_computation()->root_instruction(); if (root->shape().IsArray()) { EXPECT_EQ(root->shape().layout().memory_space(), kDefaultMemorySpace); } } struct OutstandingAsyncCopies { int64_t max_copies; int64_t max_prefetches; int64_t max_evictions; }; OutstandingAsyncCopies CountMaximumOutstandingAsyncCopies( const HloModule& module) { OutstandingAsyncCopies copies{0, 0, 0}; int64_t current_copies = 0; int64_t current_prefetches = 0; int64_t current_evictions = 0; for (HloInstruction* instruction : module.schedule() .sequence(module.entry_computation()) .instructions()) { if (instruction->opcode() == HloOpcode::kCopyStart) { current_copies++; if (ShapeUtil::GetSubshape(instruction->shape(), {0}) .layout() .memory_space() == kAlternateMemorySpace) { current_prefetches++; } else { current_evictions++; } } else if (instruction->opcode() == HloOpcode::kCopyDone) { current_copies--; if (instruction->shape().layout().memory_space() == kAlternateMemorySpace) { current_prefetches--; } else { current_evictions--; } } copies.max_copies = std::max(copies.max_copies, current_copies); copies.max_prefetches = std::max(copies.max_prefetches, current_prefetches); copies.max_prefetches = std::max(copies.max_evictions, current_evictions); } return copies; } int64_t GetAlternateMemoryOffset(const PresetAssignments& preset_assignments, const HloInstruction* instruction, const ShapeIndex& index = {}) const { const HloModule* module = instruction->GetModule(); auto alias_analysis = HloAliasAnalysis::Run(module).value(); HloBuffer& buffer = alias_analysis->GetUniqueBufferAt(instruction, index); for (auto& pos_and_chunk : preset_assignments.chunks()) { for (auto& value : buffer.values()) { if (pos_and_chunk.first == value->defining_position()) { return pos_and_chunk.second.offset; } } } return -1; } std::unique_ptr<HloModule> CreateEvictAndPrefetchModule() { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* tanh = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, tanh)); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, p0, p1)); HloInstruction* d = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* e = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, b)); HloInstruction* f = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, c)); HloInstruction* g = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, d)); HloInstruction* h = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, b, c)); HloInstruction* i = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, b, d)); HloInstruction* j = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, c, d)); HloInstruction* k = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, e, f)); HloInstruction* l = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, g, h)); HloInstruction* m = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, i, j)); HloInstruction* n = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, k, l)); HloInstruction* o = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, n, m)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, o, tanh)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, tanh, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, add}); TF_CHECK_OK(module->set_schedule(schedule)); return module; } CostAnalysis::Cache cache_; }; using MemorySpaceAssignmentTest = MemorySpaceAssignmentTestBase; TEST_F(MemorySpaceAssignmentTest, ParameterOnly) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); } TEST_F(MemorySpaceAssignmentTest, Simple) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p1)); HloInstruction* sub = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* mul = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, add, sub)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, add, sub, mul}); TF_CHECK_OK(module->set_schedule(schedule)); auto preset_assignments = AssignMemorySpace(module.get()); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); EXPECT_THAT(mul, op::ShapeWithLayout(shape)); EXPECT_THAT(add, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(sub, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_EQ(preset_assignments->chunks().size(), 3); EXPECT_EQ(preset_assignments->assignment_informations().size(), 1); EXPECT_NE(preset_assignments->chunks()[0].second.offset, preset_assignments->chunks()[1].second.offset); } TEST_F(MemorySpaceAssignmentTest, NegateChain) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[2], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, SyncCopyReplacementRedundantCopyAfterPrefetch) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[2,3]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) negate0 = f32[2,3]{1,0} negate(p1) negate1 = f32[2,3]{1,0} negate(negate0) negate2 = f32[2,3]{1,0} negate(negate1) negate3 = f32[2,3]{1,0} negate(negate2) negate4 = f32[2,3]{1,0} negate(negate3) negate5 = f32[2,3]{1,0} negate(negate4) negate6 = f32[2,3]{1,0} negate(negate5) negate7 = f32[2,3]{1,0} negate(negate6) p0_copy = f32[2,3]{1,0} copy(p0) ROOT add0 = f32[2,3]{1,0} add(p0_copy, negate7) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_sync_copy_replacement = true; AssignMemorySpace(module.get(), options); HloInstruction* add0 = FindInstruction(module.get(), "add0"); ASSERT_NE(add0, nullptr); HloInstruction* p0 = FindInstruction(module.get(), "p0"); ASSERT_NE(p0, nullptr); EXPECT_THAT(add0->operand(0), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, p0)); } TEST_F(MemorySpaceAssignmentTest, SyncCopyReplacementWouldNeedMoreThanOneAsyncCopy) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[2,3]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) negate0 = f32[2,3]{1,0} negate(p1) negate1 = f32[2,3]{1,0} negate(negate0) negate2 = f32[2,3]{1,0} negate(negate1) negate3 = f32[2,3]{1,0} negate(negate2) negate4 = f32[2,3]{1,0} negate(negate3) negate5 = f32[2,3]{1,0} negate(negate4) negate6 = f32[2,3]{1,0} negate(negate5) negate7 = f32[2,3]{1,0} negate(negate6) p0_copy = f32[2,3]{1,0} copy(p0) ROOT tuple0 = tuple(negate7, p0, p0_copy) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_sync_copy_replacement = true; AssignMemorySpace(module.get(), options); HloInstruction* tuple0 = FindInstruction(module.get(), "tuple0"); ASSERT_NE(tuple0->operand(1), tuple0->operand(2)); } TEST_F(MemorySpaceAssignmentTest, SyncCopyReplacementOperandHasMultipleUses) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[2,3]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) negate0 = f32[2,3]{1,0} negate(p1) negate1 = f32[2,3]{1,0} negate(negate0) negate2 = f32[2,3]{1,0} negate(negate1) negate3 = f32[2,3]{1,0} negate(negate2) negate4 = f32[2,3]{1,0} negate(negate3) negate5 = f32[2,3]{1,0} negate(negate4) negate6 = f32[2,3]{1,0} negate(negate5) negate7 = f32[2,3]{1,0} negate(negate6) p0_copy = f32[2,3]{1,0} copy(p0) add0 = add(p0_copy, p0) ROOT tuple = tuple(negate7, add0) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_sync_copy_replacement = true; AssignMemorySpace(module.get(), options); HloInstruction* add0 = FindInstruction(module.get(), "add0"); ASSERT_EQ(add0->operand(0), add0->operand(1)); } TEST_F(MemorySpaceAssignmentTest, AlwaysSpillJitPrefetchTest) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[2,3]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) negate0 = f32[2,3]{1,0} negate(p0) negate1 = f32[2,3]{1,0} negate(negate0) negate2 = f32[2,3]{1,0} negate(negate1) negate3 = f32[2,3]{1,0} negate(negate2) negate4 = f32[2,3]{1,0} negate(negate3) negate5 = f32[2,3]{1,0} negate(negate4) negate6 = f32[2,3]{1,0} negate(negate5) ROOT add = f32[2,3]{1,0} add(negate6, p1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.always_spill_to_default_memory = true; AssignMemorySpace(module.get(), options); const HloInstructionSequence& sequence = module->schedule().sequence(module->entry_computation()); for (int i = 0; i < sequence.instructions().size(); ++i) { VLOG(2) << i << " " << sequence.instructions()[i]->ToString(); } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); const HloInstruction* add = FindInstruction(module.get(), "add"); const HloInstruction* cd = add->operand(1); EXPECT_THAT(cd, op::CopyDone()); EXPECT_EQ(live_range->instruction_schedule().at(add), live_range->instruction_schedule().at(cd) + 1); const HloInstruction* cs = cd->operand(0); EXPECT_THAT(cs, op::CopyStart()); EXPECT_EQ(live_range->instruction_schedule().at(add), live_range->instruction_schedule().at(cs) + 2); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); } TEST_F(MemorySpaceAssignmentTest, AlwaysSpillPrefetchForSecondUseTest) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[2,3]{1,0} parameter(0) p1 = f32[2,3]{1,0} parameter(1) negate0 = f32[2,3]{1,0} negate(p0) negate1 = f32[2,3]{1,0} negate(negate0) negate2 = f32[2,3]{1,0} negate(negate1) negate3 = f32[2,3]{1,0} negate(negate2) negate4 = f32[2,3]{1,0} negate(negate3) negate5 = f32[2,3]{1,0} negate(negate4) add0 = f32[2,3]{1,0} add(negate5, negate0) ROOT add1 = f32[2,3]{1,0} add(add0, p1) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.always_spill_to_default_memory = true; AssignMemorySpace(module.get(), options); const HloInstructionSequence& sequence = module->schedule().sequence(module->entry_computation()); for (int i = 0; i < sequence.instructions().size(); ++i) { VLOG(2) << i << " " << sequence.instructions()[i]->ToString(); } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); const HloInstruction* add1 = FindInstruction(module.get(), "add1"); const HloInstruction* cd1 = add1->operand(1); EXPECT_THAT(cd1, op::CopyDone()); EXPECT_EQ(live_range->instruction_schedule().at(add1), live_range->instruction_schedule().at(cd1) + 1); const HloInstruction* cs1 = cd1->operand(0); EXPECT_THAT(cs1, op::CopyStart()); EXPECT_EQ(live_range->instruction_schedule().at(add1), live_range->instruction_schedule().at(cs1) + 2); EXPECT_EQ(cd1->shape().layout().memory_space(), kAlternateMemorySpace); const HloInstruction* add0 = FindInstruction(module.get(), "add0"); const HloInstruction* cd0 = add0->operand(1); EXPECT_THAT(cd0, op::CopyDone()); EXPECT_EQ(live_range->instruction_schedule().at(add0), live_range->instruction_schedule().at(cd0) + 1); const HloInstruction* cs0 = cd0->operand(0); EXPECT_THAT(cs0, op::CopyStart()); EXPECT_EQ(live_range->instruction_schedule().at(add0), live_range->instruction_schedule().at(cs0) + 2); EXPECT_EQ(cd0->shape().layout().memory_space(), kAlternateMemorySpace); const HloInstruction* eviction_done = cs0->operand(0); EXPECT_EQ(eviction_done->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* evection_start = eviction_done->operand(0); const HloInstruction* negate0 = evection_start->operand(0); EXPECT_EQ(live_range->instruction_schedule().at(evection_start), live_range->instruction_schedule().at(negate0) + 1); EXPECT_EQ(live_range->instruction_schedule().at(eviction_done), live_range->instruction_schedule().at(negate0) + 2); EXPECT_EQ(negate0->name(), "negate0"); } TEST_F(MemorySpaceAssignmentTest, AlwaysSpillEvictionTest) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[4,3]{1,0} parameter(0) tanh0 = f32[4,3]{1,0} tanh(p0) add0 = f32[4,3]{1,0} add(p0, p0) add1 = f32[4,3]{1,0} add(add0, p0) add2 = f32[4,3]{1,0} add(add1, p0) add3 = f32[4,3]{1,0} add(add2, p0) add4 = f32[4,3]{1,0} add(add3, p0) add5 = f32[4,3]{1,0} add(add4, tanh0) negate0 = f32[4,3]{1,0} negate(add5) tanh1 = f32[4,3]{1,0} tanh(negate0) negate1 = f32[4,3]{1,0} negate(negate0) tanh2 = f32[4,3]{1,0} tanh(tanh1) negate2 = f32[4,3]{1,0} negate(negate1) ROOT tuple = tuple(tanh0, tanh2, negate2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.always_spill_to_default_memory = true; AssignMemorySpace(module.get(), options); const HloInstructionSequence& sequence = module->schedule().sequence(module->entry_computation()); for (int i = 0; i < sequence.instructions().size(); ++i) { VLOG(2) << i << " " << sequence.instructions()[i]->ToString(); } TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloAliasAnalysis> alias_analysis, HloAliasAnalysis::Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloLiveRange> live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); const HloInstruction* tuple = FindInstruction(module.get(), "tuple"); const HloInstruction* tanh0_eviction_done = tuple->operand(0); const HloInstruction* tanh0_eviction_start = tanh0_eviction_done->operand(0); const HloInstruction* tanh0 = tanh0_eviction_start->operand(0); EXPECT_EQ(tanh0->name(), "tanh0"); EXPECT_EQ(tanh0_eviction_done->shape().layout().memory_space(), kDefaultMemorySpace); EXPECT_EQ(live_range->instruction_schedule().at(tanh0_eviction_start), live_range->instruction_schedule().at(tanh0) + 1); EXPECT_EQ(live_range->instruction_schedule().at(tanh0_eviction_done), live_range->instruction_schedule().at(tanh0) + 2); const HloInstruction* add5 = FindInstruction(module.get(), "add5"); const HloInstruction* tanh0_prefetch_done = add5->operand(1); const HloInstruction* tanh0_prefetch_start = tanh0_prefetch_done->operand(0); EXPECT_EQ(tanh0_prefetch_done->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(live_range->instruction_schedule().at(add5), live_range->instruction_schedule().at(tanh0_prefetch_done) + 1); EXPECT_EQ(live_range->instruction_schedule().at(add5), live_range->instruction_schedule().at(tanh0_prefetch_start) + 2); EXPECT_EQ(tanh0_eviction_done, tanh0_prefetch_start->operand(0)); } TEST_F(MemorySpaceAssignmentTest, FilterUpdatePreferredPrefetchTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { size_lte: 24 size_gte: 24 } override_options { prefetch_eagerness: 0.5 } })pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[6], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, FilterUpdateConfigExactMatchBeforeTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { instruction_name_regex: "add" operand_number: 1 } override_options { before_instruction_name: "negate.3" } })pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[5], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, FilterUpdateConfigExactMatchAfterTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { instruction_name_regex: "add" operand_number: 1 } override_options { after_instruction_name: "negate.1" } })pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[4], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, FilterUpdateConfigExactMatchTooLateTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { instruction_name_regex: "add" operand_number: 1 } override_options { after_instruction_name: "negate.5" } })pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::Parameter(1))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); } TEST_F(MemorySpaceAssignmentTest, FilterUpdateConfigPrecedenceTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { size_lte: 24 size_gte: 24 } override_options { prefetch_eagerness: 0.5 } } overrides { hlo_operand_filter { instruction_name_regex: "add" operand_number: 1 } override_options { after_instruction_name: "negate.1" } })pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[6], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, FilterUpdateConfigExactMatchPrecedenceTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { instruction_name_regex: "add" operand_number: 1 } override_options { after_instruction_name: "negate.1" } } overrides { hlo_operand_filter { size_lte: 24 size_gte: 24 } override_options { prefetch_eagerness: 0.5 } } )pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[4], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, FilterUpdatePreferredPrefetchNoMatchTest) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); const std::string text_proto = R"pb( overrides { hlo_operand_filter { size_lte: 24 size_gte: 25 } override_options { prefetch_eagerness: 0.5 } } )pb"; TF_ASSERT_OK_AND_ASSIGN( options.preferred_prefetch_overrides, ParseTextProto<PreferredPrefetchOverrides>(text_proto)); AssignMemorySpace(module.get(), options); EXPECT_THAT(add, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); const HloInstructionSequence& sequence = module->schedule().sequence(computation); EXPECT_THAT(sequence.instructions()[0], op::Parameter(0)); EXPECT_THAT(sequence.instructions()[1], op::Parameter(1)); EXPECT_THAT(sequence.instructions()[2], op::CopyStart()); EXPECT_THAT(sequence.instructions()[10], op::CopyDone()); } TEST_F(MemorySpaceAssignmentTest, EvictAndPrefetch) { std::unique_ptr<HloModule> module = CreateEvictAndPrefetchModule(); AssignMemorySpace(module.get()); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Add(op::Add(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::Tanh())))); } TEST_F(MemorySpaceAssignmentTest, EvictAndPrefetchLimitAsyncCopies0) { std::unique_ptr<HloModule> module = CreateEvictAndPrefetchModule(); AssignMemorySpace(module.get(), UpdateMaxAsyncCopies(DefaultMemorySpaceOptions(), 0)); EXPECT_LE(CountMaximumOutstandingAsyncCopies(*module).max_prefetches, 0); EXPECT_LE(CountMaximumOutstandingAsyncCopies(*module).max_evictions, 0); } TEST_F(MemorySpaceAssignmentTest, EvictAndPrefetchLimitAsyncCopies1) { std::unique_ptr<HloModule> module = CreateEvictAndPrefetchModule(); AssignMemorySpace(module.get(), UpdateMaxAsyncCopies(DefaultMemorySpaceOptions(), 1)); EXPECT_LE(CountMaximumOutstandingAsyncCopies(*module).max_prefetches, 1); EXPECT_LE(CountMaximumOutstandingAsyncCopies(*module).max_evictions, 1); } TEST_F(MemorySpaceAssignmentTest, EvictAndPrefetchLimitAsyncCopies2) { std::unique_ptr<HloModule> module = CreateEvictAndPrefetchModule(); AssignMemorySpace(module.get(), UpdateMaxAsyncCopies(DefaultMemorySpaceOptions(), 2)); EXPECT_LE(CountMaximumOutstandingAsyncCopies(*module).max_prefetches, 2); EXPECT_LE(CountMaximumOutstandingAsyncCopies(*module).max_evictions, 2); } TEST_F(MemorySpaceAssignmentTest, DISABLED_DontEvictWhenThereIsDefaultMemAllocation) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* tanh = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, tanh)); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, p0, p1)); HloInstruction* d = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* e = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, b)); HloInstruction* f = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, c)); HloInstruction* g = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, d)); HloInstruction* h = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, b, c)); HloInstruction* i = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, b, d)); HloInstruction* j = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, c, d)); HloInstruction* k = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, e, f)); HloInstruction* l = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, g, h)); HloInstruction* m = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, i, j)); HloInstruction* n = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, k, l)); HloInstruction* o = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, n, m)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, o, tanh)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, tanh, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), UpdateMaxAsyncCopies(DefaultMemorySpaceOptions(), 1)); EXPECT_THAT(f, op::Multiply(op::Add(), op::CopyDone())); EXPECT_THAT(h, op::Multiply(op::Subtract(), op::Multiply())); } TEST_F(MemorySpaceAssignmentTest, EvictAndPrefetchAndPrefetch) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* tanh = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* a = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, tanh)); HloInstruction* b = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* c = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, p0, p1)); HloInstruction* d = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kSubtract, p0, p1)); HloInstruction* e = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, b)); HloInstruction* f = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, c)); HloInstruction* g = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, a, d)); HloInstruction* h = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, b, c)); HloInstruction* i = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, b, d)); HloInstruction* j = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, c, d)); HloInstruction* k = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, e, f)); HloInstruction* l = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, g, h)); HloInstruction* m = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, i, j)); HloInstruction* n = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, k, l)); HloInstruction* o = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, n, m)); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, o, tanh)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, add0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* negate8 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate7)); HloInstruction* negate9 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate8)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate9, tanh)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p0, p1, tanh, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, add0, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, negate8, negate9, add1}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT( add0, op::Add(op::Add(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::Tanh())))); EXPECT_THAT( add1, op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::Tanh())))); } TEST_F(MemorySpaceAssignmentTest, While) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(50.f))); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 1)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.f))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, body_iter, body_iter_increment)); HloInstruction* body_data_increment = body_builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.f, 2.f, 3.f}, {4.f, 5.f, 6.f}}))); HloInstruction* body_data_mul = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, body_data, body_data)); HloInstruction* body_data_add = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data, body_data_increment)); HloInstruction* body_data_next = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data_add, body_data_mul)); HloInstruction* body_out = body_builder.AddInstruction( HloInstruction::CreateTuple({body_data_next, body_iter_next})); HloComputation* body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param_iter")); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_data")); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({data, iter})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_limit, cond_lt}); schedule.set_sequence(body_computation, {body_param, body_iter, body_data, body_iter_increment, body_iter_next, body_data_increment, body_data_mul, body_data_add, body_data_next, body_out}); schedule.set_sequence(entry_computation, {iter, data, tuple, while_op}); TF_CHECK_OK(module->set_schedule(schedule)); LOG(INFO) << module->ToString(HloPrintOptions::ShortParsable()); AssignMemorySpace(module.get()); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(body_data_mul, op::ShapeWithLayout(shape_in_alternate_mem)); } TEST_F(MemorySpaceAssignmentTest, Tuple) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape inner_tuple_shape = ShapeUtil::MakeTupleShape({shape}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape, inner_tuple_shape}); HloInstruction* p = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* p0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 0)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 1)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); HloInstruction* p2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(inner_tuple_shape, p, 2)); HloInstruction* p2_0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p2, 0)); HloInstruction* mul = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, add, p2_0)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p, p0, negate0, negate1, negate2, negate3, negate4, negate5, negate6, p1, add, p2, p2_0, mul}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT( mul, op::Multiply(op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement())), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::GetTupleElement())))); } TEST_F(MemorySpaceAssignmentTest, Bitcast) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, param_shape, "p1")); HloInstruction* negate = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* bitcast = builder.AddInstruction( HloInstruction::CreateBitcast(param_shape, negate)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(param_shape, HloOpcode::kAdd, bitcast, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate, bitcast, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); bitcast = add->mutable_operand(0); EXPECT_EQ(bitcast->opcode(), HloOpcode::kBitcast); EXPECT_EQ(bitcast->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, Bitcast2) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, param_shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(shape, p1)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, bitcast, negate4)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, bitcast, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_EQ(add->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, Bitcast3) { HloComputation::Builder builder(TestName()); Shape shape1 = ShapeUtil::MakeShape(F32, {2, 3}); Shape shape2 = ShapeUtil::MakeShape(F32, {3, 2}); Shape shape3 = ShapeUtil::MakeShape(F32, {1, 6}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape1, "p0")); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, param_shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape1, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape1, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape1, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape1, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape1, HloOpcode::kNegate, negate3)); HloInstruction* bitcast1 = builder.AddInstruction(HloInstruction::CreateBitcast(shape1, p1)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kAdd, bitcast1, negate4)); HloInstruction* bitcast2 = builder.AddInstruction(HloInstruction::CreateBitcast(shape3, p1)); HloInstruction* bitcast3 = builder.AddInstruction(HloInstruction::CreateBitcast(shape2, bitcast2)); HloInstruction* bitcast4 = builder.AddInstruction(HloInstruction::CreateBitcast(shape2, add)); HloInstruction* mul = builder.AddInstruction(HloInstruction::CreateBinary( shape2, HloOpcode::kMultiply, bitcast3, bitcast4)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, bitcast1, add, bitcast2, bitcast3, bitcast4, mul}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT( mul, op::Multiply( op::Bitcast(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1))), op::Bitcast(op::Add( op::Bitcast(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1))), op::Negate())))); EXPECT_EQ(add->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(add->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(mul->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(mul->operand(1)->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, BitcastTuple) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion_builder("fusion"); HloInstruction* fusion_param = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* fusion_element0 = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion_param, 0)); HloInstruction* fusion_element1 = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion_param, 1)); fusion_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, fusion_element0, fusion_element1)); HloComputation* fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, param_shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(shape, p1)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({bitcast, p0})); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kCustom, {tuple}, fusion_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, bitcast, tuple, fusion}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, BitcastGetTupleElementTuple) { absl::string_view hlo_string = R"( HloModule DoIt_S64_10_0_5_1.3, is_scheduled=true ENTRY %DoIt_S64_10_0_5_1.3 (p0.1: (u32[10], u32[10])) -> (u32[5], u32[5]) { %p0.1 = (u32[10]{0:T(128)}, u32[10]{0:T(128)}) parameter(0) %get-tuple-element.1 = u32[10]{0:T(128)} get-tuple-element((u32[10]{0:T(128)}, u32[10]{0:T(128)}) %p0.1), index=1 %bitcast.1 = u32[5]{0:T(128)} bitcast(u32[10]{0:T(128)} %get-tuple-element.1) %get-tuple-element = u32[10]{0:T(128)} get-tuple-element((u32[10]{0:T(128)}, u32[10]{0:T(128)}) %p0.1), index=0 %bitcast = u32[5]{0:T(128)} bitcast(u32[10]{0:T(128)} %get-tuple-element) %tuple.1 = (u32[5]{0:T(128)}, u32[5]{0:T(128)}) tuple(u32[5]{0:T(128)} %bitcast, u32[5]{0:T(128)} %bitcast.1) %tuple.3 = ((u32[5]{0:T(128)}, u32[5]{0:T(128)}), (u32[5]{0:T(128)}, u32[5]{0:T(128)})) tuple(%tuple.1, %tuple.1) %get-tuple-element.4 = u32[5]{0:T(128)} get-tuple-element((u32[5]{0:T(128)}, u32[5]{0:T(128)}) %tuple.1), index=0 %get-tuple-element.5 = (u32[5]{0:T(128)}, u32[5]{0:T(128)}) get-tuple-element(%tuple.3), index=0 %get-tuple-element.6 = u32[5]{0:T(128)} get-tuple-element((u32[5]{0:T(128)}, u32[5]{0:T(128)}) %get-tuple-element.5), index=1 %copy.2 = u32[5]{0:T(128)} copy(u32[5]{0:T(128)} %get-tuple-element.4) %copy.3 = u32[5]{0:T(128)} copy(u32[5]{0:T(128)} %get-tuple-element.6) ROOT %tuple.2 = (u32[5]{0:T(128)}, u32[5]{0:T(128)}) tuple(u32[5]{0:T(128)} %copy.2, u32[5]{0:T(128)} %copy.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, GetSimplifiedOperandBug) { absl::string_view hlo_string = R"( HloModule sort.16, is_scheduled=true ENTRY %sort.16 (param.0.1: s32[1], param.1.2: f32[1], param.2.3: u32[1], param.3.4: s32[1]) -> (s32[1], f32[1], u32[1], s32[1]) { %param.3.4 = s32[1]{0:T(128)} parameter(3) %param.2.3 = u32[1]{0:T(128)} parameter(2) %param.1.2 = f32[1]{0:T(128)} parameter(1) %param.0.1 = s32[1]{0:T(128)} parameter(0) %tuple.1 = (s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %param.0.1, f32[1]{0:T(128)} %param.1.2, u32[1]{0:T(128)} %param.2.3, s32[1]{0:T(128)} %param.3.4) %get-tuple-element.4 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=0 %get-tuple-element.5 = f32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=1 %get-tuple-element.6 = u32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=2 %get-tuple-element.7 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=3 %copy.4 = s32[1]{0:T(128)} copy(s32[1]{0:T(128)} %get-tuple-element.4) %copy.5 = f32[1]{0:T(128)} copy(f32[1]{0:T(128)} %get-tuple-element.5) %copy.6 = u32[1]{0:T(128)} copy(u32[1]{0:T(128)} %get-tuple-element.6) %copy.7 = s32[1]{0:T(128)} copy(s32[1]{0:T(128)} %get-tuple-element.7) ROOT %tuple.2 = (s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %copy.4, f32[1]{0:T(128)} %copy.5, u32[1]{0:T(128)} %copy.6, s32[1]{0:T(128)} %copy.7) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, BitcastMultiUse) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); HloInstruction* p0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "p1")); HloInstruction* bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(shape, p0)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, bitcast)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, bitcast, negate4)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, bitcast, negate0, negate1, negate2, negate3, negate4, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0->operand(0), op::ShapeWithLayout(shape)); EXPECT_THAT(add->operand(0), op::ShapeWithLayout(shape_in_alternate_mem)); } TEST_F(MemorySpaceAssignmentTest, BitcastMultiUseTuple) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion_builder("fusion"); HloInstruction* fusion_param = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* fusion_element0 = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion_param, 0)); HloInstruction* fusion_element1 = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion_param, 1)); fusion_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, fusion_element0, fusion_element1)); HloComputation* fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); HloInstruction* p0 = builder.AddInstruction( HloInstruction::CreateParameter(0, param_shape, "p1")); HloInstruction* bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(shape, p0)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, bitcast)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({bitcast, negate4})); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kCustom, {tuple}, fusion_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, bitcast, negate0, negate1, negate2, negate3, negate4, tuple, fusion}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0->operand(0), op::ShapeWithLayout(shape)); EXPECT_THAT(fusion->operand(0)->operand(0), op::ShapeWithLayout(shape_in_alternate_mem)); } TEST_F(MemorySpaceAssignmentTest, BitcastScheduleBug) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape param_shape = ShapeUtil::MakeShape(F32, {6}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, param_shape, "p1")); HloInstruction* bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(shape, p1)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* negate8 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate7)); HloInstruction* negate9 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate8)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, bitcast, negate9)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p0, p1, bitcast, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, negate8, negate9, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5, 4); EXPECT_EQ(add->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); const auto& instructions = module->schedule().sequence(module->entry_computation()).instructions(); for (int i = 0; i < instructions.size(); ++i) { if (instructions.at(i)->opcode() == HloOpcode::kCopyStart) { EXPECT_EQ(instructions.at(i - 1)->opcode(), HloOpcode::kNegate); EXPECT_EQ(instructions.at(i + 1)->opcode(), HloOpcode::kNegate); } else if (instructions.at(i)->opcode() == HloOpcode::kCopyDone) { EXPECT_EQ(instructions.at(i - 1)->opcode(), HloOpcode::kNegate); } } } TEST_F(MemorySpaceAssignmentTest, AddDependency) { absl::string_view hlo_string = R"( HloModule AddDependency, is_scheduled=true ENTRY %AddDependency (p: f32[3]) -> f32[3] { %p = f32[3]{0} parameter(0) %neg0 = f32[3]{0} negate(f32[3]{0} %p) %neg1 = f32[3]{0} negate(f32[3]{0} %neg0) %neg2 = f32[3]{0} negate(f32[3]{0} %neg1) %neg3 = f32[3]{0} negate(f32[3]{0} %neg2) %neg4 = f32[3]{0} negate(f32[3]{0} %neg3) %neg5 = f32[3]{0} negate(f32[3]{0} %neg4) %neg6 = f32[3]{0} negate(f32[3]{0} %neg5) %token0 = token[] after-all() %add_dep = f32[3]{0} add-dependency(f32[3]{0} %p, token[] %token0) ROOT %add = f32[3]{0} add(f32[3]{0} %add_dep, f32[3]{0} %neg6) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Add(op::AddDependency(), op::Negate())); } TEST_F(MemorySpaceAssignmentTest, WhileAllocationBug) { absl::string_view hlo_string = R"( HloModule WhileAllocationBug, is_scheduled=true %WhileBody (body_param: (f32[4,3], f32[])) -> (f32[4,3], f32[]) { %body_param = (f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[4,3]{1,0}, f32[]) %body_param), index=1 %get-tuple-element.2 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[]) %body_param), index=0 %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %constant.2 = f32[4,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 }, { 1, 2, 3 }, { 4, 5, 6 } }) %multiply = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %get-tuple-element.2, f32[4,3]{1,0} %get-tuple-element.2) %multiply2 = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %multiply, f32[4,3]{1,0} %multiply) %add.1 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.2, f32[4,3]{1,0} %constant.2) %add.2 = f32[4,3]{1,0} add(f32[4,3]{1,0} %add.1, f32[4,3]{1,0} %multiply2) ROOT %tuple = (f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %add.2, f32[] %add) } %WhileCond (cond_param: (f32[4,3], f32[])) -> pred[] { %cond_param = (f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[4,3]{1,0}, f32[]) %cond_param), index=1 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %Entry (param_iter: f32[4,3], param_data: f32[], p2: f32[4,3]) -> f32[4,3] { %param_data = f32[] parameter(1) %param_iter = f32[4,3]{1,0} parameter(0) %p2 = f32[4,3]{1,0} parameter(2) %tanh = f32[4,3]{1,0} tanh(f32[4,3]{1,0} %param_iter) %neg0 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %p2) %neg1 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg0) %neg2 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg1) %neg3 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg2) %neg4 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg3) %neg5 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg4) %neg6 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg5) %add.4 = f32[4,3]{1,0} add(f32[4,3]{1,0} %neg6, f32[4,3]{1,0} %tanh) %tuple.1 = (f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %tanh, f32[] %param_data) %while = (f32[4,3]{1,0}, f32[]) while((f32[4,3]{1,0}, f32[]) %tuple.1), condition=%WhileCond, body=%WhileBody %get-tuple-element.3 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[]) %while), index=0 ROOT %add.3 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.3, f32[4,3]{1,0} %add.4) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { bool a_is_mul = a.buffer->defining_instruction()->opcode() == HloOpcode::kMultiply; bool b_is_mul = b.buffer->defining_instruction()->opcode() == HloOpcode::kMultiply; if (a_is_mul && !b_is_mul) { return true; } if (!a_is_mul && b_is_mul) { return false; } bool a_is_tanh = a.buffer->defining_instruction()->opcode() == HloOpcode::kTanh; bool b_is_tanh = b.buffer->defining_instruction()->opcode() == HloOpcode::kTanh; if (a_is_tanh && !b_is_tanh) { return true; } if (!a_is_tanh && b_is_tanh) { return false; } return a.buffer->id() < b.buffer->id(); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), buffer_interval_compare, &prefetch_interval_picker); for (const HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kWhile) { const Shape& while_subshape = ShapeUtil::GetSubshape(instruction->shape(), {0}); if (while_subshape.layout().memory_space() == kAlternateMemorySpace) { const HloInstruction* body_param = instruction->while_body()->parameter_instruction(0); const HloInstruction* gte = nullptr; for (const HloInstruction* user : body_param->users()) { if (user->opcode() == HloOpcode::kGetTupleElement && user->tuple_index() == 0) { gte = user; break; } } EXPECT_NE(gte, nullptr); const HloInstruction* copy_start = nullptr; for (const HloInstruction* user : gte->users()) { if (user->opcode() == HloOpcode::kCopyStart) { copy_start = user; break; } } EXPECT_NE(copy_start, nullptr); const Shape& copy_start_subshape = ShapeUtil::GetSubshape(copy_start->shape(), {0}); EXPECT_NE(copy_start_subshape.layout().memory_space(), kAlternateMemorySpace); } } } } TEST_F(MemorySpaceAssignmentTest, ConsecutiveWhileLoops) { absl::string_view hlo_string = R"( HloModule WhileAllocationBug, is_scheduled=true %WhileBody (body_param: (f32[4,3], f32[4,3], f32[])) -> (f32[4,3], f32[4,3], f32[]) { %body_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=2 %get-tuple-element.2 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=0 %get-tuple-element.3 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=1 %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %constant.2 = f32[4,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 }, { 1, 2, 3 }, { 4, 5, 6 } }) %multiply = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %get-tuple-element.2, f32[4,3]{1,0} %get-tuple-element.3) %multiply2 = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %multiply, f32[4,3]{1,0} %multiply) %add.1 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.2, f32[4,3]{1,0} %constant.2) %add.2 = f32[4,3]{1,0} add(f32[4,3]{1,0} %add.1, f32[4,3]{1,0} %multiply2) ROOT %tuple = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %add.2, f32[4,3]{1,0} %get-tuple-element.3, f32[] %add) } %WhileCond (cond_param: (f32[4,3], f32[4,3], f32[])) -> pred[] { %cond_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %cond_param), index=2 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } %WhileBody2 (body_param: (f32[4,3], f32[4,3], f32[])) -> (f32[4,3], f32[4,3], f32[]) { %body_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=2 %get-tuple-element.2 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=0 %get-tuple-element.3 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=1 %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %constant.2 = f32[4,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 }, { 1, 2, 3 }, { 4, 5, 6 } }) %multiply = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %get-tuple-element.2, f32[4,3]{1,0} %get-tuple-element.3) %multiply2 = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %multiply, f32[4,3]{1,0} %multiply) %add.1 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.2, f32[4,3]{1,0} %constant.2) %add.2 = f32[4,3]{1,0} add(f32[4,3]{1,0} %add.1, f32[4,3]{1,0} %multiply2) ROOT %tuple = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %add.2, f32[4,3]{1,0} %get-tuple-element.3, f32[] %add) } %WhileCond2 (cond_param: (f32[4,3], f32[4,3], f32[])) -> pred[] { %cond_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %cond_param), index=2 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %Entry (param_data: f32[4,3], param_iter: f32[], p2: f32[4,3]) -> f32[4,3] { %param_iter = f32[] parameter(1) %param_data = f32[4,3]{1,0} parameter(0) %p2 = f32[4,3]{1,0} parameter(2) %neg0 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %p2) %neg1 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg0) %neg2 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg1) %neg3 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg2) %neg4 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg3) %neg5 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg4) %neg6 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg5) %add.4 = f32[4,3]{1,0} add(f32[4,3]{1,0} %neg6, f32[4,3]{1,0} %p2) %tuple.1 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} add.4, f32[4,3]{1,0} param_data, f32[] %param_iter) %while = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) while((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %tuple.1), condition=%WhileCond, body=%WhileBody %get-tuple-element.4 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while), index=0 %add.3 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.4, f32[4,3]{1,0} %add.4) %get-tuple-element.5 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while), index=1 %tuple.2 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} add.3, f32[4,3]{1,0} get-tuple-element.5, f32[] %param_iter) %while.1 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) while((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %tuple.2), condition=%WhileCond2, body=%WhileBody2 %get-tuple-element.6 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while.1), index=0 ROOT %add.5 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.6, f32[4,3]{1,0} %add.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, WhileLiveRangeBug) { absl::string_view hlo_string = R"( HloModule WhileAllocationBug, is_scheduled=true %WhileBody (body_param: (f32[4,3], f32[4,3], f32[])) -> (f32[4,3], f32[4,3], f32[]) { %body_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=2 %get-tuple-element.2 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=0 %get-tuple-element.3 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=1 %neg10 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %get-tuple-element.2) %neg11 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg10) %neg12 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg11) %neg13 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg12) %neg14 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg13) %neg15 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg14) %neg16 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg15) %neg17 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg16) %neg18 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg17) %neg19 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg18) %neg20 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg19) %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %constant.2 = f32[4,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 }, { 1, 2, 3 }, { 4, 5, 6 } }) %multiply = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %neg20, f32[4,3]{1,0} %neg20) %multiply2 = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %multiply, f32[4,3]{1,0} %multiply) %add.1 = f32[4,3]{1,0} add(f32[4,3]{1,0} get-tuple-element.3, f32[4,3]{1,0} %constant.2) %add.2 = f32[4,3]{1,0} add(f32[4,3]{1,0} %add.1, f32[4,3]{1,0} %multiply2) ROOT %tuple = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %add.2, f32[4,3]{1,0} %get-tuple-element.3, f32[] %add) } %WhileCond (cond_param: (f32[4,3], f32[4,3], f32[])) -> pred[] { %cond_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %cond_param), index=2 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %Entry (param_data: f32[4,3], param_iter: f32[], p2: f32[4,3]) -> f32[4,3] { %param_iter = f32[] parameter(1) %param_data = f32[4,3]{1,0} parameter(0) %p2 = f32[4,3]{1,0} parameter(2) %neg0 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %p2) %neg1 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg0) %neg2 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg1) %neg3 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg2) %neg4 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg3) %neg5 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg4) %neg6 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg5) %add.4 = f32[4,3]{1,0} add(f32[4,3]{1,0} %neg6, f32[4,3]{1,0} %p2) %tuple.1 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} add.4, f32[4,3]{1,0} param_data, f32[] %param_iter) %while = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) while((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %tuple.1), condition=%WhileCond, body=%WhileBody %get-tuple-element.4 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while), index=0 %get-tuple-element.5 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while), index=1 %add.3 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.4, f32[4,3]{1,0} %add.4) ROOT %add.5 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.5, f32[4,3]{1,0} %add.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, ConsecutiveWhileLoopsOneBuffer) { absl::string_view hlo_string = R"( HloModule WhileAllocationBug, is_scheduled=true %WhileBody (body_param: (f32[4,3], f32[4,3], f32[])) -> (f32[4,3], f32[4,3], f32[]) { %body_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=2 %get-tuple-element.2 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=0 %get-tuple-element.3 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=1 %neg10 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %get-tuple-element.2) %neg11 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg10) %neg12 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg11) %neg13 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg12) %neg14 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg13) %neg15 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg14) %neg16 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg15) %neg17 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg16) %neg18 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg17) %neg19 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg18) %neg20 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg19) %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %constant.2 = f32[4,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 }, { 1, 2, 3 }, { 4, 5, 6 } }) %multiply = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %neg20, f32[4,3]{1,0} %neg20) %multiply2 = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %multiply, f32[4,3]{1,0} %multiply) %add.1 = f32[4,3]{1,0} add(f32[4,3]{1,0} get-tuple-element.3, f32[4,3]{1,0} %constant.2) %add.2 = f32[4,3]{1,0} add(f32[4,3]{1,0} %add.1, f32[4,3]{1,0} %multiply2) ROOT %tuple = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %add.2, f32[4,3]{1,0} %get-tuple-element.3, f32[] %add) } %WhileCond (cond_param: (f32[4,3], f32[4,3], f32[])) -> pred[] { %cond_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %cond_param), index=2 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } %WhileBody2 (body_param: (f32[4,3], f32[4,3], f32[])) -> (f32[4,3], f32[4,3], f32[]) { %body_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=2 %get-tuple-element.2 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=0 %get-tuple-element.3 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %body_param), index=1 %neg10 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %get-tuple-element.2) %neg11 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg10) %neg12 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg11) %neg13 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg12) %neg14 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg13) %neg15 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg14) %neg16 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg15) %neg17 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg16) %neg18 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg17) %neg19 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg18) %neg20 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg19) %constant.1 = f32[] constant(1) %add = f32[] add(f32[] %get-tuple-element.1, f32[] %constant.1) %constant.2 = f32[4,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 }, { 1, 2, 3 }, { 4, 5, 6 } }) %multiply = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %neg20, f32[4,3]{1,0} %neg20) %multiply2 = f32[4,3]{1,0} multiply(f32[4,3]{1,0} %multiply, f32[4,3]{1,0} %multiply) %add.1 = f32[4,3]{1,0} add(f32[4,3]{1,0} get-tuple-element.3, f32[4,3]{1,0} %constant.2) %add.2 = f32[4,3]{1,0} add(f32[4,3]{1,0} %add.1, f32[4,3]{1,0} %multiply2) ROOT %tuple = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} %add.2, f32[4,3]{1,0} %get-tuple-element.3, f32[] %add) } %WhileCond2 (cond_param: (f32[4,3], f32[4,3], f32[])) -> pred[] { %cond_param = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %cond_param), index=2 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %Entry (param_data: f32[4,3], param_iter: f32[], p2: f32[4,3]) -> f32[4,3] { %param_iter = f32[] parameter(1) %param_data = f32[4,3]{1,0} parameter(0) %p2 = f32[4,3]{1,0} parameter(2) %neg0 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %p2) %neg1 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg0) %neg2 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg1) %neg3 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg2) %neg4 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg3) %neg5 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg4) %neg6 = f32[4,3]{1,0} negate(f32[4,3]{1,0} %neg5) %add.4 = f32[4,3]{1,0} add(f32[4,3]{1,0} %neg6, f32[4,3]{1,0} %p2) %tuple.1 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} add.4, f32[4,3]{1,0} param_data, f32[] %param_iter) %while = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) while((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %tuple.1), condition=%WhileCond, body=%WhileBody %get-tuple-element.4 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while), index=0 %add.3 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.4, f32[4,3]{1,0} %add.4) %tuple.2 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) tuple(f32[4,3]{1,0} add.3, f32[4,3]{1,0} param_data, f32[] %param_iter) %while.1 = (f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) while((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %tuple.2), condition=%WhileCond2, body=%WhileBody2 %get-tuple-element.5 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while.1), index=0 %get-tuple-element.6 = f32[4,3]{1,0} get-tuple-element((f32[4,3]{1,0}, f32[4,3]{1,0}, f32[]) %while.1), index=1 ROOT %add.5 = f32[4,3]{1,0} add(f32[4,3]{1,0} %get-tuple-element.5, f32[4,3]{1,0} %get-tuple-element.6) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, WhileCondAliasBug) { absl::string_view hlo_string = R"( HloModule WhileWithPrngScalarResult.18, is_scheduled=true %fused_computation (param_0.1: s32[6], param_1.3: s32[1], param_2.3: s32[5]) -> s32[6] { %param_1.3 = s32[1]{0:T(128)} parameter(1) %constant.2 = s32[]{:T(128)} constant(-2147483648) %pad.2 = s32[6]{0:T(128)} pad(s32[1]{0:T(128)} %param_1.3, s32[]{:T(128)} %constant.2), padding=0_5 %param_2.3 = s32[5]{0:T(128)} parameter(2) %pad.3 = s32[6]{0:T(128)} pad(s32[5]{0:T(128)} %param_2.3, s32[]{:T(128)} %constant.2), padding=1_0 %maximum.1 = s32[6]{0:T(128)} maximum(s32[6]{0:T(128)} %pad.2, s32[6]{0:T(128)} %pad.3) %param_0.1 = s32[6]{0:T(128)} parameter(0) ROOT %add.0 = s32[6]{0:T(128)} add(s32[6]{0:T(128)} %maximum.1, s32[6]{0:T(128)} %param_0.1) } %body.3 (prev.4: s32[6]) -> s32[6] { %constant.7 = s32[]{:T(128)} constant(100) %constant.6 = s32[]{:T(128)} constant(0) %constant.5 = s32[1]{0:T(128)} constant({1}) %prev.4 = s32[6]{0:T(128)} parameter(0) %rng.8 = s32[5]{0:T(128)} rng(s32[]{:T(128)} %constant.6, s32[]{:T(128)} %constant.7), distribution=rng_uniform %neg = s32[1]{0:T(128)} negate(s32[1]{0:T(128)} %constant.5) ROOT %fusion = s32[6]{0:T(128)} fusion(s32[6]{0:T(128)} %prev.4, s32[1]{0:T(128)} %neg, s32[5]{0:T(128)} %rng.8), kind=kLoop, calls=%fused_computation } %WhileWithPrngScalarResult.11 (prev.12: s32[6]) -> pred[] { %constant.15 = s32[]{:T(128)} constant(1) %prev.12 = s32[6]{0:T(128)} parameter(0) %bitcast.1 = s32[1]{0:T(128)} bitcast(s32[6]{0:T(128)} %prev.12) %bitcast = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %bitcast.1) ROOT %compare.16 = pred[]{:T(128)} compare(s32[]{:T(128)} %constant.15, s32[]{:T(128)} %bitcast), direction=GT } ENTRY %WhileWithPrngScalarResult.18 () -> s32[6] { %constant.1 = s32[]{:T(128)} constant(0) %broadcast.2 = s32[6]{0:T(128)} broadcast(s32[]{:T(128)} %constant.1), dimensions={} ROOT %while.17 = s32[6]{0:T(128)} while(s32[6]{0:T(128)} %broadcast.2), condition=%WhileWithPrngScalarResult.11, body=%body.3 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, WhileInPlaceBuffer) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation { param0 = f32[2,3] parameter(0) constant.1 = f32[] constant(0) broadcast = f32[2,1] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[2,3] dynamic-update-slice(param0, broadcast, constant.3, constant.3) } %WhileBody (body_param: (f32[2,3], f32[2,3], f32[])) -> (f32[2,3], f32[2,3], f32[]) { %body_param = (f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) parameter(0) %get-tuple-element.1 = f32[] get-tuple-element((f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) %body_param), index=2 %get-tuple-element.2 = f32[2,3]{1,0} get-tuple-element((f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) %body_param), index=0 %get-tuple-element.3 = f32[2,3]{1,0} get-tuple-element((f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) %body_param), index=1 %fusion = f32[2,3]{1,0} fusion(get-tuple-element.3), kind=kLoop, calls=fused_computation %multiply = f32[2,3]{1,0} multiply(f32[2,3]{1,0} %get-tuple-element.2, f32[2,3]{1,0} %fusion) ROOT %tuple = (f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) tuple(f32[2,3]{1,0} %multiply, f32[2,3]{1,0} %fusion, f32[] %get-tuple-element.1) } %WhileCond (cond_param: (f32[2,3], f32[2,3], f32[])) -> pred[] { %cond_param = (f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) parameter(0) %get-tuple-element = f32[] get-tuple-element((f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) %cond_param), index=2 %constant = f32[] constant(50) ROOT %compare = pred[] compare(f32[] %get-tuple-element, f32[] %constant), direction=LT } ENTRY %Entry (param_data: f32[2,3], param_iter: f32[], p2: f32[2,3]) -> f32[2,3] { %param_iter = f32[] parameter(1) %param_data = f32[2,3]{1,0} parameter(0) %p2 = f32[2,3]{1,0} parameter(2) %copy1 = f32[2,3]{1,0} copy(param_data) %copy2 = f32[2,3]{1,0} copy(p2) %tuple.1 = (f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) tuple(f32[2,3]{1,0} copy1, f32[2,3]{1,0} copy2, f32[] %param_iter) %while = (f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) while((f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) %tuple.1), condition=%WhileCond, body=%WhileBody %get-tuple-element.4 = f32[2,3]{1,0} get-tuple-element((f32[2,3]{1,0}, f32[2,3]{1,0}, f32[]) %while), index=0 ROOT %copy3 = f32[2,3]{1,0} copy(get-tuple-element.4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_EQ( ShapeUtil::GetSubshape(while_op->shape(), {1}).layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, WhileSharedBufferVerificationBug) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=3 } while_body { p0 = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = f32[3]{0} get-tuple-element(p0), index=2 gte3 = pred[] get-tuple-element(p0), index=3 add = f32[3]{0} add(gte0, gte0) negate0 = f32[3]{0} negate(add) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) negate15 = f32[3]{0} negate(negate14) negate16 = f32[3]{0} negate(negate15) ROOT tuple = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, gte0, negate16, gte3) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy0 = f32[3]{0} copy(p0) copy1 = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) tuple(copy0, copy0, copy1, p1) while = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body ROOT gte = f32[3]{0} get-tuple-element(while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, b228599972) { absl::string_view hlo_string = R"( HloModule entry, is_scheduled=true fused_computation { %p0 = f32[2,3]{1,0} parameter(0) %result0 = f32[2,3]{1,0} copy(%p0) %result1 = f32[2,3]{1,0} copy(%p0) ROOT tuple = (f32[2,3]{1,0}, f32[2,3]{1,0}) tuple(%result0, %result1) } ENTRY entry { %p0 = f32[2,3]{1,0} parameter(0) %p1 = f32[2,3]{1,0} parameter(1) %unused = (f32[2,3]{1,0}, f32[2,3]{1,0}) fusion(%p0), kind=kLoop, calls=%fused_computation %unused.0 = f32[2,3]{1,0} get-tuple-element(%unused), index=0 %unused.1 = f32[2,3]{1,0} get-tuple-element(%unused), index=1 %negate.0 = f32[2,3]{1,0} negate(f32[2,3]{1,0} %unused.0) %negate.1 = f32[2,3]{1,0} negate(f32[2,3]{1,0} %unused.1) ROOT %result = f32[2,3]{1,0} negate(%p1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, b172243149) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=3 } while_body { p0 = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = f32[3]{0} get-tuple-element(p0), index=2 gte3 = pred[] get-tuple-element(p0), index=3 add = f32[3]{0} add(gte1, gte2) negate0 = f32[3]{0} negate(add) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) negate15 = f32[3]{0} negate(negate14) negate16 = f32[3]{0} negate(negate15) ROOT tuple = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, add, negate16, gte3) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy0 = f32[3]{0} copy(p0) copy1 = f32[3]{0} copy(p0) copy2 = f32[3]{0} copy(p0) negate = f32[3]{0} negate(copy0) tuple = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) tuple(copy0, copy1, copy2, p1) while = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte = f32[3]{0} get-tuple-element(while), index=2 add0 = f32[3]{0} add(negate, copy0) ROOT add1 = f32[3]{0} add(add0, gte) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, ControlPredecessorsBug) { absl::string_view hlo_string = R"( HloModule sort.16, is_scheduled=true ENTRY %sort.16 (param.0.1: s32[1], param.1.2: f32[1], param.2.3: u32[1], param.3.4: s32[1]) -> (s32[1], f32[1], u32[1], s32[1]) { %param.3.4 = s32[1]{0:T(128)} parameter(3) %param.2.3 = u32[1]{0:T(128)} parameter(2) %param.1.2 = f32[1]{0:T(128)} parameter(1) %param.0.1 = s32[1]{0:T(128)} parameter(0) %tuple.1 = (s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %param.0.1, f32[1]{0:T(128)} %param.1.2, u32[1]{0:T(128)} %param.2.3, s32[1]{0:T(128)} %param.3.4), control-predecessors={%param.0.1} %get-tuple-element.4 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=0 %get-tuple-element.5 = f32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=1 %get-tuple-element.6 = u32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=2 %get-tuple-element.7 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) %tuple.1), index=3 %copy.4 = s32[1]{0:T(128)} copy(s32[1]{0:T(128)} %get-tuple-element.4) %copy.5 = f32[1]{0:T(128)} copy(f32[1]{0:T(128)} %get-tuple-element.5) %copy.6 = u32[1]{0:T(128)} copy(u32[1]{0:T(128)} %get-tuple-element.6) %copy.7 = s32[1]{0:T(128)} copy(s32[1]{0:T(128)} %get-tuple-element.7) ROOT %tuple.2 = (s32[1]{0:T(128)}, f32[1]{0:T(128)}, u32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %copy.4, f32[1]{0:T(128)} %copy.5, u32[1]{0:T(128)} %copy.6, s32[1]{0:T(128)} %copy.7) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, ConditionalShouldBeAllocatedInAlternateMem) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg1 = f32[3]{0} negate(gte) } false_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg2 = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}) tuple(copy) ROOT conditional = f32[3]{0} conditional(p1, tuple, tuple), true_computation=true_computation, false_computation=false_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); auto copy = module->GetComputationWithName("entry")->GetInstructionWithName("copy"); EXPECT_EQ(copy->shape().layout().memory_space(), kAlternateMemorySpace); auto neg1 = module->GetComputationWithName("true_computation") ->GetInstructionWithName("neg1"); auto neg1_operand = neg1->operand(0); EXPECT_EQ(neg1_operand->shape().layout().memory_space(), kAlternateMemorySpace); auto neg2 = module->GetComputationWithName("false_computation") ->GetInstructionWithName("neg2"); auto neg2_operand = neg2->operand(0); EXPECT_EQ(neg2_operand->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, ConditionalAvoidsUnnecessaryPrefetch) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3]{0}, f32[3]{0}) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 neg0 = f32[3]{0} negate(gte0) neg1 = f32[3]{0} negate(neg0) neg2 = f32[3]{0} negate(neg1) neg3 = f32[3]{0} negate(neg2) neg4 = f32[3]{0} negate(neg3) neg5 = f32[3]{0} negate(neg4) neg6 = f32[3]{0} negate(neg5) neg7 = f32[3]{0} negate(neg6) neg8 = f32[3]{0} negate(neg7) neg9 = f32[3]{0} negate(neg8) gte1 = f32[3]{0} get-tuple-element(p0), index=1 ROOT add = f32[3]{0} add(neg9, gte1) } false_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy0 = f32[3]{0} copy(p0) copy1 = f32[3]{0} copy(p0) tuple0 = (f32[3]{0}, f32[3]{0}) tuple(copy0, copy1) tuple1 = (f32[3]{0}) tuple(copy0) ROOT conditional = f32[3]{0} conditional(p1, tuple0, tuple1), true_computation=true_computation, false_computation=false_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); auto copy0 = module->GetComputationWithName("entry")->GetInstructionWithName("copy0"); EXPECT_EQ(copy0->shape().layout().memory_space(), kAlternateMemorySpace); auto copy1 = module->GetComputationWithName("entry")->GetInstructionWithName("copy1"); EXPECT_EQ(copy1->shape().layout().memory_space(), kDefaultMemorySpace); auto add = module->GetComputationWithName("true_computation") ->GetInstructionWithName("add"); auto add_operand = add->operand(1); EXPECT_EQ(add_operand->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, ConditionalMultiUse) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3]{0}, f32[3]{0}) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 add0 = f32[3]{0} add(gte0, gte1) neg0 = f32[3]{0} negate(add0) neg1 = f32[3]{0} negate(neg0) neg2 = f32[3]{0} negate(neg1) neg3 = f32[3]{0} negate(neg2) neg4 = f32[3]{0} negate(neg3) neg5 = f32[3]{0} negate(neg4) neg6 = f32[3]{0} negate(neg5) neg7 = f32[3]{0} negate(neg6) neg8 = f32[3]{0} negate(neg7) ROOT neg9 = f32[3]{0} negate(neg8) } false_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy0 = f32[3]{0} copy(p0) copy1 = f32[3]{0} copy(p0) tuple0 = (f32[3]{0}, f32[3]{0}) tuple(copy0, copy1) tuple1 = (f32[3]{0}) tuple(copy0) conditional = f32[3]{0} conditional(p1, tuple0, tuple1), true_computation=true_computation, false_computation=false_computation ROOT add1 = f32[3]{0} add(copy1, conditional) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); auto copy1 = module->GetComputationWithName("entry")->GetInstructionWithName("copy1"); EXPECT_EQ(copy1->shape().layout().memory_space(), kAlternateMemorySpace); auto add0 = module->GetComputationWithName("true_computation") ->GetInstructionWithName("add0"); auto add0_operand = add0->operand(1); EXPECT_EQ(add0_operand->shape().layout().memory_space(), kAlternateMemorySpace); auto add1 = module->GetComputationWithName("entry")->GetInstructionWithName("add1"); auto add1_operand = add1->operand(0); EXPECT_EQ(add1_operand->shape().layout().memory_space(), kDefaultMemorySpace); EXPECT_EQ(add1_operand->opcode(), HloOpcode::kCopyDone); } TEST_F(MemorySpaceAssignmentTest, ConditionalMultiUseInWhile) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg1 = f32[3]{0} negate(gte) } false_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg2 = f32[3]{0} negate(gte) } while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = pred[] get-tuple-element(p0), index=2 cond_tuple = (f32[3]{0}) tuple(gte0) conditional = f32[3]{0} conditional(gte2, cond_tuple, cond_tuple), true_computation=true_computation, false_computation=false_computation add = f32[3]{0} add(conditional, gte1) neg0 = f32[3]{0} negate(add) neg1 = f32[3]{0} negate(neg0) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, neg1, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy0 = f32[3]{0} copy(p0) copy1 = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy0, copy1, p1) while = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body ROOT gte = f32[3]{0} get-tuple-element(while), index=1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); auto copy0 = module->GetComputationWithName("entry")->GetInstructionWithName("copy0"); EXPECT_EQ(copy0->shape().layout().memory_space(), kAlternateMemorySpace); auto conditional = module->GetComputationWithName("while_body") ->GetInstructionWithName("conditional"); auto conditional_operand = conditional->operand(1); EXPECT_EQ(ShapeUtil::GetSubshape(conditional_operand->shape(), {0}) .layout() .memory_space(), kAlternateMemorySpace); auto while_root = module->GetComputationWithName("while_body")->root_instruction(); auto while_root_operand = while_root->operand(0); EXPECT_THAT( while_root_operand, op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::GetTupleElement(op::Parameter(0))))); } TEST_F(MemorySpaceAssignmentTest, NestedConditional) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation2 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg1 = f32[3]{0} negate(gte) } false_computation2 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg2 = f32[3]{0} negate(gte) } true_computation1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 slice = f32[1]{0} slice(gte), slice={[0:1]} bitcast = f32[] bitcast(slice) constant = f32[] constant(0.0) compare = pred[] compare(bitcast, constant), direction=GT ROOT conditional = f32[3]{0} conditional(compare, p0, p0), true_computation=true_computation2, false_computation=false_computation2 } false_computation1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg3 = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}) tuple(copy) ROOT conditional = f32[3]{0} conditional(p1, tuple, tuple), true_computation=true_computation1, false_computation=false_computation1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); auto copy = module->GetComputationWithName("entry")->GetInstructionWithName("copy"); EXPECT_EQ(copy->shape().layout().memory_space(), kAlternateMemorySpace); auto neg1_operand = module->GetComputationWithName("true_computation2") ->GetInstructionWithName("neg1") ->operand(0); auto neg2_operand = module->GetComputationWithName("false_computation2") ->GetInstructionWithName("neg2") ->operand(0); auto neg3_operand = module->GetComputationWithName("false_computation1") ->GetInstructionWithName("neg3") ->operand(0); EXPECT_EQ(neg1_operand->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(neg2_operand->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_EQ(neg3_operand->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, NestedConditionalBufferReuseVerificationBug) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation2 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 neg1 = f32[3]{0} negate(gte) neg2 = f32[3]{0} negate(neg1) ROOT neg3 = f32[3]{0} negate(neg2) } false_computation2 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg4 = f32[3]{0} negate(gte) } true_computation1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 slice = f32[1]{0} slice(gte), slice={[0:1]} bitcast = f32[] bitcast(slice) constant = f32[] constant(0.0) compare = pred[] compare(bitcast, constant), direction=GT tuple = (f32[3]{0}) tuple(gte) ROOT conditional = f32[3]{0} conditional(compare, tuple, tuple), true_computation=true_computation2, false_computation=false_computation2 } false_computation1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg5 = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}) tuple(copy) ROOT conditional = f32[3]{0} conditional(p1, tuple, tuple), true_computation=true_computation1, false_computation=false_computation1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, WhileInsideNestedConditionalVerificationBug) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true while_cond { p0 = (f32[3]{0}) parameter(0) ROOT constant = pred[] constant(true) } while_body { p0 = (f32[3]{0}) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 negate0 = f32[3]{0} negate(gte0) ROOT tuple = (f32[3]{0}) tuple(negate0) } true_computation2 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 tuple = (f32[3]{0}) tuple(gte) while = (f32[3]{0}) while(tuple), condition=while_cond, body=while_body while_gte0 = f32[3]{0} get-tuple-element(while), index=0 ROOT root = f32[3]{0} negate(while_gte0) } false_computation2 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg3 = f32[3]{0} negate(gte) } true_computation1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 constant = pred[] constant(true) tuple = (f32[3]{0}) tuple(gte) ROOT conditional = f32[3]{0} conditional(constant, tuple, tuple), true_computation=true_computation2, false_computation=false_computation2 } false_computation1 { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg3 = f32[3]{0} negate(gte) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}) tuple(copy) ROOT conditional = f32[3]{0} conditional(p1, tuple, tuple), true_computation=true_computation1, false_computation=false_computation1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, ConditionalComputationBufferOverlapBeforeParam) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT neg2 = f32[3]{0} negate(gte) } false_computation { c = f32[3]{0} constant({0.0, 1.0, 2.0}) neg0 = f32[3]{0} negate(c) neg1 = f32[3]{0} negate(neg0) p0 = (f32[3]{0}) parameter(0) gte = f32[3]{0} get-tuple-element(p0), index=0 ROOT add = f32[3]{0} add(gte, neg1) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}) tuple(copy) ROOT conditional = f32[3]{0} conditional(p1, tuple, tuple), true_computation=true_computation, false_computation=false_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace(module.get()); auto get_offset = [&](absl::string_view hlo_name) { for (const auto& chunk : preset_assignments->chunks()) { if (chunk.first.instruction->name() == hlo_name) { return chunk.second.offset; } } return static_cast<int64_t>(-1); }; int64_t copy_offset = get_offset("copy"); int64_t neg0_offset = get_offset("neg0"); EXPECT_NE(copy_offset, -1); EXPECT_NE(neg0_offset, -1); EXPECT_NE(copy_offset, neg0_offset); } TEST_F(MemorySpaceAssignmentTest, RequestIdentifierShouldNotBeAllocatedInAlternateMem) { absl::string_view hlo_string = R"( HloModule SendRecv, is_scheduled=true ENTRY %AddDependency (p: f32[3]) -> f32[3] { %p = f32[3]{0} parameter(0) %after-all = token[] after-all() %recv.4 = (f32[3]{0}, u32[], token[]) recv(token[] %after-all), channel_id=7 %recv-done.4 = (f32[3]{0}, token[]) recv-done((f32[3]{0}, u32[], token[]) %recv.4), channel_id=7 %token.1 = token[] get-tuple-element((f32[3]{0}, token[]) %recv-done.4), index=1 %data = f32[3]{0} get-tuple-element((f32[3]{0}, token[]) %recv-done.4), index=0 %send = (f32[3]{0}, u32[], token[]) send(f32[3]{0} %data, token[] %token.1), channel_id=2 %send-done = token[] send-done((f32[3]{0}, u32[], token[]) %send), channel_id=2 ROOT %add = f32[3]{0} add(f32[3]{0} %p, f32[3]{0} %data) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); for (const HloInstruction* instruction : module->entry_computation()->instructions()) { if (instruction->opcode() == HloOpcode::kSend || instruction->opcode() == HloOpcode::kRecv) { const Shape& request_identifier_shape = ShapeUtil::GetSubshape(instruction->shape(), {1}); EXPECT_NE(request_identifier_shape.layout().memory_space(), kAlternateMemorySpace); } } } TEST_F(MemorySpaceAssignmentTest, SendDoneShouldHaveSendOperand) { absl::string_view hlo_string = R"( HloModule SendRecv, is_scheduled=true ENTRY %AddDependency (p: f32[3]) -> f32[3] { %p0 = f32[3]{0} parameter(0) %p1 = f32[3]{0} parameter(1) %neg0 = f32[3]{0} negate(f32[3]{0} %p1) %neg1 = f32[3]{0} negate(f32[3]{0} %neg0) %neg2 = f32[3]{0} negate(f32[3]{0} %neg1) %neg3 = f32[3]{0} negate(f32[3]{0} %neg2) %neg4 = f32[3]{0} negate(f32[3]{0} %neg3) %neg5 = f32[3]{0} negate(f32[3]{0} %neg4) %neg6 = f32[3]{0} negate(f32[3]{0} %neg5) %after-all = token[] after-all() %send = (f32[3]{0}, u32[], token[]) send(f32[3]{0} %p0, token[] %after-all), channel_id=2 %send-done = token[] send-done((f32[3]{0}, u32[], token[]) %send), channel_id=2 ROOT %add = f32[3]{0} add(f32[3]{0} %p0, f32[3]{0} %neg6) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, SendAndSendDoneShouldGetSameAllocation) { absl::string_view hlo_string = R"( HloModule SendRecv, is_scheduled=true ENTRY %AddDependency (p: f32[3]) -> f32[3] { %p0 = f32[3]{0} parameter(0) %p1 = f32[3]{0} parameter(1) %after-all = token[] after-all() %send = (f32[3]{0}, u32[], token[]) send(f32[3]{0} %p0, token[] %after-all), channel_id=2 %neg0 = f32[3]{0} negate(f32[3]{0} %p1) %neg1 = f32[3]{0} negate(f32[3]{0} %neg0) %neg2 = f32[3]{0} negate(f32[3]{0} %neg1) %neg3 = f32[3]{0} negate(f32[3]{0} %neg2) %neg4 = f32[3]{0} negate(f32[3]{0} %neg3) %neg5 = f32[3]{0} negate(f32[3]{0} %neg4) %neg6 = f32[3]{0} negate(f32[3]{0} %neg5) %send-done = token[] send-done((f32[3]{0}, u32[], token[]) %send), channel_id=2 ROOT %add = f32[3]{0} add(f32[3]{0} %p0, f32[3]{0} %neg6) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 10, 4); } TEST_F(MemorySpaceAssignmentTest, LastUseOpt) { HloComputation::Builder builder(TestName()); Shape shape1 = ShapeUtil::MakeShape(F32, {2, 3}); Shape shape2 = ShapeUtil::MakeShape(F32, {2, 4}); PaddingConfig padding_config = MakeEdgePaddingConfig({{0, 0}, {0, 1}}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape1, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape2, "p1")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kAdd, p0, p0)); HloInstruction* sub1 = builder.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kSubtract, p0, add1)); HloInstruction* mul1 = builder.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kMultiply, p1, p1)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kAdd, mul1, p1)); HloInstruction* mul2 = builder.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kMultiply, add1, sub1)); HloInstruction* padding_value = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero(F32))); HloInstruction* padded_mul2 = builder.AddInstruction( HloInstruction::CreatePad(shape2, mul2, padding_value, padding_config)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kAdd, add2, padded_mul2)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, add1, sub1, mul1, add2, mul2, padding_value, padded_mul2, add3}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT( mul2, op::Multiply( op::Add(op::Parameter(0), op::Parameter(0)), op::Subtract(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(0)), op::Add(op::Parameter(0), op::Parameter(0))))); } TEST_F(MemorySpaceAssignmentTest, NonEntryComputationSchedule1) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(50.f))); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 1)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.f))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, body_iter, body_iter_increment)); HloInstruction* body_data_increment = body_builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.f, 2.f, 3.f}, {4.f, 5.f, 6.f}}))); HloInstruction* body_data_mul = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, body_data, body_data)); HloInstruction* body_data_add = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data, body_data_increment)); HloInstruction* body_data_next = body_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, body_data_add, body_data_mul)); HloInstruction* body_out = body_builder.AddInstruction( HloInstruction::CreateTuple({body_data_next, body_iter_next})); HloComputation* body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param_iter")); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_data")); HloInstruction* p2 = builder.AddInstruction(HloInstruction::CreateParameter(2, shape, "p2")); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({data, iter})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloInstruction* while_data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, while_op, 0)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, while_data, p2)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_limit, cond_lt}); schedule.set_sequence(body_computation, {body_param, body_iter, body_data, body_iter_increment, body_iter_next, body_data_increment, body_data_mul, body_data_add, body_data_next, body_out}); schedule.set_sequence(entry_computation, {iter, data, p2, tuple, while_op, while_data, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 50); } TEST_F(MemorySpaceAssignmentTest, NonEntryComputationSchedule2) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape shape2 = ShapeUtil::MakeShape(xla::F32, {3, 3}); auto call_builder = HloComputation::Builder("Call"); HloInstruction* call_param = call_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "call_param")); HloInstruction* call_param2 = call_builder.AddInstruction( HloInstruction::CreateParameter(1, shape2, "call_param2")); HloInstruction* slice = call_builder.AddInstruction( HloInstruction::CreateSlice(shape, call_param2, {0, 0}, {2, 3}, {1, 1})); HloInstruction* mul = call_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, call_param, slice)); HloInstruction* negate0 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, mul)); HloInstruction* negate1 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* add0 = call_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, call_param, negate7)); HloComputation* call_computation = module->AddEmbeddedComputation(call_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape2, "p1")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p0)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add1, p0)); HloInstruction* negate8 = builder.AddInstruction( HloInstruction::CreateUnary(shape2, HloOpcode::kNegate, p1)); HloInstruction* call = builder.AddInstruction( HloInstruction::CreateCall(shape, {add1, negate8}, call_computation)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, add1)); HloInstruction* add4 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, call, add3)); HloInstruction* add5 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add2, add4)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( call_computation, {call_param, call_param2, slice, mul, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, add0}); schedule.set_sequence(entry_computation, {p0, p1, add1, add2, negate8, call, add3, add4, add5}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5); } TEST_F(MemorySpaceAssignmentTest, NonEntryComputationSchedule3) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape shape2 = ShapeUtil::MakeShape(xla::F32, {3, 3}); auto call_builder = HloComputation::Builder("Call"); HloInstruction* call_param = call_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "call_param")); HloInstruction* iota = call_builder.AddInstruction(HloInstruction::CreateIota(shape2, 0)); HloInstruction* slice = call_builder.AddInstruction( HloInstruction::CreateSlice(shape, iota, {0, 0}, {2, 3}, {1, 1})); HloInstruction* mul = call_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, call_param, slice)); HloInstruction* negate0 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, mul)); HloInstruction* negate1 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = call_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* add0 = call_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, call_param, negate7)); HloComputation* call_computation = module->AddEmbeddedComputation(call_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p0)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add1, p0)); HloInstruction* call = builder.AddInstruction( HloInstruction::CreateCall(shape, {add1}, call_computation)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, call, add1)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( call_computation, {call_param, iota, slice, mul, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, add0}); schedule.set_sequence(entry_computation, {p0, add1, add2, call, add3}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5); } TEST_F(MemorySpaceAssignmentTest, DISABLED_NonEntryComputationSchedule4) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape shape2 = ShapeUtil::MakeShape(xla::F32, {3, 3}); auto true_builder = HloComputation::Builder("True"); HloInstruction* true_param = true_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "true_param")); HloInstruction* iota = true_builder.AddInstruction(HloInstruction::CreateIota(shape2, 0)); HloInstruction* slice = true_builder.AddInstruction( HloInstruction::CreateSlice(shape, iota, {0, 0}, {2, 3}, {1, 1})); HloInstruction* mul = true_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, true_param, slice)); HloInstruction* negate0 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, mul)); HloInstruction* negate1 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = true_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* add0 = true_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, true_param, negate7)); HloComputation* true_computation = module->AddEmbeddedComputation(true_builder.Build()); auto false_builder = HloComputation::Builder("False"); HloInstruction* false_param = false_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "false_param")); HloComputation* false_computation = module->AddEmbeddedComputation(false_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0, p0)); HloInstruction* add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add1, p0)); HloInstruction* pred = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<bool>(true))); HloInstruction* conditional = builder.AddInstruction(HloInstruction::CreateConditional( shape, pred, add1, true_computation, add2, false_computation)); HloInstruction* add3 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, conditional, add1)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( true_computation, {true_param, iota, slice, mul, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, add0}); schedule.set_sequence(false_computation, {false_param}); schedule.set_sequence(entry_computation, {p0, add1, add2, pred, conditional, add3}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5); } TEST_F(MemorySpaceAssignmentTest, NonEntryComputationSchedule5) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, scalar_shape, scalar_shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(50.f))); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 1)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.f))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, body_iter, body_iter_increment)); HloInstruction* body_data2 = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 2)); HloInstruction* body_out = body_builder.AddInstruction( HloInstruction::CreateTuple({body_data, body_iter_next, body_data2})); HloComputation* body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param_data")); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_iter")); HloInstruction* data2 = builder.AddInstruction( HloInstruction::CreateParameter(2, scalar_shape, "param_data2")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, data)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* sub = builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kSubtract, iter, data2)); HloInstruction* tuple = builder.AddInstruction( HloInstruction::CreateTuple({negate7, iter, data2})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloInstruction* while_data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, while_op, 1)); HloInstruction* root = builder.AddInstruction(HloInstruction::CreateTuple({while_data, sub})); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_limit, cond_lt}); schedule.set_sequence(body_computation, {body_param, body_iter, body_data, body_iter_increment, body_iter_next, body_data2, body_out}); schedule.set_sequence( entry_computation, {iter, data, data2, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, sub, tuple, while_op, while_data, root}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 20); } TEST_F(MemorySpaceAssignmentTest, NonEntryComputationSchedule6) { auto module = CreateNewVerifiedModule(); Shape shape = ShapeUtil::MakeShape(xla::F32, {2, 3}); Shape scalar_shape = ShapeUtil::MakeShape(xla::F32, {}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, scalar_shape, shape}); auto cond_builder = HloComputation::Builder("WhileCond"); HloInstruction* cond_param = cond_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "cond_param")); HloInstruction* cond_iter = cond_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, cond_param, 1)); HloInstruction* cond_limit = cond_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(50.f))); HloInstruction* cond_lt = cond_builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), cond_iter, cond_limit, ComparisonDirection::kLt)); HloComputation* cond_computation = module->AddEmbeddedComputation(cond_builder.Build()); auto body_builder = HloComputation::Builder("WhileBody"); HloInstruction* body_param = body_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "body_param")); HloInstruction* body_iter = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(scalar_shape, body_param, 1)); HloInstruction* body_data = body_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, body_param, 0)); HloInstruction* body_negate0 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_data)); HloInstruction* body_negate1 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate0)); HloInstruction* body_negate2 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate1)); HloInstruction* body_negate3 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate2)); HloInstruction* body_negate4 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate3)); HloInstruction* body_negate5 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate4)); HloInstruction* body_negate6 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate5)); HloInstruction* body_negate7 = body_builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, body_negate6)); HloInstruction* body_iter_increment = body_builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.f))); HloInstruction* body_iter_next = body_builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, body_iter, body_iter_increment)); HloInstruction* body_out = body_builder.AddInstruction( HloInstruction::CreateTuple({body_data, body_iter_next, body_negate7})); HloComputation* body_computation = module->AddEmbeddedComputation(body_builder.Build()); auto builder = HloComputation::Builder(TestName()); HloInstruction* data = builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "param_data")); HloInstruction* iter = builder.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "param_iter")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, data)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* negate7 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate6)); HloInstruction* tuple = builder.AddInstruction( HloInstruction::CreateTuple({data, iter, negate7})); HloInstruction* while_op = builder.AddInstruction(HloInstruction::CreateWhile( tuple_shape, cond_computation, body_computation, tuple)); HloInstruction* while_data = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, while_op, 0)); HloInstruction* while_data2 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, while_op, 2)); HloInstruction* root = builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, while_data, while_data2)); HloComputation* entry_computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(cond_computation, {cond_param, cond_iter, cond_limit, cond_lt}); schedule.set_sequence( body_computation, {body_param, body_iter, body_data, body_negate0, body_negate1, body_negate2, body_negate3, body_negate4, body_negate5, body_negate6, body_negate7, body_iter_increment, body_iter_next, body_out}); schedule.set_sequence( entry_computation, {iter, data, negate0, negate1, negate2, negate3, negate4, negate5, negate6, negate7, tuple, while_op, while_data, while_data2, root}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 25); *ShapeUtil::GetMutableSubshape(&tuple_shape, {0})->mutable_layout() = LayoutUtil::MakeLayout( {1, 0}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 0, kAlternateMemorySpace); *ShapeUtil::GetMutableSubshape(&tuple_shape, {1})->mutable_layout() = LayoutUtil::MakeLayout( {}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 0, kDefaultMemorySpace); *ShapeUtil::GetMutableSubshape(&tuple_shape, {2})->mutable_layout() = LayoutUtil::MakeLayout( {1, 0}, {}, {}, {}, {}, 1, PRIMITIVE_TYPE_INVALID, PRIMITIVE_TYPE_INVALID, 0, kDefaultMemorySpace); EXPECT_THAT(while_op, op::ShapeWithLayout(tuple_shape)); EXPECT_THAT(while_op->operand(0), op::ShapeWithLayout(tuple_shape)); EXPECT_THAT(cond_param, op::ShapeWithLayout(tuple_shape)); EXPECT_THAT(body_param, op::ShapeWithLayout(tuple_shape)); EXPECT_THAT(body_out, op::ShapeWithLayout(tuple_shape)); } TEST_F(MemorySpaceAssignmentTest, DanglingCopy) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); HloInstruction* p = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* p0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 0)); HloInstruction* p1a = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 1)); HloInstruction* copy = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kCopy, p1a)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* p1b = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 1)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1b)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p, p0, negate0, negate1, negate2, negate3, negate4, negate5, negate6, p1a, copy, p1b, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, MultiOutputFusion) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion_builder("fusion"); HloInstruction* fusion_param0 = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion_param1 = fusion_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p1")); fusion_builder.AddInstruction( HloInstruction::CreateTuple({fusion_param0, fusion_param1})); HloComputation* fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( tuple_shape, HloInstruction::FusionKind::kCustom, {p0, p0}, fusion_computation)); HloInstruction* element0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion, 0)); HloInstruction* element1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion, 1)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, element0, element1)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, fusion, element0, element1, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, TupleInput) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion_builder("fusion"); HloInstruction* fusion_param = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* fusion_element0 = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion_param, 0)); HloInstruction* fusion_element1 = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion_param, 1)); fusion_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, fusion_element0, fusion_element1)); HloComputation* fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p1)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({negate0, negate1})); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( shape, HloInstruction::FusionKind::kCustom, {tuple}, fusion_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, tuple, fusion}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, TupleToTuple1) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion0_builder("fusion0"); HloInstruction* fusion0_param0 = fusion0_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion0_param1 = fusion0_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p1")); fusion0_builder.AddInstruction( HloInstruction::CreateTuple({fusion0_param0, fusion0_param1})); HloComputation* fusion0_computation = module->AddEmbeddedComputation(fusion0_builder.Build()); HloComputation::Builder fusion1_builder("fusion1"); HloInstruction* fusion1_param = fusion1_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* fusion1_element0 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion1_param, 0)); HloInstruction* fusion1_element1 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion1_param, 1)); fusion1_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, fusion1_element0, fusion1_element1)); HloComputation* fusion1_computation = module->AddEmbeddedComputation(fusion1_builder.Build()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion0 = builder.AddInstruction(HloInstruction::CreateFusion( tuple_shape, HloInstruction::FusionKind::kCustom, {p0, p0}, fusion0_computation)); HloInstruction* element0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion0, 0)); HloInstruction* element1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion0, 1)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add0 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, element0, element1)); HloInstruction* add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add0, negate6)); HloInstruction* fusion1 = builder.AddInstruction( HloInstruction::CreateFusion(shape, HloInstruction::FusionKind::kCustom, {fusion0}, fusion1_computation)); HloInstruction* mul = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kMultiply, add1, fusion1)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p0, fusion0, element0, element1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add0, add1, fusion1, mul}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5); EXPECT_THAT(fusion1, op::Fusion(op::Tuple( op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::Fusion(), 0)), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::Fusion(), 1))))); } TEST_F(MemorySpaceAssignmentTest, TupleToTuple2) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); Shape nested_tuple_shape = ShapeUtil::MakeTupleShape({shape, tuple_shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion0_builder("fusion0"); HloInstruction* fusion0_param0 = fusion0_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion0_param1 = fusion0_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* fusion0_tuple = fusion0_builder.AddInstruction( HloInstruction::CreateTuple({fusion0_param0, fusion0_param1})); fusion0_builder.AddInstruction( HloInstruction::CreateTuple({fusion0_param0, fusion0_tuple})); HloComputation* fusion0_computation = module->AddEmbeddedComputation(fusion0_builder.Build()); HloComputation::Builder fusion1_builder("fusion1"); HloInstruction* fusion1_param = fusion1_builder.AddInstruction( HloInstruction::CreateParameter(0, nested_tuple_shape, "p")); HloInstruction* fusion1_element0 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion1_param, 0)); HloInstruction* fusion1_element1 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(tuple_shape, fusion1_param, 1)); HloInstruction* fusion1_element2 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion1_element1, 1)); fusion1_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, fusion1_element0, fusion1_element2)); HloComputation* fusion1_computation = module->AddEmbeddedComputation(fusion1_builder.Build()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion0 = builder.AddInstruction(HloInstruction::CreateFusion( nested_tuple_shape, HloInstruction::FusionKind::kCustom, {p0, p0}, fusion0_computation)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* fusion1 = builder.AddInstruction( HloInstruction::CreateFusion(shape, HloInstruction::FusionKind::kCustom, {fusion0}, fusion1_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p0, fusion0, negate0, negate1, negate2, negate3, negate4, negate5, negate6, fusion1}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5); EXPECT_THAT( fusion1, op::Fusion(op::Tuple( op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::Fusion(), 0)), op::Tuple( op::AsyncCopy( kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::GetTupleElement(op::Fusion(), 1), 0)), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement( op::GetTupleElement(op::Fusion(), 1), 1)))))); } TEST_F(MemorySpaceAssignmentTest, TupleToTuple3) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion0_builder("fusion0"); HloInstruction* fusion0_param0 = fusion0_builder.AddInstruction( HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion0_param1 = fusion0_builder.AddInstruction( HloInstruction::CreateParameter(1, shape, "p1")); fusion0_builder.AddInstruction( HloInstruction::CreateTuple({fusion0_param0, fusion0_param1})); HloComputation* fusion0_computation = module->AddEmbeddedComputation(fusion0_builder.Build()); HloComputation::Builder fusion1_builder("fusion1"); HloInstruction* fusion1_param = fusion1_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* fusion1_element0 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion1_param, 0)); HloInstruction* fusion1_element1 = fusion1_builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, fusion1_param, 1)); fusion1_builder.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, fusion1_element0, fusion1_element1)); HloComputation* fusion1_computation = module->AddEmbeddedComputation(fusion1_builder.Build()); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* fusion0 = builder.AddInstruction(HloInstruction::CreateFusion( tuple_shape, HloInstruction::FusionKind::kCustom, {p0, p0}, fusion0_computation)); HloInstruction* fusion1 = builder.AddInstruction( HloInstruction::CreateFusion(shape, HloInstruction::FusionKind::kCustom, {fusion0}, fusion1_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, fusion0, fusion1}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); EXPECT_THAT(fusion1, op::Fusion(op::Fusion())); } TEST_F(MemorySpaceAssignmentTest, InputOutputAlias) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape tuple_shape = ShapeUtil::MakeTupleShape({shape, shape}); HloInstruction* p = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p")); HloInstruction* p0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 0)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(shape, p, 1)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); HloInstruction* negate7 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, add)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({p0, add})); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p, p0, negate0, negate1, negate2, negate3, negate4, negate5, negate6, p1, add, negate7, tuple}); TF_CHECK_OK(module->set_schedule(schedule)); TF_CHECK_OK(module->input_output_alias_config().SetUpAlias({0}, 0, {0})); TF_CHECK_OK(module->input_output_alias_config().SetUpAlias({1}, 0, {1})); AssignMemorySpace(module.get()); EXPECT_EQ(p->shape().tuple_shapes(0).layout().memory_space(), kDefaultMemorySpace); EXPECT_EQ(p->shape().tuple_shapes(1).layout().memory_space(), kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, CostAnalysis) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, negate6, p1)); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpaceUsingCostAnalysis(module.get()); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); EXPECT_THAT(negate0, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate2, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate3, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate4, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate5, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(negate6, op::ShapeWithLayout(shape_in_alternate_mem)); } TEST_F(MemorySpaceAssignmentTest, MemoryBoundednessBufferIntervalCompare) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction(HloInstruction::CreateParameter(1, shape, "p1")); HloInstruction* tanh0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p1)); HloInstruction* tanh1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, tanh0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* tanh2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, tanh1)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* tanh3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, tanh2)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* tanh4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, tanh3)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({tanh4, negate4})); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, tanh0, negate0, tanh1, negate1, tanh2, negate2, tanh3, negate3, tanh4, negate4, tuple}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpaceUsingCostAnalysis(module.get()); EXPECT_THAT(p0, op::ShapeWithLayout(shape)); EXPECT_THAT(p1, op::ShapeWithLayout(shape)); Shape shape_in_default_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {4, 3}, {1, 0}, {}, 1, 0, kDefaultMemorySpace); std::vector<HloInstruction*> negate_instructions = {negate0, negate1, negate2, negate3, negate4}; int64_t num_negates_in_alternate_mem = absl::c_count_if( negate_instructions, [&](const HloInstruction* instruction) { return instruction->shape().layout().memory_space() == kAlternateMemorySpace; }); EXPECT_GE(num_negates_in_alternate_mem, 1); EXPECT_THAT(tanh0, op::ShapeWithLayout(shape_in_default_mem)); EXPECT_THAT(tanh1, op::ShapeWithLayout(shape_in_default_mem)); EXPECT_THAT(tanh2, op::ShapeWithLayout(shape_in_default_mem)); EXPECT_THAT(tanh3, op::ShapeWithLayout(shape_in_default_mem)); EXPECT_THAT(tanh4, op::ShapeWithLayout(shape_in_default_mem)); } TEST_F(MemorySpaceAssignmentTest, MemoryBoundednessOverrideSortOrderAssignFirst) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[3,4]{1,0} parameter(0) p1 = f32[3,4]{1,0} parameter(1) tanh0 = f32[3,4]{1,0} tanh(p0) negate0 = f32[3,4]{1,0} negate(p1) tanh1 = f32[3,4]{1,0} tanh(tanh0) negate1 = f32[3,4]{1,0} negate(negate0) tanh2 = f32[3,4]{1,0} tanh(tanh1) negate2 = f32[3,4]{1,0} negate(negate1) tanh3 = f32[3,4]{1,0} tanh(tanh2) negate3 = f32[3,4]{1,0} negate(negate2) tanh4 = f32[3,4]{1,0} tanh(tanh3) negate4 = f32[3,4]{1,0} negate(negate3) ROOT tuple = (f32[3,4]{1,0}, f32[3,4]{1,0}) tuple(tanh4, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); const std::string text_proto = R"pb( overrides { hlo_position_matcher { instruction_name_regex: "negate(.*)" } override_options { assign_first: true } })pb"; TF_ASSERT_OK_AND_ASSIGN(auto msa_sort_order_overrides, ParseTextProto<MsaSortOrderOverrides>(text_proto)); AssignMemorySpaceUsingCostAnalysis( module.get(), std::nullopt, std::nullopt, std::nullopt, msa_sort_order_overrides); const HloInstruction* p0 = FindInstruction(module.get(), "p0"); EXPECT_EQ(p0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* p1 = FindInstruction(module.get(), "p1"); EXPECT_EQ(p1->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate0 = FindInstruction(module.get(), "negate0"); EXPECT_EQ(negate0->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate1 = FindInstruction(module.get(), "negate1"); EXPECT_EQ(negate1->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate2 = FindInstruction(module.get(), "negate2"); EXPECT_EQ(negate2->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate3 = FindInstruction(module.get(), "negate3"); EXPECT_EQ(negate3->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate4 = FindInstruction(module.get(), "negate4"); EXPECT_EQ(negate4->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh0 = FindInstruction(module.get(), "tanh0"); EXPECT_EQ(tanh0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh1 = FindInstruction(module.get(), "tanh1"); EXPECT_EQ(tanh1->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh2 = FindInstruction(module.get(), "tanh2"); EXPECT_EQ(tanh2->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh3 = FindInstruction(module.get(), "tanh3"); EXPECT_EQ(tanh3->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh4 = FindInstruction(module.get(), "tanh4"); EXPECT_EQ(tanh4->shape().layout().memory_space(), kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, MemoryBoundednessOverrideSortOrderAssignLast) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[3,4]{1,0} parameter(0) p1 = f32[3,4]{1,0} parameter(1) tanh0 = f32[3,4]{1,0} tanh(p0) negate0 = f32[3,4]{1,0} negate(p1) tanh1 = f32[3,4]{1,0} tanh(tanh0) negate1 = f32[3,4]{1,0} negate(negate0) tanh2 = f32[3,4]{1,0} tanh(tanh1) negate2 = f32[3,4]{1,0} negate(negate1) tanh3 = f32[3,4]{1,0} tanh(tanh2) negate3 = f32[3,4]{1,0} negate(negate2) tanh4 = f32[3,4]{1,0} tanh(tanh3) negate4 = f32[3,4]{1,0} negate(negate3) ROOT tuple = (f32[3,4]{1,0}, f32[3,4]{1,0}) tuple(tanh4, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); const std::string text_proto = R"pb( overrides { hlo_position_matcher { instruction_name_regex: "tanh(.*)" } override_options { assign_last: true } } )pb"; TF_ASSERT_OK_AND_ASSIGN(auto msa_sort_order_overrides, ParseTextProto<MsaSortOrderOverrides>(text_proto)); AssignMemorySpaceUsingCostAnalysis( module.get(), std::nullopt, std::nullopt, std::nullopt, msa_sort_order_overrides); const HloInstruction* p0 = FindInstruction(module.get(), "p0"); EXPECT_EQ(p0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* p1 = FindInstruction(module.get(), "p1"); EXPECT_EQ(p1->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate0 = FindInstruction(module.get(), "negate0"); EXPECT_EQ(negate0->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate1 = FindInstruction(module.get(), "negate1"); EXPECT_EQ(negate1->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate2 = FindInstruction(module.get(), "negate2"); EXPECT_EQ(negate2->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate3 = FindInstruction(module.get(), "negate3"); EXPECT_EQ(negate3->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate4 = FindInstruction(module.get(), "negate4"); EXPECT_EQ(negate4->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh0 = FindInstruction(module.get(), "tanh0"); EXPECT_EQ(tanh0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh1 = FindInstruction(module.get(), "tanh1"); EXPECT_EQ(tanh1->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh2 = FindInstruction(module.get(), "tanh2"); EXPECT_EQ(tanh2->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh3 = FindInstruction(module.get(), "tanh3"); EXPECT_EQ(tanh3->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh4 = FindInstruction(module.get(), "tanh4"); EXPECT_EQ(tanh4->shape().layout().memory_space(), kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, MemoryBoundednessOverrideSortOrderBySizeLteAssignFirst) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[3,4]{1,0} parameter(0) p1 = f32[5,4]{1,0} parameter(1) tanh0 = f32[3,4]{1,0} tanh(p0) negate0 = f32[5,4]{1,0} negate(p1) tanh1 = f32[3,4]{1,0} tanh(tanh0) negate1 = f32[5,4]{1,0} negate(negate0) tanh2 = f32[3,4]{1,0} tanh(tanh1) negate2 = f32[5,4]{1,0} negate(negate1) tanh3 = f32[3,4]{1,0} tanh(tanh2) negate3 = f32[5,4]{1,0} negate(negate2) tanh4 = f32[3,4]{1,0} tanh(tanh3) negate4 = f32[5,4]{1,0} negate(negate3) ROOT tuple = (f32[3,4]{1,0}, f32[5,4]{1,0}) tuple(tanh4, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); const std::string text_proto = R"pb( overrides { hlo_position_matcher { size_lte: 48 } override_options { assign_first: true } } )pb"; TF_ASSERT_OK_AND_ASSIGN(auto msa_sort_order_overrides, ParseTextProto<MsaSortOrderOverrides>(text_proto)); Options memory_space_options = DefaultMemorySpaceOptions(); memory_space_options.max_size_in_bytes = 120; AssignMemorySpaceUsingCostAnalysis( module.get(), memory_space_options, std::nullopt, std::nullopt, msa_sort_order_overrides); const HloInstruction* p0 = FindInstruction(module.get(), "p0"); EXPECT_EQ(p0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* p1 = FindInstruction(module.get(), "p1"); EXPECT_EQ(p1->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate0 = FindInstruction(module.get(), "negate0"); EXPECT_EQ(negate0->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate1 = FindInstruction(module.get(), "negate1"); EXPECT_EQ(negate1->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate2 = FindInstruction(module.get(), "negate2"); EXPECT_EQ(negate2->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate3 = FindInstruction(module.get(), "negate3"); EXPECT_EQ(negate3->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate4 = FindInstruction(module.get(), "negate4"); EXPECT_EQ(negate4->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh0 = FindInstruction(module.get(), "tanh0"); EXPECT_EQ(tanh0->shape().layout().memory_space(), kAlternateMemorySpace); const HloInstruction* tanh1 = FindInstruction(module.get(), "tanh1"); EXPECT_EQ(tanh1->shape().layout().memory_space(), kAlternateMemorySpace); const HloInstruction* tanh2 = FindInstruction(module.get(), "tanh2"); EXPECT_EQ(tanh2->shape().layout().memory_space(), kAlternateMemorySpace); const HloInstruction* tanh3 = FindInstruction(module.get(), "tanh3"); EXPECT_EQ(tanh3->shape().layout().memory_space(), kAlternateMemorySpace); const HloInstruction* tanh4 = FindInstruction(module.get(), "tanh4"); EXPECT_EQ(tanh4->shape().layout().memory_space(), kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, MemoryBoundednessOverrideSortOrderBySizeGteAssignFirst) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[3,4]{1,0} parameter(0) p1 = f32[5,4]{1,0} parameter(1) tanh0 = f32[3,4]{1,0} tanh(p0) negate0 = f32[5,4]{1,0} negate(p1) tanh1 = f32[3,4]{1,0} tanh(tanh0) negate1 = f32[5,4]{1,0} negate(negate0) tanh2 = f32[3,4]{1,0} tanh(tanh1) negate2 = f32[5,4]{1,0} negate(negate1) tanh3 = f32[3,4]{1,0} tanh(tanh2) negate3 = f32[5,4]{1,0} negate(negate2) tanh4 = f32[3,4]{1,0} tanh(tanh3) negate4 = f32[5,4]{1,0} negate(negate3) ROOT tuple = (f32[3,4]{1,0}, f32[5,4]{1,0}) tuple(tanh4, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); const std::string text_proto = R"pb( overrides { hlo_position_matcher { size_gte: 80 } override_options { assign_first: true } } )pb"; TF_ASSERT_OK_AND_ASSIGN(auto msa_sort_order_overrides, ParseTextProto<MsaSortOrderOverrides>(text_proto)); Options memory_space_options = DefaultMemorySpaceOptions(); memory_space_options.max_size_in_bytes = 160; AssignMemorySpaceUsingCostAnalysis( module.get(), memory_space_options, std::nullopt, std::nullopt, msa_sort_order_overrides); const HloInstruction* p0 = FindInstruction(module.get(), "p0"); EXPECT_EQ(p0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* p1 = FindInstruction(module.get(), "p1"); EXPECT_EQ(p1->shape().layout().memory_space(), kDefaultMemorySpace); HloInstruction* negate0 = FindInstruction(module.get(), "negate0"); EXPECT_EQ(negate0->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate1 = FindInstruction(module.get(), "negate1"); EXPECT_EQ(negate1->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate2 = FindInstruction(module.get(), "negate2"); EXPECT_EQ(negate2->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate3 = FindInstruction(module.get(), "negate3"); EXPECT_EQ(negate3->shape().layout().memory_space(), kAlternateMemorySpace); HloInstruction* negate4 = FindInstruction(module.get(), "negate4"); EXPECT_EQ(negate4->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh0 = FindInstruction(module.get(), "tanh0"); EXPECT_EQ(tanh0->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh1 = FindInstruction(module.get(), "tanh1"); EXPECT_EQ(tanh1->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh2 = FindInstruction(module.get(), "tanh2"); EXPECT_EQ(tanh2->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh3 = FindInstruction(module.get(), "tanh3"); EXPECT_EQ(tanh3->shape().layout().memory_space(), kDefaultMemorySpace); const HloInstruction* tanh4 = FindInstruction(module.get(), "tanh4"); EXPECT_EQ(tanh4->shape().layout().memory_space(), kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, SimpleWhileTupleTest) { Shape s32 = ShapeUtil::MakeShape(xla::S32, {}); Shape f32v1 = ShapeUtil::MakeShape(F32, {1}); Shape t_s32_f32v1 = ShapeUtil::MakeTupleShape({s32, f32v1}); auto module = CreateNewVerifiedModule("SimpleWhile"); HloSchedule schedule(module.get()); HloComputation* cond_computation; { auto builder = HloComputation::Builder("WhileCond"); auto const4 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(4))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v1, "x")); auto index = builder.AddInstruction( HloInstruction::CreateGetTupleElement(const4->shape(), param, 0)); auto compare = builder.AddInstruction( HloInstruction::CreateCompare(ShapeUtil::MakeShape(PRED, {}), index, const4, ComparisonDirection::kLt)); cond_computation = module->AddEmbeddedComputation(builder.Build()); schedule.set_sequence(cond_computation, {const4, param, index, compare}); } HloComputation* body_computation; { auto builder = HloComputation::Builder("WhileBody"); auto const1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); auto constv = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>({1.1f}))); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v1, "x")); auto indexc = builder.AddInstruction( HloInstruction::CreateGetTupleElement(const1->shape(), param, 0)); auto addc = builder.AddInstruction(HloInstruction::CreateBinary( indexc->shape(), HloOpcode::kAdd, indexc, const1)); auto indexv = builder.AddInstruction( HloInstruction::CreateGetTupleElement(constv->shape(), param, 1)); auto addv = builder.AddInstruction(HloInstruction::CreateBinary( constv->shape(), HloOpcode::kAdd, indexv, constv)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({addc, addv})); body_computation = module->AddEmbeddedComputation(builder.Build()); schedule.set_sequence(body_computation, {const1, constv, param, indexc, addc, indexv, addv, tuple}); } auto builder = HloComputation::Builder("SimpleWhile"); auto param = builder.AddInstruction( HloInstruction::CreateParameter(0, t_s32_f32v1, "param")); auto gte0 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(s32, param, 0)); auto gte1 = builder.AddInstruction( HloInstruction::CreateGetTupleElement(f32v1, param, 1)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({gte0, gte1})); auto while0 = builder.AddInstruction(HloInstruction::CreateWhile( t_s32_f32v1, cond_computation, body_computation, tuple)); HloComputation* computation = module->AddEntryComputation(builder.Build()); schedule.set_sequence(computation, {param, gte0, gte1, tuple, while0}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 50); Shape shape_in_default_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {4, 6}, {1, 0}, {}, 1, 0, kDefaultMemorySpace); Shape s32_in_default_mem = ShapeUtil::MakeShapeWithDenseLayout( xla::S32, {}, {}, {}, 1, 0, kDefaultMemorySpace); Shape f32v1_in_default_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {1}, {0}, {}, 1, 0, kDefaultMemorySpace); Shape t_s32_f32v1_in_default_mem = ShapeUtil::MakeTupleShape({s32_in_default_mem, f32v1_in_default_mem}); EXPECT_THAT(param, op::ShapeWithLayout(t_s32_f32v1_in_default_mem)); EXPECT_THAT(while0, op::ShapeWithLayout(t_s32_f32v1_in_default_mem)); } TEST_F(MemorySpaceAssignmentTest, EvictionsShouldntBeDelayed) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4, 3}); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* tanh0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* tanh_redundant6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, p0)); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, tanh0)); HloInstruction* tanh1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, negate0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* tanh2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, tanh1)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* tanh3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kTanh, tanh2)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* tuple = builder.AddInstruction( HloInstruction::CreateTuple({tanh3, negate3, tanh0})); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {p0, tanh0, tanh_redundant0, tanh_redundant1, tanh_redundant2, tanh_redundant3, tanh_redundant4, tanh_redundant5, tanh_redundant6, negate0, tanh1, negate1, tanh2, negate2, tanh3, negate3, tuple}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpaceUsingCostAnalysis(module.get()); TF_ASSERT_OK_AND_ASSIGN(auto alias_analysis, HloAliasAnalysis::Run(module.get())); TF_ASSERT_OK_AND_ASSIGN(auto hlo_live_range, HloLiveRange::Run(module->schedule(), *alias_analysis, module->entry_computation())); std::vector<int> num_live_buffers_in_alternate_mem( hlo_live_range->flattened_instruction_sequence().size() + 1, 0); for (const HloValue* value : alias_analysis->dataflow_analysis().values()) { const Shape& shape = value->shape(); if (!shape.has_layout() || shape.layout().memory_space() == kDefaultMemorySpace) { continue; } HloLiveRange::TimeBound time_bound = hlo_live_range->buffer_live_ranges().at(value); for (int i = time_bound.start; i <= time_bound.end; ++i) { ++num_live_buffers_in_alternate_mem[i]; } } for (int i = 0; i < num_live_buffers_in_alternate_mem.size(); ++i) { EXPECT_LE(num_live_buffers_in_alternate_mem[i], 2); } } TEST_F(MemorySpaceAssignmentTest, InputOutputsInAlternateMemShouldntBeAssigned) { HloComputation::Builder builder(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); Shape shape_in_alternate_mem = ShapeUtil::MakeShapeWithDenseLayout( F32, {2, 3}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); HloInstruction* p0 = builder.AddInstruction(HloInstruction::CreateParameter(0, shape, "p0")); HloInstruction* p1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape_in_alternate_mem, "p1")); HloInstruction* negate0 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, p0)); HloInstruction* negate1 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate0)); HloInstruction* negate2 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate1)); HloInstruction* negate3 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate2)); HloInstruction* negate4 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate3)); HloInstruction* negate5 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate4)); HloInstruction* negate6 = builder.AddInstruction( HloInstruction::CreateUnary(shape, HloOpcode::kNegate, negate5)); HloInstruction* add = builder.AddInstruction(HloInstruction::CreateBinary( shape_in_alternate_mem, HloOpcode::kAdd, negate6, p1)); HloInstruction* tuple = builder.AddInstruction(HloInstruction::CreateTuple({add, negate5})); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {p0, p1, negate0, negate1, negate2, negate3, negate4, negate5, negate6, add, tuple}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); options.is_allowed_in_alternate_mem_fn = [](const HloValue& value) { return true; }; std::unique_ptr<PresetAssignments> preset_assignments = AssignMemorySpace(module.get(), options); EXPECT_THAT(p1, op::ShapeWithLayout(shape_in_alternate_mem)); EXPECT_THAT(add, op::Add(op::Negate(), op::Parameter(1))); EXPECT_THAT(add, op::ShapeWithLayout(shape_in_alternate_mem)); for (const auto& position_and_chunk : preset_assignments->chunks()) { const HloPosition& position = position_and_chunk.first; EXPECT_NE(position.instruction, p1); EXPECT_NE(position.instruction, add); } } TEST_F(MemorySpaceAssignmentTest, PendingChunkMemoryCorruptionBug) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY %Entry { %param0 = f32[8,3] parameter(0) %param1 = f32[2,4] parameter(1) %a = f32[8,3] sine(%param0) %b = f32[2,4] cosine(%param1) %d = f32[8,3] tanh(%a) %c = f32[8,3] negate(%a) %e = f32[2,4] negate(%b) %f = f32[2,4] negate(%e) %g = f32[2,4] negate(%f) %h = f32[2,4] negate(%g) %i = f32[2,4] negate(%h) %j = f32[2,4] negate(%i) %k = f32[2,4] negate(%j) %l = f32[2,4] negate(%k) %m = f32[8,3] negate(%d) %n = f32[2,4] sine(%l) %o = f32[8,3] negate(%d) %p = f32[2,4] negate(%n) %q = f32[8,3] negate(%m) ROOT %tuple = (f32[2,4], f32[8,3], f32[8,3]) tuple(%p, %q, %o) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_opcode_priority = [](const HloOpcode& opcode) { switch (opcode) { case HloOpcode::kSin: return 0; case HloOpcode::kCos: return 1; case HloOpcode::kTanh: return 2; default: return 3; } }; return get_opcode_priority(a.buffer->defining_instruction()->opcode()) < get_opcode_priority(b.buffer->defining_instruction()->opcode()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), buffer_interval_compare, &prefetch_interval_picker); } TEST_F(MemorySpaceAssignmentTest, WhileAliasedArgumentRequiredAssignmentBug) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true while_condition { param1 = (f32[2,4], f32[2,4], f32[2,4]) parameter(0) ROOT cond = pred[] constant(true) } while_body { param2 = (f32[2,4], f32[2,4], f32[2,4]) parameter(0) gte2 = f32[2,4] get-tuple-element(param2), index=0 gte3 = f32[2,4] get-tuple-element(param2), index=1 gte4 = f32[2,4] get-tuple-element(param2), index=2 add = f32[2,4] add(gte2, gte3) ROOT tuple2 = (f32[2,4], f32[2,4], f32[2,4]) tuple(add, gte3, gte4) } ENTRY Entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(param0) tuple = (f32[2,4], f32[2,4], f32[2,4]) tuple(a, b, b) while = (f32[2,4], f32[2,4], f32[2,4]) while(tuple), condition=while_condition, body=while_body gte1 = f32[2,4] get-tuple-element(while), index=0 gte2 = f32[2,4] get-tuple-element(while), index=1 ROOT root = f32[2,4] add(gte1, gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, DisallowedUseBug) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[8,3] parameter(0) param1 = f32[2,4] parameter(1) a = f32[8,3] cosine(param0) b = f32[2,4] negate(param1) d = f32[8,3] negate(a) c = f32[2,4] negate(b) e = f32[2,4] negate(c) f = f32[8,3] tanh(a) g = f32[2,4] negate(e) h = f32[2,4] negate(g) i = f32[2,4] negate(h) j = f32[2,4] negate(i) k = f32[2,4] negate(j) l = f32[2,4] negate(k) m = f32[2,4] negate(l) n = f32[2,4] sine(m) o = f32[8,3] negate(a) p = f32[2,4] negate(n) q = f32[8,3] add(o, f) r = f32[8,3] add(q, d) ROOT tuple = (f32[2,4], f32[8,3]) tuple(p, r) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_opcode_priority = [](const HloOpcode& opcode) { switch (opcode) { case HloOpcode::kSin: return 0; case HloOpcode::kCos: return 1; case HloOpcode::kTanh: return 2; default: return 3; } }; return get_opcode_priority(a.buffer->defining_instruction()->opcode()) < get_opcode_priority(b.buffer->defining_instruction()->opcode()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); Options options = DefaultMemorySpaceOptions(); options.is_use_allowed_in_alternate_mem_fn = [](const HloUse& use) { return use.instruction->opcode() != HloOpcode::kTanh; }; AssignMemorySpace(module.get(), options, buffer_interval_compare, &prefetch_interval_picker); } TEST_F(MemorySpaceAssignmentTest, DisallowedUseBugInWhile) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=3 } while_body { p0 = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = f32[3]{0} get-tuple-element(p0), index=2 gte3 = pred[] get-tuple-element(p0), index=3 add = f32[3]{0} add(gte0, gte0) negate0 = f32[3]{0} negate(add) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) negate15 = f32[3]{0} negate(gte2) tanh = f32[3]{0} tanh(gte2) ROOT tuple = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) tuple(negate14, tanh, gte2, gte3) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy0 = f32[3]{0} copy(p0) copy1 = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) tuple(copy0, copy0, copy1, p1) while = (f32[3]{0}, f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body ROOT gte = f32[3]{0} get-tuple-element(while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.is_use_allowed_in_alternate_mem_fn = [](const HloUse& use) { return use.instruction->opcode() != HloOpcode::kTanh; }; AssignMemorySpace(module.get(), options); } TEST_F(MemorySpaceAssignmentTest, AvoidRedundantEvictionInWhile) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) add = f32[3]{0} add(negate14, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte = f32[3]{0} get-tuple-element(while), index=1 ROOT negate = f32[3]{0} negate(gte) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* while_instr = FindInstruction(module.get(), "while"); EXPECT_EQ(while_instr->shape().tuple_shapes(1).layout().memory_space(), kAlternateMemorySpace); const HloInstruction* gte1 = FindInstruction(module.get(), "gte1"); EXPECT_EQ(gte1->user_count(), 1); EXPECT_EQ(gte1->users()[0]->opcode(), HloOpcode::kTanh); const HloInstruction* while_root = while_instr->while_body()->root_instruction(); EXPECT_THAT(while_root->operand(1), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::Parameter(0)))); } TEST_F(MemorySpaceAssignmentTest, RedundantEvictionEliminationShouldntAddRedundantParam) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) add = f32[3]{0} add(negate1, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte = f32[3]{0} get-tuple-element(while), index=1 ROOT negate = f32[3]{0} negate(gte) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* while_instr = FindInstruction(module.get(), "while"); EXPECT_EQ(while_instr->shape().tuple_shapes_size(), 3); } TEST_F(MemorySpaceAssignmentTest, AvoidRedundantEvictionInNestedWhile) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond2 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body2 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) add = f32[3]{0} add(negate14, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } while_cond1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT while2 = (f32[3]{0}, f32[3]{0}, pred[]) while(p0), condition=while_cond2, body=while_body2 } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while1 = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond1, body=while_body1 gte = f32[3]{0} get-tuple-element(while1), index=1 ROOT negate = f32[3]{0} negate(gte) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* while1_instr = FindInstruction(module.get(), "while1"); EXPECT_EQ(while1_instr->shape().tuple_shapes(1).layout().memory_space(), kAlternateMemorySpace); const HloInstruction* while2_instr = FindInstruction(module.get(), "while2"); EXPECT_EQ(while2_instr->shape().tuple_shapes(1).layout().memory_space(), kAlternateMemorySpace); const HloInstruction* gte1 = FindInstruction(module.get(), "gte1"); EXPECT_EQ(gte1->user_count(), 1); EXPECT_EQ(gte1->users()[0]->opcode(), HloOpcode::kTanh); const HloInstruction* while_root = while2_instr->while_body()->root_instruction(); EXPECT_THAT(while_root->operand(1), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::GetTupleElement(op::Parameter(0)))); } TEST_F(MemorySpaceAssignmentTest, RedundantEvictionEliminationBug) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) add0 = f32[3]{0} add(negate14, tanh) add1 = f32[3]{0} add(add0, gte1) negate = f32[3]{0} negate(add1) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add1, negate, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte = f32[3]{0} get-tuple-element(while), index=1 ROOT negate = f32[3]{0} negate(gte) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* while_instr = FindInstruction(module.get(), "while"); EXPECT_EQ(while_instr->shape().tuple_shapes_size(), 3); EXPECT_EQ(while_instr->shape().tuple_shapes(1).layout().memory_space(), kAlternateMemorySpace); const HloInstruction* gte1 = FindInstruction(module.get(), "gte1"); EXPECT_EQ(gte1->user_count(), 2); EXPECT_NE( absl::c_find_if(gte1->users(), HloPredicateIsOp<HloOpcode::kCopyStart>), gte1->users().end()); } TEST_F(MemorySpaceAssignmentTest, RedundantEvictionEliminationInChainedWhile) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) add = f32[3]{0} add(negate14, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } while_cond2 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body2 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) add = f32[3]{0} add(negate0, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while1 = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond1, body=while_body1 while2 = (f32[3]{0}, f32[3]{0}, pred[]) while(while1), condition=while_cond2, body=while_body2 gte = f32[3]{0} get-tuple-element(while2), index=1 ROOT negate = f32[3]{0} negate(gte) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_EQ( FindInstruction(module.get(), "while1")->shape().tuple_shapes_size(), FindInstruction(module.get(), "while2")->shape().tuple_shapes_size() + 1); } TEST_F(MemorySpaceAssignmentTest, AvoidRedundantEvictionAfterWhile) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = pred[] get-tuple-element(p0), index=2 add = f32[3]{0} add(gte0, gte1) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, add, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) negate0 = f32[3]{0} negate(p0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, negate14, p1) while = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte0 = f32[3]{0} get-tuple-element(while), index=0 gte1 = f32[3]{0} get-tuple-element(while), index=1 negate20 = f32[3]{0} negate(gte1) negate21 = f32[3]{0} negate(negate20) negate22 = f32[3]{0} negate(negate21) negate23 = f32[3]{0} negate(negate22) negate24 = f32[3]{0} negate(negate23) negate25 = f32[3]{0} negate(negate24) negate26 = f32[3]{0} negate(negate25) negate27 = f32[3]{0} negate(negate26) negate28 = f32[3]{0} negate(negate27) negate29 = f32[3]{0} negate(negate28) negate30 = f32[3]{0} negate(negate29) negate31 = f32[3]{0} negate(negate30) negate32 = f32[3]{0} negate(negate31) negate33 = f32[3]{0} negate(negate32) negate34 = f32[3]{0} negate(negate33) ROOT add = f32[3]{0} add(negate34, gte0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_THAT( module->entry_computation()->root_instruction()->operand(1), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Copy())); } TEST_F(MemorySpaceAssignmentTest, AvoidRedundantEvictionAfterWhile2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = pred[] get-tuple-element(p0), index=2 add = f32[3]{0} add(gte0, gte1) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, add, gte2) } while_cond2 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body2 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = pred[] get-tuple-element(p0), index=2 add = f32[3]{0} add(gte0, gte1) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, add, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) tuple1 = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while1 = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple1), condition=while_cond1, body=while_body1 gte0 = f32[3]{0} get-tuple-element(while1), index=0 gte1 = f32[3]{0} get-tuple-element(while1), index=1 negate0 = f32[3]{0} negate(gte1) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) tuple2 = (f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, negate14, p1) while2 = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple2), condition=while_cond2, body=while_body2 gte2 = f32[3]{0} get-tuple-element(while2), index=0 gte3 = f32[3]{0} get-tuple-element(while2), index=1 negate20 = f32[3]{0} negate(gte3) negate21 = f32[3]{0} negate(negate20) negate22 = f32[3]{0} negate(negate21) negate23 = f32[3]{0} negate(negate22) negate24 = f32[3]{0} negate(negate23) negate25 = f32[3]{0} negate(negate24) negate26 = f32[3]{0} negate(negate25) negate27 = f32[3]{0} negate(negate26) negate28 = f32[3]{0} negate(negate27) negate29 = f32[3]{0} negate(negate28) negate30 = f32[3]{0} negate(negate29) negate31 = f32[3]{0} negate(negate30) negate32 = f32[3]{0} negate(negate31) negate33 = f32[3]{0} negate(negate32) negate34 = f32[3]{0} negate(negate33) ROOT add = f32[3]{0} add(negate34, gte2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_THAT( module->entry_computation()->root_instruction()->operand(1), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::GetTupleElement(op::While())))); } TEST_F(MemorySpaceAssignmentTest, AfterWhileRedundantEarlierEvictionModifiedBuffer) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 gte2 = pred[] get-tuple-element(p0), index=2 add = f32[3]{0} add(gte0, gte1) negate = f32[3]{0} negate(gte0) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(negate, add, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) copy = f32[3]{0} copy(p0) negate0 = f32[3]{0} negate(p0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, negate14, p1) while = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte0 = f32[3]{0} get-tuple-element(while), index=0 gte1 = f32[3]{0} get-tuple-element(while), index=1 negate20 = f32[3]{0} negate(gte1) negate21 = f32[3]{0} negate(negate20) negate22 = f32[3]{0} negate(negate21) negate23 = f32[3]{0} negate(negate22) negate24 = f32[3]{0} negate(negate23) negate25 = f32[3]{0} negate(negate24) negate26 = f32[3]{0} negate(negate25) negate27 = f32[3]{0} negate(negate26) negate28 = f32[3]{0} negate(negate27) negate29 = f32[3]{0} negate(negate28) negate30 = f32[3]{0} negate(negate29) negate31 = f32[3]{0} negate(negate30) negate32 = f32[3]{0} negate(negate31) negate33 = f32[3]{0} negate(negate32) negate34 = f32[3]{0} negate(negate33) ROOT add = f32[3]{0} add(negate34, gte0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_THAT( module->entry_computation()->root_instruction()->operand(1), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::GetTupleElement(op::While())))); } TEST_F(MemorySpaceAssignmentTest, WhileRedundantEvictionWithInefficientAllocationBug) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) add = f32[3]{0} add(negate1, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } while_cond1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(p0), index=2 } while_body1 { p0 = (f32[3]{0}, f32[3]{0}, pred[]) parameter(0) gte0 = f32[3]{0} get-tuple-element(p0), index=0 gte2 = pred[] get-tuple-element(p0), index=2 negate0 = f32[3]{0} negate(gte0) negate1 = f32[3]{0} negate(negate0) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) gte1 = f32[3]{0} get-tuple-element(p0), index=1 tanh = f32[3]{0} tanh(gte1) add = f32[3]{0} add(negate14, tanh) ROOT tuple = (f32[3]{0}, f32[3]{0}, pred[]) tuple(add, gte1, gte2) } ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = pred[] parameter(1) p2 = f32[3]{0} parameter(2) copy = f32[3]{0} copy(p0) tuple1 = (f32[3]{0}, f32[3]{0}, pred[]) tuple(copy, p0, p1) while1 = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple1), condition=while_cond, body=while_body gte0 = f32[3]{0} get-tuple-element(while1), index=0 gte1 = f32[3]{0} get-tuple-element(while1), index=1 negate0_entry = f32[3]{0} negate(gte1) gte2 = pred[] get-tuple-element(while1), index=2 tuple2 = (f32[3]{0}, f32[3]{0}, pred[]) tuple(gte0, gte1, gte2) while2 = (f32[3]{0}, f32[3]{0}, pred[]) while(tuple2), condition=while_cond1, body=while_body1 negate1 = f32[3]{0} negate(negate0_entry) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) negate10 = f32[3]{0} negate(negate9) negate11 = f32[3]{0} negate(negate10) negate12 = f32[3]{0} negate(negate11) negate13 = f32[3]{0} negate(negate12) negate14 = f32[3]{0} negate(negate13) gte = f32[3]{0} get-tuple-element(while2), index=1 ROOT add = f32[3]{0} add(gte, negate14) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); bool marked_inefficient = false; options.get_inefficient_allocation_sites_fn = [&](absl::Span<HloPosition> defining_positions) -> std::vector<std::variant<HloPosition, HloUse>> { if (absl::c_find(defining_positions, HloPosition{FindInstruction(module.get(), "while1"), {1}}) != defining_positions.end() && !marked_inefficient) { LOG(INFO) << "Marking the use inefficient."; marked_inefficient = true; return {HloUse{FindInstruction(module.get(), "negate0_entry"), 0}}; } return {}; }; AssignMemorySpace(module.get(), options); } TEST_F(MemorySpaceAssignmentTest, DisablePrefetch) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[3]{0} parameter(0) p1 = f32[3]{0} parameter(1) negate1 = f32[3]{0} negate(p1) negate2 = f32[3]{0} negate(negate1) negate3 = f32[3]{0} negate(negate2) negate4 = f32[3]{0} negate(negate3) negate5 = f32[3]{0} negate(negate4) negate6 = f32[3]{0} negate(negate5) negate7 = f32[3]{0} negate(negate6) negate8 = f32[3]{0} negate(negate7) negate9 = f32[3]{0} negate(negate8) ROOT add = f32[3]{0} add(negate9, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.max_outstanding_prefetches = 0; AssignMemorySpace(module.get(), options); EXPECT_THAT(module->entry_computation()->root_instruction()->operand(1), op::Parameter()); } TEST_F(MemorySpaceAssignmentTest, BitcastRoot) { absl::string_view hlo_string = R"( HloModule primitive_computation_gather.4, is_scheduled=true %while_body { %param.1 = (s32[], f32[3,3,3]) parameter(0) %get-tuple-element.32 = s32[] get-tuple-element(%param.1), index=0 %copy.6 = s32[] copy(s32[] %get-tuple-element.32) %constant.8 = s32[] constant(1) %add = s32[] add(s32[] %copy.6, s32[] %constant.8) %get-tuple-element.35 = f32[3,3,3] get-tuple-element(%param.1), index=1 negate = f32[3,3,3] negate(get-tuple-element.35) ROOT %tuple.10 = (s32[], f32[3,3,3]) tuple(s32[] %add, f32[3,3,3] negate) } %while_cond { %param.0 = (s32[], f32[3,3,3]) parameter(0) %get-tuple-element = s32[] get-tuple-element(%param.0), index=0 %constant.3 = s32[] constant(3) ROOT %compare = pred[] compare(s32[] %get-tuple-element, s32[] %constant.3), direction=LT } ENTRY %primitive_computation_gather.4 (parameter.1: f32[3,10,5], parameter.2: s32[3,1]) -> f32[3,3,3] { %constant.1 = s32[] constant(0) %copy.11 = s32[] copy(s32[] %constant.1) %constant = f32[] constant(0) %broadcast = f32[3,3,3] broadcast(f32[] %constant), dimensions={} %tuple.8 = (s32[], f32[3,3,3]) tuple(s32[] %copy.11, f32[3,3,3] %broadcast) %while = (s32[], f32[3,3,3]) while(%tuple.8), condition=%while_cond, body=%while_body %get-tuple-element.7 = f32[3,3,3] get-tuple-element(%while), index=1 ROOT %bitcast.1 = f32[3,3,3] bitcast(f32[3,3,3] %get-tuple-element.7) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_TRUE(!root->shape().has_layout() || root->shape().layout().memory_space() == kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, PrecoloredBuffer) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[8,3] parameter(0) param1 = f32[2,4] parameter(1) a = f32[8,3]{1,0:S(1)} cosine(param0) b = f32[2,4] negate(param1) d = f32[8,3] negate(a) c = f32[2,4] negate(b) e = f32[2,4] negate(c) f = f32[8,3] negate(d) g = f32[2,4] negate(e) h = f32[2,4] negate(g) i = f32[2,4] negate(h) j = f32[2,4] negate(i) k = f32[2,4] negate(j) l = f32[2,4] negate(k) m = f32[2,4] negate(l) n = f32[2,4] negate(m) o = f32[8,3] negate(f) p = f32[2,4] negate(n) q = f32[8,3] add(f, o) r = f32[8,3] add(q, a) ROOT tuple = (f32[2,4], f32[8,3]) tuple(p, r) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_opcode_priority = [](const HloOpcode& opcode) { switch (opcode) { case HloOpcode::kNegate: return 0; case HloOpcode::kAdd: return 1; case HloOpcode::kCos: return 2; default: return 3; } }; return get_opcode_priority(a.buffer->defining_instruction()->opcode()) < get_opcode_priority(b.buffer->defining_instruction()->opcode()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); Options options = DefaultMemorySpaceOptions(); std::unique_ptr<PresetAssignments> preset_assignments = AssignMemorySpace(module.get(), options, buffer_interval_compare, &prefetch_interval_picker); const HloInstruction* r = FindInstruction(module.get(), "r"); const HloInstruction* d = FindInstruction(module.get(), "d"); const HloInstruction* a = FindInstruction(module.get(), "a"); EXPECT_EQ(r->operand(1), a); EXPECT_EQ(d->operand(0), a); EXPECT_EQ(a->shape().layout().memory_space(), kAlternateMemorySpace); auto a_entry = std::find_if( preset_assignments->chunks().begin(), preset_assignments->chunks().end(), [&](std::pair<HloPosition, HeapSimulator::Chunk> position_and_chunk) { return position_and_chunk.first.instruction == a; }); EXPECT_NE(a_entry, preset_assignments->chunks().end()); } TEST_F(MemorySpaceAssignmentTest, PrecoloredBufferOOM) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[8,3] parameter(0) param1 = f32[2,4] parameter(1) a = f32[8,3]{1,0:S(1)} cosine(param0) b = f32[2,4] negate(param1) d = f32[8,3] negate(a) c = f32[2,4] negate(b) e = f32[2,4] negate(c) f = f32[8,3] negate(d) g = f32[2,4] negate(e) h = f32[2,4] negate(g) i = f32[2,4] negate(h) j = f32[2,4] negate(i) k = f32[2,4] negate(j) l = f32[2,4] negate(k) m = f32[2,4] negate(l) n = f32[2,4] negate(m) o = f32[8,3]{1,0:S(1)} negate(f) p = f32[2,4] negate(n) q = f32[8,3] add(f, o) r = f32[8,3] add(q, a) ROOT tuple = (f32[2,4], f32[8,3]) tuple(p, r) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_opcode_priority = [](const HloOpcode& opcode) { switch (opcode) { case HloOpcode::kNegate: return 0; case HloOpcode::kAdd: return 1; case HloOpcode::kCos: return 2; default: return 3; } }; return get_opcode_priority(a.buffer->defining_instruction()->opcode()) < get_opcode_priority(b.buffer->defining_instruction()->opcode()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); Options options = DefaultMemorySpaceOptions(); auto status_or = AssignMemorySpaceAndReturnStatus(module.get(), options, buffer_interval_compare, &prefetch_interval_picker); EXPECT_THAT( status_or.status(), tsl::testing::StatusIs( tsl::error::FAILED_PRECONDITION, ::testing::HasSubstr("requires allocation in the alternate memory, " "which could not be satisfied"))); } TEST_F(MemorySpaceAssignmentTest, AsyncOpShortLiveRange) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) collective-permute-start = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0), source_target_pairs={{0,1},{1,2},{2,3}} negate1 = bf16[4]{0} negate(param) negate2 = bf16[4]{0} negate(negate1) negate3 = bf16[4]{0} negate(negate2) collective-permute-done = bf16[4]{0} collective-permute-done(collective-permute-start) ROOT add = add(collective-permute-done, negate3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start = module->entry_computation()->GetInstructionWithName( "collective-permute-start"); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(0) .layout() .memory_space() == kAlternateMemorySpace); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(1) .layout() .memory_space() == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, AsyncOpShortLiveRangeInputBufferConsumer) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) collective-permute-start = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0), source_target_pairs={{0,1},{1,2},{2,3}} negate1 = bf16[4]{0} negate(negate0) negate2 = bf16[4]{0} negate(negate1) negate3 = bf16[4]{0} negate(negate2) collective-permute-done = bf16[4]{0} collective-permute-done(collective-permute-start) ROOT add = add(collective-permute-done, negate3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start = module->entry_computation()->GetInstructionWithName( "collective-permute-start"); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(0) .layout() .memory_space() == kDefaultMemorySpace); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(1) .layout() .memory_space() == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, AsyncOpLongLiveRange) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) collective-permute-start = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0), source_target_pairs={{0,1},{1,2},{2,3}} negate1 = bf16[4]{0} negate(param) negate2 = bf16[4]{0} negate(negate1) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) negate5 = bf16[4]{0} negate(negate4) negate6 = bf16[4]{0} negate(negate5) negate7 = bf16[4]{0} negate(negate6) negate8 = bf16[4]{0} negate(negate7) negate9 = bf16[4]{0} negate(negate8) negate10 = bf16[4]{0} negate(negate9) negate11 = bf16[4]{0} negate(negate10) negate12 = bf16[4]{0} negate(negate11) negate13 = bf16[4]{0} negate(negate12) collective-permute-done = bf16[4]{0} collective-permute-done(collective-permute-start) ROOT add = add(collective-permute-done, negate13) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start = module->entry_computation()->GetInstructionWithName( "collective-permute-start"); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(0) .layout() .memory_space() == kDefaultMemorySpace); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(1) .layout() .memory_space() == kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, AsyncOpLongLiveRangeInputBufferConsumer) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) collective-permute-start = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0), source_target_pairs={{0,1},{1,2},{2,3}} negate1 = bf16[4]{0} negate(negate0) negate2 = bf16[4]{0} negate(negate1) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) negate5 = bf16[4]{0} negate(negate4) negate6 = bf16[4]{0} negate(negate5) negate7 = bf16[4]{0} negate(negate6) negate8 = bf16[4]{0} negate(negate7) negate9 = bf16[4]{0} negate(negate8) negate10 = bf16[4]{0} negate(negate9) negate11 = bf16[4]{0} negate(negate10) negate12 = bf16[4]{0} negate(negate11) negate13 = bf16[4]{0} negate(negate12) collective-permute-done = bf16[4]{0} collective-permute-done(collective-permute-start) ROOT add = add(collective-permute-done, negate13) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start = module->entry_computation()->GetInstructionWithName( "collective-permute-start"); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(0) .layout() .memory_space() == kDefaultMemorySpace); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(1) .layout() .memory_space() == kDefaultMemorySpace); } TEST_F(MemorySpaceAssignmentTest, InPlaceAsyncCollectivePermute) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) negate1 = bf16[4]{0} negate(param) const0 = s32[] constant(0) const1 = s32[] constant(1) tuple0 = (s32[]) tuple(const0) tuple1 = (s32[]) tuple(const1) collective-permute-start = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0, negate1, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate2 = bf16[4]{0} negate(param) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) collective-permute-done = bf16[4]{0} collective-permute-done(collective-permute-start) ROOT add = add(collective-permute-done, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start = module->entry_computation()->GetInstructionWithName( "collective-permute-start"); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(0) .layout() .memory_space() == kAlternateMemorySpace); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(1) .layout() .memory_space() == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, InPlaceAsyncCollectivePermuteSameBuffer) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) const0 = s32[] constant(0) const1 = s32[] constant(1) tuple0 = (s32[]) tuple(const0) tuple1 = (s32[]) tuple(const1) collective-permute-start = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0, negate0, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate2 = bf16[4]{0} negate(param) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) collective-permute-done = bf16[4]{0} collective-permute-done(collective-permute-start) ROOT add = add(collective-permute-done, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start = module->entry_computation()->GetInstructionWithName( "collective-permute-start"); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(0) .layout() .memory_space() == kAlternateMemorySpace); EXPECT_TRUE(collective_permute_start->shape() .tuple_shapes(1) .layout() .memory_space() == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, InPlaceAsyncCollectivePermuteSameBufferChained) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) negate0 = bf16[4]{0} negate(param) const0 = s32[] constant(0) const1 = s32[] constant(1) tuple0 = (s32[]) tuple(const0) tuple1 = (s32[]) tuple(const1) collective-permute-start.1 = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(negate0, negate0, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate2 = bf16[4]{0} negate(param) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) collective-permute-done.1 = bf16[4]{0} collective-permute-done(collective-permute-start.1) collective-permute-start.2 = (bf16[4]{0}, bf16[4]{0}, u32[], u32[]) collective-permute-start(collective-permute-done.1, collective-permute-done.1, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate5 = bf16[4]{0} negate(negate4) negate6 = bf16[4]{0} negate(negate5) negate7 = bf16[4]{0} negate(negate6) collective-permute-done.2 = bf16[4]{0} collective-permute-done(collective-permute-start.2) ROOT add = add(collective-permute-done.2, negate7) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); HloInstruction* collective_permute_start_1 = module->entry_computation()->GetInstructionWithName( "collective-permute-start.1"); EXPECT_TRUE(collective_permute_start_1->shape() .tuple_shapes(0) .layout() .memory_space() == kAlternateMemorySpace); EXPECT_TRUE(collective_permute_start_1->shape() .tuple_shapes(1) .layout() .memory_space() == kAlternateMemorySpace); HloInstruction* collective_permute_start_2 = module->entry_computation()->GetInstructionWithName( "collective-permute-start.2"); EXPECT_TRUE(collective_permute_start_2->shape() .tuple_shapes(0) .layout() .memory_space() == kAlternateMemorySpace); EXPECT_TRUE(collective_permute_start_2->shape() .tuple_shapes(1) .layout() .memory_space() == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, TupleInPlaceAsyncCollectivePermuteSameBufferChained) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) param2 = bf16[48]{0} parameter(1) negate0.1 = bf16[48]{0} negate(param2) negate0.2 = bf16[48]{0} negate(param2) const0 = s32[] constant(0) const1 = s32[] constant(1) tuple0.0 = (s32[]) tuple(const0) tuple0 = ((s32[]), (s32[])) tuple(tuple0.0, tuple0.0) tuple1.0 = (s32[]) tuple(const1) tuple1 = ((s32[]), (s32[])) tuple(tuple1.0, tuple1.0) tuple2 = (bf16[48]{0}, bf16[48]{0}) tuple(negate0.1, negate0.2) collective-permute-start.1 = ((bf16[48]{0}, bf16[48]{0}), (bf16[48]{0}, bf16[48]{0}), u32[], u32[]) collective-permute-start(tuple2, tuple2, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate2 = bf16[4]{0} negate(param) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) collective-permute-done.1 = (bf16[48]{0}, bf16[48]{0}) collective-permute-done(collective-permute-start.1) collective-permute-start.2 = ((bf16[48]{0}, bf16[48]{0}), (bf16[48]{0}, bf16[48]{0}), u32[], u32[]) collective-permute-start(collective-permute-done.1, collective-permute-done.1, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate5 = bf16[4]{0} negate(negate4) negate6 = bf16[4]{0} negate(negate5) negate7 = bf16[4]{0} negate(negate6) collective-permute-done.2 = (bf16[48]{0}, bf16[48]{0}) collective-permute-done(collective-permute-start.2) gte = bf16[48]{0} get-tuple-element(collective-permute-done.2), index=0 ROOT root = (bf16[48]{0}, bf16[4]{0}) tuple(gte, negate7) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* cp_done1 = FindInstruction(module.get(), "collective-permute-done.1"); EXPECT_EQ(cp_done1->operand(0)->opcode(), HloOpcode::kCollectivePermuteStart); const HloInstruction* cp_done2 = FindInstruction(module.get(), "collective-permute-done.2"); EXPECT_EQ(cp_done2->operand(0)->opcode(), HloOpcode::kCollectivePermuteStart); } TEST_F(MemorySpaceAssignmentTest, TupleInPlaceAsyncCollectivePermuteSameBuffer) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) param2 = bf16[48]{0} parameter(1) negate0.1 = bf16[48]{0} negate(param2) negate0.2 = bf16[48]{0} negate(param2) const0 = s32[] constant(0) const1 = s32[] constant(1) tuple0.0 = (s32[]) tuple(const0) tuple0 = ((s32[]), (s32[])) tuple(tuple0.0, tuple0.0) tuple1.0 = (s32[]) tuple(const1) tuple1 = ((s32[]), (s32[])) tuple(tuple1.0, tuple1.0) tuple2 = (bf16[48]{0}, bf16[48]{0}) tuple(negate0.1, negate0.1) tuple3 = (bf16[48]{0}, bf16[48]{0}) tuple(negate0.2, negate0.2) collective-permute-start.1 = ((bf16[48]{0}, bf16[48]{0}), (bf16[48]{0}, bf16[48]{0}), u32[], u32[]) collective-permute-start(tuple2, tuple3, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} negate2 = bf16[4]{0} negate(param) negate3 = bf16[4]{0} negate(negate2) negate4 = bf16[4]{0} negate(negate3) collective-permute-done.1 = (bf16[48]{0}, bf16[48]{0}) collective-permute-done(collective-permute-start.1) gte = bf16[48]{0} get-tuple-element(collective-permute-done.1), index=0 ROOT root = (bf16[48]{0}, bf16[4]{0}) tuple(gte, negate4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* cp_done1 = FindInstruction(module.get(), "collective-permute-done.1"); EXPECT_EQ(cp_done1->operand(0)->opcode(), HloOpcode::kCollectivePermuteStart); } TEST_F(MemorySpaceAssignmentTest, TupleInPlaceAsyncCollectivePermuteSameBufferRoot) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[4]{0} parameter(0) param2 = bf16[48]{0} parameter(1) negate0.1 = bf16[48]{0} negate(param2) negate0.2 = bf16[48]{0} negate(param2) const0 = s32[] constant(0) const1 = s32[] constant(1) tuple0.0 = (s32[]) tuple(const0) tuple0 = ((s32[]), (s32[])) tuple(tuple0.0, tuple0.0) tuple1.0 = (s32[]) tuple(const1) tuple1 = ((s32[]), (s32[])) tuple(tuple1.0, tuple1.0) tuple2 = (bf16[48]{0}, bf16[48]{0}) tuple(negate0.1, negate0.1) tuple3 = (bf16[48]{0}, bf16[48]{0}) tuple(negate0.2, negate0.2) collective-permute-start.1 = ((bf16[48]{0}, bf16[48]{0}), (bf16[48]{0}, bf16[48]{0}), u32[], u32[]) collective-permute-start(tuple2, tuple3, tuple0, tuple1), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{1}} ROOT collective-permute-done.1 = (bf16[48]{0}, bf16[48]{0}) collective-permute-done(collective-permute-start.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* cp_done1 = FindInstruction(module.get(), "collective-permute-done.1"); EXPECT_EQ(cp_done1->operand(0)->opcode(), HloOpcode::kCollectivePermuteStart); ShapeUtil::ForEachSubshape( cp_done1->shape(), [&](const Shape& subshape, const ShapeIndex& ) { if (subshape.IsArray() && subshape.has_layout()) { EXPECT_EQ(subshape.layout().memory_space(), kDefaultMemorySpace); } }); } TEST_F(MemorySpaceAssignmentTest, TupleInPlaceAsyncCollectivePermuteRoot) { absl::string_view hlo_string = R"( HloModule inplace_collective_permute, is_scheduled=true ENTRY %inplace_collective_permute { %param.0 = u32[8,1,1] parameter(0) %constant.1000 = u32[] constant(1000) %broadcast.1 = u32[8,1,1] broadcast(u32[] %constant.1000), dimensions={} %broadcast.2 = u32[8,1,1] broadcast(u32[] %constant.1000), dimensions={} %tuple.input = (u32[8,1,1], u32[8,1,1]) tuple(u32[8,1,1] %param.0, u32[8,1,1] %param.0) %tuple.output = (u32[8,1,1], u32[8,1,1]) tuple(u32[8,1,1] %broadcast.1, u32[8,1,1] %broadcast.2) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(1) %constant.2 = s32[] constant(2) %indices.0.0.0 = (s32[], s32[], s32[]) tuple(s32[] %constant.0, s32[] %constant.0, s32[] %constant.0) %indices.1.0.0 = (s32[], s32[], s32[]) tuple(s32[] %constant.1, s32[] %constant.0, s32[] %constant.0) %indices.2.0.0 = (s32[], s32[], s32[]) tuple(s32[] %constant.2, s32[] %constant.0, s32[] %constant.0) %indices.000.100 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple((s32[], s32[], s32[]) %indices.0.0.0, (s32[], s32[], s32[]) %indices.1.0.0) %indices.000.200 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple((s32[], s32[], s32[]) %indices.0.0.0, (s32[], s32[], s32[]) %indices.2.0.0) %indices.000.0 = ((s32[], s32[], s32[]), (s32[], s32[], s32[])) tuple((s32[], s32[], s32[]) %indices.0.0.0, (s32[], s32[], s32[]) %indices.0.0.0) %input.indices = (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) tuple(((s32[], s32[], s32[]), (s32[], s32[], s32[])) %indices.000.100, ((s32[], s32[], s32[]), (s32[], s32[], s32[])) %indices.000.0) %output.indices = (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) tuple(((s32[], s32[], s32[]), (s32[], s32[], s32[])) %indices.000.100, ((s32[], s32[], s32[]), (s32[], s32[], s32[])) %indices.000.200) %collective-permute-start = ((u32[8,1,1], u32[8,1,1]), (u32[8,1,1], u32[8,1,1]), u32[], u32[]) collective-permute-start((u32[8,1,1], u32[8,1,1]) %tuple.input, (u32[8,1,1], u32[8,1,1]) %tuple.output, (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) %input.indices, (((s32[], s32[], s32[]), (s32[], s32[], s32[])), ((s32[], s32[], s32[]), (s32[], s32[], s32[]))) %output.indices), channel_id=42, source_target_pairs={{0,1},{1,0},{1,0},{0,1}}, slice_sizes={{4},{4},{4},{4}} ROOT %collective-permute-done = (u32[8,1,1], u32[8,1,1]) collective-permute-done(((u32[8,1,1], u32[8,1,1]), (u32[8,1,1], u32[8,1,1]), u32[], u32[]) %collective-permute-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); const HloInstruction* cp_done = FindInstruction(module.get(), "collective-permute-done"); EXPECT_EQ(cp_done->operand(0)->opcode(), HloOpcode::kCollectivePermuteStart); ShapeUtil::ForEachSubshape( cp_done->shape(), [&](const Shape& subshape, const ShapeIndex& ) { if (subshape.IsArray() && subshape.has_layout()) { EXPECT_EQ(subshape.layout().memory_space(), kDefaultMemorySpace); } }); } TEST_F(MemorySpaceAssignmentTest, ReservedScopedMemory) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) ROOT f = f32[2,4] add(e, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.reserved_scoped_memory_fn = [&](const HloInstruction* instruction, const absl::flat_hash_set<std::pair<int, ShapeIndex>> operands_in_alternate_memory, const absl::flat_hash_set<ShapeIndex> outputs_in_alternate_memory) { if (instruction->name() == "c") { return 100; } return 0; }; AssignMemorySpace(module.get(), options); auto get_memory_space = [&](absl::string_view instruction_name) { return module->entry_computation() ->GetInstructionWithName(instruction_name) ->shape() .layout() .memory_space(); }; EXPECT_TRUE(get_memory_space("a") == kAlternateMemorySpace); EXPECT_TRUE(get_memory_space("b") == kDefaultMemorySpace); EXPECT_TRUE(get_memory_space("c") == kDefaultMemorySpace); EXPECT_TRUE(get_memory_space("d") == kAlternateMemorySpace); EXPECT_TRUE(get_memory_space("e") == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, ConstantAllocationFar) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param0 = f32[2,4] parameter(0) const = f32[2,4] constant({...}) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) ROOT negate = f32[2,4] add(const, e) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_TRUE(module->entry_computation() ->GetInstructionWithName("const") ->shape() .layout() .memory_space() == kDefaultMemorySpace); EXPECT_TRUE(module->entry_computation() ->GetInstructionWithName("negate") ->operand(0) ->shape() .layout() .memory_space() == kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, ConstantAllocationNear) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) const = f32[2,4] constant({...}) ROOT negate = f32[2,4] add(const, e) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_TRUE(module->entry_computation() ->GetInstructionWithName("const") ->shape() .layout() .memory_space() == kDefaultMemorySpace); EXPECT_TRUE(module->entry_computation() ->GetInstructionWithName("negate") ->operand(0) ->shape() .layout() .memory_space() == kAlternateMemorySpace); } class FakeMemorySpaceAssignmentRepacker : public MemorySpaceAssignmentRepacker { public: explicit FakeMemorySpaceAssignmentRepacker( absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t>& repack_map, std::function<void(absl::Span<AllocationBlock*>)> check_fun = nullptr, bool always_return_modified = false) : MemorySpaceAssignmentRepacker(128, 8), repack_map_(repack_map), check_fun_(check_fun), always_return_modified_(always_return_modified) {} absl::StatusOr<bool> Repack( absl::Span<AllocationBlock*> allocations) override { bool modified = false; for (AllocationBlock* block : allocations) { absl::flat_hash_set<int64_t> colocations; std::string colocations_str; for (const AllocationBlock* colocation : block->GetColocations()) { absl::StrAppend(&colocations_str, colocation->id, ", "); colocations.insert(colocation->id); } VLOG(1) << "Alloc id: " << block->id << " time: [" << block->inclusive_start_time << ", " << block->end_time << "] size: " << block->size << " init offset: " << block->initial_offset << " colocations: {" << colocations_str << "}"; auto it = repack_map_.find( {block->inclusive_start_time, block->initial_offset}); if (it != repack_map_.end()) { modified = true; block->offset = it->second; } else { block->offset = block->initial_offset; } for (AllocationBlock* colocation : block->GetColocations()) { if (it != repack_map_.end()) { colocation->offset = it->second; } else { colocation->offset = colocation->initial_offset; } } } if (check_fun_) { check_fun_(allocations); } return always_return_modified_ || modified; } private: absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map_; std::function<void(absl::Span<AllocationBlock*>)> check_fun_; bool always_return_modified_; }; TEST_F(MemorySpaceAssignmentTest, Repack) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[8,3] parameter(0) param1 = f32[2,4] parameter(1) a = f32[2,4] sine(param1) b = f32[2,4] cosine(param1) c = f32[8,3] negate(param0) j = f32[2,4] negate(a) d = f32[8,3] tanh(param0) k = f32[2,4] negate(j) l = f32[2,4] add(b, k) m = f32[8,3] negate(d) n = f32[2,4] sine(l) o = f32[8,3] negate(m) p = f32[2,4] negate(n) q = f32[8,3] negate(m) ROOT tuple = (f32[2,4], f32[8,3], f32[8,3]) tuple(p, q, o) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_opcode_priority = [](const HloOpcode& opcode) { switch (opcode) { case HloOpcode::kSin: return 0; case HloOpcode::kCos: return 1; case HloOpcode::kTanh: return 2; default: return 3; } }; return get_opcode_priority(a.buffer->defining_instruction()->opcode()) < get_opcode_priority(b.buffer->defining_instruction()->opcode()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; repack_map[{2, 0}] = 32; repack_map[{3, 32}] = 0; FakeMemorySpaceAssignmentRepacker repacker = FakeMemorySpaceAssignmentRepacker(repack_map); Options options = DefaultMemorySpaceOptions(); options.max_repacks = 1; options.repacker = &repacker; AssignMemorySpace(module.get(), options, buffer_interval_compare, &prefetch_interval_picker); const HloInstruction* d = module->entry_computation()->GetInstructionWithName("d"); EXPECT_EQ(d->shape().layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, RepackExportsAliasedOffsets) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true while_condition { param1 = (f32[2,4], f32[2,4]) parameter(0) ROOT cond = pred[] constant(true) } while_body { param2 = (f32[2,4], f32[2,4]) parameter(0) gte2 = f32[2,4] get-tuple-element(param2), index=0 gte3 = f32[2,4] get-tuple-element(param2), index=1 add = f32[2,4] add(gte2, gte3) ROOT tuple2 = (f32[2,4], f32[2,4]) tuple(add, gte3) } ENTRY Entry { param0 = f32[2,4] parameter(0) a = f32[2,4] sine(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) f = f32[2,4] negate(e) g = f32[2,4] negate(f) h = f32[2,4] negate(g) i = f32[2,4] negate(h) j = f32[2,4] negate(i) k = f32[2,4] negate(j) l = f32[2,4] negate(k) m = f32[2,4] negate(l) n = f32[2,4] negate(m) o = f32[2,4] negate(n) p = f32[2,4] negate(o) q = f32[2,4] add(p, a) tuple = (f32[2,4], f32[2,4]) tuple(q, a) while = (f32[2,4], f32[2,4]) while(tuple), condition=while_condition, body=while_body gte0 = f32[2,4] get-tuple-element(while), index=0 gte1 = f32[2,4] get-tuple-element(while), index=1 r = f32[2,4] negate(gte0) s = f32[2,4] negate(r) t = f32[2,4] negate(s) constant = f32[] constant(0) broadcast = f32[8,4] broadcast(constant), dimensions={} cos = f32[8,4] cosine(broadcast) u = f32[2,4] add(t, gte1) v = f32[2,4] add(u, param0) w = f32[8,4] negate(cos) ROOT tuple3 = (f32[2,4], f32[8,4]) tuple(v, w) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_opcode_priority = [](const HloOpcode& opcode) { switch (opcode) { case HloOpcode::kSin: return 0; case HloOpcode::kCos: return 1; case HloOpcode::kTanh: return 2; default: return 3; } }; return get_opcode_priority(a.buffer->defining_instruction()->opcode()) < get_opcode_priority(b.buffer->defining_instruction()->opcode()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; auto check_fun = [](absl::Span<AllocationBlock*> allocations) { EXPECT_TRUE(allocations.at(0)->GetColocationsCount() == 1 || allocations.at(0)->GetColocationsCount() == 3); EXPECT_EQ(allocations.at(1)->GetColocationsCount(), 3); EXPECT_EQ(allocations.at(2)->GetColocationsCount(), 3); EXPECT_TRUE(allocations.at(3)->GetColocationsCount() == 1 || allocations.at(3)->GetColocationsCount() == 3); }; FakeMemorySpaceAssignmentRepacker repacker = FakeMemorySpaceAssignmentRepacker(repack_map, check_fun); Options options = DefaultMemorySpaceOptions(); options.max_repacks = 1; options.repacker = &repacker; AssignMemorySpace(module.get(), options, buffer_interval_compare, &prefetch_interval_picker); } TEST_F(MemorySpaceAssignmentTest, RepackExportsAliasedOffsetsForReservedScopedMemory) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param0 = f32[2,4] parameter(0) a = f32[2,4] negate(param0) b = f32[2,4] negate(a) c = f32[2,4] negate(b) d = f32[2,4] negate(c) e = f32[2,4] negate(d) ROOT f = f32[2,4] add(e, b) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.max_repacks = 1; options.reserved_scoped_memory_fn = [&](const HloInstruction* instruction, const absl::flat_hash_set<std::pair<int, ShapeIndex>> operands_in_alternate_memory, const absl::flat_hash_set<ShapeIndex> outputs_in_alternate_memory) { if (instruction->name() == "c" || instruction->name() == "d") { return 100; } return 0; }; absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; bool repacker_ran = false; auto check_fun = [&](absl::Span<AllocationBlock*> allocations) { EXPECT_EQ(allocations.at(0)->GetColocationsCount(), 2); EXPECT_EQ(allocations.at(1)->GetColocationsCount(), 2); repacker_ran = true; }; FakeMemorySpaceAssignmentRepacker repacker = FakeMemorySpaceAssignmentRepacker(repack_map, check_fun); options.repacker = &repacker; AssignMemorySpace(module.get(), options); EXPECT_TRUE(repacker_ran); } TEST_F(MemorySpaceAssignmentTest, ReduceReservedScopedVmemIfOperandInVmem) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[8,3] parameter(0) param1 = f32[2,4] parameter(1) a = f32[2,4] sine(param1) b = f32[2,4] cosine(param1) c = f32[8,3] negate(param0) j = f32[2,4] negate(a) d = f32[8,3] tanh(param0) k = f32[2,4] negate(j) l = f32[2,4] add(b, k) m = f32[8,3] negate(d) n = f32[2,4] sine(l) o = f32[8,3] negate(m) p = f32[2,4] negate(n) q = f32[8,3] negate(m) ROOT tuple = (f32[2,4], f32[8,3], f32[8,3], f32[8,3]) tuple(p, q, o, c) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; Options options = DefaultMemorySpaceOptions(); options.max_repacks = 10; options.repack_after_every_allocation = true; options.reduce_scoped_memory_limit = true; options.reserved_scoped_memory_fn = [&](const HloInstruction* instruction, const absl::flat_hash_set<std::pair<int, ShapeIndex>> operands_in_alternate_memory, const absl::flat_hash_set<ShapeIndex> outputs_in_alternate_memory) { int64_t scoped_memory_size = 0; if (operands_in_alternate_memory.empty()) { scoped_memory_size += 1; LOG(INFO) << instruction->name() << " has no operand in vmem"; } if (outputs_in_alternate_memory.empty()) { scoped_memory_size += 2; LOG(INFO) << instruction->name() << " has no output in vmem"; } return scoped_memory_size; }; FakeMemorySpaceAssignmentRepacker repacker = FakeMemorySpaceAssignmentRepacker(repack_map, nullptr); options.repacker = &repacker; std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace(module.get(), options); auto instruction_consumes_assignment_fn = [&](absl::string_view instruction_name) -> bool { HloInstruction* instruction = module->entry_computation()->GetInstructionWithName(instruction_name); for (auto& pair : assignments->chunks()) { HloInstruction* consumer = pair.first.instruction; if (absl::c_any_of(instruction->operands(), [&](const HloInstruction* operand) { return operand == consumer; })) { return true; } } return false; }; auto instruction_produces_assignment_fn = [&](absl::string_view instruction_name) -> bool { HloInstruction* instruction = module->entry_computation()->GetInstructionWithName(instruction_name); for (auto& pair : assignments->chunks()) { HloInstruction* producer = pair.first.instruction; if (producer == instruction) { return true; } } return false; }; auto check_reserved_scoped_memory_fn = [&](absl::string_view instruction_name) -> bool { int64_t scoped_memory_size = -1; for (auto& pair : assignments->scoped_allocation_chunks()) { HloInstruction* instruction = pair.first; if (instruction->name() == instruction_name) { scoped_memory_size = pair.second.size; } } if (!instruction_consumes_assignment_fn(instruction_name)) { scoped_memory_size -= 1; } if (!instruction_produces_assignment_fn(instruction_name)) { scoped_memory_size -= 2; } return scoped_memory_size == 0; }; for (auto& pair : assignments->assignment_informations()) { LOG(INFO) << " space: " << pair.first << ", size: " << pair.second.size; } for (auto& pair : assignments->scoped_allocation_chunks()) { HloInstruction* instruction = pair.first; LOG(INFO) << instruction->name() << ": " << pair.second.size; } EXPECT_TRUE(check_reserved_scoped_memory_fn("a")); EXPECT_TRUE(check_reserved_scoped_memory_fn("b")); EXPECT_TRUE(check_reserved_scoped_memory_fn("c")); EXPECT_TRUE(check_reserved_scoped_memory_fn("j")); EXPECT_TRUE(check_reserved_scoped_memory_fn("d")); EXPECT_TRUE(check_reserved_scoped_memory_fn("k")); EXPECT_TRUE(check_reserved_scoped_memory_fn("l")); EXPECT_TRUE(check_reserved_scoped_memory_fn("m")); EXPECT_TRUE(check_reserved_scoped_memory_fn("n")); EXPECT_TRUE(check_reserved_scoped_memory_fn("o")); EXPECT_TRUE(check_reserved_scoped_memory_fn("p")); EXPECT_TRUE(check_reserved_scoped_memory_fn("q")); } TEST_F(MemorySpaceAssignmentTest, ScopedAllocationWithDifferentOffset) { absl::string_view hlo_string = R"( HloModule bug, is_scheduled=true ENTRY Entry { param0 = f32[8,3] parameter(0) param1 = f32[2,4] parameter(1) a = f32[2,4] sine(param1) b = f32[2,4] cosine(param1) c = f32[8,3] negate(param0) j = f32[2,4] negate(a) d = f32[8,3] tanh(param0) k = f32[2,4] negate(j) l = f32[2,4] add(b, k) m = f32[8,3] negate(d) n = f32[2,4] sine(l) o = f32[8,3] negate(m) p = f32[2,4] negate(n) q = f32[8,3] negate(m) ROOT tuple = (f32[2,4], f32[8,3], f32[8,3]) tuple(p, q, o) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto check_fun = [](absl::Span<AllocationBlock*> allocations) { for (AllocationBlock* block : allocations) { if (block->inclusive_start_time == block->end_time) { EXPECT_GT(block->GetColocationsCount(), 0); } } }; absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; FakeMemorySpaceAssignmentRepacker repacker = FakeMemorySpaceAssignmentRepacker(repack_map, check_fun); Options options = DefaultMemorySpaceOptions(); options.reserved_scoped_memory_fn = [&](const HloInstruction* instruction, const absl::flat_hash_set<std::pair<int, ShapeIndex>> operands_in_alternate_memory, const absl::flat_hash_set<ShapeIndex> outputs_in_alternate_memory) { return 1; }; options.max_repacks = 1; options.repacker = &repacker; options.allocate_reserved_scoped_memory_at_same_offset = false; AssignMemorySpace(module.get(), options); } TEST_F(MemorySpaceAssignmentTest, RepackShouldntEraseRequiredAssignmentForConditionalOutput) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3]) parameter(0) gte = f32[3] get-tuple-element(p0), index=0 neg1 = f32[3] negate(gte) ROOT tuple1 = (f32[3]) tuple(neg1) } false_computation { p0 = (f32[3]) parameter(0) gte = f32[3] get-tuple-element(p0), index=0 neg2 = f32[3] negate(gte) ROOT tuple2 = (f32[3]) tuple(neg2) } ENTRY entry { p0 = f32[3] parameter(0) p1 = pred[] parameter(1) copy = f32[3] copy(p0) tuple = (f32[3]) tuple(copy) conditional = (f32[3]) conditional(p1, tuple, tuple), true_computation=true_computation, false_computation=false_computation ROOT gte = f32[3] get-tuple-element(conditional), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; FakeMemorySpaceAssignmentRepacker repacker = FakeMemorySpaceAssignmentRepacker(repack_map, nullptr, true); Options options = DefaultMemorySpaceOptions(); options.max_repacks = 10; options.repacker = &repacker; options.repack_after_every_allocation = true; InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); AssignMemorySpace(module.get(), options, {}, &prefetch_interval_picker); } TEST_F(MemorySpaceAssignmentTest, Determinism) { std::unique_ptr<HloModule> module = CreateEvictAndPrefetchModule(); AssignMemorySpace(module.get()); std::string module_str = module->ToString(); for (int i = 0; i < 10; ++i) { std::unique_ptr<HloModule> other_module = CreateEvictAndPrefetchModule(); AssignMemorySpace(other_module.get()); EXPECT_EQ(module_str, other_module->ToString()); } } TEST_F(MemorySpaceAssignmentTest, InPlaceOp) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation { param0 = f32[2,3] parameter(0) constant.1 = f32[] constant(0) broadcast = f32[2,1] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[2,3] dynamic-update-slice(param0, broadcast, constant.3, constant.3) } ENTRY main { param = f32[2,3] parameter(0) negate = f32[2,3] negate(param) fusion = f32[2,3] fusion(negate), kind=kLoop, calls=fused_computation ROOT add = f32[2,3] add(fusion, fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace(module.get()); HloInstruction* negate_instruction = module->entry_computation()->GetInstructionWithName("negate"); int64_t negate_offset = GetAlternateMemoryOffset(*preset_assignments, negate_instruction); HloInstruction* fusion_instruction = module->entry_computation()->GetInstructionWithName("fusion"); int64_t fusion_offset = GetAlternateMemoryOffset(*preset_assignments, fusion_instruction); EXPECT_EQ(negate_offset, fusion_offset); EXPECT_NE(negate_offset, -1); } TEST_F(MemorySpaceAssignmentTest, ConditionalInPlaceOp) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation { param0 = f32[2,3] parameter(0) constant.1 = f32[] constant(0) broadcast = f32[2,1] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[2,3] dynamic-update-slice(param0, broadcast, constant.3, constant.3) } true_computation { p0 = (f32[2,3]) parameter(0) gte = f32[2,3] get-tuple-element(p0), index=0 ROOT neg1 = f32[2,3] negate(gte) } false_computation { p0 = (f32[2,3]) parameter(0) gte = f32[2,3] get-tuple-element(p0), index=0 neg2 = f32[2,3] negate(gte) ROOT fusion = f32[2,3] fusion(neg2), kind=kLoop, calls=fused_computation } ENTRY entry { p0 = f32[2,3] parameter(0) p1 = pred[] parameter(1) copy = f32[2,3] copy(p0) tuple = (f32[2,3]) tuple(copy) ROOT conditional = f32[2,3] conditional(p1, tuple, tuple), true_computation=true_computation, false_computation=false_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); } TEST_F(MemorySpaceAssignmentTest, AsyncCallDisableAlternateMem) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true called_comp { p0 = f32[2,3] parameter(0) negate10 = f32[2,3] negate(p0) negate11 = f32[2,3] negate(negate10) negate12 = f32[2,3] negate(negate11) negate13 = f32[2,3] negate(negate12) negate14 = f32[2,3] negate(negate13) ROOT negate15 = f32[2,3] negate(negate14) }, execution_thread="foobar" async_comp { p0 = f32[2,3] parameter(0) ROOT call = f32[2,3] call(p0), to_apply=called_comp }, execution_thread="foobar" ENTRY entry { p0 = f32[2,3] parameter(0) negate0 = f32[2,3] negate(p0) negate1 = f32[2,3] negate(negate0) negate2 = f32[2,3] negate(negate1) negate3 = f32[2,3] negate(negate2) negate4 = f32[2,3] negate(negate3) async-start = ((f32[2,3]), f32[2,3], f32[2]) async-start(negate1), async_execution_thread="foobar", calls=async_comp async-done = f32[2,3] async-done(async-start), async_execution_thread="foobar", calls=async_comp add0 = f32[2,3] add(negate0, async-done) negate5 = f32[2,3] negate(add0) negate6 = f32[2,3] negate(negate5) negate7 = f32[2,3] negate(negate6) negate8 = f32[2,3] negate(negate7) negate9 = f32[2,3] negate(negate8) ROOT add1 = f32[2,3] add(negate9, async-done) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.is_use_allowed_in_alternate_mem_fn = [](const HloUse& use) { return use.instruction->opcode() != HloOpcode::kAsyncStart && use.instruction->opcode() != HloOpcode::kAsyncDone && use.instruction->parent()->IsMainThread(); }; options.is_position_allowed_in_alternate_mem_fn = [](const HloPosition& pos) { return pos.instruction->opcode() != HloOpcode::kAsyncStart && pos.instruction->opcode() != HloOpcode::kAsyncDone && pos.instruction->parent()->IsMainThread(); }; AssignMemorySpace(module.get(), options); auto has_alternate_memory_allocation = [&](const HloInstruction* instruction) { bool result = false; auto shape_has_alternate_memory_allocation = [&](const Shape& subshape, const ShapeIndex& ) { if (subshape.IsArray() && subshape.layout().memory_space() == kAlternateMemorySpace) { result = true; } }; ShapeUtil::ForEachSubshape(instruction->shape(), shape_has_alternate_memory_allocation); for (const HloInstruction* operand : instruction->operands()) { ShapeUtil::ForEachSubshape(operand->shape(), shape_has_alternate_memory_allocation); } return result; }; const HloInstruction* async_start = FindInstruction(module.get(), "async-start"); const HloInstruction* async_done = FindInstruction(module.get(), "async-done"); EXPECT_FALSE(has_alternate_memory_allocation(async_start)); EXPECT_FALSE(has_alternate_memory_allocation(async_done)); for (const HloInstruction* instruction : async_start->async_wrapped_instruction() ->called_computations()[0] ->instructions()) { EXPECT_FALSE(has_alternate_memory_allocation(instruction)); } EXPECT_THAT(module->entry_computation()->root_instruction(), op::Add(op::Negate(), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::AsyncDone()))); EXPECT_THAT(async_start, op::AsyncStart(op::AsyncCopy( kDefaultMemorySpace, kAlternateMemorySpace, op::Negate()))); } TEST_F(MemorySpaceAssignmentTest, InefficientAllocation) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation { param0 = f32[2,3] parameter(0) constant.1 = f32[] constant(0) broadcast = f32[2,1] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[2,3] dynamic-update-slice(param0, broadcast, constant.3, constant.3) } ENTRY entry { p0 = f32[2,3] parameter(0) p1 = pred[] parameter(1) p2 = f32[2,3] parameter(2) neg0 = f32[2,3] negate(p2) neg1 = f32[2,3] negate(neg0) neg2 = f32[2,3] negate(neg1) neg3 = f32[2,3] negate(neg2) neg4 = f32[2,3] negate(neg3) neg5 = f32[2,3] negate(neg4) neg6 = f32[2,3] negate(neg5) neg7 = f32[2,3] negate(neg6) fusion = f32[2,3] fusion(p0), kind=kLoop, calls=fused_computation neg8 = f32[2,3] negate(neg7) neg9 = f32[2,3] negate(neg8) neg10 = f32[2,3] negate(neg9) neg11 = f32[2,3] negate(neg10) neg12 = f32[2,3] negate(neg11) neg13 = f32[2,3] negate(neg12) neg14 = f32[2,3] negate(neg13) neg15 = f32[2,3] negate(neg14) ROOT tuple = (f32[2,3], f32[2,3]) tuple(fusion, neg15) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_cross_program_prefetch = false; options.inefficient_use_to_copy_ratio = 0.0; AssignMemorySpaceUsingCostAnalysis(module.get(), options); EXPECT_THAT( module->entry_computation()->root_instruction(), op::Tuple(op::AsyncCopy(kDefaultMemorySpace, kAlternateMemorySpace, op::Fusion(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter()))), op::Negate())); TF_ASSERT_OK_AND_ASSIGN(module, ParseAndReturnVerifiedModule(hlo_string)); options.inefficient_use_to_copy_ratio = 0.5; AssignMemorySpaceUsingCostAnalysis(module.get(), options); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Fusion(op::Parameter()), op::Negate())); } TEST_F(MemorySpaceAssignmentTest, InefficientAllocationLivelockBug) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation_1 { param0 = f32[5,4] parameter(0) constant.1 = f32[] constant(0) broadcast = f32[5,1] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[5,4] dynamic-update-slice(param0, broadcast, constant.3, constant.3) } fused_computation_2 { param0 = f32[5,4] parameter(0) constant.1 = f32[] constant(0) broadcast = f32[5,1] broadcast(constant.1), dimensions={} constant.3 = s32[] constant(0) ROOT dynamic-update-slice.5 = f32[5,4] dynamic-update-slice(param0, broadcast, constant.3, constant.3) } ENTRY entry { p0 = f32[5,4] parameter(0) p1 = pred[] parameter(1) p2 = f32[2,3] parameter(2) neg0 = f32[2,3] negate(p2) neg1 = f32[2,3] negate(neg0) neg2 = f32[2,3] negate(neg1) neg3 = f32[2,3] negate(neg2) neg4 = f32[2,3] negate(neg3) neg5 = f32[2,3] negate(neg4) neg6 = f32[2,3] negate(neg5) neg7 = f32[2,3] negate(neg6) fusion.1 = f32[5,4] fusion(p0), kind=kLoop, calls=fused_computation_1 tanh = f32[2,3] tanh(neg7) fusion.2 = f32[5,4] fusion(fusion.1), kind=kLoop, calls=fused_computation_2 neg8 = f32[2,3] negate(tanh) neg9 = f32[2,3] negate(neg8) neg10 = f32[2,3] negate(neg0) neg11 = f32[2,3] negate(neg10) neg12 = f32[2,3] negate(neg11) ROOT tuple = (f32[5,4], f32[2,3]) tuple(fusion.2, neg12) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_cross_program_prefetch = false; options.inefficient_use_to_copy_ratio = 0.5; HloCostAnalysis::Options hlo_cost_options = DefaultHloCostAnalysisOptions(); hlo_cost_options.set_transcendentals_per_second(0.4); AssignMemorySpaceUsingCostAnalysis( module.get(), options, std::nullopt, hlo_cost_options); } TEST_F(MemorySpaceAssignmentTest, CalledComputationInefficientAllocationLiveLockBug) { absl::string_view hlo_string = R"( HloModule CondAllocation, is_scheduled=true true_computation { p0 = (f32[3], f32[3]) parameter(0) gte = f32[3] get-tuple-element(p0), index=0 neg1 = f32[3] negate(gte) ROOT tuple1 = (f32[3]) tuple(neg1) } false_computation { p0 = (f32[3], f32[3]) parameter(0) gte = f32[3] get-tuple-element(p0), index=0 neg2 = f32[3] negate(gte) ROOT tuple2 = (f32[3]) tuple(neg2) } ENTRY entry { p0 = f32[3] parameter(0) p1 = pred[] parameter(1) p2 = f32[3] parameter(2) copy0 = f32[3] copy(p0) negate0 = f32[3] negate(p0) negate1 = f32[3] negate(negate0) negate2 = f32[3] negate(negate1) negate3 = f32[3] negate(negate2) negate4 = f32[3] negate(negate3) negate5 = f32[3] negate(negate4) negate6 = f32[3] negate(negate5) negate7 = f32[3] negate(negate6) negate8 = f32[3] negate(negate7) tuple = (f32[3], f32[3]) tuple(copy0, p2) conditional = (f32[3]) conditional(p1, tuple, tuple), true_computation=true_computation, false_computation=false_computation gte = f32[3] get-tuple-element(conditional), index=0 ROOT add = f32[3] add(gte, negate8) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_cross_program_prefetch = false; options.inefficient_use_to_copy_ratio = 0.5; HloCostAnalysis::Options hlo_cost_options = DefaultHloCostAnalysisOptions(); hlo_cost_options.set_transcendentals_per_second(0.4); AssignMemorySpaceUsingCostAnalysis( module.get(), options, std::nullopt, hlo_cost_options); } TEST_F(MemorySpaceAssignmentTest, AsyncOpElapsedTime) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param0 = bf16[16]{0} parameter(0) param1 = bf16[4]{0} parameter(1) collective-permute-start = (bf16[16]{0}, bf16[16]{0}, u32[], u32[]) collective-permute-start(param0), source_target_pairs={{0,1},{1,2},{2,3}} negate1 = bf16[4]{0} negate(param1) collective-permute-done = bf16[16]{0} collective-permute-done(collective-permute-start) ROOT negate2 = bf16[4]{0} negate(negate1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpaceUsingCostAnalysis(module.get()); EXPECT_THAT(FindInstruction(module.get(), "negate1")->operand(0), op::Parameter(1)); } TEST_F(MemorySpaceAssignmentTest, AliasedOperandBug) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param0 = f32[4,4]{0,1} parameter(0) param1 = f32[4]{0} parameter(1) param2 = f32[4,4]{0,1} parameter(2) negate0 = f32[4]{0} negate(param1) negate1 = f32[4]{0} negate(negate0) negate2 = f32[4]{0} negate(negate1) negate3 = f32[4]{0} negate(negate2) negate4 = f32[4]{0} negate(negate3) negate5 = f32[4]{0} negate(negate4) custom_call1 = f32[4,4]{0,1} custom-call(param0), custom_call_target="FooBar", output_to_operand_aliasing={{}: (0, {})} tanh = f32[4,4]{0,1} tanh(param2) negate6 = f32[4]{0} negate(negate5) negate7 = f32[4]{0} negate(negate6) negate8 = f32[4]{0} negate(negate7) negate9 = f32[4]{0} negate(negate8) negate10 = f32[4]{0} negate(negate9) negate11 = f32[4]{0} negate(negate10) negate12 = f32[4]{0} negate(negate11) negate13 = f32[4]{0} negate(negate12) negate14 = f32[4]{0} negate(negate13) negate15 = f32[4]{0} negate(negate14) negate16 = f32[4]{0} negate(negate15) custom_call2 = f32[4,4]{0,1} custom-call(custom_call1), custom_call_target="FooBar", output_to_operand_aliasing={{}: (0, {})} custom_call3 = f32[4,4]{0,1} custom-call(param0, custom_call2), custom_call_target="FooBar", output_to_operand_aliasing={{}: (0, {})} ROOT root = f32[4,4]{0,1} add(tanh, custom_call2) } )"; MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& a, const MsaBufferInterval& b) { auto get_inst_priority = [](const HloInstruction* instruction) { if (instruction->name() == "param2") { return 0; } if (instruction->name() == "param0") { return 1; } return 2; }; return get_inst_priority(a.buffer->defining_instruction()) < get_inst_priority(b.buffer->defining_instruction()); }; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 10); Options options = DefaultMemorySpaceOptions(); AssignMemorySpace(module.get(), options, buffer_interval_compare, &prefetch_interval_picker); } TEST_F(MemorySpaceAssignmentTest, AsyncOpCustomFusionShortLiveRange) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation_start { param0 = f32[2,1] parameter(0) negate = f32[2,1] negate(param0) ROOT custom-call = (f32[2,1], f32[2,1], u32[], u32[]) custom-call(negate), custom_call_target="AsyncOpStart" } fused_computation_update { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = f32[2,1] parameter(2) param3 = f32[2,1] parameter(3) param4 = u32[] parameter(4) param5 = u32[] parameter(5) add = f32[2,1] add(param0, param1) negate = f32[2,1] negate(param2) ROOT tuple = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) tuple(add, param2, param3, negate, param4, param5) } fused_computation_done { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = u32[] parameter(2) param3 = u32[] parameter(3) negate = f32[2,1] negate(param0) ROOT custom-call = f32[2,1] custom-call(param0, param1, negate, param2, param3), custom_call_target="AsyncOpDone" } ENTRY main { param = f32[2,1] parameter(0) negate1 = f32[2,1] negate(param) negate2 = f32[2,1] negate(negate1) fusion1 = (f32[2,1], f32[2,1], u32[], u32[]) fusion(negate1), kind=kCustom, output_to_operand_aliasing={{0}: (0, {})}, calls=fused_computation_start negate3 = f32[2,1] negate(negate2) negate4 = f32[2,1] negate(negate3) gte0 = f32[2,1] get-tuple-element(fusion1), index=0 gte1 = f32[2,1] get-tuple-element(fusion1), index=1 gte2 = u32[] get-tuple-element(fusion1), index=2 gte3 = u32[] get-tuple-element(fusion1), index=3 fusion2 = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) fusion(negate4, negate2, gte0, gte1, gte2, gte3), kind=kLoop, output_to_operand_aliasing={{1}: (2, {}), {2}: (3, {}), {3}: (3, {}), {4}: (4, {}), {5}: (5, {})}, calls=fused_computation_update gte4 = f32[2,1] get-tuple-element(fusion2), index=0 negate5 = f32[2,1] negate(gte4) gte5 = f32[2,1] get-tuple-element(fusion2), index=1 gte6 = f32[2,1] get-tuple-element(fusion2), index=2 gte7 = u32[] get-tuple-element(fusion2), index=4 gte8 = u32[] get-tuple-element(fusion2), index=5 fusion3 = f32[2,1] fusion(gte5, gte6, gte7, gte8), kind=kCustom, output_to_operand_aliasing={{}: (1, {})}, calls=fused_computation_done ROOT add = f32[2,1] add(negate5, fusion3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.position_requires_contiguous_allocation_fn = [](const HloPosition& position) { std::string_view inst_name = position.instruction->name(); if (inst_name == "fusion1" || (inst_name == "fusion2" && position.index != ShapeIndex({0}))) { return true; } return false; }; AssignMemorySpace(module.get(), options); HloInstruction* fusion1 = module->entry_computation()->GetInstructionWithName("fusion1"); HloInstruction* fusion2 = module->entry_computation()->GetInstructionWithName("fusion2"); HloInstruction* fusion3 = module->entry_computation()->GetInstructionWithName("fusion3"); EXPECT_THAT(fusion2->operand(2), op::GetTupleElement(fusion1, 0)); EXPECT_THAT(fusion2->operand(3), op::GetTupleElement(fusion1, 1)); EXPECT_THAT(fusion3->operand(0), op::GetTupleElement(fusion2, 1)); EXPECT_THAT(fusion3->operand(1), op::GetTupleElement(fusion2, 2)); EXPECT_THAT(fusion2->operand(2)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT(fusion2->operand(3)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT(fusion3->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT(fusion3->operand(1)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT(fusion2->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT(fusion2->operand(1)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT( ShapeUtil::GetSubshape(fusion2->shape(), {0}).layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, AsyncOpCustomFusionLongLiveRange) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation_start { param0 = f32[2,1] parameter(0) negate = f32[2,1] negate(param0) ROOT custom-call = (f32[2,1], f32[2,1], u32[], u32[]) custom-call(negate), custom_call_target="AsyncOpStart" } fused_computation_update { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = f32[2,1] parameter(2) param3 = f32[2,1] parameter(3) param4 = u32[] parameter(4) param5 = u32[] parameter(5) add = f32[2,1] add(param0, param1) negate = f32[2,1] negate(param2) ROOT tuple = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) tuple(add, param2, param3, negate, param4, param5) } fused_computation_done { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = u32[] parameter(2) param3 = u32[] parameter(3) negate = f32[2,1] negate(param0) ROOT custom-call = f32[2,1] custom-call(param0, param1, negate, param2, param3), custom_call_target="AsyncOpDone" } ENTRY main { param = f32[2,1] parameter(0) negate1 = f32[2,1] negate(param) negate2 = f32[2,1] negate(negate1) fusion1 = (f32[2,1], f32[2,1], u32[], u32[]) fusion(negate1), kind=kCustom, output_to_operand_aliasing={{0}: (0, {})}, calls=fused_computation_start negate3 = f32[2,1] negate(negate2) negate4 = f32[2,1] negate(negate3) negate5 = f32[2,1] negate(negate4) negate6 = f32[2,1] negate(negate5) negate7 = f32[2,1] negate(negate6) negate8 = f32[2,1] negate(negate7) negate9 = f32[2,1] negate(negate8) negate10 = f32[2,1] negate(negate9) negate11 = f32[2,1] negate(negate10) negate12 = f32[2,1] negate(negate11) gte0 = f32[2,1] get-tuple-element(fusion1), index=0 gte1 = f32[2,1] get-tuple-element(fusion1), index=1 gte2 = u32[] get-tuple-element(fusion1), index=2 gte3 = u32[] get-tuple-element(fusion1), index=3 fusion2 = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) fusion(negate12, negate2, gte0, gte1, gte2, gte3), kind=kLoop, output_to_operand_aliasing={{1}: (2, {}), {2}: (3, {}), {3}: (3, {}), {4}: (4, {}), {5}: (5, {})}, calls=fused_computation_update gte4 = f32[2,1] get-tuple-element(fusion2), index=0 negate13 = f32[2,1] negate(gte4) gte5 = f32[2,1] get-tuple-element(fusion2), index=1 gte6 = f32[2,1] get-tuple-element(fusion2), index=2 gte7 = u32[] get-tuple-element(fusion2), index=4 gte8 = u32[] get-tuple-element(fusion2), index=5 fusion3 = f32[2,1] fusion(gte5, gte6, gte7, gte8), kind=kCustom, output_to_operand_aliasing={{}: (1, {})}, calls=fused_computation_done ROOT add = f32[2,1] add(negate13, fusion3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.position_requires_contiguous_allocation_fn = [](const HloPosition& position) { std::string_view inst_name = position.instruction->name(); if (inst_name == "fusion1" || (inst_name == "fusion2" && position.index != ShapeIndex({0}))) { return true; } return false; }; AssignMemorySpace(module.get(), options); HloInstruction* fusion1 = module->entry_computation()->GetInstructionWithName("fusion1"); HloInstruction* fusion2 = module->entry_computation()->GetInstructionWithName("fusion2"); HloInstruction* fusion3 = module->entry_computation()->GetInstructionWithName("fusion3"); EXPECT_THAT(fusion2->operand(2), op::GetTupleElement(fusion1, 0)); EXPECT_THAT(fusion2->operand(2)->shape().layout().memory_space(), kDefaultMemorySpace); EXPECT_THAT(fusion2->operand(3), op::GetTupleElement(fusion1, 1)); EXPECT_THAT(fusion2->operand(3)->shape().layout().memory_space(), kDefaultMemorySpace); EXPECT_THAT(fusion3->operand(0), op::GetTupleElement(fusion2, 1)); EXPECT_THAT(fusion3->operand(0)->shape().layout().memory_space(), kDefaultMemorySpace); EXPECT_THAT(fusion3->operand(1), op::GetTupleElement(fusion2, 2)); EXPECT_THAT(fusion3->operand(1)->shape().layout().memory_space(), kDefaultMemorySpace); EXPECT_THAT(fusion2->operand(0)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT(fusion2->operand(1)->shape().layout().memory_space(), kAlternateMemorySpace); EXPECT_THAT( ShapeUtil::GetSubshape(fusion2->shape(), {0}).layout().memory_space(), kAlternateMemorySpace); } TEST_F(MemorySpaceAssignmentTest, AsyncOpCustomFusionMultipleUsers) { absl::string_view hlo_string = R"( HloModule Module, is_scheduled=true fused_computation_start { param0 = f32[2,1] parameter(0) negate = f32[2,1] negate(param0) ROOT custom-call = (f32[2,1], f32[2,1], u32[], u32[]) custom-call(negate), custom_call_target="AsyncOpStart" } fused_computation_update1 { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = f32[2,1] parameter(2) param3 = f32[2,1] parameter(3) param4 = u32[] parameter(4) param5 = u32[] parameter(5) add = f32[2,1] add(param0, param1) negate = f32[2,1] negate(param2) ROOT tuple = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) tuple(add, param2, param3, negate, param4, param5) } fused_computation_update2 { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = f32[2,1] parameter(2) param3 = f32[2,1] parameter(3) param4 = u32[] parameter(4) param5 = u32[] parameter(5) add = f32[2,1] add(param0, param1) negate = f32[2,1] negate(param2) ROOT tuple = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) tuple(add, param2, param3, negate, param4, param5) } fused_computation_done { param0 = f32[2,1] parameter(0) param1 = f32[2,1] parameter(1) param2 = u32[] parameter(2) param3 = u32[] parameter(3) negate = f32[2,1] negate(param0) ROOT custom-call = f32[2,1] custom-call(param0, param1, negate, param2, param3), custom_call_target="AsyncOpDone" } ENTRY main { param = f32[2,1] parameter(0) negate1 = f32[2,1] negate(param) negate2 = f32[2,1] negate(negate1) fusion1 = (f32[2,1], f32[2,1], u32[], u32[]) fusion(negate1), kind=kCustom, output_to_operand_aliasing={{0}: (0, {})}, calls=fused_computation_start negate3 = f32[2,1] negate(negate2) negate4 = f32[2,1] negate(negate3) gte0 = f32[2,1] get-tuple-element(fusion1), index=0 gte1 = f32[2,1] get-tuple-element(fusion1), index=1 gte2 = u32[] get-tuple-element(fusion1), index=2 gte3 = u32[] get-tuple-element(fusion1), index=3 fusion2 = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) fusion(negate4, negate2, gte0, gte1, gte2, gte3), kind=kLoop, output_to_operand_aliasing={{1}: (2, {}), {2}: (3, {}), {3}: (3, {}), {4}: (4, {}), {5}: (5, {})}, calls=fused_computation_update1 gte4 = f32[2,1] get-tuple-element(fusion2), index=0 negate5 = f32[2,1] negate(gte4) negate10 = f32[2,1] negate(negate5) negate11 = f32[2,1] negate(negate10) negate12 = f32[2,1] negate(negate11) negate13 = f32[2,1] negate(negate12) negate14 = f32[2,1] negate(negate13) negate15 = f32[2,1] negate(negate14) negate16 = f32[2,1] negate(negate15) negate17 = f32[2,1] negate(negate16) negate18 = f32[2,1] negate(negate17) negate19 = f32[2,1] negate(negate18) fusion3 = (f32[2,1], f32[2,1], f32[2,1], f32[2,1], u32[], u32[]) fusion(negate19, negate2, gte0, gte1, gte2, gte3), kind=kLoop, output_to_operand_aliasing={{1}: (2, {}), {2}: (3, {}), {3}: (3, {}), {4}: (4, {}), {5}: (5, {})}, calls=fused_computation_update2 gte9 = f32[2,1] get-tuple-element(fusion3), index=0 negate6 = f32[2,1] negate(gte9) gte5 = f32[2,1] get-tuple-element(fusion3), index=1 gte6 = f32[2,1] get-tuple-element(fusion3), index=2 gte7 = u32[] get-tuple-element(fusion3), index=4 gte8 = u32[] get-tuple-element(fusion3), index=5 fusion4 = f32[2,1] fusion(gte5, gte6, gte7, gte8), kind=kCustom, output_to_operand_aliasing={{}: (1, {})}, calls=fused_computation_done ROOT add = f32[2,1] add(negate6, fusion4) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.position_requires_contiguous_allocation_fn = [](const HloPosition& position) { std::string_view inst_name = position.instruction->name(); if (inst_name == "fusion1" || (inst_name == "fusion2" && position.index != ShapeIndex({0})) || (inst_name == "fusion3" && position.index != ShapeIndex({0}))) { return true; } return false; }; AssignMemorySpace(module.get(), options); } TEST_F(MemorySpaceAssignmentTest, HoistCopyStart) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY cross_program_prefetch { p0 = (f32[8,8]{1,0}, f32[8,2]{1,0}) parameter(0) get-tuple-element.0 = f32[8,8]{1,0} get-tuple-element(p0), index=0 add.0 = f32[8,8]{1,0} add(get-tuple-element.0, get-tuple-element.0) get-tuple-element.1 = f32[8,2]{1,0} get-tuple-element(p0), index=1 dot.0 = f32[8,2]{1,0} dot(add.0, get-tuple-element.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} negate.1 = f32[8,2]{1,0} negate(dot.0) negate.2 = f32[8,2]{1,0} negate(negate.1) negate.3 = f32[8,2]{1,0} negate(negate.2) negate.4 = f32[8,2]{1,0} negate(negate.3) negate.5 = f32[8,2]{1,0} negate(negate.4) negate.6 = f32[8,2]{1,0} negate(negate.5) negate.7 = f32[8,2]{1,0} negate(negate.6) negate.8 = f32[8,2]{1,0} negate(negate.7) ROOT dot.1 = f32[2,2]{1,0} dot(negate.8, get-tuple-element.1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.enable_cross_program_prefetch = true; AssignMemorySpace(module.get(), options); auto cross_program_prefetches = module->CrossProgramPrefetches(); ASSERT_EQ(cross_program_prefetches.size(), 1); ASSERT_EQ(cross_program_prefetches[0].parameter, 0); ASSERT_EQ(cross_program_prefetches[0].index, ShapeIndex({1})); for (auto* instruction : module->schedule() .sequence(module->entry_computation()) .instructions()) { auto p0 = op::Parameter(0); auto get_tuple_element_1 = op::GetTupleElement(p0, 1); auto copy_start = op::CopyStart(get_tuple_element_1); EXPECT_THAT(instruction, AnyOf(p0, get_tuple_element_1, copy_start)); if (::testing::Matches(copy_start)(instruction)) { EXPECT_TRUE(instruction->cross_program_prefetch_index().has_value()); break; } } } TEST_F(MemorySpaceAssignmentTest, WindowPrefetch) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true %fused_computation { %p0 = bf16[64,8]{1,0:T(8,128)(2,1)} parameter(0) %p1 = bf16[64,8]{1,0:T(8,128)(2,1)} parameter(1) %p2 = bf16[64,8]{1,0:T(8,128)(2,1)} parameter(2) %add0 = bf16[64,8]{1,0:T(8,128)(2,1)} add(%p0, %p1) ROOT %add1 = bf16[64,8]{1,0:T(8,128)(2,1)} add(%add0, %p2) } entry { %p0 = bf16[64,8]{1,0:T(8,128)(2,1)} parameter(0) %p1 = bf16[64,8]{1,0:T(8,128)(2,1)} parameter(1) %p2 = bf16[64,8]{1,0:T(8,128)(2,1)} parameter(2) ROOT fusion = bf16[64,8]{1,0:T(8,128)(2,1)} fusion(bf16[64,8]{1,0:T(8,128)(2,1)} %p0, bf16[64,8]{1,0:T(8,128)(2,1)} %p1, bf16[64,8]{1,0:T(8,128)(2,1)} %p2), kind=kLoop, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto window_prefetch_detail_fn = [&](const HloInstruction* instruction) { WindowPrefetchDetail window_prefetch_detail; const HloInstruction* fusion = FindInstruction(module.get(), "fusion"); if (instruction == fusion) { for (int i = 0; i < 3; ++i) { auto* operand = window_prefetch_detail.add_windows(); operand->set_operand(i); operand->set_size(32); } } return window_prefetch_detail; }; Options options = DefaultMemorySpaceOptions(); options.enable_window_prefetch = true; options.window_prefetch_detail_fn = window_prefetch_detail_fn; AssignMemorySpace(module.get(), options, 10, 0); const HloInstruction* fusion = FindInstruction(module.get(), "fusion"); EXPECT_EQ(fusion->operand_count(), 5); for (int i = 3; i < 5; i++) { const HloInstruction* async_done = fusion->operand(i); EXPECT_EQ(async_done->opcode(), HloOpcode::kAsyncDone); EXPECT_EQ(async_done->operand_count(), 1); EXPECT_TRUE(async_done->async_wrapped_instruction()->IsCustomCall( "WindowPrefetch")); const HloInstruction* async_start = async_done->operand(0); EXPECT_EQ(async_start->opcode(), HloOpcode::kAsyncStart); EXPECT_EQ(async_start->operand_count(), 1); EXPECT_TRUE(async_start->async_wrapped_instruction()->IsCustomCall( "WindowPrefetch")); } VLOG(2) << "module: " << module->ToString(); } using AsynchronousCopyOrderingTest = ::testing::Test; TEST_F(AsynchronousCopyOrderingTest, Simple) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyOrdering ordering; EXPECT_FALSE(ordering.ViolatesOrdering(3, 11)); ordering.AddCopy({3, 11, 1, alternate_mem_space, 0}); EXPECT_FALSE(ordering.ViolatesOrdering(1, 8)); ordering.AddCopy({1, 8, 1, alternate_mem_space, 1}); EXPECT_FALSE(ordering.ViolatesOrdering(5, 14)); ordering.AddCopy({5, 14, 1, alternate_mem_space, 2}); EXPECT_FALSE(ordering.ViolatesOrdering(7, 14)); ordering.AddCopy({7, 14, 1, alternate_mem_space, 3}); EXPECT_TRUE(ordering.ViolatesOrdering(2, 16)); EXPECT_TRUE(ordering.ViolatesOrdering(9, 12)); EXPECT_TRUE(ordering.ViolatesOrdering(6, 17)); EXPECT_FALSE(ordering.ViolatesOrdering(5, 13)); ordering.AddCopy({5, 13, 1, alternate_mem_space, 4}); EXPECT_FALSE(ordering.ViolatesOrdering(5, 14)); ordering.AddCopy({5, 14, 1, alternate_mem_space, 5}); } TEST_F(AsynchronousCopyOrderingTest, SameInterval) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyOrdering ordering; EXPECT_FALSE(ordering.ViolatesOrdering(1, 5)); EXPECT_FALSE(ordering.ViolatesOrdering(2, 4)); ordering.AddCopy({1, 5, 1, alternate_mem_space, 0}); EXPECT_TRUE(ordering.ViolatesOrdering(2, 4)); ordering.AddCopy({1, 5, 1, alternate_mem_space, 1}); EXPECT_TRUE(ordering.ViolatesOrdering(2, 4)); ordering.AddCopy({1, 5, 1, alternate_mem_space, 2}); EXPECT_TRUE(ordering.ViolatesOrdering(2, 4)); ordering.RemoveCopy({1, 5, 1, alternate_mem_space, 1}); EXPECT_TRUE(ordering.ViolatesOrdering(2, 4)); ordering.RemoveCopy({1, 5, 1, alternate_mem_space, 2}); EXPECT_TRUE(ordering.ViolatesOrdering(2, 4)); ordering.RemoveCopy({1, 5, 1, alternate_mem_space, 0}); EXPECT_FALSE(ordering.ViolatesOrdering(2, 4)); } using AsynchronousCopyResourceTest = ::testing::Test; TEST_F(AsynchronousCopyResourceTest, Simple) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource( {2.0, 3.0, 1.0, 6.0, 7.0, 1.0, 7.0, 2.0, 2.0, 4.0}); EXPECT_TRUE(resource.HasEnoughResource(-1, 3, 5.0)); resource.AddCopy({-1, 3, 5.0, alternate_mem_space, 0}); EXPECT_TRUE(resource.HasEnoughResource(1, 4, 4.0)); resource.AddCopy({1, 4, 4.0, alternate_mem_space, 1}); EXPECT_TRUE(resource.HasEnoughResource(5, 9, 10.0)); resource.AddCopy({5, 9, 10.0, alternate_mem_space, 2}); EXPECT_FALSE(resource.HasEnoughResource(4, 9, 3.0)); EXPECT_TRUE(resource.HasEnoughResource(4, 8, 2.0)); resource.AddCopy({4, 8, 2.0, alternate_mem_space, 3}); } TEST_F(AsynchronousCopyResourceTest, Propagate) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource( {2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0}); EXPECT_TRUE(resource.HasEnoughResource(6, 10, 2.0)); resource.AddCopy({6, 10, 2.0, alternate_mem_space, 0}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(5, 9, 2.0)); resource.AddCopy({5, 9, 2.0, alternate_mem_space, 1}); EXPECT_TRUE(resource.HasEnoughResource(4, 8, 2.0)); resource.AddCopy({4, 8, 2.0, alternate_mem_space, 2}); EXPECT_TRUE(resource.HasEnoughResource(3, 7, 2.0)); resource.AddCopy({3, 7, 2.0, alternate_mem_space, 3}); EXPECT_TRUE(resource.HasEnoughResource(2, 6, 2.0)); resource.AddCopy({2, 6, 2.0, alternate_mem_space, 4}); EXPECT_TRUE(resource.HasEnoughResource(1, 5, 2.0)); resource.AddCopy({1, 5, 2.0, alternate_mem_space, 5}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(0, 4, 3.0)); resource.AddCopy({0, 4, 3.0, alternate_mem_space, 6}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(0, 4, 3.0)); resource.AddCopy({0, 4, 3.0, alternate_mem_space, 7}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0})); EXPECT_FALSE(resource.HasEnoughResource(0, 4, 1.0)); } TEST_F(AsynchronousCopyResourceTest, CantPropagate) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource( {2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0}); EXPECT_TRUE(resource.HasEnoughResource(5, 10, 2.0)); resource.AddCopy({5, 10, 2.0, alternate_mem_space, 0}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(4, 7, 2.0)); resource.AddCopy({4, 7, 2.0, alternate_mem_space, 1}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 2.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(4, 8, 4.0)); resource.AddCopy({4, 8, 4.0, alternate_mem_space, 2}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 2.0})); EXPECT_FALSE(resource.HasEnoughResource(3, 6, 4.0)); } TEST_F(AsynchronousCopyResourceTest, Nested) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource({2.0, 2.0, 2.0, 2.0, 2.0}); EXPECT_TRUE(resource.HasEnoughResource(1, 3, 2.0)); resource.AddCopy({1, 3, 2.0, alternate_mem_space, 0}); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 2.0, 2.0})); EXPECT_FALSE(resource.HasEnoughResource(0, 4, 4.0)); } TEST_F(AsynchronousCopyResourceTest, Remove) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource({2.0, 2.0, 2.0, 2.0, 2.0}); AsynchronousCopy copy1{2, 5, 2.0, alternate_mem_space, 0}; AsynchronousCopy copy2{-1, 2, 3.0, alternate_mem_space, 1}; AsynchronousCopy copy3{0, 4, 4.0, alternate_mem_space, 2}; EXPECT_TRUE(resource.HasEnoughResource(2, 5, 2.0)); resource.AddCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 0.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(-1, 2, 3.0)); resource.AddCopy(copy2); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 1.0, 2.0, 0.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(0, 4, 4.0)); resource.AddCopy(copy3); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 0.0, 0.0, 0.0, 1.0})); resource.RemoveCopy(copy3); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 1.0, 2.0, 0.0, 2.0})); resource.RemoveCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 1.0, 2.0, 2.0, 2.0})); resource.RemoveCopy(copy2); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0})); } TEST_F(AsynchronousCopyResourceTest, NestedRemove) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource({2.0, 2.0, 2.0, 2.0, 2.0}); AsynchronousCopy copy1{1, 3, 2.0, alternate_mem_space, 0}; AsynchronousCopy copy2{0, 4, 4.0, alternate_mem_space, 1}; EXPECT_TRUE(resource.HasEnoughResource(1, 3, 2.0)); resource.AddCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 2.0, 2.0})); EXPECT_FALSE(resource.HasEnoughResource(0, 4, 4.0)); resource.RemoveCopy(copy1); auto current_resources = resource.GetCurrentResources(); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(0, 4, 4.0)); resource.AddCopy(copy2); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 0.0, 0.0, 2.0, 2.0})); EXPECT_FALSE(resource.HasEnoughResource(1, 3, 2.0)); resource.RemoveCopy(copy2); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(1, 3, 2.0)); } TEST_F(AsynchronousCopyResourceTest, PropagateRemove) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource( {2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0}); EXPECT_TRUE(resource.HasEnoughResource(6, 10, 2.0)); resource.AddCopy({6, 10, 2.0, alternate_mem_space, 0}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(5, 9, 2.0)); resource.AddCopy({5, 9, 2.0, alternate_mem_space, 1}); EXPECT_TRUE(resource.HasEnoughResource(4, 8, 2.0)); resource.AddCopy({4, 8, 2.0, alternate_mem_space, 2}); EXPECT_TRUE(resource.HasEnoughResource(3, 7, 2.0)); resource.AddCopy({3, 7, 2.0, alternate_mem_space, 3}); EXPECT_TRUE(resource.HasEnoughResource(2, 6, 2.0)); resource.AddCopy({2, 6, 2.0, alternate_mem_space, 4}); EXPECT_TRUE(resource.HasEnoughResource(1, 5, 2.0)); resource.AddCopy({1, 5, 2.0, alternate_mem_space, 5}); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0})); AsynchronousCopy copy1{0, 4, 3.0, alternate_mem_space, 6}; EXPECT_TRUE(resource.HasEnoughResource(0, 4, 3.0)); resource.AddCopy(copy1); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(0, 5, 3.0)); AsynchronousCopy copy2{0, 5, 3.0, alternate_mem_space, 7}; resource.AddCopy(copy2); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0})); resource.RemoveCopy(copy2); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0})); resource.RemoveCopy(copy1); EXPECT_EQ( resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0})); } TEST_F(AsynchronousCopyResourceTest, StartAtZeroAndRemove) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource({0.0, 0.0, 1.0, 1.0, 2.0}); AsynchronousCopy copy1{0, 4, 2.0, alternate_mem_space, 0}; EXPECT_TRUE(resource.HasEnoughResource(0, 4, 2.0)); resource.AddCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 0.0, 0.0, 0.0, 2.0})); resource.RemoveCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 0.0, 1.0, 1.0, 2.0})); resource.AddCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({0.0, 0.0, 0.0, 0.0, 2.0})); } TEST_F(AsynchronousCopyResourceTest, OutOfOrderRemovalSameStartTime) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource({2.0, 2.0, 2.0, 2.0, 2.0}); AsynchronousCopy copy1{1, 3, 1.0, alternate_mem_space, 0}; AsynchronousCopy copy2{1, 4, 2.0, alternate_mem_space, 1}; EXPECT_TRUE(resource.HasEnoughResource(1, 3, 1.0)); resource.AddCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 1.0, 2.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(1, 4, 2.0)); resource.AddCopy(copy2); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 1.0, 2.0})); resource.RemoveCopy(copy1); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 2.0, 2.0})); AsynchronousCopy copy3{1, 5, 1.0, alternate_mem_space, 2}; AsynchronousCopy copy4{1, 5, 1.0, alternate_mem_space, 3}; AsynchronousCopy copy5{1, 5, 1.0, alternate_mem_space, 4}; AsynchronousCopy copy6{1, 5, 1.0, alternate_mem_space, 5}; EXPECT_TRUE(resource.HasEnoughResource(1, 5, 1.0)); resource.AddCopy(copy3); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 1.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(1, 5, 1.0)); resource.AddCopy(copy4); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 2.0})); EXPECT_TRUE(resource.HasEnoughResource(1, 5, 1.0)); resource.AddCopy(copy5); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 1.0})); EXPECT_TRUE(resource.HasEnoughResource(1, 5, 1.0)); resource.AddCopy(copy6); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 0.0})); EXPECT_FALSE(resource.HasEnoughResource(1, 5, 1.0)); resource.RemoveCopy(copy2); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 0.0, 2.0})); resource.RemoveCopy(copy3); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 1.0, 2.0})); resource.RemoveCopy(copy4); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 0.0, 2.0, 2.0})); resource.RemoveCopy(copy5); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 1.0, 2.0, 2.0})); resource.RemoveCopy(copy6); EXPECT_EQ(resource.GetCurrentResources(), std::vector<float>({2.0, 2.0, 2.0, 2.0, 2.0})); } TEST_F(AsynchronousCopyResourceTest, HasEnoughResourceMultiCheckSuccess) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource( {2.0, 1.0, 3.0, 6.0, 7.0, 3.0, 7.0, 2.0, 2.0, 4.0}); EXPECT_TRUE(resource.HasEnoughResource(-1, 3, 5.0)); resource.AddCopy({-1, 3, 5.0, alternate_mem_space, 0}); EXPECT_TRUE(resource.HasEnoughResource(1, 10, 4.0)); resource.AddCopy({1, 10, 4.0, alternate_mem_space, 1}); LOG(INFO) << "AsynchronousCopyResource after setup:\n" << resource.Dump(0, 10, alternate_mem_space); for (int i = 0; i < 4; ++i) { EXPECT_TRUE( resource.HasEnoughResourceMultiCheck({{0, 6, 4.0}, {4, 6, 3.0}})); } } TEST_F(AsynchronousCopyResourceTest, HasEnoughResourceMultiCheckFailure) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource( {2.0, 1.0, 3.0, 6.0, 7.0, 3.0, 7.0, 2.0, 2.0, 4.0}); EXPECT_TRUE(resource.HasEnoughResource(-1, 3, 5.0)); resource.AddCopy({-1, 3, 5.0, alternate_mem_space, 0}); EXPECT_TRUE(resource.HasEnoughResource(1, 10, 4.0)); resource.AddCopy({1, 10, 4.0, alternate_mem_space, 1}); LOG(INFO) << "AsynchronousCopyResource after setup:\n" << resource.Dump(0, 10, alternate_mem_space); EXPECT_FALSE( resource.HasEnoughResourceMultiCheck({{0, 6, 4.0}, {4, 6, 4.0}})); } TEST_F(AsynchronousCopyResourceTest, HasEnoughResourceMultiCheckRegressionTest) { auto alternate_mem_space = MemorySpace::kAlternate; AsynchronousCopyResource resource({ 24.0f, 0.0f, 6.0f, 411.0f, 3479.0f, 0.0f, 0.0f, 1537.0f, 3095.0f, 0.0f, 26.7f}); AsynchronousCopy copy1({1, 8, 170.8f, alternate_mem_space, 1}); AsynchronousCopy copy2({2, 8, 170.8f, alternate_mem_space, 2}); resource.AddCopy(copy1); resource.AddCopy(copy2); LOG(INFO) << "AsynchronousCopyResource after setup:\n" << resource.Dump(0, 11, alternate_mem_space); EXPECT_FALSE( resource.HasEnoughResourceMultiCheck({{0, 4, 170.8}, {1, 4, 170.8}})); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); HloInstruction* lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "lhs")); HloInstruction* rhs = builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "rhs")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 1); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({})); } EXPECT_THAT(module->entry_computation()->root_instruction(), op::Dot(op::Parameter(0), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)))); } TEST_F(MemorySpaceAssignmentTest, MultiCrossProgramPrefetchTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kFirstOutput = 4; constexpr int kSecondOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto first_weight_shape = ShapeUtil::MakeShape(F32, {kFeature, kFirstOutput}); auto second_weight_shape = ShapeUtil::MakeShape(F32, {kFirstOutput, kSecondOutput}); auto intermediate_shape = ShapeUtil::MakeShape(F32, {kBatch, kFirstOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kSecondOutput}); HloInstruction* lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "lhs")); HloInstruction* first_weight = builder.AddInstruction( HloInstruction::CreateParameter(1, first_weight_shape, "first_weight")); HloInstruction* second_weight = builder.AddInstruction( HloInstruction::CreateParameter(2, second_weight_shape, "second_weight")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto first_dot = builder.AddInstruction( HloInstruction::CreateDot(intermediate_shape, lhs, first_weight, dot_dnums, DefaultPrecisionConfig(2))); auto second_dot = builder.AddInstruction( HloInstruction::CreateDot(result_shape, first_dot, second_weight, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence( computation, {lhs, first_weight, second_weight, first_dot, second_dot}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); options.max_cross_program_prefetches = -1; options.max_size_in_bytes = 256; options.alignment_in_bytes = 8; options.verify = true; AssignMemorySpace(module.get(), options); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 2); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 1); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({})); } if (cross_program_prefetches.size() > 1) { EXPECT_EQ(cross_program_prefetches[1].parameter, 2); EXPECT_EQ(cross_program_prefetches[1].index, ShapeIndex({})); } EXPECT_THAT( module->entry_computation()->root_instruction(), op::Dot(op::Dot(op::Parameter(0), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1))), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(2)))); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchTupleTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto tuple_shape = ShapeUtil::MakeTupleShape({lhs_shape, rhs_shape}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(lhs_shape, param, 0)); auto rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, param, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {param, lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 0); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({1})); } } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchBitcastTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kOutput, kFeature}); auto bitcast_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); HloInstruction* lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "lhs")); HloInstruction* rhs = builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "rhs")); auto bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(bitcast_shape, rhs)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, bitcast, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {lhs, rhs, bitcast, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 1); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({})); } } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchBitcastTupleTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kOutput, kFeature}); auto bitcast_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto tuple_shape = ShapeUtil::MakeTupleShape({lhs_shape, rhs_shape}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(lhs_shape, param, 0)); auto rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, param, 1)); auto bitcast = builder.AddInstruction(HloInstruction::CreateBitcast(bitcast_shape, rhs)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, bitcast, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {param, lhs, rhs, bitcast, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 0); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({1})); } } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchNestedTupleTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto tuple_shape = ShapeUtil::MakeTupleShape({lhs_shape, rhs_shape}); auto tuple_tuple_shape = ShapeUtil::MakeTupleShape({tuple_shape}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_tuple_shape, "p0")); auto gte = builder.AddInstruction( HloInstruction::CreateGetTupleElement(tuple_shape, param, 0)); auto lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(lhs_shape, gte, 0)); auto rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, gte, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {param, gte, lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchUnusedParamTest) { HloComputation::Builder builder(TestName()); constexpr int kFeature = 8; constexpr int kOutput = 2; auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, rhs_shape, "p0")); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {param}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchTooBigTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 8; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); HloInstruction* lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "lhs")); HloInstruction* rhs = builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "rhs")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchTooBigTupleTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 8; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto tuple_shape = ShapeUtil::MakeTupleShape({lhs_shape, rhs_shape}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(lhs_shape, param, 0)); auto rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, param, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {param, lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchFusionTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 2; constexpr int kFeature = 2; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion_builder("fusion"); { HloInstruction* lhs = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "lhs")); HloInstruction* rhs = fusion_builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "rhs")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = fusion_builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); (void)dot; } HloComputation* fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); auto activations = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{0.0, 1.0}, {2.0, 3.0}}))); auto weights = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{0.0, 1.0}, {2.0, 3.0}}))); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( result_shape, HloInstruction::FusionKind::kCustom, {activations, weights}, fusion_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {activations, weights, fusion}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchFusionTupleTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 2; constexpr int kFeature = 2; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShape(F32, {kFeature, kOutput}); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto tuple_shape = ShapeUtil::MakeTupleShape({lhs_shape, rhs_shape}); auto module = CreateNewVerifiedModule(); HloComputation::Builder fusion_builder("fusion"); { HloInstruction* param = fusion_builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto lhs = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(lhs_shape, param, 0)); auto rhs = fusion_builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, param, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = fusion_builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); (void)dot; } HloComputation* fusion_computation = module->AddEmbeddedComputation(fusion_builder.Build()); auto activations = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{0.0, 1.0}, {2.0, 3.0}}))); auto weights = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{0.0, 1.0}, {2.0, 3.0}}))); HloInstruction* tuple = builder.AddInstruction( HloInstruction::CreateTuple({activations, weights})); HloInstruction* fusion = builder.AddInstruction(HloInstruction::CreateFusion( result_shape, HloInstruction::FusionKind::kCustom, {tuple}, fusion_computation)); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {activations, weights, tuple, fusion}); TF_CHECK_OK(module->set_schedule(schedule)); AssignMemorySpace(module.get()); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchPinnedTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShapeWithDenseLayout( F32, {kFeature, kOutput}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); HloInstruction* lhs = builder.AddInstruction( HloInstruction::CreateParameter(0, lhs_shape, "lhs")); HloInstruction* rhs = builder.AddInstruction( HloInstruction::CreateParameter(1, rhs_shape, "rhs")); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); options.is_allowed_in_alternate_mem_fn = [](const HloValue& value) { return true; }; std::unique_ptr<PresetAssignments> preset_assignments = AssignMemorySpace(module.get(), options); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchPinnedTupleTest) { HloComputation::Builder builder(TestName()); constexpr int kBatch = 8; constexpr int kFeature = 8; constexpr int kOutput = 2; auto lhs_shape = ShapeUtil::MakeShape(F32, {kBatch, kFeature}); auto rhs_shape = ShapeUtil::MakeShapeWithDenseLayout( F32, {kFeature, kOutput}, {1, 0}, {}, 1, 0, kAlternateMemorySpace); auto result_shape = ShapeUtil::MakeShape(F32, {kBatch, kOutput}); auto tuple_shape = ShapeUtil::MakeTupleShape({lhs_shape, rhs_shape}); HloInstruction* param = builder.AddInstruction( HloInstruction::CreateParameter(0, tuple_shape, "p0")); auto lhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(lhs_shape, param, 0)); auto rhs = builder.AddInstruction( HloInstruction::CreateGetTupleElement(rhs_shape, param, 1)); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); auto dot = builder.AddInstruction(HloInstruction::CreateDot( result_shape, lhs, rhs, dot_dnums, DefaultPrecisionConfig(2))); auto module = CreateNewVerifiedModule(); HloComputation* computation = module->AddEntryComputation(builder.Build()); HloSchedule schedule(module.get()); schedule.set_sequence(computation, {param, lhs, rhs, dot}); TF_CHECK_OK(module->set_schedule(schedule)); Options options = DefaultMemorySpaceOptions(); options.is_allowed_in_alternate_mem_fn = [](const HloValue& value) { return true; }; std::unique_ptr<PresetAssignments> preset_assignments = AssignMemorySpace(module.get(), options); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootDupMayAlias) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true, input_output_alias={ {}: (0, {}, may-alias) } ENTRY CrossProgramPrefetch { c0 = s32[1,2] constant({{77, 77}}) c1 = s32[] constant(0) p0 = s32[2,2] parameter(0) ROOT dup = s32[2,2] dynamic-update-slice(s32[2,2] p0, s32[1,2] c0, s32[] c1, s32[] c1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); EXPECT_THAT(FindInstruction(module.get(), "dup")->operand(0), op::Parameter(0)); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootDusFusionMayAlias) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true, input_output_alias={ {}: (0, {}, may-alias) } fused_computation { fused_p0 = s32[2,2] parameter(0) fused_p1 = s32[1,2] parameter(1) fused_p2 = s32[] parameter(2) fused_p3 = s32[] parameter(3) ROOT dus = s32[2,2] dynamic-update-slice(fused_p0, fused_p1, fused_p2, fused_p3) } ENTRY CrossProgramPrefetch { p0 = s32[2,2] parameter(0) c0 = s32[1,2] constant({{77, 77}}) c1 = s32[] constant(0) bitcast1 = s32[2,2] bitcast(p0) ROOT fusion = s32[2,2] fusion(bitcast1, c0, c1, c1), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootDup) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { c0 = s32[1,2] constant({{77, 77}}) c1 = s32[] constant(0) p0 = s32[2,2] parameter(0) ROOT dup = s32[2,2] dynamic-update-slice(s32[2,2] p0, s32[1,2] c0, s32[] c1, s32[] c1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); EXPECT_THAT(FindInstruction(module.get(), "dup")->operand(0), op::Parameter(0)); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootDupDot) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { c0 = s32[1,2] constant({{77, 77}}) c1 = s32[] constant(0) p0 = s32[2,2] parameter(0) p1 = s32[2,2] parameter(1) dup = s32[2,2] dynamic-update-slice(s32[2,2] p0, s32[1,2] c0, s32[] c1, s32[] c1) ROOT dot = s32[2,2] dot(p1, dup), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); EXPECT_THAT(FindInstruction(module.get(), "dup")->operand(0), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(0))); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootDotMayAlias) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true, input_output_alias={ {}: (0, {}, may-alias) } ENTRY CrossProgramPrefetch { p0 = s32[2,2] parameter(0) p1 = s32[2,2] parameter(1) ROOT dot = s32[2,2] dot(p1, p0), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); EXPECT_THAT(FindInstruction(module.get(), "dot")->operand(1), op::Parameter(0)); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootLiveOutBug) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true, input_output_alias={ {0}: (0, {}, may-alias) } fused_computation { p0 = s32[2,2] parameter(0) p1 = s32[2,2] parameter(1) slice = s32[1,2] slice(p1), slice={[0:1], [0:2]} c1 = s32[] constant(0) ROOT dus = s32[2,2] dynamic-update-slice(s32[2,2] p0, s32[1,2] slice, s32[] c1, s32[] c1) } ENTRY CrossProgramPrefetch { p0 = s32[2,2] parameter(0) p1 = s32[2,2] parameter(1) dot = s32[2,2] dot(p1, p0), lhs_contracting_dims={0}, rhs_contracting_dims={0} fusion = s32[2,2] fusion(p0, dot), kind=kLoop, calls=fused_computation ROOT root = (s32[2,2], s32[2,2]) tuple(fusion, dot) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramRootParameter) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { p0 = s32[2,2] parameter(0) ROOT bitcast = u32[2,2] bitcast(p0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchNoReuse) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { p0 = f32[8,8]{1,0} parameter(0) p1 = f32[8,2]{1,0} parameter(1) dot = f32[8,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} negate.1 = f32[8,2]{1,0} negate(dot) negate.2 = f32[8,2]{1,0} negate(negate.1) negate.3 = f32[8,2]{1,0} negate(negate.2) negate.4 = f32[8,2]{1,0} negate(negate.3) negate.5 = f32[8,2]{1,0} negate(negate.4) negate.6 = f32[8,2]{1,0} negate(negate.5) negate.7 = f32[8,2]{1,0} negate(negate.6) negate.8 = f32[8,2]{1,0} negate(negate.7) ROOT negate.9 = f32[8,2]{1,0} negate(negate.8) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 1); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({})); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloDataflowAnalysis> dataflow_analysis, HloDataflowAnalysis::Run(*module)); LOG(ERROR) << "module: " << module->ToString(); const HloValue& cross_program_prefetched_value = dataflow_analysis->GetValueDefinedAt( module->entry_computation()->parameter_instruction(1), {}); auto is_cross_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_cross_program_prefetch), 1); auto is_end_of_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && !use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_end_of_program_prefetch), 1); const HloInstruction* last_instruction = module->schedule() .sequence(module->entry_computation()) .instructions()[module->entry_computation()->instruction_count() - 1]; EXPECT_THAT(last_instruction, op::CopyDone()); EXPECT_NE(last_instruction, module->entry_computation()->root_instruction()); bool has_zero_offset_allocations = false; for (auto pos_and_chunk : preset_assignments->chunks()) { if (pos_and_chunk.first.instruction->opcode() == HloOpcode::kNegate && pos_and_chunk.second.offset == 0) { has_zero_offset_allocations = true; } } EXPECT_TRUE(has_zero_offset_allocations); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchTupleNoReuse) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { p0 = (f32[8,8]{1,0}, f32[8,2]{1,0}) parameter(0) get-tuple-element = f32[8,8]{1,0} get-tuple-element(p0), index=0 get-tuple-element.1 = f32[8,2]{1,0} get-tuple-element(p0), index=1 dot = f32[8,2]{1,0} dot(get-tuple-element, get-tuple-element.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} negate.1 = f32[8,2]{1,0} negate(dot) negate.2 = f32[8,2]{1,0} negate(negate.1) negate.3 = f32[8,2]{1,0} negate(negate.2) negate.4 = f32[8,2]{1,0} negate(negate.3) negate.5 = f32[8,2]{1,0} negate(negate.4) negate.6 = f32[8,2]{1,0} negate(negate.5) negate.7 = f32[8,2]{1,0} negate(negate.6) negate.8 = f32[8,2]{1,0} negate(negate.7) ROOT negate.9 = f32[8,2]{1,0} negate(negate.8) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto preset_assignments = AssignMemorySpace( module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 0); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({1})); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloDataflowAnalysis> dataflow_analysis, HloDataflowAnalysis::Run(*module)); const HloValue& cross_program_prefetched_value = dataflow_analysis->GetValueDefinedAt( module->entry_computation()->parameter_instruction(0), {1}); auto is_cross_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_cross_program_prefetch), 1); auto is_end_of_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && !use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_end_of_program_prefetch), 1); const HloInstruction* last_instruction = module->schedule() .sequence(module->entry_computation()) .instructions()[module->entry_computation()->instruction_count() - 1]; EXPECT_THAT(last_instruction, op::CopyDone()); EXPECT_NE(last_instruction, module->entry_computation()->root_instruction()); bool has_zero_offset_allocations = false; for (auto pos_and_chunk : preset_assignments->chunks()) { if (pos_and_chunk.first.instruction->opcode() == HloOpcode::kNegate && pos_and_chunk.second.offset == 0) { has_zero_offset_allocations = true; } } EXPECT_TRUE(has_zero_offset_allocations); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchReuse) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { p0 = f32[8,8]{1,0} parameter(0) p1 = f32[8,2]{1,0} parameter(1) dot = f32[8,2]{1,0} dot(p0, p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} negate.1 = f32[8,2]{1,0} negate(dot) negate.2 = f32[8,2]{1,0} negate(negate.1) negate.3 = f32[8,2]{1,0} negate(negate.2) negate.4 = f32[8,2]{1,0} negate(negate.3) negate.5 = f32[8,2]{1,0} negate(negate.4) negate.6 = f32[8,2]{1,0} negate(negate.5) negate.7 = f32[8,2]{1,0} negate(negate.6) negate.8 = f32[8,2]{1,0} negate(negate.7) ROOT dot.2 = f32[2,2]{1,0} dot(negate.8, p1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 1); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({})); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloDataflowAnalysis> dataflow_analysis, HloDataflowAnalysis::Run(*module)); const HloValue& cross_program_prefetched_value = dataflow_analysis->GetValueDefinedAt( module->entry_computation()->parameter_instruction(1), {}); auto is_cross_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_cross_program_prefetch), 1); auto is_end_of_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && !use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_end_of_program_prefetch), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchTupleReuse) { absl::string_view hlo_string = R"( HloModule cross_program_prefetch, is_scheduled=true ENTRY CrossProgramPrefetch { p0 = (f32[8,8]{1,0}, f32[8,2]{1,0}) parameter(0) get-tuple-element = f32[8,8]{1,0} get-tuple-element(p0), index=0 get-tuple-element.1 = f32[8,2]{1,0} get-tuple-element(p0), index=1 dot = f32[8,2]{1,0} dot(get-tuple-element, get-tuple-element.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} negate.1 = f32[8,2]{1,0} negate(dot) negate.2 = f32[8,2]{1,0} negate(negate.1) negate.3 = f32[8,2]{1,0} negate(negate.2) negate.4 = f32[8,2]{1,0} negate(negate.3) negate.5 = f32[8,2]{1,0} negate(negate.4) negate.6 = f32[8,2]{1,0} negate(negate.5) negate.7 = f32[8,2]{1,0} negate(negate.6) negate.8 = f32[8,2]{1,0} negate(negate.7) ROOT dot.2 = f32[2,2]{1,0} dot(negate.8, get-tuple-element.1), lhs_contracting_dims={0}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get(), DefaultMemorySpaceOptions(), 5, 2); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); if (!cross_program_prefetches.empty()) { EXPECT_EQ(cross_program_prefetches[0].parameter, 0); EXPECT_EQ(cross_program_prefetches[0].index, ShapeIndex({1})); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloDataflowAnalysis> dataflow_analysis, HloDataflowAnalysis::Run(*module)); const HloValue& cross_program_prefetched_value = dataflow_analysis->GetValueDefinedAt( module->entry_computation()->parameter_instruction(0), {1}); auto is_cross_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_cross_program_prefetch), 1); auto is_end_of_program_prefetch = [](const HloUse& use) { return use.instruction->opcode() == HloOpcode::kCopyStart && !use.instruction->cross_program_prefetch_index().has_value(); }; EXPECT_EQ(absl::c_count_if(cross_program_prefetched_value.GetUses(), is_end_of_program_prefetch), 0); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchBufferUnused) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true %fused_computation { %param_0.2 = f32[32]{0} parameter(0) %param_1.4 = s32[100]{0} parameter(1) %custom-call.1 = s32[100]{0} custom-call(s32[100]{0} %param_1.4), custom_call_target="AssumeGatherIndicesInBound", operand_layout_constraints={s32[100]{0}} %slice.1 = s32[32]{0} slice(s32[100]{0} %custom-call.1), slice={[0:32]} %reshape.7 = s32[32]{0} reshape(s32[32]{0} %slice.1) %transpose.5 = s32[32]{0} transpose(s32[32]{0} %reshape.7), dimensions={0} %gather.1 = f32[32]{0} gather(f32[32]{0} %param_0.2, s32[32]{0} %transpose.5), offset_dims={}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1} %transpose.4 = f32[32]{0} transpose(f32[32]{0} %gather.1), dimensions={0} ROOT %reshape.6 = f32[32]{0} reshape(f32[32]{0} %transpose.4) } %i.reduce_sub_computation { %rhs = s32[] parameter(1) %lhs = s32[] parameter(0) ROOT %add = s32[] add(s32[] %lhs, s32[] %rhs) } %fused_computation.1 { %constant.4 = s32[] constant(0) %broadcast.4 = s32[100]{0} broadcast(s32[] %constant.4), dimensions={} %param_0.4 = s32[32]{0} parameter(0) %pad.1 = s32[100]{0} pad(s32[32]{0} %param_0.4, s32[] %constant.4), padding=0_68 %constant.3 = s32[] constant(76031) %broadcast.3 = s32[100]{0} broadcast(s32[] %constant.3), dimensions={} ROOT %clamp.1 = s32[100]{0} clamp(s32[100]{0} %broadcast.4, s32[100]{0} %pad.1, s32[100]{0} %broadcast.3) } ENTRY %main { %constant = s32[] constant(0) %i = s32[32,1]{0,1} parameter(1) %o = f32[32]{0} parameter(0) %reduce = s32[32]{0} reduce(s32[32,1]{0,1} %i, s32[] %constant), dimensions={1}, to_apply=%i.reduce_sub_computation %fusion.1 = s32[100]{0} fusion(s32[32]{0} %reduce), kind=kLoop, calls=%fused_computation.1 ROOT %fusion = f32[32]{0} fusion(f32[32]{0} %o, s32[100]{0} %fusion.1), kind=kCustom, calls=%fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AssignMemorySpace(module.get()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Fusion(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(0)), op::Fusion())); } TEST_F(MemorySpaceAssignmentTest, CrossProgramPrefetchPermissiveMode) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true fused_computation { param_0 = f32[2] parameter(0) param_1 = f32[4,2] parameter(1) broadcast = f32[4,2] broadcast(param_0), dimensions={1} ROOT multiply = f32[4,2] multiply(broadcast, param_1) } ENTRY entry { p0 = f32[2] parameter(0) p1 = f32[4,2] parameter(1) fusion = f32[4,2] fusion(p0, p1), kind=kLoop, calls=fused_computation ROOT negate = f32[4,2] negate(fusion) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.cross_program_prefetch_permissive_mode = true; AssignMemorySpace(module.get(), options); auto cross_program_prefetches = module->CrossProgramPrefetches(); EXPECT_EQ(cross_program_prefetches.size(), 1); } TEST_F(MemorySpaceAssignmentTest, CopyResourceIntegration) { std::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY main { p0 = s32[8,8] parameter(0) p1 = s32[8,8] parameter(1) p2 = s32[] parameter(2) a = negate(p2) b = negate(a) c = add(p0, p0) d = negate(b) e = negate(d) f = add(p1, p1) ROOT result = tuple(e,c,f) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Options options = DefaultMemorySpaceOptions(); options.max_size_in_bytes = 300; HloCostAnalysis::Properties properties; properties[HloCostAnalysis::kBytesAccessedKey] = kBytesPerSecond; HloCostAnalysis hlo_cost_analysis(ShapeSize, properties); CostAnalysisOptions cost_analysis_options; HloCostAnalysisCosts hlo_cost_analysis_costs(hlo_cost_analysis); TF_ASSERT_OK_AND_ASSIGN( auto cost_analysis, FakeCostAnalysis::Create(hlo_cost_analysis_costs, *module, cost_analysis_options)); cost_analysis->SetOverrideForGetInstructionElapsed( [](const HloInstruction& instruction) -> float { return 10.0; }); cost_analysis->SetOverrideForGetAsyncCopyElapsed( [](const Shape& shape) -> float { return 20.0; }); options.cost_analysis = cost_analysis.get(); CostAnalysisPrefetchIntervalPicker prefetch_interval_picker( CostAnalysisPrefetchIntervalPicker( *cost_analysis, 0.8, 1.5, 10.0, options.max_size_in_bytes)); MsaBufferIntervalCompare compare = [](const MsaBufferInterval& lhs, const MsaBufferInterval& rhs) -> bool { auto lookup = [](const MsaBufferInterval& x) { int priority = 100; if (x.buffer->instruction()->name() == "p0") { priority = 0; } else if (x.buffer->instruction()->name() == "p1") { priority = 1; } return std::make_tuple(priority, x.buffer->instruction()->name()); }; return lookup(lhs) < lookup(rhs); }; AssignMemorySpace(module.get(), options, compare, &prefetch_interval_picker); ASSERT_THAT( module->entry_computation()->root_instruction(), op::Tuple(_, op::Add(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(0)), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(0))), op::Add(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1)), op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(1))))); const std::vector<HloInstruction*>& schedule = module->schedule().sequence(module->entry_computation()).instructions(); auto find_schedule_index = [&schedule](std::string_view name) -> int { for (int i = 0; i < schedule.size(); ++i) { if (schedule[i]->name() == name) { return i; } } LOG(FATAL) << "Unable to find index of instruction with name " << name; }; int c_index = find_schedule_index("c"); int p1_copy_start = find_schedule_index(module->entry_computation() ->root_instruction() ->operand(2) ->operand(0) ->operand(0) ->name()); int d_index = find_schedule_index("d"); int e_index = find_schedule_index("e"); int p1_copy_end = find_schedule_index(module->entry_computation() ->root_instruction() ->operand(2) ->operand(0) ->name()); int f_index = find_schedule_index("f"); EXPECT_EQ(p1_copy_start, c_index + 1); EXPECT_EQ(d_index, p1_copy_start + 1); EXPECT_EQ(e_index, d_index + 1); EXPECT_EQ(p1_copy_end, e_index + 1); EXPECT_EQ(f_index, p1_copy_end + 1); } class SlicedPrefetchTest : public MemorySpaceAssignmentTestBase { protected: enum class InstructionClass { kUnknown, kRelatedSliceStart, kRelatedSliceDone, kRelatedConcatBitcast, kStartAfterNonCopy, kDoneBeforeNonCopy, kUnrelatedCopyLike, kUnrelatedNonCopy, }; static std::string InstructionClassToString( InstructionClass instruction_class) { switch (instruction_class) { case InstructionClass::kUnknown: return "unknown"; case InstructionClass::kRelatedSliceStart: return "slice start"; case InstructionClass::kRelatedSliceDone: return "slice done"; case InstructionClass::kRelatedConcatBitcast: return "concat-bitcast"; case InstructionClass::kStartAfterNonCopy: return "start after non-copy"; case InstructionClass::kDoneBeforeNonCopy: return "done before non-copy"; case InstructionClass::kUnrelatedCopyLike: return "unrelated copy-like"; case InstructionClass::kUnrelatedNonCopy: return "unrelated non-copy"; } } class SliceProposer { public: SliceProposer() = default; virtual ~SliceProposer() = default; virtual absl::StatusOr<SliceProposalCollection> ProposeSlices( const Shape& shape, const SlicedPrefetchOptions& options) = 0; }; class MockSliceProposer : public SliceProposer { public: MOCK_METHOD(absl::StatusOr<SliceProposalCollection>, ProposeSlices, (const Shape& shape, const SlicedPrefetchOptions& options), (override)); }; class AsyncSlicedCopy : public ::testing::MatcherInterface<const HloInstruction*> { public: AsyncSlicedCopy(int64_t to_space, int64_t from_space, std::vector<std::vector<SliceParam>> expected_slice_params_per_slice_in_spatial_order, ::testing::Matcher<const HloInstruction*> operand, bool expect_bitcasted_io) : to_space_(to_space), from_space_(from_space), expected_slice_params_per_slice_in_spatial_order_( std::move(expected_slice_params_per_slice_in_spatial_order)), base_hlo_matcher_(CreateBaseHloMatcher( operand, expected_slice_params_per_slice_in_spatial_order_.size(), expect_bitcasted_io)), expect_bitcasted_io_(expect_bitcasted_io) {} bool MatchAndExplain( const HloInstruction* instruction, ::testing::MatchResultListener* listener) const override { if (!base_hlo_matcher_.MatchAndExplain(instruction, listener)) { return false; } if (!MatchMemorySpace(instruction, to_space_, "copy result", listener)) { return false; } const HloInstruction* concat_bitcast = (expect_bitcasted_io_ ? instruction->operand(0) : instruction); VLOG(2) << "AsyncSlicedCopy identified the concat-bitcast as " << concat_bitcast->name(); const HloInstruction* copy_operand = concat_bitcast->operand(0)->operand(0)->operand(0); const HloInstruction* original_copy_operand = (expect_bitcasted_io_ ? copy_operand->operand(0) : copy_operand); VLOG(2) << "AsyncSlicedCopy identified the copy operand as " << copy_operand->name() << ", and the original copy operand as " << original_copy_operand->name(); if (!MatchMemorySpace(original_copy_operand, from_space_, "copy operand", listener)) { return false; } if (!Shape::Equal().IgnoreMemorySpaceInLayout()( instruction->shape(), original_copy_operand->shape())) { *listener << " has a shape of " << original_copy_operand->shape().ToString( true) << " before copying but a shape of " << instruction->shape().ToString(true) << " after copying (ignoring memory space)"; return false; } CHECK_EQ(concat_bitcast->operand_count(), expected_slice_params_per_slice_in_spatial_order_.size()); std::vector<const HloInstruction*> sorted_slices = SortSlicesInExpectedSpatialOrder(concat_bitcast); for (int i = 0; i < sorted_slices.size(); ++i) { const HloInstruction* slice = sorted_slices[i]->async_wrapped_instruction(); if (!MatchMemorySpace(slice, to_space_, "slice", listener)) { return false; } const std::vector<SliceParam>& expected_slice_params_per_dim = expected_slice_params_per_slice_in_spatial_order_[i]; if (slice->slice_starts().empty()) { *listener << " has slice (" << slice->name() << "), with no slicing parameters"; return false; } if (slice->slice_limits().size() != slice->slice_starts().size() || slice->slice_strides().size() != slice->slice_limits().size()) { *listener << " has slice (" << slice->name() << "), with an inconsistent number slice starts/limits/strides"; return false; } if (slice->slice_starts().size() != copy_operand->shape().rank()) { *listener << " has slice (" << slice->name() << "), with " << slice->slice_starts().size() << " slice parameters (i.e., starts/limits/strides), expected " << expected_slice_params_per_slice_in_spatial_order_.size(); return false; } for (int dim = 0; dim < slice->slice_starts().size(); ++dim) { const SliceParam& expected_slice_params = expected_slice_params_per_dim[dim]; if (slice->slice_starts()[dim] != expected_slice_params.start_inclusive) { *listener << " has slice (" << slice->name() << "), with slice start of " << slice->slice_starts()[dim] << " at dim " << dim << ", expected " << expected_slice_params.start_inclusive; return false; } if (slice->slice_limits()[dim] != expected_slice_params.end_exclusive) { *listener << " has slice (" << slice->name() << "), with slice limit of " << slice->slice_limits()[dim] << " at dim " << dim << ", expected " << expected_slice_params.end_exclusive; return false; } if (slice->slice_strides()[dim] != 1) { *listener << " has slice (" << slice->name() << "), slice stride of " << slice->slice_strides()[dim] << " at dim " << dim << ", expected 1"; return false; } } } return true; } void DescribeTo(std::ostream* os) const override { base_hlo_matcher_.DescribeTo(os); std::vector<std::string> slice_parameters_per_operand; for (int op_idx = 0; op_idx < expected_slice_params_per_slice_in_spatial_order_.size(); ++op_idx) { std::vector<std::string> slice_params_per_dim; for (int dim = 0; dim < expected_slice_params_per_slice_in_spatial_order_[op_idx].size(); ++dim) { const SliceParam& slice_params = expected_slice_params_per_slice_in_spatial_order_[op_idx][dim]; slice_params_per_dim.push_back(absl::StrCat( "dim ", dim, ": {start: ", slice_params.start_inclusive, ", limit: ", slice_params.end_exclusive, "}")); } slice_parameters_per_operand.push_back( absl::StrCat("operand ", op_idx, ": { ", absl::StrJoin(slice_params_per_dim, ", "), " }")); } *os << " (copying from memory space " << from_space_ << " to " << to_space_ << ", with asynchronous slice operands using the following slice " "parameters: { " << absl::StrJoin(slice_parameters_per_operand, ", ") << " })"; } private: static ::testing::Matcher<const HloInstruction*> CreateBaseHloMatcher( ::testing::Matcher<const HloInstruction*> operand, int64_t num_slices, bool expect_bitcasted_io) { if (expect_bitcasted_io) { return op::Bitcast(op::CustomCall( kConcatBitcastCustomCall, std::vector<::testing::Matcher<const HloInstruction*>>( num_slices, op::AsyncDone(op::AsyncStart(op::Bitcast(operand)))))); } return op::CustomCall( kConcatBitcastCustomCall, std::vector<::testing::Matcher<const HloInstruction*>>( num_slices, op::AsyncDone(op::AsyncStart(operand)))); } static bool MatchMemorySpace(const HloInstruction* instruction, int64_t expected_memory_space, std::string_view error_message_identifier, ::testing::MatchResultListener* listener) { if (!instruction->shape().has_layout()) { *listener << " contains " << error_message_identifier << " named " << instruction->name() << " without a layout, expected a layout with memory space " << expected_memory_space; return false; } if (instruction->shape().layout().memory_space() != expected_memory_space) { *listener << " contains " << error_message_identifier << " named " << instruction->name() << " in memory space " << expected_memory_space << ", expected " << expected_memory_space; return false; } return true; } int64_t to_space_; int64_t from_space_; std::vector<std::vector<SliceParam>> expected_slice_params_per_slice_in_spatial_order_; ::testing::Matcher<const HloInstruction*> base_hlo_matcher_; bool expect_bitcasted_io_; }; static inline ::testing::Matcher<const HloInstruction*> IsAsyncSlicedCopy( int64_t to_space, int64_t from_space, std::vector<std::vector<SliceParam>> expected_slice_params_per_slice_in_spatial_order, ::testing::Matcher<const HloInstruction*> operand_matcher, bool expect_bitcasted_io = false) { return ::testing::MakeMatcher(new AsyncSlicedCopy( to_space, from_space, expected_slice_params_per_slice_in_spatial_order, operand_matcher, expect_bitcasted_io)); } class SlicedPrefetchOptionsMatcher : public ::testing::MatcherInterface<const SlicedPrefetchOptions&> { public: explicit SlicedPrefetchOptionsMatcher( SlicedPrefetchOptions expected_options) : expected_options_(std::move(expected_options)) {} bool MatchAndExplain( const SlicedPrefetchOptions& options, ::testing::MatchResultListener* listener) const override { if (options.max_slices() != expected_options_.max_slices()) { *listener << " has " << options.max_slices() << " max slices, expected " << expected_options_.max_slices(); return false; } if (options.min_bytes() != expected_options_.min_bytes()) { *listener << " has " << options.min_bytes() << " min bytes, expected " << expected_options_.min_bytes(); return false; } if (options.fail_on_non_alignment_boundary_slice_proposal() != expected_options_.fail_on_non_alignment_boundary_slice_proposal()) { *listener << " has fail_on_non_alignment_boundary_slice_proposal set to " << options.fail_on_non_alignment_boundary_slice_proposal() << ", expected " << expected_options_ .fail_on_non_alignment_boundary_slice_proposal(); return false; } return true; } void DescribeTo(std::ostream* os) const override { *os << " has the following options: max_slices(" << expected_options_.max_slices() << "), min_bytes(" << expected_options_.min_bytes() << ") fail_on_non_alignment_boundary_slice_proposal(" << expected_options_.fail_on_non_alignment_boundary_slice_proposal() << ")"; } private: SlicedPrefetchOptions expected_options_; }; static inline ::testing::Matcher<const SlicedPrefetchOptions&> EqualsSlicedPrefetchOptions(SlicedPrefetchOptions expected_options) { return ::testing::MakeMatcher( new SlicedPrefetchOptionsMatcher(std::move(expected_options))); } static std::vector<const HloInstruction*> SortSlicesInExpectedSpatialOrder( const HloInstruction* concat_bitcast) { std::vector<const HloInstruction*> sorted_slices( concat_bitcast->operands().begin(), concat_bitcast->operands().end()); absl::c_sort(sorted_slices, [](const HloInstruction* lhs, const HloInstruction* rhs) { CHECK(IsAsyncSliceDone(lhs)); CHECK(IsAsyncSliceDone(rhs)); CHECK(!lhs->async_wrapped_instruction()->slice_starts().empty()); CHECK(!rhs->async_wrapped_instruction()->slice_starts().empty()); return lhs->async_wrapped_instruction()->slice_starts().front() < rhs->async_wrapped_instruction()->slice_starts().front(); }); return sorted_slices; } static bool IsAsyncCopyStart(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kCopyStart; } static bool IsAsyncCopyDone(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kCopyDone; } static bool IsAsyncSliceStart(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kAsyncStart && instruction->async_wrapped_instruction()->opcode() == HloOpcode::kSlice; } static bool IsAsyncSliceDone(const HloInstruction* instruction) { return instruction->opcode() == HloOpcode::kAsyncDone && instruction->async_wrapped_instruction()->opcode() == HloOpcode::kSlice; } static bool IsConcatBitcast(const HloInstruction* instruction) { return instruction->IsCustomCall(kConcatBitcastCustomCall); } static absl::StatusOr<int> FindScheduleIndexOfInstruction( const std::vector<HloInstruction*>& schedule, std::string_view name, InstructionClass c) { for (int i = 0; i < schedule.size(); ++i) { if (schedule[i]->name() == name) { return i; } } return NotFound( "%s", absl::StrCat("Could not find ", InstructionClassToString(c), " instruction ", name, " in the instruction schedule.")); } static const HloInstruction* FindNamedScheduledInstruction( const HloModule& module, std::string_view name) { for (const HloInstruction* i : module.entry_computation()->instructions()) { if (i->name() == name) { return i; } } return nullptr; } static absl::StatusOr<std::vector<int>> GetSliceStartIndicies( const std::vector<HloInstruction*>& schedule, const HloInstruction* concat_bitcast) { std::vector<int> indicies; if (!IsConcatBitcast(concat_bitcast)) { return InvalidArgumentStrCat(concat_bitcast->name(), " is not a concat-bitcast."); } for (int i = 0; i < concat_bitcast->operand_count(); ++i) { const HloInstruction* async_slice_done = concat_bitcast->operand(i); if (!IsAsyncSliceDone(async_slice_done)) { return InvalidArgumentStrCat("Operand ", i, " of ", concat_bitcast->name(), " is not an async-slice-done."); } const HloInstruction* async_slice_start = async_slice_done->operand(0); if (!IsAsyncSliceStart(async_slice_start)) { return InvalidArgumentStrCat("Operand 0, of operand ", i, " of ", concat_bitcast->name(), " is not an async-slice-start."); } TF_ASSIGN_OR_RETURN( int schedule_index, FindScheduleIndexOfInstruction(schedule, async_slice_start->name(), InstructionClass::kRelatedSliceStart)); indicies.push_back(schedule_index); } return indicies; } static absl::Status ConcatBitcastAndSlicesAfterInstruction( const std::vector<HloInstruction*>& schedule, const std::vector<InstructionClass>& schedule_to_class, int slices_start_after_index) { for (int i = 0; i < slices_start_after_index; ++i) { InstructionClass c = schedule_to_class[i]; const HloInstruction* instruction = schedule[i]; if (c == InstructionClass::kRelatedSliceStart || c == InstructionClass::kRelatedSliceDone || c == InstructionClass::kRelatedConcatBitcast) { return FailedPrecondition( "%s", absl::StrCat(InstructionClassToString(c), " ", instruction->name(), " is scheduled at ", i, ", but is expected to be after ", schedule[slices_start_after_index]->name(), " at ", slices_start_after_index, ".")); } } return absl::OkStatus(); } static absl::Status AtLeastOneNonCopyLikeInstructionBetweenSliceStarts( const std::vector<HloInstruction*>& schedule, const std::vector<InstructionClass>& schedule_to_class) { bool found_non_copy_since_last_slice_start = true; for (int i = 0; i < schedule_to_class.size(); ++i) { InstructionClass c = schedule_to_class[i]; if (c == InstructionClass::kRelatedSliceStart && !found_non_copy_since_last_slice_start) { return FailedPrecondition( "%s", absl::StrCat( "Did not find a non-copy-like instruction between slice start ", schedule[i]->name(), " at ", i, " and the previous slice start.")); } if (c == InstructionClass::kRelatedSliceStart) { found_non_copy_since_last_slice_start = false; } else if (c == InstructionClass::kUnrelatedNonCopy) { found_non_copy_since_last_slice_start = true; } } return absl::OkStatus(); } static absl::Status OneSliceStartAfterInstructionWithNoCopyLikeBetween( const std::vector<HloInstruction*>& schedule, const std::vector<InstructionClass>& schedule_to_class, int slices_start_after_index) { int first_slice_start_after_schedule_after = -1; int first_non_copy_after_schedule_after = -1; for (int i = slices_start_after_index + 1; i < schedule_to_class.size() && (first_slice_start_after_schedule_after == -1 || first_non_copy_after_schedule_after == -1); ++i) { if (first_slice_start_after_schedule_after == -1 && schedule_to_class[i] == InstructionClass::kRelatedSliceStart) { first_slice_start_after_schedule_after = i; continue; } if (first_non_copy_after_schedule_after == -1 && schedule_to_class[i] == InstructionClass::kUnrelatedNonCopy) { first_non_copy_after_schedule_after = i; continue; } } if (first_slice_start_after_schedule_after == -1) { return NotFound( "%s", absl::StrCat("Could not find a slice start instruction " "after start after instruction ", schedule[slices_start_after_index]->name(), " at ", slices_start_after_index, ".")); } if (first_non_copy_after_schedule_after == -1) { return NotFound( "%s", absl::StrCat("Could not a find non-copy-like instruction " "after start after instruction ", schedule[slices_start_after_index]->name(), " at ", slices_start_after_index, ".")); } if (first_slice_start_after_schedule_after > first_non_copy_after_schedule_after) { return FailedPrecondition( "%s", absl::StrCat( "Unexpectedly found a non-copy-like instruction at ", first_non_copy_after_schedule_after, ", between ", schedule[slices_start_after_index]->name(), " at ", slices_start_after_index, ", and the first slice start at ", first_slice_start_after_schedule_after, ".")); } return absl::OkStatus(); } static absl::Status ConcatBitcastAndSlicesBeforeInstruction( const std::vector<HloInstruction*>& schedule, const std::vector<InstructionClass>& schedule_to_class, int slices_done_before_index) { for (int i = slices_done_before_index + 1; i < schedule_to_class.size(); ++i) { InstructionClass c = schedule_to_class[i]; const HloInstruction* instruction = schedule[i]; if (c == InstructionClass::kRelatedSliceStart || c == InstructionClass::kRelatedSliceDone || c == InstructionClass::kRelatedConcatBitcast) { return FailedPrecondition( "%s", absl::StrCat(InstructionClassToString(c), " ", instruction->name(), " is scheduled at ", i, ", but is expected to be before ", schedule[slices_done_before_index]->name(), " at ", slices_done_before_index, ".")); } } return absl::OkStatus(); } static absl::Status ConcatBitcastAndSliceDonesBeforeInstructionWithNoCopyLikeBetween( const std::vector<HloInstruction*>& schedule, const std::vector<InstructionClass>& schedule_to_class, int slices_done_before_index) { bool found_non_copy = false; for (int i = slices_done_before_index - 1; i >= 0; --i) { InstructionClass c = schedule_to_class[i]; const HloInstruction* instruction = schedule[i]; if (c == InstructionClass::kUnrelatedNonCopy) { found_non_copy = true; continue; } if (found_non_copy && (c == InstructionClass::kRelatedSliceDone || c == InstructionClass::kRelatedConcatBitcast)) { return FailedPrecondition( "%s", absl::StrCat("Found non-copy instruction between ", InstructionClassToString(c), " ", instruction->name(), " at ", i, ", and slice done before instruction ", schedule[slices_done_before_index]->name(), " at ", slices_done_before_index, ".")); } } return absl::OkStatus(); } static absl::Status ConcatBitcastAfterSliceDones( const std::vector<HloInstruction*>& schedule, const std::vector<InstructionClass>& schedule_to_class) { int concat_bitcast_index = -1; for (int i = 0; i < schedule_to_class.size(); ++i) { InstructionClass c = schedule_to_class[i]; const HloInstruction* instruction = schedule[i]; if (concat_bitcast_index == -1 && c == InstructionClass::kRelatedConcatBitcast) { concat_bitcast_index = i; continue; } if (concat_bitcast_index != -1 && c == InstructionClass::kRelatedSliceDone) { return FailedPrecondition( "%s", absl::StrCat("Unexpectedly, found concat-bitcast ", schedule[concat_bitcast_index]->name(), " at ", concat_bitcast_index, ", which is before the slice done ", instruction->name(), " at ", i, ".")); } } return absl::OkStatus(); } static absl::Status CheckSchedule( const HloModule& module, const HloInstruction* concat_bitcast, std::string_view slices_start_after_instruction_name, std::string_view slices_done_before_instruction_name, bool expect_slices_started_at_different_times) { CHECK(concat_bitcast->IsCustomCall(kConcatBitcastCustomCall)); auto entry_schedule = module.schedule().sequence(module.entry_computation()).instructions(); std::vector<InstructionClass> schedule_to_class( entry_schedule.size(), InstructionClass::kUnrelatedNonCopy); for (int i = 0; i < entry_schedule.size(); ++i) { const HloInstruction* instruction = entry_schedule[i]; if (IsAsyncCopyStart(instruction) || IsAsyncCopyDone(instruction) || IsAsyncSliceStart(instruction) || IsAsyncSliceDone(instruction) || IsConcatBitcast(instruction)) { schedule_to_class[i] = InstructionClass::kUnrelatedCopyLike; } } int slices_start_after_index; TF_ASSIGN_OR_RETURN(slices_start_after_index, FindScheduleIndexOfInstruction( entry_schedule, slices_start_after_instruction_name, InstructionClass::kStartAfterNonCopy)); schedule_to_class[slices_start_after_index] = InstructionClass::kStartAfterNonCopy; int slices_done_before_index; TF_ASSIGN_OR_RETURN(slices_done_before_index, FindScheduleIndexOfInstruction( entry_schedule, slices_done_before_instruction_name, InstructionClass::kDoneBeforeNonCopy)); schedule_to_class[slices_done_before_index] = InstructionClass::kDoneBeforeNonCopy; int concat_bitcast_index; TF_ASSIGN_OR_RETURN(concat_bitcast_index, FindScheduleIndexOfInstruction( entry_schedule, concat_bitcast->name(), InstructionClass::kRelatedConcatBitcast)); schedule_to_class[concat_bitcast_index] = InstructionClass::kRelatedConcatBitcast; for (const HloInstruction* slice : concat_bitcast->operands()) { int done_index; TF_ASSIGN_OR_RETURN(done_index, FindScheduleIndexOfInstruction( entry_schedule, slice->name(), InstructionClass::kRelatedSliceDone)); schedule_to_class[done_index] = InstructionClass::kRelatedSliceDone; int start_index; TF_ASSIGN_OR_RETURN(start_index, FindScheduleIndexOfInstruction( entry_schedule, slice->operand(0)->name(), InstructionClass::kRelatedSliceStart)); schedule_to_class[start_index] = InstructionClass::kRelatedSliceStart; } TF_RETURN_IF_ERROR(ConcatBitcastAndSlicesAfterInstruction( entry_schedule, schedule_to_class, slices_start_after_index)); TF_RETURN_IF_ERROR(OneSliceStartAfterInstructionWithNoCopyLikeBetween( entry_schedule, schedule_to_class, slices_start_after_index)); if (expect_slices_started_at_different_times) { TF_RETURN_IF_ERROR(AtLeastOneNonCopyLikeInstructionBetweenSliceStarts( entry_schedule, schedule_to_class)); } TF_RETURN_IF_ERROR(ConcatBitcastAndSlicesBeforeInstruction( entry_schedule, schedule_to_class, slices_done_before_index)); TF_RETURN_IF_ERROR( ConcatBitcastAndSliceDonesBeforeInstructionWithNoCopyLikeBetween( entry_schedule, schedule_to_class, slices_done_before_index)); TF_RETURN_IF_ERROR( ConcatBitcastAfterSliceDones(entry_schedule, schedule_to_class)); return absl::OkStatus(); } static absl::Status CheckSliceChunks(const PresetAssignments& assignments, const HloInstruction* sliced_copy_result, bool expect_bitcasted_io = false) { const HloInstruction* concat_bitcast = (expect_bitcasted_io ? sliced_copy_result->operand(0) : sliced_copy_result); CHECK(concat_bitcast->IsCustomCall(kConcatBitcastCustomCall)); absl::flat_hash_map<const HloInstruction*, Chunk> slices_to_chunks; std::optional<Chunk> result_chunk = std::nullopt; for (const std::pair<HloPosition, Chunk>& position_chunk_pair : assignments.chunks()) { if (position_chunk_pair.first.instruction == sliced_copy_result) { if (result_chunk.has_value()) { return FailedPrecondition( "%s", absl::StrCat("Sliced copy ", sliced_copy_result->name(), " is assigned more than one chunk: ", result_chunk->ToString(), " and ", position_chunk_pair.second.ToString())); } result_chunk = position_chunk_pair.second; } for (const HloInstruction* slice : concat_bitcast->operands()) { if (position_chunk_pair.first.instruction == slice) { auto it = slices_to_chunks.find(slice); if (it != slices_to_chunks.end()) { return FailedPrecondition( "%s", absl::StrCat("Slice ", slice->name(), " is assigned more than one chunk: ", it->second.ToString(), " and ", position_chunk_pair.second.ToString())); } slices_to_chunks[slice] = position_chunk_pair.second; } } } std::vector<const HloInstruction*> sorted_slices = SortSlicesInExpectedSpatialOrder(concat_bitcast); VLOG(1) << "Chunk assignments for " << sliced_copy_result->name() << ":\n" << absl::StrJoin( sorted_slices, "\n", [&](std::string* out, const HloInstruction* slice) { auto it = slices_to_chunks.find(slice); std::string chunk = "no chunk assigned"; if (it != slices_to_chunks.end()) { chunk = it->second.ToString(); } absl::StrAppend(out, " slice ", slice->name(), ": ", chunk); }) << "\n sliced copy result " << sliced_copy_result->name() << ": " << (result_chunk.has_value() ? result_chunk->ToString() : "no chunk assigned"); if (sorted_slices.empty()) { return absl::OkStatus(); } int64_t previous_end = -1; int64_t min_offset = std::numeric_limits<int64_t>::max(); int64_t max_limit = std::numeric_limits<int64_t>::min(); for (const HloInstruction* slice : sorted_slices) { auto it = slices_to_chunks.find(slice); if (it == slices_to_chunks.end()) { return FailedPrecondition( "%s", absl::StrCat("Slice ", slice->name(), " is not assigned a chunk")); } const Chunk& chunk = it->second; if (chunk.size != ShapeSize(slice->shape())) { return FailedPrecondition( "%s", absl::StrCat("Slice ", slice->name(), " is assigned chunk ", chunk.ToString(), " with size ", chunk.size, ". Expected a size of ", ShapeSize(slice->shape()), ", to match its shape.")); } if (previous_end != -1 && chunk.offset != previous_end) { return FailedPrecondition( "%s", absl::StrCat( "Slice ", slice->name(), " starts at offset ", chunk.offset, ". Expected it to start at ", previous_end, " because that's where the previous slice ended.")); } previous_end = chunk.chunk_end(); min_offset = std::min(min_offset, chunk.offset); max_limit = std::max(max_limit, chunk.chunk_end()); } if (!result_chunk.has_value()) { return FailedPrecondition( "%s", absl::StrCat("Sliced copy result ", sliced_copy_result->name(), " is not assigned a chunk.")); } Chunk expected_result_chunk = Chunk::FromOffsetEnd(min_offset, max_limit); if (!(*result_chunk == expected_result_chunk)) { return FailedPrecondition( "%s", absl::StrCat("Sliced copy result ", sliced_copy_result->name(), " is assigned chunk ", result_chunk->ToString(), ", but it's expected to be assigned chunk ", expected_result_chunk.ToString())); } if (result_chunk->size != ShapeSize(sliced_copy_result->shape())) { return FailedPrecondition( "%s", absl::StrCat("Sliced copy result ", sliced_copy_result->name(), " is assigned chunk ", result_chunk->ToString(), " with size ", result_chunk->size, ". Expected a size of ", ShapeSize(sliced_copy_result->shape()), ", to match its shape.")); } return absl::OkStatus(); } SlicedPrefetchTest() { EXPECT_CALL(slice_proposer_, ProposeSlices(_, _)).Times(0); options_.max_size_in_bytes = 1024; options_.sliced_prefetch_options.set_max_slices(2); options_.sliced_prefetch_options.set_min_bytes(8); options_.propose_slice_fn = [&](const Shape& shape, const SlicedPrefetchOptions& options) { return slice_proposer_.ProposeSlices(shape, options); }; options_.get_equivalent_s8_shape_fn = [](const Shape& original_shape) { return ShapeUtil::MakeShape(S8, {ShapeSize(original_shape)}); }; } void SetupProposeSlicesToExpect2SlicesOfF32x8x8() { EXPECT_CALL(slice_proposer_, ProposeSlices(f32_8_8_, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(SliceProposalCollection({ SliceProposal({f32_4_8_, std::vector<SliceParam>({{0, 4}, {0, 8}}), ShapeSize(f32_4_8_)}), SliceProposal({f32_4_8_, std::vector<SliceParam>({{4, 8}, {0, 8}}), ShapeSize(f32_4_8_)}), }))); } const Shape f32_8_8_ = ShapeUtil::MakeShape(F32, {8, 8}); const Shape f32_4_8_ = ShapeUtil::MakeShape(F32, {4, 8}); MockSliceProposer slice_proposer_; Options options_ = DefaultMemorySpaceOptions(); }; TEST_F(SlicedPrefetchTest, TwoSlices) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) ROOT r = f32[8,8] add(c, p1) })zz"; SetupProposeSlicesToExpect2SlicesOfF32x8x8(); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace( module.get(), options_, 10, 1); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Add(_, IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 4}, {0, 8}}, {{4, 8}, {0, 8}}}, op::Parameter(1)))); TF_EXPECT_OK( CheckSchedule(*module, root->operand(1), "p1", "r", true)); TF_EXPECT_OK(CheckSliceChunks(*assignments, root->operand(1))); } TEST_F(SlicedPrefetchTest, ThreeSlices) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) ROOT r = f32[8,8] add(c, p1) })zz"; const Shape f32_3_8 = ShapeUtil::MakeShape(F32, {3, 8}); const Shape f32_2_8 = ShapeUtil::MakeShape(F32, {2, 8}); options_.sliced_prefetch_options.set_max_slices(3); EXPECT_CALL(slice_proposer_, ProposeSlices(f32_8_8_, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(SliceProposalCollection({ SliceProposal({f32_3_8, std::vector<SliceParam>({{0, 3}, {0, 8}}), ShapeSize(f32_3_8)}), SliceProposal({f32_3_8, std::vector<SliceParam>({{3, 6}, {0, 8}}), ShapeSize(f32_3_8)}), SliceProposal({f32_2_8, std::vector<SliceParam>({{6, 8}, {0, 8}}), ShapeSize(f32_2_8)}), }))); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace( module.get(), options_, 10, 1); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, op::Add(_, IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 3}, {0, 8}}, {{3, 6}, {0, 8}}, {{6, 8}, {0, 8}}}, op::Parameter(1)))); TF_EXPECT_OK( CheckSchedule(*module, root->operand(1), "p1", "r", true)); TF_EXPECT_OK(CheckSliceChunks(*assignments, root->operand(1))); } TEST_F(SlicedPrefetchTest, SlicingDisabled) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) ROOT r = f32[8,8] add(c, p1) })zz"; options_.sliced_prefetch_options.set_max_slices(0); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace( module.get(), options_, 10, 1); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto entry_schedule = module->schedule().sequence(module->entry_computation()).instructions(); for (const HloInstruction* instruction : entry_schedule) { EXPECT_FALSE(IsAsyncSliceStart(instruction)); EXPECT_FALSE(IsAsyncSliceDone(instruction)); EXPECT_FALSE(IsConcatBitcast(instruction)); } } TEST_F(SlicedPrefetchTest, TooSmallToSlice) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) ROOT r = f32[8,8] add(c, p1) })zz"; options_.sliced_prefetch_options.set_min_bytes(1000000000); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace( module.get(), options_, 10, 1); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto entry_schedule = module->schedule().sequence(module->entry_computation()).instructions(); for (const HloInstruction* instruction : entry_schedule) { EXPECT_FALSE(IsAsyncSliceStart(instruction)); EXPECT_FALSE(IsAsyncSliceDone(instruction)); EXPECT_FALSE(IsConcatBitcast(instruction)); } } TEST_F(SlicedPrefetchTest, FallbackToUnsliced) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) ROOT r = f32[8,8] add(c, p1) })zz"; EXPECT_CALL(slice_proposer_, ProposeSlices(f32_8_8_, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(absl::StatusOr<SliceProposalCollection>( FailedPrecondition("%s", "Cannot slice.")))); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace( module.get(), options_, 10, 1); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto entry_schedule = module->schedule().sequence(module->entry_computation()).instructions(); for (const HloInstruction* instruction : entry_schedule) { EXPECT_FALSE(IsAsyncSliceStart(instruction)); EXPECT_FALSE(IsAsyncSliceDone(instruction)); EXPECT_FALSE(IsConcatBitcast(instruction)); } } TEST_F(SlicedPrefetchTest, UsingCostAnalysisIntervalPicker) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) ROOT r = f32[8,8] add(c, p1) })zz"; SetupProposeSlicesToExpect2SlicesOfF32x8x8(); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpaceUsingCostAnalysis( module.get(), options_); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, op::Add(_, IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 4}, {0, 8}}, {{4, 8}, {0, 8}}}, op::Parameter(1)))); TF_EXPECT_OK(CheckSchedule( *module, root->operand(1), "a", "r", true)); TF_EXPECT_OK(CheckSliceChunks(*assignments, root->operand(1))); } TEST_F(SlicedPrefetchTest, LoopAliasing) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true WhileBody { body_param = (f32[8,8], f32[8,8], f32[], f32[]) parameter(0) v0 = f32[8,8] get-tuple-element(body_param), index=0 v1 = f32[8,8] get-tuple-element(body_param), index=1 i = f32[] get-tuple-element(body_param), index=2 limit = f32[] get-tuple-element(body_param), index=3 one = f32[] constant(1) new_i = f32[] add(i, one) new_v1 = f32[8,8] add(v0, v1) ROOT while_result = (f32[8,8], f32[8,8], f32[], f32[]) tuple(v0, new_v1, new_i, limit) } WhileCond { cond_param = (f32[8,8], f32[8,8], f32[], f32[]) parameter(0) i = f32[] get-tuple-element(cond_param), index=2 limit = f32[] get-tuple-element(cond_param), index=3 ROOT cond_result = pred[] compare(i, limit), direction=LT } ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) iterations = f32[] parameter(2) initial = f32[] constant(0) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) t = (f32[8,8], f32[8,8], f32[], f32[]) tuple(p0, p1, initial, iterations) w = (f32[8,8], f32[8,8], f32[], f32[]) while(t), condition=WhileCond, body=WhileBody d = f32[8,8] get-tuple-element(w), index=1 ROOT r = f32[8,8] add(c, d) })zz"; SetupProposeSlicesToExpect2SlicesOfF32x8x8(); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpaceUsingCostAnalysis( module.get(), options_); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto root = module->entry_computation()->root_instruction(); ASSERT_THAT( root, op::Add(_, op::GetTupleElement( op::While( op::Tuple(_, IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 4}, {0, 8}}, {{4, 8}, {0, 8}}}, op::Parameter(1)), _, _)), 1))); HloInstruction* w = root->mutable_operand(1)->mutable_operand(0); HloInstruction* t = w->mutable_operand(0); HloInstruction* concat_bitcast = t->mutable_operand(1); HloComputation* while_body = w->while_body(); HloInstruction* body_param = while_body->parameter_instruction(0); HloComputation* while_cond = w->while_condition(); HloInstruction* cond_param = while_cond->parameter_instruction(0); absl::flat_hash_set<HloPosition> expected_aliases({ HloPosition{concat_bitcast, {}}, HloPosition{w, {1}}, HloPosition{t, {1}}, HloPosition{body_param, {1}}, HloPosition{cond_param, {1}}, }); auto alias_analysis = HloAliasAnalysis::Run(module.get()).value(); VLOG(2) << alias_analysis->ToString(); const HloBuffer& concat_bitcast_buffer = alias_analysis->GetUniqueBufferAt(concat_bitcast); EXPECT_THAT(concat_bitcast_buffer.ComputePositions(), ::testing::IsSupersetOf(expected_aliases)); int num_chunks_for_expected_aliases = 0; for (const auto& position_chunk_pair : assignments->chunks()) { if (expected_aliases.contains(position_chunk_pair.first)) { num_chunks_for_expected_aliases++; } } EXPECT_EQ(num_chunks_for_expected_aliases, 1); } class MockRepacker : public MemorySpaceAssignmentRepacker { public: MockRepacker() : MemorySpaceAssignmentRepacker(std::numeric_limits<int64_t>::max(), 1) {} MOCK_METHOD(absl::StatusOr<bool>, Repack, (absl::Span<AllocationBlock*>), (override)); }; TEST_F(SlicedPrefetchTest, Repack) { absl::string_view hlo_string = R"( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[] parameter(0) p1 = f32[16,16] parameter(1) p2 = f32[32,16] parameter(2) p3 = f32[16,16] parameter(3) p4 = f32[32,16] parameter(4) x1 = f32[] add(p0,p0) x2 = f32[] add(x1, x1) a = f32[16,16] sine(p1) c = f32[16,16] sine(p3) x3 = f32[] add(x2, x2) x4 = f32[] add(x3, x3) b = f32[32,16] sine(p2) d = f32[32,16] sine(p4) z1 = f32[16,16] broadcast(x4), dimensions={} z2 = f32[16,16] add(z1, a) z3 = f32[32,16] concatenate(z2, c), dimensions={0} z4 = f32[32,16] add(z3, b) ROOT z5 = f32[32,16] add(z4, d) })"; TF_ASSERT_OK_AND_ASSIGN(auto module_no_repacking, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto module_with_repacking, ParseAndReturnVerifiedModule(hlo_string)); VLOG(1) << "Original module:\n" << module_no_repacking->ToString(HloPrintOptions::ShortParsable()); Shape f32_16_16 = ShapeUtil::MakeShape(F32, {16, 16}); Shape f32_32_16 = ShapeUtil::MakeShape(F32, {32, 16}); EXPECT_CALL(slice_proposer_, ProposeSlices(f32_16_16, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(SliceProposalCollection({}))); EXPECT_CALL(slice_proposer_, ProposeSlices(f32_32_16, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(SliceProposalCollection({ SliceProposal({f32_16_16, std::vector<SliceParam>({{0, 16}, {0, 16}}), ShapeSize(f32_16_16)}), SliceProposal({f32_16_16, std::vector<SliceParam>({{16, 32}, {0, 16}}), ShapeSize(f32_16_16)}), }))); MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& lhs, const MsaBufferInterval& rhs) { auto lookup = [](const MsaBufferInterval& x) { int priority = 100; if (x.buffer->instruction()->name() == "p1") { priority = 1; } else if (x.buffer->instruction()->name() == "p2") { priority = 2; } else if (x.buffer->instruction()->name() == "p3") { priority = 3; } else if (x.buffer->instruction()->name() == "p4") { priority = 4; } return std::make_tuple(priority, x.buffer->instruction()->name()); }; return lookup(lhs) < lookup(rhs); }; InstructionCountPrefetchIntervalPicker prefetch_interval_picker(2, 50); options_.max_size_in_bytes = 4 * 1024; options_.max_repacks = 0; std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace(module_no_repacking.get(), options_, buffer_interval_compare, &prefetch_interval_picker); VLOG(1) << "Post-MSA module (no repacking):\n" << module_no_repacking->ToString(HloPrintOptions::ShortParsable()); const HloInstruction* d = FindNamedScheduledInstruction(*module_no_repacking, "d"); ASSERT_NE(d, nullptr); EXPECT_FALSE(IsConcatBitcast(d->operand(0))); MockRepacker repacker; absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> repack_map; EXPECT_CALL(repacker, Repack(_)) .WillRepeatedly([](absl::Span<AllocationBlock*> allocations) -> absl::StatusOr<bool> { bool found_p2 = false; bool found_p3 = false; for (AllocationBlock* block : allocations) { VLOG(1) << "Allocation block: " << block->ToString(); if (block->inclusive_start_time == 3 && block->initial_offset == 1024 && block->size == 2048) { found_p2 = true; block->offset = 2048; EXPECT_TRUE(block->original_slice_data.has_value()); if (block->original_slice_data.has_value()) { SlicedAllocationData expected( {{AllocatedSlice{1024, 1024, 3}, AllocatedSlice{1024, 2048, 7}}}); EXPECT_EQ(*block->original_slice_data, expected) << "\nExpected: " << expected.ToString() << "\nGot: " << block->original_slice_data->ToString(); block->repacked_slice_data = SlicedAllocationData( {{AllocatedSlice{1024, 2048, 7}, AllocatedSlice{1024, 3072, 3}}}); } } else if (block->inclusive_start_time == 4 && block->initial_offset == 3072 && block->size == 1024) { found_p3 = true; block->offset = 1024; EXPECT_FALSE(block->original_slice_data.has_value()); } else { block->offset = block->initial_offset; } } EXPECT_TRUE(found_p2); EXPECT_TRUE(found_p3); return true; }); options_.max_repacks = 1; options_.repacker = &repacker; assignments = AssignMemorySpace(module_with_repacking.get(), options_, buffer_interval_compare, &prefetch_interval_picker); VLOG(1) << "Post-MSA module (with repacking):\n" << module_with_repacking->ToString(HloPrintOptions::ShortParsable()); d = FindNamedScheduledInstruction(*module_with_repacking, "d"); ASSERT_NE(d, nullptr); EXPECT_TRUE(IsConcatBitcast(d->operand(0))); TF_EXPECT_OK(CheckSliceChunks(*assignments, d->operand(0))); std::vector<const HloInstruction*> p2_slice_dones; for (const HloInstruction* i : module_with_repacking->entry_computation()->instructions()) { if (IsAsyncSliceStart(i) && i->operand_count() == 1 && i->operand(0)->name() == "p2") { ASSERT_EQ(i->user_count(), 1); p2_slice_dones.push_back(i->users()[0]); } } ASSERT_EQ(p2_slice_dones.size(), 2); std::vector<int64_t> p2_slice_offsets; for (const HloInstruction* i : p2_slice_dones) { for (const std::pair<HloPosition, Chunk>& position_chunk_pair : assignments->chunks()) { if (position_chunk_pair.first.instruction == i) { p2_slice_offsets.push_back(position_chunk_pair.second.offset); } } } ASSERT_EQ(p2_slice_offsets.size(), 2); EXPECT_THAT(p2_slice_dones[0]->async_wrapped_instruction()->slice_starts(), ::testing::ElementsAreArray({16, 0})); EXPECT_THAT(p2_slice_dones[0]->async_wrapped_instruction()->slice_limits(), ::testing::ElementsAreArray({32, 16})); EXPECT_EQ(p2_slice_offsets[0], 3072); EXPECT_THAT(p2_slice_dones[1]->async_wrapped_instruction()->slice_starts(), ::testing::ElementsAreArray({0, 0})); EXPECT_THAT(p2_slice_dones[1]->async_wrapped_instruction()->slice_limits(), ::testing::ElementsAreArray({16, 16})); EXPECT_EQ(p2_slice_offsets[1], 2048); } struct ModuleAndAssignments { std::unique_ptr<VerifiedHloModule> module; std::unique_ptr<PresetAssignments> assignments; }; TEST_F(SlicedPrefetchTest, BackToBackWhileLoops) { const std::string while_cond = R"zz( WhileCond$ID { cond_param = (f32[8,8], f32[8,8], f32[], f32[]) parameter(0) i = f32[] get-tuple-element(cond_param), index=2 limit = f32[] get-tuple-element(cond_param), index=3 ROOT cond_result = pred[] compare(i, limit), direction=LT })zz"; const std::string while_body = R"zz( WhileBody$ID { body_param = (f32[8,8], f32[8,8], f32[], f32[]) parameter(0) v0 = f32[8,8] get-tuple-element(body_param), index=0 v1 = f32[8,8] get-tuple-element(body_param), index=1 i = f32[] get-tuple-element(body_param), index=2 limit = f32[] get-tuple-element(body_param), index=3 one = f32[] constant(1) new_i = f32[] add(i, one) $COMPUTATION ROOT while_result = (f32[8,8], f32[8,8], f32[], f32[]) tuple(v0, new_v1, new_i, limit) })zz"; const std::string while_computation_cheap = R"zz( new_v1 = f32[8,8] add(v0, v1))zz"; std::string while_computation_expensive = R"zz( new_v1_0 = f32[8,8] add(v0, v1) new_v1_1 = f32[8,8] tanh(new_v1_0) new_v1_2 = f32[8,8] tanh(new_v1_1) new_v1_3 = f32[8,8] tanh(new_v1_2) new_v1 = f32[8,8] tanh(new_v1_3))zz"; std::string module_text = R"zz( HloModule Slice, is_scheduled=true $WHILEBODY1 $WHILECOND1 $WHILEBODY2 $WHILECOND2 ENTRY main { loop1_input1 = f32[8,8] parameter(0) loop1_input2 = f32[8,8] parameter(1) loop1_iterations = f32[] parameter(2) loop1_begin = f32[] constant(0) loop1_tuple = (f32[8,8], f32[8,8], f32[], f32[]) tuple(loop1_input1, loop1_input2, loop1_iterations, loop1_begin) loop2_input1 = f32[8,8] parameter(3) loop2_input2 = f32[8,8] parameter(4) loop2_iterations = f32[] parameter(5) loop2_begin = f32[] constant(0) loop2_tuple = (f32[8,8], f32[8,8], f32[], f32[]) tuple(loop2_input1, loop2_input2, loop2_iterations, loop2_begin) prefetch = f32[8,8] parameter(6) loop1_output = (f32[8,8], f32[8,8], f32[], f32[]) while(loop1_tuple), condition=WhileCond1, body=WhileBody1 loop2_output = (f32[8,8], f32[8,8], f32[], f32[]) while(loop2_tuple), condition=WhileCond2, body=WhileBody2 prefetch_use = f32[8,8] tanh(prefetch) loop1_result = f32[8,8] get-tuple-element(loop1_output), index=1 loop2_result = f32[8,8] get-tuple-element(loop2_output), index=1 tmp1 = f32[8,8] add(loop1_result, loop2_result) ROOT r = f32[8,8] add(tmp1, prefetch_use) })zz"; auto gen_hlo = [&](std::string_view while_computation1, std::string_view while_computation2) { return absl::StrReplaceAll( module_text, { {"$WHILEBODY1", absl::StrReplaceAll( while_body, {{"$ID", "1"}, {"$COMPUTATION", while_computation1}})}, {"$WHILECOND1", absl::StrReplaceAll(while_cond, {{"$ID", "1"}})}, {"$WHILEBODY2", absl::StrReplaceAll( while_body, {{"$ID", "2"}, {"$COMPUTATION", while_computation2}})}, {"$WHILECOND2", absl::StrReplaceAll(while_cond, {{"$ID", "2"}})}, }); }; SetupProposeSlicesToExpect2SlicesOfF32x8x8(); MsaBufferIntervalCompare buffer_interval_compare = [](const MsaBufferInterval& lhs, const MsaBufferInterval& rhs) { auto lookup = [](const MsaBufferInterval& x) { int priority = 100; if (x.buffer->instruction()->name() == "prefetch") { priority = 1; } return std::make_tuple(priority, x.buffer->instruction()->name()); }; return lookup(lhs) < lookup(rhs); }; InstructionCountPrefetchIntervalPicker prefetch_interval_picker(32, 100); options_.max_size_in_bytes = 4 * 64; auto run_msa = [&](std::string_view hlo_text) -> absl::StatusOr<ModuleAndAssignments> { ModuleAndAssignments module_and_assignments; TF_ASSIGN_OR_RETURN(module_and_assignments.module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module_and_assignments.module->ToString( HloPrintOptions::ShortParsable()); module_and_assignments.assignments = AssignMemorySpace(module_and_assignments.module.get(), options_, buffer_interval_compare, &prefetch_interval_picker); VLOG(1) << "Post-MSA module:\n" << module_and_assignments.module->ToString( HloPrintOptions::ShortParsable()); return module_and_assignments; }; TF_ASSERT_OK_AND_ASSIGN( ModuleAndAssignments module_and_assignments1, run_msa(gen_hlo(while_computation_cheap, while_computation_expensive))); auto root1 = module_and_assignments1.module->entry_computation()->root_instruction(); EXPECT_THAT(root1, op::Add(_, op::Tanh(IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 4}, {0, 8}}, {{4, 8}, {0, 8}}}, op::Parameter(6))))); TF_EXPECT_OK(CheckSchedule( *module_and_assignments1.module, root1->operand(1)->operand(0), "prefetch", "prefetch_use", true)); auto entry_schedule1 = module_and_assignments1.module->schedule() .sequence(module_and_assignments1.module->entry_computation()) .instructions(); TF_ASSERT_OK_AND_ASSIGN( std::vector<int> start_indicies, GetSliceStartIndicies(entry_schedule1, root1->operand(1)->operand(0))); ASSERT_EQ(start_indicies.size(), 2); TF_ASSERT_OK_AND_ASSIGN( int first_while, FindScheduleIndexOfInstruction( entry_schedule1, "loop1_output", SlicedPrefetchTest::InstructionClass::kUnrelatedNonCopy)); TF_ASSERT_OK_AND_ASSIGN( int second_while, FindScheduleIndexOfInstruction( entry_schedule1, "loop2_output", SlicedPrefetchTest::InstructionClass::kUnrelatedNonCopy)); EXPECT_TRUE( absl::c_is_sorted<std::vector<int>>( {start_indicies[0], first_while, start_indicies[1], second_while}) || absl::c_is_sorted<std::vector<int>>( {start_indicies[1], first_while, start_indicies[0], second_while})); TF_ASSERT_OK_AND_ASSIGN( ModuleAndAssignments module_and_assignments2, run_msa(gen_hlo(while_computation_expensive, while_computation_cheap))); auto root2 = module_and_assignments2.module->entry_computation()->root_instruction(); EXPECT_THAT(root2, op::Add(_, op::Tanh(op::AsyncCopy(kAlternateMemorySpace, kDefaultMemorySpace, op::Parameter(6))))); auto entry_schedule2 = module_and_assignments2.module->schedule() .sequence(module_and_assignments2.module->entry_computation()) .instructions(); TF_ASSERT_OK_AND_ASSIGN( int copy_done, FindScheduleIndexOfInstruction( entry_schedule2, root2->operand(1)->operand(0)->name(), SlicedPrefetchTest::InstructionClass::kUnrelatedNonCopy)); TF_ASSERT_OK_AND_ASSIGN( int copy_start, FindScheduleIndexOfInstruction( entry_schedule2, root2->operand(1)->operand(0)->operand(0)->name(), SlicedPrefetchTest::InstructionClass::kUnrelatedNonCopy)); TF_ASSERT_OK_AND_ASSIGN( first_while, FindScheduleIndexOfInstruction( entry_schedule2, "loop1_output", SlicedPrefetchTest::InstructionClass::kUnrelatedNonCopy)); TF_ASSERT_OK_AND_ASSIGN( second_while, FindScheduleIndexOfInstruction( entry_schedule2, "loop2_output", SlicedPrefetchTest::InstructionClass::kUnrelatedNonCopy)); EXPECT_TRUE(absl::c_is_sorted<std::vector<int>>( {copy_start, first_while, second_while, copy_done})); } using RepackingTest = ::testing::Test; TEST_F(RepackingTest, Colocations) { AllocationBlock a{10, 20, 100, 0, 1000, 0}; AllocationBlock b{15, 25, 150, 0, 2000, 1}; AllocationBlock c{18, 22, 50, 0, 500, 2}; AllocationBlock d{5, 9, 20, 0, 3000, 3}; AllocationBlock e{17, 22, 100, 0, 1500, 4}; AllocationBlock f{25, 27, 150, 0, 2500, 5}; a.next_colocated = &a; b.next_colocated = &c; c.next_colocated = &b; d.next_colocated = &f; e.next_colocated = &d; f.next_colocated = &e; EXPECT_EQ(a.GetColocationsCount(), 1); EXPECT_THAT(a.GetColocations(), UnorderedElementsAre(&a)); EXPECT_EQ(b.GetColocationsCount(), 2); EXPECT_THAT(b.GetColocations(), UnorderedElementsAre(&b, &c)); EXPECT_EQ(c.GetColocationsCount(), 2); EXPECT_THAT(c.GetColocations(), UnorderedElementsAre(&b, &c)); EXPECT_EQ(d.GetColocationsCount(), 3); EXPECT_THAT(d.GetColocations(), UnorderedElementsAre(&d, &e, &f)); EXPECT_EQ(e.GetColocationsCount(), 3); EXPECT_THAT(e.GetColocations(), UnorderedElementsAre(&d, &e, &f)); EXPECT_EQ(f.GetColocationsCount(), 3); EXPECT_THAT(f.GetColocations(), UnorderedElementsAre(&d, &e, &f)); } TEST_F(SlicedPrefetchTest, UniformSizedSlicing) { std::string hlo_text = R"zz( HloModule Slice, is_scheduled=true ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) p2 = f32[8,16] parameter(2) constant1 = f32[] constant(1.1) a = f32[8,8] tanh(p0) b = f32[8,8] tanh(a) c = f32[8,8] tanh(b) d = f32[8,8] tanh(c) e = f32[8,8] tanh(d) f = f32[8,8] tanh(e) g = f32[8,8] tanh(f) h = f32[8,8] tanh(g) x = f32[8,8] add(p1, h) padded_x = f32[8,16] pad(x, constant1), padding=0_0x0_8 ROOT r = f32[8,16] add(padded_x, p2) })zz"; const Shape f32_8_16 = ShapeUtil::MakeShape(F32, {8, 16}); const Shape s8_128 = ShapeUtil::MakeShape(S8, {128}); options_.sliced_prefetch_options.set_max_slices(100000); options_.sliced_prefetch_options.set_preferred_slice_size(4 * 8 * 4); EXPECT_CALL(slice_proposer_, ProposeSlices(f32_8_8_, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(SliceProposalCollection({ SliceProposal( {s8_128, std::vector<SliceParam>({{0, 128}}), ShapeSize(s8_128)}), SliceProposal({s8_128, std::vector<SliceParam>({{128, 256}}), ShapeSize(s8_128)}), }))); EXPECT_CALL(slice_proposer_, ProposeSlices(f32_8_16, EqualsSlicedPrefetchOptions( options_.sliced_prefetch_options))) .WillRepeatedly(Return(SliceProposalCollection({ SliceProposal( {s8_128, std::vector<SliceParam>({{0, 128}}), ShapeSize(s8_128)}), SliceProposal({s8_128, std::vector<SliceParam>({{128, 256}}), ShapeSize(s8_128)}), SliceProposal({s8_128, std::vector<SliceParam>({{256, 384}}), ShapeSize(s8_128)}), SliceProposal({s8_128, std::vector<SliceParam>({{384, 512}}), ShapeSize(s8_128)}), }))); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_text)); VLOG(1) << "Original module:\n" << module->ToString(HloPrintOptions::ShortParsable()); std::unique_ptr<PresetAssignments> assignments = AssignMemorySpace( module.get(), options_, 100, 1); VLOG(1) << "Post-MSA module:\n" << module->ToString(HloPrintOptions::ShortParsable()); auto root = module->entry_computation()->root_instruction(); EXPECT_THAT( root, op::Add(op::Pad(op::Add(IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 128}}, {{128, 256}}}, op::Parameter(1), true), _), _), IsAsyncSlicedCopy( kAlternateMemorySpace, kDefaultMemorySpace, {{{0, 128}}, {{128, 256}}, {{256, 384}}, {{384, 512}}}, op::Parameter(2), true))); TF_EXPECT_OK(CheckSliceChunks(*assignments, root->operand(1), true)); TF_EXPECT_OK(CheckSliceChunks(*assignments, root->operand(0)->operand(0)->operand(0), true)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/memory_space_assignment.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/memory_space_assignment/memory_space_assignment_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b2e1d7e-be28-4c3b-854c-5f1e07a81350
cpp
tensorflow/tensorflow
gpu_compatibility
tensorflow/lite/tools/versioning/gpu_compatibility.cc
tensorflow/lite/tools/versioning/gpu_compatibility_test.cc
#include "tensorflow/lite/tools/versioning/gpu_compatibility.h" #include <algorithm> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/lite/builtin_op_data.h" #include "tensorflow/lite/builtin_ops.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace { const std::string GetOpName(const OpSignature& op_sig) { if (op_sig.op == tflite::BuiltinOperator_CUSTOM) { return op_sig.custom_name; } return tflite::EnumNamesBuiltinOperator()[op_sig.op]; } int NumElements(const std::vector<int32_t>& dims) { int count = 1; for (int i = 0; i < dims.size(); ++i) { count *= dims.at(i); } return count; } #define RETURN_IF_ERROR(s) \ { \ auto c = (s); \ if (!c.ok()) return c; \ } template <typename ParamsT> absl::Status RetrieveBuiltinData(const OpSignature& op_sig, const ParamsT** tf_options) { *tf_options = static_cast<const ParamsT*>(op_sig.builtin_data); if (!*tf_options) { return absl::InternalError("Unable to retrieve builtin_data."); } return absl::OkStatus(); } template <typename ParamsT> absl::Status RetrieveCustomInitialData(const OpSignature& op_sig, const ParamsT** tf_options) { *tf_options = static_cast<const ParamsT*>(op_sig.custom_initial_data); if (!*tf_options) { return absl::InternalError("Unable to retrieve custom_initial_data."); } return absl::OkStatus(); } absl::Status IsActivationSupported(TfLiteFusedActivation fused_activation) { switch (fused_activation) { case kTfLiteActNone: case kTfLiteActRelu: case kTfLiteActReluN1To1: case kTfLiteActRelu6: case kTfLiteActTanh: case kTfLiteActSigmoid: return absl::OkStatus(); case kTfLiteActSignBit: return absl::UnimplementedError( "TfLiteFusedActivation.kTfLiteActSignBit"); } } int GetNumberOfRuntimeInputs(const OpSignature& op_sig) { int number_of_runtime_inputs = 0; for (auto& input : op_sig.inputs) { if (!input.is_const && input.type != kTfLiteNoType) { number_of_runtime_inputs++; } } return number_of_runtime_inputs; } absl::Status CheckInputsOutputs(const OpSignature& op_sig, const int required_runtime_inputs, const int required_outputs) { const int runtime_inputs_from_model = GetNumberOfRuntimeInputs(op_sig); if (runtime_inputs_from_model != required_runtime_inputs) { return absl::InternalError( absl::StrCat("Expected ", required_runtime_inputs, " runtime input tensor(s), but node has ", runtime_inputs_from_model, " runtime input(s).")); } const int outputs_from_model = op_sig.outputs.size(); if (outputs_from_model != required_outputs) { return absl::InternalError(absl::StrCat("Expected ", required_outputs, " output tensor(s), but node has ", outputs_from_model, " output(s).")); } return absl::OkStatus(); } absl::Status CheckInputsConstsOutputs(const OpSignature& op_sig, int required_runtime_inputs, int required_const_inputs, int required_outputs) { int const_inputs_from_model = 0; for (auto& input : op_sig.inputs) { if (input.is_const) { ++const_inputs_from_model; } } if (const_inputs_from_model != required_const_inputs) { return absl::InternalError( absl::StrCat("Expected ", required_const_inputs, " const input tensor(s), but node has ", const_inputs_from_model, " const input(s).")); } return CheckInputsOutputs(op_sig, required_runtime_inputs, required_outputs); } absl::Status CheckTensorIsAvailable(const OpSignature& op_sig, int idx) { if (idx >= op_sig.inputs.size()) { return absl::OutOfRangeError( absl::StrCat("Requested index goes beyond array size: ", idx, " vs ", op_sig.inputs.size())); } return absl::OkStatus(); } absl::Status CheckConvoultionInputOutput(const OpSignature& op_sig) { const int runtime_inputs = GetNumberOfRuntimeInputs(op_sig); if (runtime_inputs > 2) { return absl::InternalError( absl::StrCat("Expected 1 or 2 input tensor(s), but node has ", runtime_inputs, " runtime inputs.")); } const int runtime_outputs = op_sig.outputs.size(); if (runtime_outputs != 1) { return absl::InternalError( absl::StrCat("Expected 1 output tensor(s), but node has ", runtime_outputs, " runtime outputs.")); } if (runtime_inputs == 1) { RETURN_IF_ERROR(CheckTensorIsAvailable(op_sig, 1)); } return absl::OkStatus(); } absl::Status CheckStrides(int strides_h, int strides_w) { if (strides_h <= 0 || strides_w <= 0) { return absl::InvalidArgumentError( absl::StrCat("Incorrect stride values: stride_height = ", strides_h, ", stride_width = ", strides_w)); } return absl::OkStatus(); } absl::Status CheckDilation(int dilation_h, int dilation_w) { if (dilation_h <= 0 || dilation_w <= 0) { return absl::InvalidArgumentError(absl::StrCat( "Incorrect dilation values: dilation_height = ", dilation_h, ", dilation_width = ", dilation_w)); } return absl::OkStatus(); } absl::Status CheckStridesAndDilation(int strides_h, int strides_w, int dilation_h, int dilation_w) { RETURN_IF_ERROR(CheckStrides(strides_h, strides_w)); RETURN_IF_ERROR(CheckDilation(dilation_h, dilation_w)); return absl::OkStatus(); } absl::Status CheckKernels(int kernel_h, int kernel_w) { if (kernel_h <= 0 || kernel_w <= 0) { return absl::InvalidArgumentError( absl::StrCat("Incorrect kernel values: kernel_height = ", kernel_h, ", kernel_width = ", kernel_w)); } return absl::OkStatus(); } absl::Status CheckKernelsAndStrides(int kernel_h, int kernel_w, int strides_h, int strides_w) { RETURN_IF_ERROR(CheckKernels(kernel_h, kernel_w)); RETURN_IF_ERROR(CheckStrides(strides_h, strides_w)); return absl::OkStatus(); } absl::Status CheckAxesAreInt32Const(const OpSignature& op_sig, int idx) { auto axes = op_sig.inputs.at(idx); if (!axes.is_const) { return absl::UnimplementedError(GetOpName(op_sig) + " is only supported with constant axes."); } if (axes.type != kTfLiteInt32) { return absl::UnimplementedError(absl::StrCat( GetOpName(op_sig) + " supports int32 tensor for axes. But node has ", TfLiteTypeGetName(axes.type))); } return absl::OkStatus(); } absl::Status CheckPooling2DGpuDelegateCompatibility(const OpSignature& op_sig) { const TfLitePoolParams* tf_options; if (op_sig.custom_initial_data) { RETURN_IF_ERROR(RetrieveCustomInitialData(op_sig, &tf_options)); RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 2)); } else { RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); } RETURN_IF_ERROR(CheckKernelsAndStrides( tf_options->filter_height, tf_options->filter_width, tf_options->stride_height, tf_options->stride_width)); return IsActivationSupported(tf_options->activation); } absl::Status CheckDepthwiseConvGpuDelegateCompatibility( const OpSignature& op_sig) { RETURN_IF_ERROR(CheckConvoultionInputOutput(op_sig)); const TfLiteDepthwiseConvParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); RETURN_IF_ERROR(CheckStridesAndDilation( tf_options->stride_height, tf_options->stride_width, tf_options->dilation_height_factor, tf_options->dilation_width_factor)); RETURN_IF_ERROR(IsActivationSupported(tf_options->activation)); const int depth_multiplier = tf_options->depth_multiplier; const auto* input = &op_sig.inputs[0]; const auto* filter = &op_sig.inputs[1]; const auto* bias = op_sig.inputs.size() > 2 ? &op_sig.inputs[2] : nullptr; const auto* output = &op_sig.outputs[0]; if (input->dims.size() != 4) { return absl::InvalidArgumentError("input.dims.size != 4"); } if (filter->dims.size() != 4) { return absl::InvalidArgumentError("filter.dims.size != 4"); } if (output->dims.size() != 4) { return absl::InvalidArgumentError("output.dims.size != 4"); } if (input->dims[0] != output->dims[0]) { return absl::InvalidArgumentError("input.b != output.b"); } const int input_depth = input->dims[3]; const int output_depth = output->dims[3]; if (filter->dims[3] != output_depth) { return absl::InvalidArgumentError("filter.i != output.c"); } if (output_depth != input_depth * depth_multiplier) { return absl::InvalidArgumentError("output.c != input.c * depth_multiplier"); } if (bias && NumElements(bias->dims) != output_depth) { return absl::InvalidArgumentError("bias.size != output.c"); } if (depth_multiplier != 1 && input_depth != 1) { return absl::UnimplementedError("depth_multiplier != 1 && input.c != 1"); } return absl::OkStatus(); } absl::Status CheckCumsumGpuDelegateCompatibility(const OpSignature& op_sig) { if (op_sig.inputs.size() != 2) { return absl::InvalidArgumentError("Expects 2 inputs and 1 output"); } auto error = absl::InvalidArgumentError( "Input/output must be float type and indices must be constant int32 " "type"); if ((op_sig.inputs.at(0).type != kTfLiteFloat16 && op_sig.inputs.at(0).type != kTfLiteFloat32) || (op_sig.outputs.at(0).type != op_sig.inputs.at(0).type) || (op_sig.inputs.at(1).type != kTfLiteInt32 || !op_sig.inputs.at(1).is_const)) { return error; } return absl::OkStatus(); } absl::Status CheckOneHotGpuDelegateCompatibility(const OpSignature& op_sig) { if (op_sig.inputs.size() != 4 && op_sig.outputs.size() != 1) { return absl::InvalidArgumentError("Expects 4 inputs and 1 output"); } absl::Status error = absl::InvalidArgumentError( "Indices must be int32 type, on/off tensors must be constant, scalar, " "float type, axis must be -1 or last dim"); if (op_sig.inputs[0].type != kTfLiteInt32) { return error; } auto* one_hot_options = reinterpret_cast<TfLiteOneHotParams*>(op_sig.builtin_data); const int num_dims = op_sig.inputs[0].dims.size(); if (one_hot_options->axis != -1 && one_hot_options->axis != op_sig.inputs[0].dims[num_dims - 1]) { return error; } for (int i = 0; i < num_dims - 1; ++i) { if (num_dims > 3 && i == 0) { continue; } if (op_sig.inputs.at(0).dims[i] != 1) { return absl::InvalidArgumentError( absl::StrCat("Unspported non-singleton dim at ", i)); } } if (op_sig.inputs.at(2).type != kTfLiteFloat32 || op_sig.inputs.at(3).type != kTfLiteFloat32) { return error; } if (!op_sig.inputs.at(2).is_const || !op_sig.inputs.at(3).is_const || op_sig.inputs.at(2).dims.size() > 1 || op_sig.inputs.at(3).dims.size() > 1) { return error; } if ((!op_sig.inputs.at(2).dims.empty() && op_sig.inputs.at(2).dims[0] > 1) || (!op_sig.inputs.at(3).dims.empty() && op_sig.inputs.at(3).dims[0] > 1)) { return error; } return absl::OkStatus(); } absl::Status CheckSelectV2GpuDelegateCompatibility(const OpSignature& op_sig) { if (op_sig.inputs.size() != 3 || op_sig.outputs.size() != 1) { return absl::InvalidArgumentError("Expected 3 inputs and 1 output"); } absl::Status error = absl::InvalidArgumentError( "Cond must be float or bool type, if, else tensors must be float and " "either be same the shape as output or constant, scalar."); if ((op_sig.inputs.at(0).type != kTfLiteBool && op_sig.inputs.at(0).type != kTfLiteFloat16 && op_sig.inputs.at(0).type != kTfLiteFloat32) || (op_sig.inputs.at(1).type != kTfLiteFloat16 && op_sig.inputs.at(1).type != kTfLiteFloat32) || (op_sig.inputs.at(2).type != kTfLiteFloat16 && op_sig.inputs.at(2).type != kTfLiteFloat32)) { return error; } std::vector<int32_t> output_dims = op_sig.outputs[0].dims; if (!op_sig.inputs.at(1).dims.empty() && (op_sig.inputs.at(1).dims != output_dims) && (op_sig.inputs.at(1).dims.size() > 1 || op_sig.inputs.at(1).dims[0] > 1)) { return error; } if (op_sig.inputs.at(1).is_const && op_sig.inputs.at(1).dims.size() == 2) { return absl::InvalidArgumentError( "2-D if tensor only supported if constant."); } if (!op_sig.inputs.at(2).dims.empty() && (op_sig.inputs.at(2).dims != output_dims) && (op_sig.inputs.at(2).dims.size() > 1 || op_sig.inputs.at(2).dims[0] > 1)) { return error; } if (op_sig.inputs.at(2).is_const && op_sig.inputs.at(2).dims.size() == 2) { return absl::InvalidArgumentError( "2-D else tensor only supported if constant."); } return absl::OkStatus(); } absl::Status CheckCustomOpsGpuDelegateCompatibility(const OpSignature& op_sig) { if (op_sig.custom_name == "Convolution2DTransposeBias") { RETURN_IF_ERROR(CheckTensorIsAvailable(op_sig, 1)); const TfLiteTransposeConvParams* tf_options; RETURN_IF_ERROR(RetrieveCustomInitialData(op_sig, &tf_options)); RETURN_IF_ERROR( CheckStrides(tf_options->stride_height, tf_options->stride_width)); return absl::OkStatus(); } if (op_sig.custom_name == "MaxPoolingWithArgmax2D") { return CheckPooling2DGpuDelegateCompatibility(op_sig); } if (op_sig.custom_name == "MaxUnpooling2D") { RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 2, 1)); const TfLitePoolParams* tf_options; RETURN_IF_ERROR(RetrieveCustomInitialData(op_sig, &tf_options)); RETURN_IF_ERROR(CheckKernelsAndStrides( tf_options->filter_height, tf_options->filter_width, tf_options->stride_height, tf_options->stride_width)); return absl::OkStatus(); } if (op_sig.custom_name == "Resampler") { return CheckInputsOutputs(op_sig, 2, 1); } return absl::InvalidArgumentError( absl::StrCat("Not supported custom op ", op_sig.custom_name)); } bool CheckIsBroadcastable(const std::vector<int32_t>* longer_dims, const std::vector<int32_t>* shorter_dims) { int idx_1 = longer_dims->size() - 1; int idx_2 = shorter_dims->size() - 1; int max_idx = std::max(idx_1, idx_2); int data_1 = 0; int data_2 = 0; for (int i = max_idx; i >= 0; --i) { data_1 = idx_1 < 0 ? 1 : longer_dims->at(idx_1); data_2 = idx_2 < 0 ? 1 : shorter_dims->at(idx_2); if (data_1 != data_2 && data_1 != 1 && data_2 != 1) { return false; } --idx_1; --idx_2; } return true; } absl::Status CheckAddMulBroadcastCompatibility( const OpSignatureTensorSpec& input0, const OpSignatureTensorSpec& input1, GpuCompatibilityFlags flags) { if (input0.dims.size() > 1 && input1.dims.size() > 1 && input0.dims.size() != input1.dims.size()) { const std::vector<int32_t>*longer_dims, *shorter_dims; if (input0.dims.size() >= input1.dims.size()) { longer_dims = &input0.dims; shorter_dims = &input1.dims; } else { longer_dims = &input1.dims; shorter_dims = &input0.dims; } bool is_broadcastable = false; if (flags == GpuCompatibilityFlags::kEnhancedBroadcast) { is_broadcastable = CheckIsBroadcastable(longer_dims, shorter_dims); } else { if (longer_dims->size() == 4 && shorter_dims->size() == 3 && longer_dims->at(0) == 1) { is_broadcastable = true; } else if (longer_dims->size() == 4 && shorter_dims->size() == 2 && longer_dims->at(0) == 1 && shorter_dims->at(0) == 1 && shorter_dims->at(1) == 1) { is_broadcastable = true; } else if (longer_dims->size() == 4 && shorter_dims->size() == 2 && longer_dims->at(0) == shorter_dims->at(0) && longer_dims->at(3) == shorter_dims->at(1)) { is_broadcastable = true; } } if (!is_broadcastable) { return absl::UnimplementedError( absl::StrCat("Doesn't support broadcasting - input0: [", absl::StrJoin(input0.dims, ","), "], input1: [", absl::StrJoin(input1.dims, ","), "]")); } } return absl::OkStatus(); } } absl::Status CheckGpuDelegateCompatibility(const OpSignature& op_sig, GpuCompatibilityFlags flags) { TfLiteBuiltinOperator opcode = static_cast<TfLiteBuiltinOperator>(op_sig.op); switch (opcode) { case kTfLiteBuiltinAdd: { if (op_sig.inputs.size() != 2) { return absl::UnimplementedError("ADD requires two input tensors."); } const auto& input0 = op_sig.inputs.at(0); const auto& input1 = op_sig.inputs.at(1); auto broadcastable = CheckAddMulBroadcastCompatibility(input0, input1, flags); if (!broadcastable.ok()) { return broadcastable; } const TfLiteAddParams* tf_options; return RetrieveBuiltinData(op_sig, &tf_options); } case kTfLiteBuiltinAddN: { return op_sig.inputs.size() == 2 ? absl::OkStatus() : absl::UnimplementedError("ADD_N only supports 2 inputs."); } case kTfLiteBuiltinAveragePool2d: return CheckPooling2DGpuDelegateCompatibility(op_sig); case kTfLiteBuiltinBatchMatmul: { const int num_inputs = op_sig.inputs.size(); const int num_outputs = op_sig.outputs.size(); if (!(num_inputs == 2 && num_outputs == 1)) { return absl::InternalError( absl::StrCat("Expected 2 inputs and 1 output, got: ", num_inputs, " inputs and ", num_outputs, " outputs")); } return absl::OkStatus(); } case kTfLiteBuiltinCast: RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); if (op_sig.inputs.at(0).type == kTfLiteBool && (op_sig.outputs.at(0).type == kTfLiteFloat16 || op_sig.outputs.at(0).type == kTfLiteFloat32)) { return absl::OkStatus(); } else if ((op_sig.inputs.at(0).type == kTfLiteFloat16 || op_sig.inputs.at(0).type == kTfLiteFloat32) && op_sig.outputs.at(0).type == kTfLiteBool) { return absl::OkStatus(); } else if ((op_sig.inputs.at(0).type == kTfLiteFloat32 || op_sig.inputs.at(0).type == kTfLiteInt32) && (op_sig.outputs.at(0).type == kTfLiteFloat32 || op_sig.outputs.at(0).type == kTfLiteInt32)) { return absl::OkStatus(); } else { return absl::UnimplementedError(absl::StrCat( "Not supported Cast case. Input type: ", TfLiteTypeGetName(op_sig.inputs.at(0).type), " and output type: ", TfLiteTypeGetName(op_sig.outputs.at(0).type))); } case kTfLiteBuiltinConcatenation: { const TfLiteConcatenationParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); return absl::OkStatus(); } case kTfLiteBuiltinConv2d: { RETURN_IF_ERROR(CheckConvoultionInputOutput(op_sig)); const TfLiteConvParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); RETURN_IF_ERROR(CheckStridesAndDilation( tf_options->stride_height, tf_options->stride_width, tf_options->dilation_height_factor, tf_options->dilation_width_factor)); return IsActivationSupported(tf_options->activation); } case kTfLiteBuiltinCumsum: return CheckCumsumGpuDelegateCompatibility(op_sig); case kTfLiteBuiltinDensify: return CheckInputsOutputs(op_sig, 0, 1); case kTfLiteBuiltinDepthwiseConv2d: return CheckDepthwiseConvGpuDelegateCompatibility(op_sig); case kTfLiteBuiltinDepthToSpace: { RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); const TfLiteDepthToSpaceParams* d2s_params; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &d2s_params)); if (d2s_params->block_size == 1) { return absl::InvalidArgumentError( "DEPTH_TO_SPACE block_size = 1 is a no-op."); } if (d2s_params->block_size < 1) { return absl::InvalidArgumentError( "DEPTH_TO_SPACE block_size must be > 1."); } return absl::OkStatus(); } case kTfLiteBuiltinDequantize: { const int num_inputs = op_sig.inputs.size(); const int num_outputs = op_sig.outputs.size(); if (num_inputs != 1 || num_outputs != 1) { return absl::InternalError(absl::StrCat( "Expected 1 input & output each from Dequantize, got: %d, %d", num_inputs, num_outputs)); } if (op_sig.inputs[0].type == kTfLiteInt16) { return absl::UnimplementedError("Unsupported dequantization type."); } return absl::OkStatus(); } case kTfLiteBuiltinEmbeddingLookup: { const int num_inputs = op_sig.inputs.size(); const OpSignatureTensorSpec ids_spec = op_sig.inputs[0]; const OpSignatureTensorSpec value_spec = op_sig.inputs[1]; const OpSignatureTensorSpec output_spec = op_sig.outputs[0]; if (num_inputs != 2) { return absl::InvalidArgumentError( absl::StrCat("Expected 2, but got ", num_inputs, " inputs.")); } if (ids_spec.dims.size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected 1D, but got ", ids_spec.dims.size(), "D input #0.")); } if (value_spec.dims.size() < 2) { return absl::InvalidArgumentError(absl::StrCat( "Expected > 1D, but got ", value_spec.dims.size(), "D input #1.")); } if (op_sig.outputs.size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected 1, but got ", op_sig.outputs.size(), " outputs.")); } if (value_spec.dims.size() != output_spec.dims.size()) { return absl::InvalidArgumentError( absl::StrCat("Expected ", value_spec.dims.size(), ", but got ", output_spec.dims.size(), " for output.")); } for (int i = 1; i < output_spec.dims.size(); ++i) { if (value_spec.dims[i] != output_spec.dims[i]) { return absl::InvalidArgumentError( absl::StrCat("Expected ", value_spec.dims[i], ", but got ", output_spec.dims[i], " for output.dim[", i, "].")); } } if (value_spec.type != kTfLiteInt8 && value_spec.type != kTfLiteInt4 && value_spec.type != kTfLiteFloat32) { return absl::InvalidArgumentError( absl::StrCat("Expected int8, int4, or float32, but got ", TfLiteTypeGetName(value_spec.type), " for input #1.")); } return absl::OkStatus(); } case kTfLiteBuiltinDynamicUpdateSlice: { if (op_sig.inputs.size() != 3) { return absl::UnimplementedError( "DynamicUpdateSlice requires 3 inputs."); } OpSignatureTensorSpec operand = op_sig.inputs[0]; OpSignatureTensorSpec update_slice = op_sig.inputs[1]; OpSignatureTensorSpec start_indices = op_sig.inputs[2]; if (operand.dims.size() == 4 && operand.dims[0] != 1) { return absl::UnimplementedError( "DynamicUpdateSlice only support 4D operand with batch size 1."); } if (start_indices.dims.size() > 1) { return absl::UnimplementedError( "DynamicUpdateSlice only support 1D start_indices."); } if (operand.type != update_slice.type) { return absl::InternalError( absl::StrCat("Array to update and updated slice must have the same " "data type, but got: array to update: ", operand.type, ", updated slice: ", update_slice.type)); } if (start_indices.dims.size() != 1) { return absl::InternalError( absl::StrCat("Start indices must have be 1D, but got: ", start_indices.dims.size())); } if (start_indices.type != kTfLiteInt32) { return absl::InvalidArgumentError( "start_indices must be of type int32."); } if (update_slice.dims.size() != operand.dims.size()) { return absl::InternalError(absl::StrCat( "Operand and update must have the same number of " "dimensions, but got: operand: ", operand.dims.size(), ", update: ", update_slice.dims.size())); } return absl::OkStatus(); } case kTfLiteBuiltinFullyConnected: { const TfLiteFullyConnectedParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); if (tf_options->weights_format != kTfLiteFullyConnectedWeightsFormatDefault) { return absl::UnimplementedError( absl::StrCat("Unsupported FullyConnected weights format: ", tf_options->weights_format)); } if (GetNumberOfRuntimeInputs(op_sig) > 2) { return absl::UnimplementedError( "FullyConnected doesn't support more than 2 runtime inputs."); } if (op_sig.inputs[0].is_const) { return absl::UnimplementedError( "FullyConnected doesn't support constant input."); } if (tf_options->keep_num_dims == true) { const auto& input = op_sig.inputs.at(0); const auto& output = op_sig.outputs.at(0); if (input.dims.size() != output.dims.size()) { return absl::UnimplementedError( "Input and output dimensions different and FullyConnected " "doesn't " "support keep_num_dims."); } } return absl::OkStatus(); } case kTfLiteBuiltinGather: if (!CheckInputsConstsOutputs(op_sig, 2, 0, 1) .ok() && !CheckInputsConstsOutputs(op_sig, 1, 1, 1) .ok()) { return absl::InvalidArgumentError( "Op can only handle 1 or 2 operand(s)."); } if (op_sig.inputs[1].dims.size() != 1) { return absl::UnimplementedError("Only support 1D indices\n"); } return op_sig.inputs.at(1).type == kTfLiteInt32 ? absl::OkStatus() : absl::UnimplementedError("Only accept INT32 indices\n"); case kTfLiteBuiltinHardSwish: return CheckInputsOutputs(op_sig, 1, 1); case kTfLiteBuiltinLstm: { const TfLiteLSTMParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); switch (tf_options->kernel_type) { case kTfLiteLSTMFullKernel: { const int inputs = op_sig.inputs.size(); if (inputs != 20 && inputs != 24) { return absl::InternalError( absl::StrCat("Expected 20 or 24 input tensors, but node has ", inputs, " input(s).")); } const int runtime_outputs = op_sig.outputs.size(); if (runtime_outputs != 1) { return absl::InternalError( absl::StrCat("Expected 1 output tensor, but node has ", runtime_outputs, " output(s).")); } if (tf_options->activation != kTfLiteActSigmoid && tf_options->activation != kTfLiteActTanh) { return absl::UnimplementedError(absl::StrCat( "Only sigmoid or tanh activation is supported, but node has ", tf_options->activation)); } return absl::OkStatus(); } case kTfLiteLSTMBasicKernel: RETURN_IF_ERROR( CheckInputsConstsOutputs(op_sig, 3, 2, 4)); if (tf_options->activation != kTfLiteActTanh) { return absl::UnimplementedError( absl::StrCat("Only TANH activation is supported. but node has ", tf_options->activation)); } if (tf_options->cell_clip != 0.0f) { return absl::UnimplementedError("cell_clip is not supported."); } if (tf_options->proj_clip != 0.0f) { return absl::UnimplementedError("proj_clip is not supported."); } return absl::OkStatus(); } } case kTfLiteBuiltinMaxPool2d: return CheckPooling2DGpuDelegateCompatibility(op_sig); case kTfLiteBuiltinMean: { RETURN_IF_ERROR(CheckInputsConstsOutputs(op_sig, 1, 1, 1)); return CheckAxesAreInt32Const(op_sig, 1); } case kTfLiteBuiltinMul: { if (op_sig.inputs.size() != 2) { return absl::UnimplementedError("MUL requires two input tensors."); } const auto& input0 = op_sig.inputs.at(0); const auto& input1 = op_sig.inputs.at(1); if (input0.dims.size() == input1.dims.size()) { bool first_has_smaller_dim = false; bool second_has_smaller_dim = false; for (int i = 0; i < input0.dims.size(); ++i) { if (input0.dims[i] < input1.dims[i]) { first_has_smaller_dim = true; } if (input1.dims[i] < input0.dims[i]) { second_has_smaller_dim = true; } } if (first_has_smaller_dim && second_has_smaller_dim) { return absl::UnimplementedError( "MUL requires one tensor that not less than second in all " "dimensions."); } } else { const auto& input0 = op_sig.inputs.at(0); const auto& input1 = op_sig.inputs.at(1); auto broadcastable = CheckAddMulBroadcastCompatibility(input0, input1, flags); if (!broadcastable.ok()) { return broadcastable; } } const TfLiteMulParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); return IsActivationSupported(tf_options->activation); } case kTfLiteBuiltinPack: return absl::OkStatus(); case kTfLiteBuiltinOneHot: return CheckOneHotGpuDelegateCompatibility(op_sig); case kTfLiteBuiltinQuantize: RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); return absl::OkStatus(); case kTfLiteBuiltinReluN1To1: return absl::OkStatus(); case kTfLiteBuiltinPrelu: return absl::OkStatus(); case kTfLiteBuiltinReshape: RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); return absl::OkStatus(); case kTfLiteBuiltinSelect: case kTfLiteBuiltinSelectV2: return CheckSelectV2GpuDelegateCompatibility(op_sig); case kTfLiteBuiltinSlice: { if (op_sig.inputs.size() < 3) { return absl::UnimplementedError( absl::StrCat("SLICE requires 3 inputs, but node has ", op_sig.inputs.size(), " inputs.")); } const auto& input = op_sig.inputs.at(0); if (input.dims.size() != 3 && input.dims.size() != 4) { return absl::UnimplementedError(absl::StrCat( "SLICE supports for 3 or 4 dimensional tensors only, but node has ", input.dims.size(), " dimensional tensors.")); } return absl::OkStatus(); } case kTfLiteBuiltinSoftmax: { const TfLiteSoftmaxParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); if (tf_options->beta != 1) { return absl::UnimplementedError("Softmax.beta != 1 is not supported."); } return absl::OkStatus(); } case kTfLiteBuiltinSpaceToDepth: { RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); const TfLiteSpaceToDepthParams* s2d_params; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &s2d_params)); if (s2d_params->block_size == 1) { return absl::InvalidArgumentError( "SPACE_TO_DEPTH block_size = 1 is a no-op."); } if (s2d_params->block_size < 1) { return absl::InvalidArgumentError( "SPACE_TO_DEPTH block_size must be > 1."); } return absl::OkStatus(); } case kTfLiteBuiltinSplit: return absl::OkStatus(); case kTfLiteBuiltinSplitV: return absl::OkStatus(); case kTfLiteBuiltinStridedSlice: { const TfLiteStridedSliceParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); if (tf_options->ellipsis_mask) { return absl::UnimplementedError( "Slice does not support ellipsis_mask."); } if (tf_options->new_axis_mask) { return absl::UnimplementedError( "Slice does not support new_axis_mask."); } if (tf_options->shrink_axis_mask) { return absl::UnimplementedError( "Slice does not support shrink_axis_mask parameter. "); } if (op_sig.inputs.size() < 4) { return absl::UnimplementedError("STRIDED_SLICE requires 4 inputs."); } const auto& input = op_sig.inputs.at(0); if (input.dims.size() != 3 && input.dims.size() != 4) { return absl::UnimplementedError( "STRIDED_SLICE supports for 3 or 4 dimensional tensors only."); } return absl::OkStatus(); } case kTfLiteBuiltinTile: RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); return absl::OkStatus(); case kTfLiteBuiltinTranspose: RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); return absl::OkStatus(); case kTfLiteBuiltinTransposeConv: { RETURN_IF_ERROR(CheckConvoultionInputOutput(op_sig)); const TfLiteTransposeConvParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); RETURN_IF_ERROR( CheckStrides(tf_options->stride_height, tf_options->stride_width)); return absl::OkStatus(); } case kTfLiteBuiltinResizeBilinear: { RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); const TfLiteResizeBilinearParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); if (tf_options->align_corners && tf_options->half_pixel_centers) { return absl::InternalError( "If half_pixel_centers is True, align_corners must be False."); } return absl::OkStatus(); } case kTfLiteBuiltinResizeNearestNeighbor: { RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); const TfLiteResizeNearestNeighborParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); return absl::OkStatus(); } case kTfLiteBuiltinRelu: case kTfLiteBuiltinRelu6: case kTfLiteBuiltinLeakyRelu: return absl::OkStatus(); case kTfLiteBuiltinReduceMax: case kTfLiteBuiltinReduceMin: case kTfLiteBuiltinReduceProd: case kTfLiteBuiltinSum: { RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); return CheckAxesAreInt32Const(op_sig, 1); } case kTfLiteBuiltinPad: case kTfLiteBuiltinPadv2: case kTfLiteBuiltinMirrorPad: { if (opcode == kTfLiteBuiltinMirrorPad) { const TfLiteMirrorPaddingParams* tf_options; RETURN_IF_ERROR(RetrieveBuiltinData(op_sig, &tf_options)); if (tf_options->mode != TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect) { return absl::InvalidArgumentError( absl::StrCat("Only Reflective padding is supported for Mirror " "Pad operation. But node has ", tf_options->mode)); } } RETURN_IF_ERROR(CheckInputsOutputs(op_sig, 1, 1)); RETURN_IF_ERROR(CheckTensorIsAvailable(op_sig, 1)); auto& pad_tensor = op_sig.inputs.at(1); if (pad_tensor.dims.size() != 2) { return absl::InvalidArgumentError(absl::StrCat( "Invalid paddings tensor dimension: expected 2 dim, got ", pad_tensor.dims.size(), " dim")); } bool supported = pad_tensor.dims[0] == 3 || pad_tensor.dims[0] == 4; if (!supported || pad_tensor.dims[1] != 2) { return absl::InvalidArgumentError(absl::StrCat( "Invalid paddings tensor shape: expected 4x2 or 3x2, got ", pad_tensor.dims[0], "x", pad_tensor.dims[1])); } return absl::OkStatus(); } case kTfLiteBuiltinReverseV2: { RETURN_IF_ERROR(CheckInputsConstsOutputs(op_sig, 1, 1, 1)); return CheckAxesAreInt32Const(op_sig, 1); } case kTfLiteBuiltinAbs: case kTfLiteBuiltinCeil: case kTfLiteBuiltinCos: case kTfLiteBuiltinElu: case kTfLiteBuiltinExp: case kTfLiteBuiltinFloor: case kTfLiteBuiltinGelu: case kTfLiteBuiltinLog: case kTfLiteBuiltinLogistic: case kTfLiteBuiltinNeg: case kTfLiteBuiltinRsqrt: case kTfLiteBuiltinSign: case kTfLiteBuiltinSin: case kTfLiteBuiltinSqrt: case kTfLiteBuiltinSquare: case kTfLiteBuiltinTanh: return (CheckInputsConstsOutputs(op_sig, 1, 0, 1)); case kTfLiteBuiltinAtan2: case kTfLiteBuiltinDiv: case kTfLiteBuiltinEqual: case kTfLiteBuiltinFloorDiv: case kTfLiteBuiltinFloorMod: case kTfLiteBuiltinGreater: case kTfLiteBuiltinGreaterEqual: case kTfLiteBuiltinLogicalAnd: case kTfLiteBuiltinLess: case kTfLiteBuiltinLessEqual: case kTfLiteBuiltinMaximum: case kTfLiteBuiltinMinimum: case kTfLiteBuiltinNotEqual: case kTfLiteBuiltinPow: case kTfLiteBuiltinStablehloRemainder: case kTfLiteBuiltinSquaredDifference: case kTfLiteBuiltinSub: { if (!CheckInputsConstsOutputs(op_sig, 2, 0, 1) .ok() && !CheckInputsConstsOutputs(op_sig, 1, 1, 1) .ok()) { return absl::InvalidArgumentError( "Op can only handle 1 or 2 operand(s)."); } TfLiteFusedActivation activation = kTfLiteActNone; if (opcode == kTfLiteBuiltinDiv) { const TfLiteDivParams* tf_options; auto status = RetrieveBuiltinData(op_sig, &tf_options); activation = status.ok() ? tf_options->activation : kTfLiteActNone; } else if (opcode == kTfLiteBuiltinSub) { const TfLiteSubParams* tf_options; auto status = RetrieveBuiltinData(op_sig, &tf_options); activation = status.ok() ? tf_options->activation : kTfLiteActNone; } return IsActivationSupported(activation); } case kTfLiteBuiltinStablehloBroadcastInDim: if (!CheckInputsConstsOutputs(op_sig, 1, 1, 1) .ok()) { return absl::InvalidArgumentError( "requires one runtime input, one const input, and one output"); } if (op_sig.inputs[1].dims.size() != 1) { return absl::InvalidArgumentError("Only support 1D indices"); } if (op_sig.inputs[1].type != kTfLiteInt32) { return absl::InvalidArgumentError("Only support int32 indices"); } if (op_sig.inputs[0].dims.size() != op_sig.inputs[1].dims[0]) { return absl::InvalidArgumentError( "Require size(indices) = rank(operand)"); } return absl::OkStatus(); case kTfLiteBuiltinStablehloCbrt: if (op_sig.inputs[0].type != kTfLiteFloat16 && op_sig.inputs[0].type != kTfLiteFloat32 && op_sig.inputs[0].type != kTfLiteBFloat16) { return absl::InvalidArgumentError("Only support float inputs"); } if (op_sig.inputs[0].type != op_sig.outputs[0].type) { return absl::InvalidArgumentError("Input and output types must match"); } return CheckInputsConstsOutputs(op_sig, 1, 0, 1); case kTfLiteBuiltinStablehloClamp: if ((op_sig.inputs.at(0).type != op_sig.inputs.at(1).type) || (op_sig.inputs.at(1).type != op_sig.inputs.at(2).type)) { return absl::InvalidArgumentError( "Clamp tensors must all be the same type"); } if ((op_sig.inputs.at(0).dims != op_sig.inputs.at(1).dims) && (NumElements(op_sig.inputs.at(0).dims) != 1)) { return absl::InvalidArgumentError( "Min tensor must be the same shape as the input, or a scalar"); } if ((op_sig.inputs.at(2).dims != op_sig.inputs.at(1).dims) && (NumElements(op_sig.inputs.at(0).dims) != 1)) { return absl::InvalidArgumentError( "Max tensor must be the same shape as the input, or a scalar"); } return CheckInputsConstsOutputs(op_sig, 3, 0, 1); case kTfLiteBuiltinCustom: return CheckCustomOpsGpuDelegateCompatibility(op_sig); default: break; } return absl::InvalidArgumentError(absl::StrCat( "Not supported op ", tflite::EnumNamesBuiltinOperator()[op_sig.op])); } absl::Status CheckGpuDelegateCompatibility(const OperatorCode* op_code, const Operator* op, const SubGraph* subgraph, const Model* model) { OpSignature op_sig = GetOpSignature(op_code, op, subgraph, model); auto status = CheckGpuDelegateCompatibility( op_sig, GpuCompatibilityFlags::kEnhancedBroadcast); if (op_sig.builtin_data) { free(op_sig.builtin_data); } return status; } absl::Status CheckGpuDelegateCompatibility( const TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration, GpuCompatibilityFlags flags) { return CheckGpuDelegateCompatibility( GetOpSignature(context, node, registration), flags); } }
#include "tensorflow/lite/tools/versioning/gpu_compatibility.h" #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/kernels/internal/types.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace { absl::Status CheckGpuDelegateCompatibility(const tflite::Model* model) { auto subgraphs = model->subgraphs(); for (int i = 0; i < subgraphs->Length(); ++i) { const SubGraph* subgraph = subgraphs->Get(i); for (int j = 0; j < subgraph->operators()->Length(); ++j) { const Operator* op = subgraph->operators()->Get(j); const OperatorCode* op_code = model->operator_codes()->Get(op->opcode_index()); auto status = CheckGpuDelegateCompatibility(op_code, op, subgraph, model); if (!status.ok()) { return status; } } } return absl::OkStatus(); } } TEST(CheckGpuDelegateCompatibility, Conv2DModel) { const std::string& full_path = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/conv_huge_im2col.bin"); auto model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(model); EXPECT_TRUE(CheckGpuDelegateCompatibility(model->GetModel()).ok()); } TEST(CheckGpuDelegateCompatibility, Conv3DModel) { const std::string& full_path = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/conv3d_huge_im2col.bin"); auto model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(model); EXPECT_EQ(CheckGpuDelegateCompatibility(model->GetModel()).message(), "Not supported op CONV_3D"); } TEST(CheckGpuDelegateCompatibility, FlexModel) { const std::string& full_path = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/multi_add_flex.bin"); auto model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(model); EXPECT_EQ(CheckGpuDelegateCompatibility(model->GetModel()).message(), "Not supported custom op FlexAddV2"); } TEST(CheckGpuDelegateCompatibility, FCConstInput) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_FULLY_CONNECTED; auto params = std::make_unique<TfLiteFullyConnectedParams>(); params->weights_format = kTfLiteFullyConnectedWeightsFormatDefault; op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(1); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].is_const = true; EXPECT_EQ(CheckGpuDelegateCompatibility(op_sig).message(), "FullyConnected doesn't support constant input."); } TEST(CheckGpuDelegateCompatibility, Add1Dto3DBroadcastSuccess) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {4, 1, 2}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {2}; EXPECT_TRUE(CheckGpuDelegateCompatibility(op_sig).message().empty()); } TEST(CheckGpuDelegateCompatibility, Add2Dto3DBroadcastFail) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {1, 100, 256}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {100, 256}; EXPECT_EQ(CheckGpuDelegateCompatibility(op_sig).message(), "Doesn't support broadcasting - input0: [1,100,256], input1: " "[100,256]"); } TEST(CheckGpuDelegateCompatibility, Add3Dto4DBroadcastFail) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {4, 1, 1, 2}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {1, 1, 2}; EXPECT_EQ( CheckGpuDelegateCompatibility(op_sig).message(), "Doesn't support broadcasting - input0: [4,1,1,2], input1: [1,1,2]"); } TEST(CheckGpuDelegateCompatibility, Add3Dto4DBroadcastSuccess) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {1, 128, 513, 3}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {128, 513, 3}; EXPECT_TRUE(CheckGpuDelegateCompatibility(op_sig).message().empty()); } TEST(CheckGpuDelegateCompatibility, Add2Dto4DBroadcastSuccess) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {1, 512, 512, 1}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {1, 1}; EXPECT_TRUE(CheckGpuDelegateCompatibility(op_sig).message().empty()); } TEST(CheckGpuDelegateCompatibility, Add2Dto4DBroadcastSuccess2) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {1, 384, 384, 3}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {1, 1}; EXPECT_TRUE(CheckGpuDelegateCompatibility(op_sig).message().empty()); } TEST(CheckGpuDelegateCompatibility, Add2Dto4DBroadcastSuccess3) { OpSignature op_sig = OpSignature(); op_sig.op = BuiltinOperator_ADD; auto params = std::make_unique<TfLiteAddParams>(); op_sig.builtin_data = static_cast<void*>(params.get()); op_sig.inputs = std::vector<OpSignatureTensorSpec>(2); op_sig.inputs[0] = OpSignatureTensorSpec(); op_sig.inputs[0].dims = {1, 4, 4, 10}; op_sig.inputs[1] = OpSignatureTensorSpec(); op_sig.inputs[1].dims = {1, 10}; EXPECT_TRUE(CheckGpuDelegateCompatibility(op_sig).message().empty()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/gpu_compatibility.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/versioning/gpu_compatibility_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5eceaa04-6a53-46b1-828b-67ccd30cfabc
cpp
google/tensorstore
image_reader
tensorstore/internal/image/image_reader.h
tensorstore/internal/image/image_reader_test.cc
#ifndef TENSORSTORE_INTERNAL_IMAGE_IMAGE_READER_H_ #define TENSORSTORE_INTERNAL_IMAGE_IMAGE_READER_H_ #include "absl/status/status.h" #include "riegeli/bytes/reader.h" #include "tensorstore/internal/image/image_info.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_image { class ImageReader { public: virtual ~ImageReader() = default; virtual absl::Status Initialize(riegeli::Reader* reader) = 0; virtual ImageInfo GetImageInfo() = 0; virtual absl::Status Decode(tensorstore::span<unsigned char> dest) = 0; }; } } #endif
#include "tensorstore/internal/image/image_reader.h" #include <stddef.h> #include <array> #include <cstdint> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "tensorstore/data_type.h" #include "tensorstore/internal/image/avif_reader.h" #include "tensorstore/internal/image/bmp_reader.h" #include "tensorstore/internal/image/image_info.h" #include "tensorstore/internal/image/jpeg_reader.h" #include "tensorstore/internal/image/png_reader.h" #include "tensorstore/internal/image/tiff_reader.h" #include "tensorstore/internal/image/webp_reader.h" #include "tensorstore/internal/path.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" ABSL_FLAG(std::string, tensorstore_test_data_dir, ".", "Path to directory containing test data."); namespace { using ::tensorstore::internal_image::AvifReader; using ::tensorstore::internal_image::BmpReader; using ::tensorstore::internal_image::ImageInfo; using ::tensorstore::internal_image::ImageReader; using ::tensorstore::internal_image::JpegReader; using ::tensorstore::internal_image::PngReader; using ::tensorstore::internal_image::TiffReader; using ::tensorstore::internal_image::WebPReader; struct V { std::array<size_t, 2> yx; std::array<unsigned char, 3> rgb; }; struct TestParam { std::string filename; ImageInfo info; std::vector<V> values; }; [[maybe_unused]] std::string PrintToString(const TestParam& p) { return p.filename; } class ReaderTest : public ::testing::TestWithParam<TestParam> { public: ReaderTest() { if (IsTiff()) { reader = std::make_unique<TiffReader>(); } else if (IsJpeg()) { reader = std::make_unique<JpegReader>(); } else if (IsPng()) { reader = std::make_unique<PngReader>(); } else if (IsBmp()) { reader = std::make_unique<BmpReader>(); } else if (IsAvif()) { reader = std::make_unique<AvifReader>(); } else if (IsWebP()) { reader = std::make_unique<WebPReader>(); } } bool IsTiff() { return (absl::EndsWith(GetParam().filename, ".tiff") || absl::EndsWith(GetParam().filename, ".tif")); } bool IsPng() { return absl::EndsWith(GetParam().filename, ".png"); } bool IsJpeg() { return (absl::EndsWith(GetParam().filename, ".jpg") || absl::EndsWith(GetParam().filename, ".jpeg")); } bool IsAvif() { return absl::EndsWith(GetParam().filename, ".avif"); } bool IsBmp() { return absl::EndsWith(GetParam().filename, ".bmp"); } bool IsWebP() { return absl::EndsWith(GetParam().filename, ".webp"); } bool ReadsEntireFile() { return IsAvif() || IsJpeg(); } std::string GetFilename() { return tensorstore::internal::JoinPath( absl::GetFlag(FLAGS_tensorstore_test_data_dir), GetParam().filename); } tensorstore::Result<absl::Cord> ReadEntireFile(std::string filename) { absl::Cord file_data; TENSORSTORE_RETURN_IF_ERROR( riegeli::ReadAll(riegeli::FdReader(filename), file_data)); return file_data; } std::unique_ptr<ImageReader> reader; }; TEST_P(ReaderTest, ReadImage) { const auto& filename = GetParam().filename; ASSERT_FALSE(reader.get() == nullptr) << filename; ABSL_LOG(INFO) << filename; TENSORSTORE_ASSERT_OK_AND_ASSIGN(absl::Cord file_data, ReadEntireFile(GetFilename())); ASSERT_FALSE(file_data.empty()); riegeli::CordReader cord_reader(&file_data); ASSERT_THAT(reader->Initialize(&cord_reader), ::tensorstore::IsOk()) << filename; auto expected_info = GetParam().info; auto info = reader->GetImageInfo(); EXPECT_EQ(info.width, expected_info.width) << filename; EXPECT_EQ(info.height, expected_info.height) << filename; EXPECT_EQ(info.num_components, expected_info.num_components) << filename; EXPECT_EQ(info.dtype, expected_info.dtype) << filename; const size_t image_bytes = ImageRequiredBytes(info); EXPECT_EQ(image_bytes, ImageRequiredBytes(expected_info)); std::unique_ptr<unsigned char[]> image(new unsigned char[image_bytes]()); EXPECT_THAT(reader->Decode(tensorstore::span(image.get(), image_bytes)), ::tensorstore::IsOk()); EXPECT_TRUE(cord_reader.Close()) << cord_reader.status(); for (const V& v : GetParam().values) { ASSERT_LT(v.yx[0], expected_info.height) << " (" << v.yx[0] << "," << v.yx[1] << ")"; ASSERT_LT(v.yx[1], expected_info.width) << " (" << v.yx[0] << "," << v.yx[1] << ")"; size_t offset = expected_info.width * expected_info.num_components * v.yx[0] + v.yx[1]; EXPECT_THAT(tensorstore::span<unsigned char>(image.get() + offset, 3), ::testing::ElementsAreArray(v.rgb)) << " (" << v.yx[0] << "," << v.yx[1] << ") " << offset; } } TEST_P(ReaderTest, ReadImageTruncated) { const auto& filename = GetParam().filename; ASSERT_FALSE(reader.get() == nullptr) << filename; if (filename == "png/D75_01b.png") return; if (filename == "tiff/D75_01b.tiff") return; if (filename == "bmp/D75_08b_grey.bmp") return; if (IsWebP()) return; TENSORSTORE_ASSERT_OK_AND_ASSIGN(absl::Cord file_data, ReadEntireFile(GetFilename())); absl::Cord partial_file = file_data.Subcord(0, file_data.size() * 0.9); riegeli::CordReader cord_reader(&partial_file); absl::Status status = reader->Initialize(&cord_reader); if (status.ok()) { auto info = reader->GetImageInfo(); auto expected_info = GetParam().info; if (info.width == expected_info.width) { EXPECT_EQ(info.width, expected_info.width) << filename; EXPECT_EQ(info.height, expected_info.height) << filename; EXPECT_EQ(info.num_components, expected_info.num_components) << filename; EXPECT_EQ(info.dtype, expected_info.dtype) << filename; } size_t image_bytes = ImageRequiredBytes(expected_info); std::unique_ptr<unsigned char[]> image(new unsigned char[image_bytes]()); status.Update(reader->Decode(tensorstore::span(image.get(), image_bytes))); } if (status.ok()) { if (!cord_reader.Close()) { status.Update(cord_reader.status()); } } EXPECT_FALSE(status.ok()); } std ::vector<V> GetD75_08_Values() { return { V{{0, 0}, {151, 75, 83}}, V{{171, 0}, {255, 250, 251}}, V{{29, 117}, {173, 93, 97}}, }; } std ::vector<V> GetD75_08_Values_JPEG() { return { V{{0, 0}, {152, 76, 88}}, V{{171, 0}, {253, 247, 251}}, V{{29, 117}, {174, 93, 99}}, }; } INSTANTIATE_TEST_SUITE_P( AvifFiles, ReaderTest, ::testing::Values( TestParam{"avif/D75_08b.avif", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"avif/D75_08b_cq1.avif", ImageInfo{172, 306, 3}}, TestParam{"avif/D75_10b_cq1.avif", ImageInfo{172, 306, 3, ::tensorstore::dtype_v<uint16_t>}}, TestParam{"avif/D75_08b_grey.avif", ImageInfo{172, 306, 1}, {V{{29, 117}, {87, 87, 87}}}}, TestParam{"avif/D75_12b_grey.avif", ImageInfo{172, 306, 1, ::tensorstore::dtype_v<uint16_t>}} )); INSTANTIATE_TEST_SUITE_P( BmpFiles, ReaderTest, ::testing::Values( TestParam{"bmp/D75_08b.bmp", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"bmp/D75_08b_grey.bmp", ImageInfo{172, 306, 1}, {V{{29, 117}, {87, 87, 87}}}} )); INSTANTIATE_TEST_SUITE_P( JpegFiles, ReaderTest, ::testing::Values( TestParam{"jpeg/D75_08b.jpeg", ImageInfo{172, 306, 3}, GetD75_08_Values_JPEG()} )); INSTANTIATE_TEST_SUITE_P( PngFiles, ReaderTest, ::testing::Values( TestParam{"png/D75_08b.png", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"png/D75_16b.png", ImageInfo{172, 306, 3, ::tensorstore::dtype_v<uint16_t>}}, TestParam{"png/D75_04b.png", ImageInfo{172, 306, 3}}, TestParam{"png/D75_08b_grey.png", ImageInfo{172, 306, 1}, {V{{29, 117}, {87, 87, 87}}}}, TestParam{"png/D75_16b_grey.png", ImageInfo{172, 306, 1, ::tensorstore::dtype_v<uint16_t>}}, TestParam{"png/D75_01b.png", ImageInfo{172, 306, 1, ::tensorstore::dtype_v<bool>}} )); INSTANTIATE_TEST_SUITE_P( TifFiles, ReaderTest, ::testing::Values( TestParam{"tiff/D75_08b.tiff", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"tiff/D75_08b_tiled.tiff", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"tiff/D75_08b_scanline.tiff", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"tiff/D75_08b_zip.tiff", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"tiff/D75_08b_lzw.tiff", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"tiff/D75_16b.tiff", ImageInfo{172, 306, 3, ::tensorstore::dtype_v<uint16_t>}}, TestParam{"tiff/D75_01b.tiff", ImageInfo{172, 306, 1, ::tensorstore::dtype_v<bool>}}, TestParam{"tiff/D75_08b_grey.tiff", ImageInfo{172, 306, 1}, {V{{29, 117}, {87, 87, 87}}}}, TestParam{"tiff/D75_16b_grey.tiff", ImageInfo{172, 306, 1, ::tensorstore::dtype_v<uint16_t>}} )); INSTANTIATE_TEST_SUITE_P( WebPFiles, ReaderTest, ::testing::Values( TestParam{"webp/D75_08b.webp", ImageInfo{172, 306, 3}, GetD75_08_Values()}, TestParam{"webp/D75_08b_q90.webp", ImageInfo{172, 306, 3}, {V{{29, 117}, {166, 94, 91}}}} )); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/image/image_reader.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/image/image_reader_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e44f5644-0e5c-4bc1-bd80-cff007141f3e
cpp
google/tsl
refcount
tsl/platform/refcount.h
tsl/platform/refcount_test.cc
#ifndef TENSORFLOW_TSL_PLATFORM_REFCOUNT_H_ #define TENSORFLOW_TSL_PLATFORM_REFCOUNT_H_ #include <atomic> #include <map> #include <memory> #include "tsl/platform/logging.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tsl { namespace core { class RefCounted { public: RefCounted(); void Ref() const; bool Unref() const; int_fast32_t RefCount() const; bool RefCountIsOne() const; protected: virtual ~RefCounted(); bool TryRef() const; virtual void NotifyDeleted() const; private: mutable std::atomic_int_fast32_t ref_; RefCounted(const RefCounted&) = delete; void operator=(const RefCounted&) = delete; }; struct RefCountDeleter { void operator()(const RefCounted* o) const { o->Unref(); } }; template <typename T> class RefCountPtr; template <typename T> ABSL_MUST_USE_RESULT RefCountPtr<T> GetNewRef(T* ptr) { static_assert(std::is_base_of<RefCounted, T>::value); if (ptr == nullptr) return RefCountPtr<T>(); ptr->Ref(); RefCountPtr<T> ret(ptr); return ret; } template <typename T> class RefCountPtr : public std::unique_ptr<T, RefCountDeleter> { public: using std::unique_ptr<T, RefCountDeleter>::unique_ptr; ABSL_MUST_USE_RESULT RefCountPtr GetNewRef() const { if (this->get() == nullptr) return RefCountPtr<T>(); this->get()->Ref(); return RefCountPtr<T>(this->get()); } }; class ScopedUnref { public: explicit ScopedUnref(const RefCounted* o) : obj_(o) {} ~ScopedUnref() { if (obj_) obj_->Unref(); } private: const RefCounted* obj_; ScopedUnref(const ScopedUnref&) = delete; void operator=(const ScopedUnref&) = delete; }; template <typename T> class WeakPtr; using WeakNotifyFn = std::function<void()>; class WeakRefCounted : public RefCounted { public: int WeakRefCount() const { return data_->RefCount() - 1; } protected: void NotifyDeleted() const override { data_->Notify(); } private: struct WeakRefData : public RefCounted { explicit WeakRefData(WeakRefCounted* ptr) : ptr(ptr), next_notifier_id(1) {} mutable mutex mu; WeakRefCounted* ptr TF_GUARDED_BY(mu); std::map<int, WeakNotifyFn> notifiers; int next_notifier_id; void Notify() { mutex_lock ml(mu); while (!notifiers.empty()) { auto iter = notifiers.begin(); WeakNotifyFn notify_fn = std::move(iter->second); notifiers.erase(iter); mu.unlock(); notify_fn(); mu.lock(); } ptr = nullptr; } WeakRefCounted* GetNewRef() { mutex_lock ml(mu); if (ptr != nullptr && ptr->TryRef()) { return ptr; } return nullptr; } int AddNotifier(WeakNotifyFn notify_fn) { mutex_lock ml(mu); if (ptr == nullptr) { return 0; } int notifier_id = next_notifier_id++; notifiers.emplace(notifier_id, std::move(notify_fn)); return notifier_id; } int DupNotifier(int notifier_id) { mutex_lock ml(mu); auto iter = notifiers.find(notifier_id); if (iter != notifiers.end()) { int notifier_id = next_notifier_id++; notifiers.emplace(notifier_id, iter->second); return notifier_id; } return 0; } void RemoveNotifier(int notifier_id) { mutex_lock ml(mu); notifiers.erase(notifier_id); } }; mutable RefCountPtr<WeakRefData> data_{new WeakRefData(this)}; template <typename T> friend class WeakPtr; friend struct WeakRefData; }; template <typename T> class WeakPtr { public: explicit WeakPtr(WeakRefCounted* ptr = nullptr, WeakNotifyFn notify_fn = nullptr) : data_(nullptr), notifier_id_(0) { if (ptr != nullptr) { ptr->data_->Ref(); data_.reset(ptr->data_.get()); if (notify_fn) { notifier_id_ = data_->AddNotifier(notify_fn); } } } ~WeakPtr() { if (data_ != nullptr && notifier_id_ != 0) { data_->RemoveNotifier(notifier_id_); } } WeakPtr(const WeakPtr& other) { operator=(other); } WeakPtr& operator=(const WeakPtr& other) { if (data_ != nullptr && notifier_id_ != 0) { data_->RemoveNotifier(notifier_id_); } other.data_->Ref(); data_.reset(other.data_.get()); notifier_id_ = data_->DupNotifier(other.notifier_id_); return *this; } WeakPtr(WeakPtr&& other) noexcept { data_ = std::move(other.data_); notifier_id_ = other.notifier_id_; other.notifier_id_ = 0; } WeakPtr& operator=(WeakPtr&& other) noexcept { if (this != &other) { if (data_ != nullptr && notifier_id_ != 0) { data_->RemoveNotifier(notifier_id_); } data_ = std::move(other.data_); notifier_id_ = other.notifier_id_; other.notifier_id_ = 0; } return *this; } RefCountPtr<T> GetNewRef() const { RefCountPtr<T> ref; if (data_ != nullptr) { WeakRefCounted* ptr = data_->GetNewRef(); ref.reset(static_cast<T*>(ptr)); } return std::move(ref); } private: RefCountPtr<WeakRefCounted::WeakRefData> data_; int notifier_id_; }; inline RefCounted::RefCounted() : ref_(1) {} inline RefCounted::~RefCounted() { DCHECK_EQ(ref_.load(), 0); } inline void RefCounted::Ref() const { int_fast32_t old_ref = ref_.fetch_add(1, std::memory_order_relaxed); DCHECK_GT(old_ref, 0); } inline bool RefCounted::TryRef() const { int_fast32_t old_ref = ref_.load(); while (old_ref != 0) { if (ref_.compare_exchange_weak(old_ref, old_ref + 1)) { return true; } } return false; } inline bool RefCounted::Unref() const { DCHECK_GT(ref_.load(), 0); if (ref_.fetch_sub(1, std::memory_order_acq_rel) == 1) { NotifyDeleted(); delete this; return true; } return false; } inline int_fast32_t RefCounted::RefCount() const { return ref_.load(std::memory_order_acquire); } inline void RefCounted::NotifyDeleted() const {} inline bool RefCounted::RefCountIsOne() const { return (ref_.load(std::memory_order_acquire) == 1); } } } #endif
#include "tsl/platform/refcount.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace tsl { namespace core { namespace { class RefTest : public ::testing::Test { public: RefTest() { constructed_ = 0; destroyed_ = 0; } static int constructed_; static int destroyed_; }; int RefTest::constructed_; int RefTest::destroyed_; class MyRef : public RefCounted { public: MyRef() { RefTest::constructed_++; } ~MyRef() override { RefTest::destroyed_++; } }; TEST_F(RefTest, New) { MyRef* ref = new MyRef; ASSERT_EQ(1, constructed_); ASSERT_EQ(0, destroyed_); ref->Unref(); ASSERT_EQ(1, constructed_); ASSERT_EQ(1, destroyed_); } TEST_F(RefTest, RefUnref) { MyRef* ref = new MyRef; ASSERT_EQ(1, constructed_); ASSERT_EQ(0, destroyed_); ref->Ref(); ASSERT_EQ(0, destroyed_); ref->Unref(); ASSERT_EQ(0, destroyed_); ref->Unref(); ASSERT_EQ(1, destroyed_); } TEST_F(RefTest, RefCountOne) { MyRef* ref = new MyRef; ASSERT_TRUE(ref->RefCountIsOne()); ref->Unref(); } TEST_F(RefTest, RefCountNotOne) { MyRef* ref = new MyRef; ref->Ref(); ASSERT_FALSE(ref->RefCountIsOne()); ref->Unref(); ref->Unref(); } TEST_F(RefTest, ConstRefUnref) { const MyRef* cref = new MyRef; ASSERT_EQ(1, constructed_); ASSERT_EQ(0, destroyed_); cref->Ref(); ASSERT_EQ(0, destroyed_); cref->Unref(); ASSERT_EQ(0, destroyed_); cref->Unref(); ASSERT_EQ(1, destroyed_); } TEST_F(RefTest, ReturnOfUnref) { MyRef* ref = new MyRef; ref->Ref(); EXPECT_FALSE(ref->Unref()); EXPECT_TRUE(ref->Unref()); } TEST_F(RefTest, ScopedUnref) { { ScopedUnref unref(new MyRef); } EXPECT_EQ(destroyed_, 1); } TEST_F(RefTest, ScopedUnref_Nullptr) { { ScopedUnref unref(nullptr); } EXPECT_EQ(destroyed_, 0); } TEST_F(RefTest, RefCountPtr) { const RefCountPtr<MyRef> cref = RefCountPtr<MyRef>(new MyRef); ASSERT_TRUE(cref.get() != nullptr); ASSERT_EQ(cref->RefCount(), 1); { const RefCountPtr<MyRef> cref2 = cref.GetNewRef(); ASSERT_EQ(cref->RefCount(), 2); } ASSERT_EQ(cref->RefCount(), 1); } class ObjType : public WeakRefCounted { public: ObjType() : ObjType(unused_dtor_called_) {} explicit ObjType(int& dtor_called) : dtor_called_(dtor_called) {} ~ObjType() override { dtor_called_++; } int& dtor_called_; static int unused_dtor_called_; }; int ObjType::unused_dtor_called_ = 0; TEST(WeakPtr, SingleThread) { auto obj = new ObjType(); WeakPtr<ObjType> weakptr(obj); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 1); EXPECT_NE(weakptr.GetNewRef(), nullptr); obj->Unref(); EXPECT_EQ(weakptr.GetNewRef(), nullptr); } TEST(WeakPtr, MultiThreadedWeakRef) { std::atomic<int> hit_destructed{0}; auto env = Env::Default(); for (int i = 0; i < 100; i++) { auto obj = new ObjType(); WeakPtr<ObjType> weakptr(obj); bool obj_destructed = false; EXPECT_EQ(obj->WeakRefCount(), 1); auto fn = [&]() { auto ref = weakptr.GetNewRef(); if (ref != nullptr) { EXPECT_EQ(ref.get(), obj); EXPECT_EQ(ref->WeakRefCount(), 1); EXPECT_GE(ref->RefCount(), 1); } else { hit_destructed++; EXPECT_TRUE(obj_destructed); } }; auto t1 = env->StartThread(ThreadOptions{}, "thread-1", fn); auto t2 = env->StartThread(ThreadOptions{}, "thread-2", fn); env->SleepForMicroseconds(10); obj_destructed = true; obj->Unref(); delete t1; delete t2; EXPECT_EQ(weakptr.GetNewRef(), nullptr); } if (hit_destructed == 0) { LOG(WARNING) << "The destructed weakref test branch is not exercised."; } if (hit_destructed == 200) { LOG(WARNING) << "The valid weakref test branch is not exercised."; } } TEST(WeakPtr, NotifyCalled) { auto obj = new ObjType(); int num_calls1 = 0; int num_calls2 = 0; auto notify_fn1 = [&num_calls1]() { num_calls1++; }; auto notify_fn2 = [&num_calls2]() { num_calls2++; }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); WeakPtr<ObjType> weakptr2(obj, notify_fn2); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 2); EXPECT_NE(weakptr1.GetNewRef(), nullptr); EXPECT_NE(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); EXPECT_EQ(num_calls2, 0); obj->Unref(); EXPECT_EQ(weakptr1.GetNewRef(), nullptr); EXPECT_EQ(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 1); EXPECT_EQ(num_calls2, 1); } TEST(WeakPtr, NotifyCalledBeforeDestructor) { int dtor_called = 0; auto obj = new ObjType(dtor_called); int num_calls1 = 0; auto notify_fn1 = [&num_calls1, &dtor_called]() { num_calls1++; EXPECT_EQ(dtor_called, 0); }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 1); EXPECT_NE(weakptr1.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); obj->Unref(); EXPECT_EQ(weakptr1.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 1); EXPECT_EQ(dtor_called, 1); } TEST(WeakPtr, CopyTargetCalled) { auto obj = new ObjType(); int num_calls1 = 0; int num_calls2 = 0; auto notify_fn1 = [&num_calls1]() { num_calls1++; }; auto notify_fn2 = [&num_calls2]() { num_calls2++; }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); WeakPtr<ObjType> weakptr2(obj, notify_fn2); WeakPtr<ObjType> weakptr3(weakptr1); weakptr2 = weakptr1; ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 3); EXPECT_NE(weakptr2.GetNewRef(), nullptr); EXPECT_NE(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); EXPECT_EQ(num_calls2, 0); obj->Unref(); EXPECT_EQ(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 3); EXPECT_EQ(num_calls2, 0); } TEST(WeakPtr, MoveTargetNotCalled) { auto obj = new ObjType(); int num_calls1 = 0; int num_calls2 = 0; int num_calls3 = 0; auto notify_fn1 = [&num_calls1]() { num_calls1++; }; auto notify_fn2 = [&num_calls2]() { num_calls2++; }; auto notify_fn3 = [&num_calls3]() { num_calls3++; }; WeakPtr<ObjType> weakptr1(obj, notify_fn1); WeakPtr<ObjType> weakptr2(obj, notify_fn2); WeakPtr<ObjType> weakptr3(WeakPtr<ObjType>(obj, notify_fn3)); weakptr2 = std::move(weakptr1); ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 2); EXPECT_NE(weakptr2.GetNewRef(), nullptr); EXPECT_NE(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 0); EXPECT_EQ(num_calls2, 0); EXPECT_EQ(num_calls3, 0); obj->Unref(); EXPECT_EQ(weakptr2.GetNewRef(), nullptr); EXPECT_EQ(weakptr3.GetNewRef(), nullptr); EXPECT_EQ(num_calls1, 1); EXPECT_EQ(num_calls2, 0); EXPECT_EQ(num_calls3, 1); } TEST(WeakPtr, DestroyedNotifyNotCalled) { auto obj = new ObjType(); int num_calls = 0; auto notify_fn = [&num_calls]() { num_calls++; }; { WeakPtr<ObjType> weakptr(obj, notify_fn); } ASSERT_TRUE(obj->RefCountIsOne()); EXPECT_EQ(obj->WeakRefCount(), 0); EXPECT_EQ(num_calls, 0); obj->Unref(); EXPECT_EQ(num_calls, 0); } } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/refcount.h
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/refcount_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
56c494af-7b20-485f-bb65-2e34dfb9d524
cpp
tensorflow/tensorflow
c_plugin_coordination_service_agent
tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.cc
tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent_test.cc
#include "tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.h" #include <string> #include <string_view> #include "absl/time/time.h" #include "tensorflow/c/experimental/next_pluggable_device/c_api.h" #include "tensorflow/c/tf_buffer.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_status_helper.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" namespace tensorflow { namespace { absl::StatusOr<std::string> ProcessGetKeyValueResult(TF_Buffer* result_buf, TF_Status* status) { if (TF_GetCode(status) != TF_OK) { return StatusFromTF_Status(status); } else { std::string result{static_cast<const char*>(result_buf->data), result_buf->length}; TF_DeleteBuffer(result_buf); return result; } } } Status CPluginCoordinationServiceAgent::InsertKeyValue(std::string_view key, std::string_view value) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_CoordinationServiceInsertKeyValue(key.data(), key.size(), value.data(), value.size(), agent_, status); return StatusFromTF_Status(status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::GetKeyValue( std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceGetKeyValue(key.data(), key.size(), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::GetKeyValue( std::string_view key, absl::Duration timeout) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceGetKeyValueWithTimeout( key.data(), key.size(), absl::ToInt64Seconds(timeout), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } absl::StatusOr<std::string> CPluginCoordinationServiceAgent::TryGetKeyValue( std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_Buffer* result_buf = TF_CoordinationServiceTryGetKeyValue( key.data(), key.size(), agent_, status); return ProcessGetKeyValueResult(result_buf, status); } Status CPluginCoordinationServiceAgent::DeleteKeyValue(std::string_view key) { TF_StatusPtr c_status_ptr(TF_NewStatus()); TF_Status* status = c_status_ptr.get(); TF_CoordinationServiceDeleteKeyValue(key.data(), key.size(), agent_, status); return StatusFromTF_Status(status); } }
#include "tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.h" #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "xla/tsl/distributed_runtime/call_options.h" #include "xla/tsl/distributed_runtime/coordination/coordination_client.h" #include "xla/tsl/distributed_runtime/coordination/coordination_service_agent.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/coordination_config.pb.h" #include "xla/tsl/protobuf/coordination_service.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tensorflow { namespace { using tsl::CoordinationClient; using tsl::CoordinationServiceAgent; using tsl::CallOptions; using tsl::DeleteKeyValueRequest; using tsl::DeleteKeyValueResponse; using tsl::GetKeyValueRequest; using tsl::GetKeyValueResponse; using tsl::InsertKeyValueRequest; using tsl::InsertKeyValueResponse; using ::testing::_; using ::testing::DoAll; using ::testing::InvokeArgument; using ::testing::Pointee; using ::testing::SetArgPointee; using ::testing::WithArgs; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.DebugString()) {} template <typename Message> bool MatchAndExplain(const Message& p, ::testing::MatchResultListener*) const { return p.DebugString() == expected_; } void DescribeTo(std::ostream* os) const { *os << expected_; } void DescribeNegationTo(std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } MATCHER(KvEq, "simple KeyValueEntry matcher") { const KeyValueEntry& kv0 = std::get<0>(arg); const KeyValueEntry& kv1 = std::get<1>(arg); return kv0.key() == kv1.key() && kv0.value() == kv1.value(); } class TestCoordinationClient : public CoordinationClient { public: TestCoordinationClient() = default; MOCK_METHOD(void, GetKeyValueAsync, (CallOptions * call_opts, const GetKeyValueRequest*, GetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, TryGetKeyValueAsync, (const TryGetKeyValueRequest*, TryGetKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, InsertKeyValueAsync, (const InsertKeyValueRequest*, InsertKeyValueResponse*, StatusCallback), (override)); MOCK_METHOD(void, DeleteKeyValueAsync, (const DeleteKeyValueRequest*, DeleteKeyValueResponse*, StatusCallback), (override)); void GetKeyValueDirAsync(const tsl::GetKeyValueDirRequest* request, tsl::GetKeyValueDirResponse* response, StatusCallback done) override { done(absl::UnimplementedError("GetKeyValueDirAsync")); } void ResetTaskAsync(const tsl::ResetTaskRequest* request, tsl::ResetTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ResetTaskAsync")); } void ReportErrorToServiceAsync( const tsl::ReportErrorToServiceRequest* request, tsl::ReportErrorToServiceResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToServiceAsync")); } void BarrierAsync(const tsl::BarrierRequest* request, tsl::BarrierResponse* response, StatusCallback done) override { done(absl::UnimplementedError("BarrierAsync")); } void GetTaskStateAsync(const tsl::GetTaskStateRequest* request, tsl::GetTaskStateResponse* response, StatusCallback done) override { done(absl::UnimplementedError("GetTaskStateAsync")); } void WaitForAllTasksAsync(const tsl::WaitForAllTasksRequest* request, tsl::WaitForAllTasksResponse* response, StatusCallback done) override { done(absl::UnimplementedError("WaitForAllTasksAsync")); } void CancelBarrierAsync(const tsl::CancelBarrierRequest* request, tsl::CancelBarrierResponse* response, StatusCallback done) override { done(absl::UnimplementedError("CancelBarrierAsync")); } void RegisterTaskAsync(tsl::CallOptions*, const tsl::RegisterTaskRequest* request, tsl::RegisterTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("RegisterTaskAsync")); } void ShutdownTaskAsync(tsl::CallOptions*, const tsl::ShutdownTaskRequest* request, tsl::ShutdownTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ShutdownTaskAsync")); } void HeartbeatAsync(tsl::CallOptions*, const tsl::HeartbeatRequest* request, tsl::HeartbeatResponse* response, StatusCallback done) override { done(absl::UnimplementedError("HeartbeatAsync")); } void ReportErrorToTaskAsync(CallOptions* call_opts, const ReportErrorToTaskRequest* request, ReportErrorToTaskResponse* response, StatusCallback done) override { done(absl::UnimplementedError("ReportErrorToTaskAsync")); } void PollForErrorAsync(CallOptions* call_opts, const PollForErrorRequest* request, PollForErrorResponse* response, StatusCallback done) override { done(absl::UnimplementedError("PollForErrorAsync")); } }; class CPluginCoordinationServiceAgentTest : public ::testing::Test { public: void InitializeAgent(CoordinationServiceConfig config = {}) { config.set_service_leader("test_leader"); TF_ASSERT_OK(impl_->Initialize( tsl::Env::Default(), "test_job", 0, config, std::move(client_), [](Status s) { LOG(ERROR) << "Coordination agent is set to error: " << s; })); } TestCoordinationClient* GetClient() { CHECK(client_ != nullptr) << "GetClient() was called after InitializeAgent()"; return client_.get(); } protected: std::unique_ptr<CoordinationServiceAgent> impl_ = tsl::CreateCoordinationServiceAgent(); std::unique_ptr<CPluginCoordinationServiceAgent> agent_ = std::make_unique<CPluginCoordinationServiceAgent>(impl_.get()); std::unique_ptr<TestCoordinationClient> client_ = std::make_unique<TestCoordinationClient>(); }; TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_Simple_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_WithTimeout_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; GetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(DoAll(SetArgPointee<2>(mocked_response), InvokeArgument<3>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(10)); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_Timeout_ReturnError) { const std::string test_key = "test_key"; StatusCallback owned_done; ON_CALL(*GetClient(), GetKeyValueAsync(_, _, _, _)) .WillByDefault(WithArgs<3>([&](StatusCallback done) { owned_done = done; })); InitializeAgent(); auto result = agent_->GetKeyValue(test_key, absl::Seconds(1)); EXPECT_EQ(result.status().code(), error::DEADLINE_EXCEEDED); owned_done(absl::CancelledError("error")); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_ZeroTimeout_ReturnError) { const std::string test_key = "test_key"; auto result = agent_->GetKeyValue(test_key, absl::ZeroDuration()); EXPECT_EQ(result.status().code(), error::INVALID_ARGUMENT); } TEST_F(CPluginCoordinationServiceAgentTest, GetKeyValue_NegativeTimeout_ReturnError) { const std::string test_key = "test_key"; auto result = agent_->GetKeyValue(test_key, absl::Seconds(-1)); EXPECT_EQ(result.status().code(), error::INVALID_ARGUMENT); } TEST_F(CPluginCoordinationServiceAgentTest, InsertKeyValue_Success) { const std::string test_key = "test_key"; const std::string test_value = "test_value"; InsertKeyValueRequest expected_input; auto kv = expected_input.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); EXPECT_CALL(*GetClient(), InsertKeyValueAsync(Pointee(EqualsProto(expected_input)), _, _)) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->InsertKeyValue(test_key, test_value)); } TEST_F(CPluginCoordinationServiceAgentTest, DeleteKeyValue_Success) { const std::string test_key = "test_x_key"; DeleteKeyValueRequest expected_input; expected_input.set_key(test_key); expected_input.set_is_directory(true); EXPECT_CALL(*GetClient(), DeleteKeyValueAsync(Pointee(EqualsProto(expected_input)), _, _)) .WillOnce(InvokeArgument<2>(absl::OkStatus())); InitializeAgent(); TF_ASSERT_OK(agent_->DeleteKeyValue(test_key)); } TEST_F(CPluginCoordinationServiceAgentTest, TryGetKeyValue_Simple_Success) { const std::string& test_key = "test_key"; const std::string& test_value = "test_value"; TryGetKeyValueResponse mocked_response; auto kv = mocked_response.mutable_kv(); kv->set_key(test_key); kv->set_value(test_value); ON_CALL(*GetClient(), TryGetKeyValueAsync(_, _, _)) .WillByDefault(DoAll(SetArgPointee<1>(mocked_response), InvokeArgument<2>(absl::OkStatus()))); InitializeAgent(); auto result = agent_->TryGetKeyValue(test_key); TF_ASSERT_OK(result.status()); EXPECT_EQ(*result, test_value); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/next_pluggable_device/c_plugin_coordination_service_agent_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8bba7f0f-f871-4066-bcbc-e3cd8d4e8d1d
cpp
tensorflow/tensorflow
android_sync
tensorflow/lite/delegates/gpu/gl/android_sync.cc
tensorflow/lite/delegates/gpu/gl/android_sync_test.cc
#include "tensorflow/lite/delegates/gpu/gl/android_sync.h" #include <EGL/egl.h> #include <EGL/eglext.h> #include <EGL/eglplatform.h> #include <GLES2/gl2.h> #include <unistd.h> namespace { PFNEGLDUPNATIVEFENCEFDANDROIDPROC eglDupNativeFenceFDANDROID; PFNEGLCREATESYNCKHRPROC eglCreateSyncKHR; PFNEGLWAITSYNCKHRPROC eglWaitSyncKHR; PFNEGLDESTROYSYNCKHRPROC eglDestroySyncKHR; bool IsGlSupported() { static const bool extensions_allowed = [] { eglDupNativeFenceFDANDROID = reinterpret_cast<PFNEGLDUPNATIVEFENCEFDANDROIDPROC>( eglGetProcAddress("eglDupNativeFenceFDANDROID")); eglCreateSyncKHR = reinterpret_cast<PFNEGLCREATESYNCKHRPROC>( eglGetProcAddress("eglCreateSyncKHR")); eglWaitSyncKHR = reinterpret_cast<PFNEGLWAITSYNCKHRPROC>( eglGetProcAddress("eglWaitSyncKHR")); eglDestroySyncKHR = reinterpret_cast<PFNEGLDESTROYSYNCKHRPROC>( eglGetProcAddress("eglDestroySyncKHR")); return eglWaitSyncKHR && eglCreateSyncKHR && eglDupNativeFenceFDANDROID && eglDestroySyncKHR; }(); return extensions_allowed; } } namespace tflite::gpu::gl { bool WaitFdGpu(int fence_fd) { if (fence_fd == -1) { return false; } if (!IsGlSupported()) { return false; } EGLDisplay egl_display = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (egl_display == EGL_NO_DISPLAY) return false; int fd_for_egl = dup(fence_fd); EGLint sync_attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, (EGLint)fd_for_egl, EGL_NONE}; EGLSync fence_sync = eglCreateSyncKHR( egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, sync_attribs); if (fence_sync != EGL_NO_SYNC_KHR) { eglWaitSyncKHR(egl_display, fence_sync, 0); return true; } else { close(fd_for_egl); return false; } } int CreateFdGpu() { if (IsGlSupported()) { EGLDisplay egl_display = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (egl_display != EGL_NO_DISPLAY) { EGLSync fence_sync = eglCreateSyncKHR(egl_display, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr); if (fence_sync != EGL_NO_SYNC_KHR) { int fence_fd = eglDupNativeFenceFDANDROID(egl_display, fence_sync); if (fence_fd == -1) { eglDestroySyncKHR(egl_display, fence_sync); } else { return fence_fd; } } } } glFinish(); return -1; } }
#include "tensorflow/lite/delegates/gpu/gl/android_sync.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/gl/egl_environment.h" namespace tflite::gpu::gl { TEST(AsyncBufferTest, FenceTest) { EXPECT_EQ(CreateFdGpu(), -1); EXPECT_FALSE(WaitFdGpu(1)); std::unique_ptr<EglEnvironment> env; EXPECT_OK(EglEnvironment::NewEglEnvironment(&env)); int gpu_fd = CreateFdGpu(); EXPECT_GE(gpu_fd, 0); EXPECT_TRUE(WaitFdGpu(gpu_fd)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/android_sync.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/android_sync_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d35cffbe-967b-4c8d-96bd-dc614f18ca06
cpp
google/tensorstore
float8
tensorstore/util/float8.h
tensorstore/util/float8_test.cc
#ifndef TENSORSTORE_UTIL_FLOAT8_H_ #define TENSORSTORE_UTIL_FLOAT8_H_ #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <limits> #include <ostream> #include <type_traits> #include <utility> #include "absl/base/casts.h" #include <half.hpp> #include <nlohmann/json_fwd.hpp> #include "tensorstore/util/bfloat16.h" #if (defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L) #include <bit> #endif namespace tensorstore { namespace float8_internal { class Float8e4m3fn; class Float8e4m3fnuz; class Float8e4m3b11fnuz; class Float8e5m2; class Float8e5m2fnuz; template <typename Derived> class Float8Base { protected: struct ConstructFromRepTag {}; constexpr Float8Base(uint8_t rep, ConstructFromRepTag) : rep_{rep} {} public: constexpr Float8Base() : rep_(0) {} template <typename T, typename EnableIf = std::enable_if<std::is_arithmetic_v<T>>> explicit Float8Base(T f) : Float8Base(ConvertFrom(static_cast<float>(f)).rep(), ConstructFromRepTag{}) {} explicit Float8Base(double f64) : Float8Base(ConvertFrom(f64).rep(), ConstructFromRepTag{}) {} explicit Float8Base(float f32) : Float8Base(ConvertFrom(f32).rep(), ConstructFromRepTag{}) {} explicit Float8Base(BFloat16 bf16) : Float8Base(ConvertFrom(bf16).rep(), ConstructFromRepTag{}) {} explicit Float8Base(::half_float::half f16) : Float8Base(ConvertFrom(f16).rep(), ConstructFromRepTag{}) {} constexpr uint8_t rep() const { return rep_; } template <typename T, typename EnableIf = std::enable_if<std::is_arithmetic_v<T>>> explicit operator T() const { return static_cast<T>(static_cast<float>(derived())); } explicit operator double() const { return ConvertTo<double>(derived()); } explicit operator float() const { return ConvertTo<float>(derived()); } explicit operator BFloat16() const { return ConvertTo<BFloat16>(derived()); } explicit operator ::half_float::half() const { return ConvertTo<::half_float::half>(derived()); } explicit operator bool() const { return (rep() & 0x7F) != 0; } constexpr Derived operator-() const { return Derived(static_cast<uint8_t>(rep() ^ 0x80), ConstructFromRepTag{}); } constexpr const Derived& derived() const { return *static_cast<const Derived*>(this); } constexpr Derived& derived() { return *static_cast<Derived*>(this); } static constexpr Derived FromRep(uint8_t rep) { return Derived(rep, ConstructFromRepTag{}); } template <bool kSaturate = false, bool kTruncate = false, typename From> static Derived ConvertFrom(const From& from); template <typename To, bool kSaturate = false, bool kTruncate = false> static To ConvertTo(const Derived& from); Derived operator+(const Derived& other) const { return Derived{float{derived()} + float{other}}; } Derived operator-(const Derived& other) const { return Derived{float{derived()} - float{other}}; } Derived operator*(const Derived& other) const { return Derived{float{derived()} * float{other}}; } Derived operator/(const Derived& other) const { return Derived{float{derived()} / float{other}}; } constexpr bool operator==(const Derived& other) const { return Compare(derived(), other) == Ordering::kEquivalent; } constexpr bool operator!=(const Derived& other) const { return Compare(derived(), other) != Ordering::kEquivalent; } bool operator<(const Derived& other) const { return Compare(derived(), other) == Ordering::kLess; } bool operator<=(const Derived& other) const { return Compare(derived(), other) <= Ordering::kEquivalent; } bool operator>(const Derived& other) const { return Compare(derived(), other) == Ordering::kGreater; } bool operator>=(const Derived& other) const { Ordering ordering = Compare(derived(), other); return ordering == Ordering::kGreater || ordering == Ordering::kEquivalent; } Derived& operator+=(const Derived& other) { derived() = derived() + other; return derived(); } friend float operator+=(const float& a, Derived b) { return a + static_cast<float>(b); } Derived& operator-=(const Derived& other) { derived() = derived() - other; return derived(); } Derived& operator*=(const Derived& other) { derived() = derived() * other; return derived(); } Derived& operator/=(const Derived& other) { derived() = derived() / other; return derived(); } template <template <typename U, typename V, typename... Args> class ObjectType , template <typename U, typename... Args> class ArrayType , class StringType , class BooleanType , class NumberIntegerType , class NumberUnsignedType , class NumberFloatType , template <typename U> class AllocatorType , template <typename T, typename SFINAE = void> class JSONSerializer , class BinaryType > friend void to_json( ::nlohmann::basic_json<ObjectType, ArrayType, StringType, BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType, AllocatorType, JSONSerializer, BinaryType>& j, Derived v) { j = static_cast<NumberFloatType>(v); } private: static std::pair<uint8_t, uint8_t> SignAndMagnitude(Derived x) { const uint8_t x_abs_bits = absl::bit_cast<uint8_t>(abs(x)); const uint8_t x_bits = absl::bit_cast<uint8_t>(x); const uint8_t x_sign = x_bits ^ x_abs_bits; return {x_sign, x_abs_bits}; } static int8_t SignAndMagnitudeToTwosComplement(uint8_t sign, uint8_t magnitude) { return magnitude ^ (static_cast<int8_t>(sign) < 0 ? -1 : 0); } enum Ordering : int8_t { kLess = -1, kEquivalent = 0, kGreater = 1, kUnordered = 2, }; friend Ordering Compare(const Derived& lhs, const Derived& rhs) { if (isnan(lhs) || isnan(rhs)) { return Ordering::kUnordered; } auto [lhs_sign, lhs_mag] = SignAndMagnitude(lhs); auto [rhs_sign, rhs_mag] = SignAndMagnitude(rhs); if (lhs_mag == 0 && rhs_mag == 0) { return Ordering::kEquivalent; } int8_t lhs_twos_complement = SignAndMagnitudeToTwosComplement(lhs_sign, lhs_mag); int8_t rhs_twos_complement = SignAndMagnitudeToTwosComplement(rhs_sign, rhs_mag); if (lhs_twos_complement < rhs_twos_complement) { return Ordering::kLess; } if (lhs_twos_complement > rhs_twos_complement) { return Ordering::kGreater; } return Ordering::kEquivalent; } uint8_t rep_; }; class Float8e4m3fn : public Float8Base<Float8e4m3fn> { private: using Base = Float8Base<Float8e4m3fn>; friend class Float8Base<Float8e4m3fn>; using Base::Float8Base; public: explicit Float8e4m3fn(const Float8e5m2& f8) : Float8e4m3fn(ConvertFrom(f8)) {} explicit Float8e4m3fn(const Float8e4m3b11fnuz& f8) : Float8e4m3fn(ConvertFrom(f8)) {} }; class Float8e4m3b11fnuz : public Float8Base<Float8e4m3b11fnuz> { private: using Base = Float8Base<Float8e4m3b11fnuz>; friend class Float8Base<Float8e4m3b11fnuz>; using Base::Float8Base; public: explicit Float8e4m3b11fnuz(const Float8e5m2& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} explicit Float8e4m3b11fnuz(const Float8e5m2fnuz& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} explicit Float8e4m3b11fnuz(const Float8e4m3fn& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} explicit Float8e4m3b11fnuz(const Float8e4m3fnuz& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} constexpr Float8e4m3b11fnuz operator-() const { if ((rep() & 0x7f) == 0x00) { return *this; } return Base::operator-(); } Float8e4m3b11fnuz operator-(const Float8e4m3b11fnuz& other) const { return Base::operator-(other); } explicit operator bool() const { return rep() != 0; } }; class Float8e4m3fnuz : public Float8Base<Float8e4m3fnuz> { private: using Base = Float8Base<Float8e4m3fnuz>; friend class Float8Base<Float8e4m3fnuz>; using Base::Float8Base; public: explicit Float8e4m3fnuz(const Float8e5m2& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} explicit Float8e4m3fnuz(const Float8e5m2fnuz& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} explicit Float8e4m3fnuz(const Float8e4m3b11fnuz& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} explicit Float8e4m3fnuz(const Float8e4m3fn& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} constexpr Float8e4m3fnuz operator-() const { if ((rep() & 0x7f) == 0x00) { return *this; } return Base::operator-(); } Float8e4m3fnuz operator-(const Float8e4m3fnuz& other) const { return Base::operator-(other); } explicit operator bool() const { return rep() != 0; } }; class Float8e5m2 : public Float8Base<Float8e5m2> { private: using Base = Float8Base<Float8e5m2>; friend class Float8Base<Float8e5m2>; using Base::Float8Base; public: explicit Float8e5m2(Float8e4m3fn f8) : Float8e5m2(ConvertFrom(f8)) {} explicit Float8e5m2(Float8e4m3fnuz f8) : Float8e5m2(ConvertFrom(f8)) {} explicit Float8e5m2(Float8e4m3b11fnuz f8) : Float8e5m2(ConvertFrom(f8)) {} explicit Float8e5m2(Float8e5m2fnuz& f8) : Float8e5m2(ConvertFrom(f8)) {} }; class Float8e5m2fnuz : public Float8Base<Float8e5m2fnuz> { private: using Base = Float8Base<Float8e5m2fnuz>; friend class Float8Base<Float8e5m2fnuz>; using Base::Float8Base; public: explicit Float8e5m2fnuz(const Float8e5m2& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} explicit Float8e5m2fnuz(const Float8e4m3b11fnuz& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} explicit Float8e5m2fnuz(const Float8e4m3fn& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} explicit Float8e5m2fnuz(const Float8e4m3fnuz& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} constexpr Float8e5m2fnuz operator-() const { if ((rep() & 0x7f) == 0x00) { return *this; } return Base::operator-(); } Float8e5m2fnuz operator-(const Float8e5m2fnuz& other) const { return Base::operator-(other); } explicit operator bool() const { return rep() != 0; } }; constexpr double ConstexprAbs(double x) { return x < 0.0 ? -x : x; } constexpr double ConstexprCeil(double x) { constexpr double kIntegerThreshold = uint64_t{1} << (std::numeric_limits<double>::digits - 1); if (!(ConstexprAbs(x) < kIntegerThreshold)) { return x; } const double x_trunc = static_cast<double>(static_cast<int64_t>(x)); return x_trunc < x ? x_trunc + 1.0 : x_trunc; } constexpr double ConstexprFloor(double x) { return -ConstexprCeil(-x); } constexpr double kLog10Of2 = 0.3010299956639812; constexpr int Digits10FromDigits(int digits) { return static_cast<int>(ConstexprFloor((digits - 1) * kLog10Of2)); } constexpr int MaxDigits10FromDigits(int digits) { return static_cast<int>(ConstexprCeil(1.0 + (digits * kLog10Of2))); } constexpr int MinExponent10FromMinExponent(int min_exponent) { return static_cast<int>(ConstexprCeil((min_exponent - 1) * kLog10Of2)); } constexpr int MaxExponent10FromMaxExponentAndDigits(int max_exponent, int digits) { constexpr double kLog10OfOnePredecessor[] = { -0.057991946977686754, -0.028028723600243537, }; return static_cast<int>(ConstexprFloor(kLog10OfOnePredecessor[digits - 3] + max_exponent * kLog10Of2)); } struct numeric_limits_float8_base { static inline constexpr const bool is_specialized = true; static inline constexpr const bool is_signed = true; static inline constexpr const bool is_integer = false; static inline constexpr const bool is_exact = false; static inline constexpr const bool has_quiet_NaN = true; static inline constexpr const std::float_denorm_style has_denorm = std::denorm_present; static inline constexpr const bool has_denorm_loss = false; static inline constexpr const std::float_round_style round_style = std::round_to_nearest; static inline constexpr const bool is_bounded = true; static inline constexpr const bool is_modulo = false; static inline constexpr const int radix = std::numeric_limits<float>::radix; static inline constexpr const bool traps = std::numeric_limits<float>::traps; static inline constexpr const bool tinyness_before = std::numeric_limits<float>::tinyness_before; }; struct numeric_limits_float8_e4m3fn : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 7; static inline constexpr const int kMantissaBits = 3; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b1111 - 7) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e4m3fn min() { return Float8e4m3fn::FromRep(0b0'0001 << kMantissaBits); } static constexpr Float8e4m3fn lowest() { return Float8e4m3fn::FromRep(0b1'1111'110); } static constexpr Float8e4m3fn max() { return Float8e4m3fn::FromRep(0b0'1111'110); } static constexpr Float8e4m3fn epsilon() { return Float8e4m3fn::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fn round_error() { return Float8e4m3fn::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fn infinity() { return Float8e4m3fn::FromRep(0b0'1111'111); } static constexpr Float8e4m3fn quiet_NaN() { return Float8e4m3fn::FromRep(0b0'1111'111); } static constexpr Float8e4m3fn signaling_NaN() { return Float8e4m3fn::FromRep(0b0'1111'111); } static constexpr Float8e4m3fn denorm_min() { return Float8e4m3fn::FromRep(0b0'0000'001); } }; struct numeric_limits_float8_e4m3b11fnuz : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 11; static inline constexpr const int kMantissaBits = 3; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b1111 - kExponentBias) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e4m3b11fnuz min() { return Float8e4m3b11fnuz::FromRep(1 << kMantissaBits); } static constexpr Float8e4m3b11fnuz lowest() { return Float8e4m3b11fnuz::FromRep(0b1'1111'111); } static constexpr Float8e4m3b11fnuz max() { return Float8e4m3b11fnuz::FromRep(0b0'1111'111); } static constexpr Float8e4m3b11fnuz epsilon() { return Float8e4m3b11fnuz::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3b11fnuz round_error() { return Float8e4m3b11fnuz::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3b11fnuz infinity() { return Float8e4m3b11fnuz::FromRep(0b1'0000'000); } static constexpr Float8e4m3b11fnuz quiet_NaN() { return Float8e4m3b11fnuz::FromRep(0b1'0000'000); } static constexpr Float8e4m3b11fnuz signaling_NaN() { return Float8e4m3b11fnuz::FromRep(0b1'0000'000); } static constexpr Float8e4m3b11fnuz denorm_min() { return Float8e4m3b11fnuz::FromRep(0b0'0000'001); } }; struct numeric_limits_float8_e4m3fnuz : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 8; static inline constexpr const int kMantissaBits = 3; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b1111 - kExponentBias) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e4m3fnuz min() { return Float8e4m3fnuz::FromRep(0x08); } static constexpr Float8e4m3fnuz lowest() { return Float8e4m3fnuz::FromRep(0xFF); } static constexpr Float8e4m3fnuz max() { return Float8e4m3fnuz::FromRep(0x7F); } static constexpr Float8e4m3fnuz epsilon() { return Float8e4m3fnuz::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fnuz round_error() { return Float8e4m3fnuz::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fnuz infinity() { return Float8e4m3fnuz::FromRep(0x80); } static constexpr Float8e4m3fnuz quiet_NaN() { return Float8e4m3fnuz::FromRep(0x80); } static constexpr Float8e4m3fnuz signaling_NaN() { return Float8e4m3fnuz::FromRep(0x80); } static constexpr Float8e4m3fnuz denorm_min() { return Float8e4m3fnuz::FromRep(0x01); } }; struct numeric_limits_float8_e5m2 : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 15; static inline constexpr const int kMantissaBits = 2; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = 0b11111 - kExponentBias; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = true; static inline constexpr const bool has_infinity = true; static inline constexpr const bool has_signaling_NaN = true; static constexpr Float8e5m2 min() { return Float8e5m2::FromRep(1 << kMantissaBits); } static constexpr Float8e5m2 lowest() { return Float8e5m2::FromRep(0b1'11110'11); } static constexpr Float8e5m2 max() { return Float8e5m2::FromRep(0b0'11110'11); } static constexpr Float8e5m2 epsilon() { return Float8e5m2::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2 round_error() { return Float8e5m2::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2 infinity() { return Float8e5m2::FromRep(0b0'11111'00); } static constexpr Float8e5m2 quiet_NaN() { return Float8e5m2::FromRep(0b0'11111'10); } static constexpr Float8e5m2 signaling_NaN() { return Float8e5m2::FromRep(0b0'11111'01); } static constexpr Float8e5m2 denorm_min() { return Float8e5m2::FromRep(0b0'00000'01); } }; struct numeric_limits_float8_e5m2fnuz : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 16; static inline constexpr const int kMantissaBits = 2; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b11111 - kExponentBias) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e5m2fnuz min() { return Float8e5m2fnuz::FromRep(0x04); } static constexpr Float8e5m2fnuz lowest() { return Float8e5m2fnuz::FromRep(0xFF); } static constexpr Float8e5m2fnuz max() { return Float8e5m2fnuz::FromRep(0x7F); } static constexpr Float8e5m2fnuz epsilon() { return Float8e5m2fnuz::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2fnuz round_error() { return Float8e5m2fnuz::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2fnuz infinity() { return Float8e5m2fnuz::FromRep(0x80); } static constexpr Float8e5m2fnuz quiet_NaN() { return Float8e5m2fnuz::FromRep(0x80); } static constexpr Float8e5m2fnuz signaling_NaN() { return Float8e5m2fnuz::FromRep(0x80); } static constexpr Float8e5m2fnuz denorm_min() { return Float8e5m2fnuz::FromRep(0x01); } }; } } namespace std { template <> struct numeric_limits<tensorstore::float8_internal::Float8e4m3fn> : public tensorstore::float8_internal::numeric_limits_float8_e4m3fn {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e4m3b11fnuz> : public tensorstore::float8_internal::numeric_limits_float8_e4m3b11fnuz {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e4m3fnuz> : public tensorstore::float8_internal::numeric_limits_float8_e4m3fnuz {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e5m2> : public tensorstore::float8_internal::numeric_limits_float8_e5m2 {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e5m2fnuz> : public tensorstore::float8_internal::numeric_limits_float8_e5m2fnuz {}; } namespace tensorstore { namespace float8_internal { constexpr inline Float8e4m3fn abs(const Float8e4m3fn& a) { return Float8e4m3fn::FromRep(a.rep() & 0b0'1111'111); } constexpr inline bool(isnan)(const Float8e4m3fn& a) { return abs(a).rep() == std::numeric_limits<Float8e4m3fn>::quiet_NaN().rep(); } constexpr inline Float8e4m3b11fnuz abs(const Float8e4m3b11fnuz& a) { return (a.rep() & 0b0'1111'111) == 0 ? Float8e4m3b11fnuz::FromRep(a.rep()) : Float8e4m3b11fnuz::FromRep(a.rep() & 0b0'1111'111); } constexpr inline bool(isnan)(const Float8e4m3b11fnuz& a) { return a.rep() == std::numeric_limits<Float8e4m3b11fnuz>::quiet_NaN().rep(); } constexpr inline Float8e4m3fnuz abs(const Float8e4m3fnuz& a) { return (a.rep() & 0x7F) == 0 ? Float8e4m3fnuz::FromRep(a.rep()) : Float8e4m3fnuz::FromRep(a.rep() & 0x7F); } constexpr inline bool(isnan)(const Float8e4m3fnuz& a) { return abs(a).rep() == std::numeric_limits<Float8e4m3fnuz>::quiet_NaN().rep(); } constexpr inline Float8e5m2 abs(const Float8e5m2& a) { return Float8e5m2::FromRep(a.rep() & 0b0'11111'11); } constexpr inline bool(isnan)(const Float8e5m2& a) { return abs(a).rep() > std::numeric_limits<Float8e5m2>::infinity().rep(); } constexpr inline Float8e5m2fnuz abs(const Float8e5m2fnuz& a) { return (a.rep() & 0x7F) == 0 ? Float8e5m2fnuz::FromRep(a.rep()) : Float8e5m2fnuz::FromRep(a.rep() & 0x7F); } constexpr inline bool isnan(const Float8e5m2fnuz& a) { return a.rep() == 0x80; } template <typename Float8> constexpr inline bool(isinf)(const Float8Base<Float8>& a) { return std::numeric_limits<Float8>::has_infinity ? abs(a.derived()).rep() == std::numeric_limits<Float8>::infinity().rep() : false; } template <typename Float8> constexpr inline bool(isfinite)(const Float8Base<Float8>& a) { return !isnan(a.derived()) && !isinf(a.derived()); } template <typename Float8> std::ostream& operator<<(std::ostream& os, const Float8Base<Float8>& f8) { os << static_cast<float>(f8.derived()); return os; } template <size_t Size> struct get_integer_by_size { typedef void signed_type; typedef void unsigned_type; }; template <> struct get_integer_by_size<1> { typedef int8_t signed_type; typedef uint8_t unsigned_type; }; template <> struct get_integer_by_size<2> { typedef int16_t signed_type; typedef uint16_t unsigned_type; }; template <> struct get_integer_by_size<4> { typedef int32_t signed_type; typedef uint32_t unsigned_type; }; template <> struct get_integer_by_size<8> { typedef int64_t signed_type; typedef uint64_t unsigned_type; }; template <int kNumBytes> using GetUnsignedInteger = typename get_integer_by_size<kNumBytes>::unsigned_type; template <typename From, typename To, bool kSaturate, bool kTruncate, typename EnableIf = void> struct ConvertImpl; template <typename Scalar> struct IdentityConversion { static inline Scalar run(const Scalar& from) { return from; } }; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, false, false, void> : public IdentityConversion<Scalar> {}; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, false, true, void> : public IdentityConversion<Scalar> {}; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, true, false, void> : public IdentityConversion<Scalar> {}; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, true, true, void> : public IdentityConversion<Scalar> {}; template <typename Float> struct TraitsBase { using BitsType = GetUnsignedInteger<sizeof(Float)>; static constexpr int kBits = sizeof(Float) * CHAR_BIT; static constexpr int kMantissaBits = std::numeric_limits<Float>::digits - 1; static constexpr int kExponentBits = kBits - kMantissaBits - 1; static constexpr BitsType kExponentMask = ((BitsType{1} << kExponentBits) - 1) << kMantissaBits; static constexpr BitsType kMantissaMask = (BitsType{1} << kMantissaBits) - 1; static constexpr int kExponentBias = (1 << (kExponentBits - 1)) - 1; }; template <typename Float> struct Traits : public TraitsBase<Float> {}; template <> struct Traits<Float8e4m3b11fnuz> : public TraitsBase<Float8e4m3b11fnuz> { static constexpr int kExponentBias = 11; }; template <> struct Traits<Float8e4m3fnuz> : public TraitsBase<Float8e4m3fnuz> { using Base = TraitsBase<Float8e4m3fnuz>; static constexpr int kExponentBias = Base::kExponentBias + 1; }; template <> struct Traits<Float8e5m2fnuz> : public TraitsBase<Float8e5m2fnuz> { using Base = TraitsBase<Float8e5m2fnuz>; static constexpr int kExponentBias = Base::kExponentBias + 1; }; template <typename Bits> constexpr inline Bits RoundBitsToNearestEven(Bits bits, int roundoff) { Bits bias = roundoff == 0 ? 0 : ((bits >> roundoff) & 1) + (Bits{1} << (roundoff - 1)) - 1; return bits + bias; } #if (defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L) using std::countl_zero; #else static constexpr inline int countl_zero(uint64_t x) { int zeroes = 60; if (x >> 32) { zeroes -= 32; x >>= 32; } if (x >> 16) { zeroes -= 16; x >>= 16; } if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } static constexpr inline int countl_zero(uint32_t x) { int zeroes = 28; if (x >> 16) { zeroes -= 16; x >>= 16; } if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } static constexpr inline int countl_zero(uint16_t x) { int zeroes = 12; if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } static constexpr inline int countl_zero(uint8_t x) { int zeroes = 4; if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } #endif template <typename From, typename To, bool kSaturate, bool kTruncate> struct ConvertImpl<From, To, kSaturate, kTruncate, std::enable_if_t<!std::is_same_v<From, To>>> { using FromTraits = Traits<From>; using FromBits = typename FromTraits::BitsType; static constexpr int kFromBits = FromTraits::kBits; static constexpr int kFromMantissaBits = FromTraits::kMantissaBits; static constexpr int kFromExponentBits = FromTraits::kExponentBits; static constexpr int kFromExponentBias = FromTraits::kExponentBias; static constexpr FromBits kFromExponentMask = FromTraits::kExponentMask; using ToTraits = Traits<To>; using ToBits = typename ToTraits::BitsType; static constexpr int kToBits = ToTraits::kBits; static constexpr int kToMantissaBits = ToTraits::kMantissaBits; static constexpr int kToExponentBits = ToTraits::kExponentBits; static constexpr int kToExponentBias = ToTraits::kExponentBias; static constexpr ToBits kToExponentMask = ToTraits::kExponentMask; static constexpr int kWideBits = (std::max(kToMantissaBits, kFromMantissaBits)) + (std::max(kToExponentBits, kFromExponentBits)); static constexpr int kWideBytes = (kWideBits + (CHAR_BIT - 1)) / CHAR_BIT; using WideBits = GetUnsignedInteger<kWideBytes>; static constexpr int kExponentOffset = kToExponentBias - kFromExponentBias; static constexpr int kDigitShift = kToMantissaBits - kFromMantissaBits; static inline To run(const From& from) { using std::abs; using std::isinf; using std::isnan; const bool from_sign_bit = absl::bit_cast<FromBits>(from) >> (kFromBits - 1); const FromBits from_bits = absl::bit_cast<FromBits>(abs(from)); if (isinf(from)) { return from_sign_bit ? -std::numeric_limits<To>::infinity() : std::numeric_limits<To>::infinity(); } if (isnan(from)) { return from_sign_bit ? -std::numeric_limits<To>::quiet_NaN() : std::numeric_limits<To>::quiet_NaN(); } if (from_bits == 0) { return from_sign_bit ? -To{} : To{}; } const int biased_from_exponent = from_bits >> kFromMantissaBits; if constexpr (std::numeric_limits<To>::min_exponent < std::numeric_limits<From>::min_exponent) { if (biased_from_exponent == 0) { WideBits bits = from_bits; const int normalization_factor = countl_zero(from_bits) - (kFromBits - kFromMantissaBits) + 1; const int biased_exponent = kExponentOffset - normalization_factor + 1; if (biased_exponent <= 0) { if constexpr (kExponentOffset < sizeof(WideBits) * CHAR_BIT) { bits <<= kExponentOffset; } } else { bits <<= normalization_factor; bits &= ~(WideBits{1} << kFromMantissaBits); bits |= static_cast<WideBits>(biased_exponent) << kFromMantissaBits; } if constexpr (kDigitShift > 0) { bits <<= kDigitShift; } else { if constexpr (!kTruncate) { bits = RoundBitsToNearestEven(bits, -kDigitShift); } bits >>= -kDigitShift; } To to = absl::bit_cast<To>(static_cast<ToBits>(bits)); return from_sign_bit ? -to : to; } } if constexpr (std::numeric_limits<To>::min_exponent > std::numeric_limits<From>::min_exponent) { const int unbiased_exponent = biased_from_exponent - kFromExponentBias; const int biased_to_exponent = unbiased_exponent + kToExponentBias; if (biased_to_exponent <= 0) { FromBits from_has_leading_one = (biased_from_exponent > 0 ? 1 : 0); int exponent_shift = -kDigitShift - biased_to_exponent + from_has_leading_one; FromBits rounded_from_bits = (from_bits & FromTraits::kMantissaMask) | (from_has_leading_one << kFromMantissaBits); ToBits bits = 0; if (exponent_shift <= kFromMantissaBits + 1) { if constexpr (!kTruncate) { rounded_from_bits = RoundBitsToNearestEven(rounded_from_bits, exponent_shift); } bits = (rounded_from_bits >> exponent_shift); } To to = absl::bit_cast<To>(bits); return from_sign_bit ? -to : to; } } WideBits rounded_from_bits = from_bits; if constexpr (kDigitShift < 0) { if constexpr (!kTruncate) { rounded_from_bits = RoundBitsToNearestEven(from_bits, -kDigitShift); } rounded_from_bits &= ~((WideBits{1} << (-kDigitShift)) - 1); } rounded_from_bits += static_cast<WideBits>(kExponentOffset) << kFromMantissaBits; ToBits bits; const WideBits kToHighestRep = absl::bit_cast<ToBits>(std::numeric_limits<To>::max()); WideBits aligned_highest{kToHighestRep}; if constexpr (kDigitShift < 0) { aligned_highest <<= -kDigitShift; bits = static_cast<ToBits>(rounded_from_bits >> -kDigitShift); } else if constexpr (kDigitShift >= 0) { rounded_from_bits <<= kDigitShift; bits = ToBits{rounded_from_bits}; } To to = absl::bit_cast<To>(bits); if constexpr (std::make_pair(std::numeric_limits<To>::max_exponent, std::numeric_limits<To>::digits) < std::make_pair(std::numeric_limits<From>::max_exponent, std::numeric_limits<From>::digits)) { if (rounded_from_bits > aligned_highest) { to = kSaturate ? std::numeric_limits<To>::max() : std::numeric_limits<To>::infinity(); } } return from_sign_bit ? -to : to; } }; template <bool kTruncate> struct ConvertImpl<Float8e4m3fn, Float8e5m2, true, kTruncate> { static inline Float8e5m2 run(const Float8e4m3fn& from) { return ConvertImpl<Float8e4m3fn, Float8e5m2, false, kTruncate>::run(from); } }; template <bool kSaturate, bool kTruncate> struct ConvertImpl<::half_float::half, Float8e5m2, kSaturate, kTruncate> { static inline Float8e5m2 run(const ::half_float::half& from) { uint16_t from_bits = absl::bit_cast<uint16_t>(from); uint16_t abs_bits = from_bits & 0x7FFF; if (abs_bits == 0x7C00) { return Float8e5m2::FromRep(from_bits >> 8); } else if (abs_bits > 0x7C00) { return Float8e5m2::FromRep((from_bits >> 8) | 0b0'00000'10); } if constexpr (!kTruncate) { from_bits = RoundBitsToNearestEven(from_bits, 8); if constexpr (kSaturate) { const Float8e5m2 kHighest = std::numeric_limits<Float8e5m2>::max(); if ((from_bits & 0x7F00) > static_cast<uint16_t>(kHighest.rep()) << 8) { const bool from_sign_bit = from_bits >> 15; return from_sign_bit ? -kHighest : kHighest; } } } return Float8e5m2::FromRep(from_bits >> 8); } }; template <> struct ConvertImpl<Float8e5m2, ::half_float::half, false, false> { static inline ::half_float::half run(const Float8e5m2& from) { return absl::bit_cast<::half_float::half>( static_cast<uint16_t>(static_cast<uint16_t>(from.rep()) << 8)); } }; template <bool kSaturate, bool kTruncate> struct ConvertImpl<Float8e5m2, ::half_float::half, kSaturate, kTruncate> { static inline ::half_float::half run(const Float8e5m2& from) { return absl::bit_cast<::half_float::half>( static_cast<uint16_t>(static_cast<uint16_t>(from.rep()) << 8)); } }; template <bool kSaturate, bool kTruncate> struct ConvertImpl<Float8e5m2fnuz, ::half_float::half, kSaturate, kTruncate> { static inline ::half_float::half run(const Float8e5m2fnuz& from) { return static_cast<::half_float::half>(static_cast<float>(from)); } }; template <typename Derived> template <bool kSaturate, bool kTruncate, typename From> Derived Float8Base<Derived>::ConvertFrom(const From& from) { return ConvertImpl<From, Derived, kSaturate, kTruncate>::run(from); } template <typename Derived> template <typename To, bool kSaturate, bool kTruncate> To Float8Base<Derived>::ConvertTo(const Derived& from) { return ConvertImpl<Derived, To, kSaturate, kTruncate>::run(from); } #ifdef _MSC_VER #define TENSORSTORE_INTERNAL_FPCLASSIFY(Float8) \ inline int fpclassify(Float8 a) noexcept { \ if (tensorstore::float8_internal::isnan(a)) return FP_NAN; \ if (tensorstore::float8_internal::isinf(a)) return FP_INFINITE; \ Float8 abs_value = tensorstore::float8_internal::abs(a); \ if (abs_value.rep() == 0x00) return FP_ZERO; \ if ((abs_value.rep() & Traits<Float8>::kExponentMask) == 0) \ return FP_SUBNORMAL; \ return FP_NORMAL; \ } TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e4m3fn); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e4m3fnuz); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e4m3b11fnuz); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e5m2); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e5m2fnuz); #undef TENSORSTORE_INTERNAL_FPCLASSIFY #endif } using Float8e4m3fn = float8_internal::Float8e4m3fn; using Float8e4m3fnuz = float8_internal::Float8e4m3fnuz; using Float8e4m3b11fnuz = float8_internal::Float8e4m3b11fnuz; using Float8e5m2 = float8_internal::Float8e5m2; using Float8e5m2fnuz = float8_internal::Float8e5m2fnuz; } #endif
#include "tensorstore/util/float8.h" #include <cmath> #include <cstdint> #include <limits> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/casts.h" #include "absl/strings/str_cat.h" #include <half.hpp> #include "tensorstore/util/bfloat16.h" namespace tensorstore { namespace { using std::isfinite; using std::isinf; using std::isnan; template <typename Float8_> class Float8Test : public ::testing::Test {}; struct Float8TestParamNames { template <typename TypeParam> static std::string GetName(int idx) { if constexpr (std::is_same_v<TypeParam, Float8e4m3fn>) { return "Float8e4m3fn"; } else if constexpr (std::is_same_v<TypeParam, Float8e4m3b11fnuz>) { return "Float8e4m3b11fnuz"; } else if constexpr (std::is_same_v<TypeParam, Float8e5m2>) { return "Float8e5m2"; } else if constexpr (std::is_same_v<TypeParam, Float8e4m3fnuz>) { return "Float8e4m3fnuz"; } else if constexpr (std::is_same_v<TypeParam, Float8e5m2fnuz>) { return "Float8e5m2fnuz"; } return absl::StrCat(idx); } }; using Float8Types = ::testing::Types<Float8e4m3fn, Float8e5m2, Float8e4m3b11fnuz, Float8e4m3fnuz, Float8e5m2fnuz>; TYPED_TEST_SUITE(Float8Test, Float8Types, Float8TestParamNames); TEST(Float8E4m3fnTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fn>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fn>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::min()), std::exp2(-6)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::max()), 448); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::lowest()), -448); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::epsilon()), 0.125); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3fn>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fn>::infinity())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::denorm_min()), std::exp2(-9)); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::digits, 4); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::max_digits10, 3); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::min_exponent, -5); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::min_exponent10, -1); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::max_exponent, 9); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::max_exponent10, 2); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::has_signaling_NaN, false); } TEST(Float8E4m3b11fnuzTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3b11fnuz>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3b11fnuz>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::min()), std::exp2(-10)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::max()), 30); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::lowest()), -30); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::epsilon()), 0.125); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3b11fnuz>::infinity())); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::denorm_min()), std::exp2(-13)); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::digits, 4); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::max_digits10, 3); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::min_exponent, -9); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::min_exponent10, -3); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::max_exponent, 5); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::max_exponent10, 1); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::has_signaling_NaN, false); } TEST(Float8E4m3fnuzTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fnuz>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fnuz>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::min()), std::exp2(-7)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::max()), 240); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::lowest()), -240); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::epsilon()), 0.125); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fnuz>::infinity())); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::denorm_min()), std::exp2(-10)); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::digits, 4); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::max_digits10, 3); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::min_exponent, -6); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::min_exponent10, -2); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::max_exponent, 8); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::max_exponent10, 2); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::has_signaling_NaN, false); } TEST(Float8E5m2Test, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::min()), std::exp2(-14)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::max()), 57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::lowest()), -57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::epsilon()), 0.25); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::round_error()), 0.5); EXPECT_TRUE(isinf(std::numeric_limits<Float8e5m2>::infinity())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::denorm_min()), std::exp2(-16)); EXPECT_EQ(std::numeric_limits<Float8e5m2>::digits, 3); EXPECT_EQ(std::numeric_limits<Float8e5m2>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e5m2>::max_digits10, 2); EXPECT_EQ(std::numeric_limits<Float8e5m2>::min_exponent, -13); EXPECT_EQ(std::numeric_limits<Float8e5m2>::min_exponent10, -4); EXPECT_EQ(std::numeric_limits<Float8e5m2>::max_exponent, 16); EXPECT_EQ(std::numeric_limits<Float8e5m2>::max_exponent10, 4); EXPECT_EQ(std::numeric_limits<Float8e5m2>::is_iec559, true); EXPECT_EQ(std::numeric_limits<Float8e5m2>::has_infinity, true); EXPECT_EQ(std::numeric_limits<Float8e5m2>::has_signaling_NaN, true); } TEST(Float8E5m2fnuzTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2fnuz>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2fnuz>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::min()), std::exp2(-15)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::max()), 57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::lowest()), -57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::epsilon()), 0.25); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2fnuz>::infinity())); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::denorm_min()), std::exp2(-17)); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::digits, 3); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::max_digits10, 2); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::min_exponent, -14); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::min_exponent10, -4); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::max_exponent, 16); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::max_exponent10, 4); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::has_signaling_NaN, false); } TYPED_TEST(Float8Test, FromRep) { using Float8 = TypeParam; Float8 x = Float8::FromRep(0x4F); EXPECT_EQ(x.rep(), 0x4F); } TYPED_TEST(Float8Test, Negate) { using Float8 = TypeParam; Float8 x = -Float8::FromRep(0x4F); EXPECT_EQ(x.rep(), 0x80 | 0x4F); Float8 nan = -std::numeric_limits<Float8>::quiet_NaN(); EXPECT_TRUE(isnan(nan)); } TYPED_TEST(Float8Test, BitCasts) { using Float8 = TypeParam; Float8 x = Float8::FromRep(0x47); EXPECT_EQ(absl::bit_cast<uint8_t>(x), 0x47); EXPECT_EQ(absl::bit_cast<Float8>(x.rep()).rep(), 0x47); } TYPED_TEST(Float8Test, UpCasts) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { Float8 f8 = Float8::FromRep(i); double f64 = static_cast<double>(f8); float f32 = static_cast<float>(f8); tensorstore::BFloat16 bf16 = static_cast<tensorstore::BFloat16>(f8); ::half_float::half f16 = static_cast<::half_float::half>(f8); if (isnan(f8)) { EXPECT_TRUE(std::isnan(f64)); EXPECT_TRUE(std::isnan(f32)); EXPECT_TRUE(tensorstore::isnan(bf16)); EXPECT_TRUE(::half_float::isnan(f16)); } else { EXPECT_EQ(f64, f32); EXPECT_EQ(f32, bf16); EXPECT_EQ(bf16, f16); } } } TYPED_TEST(Float8Test, DownCasts) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { float x = static_cast<float>(Float8::FromRep(i)); Float8 f64 = static_cast<Float8>(static_cast<double>(x)); Float8 f32 = static_cast<Float8>(static_cast<float>(x)); Float8 bf16 = static_cast<Float8>(static_cast<tensorstore::BFloat16>(x)); Float8 f16 = static_cast<Float8>(static_cast<::half_float::half>(x)); if (std::isnan(x)) { EXPECT_TRUE(isnan(f64)); EXPECT_TRUE(isnan(f32)); EXPECT_TRUE(isnan(bf16)); EXPECT_TRUE(isnan(f16)); } else { EXPECT_EQ(f64.rep(), i) << i; EXPECT_EQ(f32.rep(), i) << i; EXPECT_EQ(bf16.rep(), i) << i; EXPECT_EQ(f16.rep(), i) << i; } } } TYPED_TEST(Float8Test, ConvertFromWithSaturation) { using Float8 = TypeParam; Float8 upper = Float8::template ConvertFrom<true, false>( static_cast<float>(std::numeric_limits<Float8>::max()) * 2); EXPECT_EQ(upper, std::numeric_limits<Float8>::max()); Float8 lower = Float8::template ConvertFrom<true, false>( static_cast<float>(std::numeric_limits<Float8>::lowest()) * 2); EXPECT_EQ(lower, std::numeric_limits<Float8>::lowest()); Float8 nan = Float8::template ConvertFrom<true, true>( std::numeric_limits<float>::quiet_NaN()); EXPECT_TRUE(isnan(nan)); Float8 inf = Float8::template ConvertFrom<true, true>( std::numeric_limits<float>::infinity()); EXPECT_TRUE(std::numeric_limits<Float8>::has_infinity ? isinf(inf) : isnan(inf)); Float8 ninf = Float8::template ConvertFrom<true, true>( -std::numeric_limits<float>::infinity()); EXPECT_TRUE(std::numeric_limits<Float8>::has_infinity ? isinf(ninf) : isnan(ninf)); } TYPED_TEST(Float8Test, ConvertFromWithTruncation) { using Float8 = TypeParam; float less_than_two = absl::bit_cast<float>(0x3FFFFFFF); Float8 truncated = Float8::template ConvertFrom<false, true>( less_than_two); EXPECT_LT(static_cast<float>(truncated), 2); Float8 rounded = Float8::template ConvertFrom<false, false>( less_than_two); EXPECT_EQ(static_cast<float>(rounded), 2); double kLarge = 0x1.c001p+16; EXPECT_EQ( (Float8::template ConvertFrom<false, true>( kLarge) .rep()), std::numeric_limits<Float8>::infinity().rep()); EXPECT_EQ( (Float8::template ConvertFrom<false, false>( kLarge) .rep()), std::numeric_limits<Float8>::infinity().rep()); for (int i = 0x01; i < 0x04; ++i) { float less_than_subnorm = std::nexttoward(static_cast<float>(Float8::FromRep(i)), 0); Float8 truncated_subnorm = Float8::template ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), i - 1); Float8 rounded_subnorm = Float8::template ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), i); } } TYPED_TEST(Float8Test, ConvertTo) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { Float8 f8 = Float8::FromRep(i); float f32 = static_cast<float>(f8); if (isnan(f8)) { EXPECT_TRUE(isnan(Float8::template ConvertTo<float, false, false>(f8))); EXPECT_TRUE(isnan(Float8::template ConvertTo<float, false, true>(f8))); EXPECT_TRUE(isnan(Float8::template ConvertTo<float, true, false>(f8))); EXPECT_TRUE(isnan(Float8::template ConvertTo<float, true, true>(f8))); } else { EXPECT_EQ(f32, (Float8::template ConvertTo<float, false, false>(f8))); EXPECT_EQ(f32, (Float8::template ConvertTo<float, false, true>(f8))); EXPECT_EQ(f32, (Float8::template ConvertTo<float, true, false>(f8))); EXPECT_EQ(f32, (Float8::template ConvertTo<float, true, true>(f8))); } } } TEST(Float8Test, Float8E5m2_To_Float8E4m3) { Float8e5m2 max = std::numeric_limits<Float8e5m2>::max(); Float8e4m3fn saturated = Float8e4m3fn::ConvertFrom<true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3fn>::max()); saturated = Float8e5m2::ConvertTo<Float8e4m3fn, true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3fn>::max()); Float8e5m2 less_than_subnorm = Float8e5m2::FromRep(0x1F); Float8e4m3fn rounded_subnorm = Float8e4m3fn::ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), 0x04); Float8e4m3fn truncated_subnorm = Float8e4m3fn::ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), 0x03); } TEST(Float8Test, Half_To_Float8E4m3) { ::half_float::half big_half(0x1.dfcp+8f); Float8e4m3fn big_e4m3 = Float8e4m3fn::ConvertFrom<true, false>( big_half); EXPECT_EQ(big_e4m3.rep(), std::numeric_limits<Float8e4m3fn>::max().rep()); } TEST(Float8Test, Float8E5m2_To_Float8E4m3b11fnuz) { Float8e5m2 max = std::numeric_limits<Float8e5m2>::max(); Float8e4m3b11fnuz saturated = Float8e4m3b11fnuz::ConvertFrom<true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3b11fnuz>::max()); saturated = Float8e5m2::ConvertTo<Float8e4m3b11fnuz, true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3b11fnuz>::max()); Float8e5m2 less_than_subnorm = Float8e5m2::FromRep(0x0F); Float8e4m3b11fnuz rounded_subnorm = Float8e4m3b11fnuz::ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), 0x04); Float8e4m3b11fnuz truncated_subnorm = Float8e4m3b11fnuz::ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), 0x03); for (uint8_t i = 0; i < std::numeric_limits<Float8e5m2>::infinity().rep(); ++i) { Float8e5m2 big_e5m2 = absl::bit_cast<Float8e5m2>(i); EXPECT_TRUE(isfinite(big_e5m2)) << uint16_t{i}; float big_float = static_cast<float>(big_e5m2); auto big_e4m3 = Float8e4m3b11fnuz::ConvertFrom<true, false>(big_float); if (i > 0x4f) { EXPECT_EQ(big_e4m3.rep(), std::numeric_limits<Float8e4m3b11fnuz>::max().rep()) << uint16_t{i}; } EXPECT_EQ((Float8e4m3b11fnuz::ConvertFrom<true, false>(big_e5m2) .rep()), big_e4m3.rep()) << i; EXPECT_EQ((Float8e4m3b11fnuz::ConvertFrom<true, false>(-big_e5m2) .rep()), (-big_e4m3).rep()) << i; } } TEST(Float8Test, Float8E4m3b11fnuz_To_Float8E4m3) { Float8e4m3b11fnuz max = std::numeric_limits<Float8e4m3b11fnuz>::max(); Float8e4m3fn saturated = Float8e4m3fn::ConvertFrom<true>(max); EXPECT_EQ(static_cast<float>(saturated), static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::max())); saturated = Float8e4m3b11fnuz::ConvertTo<Float8e4m3fn, true>(max); EXPECT_EQ(static_cast<float>(saturated), static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::max())); Float8e4m3b11fnuz less_than_subnorm = Float8e4m3b11fnuz::FromRep(0b0011'110); Float8e4m3fn rounded_subnorm = Float8e4m3fn::ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), 0x04); Float8e4m3fn truncated_subnorm = Float8e4m3fn::ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), 0x03); for (uint8_t i = 0; i < std::numeric_limits<Float8e4m3b11fnuz>::infinity().rep(); ++i) { Float8e4m3b11fnuz big_e4m3b11fnuz = absl::bit_cast<Float8e4m3b11fnuz>(i); EXPECT_TRUE(isfinite(big_e4m3b11fnuz)) << uint16_t{i}; float big_float = static_cast<float>(big_e4m3b11fnuz); auto big_e4m3 = Float8e4m3fn::ConvertFrom<true, false>( big_float); EXPECT_EQ( (Float8e4m3fn::ConvertFrom<true, false>( big_e4m3b11fnuz) .rep()), big_e4m3.rep()) << i; EXPECT_EQ( (Float8e4m3fn::ConvertFrom<true, false>( -big_e4m3b11fnuz) .rep()), (big_float > 0.0f ? -big_e4m3 : big_e4m3).rep()) << i; } } TEST(Float8Test, Float8E4m3_To_Float8E5m2) { Float8e4m3fn less_than_two = Float8e4m3fn::FromRep(0x3F); Float8e5m2 truncated = Float8e5m2::template ConvertFrom<false, true>(less_than_two); EXPECT_LT(static_cast<float>(truncated), 2); Float8e5m2 rounded = Float8e5m2::template ConvertFrom<false, false>(less_than_two); EXPECT_EQ(static_cast<float>(rounded), 2); } TEST(Float8Test, Half_To_Float8E5m2) { ::half_float::half inf = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0x7C00)); EXPECT_EQ(static_cast<Float8e5m2>(inf).rep(), 0x7C); ::half_float::half ninf = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0xFC00)); EXPECT_EQ(static_cast<Float8e5m2>(ninf).rep(), 0xFC); ::half_float::half nan = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0x7C01)); EXPECT_EQ(static_cast<Float8e5m2>(nan).rep(), 0x7E); ::half_float::half nnan = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0xFC01)); EXPECT_EQ(static_cast<Float8e5m2>(nnan).rep(), 0xFE); ::half_float::half less_than_two = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0x3FFF)); EXPECT_EQ((Float8e5m2::ConvertFrom<false, false>(less_than_two) .rep()), 0x40); EXPECT_EQ((Float8e5m2::ConvertFrom<false, true>(less_than_two) .rep()), 0x3F); EXPECT_EQ((Float8e5m2::ConvertFrom<false, false>(-less_than_two) .rep()), 0xC0); EXPECT_EQ((Float8e5m2::ConvertFrom<false, true>(-less_than_two) .rep()), 0xBF); for (uint16_t i = static_cast<uint16_t>(absl::bit_cast<uint8_t>( std::numeric_limits<Float8e5m2>::max())) << 8; i < absl::bit_cast<uint16_t>( std::numeric_limits<::half_float::half>::infinity()); ++i) { ::half_float::half big_half = absl::bit_cast<::half_float::half>(i); float big_float = static_cast<float>(big_half); EXPECT_EQ((Float8e5m2::ConvertFrom<true, false>( big_half) .rep()), (Float8e5m2::ConvertFrom<true, false>( big_float) .rep())) << i; EXPECT_EQ((Float8e5m2::ConvertFrom<true, false>( -big_half) .rep()), (Float8e5m2::ConvertFrom<true, false>( -big_float) .rep())) << i; } } using ::testing::Eq; using ::testing::IsTrue; MATCHER_P(EqOrIsNan, other, "") { if (isnan(other)) { return ExplainMatchResult(IsTrue(), isnan(arg), result_listener); } return ExplainMatchResult(Eq(other), arg, result_listener); } TYPED_TEST(Float8Test, CallTheOperator) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { Float8 a = Float8::FromRep(i); for (int j = 0x00; j <= 0xFF; ++j) { Float8 b = Float8::FromRep(j); EXPECT_THAT(a + b, EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT(a - b, EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT(a * b, EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT(a / b, EqOrIsNan<Float8>(Float8{float{a} / float{b}})); Float8 c; EXPECT_THAT((c = a, c += b), EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT((c = a, c -= b), EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT((c = a, c *= b), EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT((c = a, c /= b), EqOrIsNan<Float8>(Float8{float{a} / float{b}})); EXPECT_EQ(a == b, float{a} == float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a != b, float{a} != float{b}); EXPECT_EQ(a < b, float{a} < float{b}); EXPECT_EQ(a <= b, float{a} <= float{b}); EXPECT_EQ(a > b, float{a} > float{b}); EXPECT_EQ(a >= b, float{a} >= float{b}); } } } TYPED_TEST(Float8Test, CallTheConstOperator) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { const Float8 a = Float8::FromRep(i); for (int j = 0x00; j <= 0xFF; ++j) { const Float8 b = Float8::FromRep(j); EXPECT_THAT(a + b, EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT(a - b, EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT(a * b, EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT(a / b, EqOrIsNan<Float8>(Float8{float{a} / float{b}})); Float8 c; EXPECT_THAT((c = a, c += b), EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT((c = a, c -= b), EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT((c = a, c *= b), EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT((c = a, c /= b), EqOrIsNan<Float8>(Float8{float{a} / float{b}})); EXPECT_EQ(a == b, float{a} == float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a != b, float{a} != float{b}); EXPECT_EQ(a < b, float{a} < float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a <= b, float{a} <= float{b}); EXPECT_EQ(a > b, float{a} > float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a >= b, float{a} >= float{b}); } } } TEST(Float855m2Test, SmallCastToDenormal) { float x = std::ldexp(1.3125, -15); Float8e5m2 y = static_cast<Float8e5m2>(x); float z = static_cast<float>(y); EXPECT_EQ(z, std::ldexp(1.5, -15)); } struct Float8CastTestParamNames { template <typename TypeParam> static std::string GetName(int idx) { using first_type = typename TypeParam::first_type; using second_type = typename TypeParam::second_type; return absl::StrCat(::testing::internal::GetTypeName<first_type>(), "_", ::testing::internal::GetTypeName<second_type>()); } }; #define GEN_LONG_DOUBLE_PAIR(Type) std::pair<Type, long double>, #define GEN_DEST_TYPES(Type) \ GEN_LONG_DOUBLE_PAIR(Type) \ std::pair<Type, double>, std::pair<Type, float>, \ std::pair<Type, tensorstore::BFloat16>, \ std::pair<Type, ::half_float::half>, std::pair<Type, Float8e4m3fn>, \ std::pair<Type, Float8e4m3b11fnuz>, std::pair<Type, Float8e4m3fnuz>, \ std::pair<Type, Float8e5m2fnuz>, std::pair<Type, Float8e5m2>, \ std::pair<Type, bool>, std::pair<Type, int32_t>, \ std::pair<Type, int64_t> #define GEN_TYPE_PAIRS() \ GEN_DEST_TYPES(Float8e4m3fn), GEN_DEST_TYPES(Float8e4m3b11fnuz), \ GEN_DEST_TYPES(Float8e5m2), GEN_DEST_TYPES(Float8e4m3fnuz), \ GEN_DEST_TYPES(Float8e5m2fnuz) using Float8CastTypePairs = ::testing::Types<GEN_TYPE_PAIRS()>; template <typename CastPair> class Float8CastTest : public ::testing::Test {}; TYPED_TEST_SUITE(Float8CastTest, Float8CastTypePairs, Float8CastTestParamNames); TYPED_TEST(Float8CastTest, CastThroughFloat) { using Float8 = typename TypeParam::first_type; using DestType = typename TypeParam::second_type; for (int i = 0x00; i <= 0xFF; ++i) { Float8 f8 = Float8::FromRep(i); if constexpr (std::numeric_limits<DestType>::is_integer && !std::is_same_v<DestType, bool>) { if (!isfinite(f8)) { continue; } } DestType dest = static_cast<DestType>(f8); DestType expected = static_cast<DestType>(static_cast<float>(f8)); if constexpr (std::numeric_limits<DestType>::is_integer) { EXPECT_EQ(dest, expected); } else { EXPECT_THAT(dest, EqOrIsNan<DestType>(expected)); } } } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/float8.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/float8_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c9209c28-d4bd-437f-92df-e2eb3d2bf2b6
cpp
google/tensorstore
unit
tensorstore/internal/json_binding/unit.cc
tensorstore/util/unit_test.cc
#include "tensorstore/internal/json_binding/unit.h" #include <cmath> #include <string> #include "absl/status/status.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_tuple.h" #include "tensorstore/util/unit.h" namespace tensorstore { namespace internal_json_binding { TENSORSTORE_DEFINE_JSON_BINDER( UnitJsonBinder, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { if (auto* s = j->get_ptr<const std::string*>()) { *obj = Unit(*s); return absl::OkStatus(); } else if (j->is_number()) { *obj = Unit(j->get<double>(), ""); return absl::OkStatus(); } } return HeterogeneousArray( Projection<&Unit::multiplier>(Validate([](const auto& options, auto* num) { if (*num > 0 && std::isfinite(*num)) return absl::OkStatus(); return internal_json::ExpectedError(*num, "finite positive number"); })), Projection<&Unit::base_unit>())(is_loading, options, obj, j); }); TENSORSTORE_DEFINE_JSON_BINDER( StringOnlyUnitJsonBinder, Compose<std::string>([](auto is_loading, const auto& options, auto* obj, std::string* j) -> absl::Status { if constexpr (is_loading) { *obj = Unit(*j); } else { *j = obj->to_string(); } return absl::OkStatus(); })); } }
#include "tensorstore/util/unit.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/unit.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::TestJsonBinderRoundTrip; using ::tensorstore::TestJsonBinderRoundTripJsonOnlyInexact; using ::tensorstore::Unit; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(UnitTest, DefaultConstruct) { Unit u; EXPECT_EQ(1, u.multiplier); EXPECT_EQ("", u.base_unit); } TEST(UnitTest, Compare) { Unit a(5, "nm"); Unit b(5.5, "nm"); Unit c(5, "um"); Unit d; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(b, c); EXPECT_NE(b, d); EXPECT_NE(c, d); } TEST(UnitTest, Ostream) { EXPECT_EQ("5.5 nm", tensorstore::StrCat(Unit(5.5, "nm"))); EXPECT_EQ("nm", tensorstore::StrCat(Unit(1, "nm"))); EXPECT_EQ("5", tensorstore::StrCat(Unit(5, ""))); EXPECT_EQ("1", tensorstore::StrCat(Unit(1, ""))); } TEST(UnitTest, ConvertToString) { EXPECT_EQ("5.5 nm", Unit(5.5, "nm").to_string()); EXPECT_EQ("nm", Unit(1, "nm").to_string()); EXPECT_EQ("5", Unit(5, "").to_string()); EXPECT_EQ("1", Unit(1, "").to_string()); EXPECT_EQ("1", absl::StrCat(Unit(1, ""))); } TEST(UnitTest, MultiplierBaseUnit) { Unit u = {5, "nm"}; EXPECT_EQ(5, u.multiplier); EXPECT_EQ("nm", u.base_unit); } TEST(UnitTest, Unit) { EXPECT_EQ(Unit(4, "nm"), Unit("4nm")); EXPECT_EQ(Unit(4, "nm"), Unit("4.nm")); EXPECT_EQ(Unit(4e-3, "nm"), Unit("4e-3nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(".4nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(".4 nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(" .4 nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(" .4 nm ")); EXPECT_EQ(Unit(4e-3, "nm"), Unit("+4e-3nm")); EXPECT_EQ(Unit(-4e-3, "nm"), Unit("-4e-3nm")); EXPECT_EQ(Unit(4.5, "nm"), Unit("4.5nm")); EXPECT_EQ(Unit(1, "nm"), Unit("nm")); EXPECT_EQ(Unit(4, ""), Unit("4")); EXPECT_EQ(Unit(1, ""), Unit("")); EXPECT_EQ(Unit(3, "nm @ 50"), Unit("3 nm @ 50")); } TEST(UnitTest, JsonRoundTrip) { TestJsonBinderRoundTrip<Unit>({ {Unit(4, "nm"), {4, "nm"}}, {Unit(4.5, "nm"), {4.5, "nm"}}, {Unit(4.5, ""), {4.5, ""}}, }); } TEST(UnitTest, JsonRoundTripInexact) { TestJsonBinderRoundTripJsonOnlyInexact<Unit>({ {"4nm", {4, "nm"}}, {4, {4, ""}}, {"nm", {1, "nm"}}, }); } TEST(SerializationTest, Basic) { TestSerializationRoundTrip(Unit("4nm")); TestSerializationRoundTrip(Unit("4")); TestSerializationRoundTrip(Unit("nm")); TestSerializationRoundTrip(Unit("")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/unit.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/unit_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7da9ed7e-56c9-4359-93fe-cc293e9bcce3
cpp
abseil/abseil-cpp
generate_real
absl/random/internal/generate_real.h
absl/random/internal/generate_real_test.cc
#ifndef ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_ #define ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_ #include <cstdint> #include <cstring> #include <limits> #include <type_traits> #include "absl/meta/type_traits.h" #include "absl/numeric/bits.h" #include "absl/random/internal/fastmath.h" #include "absl/random/internal/traits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { struct GeneratePositiveTag {}; struct GenerateNegativeTag {}; struct GenerateSignedTag {}; template <typename RealType, typename SignedTag = GeneratePositiveTag, bool IncludeZero = true> inline RealType GenerateRealFromBits(uint64_t bits, int exp_bias = 0) { using real_type = RealType; using uint_type = absl::conditional_t<std::is_same<real_type, float>::value, uint32_t, uint64_t>; static_assert( (std::is_same<double, real_type>::value || std::is_same<float, real_type>::value), "GenerateRealFromBits must be parameterized by either float or double."); static_assert(sizeof(uint_type) == sizeof(real_type), "Mismatched unsigned and real types."); static_assert((std::numeric_limits<real_type>::is_iec559 && std::numeric_limits<real_type>::radix == 2), "RealType representation is not IEEE 754 binary."); static_assert((std::is_same<SignedTag, GeneratePositiveTag>::value || std::is_same<SignedTag, GenerateNegativeTag>::value || std::is_same<SignedTag, GenerateSignedTag>::value), ""); static constexpr int kExp = std::numeric_limits<real_type>::digits - 1; static constexpr uint_type kMask = (static_cast<uint_type>(1) << kExp) - 1u; static constexpr int kUintBits = sizeof(uint_type) * 8; int exp = exp_bias + int{std::numeric_limits<real_type>::max_exponent - 2}; uint_type sign = std::is_same<SignedTag, GenerateNegativeTag>::value ? (static_cast<uint_type>(1) << (kUintBits - 1)) : 0; if (std::is_same<SignedTag, GenerateSignedTag>::value) { if (std::is_same<uint_type, uint64_t>::value) { sign = bits & uint64_t{0x8000000000000000}; } if (std::is_same<uint_type, uint32_t>::value) { const uint64_t tmp = bits & uint64_t{0x8000000000000000}; sign = static_cast<uint32_t>(tmp >> 32); } bits = bits & uint64_t{0x7FFFFFFFFFFFFFFF}; exp++; } if (IncludeZero) { if (bits == 0u) return 0; } int clz = countl_zero(bits); bits <<= (IncludeZero ? clz : (clz & 63)); exp -= clz; bits >>= (63 - kExp); uint_type val = sign | (static_cast<uint_type>(exp) << kExp) | (static_cast<uint_type>(bits) & kMask); real_type result; memcpy(static_cast<void*>(&result), static_cast<const void*>(&val), sizeof(result)); return result; } } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/generate_real.h" #include <cfloat> #include <cstddef> #include <cstdint> #include <string> #include "gtest/gtest.h" #include "absl/flags/flag.h" #include "absl/numeric/bits.h" ABSL_FLAG(int64_t, absl_random_test_trials, 50000, "Number of trials for the probability tests."); using absl::random_internal::GenerateNegativeTag; using absl::random_internal::GeneratePositiveTag; using absl::random_internal::GenerateRealFromBits; using absl::random_internal::GenerateSignedTag; namespace { TEST(GenerateRealTest, U64ToFloat_Positive_NoZero_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GeneratePositiveTag, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5); EXPECT_EQ(ToFloat(0x8000000000000001), 0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); } TEST(GenerateRealTest, U64ToFloat_Positive_Zero_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0); EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5); EXPECT_EQ(ToFloat(0x8000000000000001), 0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); } TEST(GenerateRealTest, U64ToFloat_Negative_NoZero_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GenerateNegativeTag, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), -0.5); EXPECT_EQ(ToFloat(0x8000000000000001), -0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(GenerateRealTest, U64ToFloat_Negative_Zero_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GenerateNegativeTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0); EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), -0.5); EXPECT_EQ(ToFloat(0x8000000000000001), -0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(GenerateRealTest, U64ToFloat_Signed_NoZero_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GenerateSignedTag, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f); EXPECT_EQ(ToFloat(0x8000000000000000), -5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(GenerateRealTest, U64ToFloat_Signed_Zero_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GenerateSignedTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0); EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f); EXPECT_EQ(ToFloat(0x8000000000000000), 0); EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(GenerateRealTest, U64ToFloat_Signed_Bias_Test) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GenerateSignedTag, true>(a, 1); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0); EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 2 * 0.9999999404f); EXPECT_EQ(ToFloat(0x8000000000000000), 0); EXPECT_EQ(ToFloat(0x8000000000000001), 2 * -1.084202172e-19f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f); } TEST(GenerateRealTest, U64ToFloatTest) { auto ToFloat = [](uint64_t a) -> float { return GenerateRealFromBits<float, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5f); EXPECT_EQ(ToFloat(0x8000000000000001), 0.5f); EXPECT_EQ(ToFloat(0x800000FFFFFFFFFF), 0.5f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); EXPECT_GT(ToFloat(0x0000000000000001), 0.0f); EXPECT_NE(ToFloat(0x7FFFFF0000000000), ToFloat(0x7FFFFEFFFFFFFFFF)); EXPECT_LT(ToFloat(0xFFFFFFFFFFFFFFFF), 1.0f); int32_t two_to_24 = 1 << 24; EXPECT_EQ(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24), two_to_24 - 1); EXPECT_NE(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24 * 2), two_to_24 * 2 - 1); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFF0000000000)); EXPECT_NE(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFEFFFFFFFFFF)); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF8000000000)); EXPECT_NE(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF7FFFFFFFFF)); EXPECT_EQ(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFC000000000)); EXPECT_NE(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFBFFFFFFFFF)); for (int i = 0; i < 100; ++i) { EXPECT_EQ(i * ToFloat(0x0000000000000001), ToFloat(i)); } float exp_values[64]; exp_values[63] = 0.5f; for (int i = 62; i >= 0; --i) exp_values[i] = 0.5f * exp_values[i + 1]; constexpr uint64_t one = 1; for (int i = 0; i < 64; ++i) { EXPECT_EQ(ToFloat(one << i), exp_values[i]); for (int j = 1; j < FLT_MANT_DIG && i - j >= 0; ++j) { EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i] + exp_values[i - j]); } for (int j = FLT_MANT_DIG; i - j >= 0; ++j) { EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i]); } } } TEST(GenerateRealTest, U64ToDouble_Positive_NoZero_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GeneratePositiveTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); } TEST(GenerateRealTest, U64ToDouble_Positive_Zero_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); } TEST(GenerateRealTest, U64ToDouble_Negative_NoZero_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GenerateNegativeTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20); EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), -0.5); EXPECT_EQ(ToDouble(0x8000000000000001), -0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(GenerateRealTest, U64ToDouble_Negative_Zero_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GenerateNegativeTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), -0.5); EXPECT_EQ(ToDouble(0x8000000000000001), -0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(GenerateRealTest, U64ToDouble_Signed_NoZero_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GenerateSignedTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978); EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(GenerateRealTest, U64ToDouble_Signed_Zero_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GenerateSignedTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978); EXPECT_EQ(ToDouble(0x8000000000000000), 0); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(GenerateRealTest, U64ToDouble_GenerateSignedTag_Bias_Test) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GenerateSignedTag, true>(a, -1); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978 / 2); EXPECT_EQ(ToDouble(0x8000000000000000), 0); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19 / 2); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2); } TEST(GenerateRealTest, U64ToDoubleTest) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GeneratePositiveTag, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x7fffffffffffffef), 0.499999999999999944489); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0x80000000000007FF), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF)); EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFF), 1.0); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF800)); EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF7FF)); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00)); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFBFF)); EXPECT_EQ(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFE00)); EXPECT_NE(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFDFF)); EXPECT_EQ(ToDouble(0x1000000000000001), 0.0625); EXPECT_EQ(ToDouble(0x2000000000000001), 0.125); EXPECT_EQ(ToDouble(0x3000000000000001), 0.1875); EXPECT_EQ(ToDouble(0x4000000000000001), 0.25); EXPECT_EQ(ToDouble(0x5000000000000001), 0.3125); EXPECT_EQ(ToDouble(0x6000000000000001), 0.375); EXPECT_EQ(ToDouble(0x7000000000000001), 0.4375); EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0x9000000000000001), 0.5625); EXPECT_EQ(ToDouble(0xa000000000000001), 0.625); EXPECT_EQ(ToDouble(0xb000000000000001), 0.6875); EXPECT_EQ(ToDouble(0xc000000000000001), 0.75); EXPECT_EQ(ToDouble(0xd000000000000001), 0.8125); EXPECT_EQ(ToDouble(0xe000000000000001), 0.875); EXPECT_EQ(ToDouble(0xf000000000000001), 0.9375); int64_t two_to_53 = int64_t{1} << 53; EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53), two_to_53 - 1); EXPECT_NE(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53 * 2), two_to_53 * 2 - 1); for (int i = 0; i < 100; ++i) { EXPECT_EQ(i * ToDouble(0x0000000000000001), ToDouble(i)); } double exp_values[64]; exp_values[63] = 0.5; for (int i = 62; i >= 0; --i) exp_values[i] = 0.5 * exp_values[i + 1]; constexpr uint64_t one = 1; for (int i = 0; i < 64; ++i) { EXPECT_EQ(ToDouble(one << i), exp_values[i]); for (int j = 1; j < DBL_MANT_DIG && i - j >= 0; ++j) { EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i] + exp_values[i - j]); } for (int j = DBL_MANT_DIG; i - j >= 0; ++j) { EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i]); } } } TEST(GenerateRealTest, U64ToDoubleSignedTest) { auto ToDouble = [](uint64_t a) { return GenerateRealFromBits<double, GenerateSignedTag, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19); const double e_plus = ToDouble(0x0000000000000001); const double e_minus = ToDouble(0x8000000000000001); EXPECT_EQ(e_plus, 1.084202172485504434e-19); EXPECT_EQ(e_minus, -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x3fffffffffffffef), 0.499999999999999944489); EXPECT_EQ(ToDouble(0xbfffffffffffffef), -0.499999999999999944489); EXPECT_EQ(ToDouble(0x4000000000000000), 0.5); EXPECT_EQ(ToDouble(0x4000000000000001), 0.5); EXPECT_EQ(ToDouble(0x40000000000003FF), 0.5); EXPECT_EQ(ToDouble(0xC000000000000000), -0.5); EXPECT_EQ(ToDouble(0xC000000000000001), -0.5); EXPECT_EQ(ToDouble(0xC0000000000003FF), -0.5); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFe), 0.999999999999999888978); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999999999888978); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF)); EXPECT_LT(ToDouble(0x7FFFFFFFFFFFFFFF), 1.0); EXPECT_GT(ToDouble(0x7FFFFFFFFFFFFFFF), 0.9999999999); EXPECT_GT(ToDouble(0xFFFFFFFFFFFFFFFe), -1.0); EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFFC00)); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00)); EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFF3FF)); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFF3FF)); EXPECT_EQ(ToDouble(0x1000000000000001), 0.125); EXPECT_EQ(ToDouble(0x2000000000000001), 0.25); EXPECT_EQ(ToDouble(0x3000000000000001), 0.375); EXPECT_EQ(ToDouble(0x4000000000000001), 0.5); EXPECT_EQ(ToDouble(0x5000000000000001), 0.625); EXPECT_EQ(ToDouble(0x6000000000000001), 0.75); EXPECT_EQ(ToDouble(0x7000000000000001), 0.875); EXPECT_EQ(ToDouble(0x7800000000000001), 0.9375); EXPECT_EQ(ToDouble(0x7c00000000000001), 0.96875); EXPECT_EQ(ToDouble(0x7e00000000000001), 0.984375); EXPECT_EQ(ToDouble(0x7f00000000000001), 0.9921875); EXPECT_EQ(ToDouble(0x9000000000000001), -0.125); EXPECT_EQ(ToDouble(0xa000000000000001), -0.25); EXPECT_EQ(ToDouble(0xb000000000000001), -0.375); EXPECT_EQ(ToDouble(0xc000000000000001), -0.5); EXPECT_EQ(ToDouble(0xd000000000000001), -0.625); EXPECT_EQ(ToDouble(0xe000000000000001), -0.75); EXPECT_EQ(ToDouble(0xf000000000000001), -0.875); int64_t two_to_53 = int64_t{1} << 53; EXPECT_EQ(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53), two_to_53 - 1); EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53), -(two_to_53 - 1)); EXPECT_NE(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53 * 2), two_to_53 * 2 - 1); for (int i = 1; i < 100; ++i) { EXPECT_EQ(i * e_plus, ToDouble(i)) << i; EXPECT_EQ(i * e_minus, ToDouble(0x8000000000000000 | i)) << i; } } TEST(GenerateRealTest, ExhaustiveFloat) { auto ToFloat = [](uint64_t a) { return GenerateRealFromBits<float, GeneratePositiveTag, true>(a); }; float last_f = 1.0, last_g = 2.0; uint64_t f_collisions = 0, g_collisions = 0; uint64_t f_unique = 0, g_unique = 0; uint64_t total = 0; auto count = [&](const float r) { total++; const float f = 0.0f * (1.0f - r) + 1.0f * r; if (f >= last_f) { f_collisions++; } else { f_unique++; last_f = f; } const float g = 1.0f * (1.0f - r) + 2.0f * r; if (g >= last_g) { g_collisions++; } else { g_unique++; last_g = g; } }; size_t limit = absl::GetFlag(FLAGS_absl_random_test_trials); uint64_t x = ~uint64_t(0); for (; x != 0 && limit > 0;) { constexpr int kDig = (64 - FLT_MANT_DIG); uint64_t dec = 1; uint64_t chk = 0; const int clz = absl::countl_zero(x); if (clz < kDig) { dec <<= (kDig - clz); chk = (~uint64_t(0)) >> (clz + 1); } for (; x > chk && limit > 0; x -= dec) { count(ToFloat(x)); --limit; } } static_assert(FLT_MANT_DIG == 24, "The float type is expected to have a 24 bit mantissa."); if (limit != 0) { EXPECT_LT(1 << 28, f_unique); EXPECT_EQ((1 << 24) + 40 * (1 << 23) - 1, f_unique); EXPECT_EQ(total, f_unique); EXPECT_EQ(0, f_collisions); EXPECT_LE(1 << 23, g_unique); EXPECT_EQ(total - g_unique, g_collisions); } } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/generate_real.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/generate_real_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
88b9adff-15bb-48a6-920b-e030f186c9d9
cpp
tensorflow/tensorflow
all_reduce_folder
third_party/xla/xla/service/all_reduce_folder.cc
third_party/xla/xla/service/all_reduce_folder_test.cc
#include "xla/service/all_reduce_folder.h" #include <algorithm> #include <cstdint> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/collective_device_list.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/all_reduce_key.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" namespace xla { namespace { std::optional<std::vector<ReplicaGroup>> FoldReplicaGroups( absl::Span<const ReplicaGroup> replica_groups0, absl::Span<const ReplicaGroup> replica_groups1) { int64_t num_replicas = 0; for (const ReplicaGroup &rg : replica_groups0) { for (int64_t id : rg.replica_ids()) { num_replicas = std::max(num_replicas, id); } } num_replicas++; std::vector<int> replica_group_no(num_replicas, -1); for (int group_no = 0; group_no < replica_groups0.size(); ++group_no) { for (int64_t id : replica_groups0[group_no].replica_ids()) { replica_group_no[id] = group_no; } } absl::flat_hash_map<std::vector<bool>, int64_t> contributor_set_id; std::vector<int64_t> contributing_replicas_set_id(num_replicas, 0); int64_t next_id = 1; for (const ReplicaGroup &rg : replica_groups1) { std::vector<bool> contributors(num_replicas, false); for (int64_t id : rg.replica_ids()) { int64_t group_no = replica_group_no[id]; for (int64_t contrib : replica_groups0[group_no].replica_ids()) { if (contributors[contrib]) { return std::nullopt; } contributors[contrib] = true; } } int64_t set_id; auto it = contributor_set_id.find(contributors); if (it != contributor_set_id.end()) { set_id = it->second; } else { set_id = next_id++; contributor_set_id[contributors] = set_id; } for (int64_t id : rg.replica_ids()) { contributing_replicas_set_id[id] = set_id; } } std::vector<ReplicaGroup> new_replica_groups; new_replica_groups.reserve(contributor_set_id.size()); for (const auto &it : contributor_set_id) { const std::vector<bool> &contributors = it.first; const int64_t set_id = it.second; new_replica_groups.emplace_back(); ReplicaGroup &group = new_replica_groups.back(); for (int64_t replica = 0; replica < num_replicas; ++replica) { if (contributors[replica]) { if (contributing_replicas_set_id[replica] != set_id) { return std::nullopt; } group.add_replica_ids(replica); } } } absl::c_sort(new_replica_groups, [](const ReplicaGroup &a, const ReplicaGroup &b) { return a.replica_ids(0) < b.replica_ids(0); }); return new_replica_groups; } } absl::StatusOr<bool> AllReduceFolder::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { if (hlo_query::ContainsLayoutConstrainedAllReduce(*module)) { VLOG(1) << "Skip AllReduceFolder because the module contains all-reduce " "with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction *inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kAllReduce || inst->operand(0)->opcode() != HloOpcode::kAllReduce) { continue; } auto *ar0 = Cast<HloAllReduceInstruction>(inst->mutable_operand(0)); auto *ar1 = Cast<HloAllReduceInstruction>(inst); if (ar0->user_count() != 1) { continue; } std::optional<AllReduceKey> key0 = GetAllReduceKey( ar0, nullptr, true); std::optional<AllReduceKey> key1 = GetAllReduceKey( ar1, nullptr, true); if (!key0 || !key1 || *key0 != *key1 || ar0->replica_groups().empty() || ar1->replica_groups().empty()) { continue; } std::optional<std::vector<ReplicaGroup>> new_replica_groups = FoldReplicaGroups(ar0->replica_groups(), ar1->replica_groups()); if (!new_replica_groups) { continue; } std::optional<int64_t> channel_id; if (ar0->channel_id()) { channel_id = next_channel_id++; } HloInstruction *new_ar = computation->AddInstruction(HloInstruction::CreateAllReduce( ar0->shape(), ar0->operands(), ar0->to_apply(), CollectiveDeviceList(*new_replica_groups), false, channel_id, ar0->use_global_device_ids())); TF_RETURN_IF_ERROR(ar1->ReplaceAllUsesWith(new_ar)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar1)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(ar0)); changed = true; } } return changed; } }
#include "xla/service/all_reduce_folder.h" #include <cstddef> #include <initializer_list> #include <memory> #include "absl/algorithm/container.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace matcher = xla::testing::opcode_matchers; using ::testing::HasSubstr; class AllReduceFolderTest : public HloTestBase {}; const char *k2AllReduce = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups=$group_0, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups=$group_1, to_apply=sum } )"; size_t AllReduceCount(HloModule *module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<HloOpcode::kAllReduce>); } void ExpectOneAllReduce(HloModule *module, absl::string_view target_replica_groups) { EXPECT_EQ(AllReduceCount(module), 1); HloInstruction *root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, matcher::AllReduce(matcher::Parameter(0))); EXPECT_THAT(root->ToString(), HasSubstr(target_replica_groups)); } TEST_F(AllReduceFolderTest, Simple) { TF_ASSERT_OK_AND_ASSIGN( auto module, RunAndCheckHloRewrite(k2AllReduce, AllReduceFolder(), true, {{"$group_0", "{{0,1},{2,3}}"}, {"$group_1", "{{0,2},{1,3}}"}})); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,2,3}}"); } TEST_F(AllReduceFolderTest, SimpleSwap) { TF_ASSERT_OK_AND_ASSIGN( auto module, RunAndCheckHloRewrite(k2AllReduce, AllReduceFolder(), true, {{"$group_1", "{{0,1},{2,3}}"}, {"$group_0", "{{0,2},{1,3}}"}})); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,2,3}}"); } TEST_F(AllReduceFolderTest, BothEmptyReplicaGroups_NotTransformed) { TF_ASSERT_OK(RunAndCheckHloRewrite(k2AllReduce, AllReduceFolder(), false, {{"$group_0", "{}"}, {"$group_1", "{}"}})); } TEST_F(AllReduceFolderTest, EmptyReplicaGroups_NotTransformed) { TF_ASSERT_OK(RunAndCheckHloRewrite( k2AllReduce, AllReduceFolder(), false, {{"$group_0", "{}"}, {"$group_1", "{{0,2},{1,3}}"}})); } TEST_F(AllReduceFolderTest, MismatchOtherProperties0_NotTransformed) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3}}, channel_id=1, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,2},{1,3}}, to_apply=sum } )"; TF_ASSERT_OK(RunAndCheckHloRewrite(hlo_string, AllReduceFolder(), false)); } TEST_F(AllReduceFolderTest, MismatchOtherProperties1_NotTransformed) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } mul { a = f32[] parameter(0) b = f32[] parameter(1) ROOT mul = f32[] multiply(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3}}, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,2},{1,3}}, to_apply=mul } )"; TF_ASSERT_OK(RunAndCheckHloRewrite(hlo_string, AllReduceFolder(), false)); } TEST_F(AllReduceFolderTest, NotFoldable_NotTransformed) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3}}, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,1},{2,3}}, to_apply=sum } )"; TF_ASSERT_OK(RunAndCheckHloRewrite(hlo_string, AllReduceFolder(), false)); } TEST_F(AllReduceFolderTest, Foldable0) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,4},{1,5},{2,3},{6,7}}, to_apply=sum ROOT ar1 = f32[8] all-reduce(ar0), replica_groups={{0,5},{4,1},{2,7},{3,6}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunAndCheckHloRewrite(hlo_string, AllReduceFolder())); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,4,5},{2,3,6,7}}"); } TEST_F(AllReduceFolderTest, FoldableChain) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) ar0 = f32[8] all-reduce(p0), replica_groups={{0,1},{2,3},{4,5},{6,7}}, to_apply=sum ar1 = f32[8] all-reduce(ar0), replica_groups={{0,2},{1,3},{4,6},{5,7}}, to_apply=sum ROOT ar2 = f32[8] all-reduce(ar1), replica_groups={{0,4},{1,5},{2,6},{3,7}}, to_apply=sum } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunAndCheckHloRewrite(hlo_string, AllReduceFolder())); ExpectOneAllReduce(module.get(), "replica_groups={{0,1,2,3,4,5,6,7}}"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_folder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/all_reduce_folder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e3bfde0e-9a6f-443c-be03-78ee0a78278c
cpp
google/arolla
bound_split_conditions
arolla/decision_forest/pointwise_evaluation/bound_split_conditions.h
arolla/decision_forest/pointwise_evaluation/bound_split_conditions_test.cc
#ifndef AROLLA_DECISION_FOREST_POINTWISE_EVALUATION_BOUND_SPLIT_CONDITIONS_H_ #define AROLLA_DECISION_FOREST_POINTWISE_EVALUATION_BOUND_SPLIT_CONDITIONS_H_ #include <memory> #include <variant> #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/decision_forest/split_condition.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" #include "arolla/decision_forest/split_conditions/set_of_values_split_condition.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/status_macros_backport.h" namespace arolla { struct IntervalBoundCondition { FrameLayout::Slot<OptionalValue<float>> input_slot = FrameLayout::Slot<OptionalValue<float>>::UnsafeUninitializedSlot(); float left, right; bool operator()(const ConstFramePtr ctx) const { OptionalValue<float> v = ctx.Get(input_slot); return v.present && left <= v.value && v.value <= right; } using cond_type = IntervalSplitCondition; static absl::StatusOr<IntervalBoundCondition> Create( const std::shared_ptr<const cond_type>& cond, absl::Span<const TypedSlot> input_slots) { ASSIGN_OR_RETURN( auto input_slot, input_slots[cond->input_id()].ToSlot<OptionalValue<float>>()); return IntervalBoundCondition{input_slot, cond->left(), cond->right()}; } }; template <class T> struct SetOfValuesBoundCondition { FrameLayout::Slot<OptionalValue<T>> input_slot = FrameLayout::Slot<OptionalValue<T>>::UnsafeUninitializedSlot(); absl::flat_hash_set<T> values; bool result_if_missed; bool operator()(const ConstFramePtr ctx) const { const OptionalValue<T>& v = ctx.Get(input_slot); return (v.present && values.contains(v.value)) || (!v.present && result_if_missed); } using cond_type = SetOfValuesSplitCondition<T>; static absl::StatusOr<SetOfValuesBoundCondition> Create( const std::shared_ptr<const cond_type>& cond, absl::Span<const TypedSlot> input_slots) { ASSIGN_OR_RETURN( auto input_slot, input_slots[cond->input_id()].template ToSlot<OptionalValue<T>>()); return SetOfValuesBoundCondition{input_slot, cond->values(), cond->GetDefaultResultForMissedInput()}; } }; struct VirtualBoundCondition { std::shared_ptr<const SplitCondition> condition; absl::InlinedVector<TypedSlot, 1> inputs; bool operator()(const ConstFramePtr ctx) const { return condition->EvaluateCondition(ctx, inputs); } using cond_type = SplitCondition; static absl::StatusOr<VirtualBoundCondition> Create( const std::shared_ptr<const cond_type>& cond, absl::Span<const TypedSlot> input_slots) { VirtualBoundCondition res; res.condition = cond; res.inputs.insert(res.inputs.end(), input_slots.begin(), input_slots.end()); return res; } }; template <typename... Args> class VariantBoundCondition { public: bool operator()(const ConstFramePtr ctx) const { return std::visit(Visitor{ctx}, bound_condition_); } static absl::StatusOr<VariantBoundCondition<Args...>> Create( const std::shared_ptr<const SplitCondition>& condition, absl::Span<const TypedSlot> input_slots) { VariantBoundCondition<Args...> res; bool initialized = false; for (auto status : {res.TryInit<Args>(condition, input_slots, &initialized)...}) { if (!status.ok()) return status; } if (initialized) { return res; } else { return absl::InvalidArgumentError("unsupported SplitCondition"); } } private: template <class T> absl::Status TryInit(const std::shared_ptr<const SplitCondition>& cond, absl::Span<const TypedSlot> input_slots, bool* initialized) { if (*initialized) return absl::OkStatus(); if (auto casted_cond = std::dynamic_pointer_cast<const typename T::cond_type>(cond)) { ASSIGN_OR_RETURN(bound_condition_, T::Create(casted_cond, input_slots)); *initialized = true; } return absl::OkStatus(); } struct Visitor { const ConstFramePtr context; explicit Visitor(const ConstFramePtr ctx) : context(ctx) {} template <class T> bool operator()(const T& condition) { return condition(context); } }; std::variant<Args...> bound_condition_; }; } #endif
#include "arolla/decision_forest/pointwise_evaluation/bound_split_conditions.h" #include <cmath> #include <cstdint> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" #include "arolla/decision_forest/split_conditions/set_of_values_split_condition.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/bytes.h" namespace arolla::testing { namespace { TEST(BoundConditions, IntervalSplitCondition) { auto interval_split = IntervalSplit(0, 2, 3); FrameLayout::Builder bldr; auto slot = bldr.AddSlot<OptionalValue<float>>(); auto layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr context = alloc.frame(); using BoundCondition = VariantBoundCondition<IntervalBoundCondition, SetOfValuesBoundCondition<int64_t>>; std::vector<TypedSlot> typed_slots = {TypedSlot::FromSlot(slot)}; ASSERT_OK_AND_ASSIGN(BoundCondition bound_interval, BoundCondition::Create(interval_split, typed_slots)); context.Set(slot, 3.5); EXPECT_EQ(bound_interval(context), false); context.Set(slot, NAN); EXPECT_EQ(bound_interval(context), false); context.Set(slot, 2.5); EXPECT_EQ(bound_interval(context), true); context.Set(slot, {}); EXPECT_EQ(bound_interval(context), false); } TEST(BoundConditions, SetOfValuesSplitCondition) { auto set_of_values = SetOfValuesSplit<int64_t>(0, {2, 4, 3}, true); FrameLayout::Builder bldr; auto slot = bldr.AddSlot<OptionalValue<int64_t>>(); std::vector<TypedSlot> typed_slots = {TypedSlot::FromSlot(slot)}; auto layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr context = alloc.frame(); using BoundCondition = VariantBoundCondition<IntervalBoundCondition, SetOfValuesBoundCondition<int64_t>>; ASSERT_OK_AND_ASSIGN(BoundCondition bound_set_of_values, BoundCondition::Create(set_of_values, typed_slots)); context.Set(slot, 3); EXPECT_EQ(bound_set_of_values(context), true); context.Set(slot, 5); EXPECT_EQ(bound_set_of_values(context), false); context.Set(slot, {}); EXPECT_EQ(bound_set_of_values(context), true); } TEST(BoundConditions, VirtualBoundCondition) { auto set_of_values = SetOfValuesSplit<Bytes>(0, {Bytes("A"), Bytes("B"), Bytes("C")}, true); FrameLayout::Builder bldr; auto slot = bldr.AddSlot<OptionalValue<Bytes>>(); std::vector<TypedSlot> typed_slots = {TypedSlot::FromSlot(slot)}; auto layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr context = alloc.frame(); using BoundCondition = VariantBoundCondition<IntervalBoundCondition, SetOfValuesBoundCondition<int64_t>, VirtualBoundCondition>; ASSERT_OK_AND_ASSIGN(BoundCondition bound_set_of_values, BoundCondition::Create(set_of_values, typed_slots)); context.Set(slot, Bytes("B")); EXPECT_EQ(bound_set_of_values(context), true); context.Set(slot, Bytes("D")); EXPECT_EQ(bound_set_of_values(context), false); context.Set(slot, {}); EXPECT_EQ(bound_set_of_values(context), true); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/pointwise_evaluation/bound_split_conditions.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/pointwise_evaluation/bound_split_conditions_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
e69fde1a-b1ac-484c-b566-41a0b2e4cb3a
cpp
tensorflow/tensorflow
pattern_matcher
third_party/xla/xla/service/pattern_matcher.h
third_party/xla/xla/service/pattern_matcher_test.cc
#ifndef XLA_SERVICE_PATTERN_MATCHER_H_ #define XLA_SERVICE_PATTERN_MATCHER_H_ #include <cstddef> #include <cstdint> #include <ios> #include <memory> #include <optional> #include <ostream> #include <sstream> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "absl/utility/utility.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/hlo/ir/ptrvec.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { struct MatchOption { bool capture; bool single_user_only; std::ostream* explain_os; }; template <typename Value, typename Pattern> bool Match(Value* value, const Pattern& pattern, MatchOption option = {true, false, nullptr}) { if (option.capture) { auto new_option = option; new_option.capture = false; if (!pattern.Match(value, new_option)) { return false; } } return pattern.Match(value, option); } template <typename Value, typename Pattern> bool MatchSingleUserOnly(Value* value, const Pattern& pattern) { MatchOption option = {true, true, nullptr}; return Match(value, pattern, option); } template <typename FilterPattern, typename Pattern> bool MatchAndLogIfFailed(HloInstruction* instr, absl::string_view desc, const Pattern& pattern, bool enable_logging, const FilterPattern& filter_pattern) { bool matched = Match(instr, pattern); if (matched || !enable_logging || !Match(instr, filter_pattern)) { return matched; } std::stringstream os; CHECK(!Match( instr, pattern, {false, false, &os})); LOG(ERROR) << "Failed to match " << desc << ":\n" << os.str(); return false; } namespace match { namespace detail { #pragma push_macro("EXPLAIN") #define EXPLAIN \ if (option.explain_os) *option.explain_os enum { kIndentInc = 2, }; inline void Indent(std::ostream* os, int64_t indent) { *os << "\n"; for (int64_t i = 0; i < indent; ++i) { *os << " "; } } template <typename T, typename Dummy = void> struct IsTrivialMatcher { static constexpr bool value = false; }; template <typename T> struct IsTrivialMatcher<T, typename std::enable_if<T::kIsTrivialMatcher>::type> { static constexpr bool value = true; }; template <typename Item, typename... Patterns> class AllOfPattern { public: explicit AllOfPattern(const Patterns&... patterns) : patterns_(patterns...) {} bool Match(const Item* item, MatchOption option) const { bool matched = MatchImpl(item, option, std::integral_constant<size_t, 0>()); DCHECK(matched || !option.capture); return matched; } bool Match(Item* item, MatchOption option) const { bool matched = MatchImpl(item, option, std::integral_constant<size_t, 0>()); DCHECK(matched || !option.capture); return matched; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { DescribeToImpl(os, std::integral_constant<size_t, 0>(), indent); } const std::tuple<Patterns...>& patterns() const { return patterns_; } private: template <typename ItemType, size_t index> bool MatchImpl(ItemType* item, MatchOption option, std::integral_constant<size_t, index>) const { return std::get<index>(patterns_).Match(item, option) && MatchImpl(item, option, std::integral_constant<size_t, index + 1>()); } template <typename ItemType> bool MatchImpl(ItemType* item, MatchOption option, std::integral_constant<size_t, sizeof...(Patterns)>) const { return true; } template <size_t index> void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, index>, int64_t indent) const { constexpr bool first_is_trivial = IsTrivialMatcher<typename std::remove_reference<decltype(std::get<0>( patterns_))>::type>::value; constexpr bool is_last = index == sizeof...(Patterns) - 1; const auto& submatcher = std::get<index>(patterns_); auto print_bulleted_item = [&] { *os << " * "; submatcher.DescribeTo(os, indent + 3); if (!is_last) { *os << " AND"; Indent(os, indent); } }; if (index == 0) { if (first_is_trivial || is_last) { submatcher.DescribeTo(os, indent + kIndentInc); if (sizeof...(Patterns) > 2) { *os << ":"; Indent(os, indent); } } else { *os << "all of:"; Indent(os, indent); print_bulleted_item(); } } else if (first_is_trivial && index == 1 && sizeof...(Patterns) == 2) { *os << " "; submatcher.DescribeTo(os, indent); } else { print_bulleted_item(); } DescribeToImpl(os, std::integral_constant<size_t, index + 1>(), indent); } void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, sizeof...(Patterns)>, int64_t indent) const {} std::tuple<Patterns...> patterns_; }; } template <typename Item, typename... Patterns> auto AllOf(const Patterns&... patterns) { return detail::AllOfPattern<typename std::remove_const<Item>::type, Patterns...>(patterns...); } template <typename Item, typename... InnerPs, typename... OuterPs> auto AllOf(const detail::AllOfPattern<Item, InnerPs...>& inner_p, const OuterPs&... outer_ps) { auto make_all_of = [](const InnerPs&... inner_ps, const OuterPs&... outer_ps) { return detail::AllOfPattern<typename std::remove_const<Item>::type, InnerPs..., OuterPs...>(inner_ps..., outer_ps...); }; return absl::apply(make_all_of, std::tuple_cat(inner_p.patterns(), std::make_tuple(outer_ps...))); } namespace detail { template <typename LayoutType, typename Impl> class LayoutPattern; class LayoutPatternBaseImpl { public: bool Match(const ::xla::Layout* layout, MatchOption option) const { if (layout == nullptr) { EXPLAIN << "Layout is null"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "a layout"; } static constexpr bool kIsTrivialMatcher = true; }; class LayoutPatternEqualImpl { public: explicit constexpr LayoutPatternEqualImpl(const ::xla::Layout* layout) : layout_(layout) {} bool Match(const ::xla::Layout* layout, MatchOption option) const { if (!LayoutUtil::Equal(*layout_, *layout)) { EXPLAIN << "Layout " << LayoutUtil::HumanString(*layout) << " is not equal to expected " << LayoutUtil::HumanString(*layout_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "equal to " << LayoutUtil::HumanString(*layout_); } private: const ::xla::Layout* layout_; }; class LayoutPatternMinorToMajorImpl { public: explicit LayoutPatternMinorToMajorImpl( absl::Span<const int64_t> minor_to_major) : minor_to_major_(minor_to_major.begin(), minor_to_major.end()) {} bool Match(const ::xla::Layout* layout, MatchOption option) const { if (layout->minor_to_major() != minor_to_major_) { EXPLAIN << "Layout does not have minor to major [" << absl::StrJoin(minor_to_major_, ",") << "]"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with minor to major [" << absl::StrJoin(minor_to_major_, ",") << "]"; } private: absl::InlinedVector<int64_t, 8> minor_to_major_; }; template <typename LayoutType, typename Impl> class LayoutPattern { private: template <typename NewImpl> auto AppendImpl(NewImpl new_impl) const { auto new_allof = AllOf<::xla::Layout>(impl_, std::move(new_impl)); return LayoutPattern<LayoutType, decltype(new_allof)>(std::move(new_allof), matched_layout_); } public: explicit constexpr LayoutPattern(const Impl& impl, LayoutType** matched_layout) : impl_(impl), matched_layout_(matched_layout) {} bool Match(const ::xla::Layout* layout, MatchOption option) const { if (impl_.Match(layout, option)) { if (option.capture && matched_layout_) { *matched_layout_ = layout; } return true; } return false; } bool Match(::xla::Layout* layout, MatchOption option) const { if (impl_.Match(layout, option)) { if (option.capture && matched_layout_) { *matched_layout_ = layout; } return true; } return false; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { impl_.DescribeTo(os, indent); } constexpr auto EqualTo(const ::xla::Layout* layout) const { return AppendImpl(LayoutPatternEqualImpl(layout)); } constexpr auto WithMinorToMajor( absl::Span<const int64_t> minor_to_major) const { return AppendImpl(LayoutPatternMinorToMajorImpl(minor_to_major)); } private: Impl impl_; LayoutType** matched_layout_; }; template <typename Item, typename... Patterns> class AnyOfPattern { public: explicit AnyOfPattern(const Patterns&... patterns) : patterns_(patterns...) {} bool Match(const Item* item, MatchOption option) const { return MatchImpl(item, option); } bool Match(Item* item, MatchOption option) const { return MatchImpl(item, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "any of:"; Indent(os, indent); DescribeToImpl(os, std::integral_constant<size_t, 0>(), indent); } private: template <typename ItemType> bool MatchImpl(ItemType* item, MatchOption option) const { std::optional<std::stringstream> explanation; MatchOption new_option = option; if (option.explain_os) { new_option.explain_os = &explanation.emplace(); } bool rv = MatchRecursiveImpl(item, new_option, std::integral_constant<size_t, 0>()); if (!rv && option.explain_os) { EXPLAIN << "None of the following matchers succeeded:"; EXPLAIN << explanation->str(); } return rv; } template <typename ItemType, size_t index> bool MatchRecursiveImpl(ItemType* item, MatchOption option, std::integral_constant<size_t, index>) const { auto new_option = option; new_option.capture = false; std::optional<std::stringstream> explanation; if (option.explain_os) { new_option.explain_os = &explanation.emplace(); } if (std::get<index>(patterns_).Match(item, new_option)) { if (option.capture) { bool matched = std::get<index>(patterns_).Match(item, option); DCHECK(matched); } return true; } if (option.explain_os) { EXPLAIN << "\nMatcher #" << index + 1; EXPLAIN << "\n - "; std::get<index>(patterns_).DescribeTo(option.explain_os, 3); EXPLAIN << "\nfailed with"; EXPLAIN << "\n - "; EXPLAIN << absl::StrReplaceAll(explanation->str(), {{"\n", "\n "}}); } return MatchRecursiveImpl(item, option, std::integral_constant<size_t, index + 1>()); } template <typename ItemType> bool MatchRecursiveImpl( ItemType* item, MatchOption option, std::integral_constant<size_t, sizeof...(Patterns)>) const { return false; } template <size_t index> void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, index>, int64_t indent) const { *os << " - "; std::get<index>(patterns_).DescribeTo(os, indent + 3); if (index != sizeof...(Patterns) - 1) { *os << " OR"; Indent(os, indent); } DescribeToImpl(os, std::integral_constant<size_t, index + 1>(), indent); } void DescribeToImpl(std::ostream* os, std::integral_constant<size_t, sizeof...(Patterns)>, int64_t indent) const {} std::tuple<Patterns...> patterns_; }; } inline constexpr auto Layout(const ::xla::Layout** matched_layout = nullptr) { return detail::LayoutPattern<const ::xla::Layout, detail::LayoutPatternBaseImpl>( detail::LayoutPatternBaseImpl(), matched_layout); } inline constexpr auto Layout(::xla::Layout** matched_layout) { return detail::LayoutPattern<::xla::Layout, detail::LayoutPatternBaseImpl>( detail::LayoutPatternBaseImpl(), matched_layout); } namespace detail { template <typename ShapeType, typename Impl> class ShapePattern; class ShapePatternBaseImpl { public: bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape == nullptr) { EXPLAIN << "Shape is null"; } return shape != nullptr; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "a shape"; } static constexpr bool kIsTrivialMatcher = true; }; class ShapePatternEqualImpl { public: explicit constexpr ShapePatternEqualImpl(const ::xla::Shape* shape) : shape_(shape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::Equal(*shape_, *shape)) { EXPLAIN << "Shape not equal to " << ShapeUtil::HumanStringWithLayout(*shape_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "equal to " << ShapeUtil::HumanStringWithLayout(*shape_); } private: const ::xla::Shape* shape_; }; class ShapePatternCompatibleImpl { public: explicit constexpr ShapePatternCompatibleImpl(const ::xla::Shape* shape) : shape_(shape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::Compatible(*shape_, *shape)) { EXPLAIN << "Shape not compatible with " << ShapeUtil::HumanString(*shape_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "compatible with " << ShapeUtil::HumanString(*shape_); } private: const ::xla::Shape* shape_; }; class ShapePatternElementTypeImpl { public: explicit constexpr ShapePatternElementTypeImpl(PrimitiveType element_type) : element_type_(element_type) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape->element_type() != element_type_) { EXPLAIN << "Shape does not have element type " << PrimitiveType_Name(element_type_); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with element type " << PrimitiveType_Name(element_type_); } private: PrimitiveType element_type_; }; class ShapePatternDimsImpl { public: explicit ShapePatternDimsImpl(absl::Span<const int64_t> dims) : dims_(dims.begin(), dims.end()) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape->dimensions() != dims_) { EXPLAIN << "Shape does not have dimensions [" << absl::StrJoin(dims_, ",") << "]"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with dimensions [" << absl::StrJoin(dims_, ",") << "]"; } private: absl::InlinedVector<int64_t, 8> dims_; }; class ShapePatternIsScalarImpl { public: explicit constexpr ShapePatternIsScalarImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::IsScalar(*shape)) { EXPLAIN << "Shape is not a scalar"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents a scalar"; } }; class ShapePatternIsArrayImpl { public: explicit constexpr ShapePatternIsArrayImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!shape->IsArray()) { EXPLAIN << "Shape is not an array"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents an array"; } }; class ShapePatternIsDenseArrayImpl { public: explicit constexpr ShapePatternIsDenseArrayImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!LayoutUtil::IsDenseArray(*shape)) { EXPLAIN << "Shape is not a dense array"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents a dense array"; } }; class ShapePatternIsTupleImpl { public: explicit constexpr ShapePatternIsTupleImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!shape->IsTuple()) { EXPLAIN << "Shape is not a tuple"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that represents a tuple"; } }; class ShapePatternEffectiveScalarImpl { public: explicit constexpr ShapePatternEffectiveScalarImpl() = default; bool Match(const ::xla::Shape* shape, MatchOption option) const { if (!ShapeUtil::IsEffectiveScalar(*shape)) { EXPLAIN << "Shape is not an effective scalar"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "that is an effective scalar"; } }; class ShapePatternRankImpl { public: explicit constexpr ShapePatternRankImpl(int64_t rank) : rank_(rank) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (shape->rank() != rank_) { if (rank_ == 0) { EXPLAIN << "Shape is not a scalar"; } else { EXPLAIN << "Shape does not have rank " << rank_; } return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (rank_ == 0) { *os << "that is a scalar"; } else { *os << "that has " << rank_ << " dimension" << (rank_ != 1 ? "s" : ""); } } private: int64_t rank_; }; template <typename LayoutType, typename LayoutImpl> class ShapePatternLayoutImpl { public: explicit constexpr ShapePatternLayoutImpl( const LayoutPattern<LayoutType, LayoutImpl>& layout) : layout_(layout) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { return LayoutUtil::HasLayout(*shape) && layout_.Match(&shape->layout(), option); } bool Match(::xla::Shape* shape, MatchOption option) const { if (!LayoutUtil::HasLayout(*shape)) { EXPLAIN << "Shape does not have a layout"; return false; } if (!layout_.Match(shape->mutable_layout(), option)) { EXPLAIN << "\nin layout"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with"; Indent(os, indent + kIndentInc); layout_.DescribeTo(os, indent + kIndentInc); } private: LayoutPattern<LayoutType, LayoutImpl> layout_; }; template <typename SubshapeType, typename SubshapeImpl> class ShapePatternSubshapeImpl { public: explicit ShapePatternSubshapeImpl( ShapeIndexView index, const ShapePattern<SubshapeType, SubshapeImpl>& subshape) : index_(index), subshape_(subshape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { return MatchImpl(shape, option); } bool Match(::xla::Shape* shape, MatchOption option) const { return MatchImpl(shape, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with subshape at index " << ShapeIndex(index_) << " which is"; Indent(os, indent + kIndentInc); subshape_.DescribeTo(os, indent + kIndentInc); } private: ::xla::Shape* GetSubshape(::xla::Shape* shape) const { return ShapeUtil::GetMutableSubshape(shape, index_); } const ::xla::Shape* GetSubshape(const ::xla::Shape* shape) const { return &ShapeUtil::GetSubshape(*shape, index_); } template <typename ShapeType> bool MatchImpl(ShapeType* shape, MatchOption option) const { if (!ShapeUtil::IndexIsValid(*shape, index_)) { EXPLAIN << "No subshape at " << ShapeIndex(index_); return false; } if (!subshape_.Match(GetSubshape(shape), option)) { EXPLAIN << "\nin subshape at " << ShapeIndex(index_); return false; } return true; } ShapeIndexView index_; ShapePattern<SubshapeType, SubshapeImpl> subshape_; }; template <typename ShapeType, typename Impl> class ShapePattern { private: template <typename NewImpl> auto AppendImpl(NewImpl new_impl) const { auto new_all_of = AllOf<::xla::Shape>(impl_, std::move(new_impl)); return ShapePattern<ShapeType, decltype(new_all_of)>(std::move(new_all_of), matched_shape_); } public: explicit constexpr ShapePattern(const Impl& impl, ShapeType** matched_shape) : impl_(impl), matched_shape_(matched_shape) {} bool Match(const ::xla::Shape* shape, MatchOption option) const { if (impl_.Match(shape, option)) { if (option.capture && matched_shape_) { *matched_shape_ = shape; } return true; } if (shape) { EXPLAIN << "\nin " << (shape->has_layout() ? ShapeUtil::HumanStringWithLayout(*shape) : ShapeUtil::HumanString(*shape)); } return false; } bool Match(::xla::Shape* shape, MatchOption option) const { if (impl_.Match(shape, option)) { if (option.capture && matched_shape_) { *matched_shape_ = shape; } return true; } EXPLAIN << "\nin " << (shape->has_layout() ? ShapeUtil::HumanStringWithLayout(*shape) : ShapeUtil::HumanString(*shape)); return false; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { return impl_.DescribeTo(os, indent); } constexpr auto EqualTo(const ::xla::Shape* shape) const { return AppendImpl(ShapePatternEqualImpl(shape)); } constexpr auto CompatibleTo(const ::xla::Shape* shape) const { return AppendImpl(ShapePatternCompatibleImpl(shape)); } constexpr auto WithElementType(PrimitiveType element_type) const { return AppendImpl(ShapePatternElementTypeImpl(element_type)); } constexpr auto WithDims(absl::Span<const int64_t> dims) const { return AppendImpl(ShapePatternDimsImpl(dims)); } constexpr auto IsScalar() const { return AppendImpl(ShapePatternIsScalarImpl()); } constexpr auto IsArray() const { return AppendImpl(ShapePatternIsArrayImpl()); } constexpr auto IsTuple() const { return AppendImpl(ShapePatternIsTupleImpl()); } constexpr auto IsEffectiveScalar() const { return AppendImpl(ShapePatternEffectiveScalarImpl()); } constexpr auto WithRank(int64_t rank) const { return AppendImpl(ShapePatternRankImpl(rank)); } template <typename LayoutType, typename LayoutImpl> auto WithLayout(const LayoutPattern<LayoutType, LayoutImpl>& layout) const { return AppendImpl(ShapePatternLayoutImpl<LayoutType, LayoutImpl>(layout)); } constexpr auto WithLayout(absl::Span<const int64_t> minor_to_major) const { return WithLayout(Layout().WithMinorToMajor(minor_to_major)); } constexpr auto WithLayoutEqualTo(const ::xla::Layout* layout) const { return WithLayout(Layout().EqualTo(layout)); } constexpr auto IsDenseArray() const { return AppendImpl(ShapePatternIsDenseArrayImpl()); } template <typename SubshapeType, typename SubshapeImpl> auto WithSubshape( ShapeIndexView index, const ShapePattern<SubshapeType, SubshapeImpl>& subshape) const { return AppendImpl( ShapePatternSubshapeImpl<SubshapeType, SubshapeImpl>(index, subshape)); } ShapePattern<ShapeType, AllOfPattern<::xla::Shape, Impl, ShapePatternSubshapeImpl< const ::xla::Shape, AllOfPattern<::xla::Shape, ShapePatternBaseImpl, ShapePatternEqualImpl>>>> WithSubshapeEqualTo(ShapeIndexView index, const ::xla::Shape* shape) const { return WithSubshape(index, ShapePattern<const ::xla::Shape, ShapePatternBaseImpl>( ShapePatternBaseImpl(), nullptr) .EqualTo(shape)); } ShapePattern<ShapeType, AllOfPattern<::xla::Shape, Impl, ShapePatternSubshapeImpl< const ::xla::Shape, AllOfPattern<::xla::Shape, ShapePatternBaseImpl, ShapePatternCompatibleImpl>>>> WithSubshapeCompatibleTo(ShapeIndexView index, const ::xla::Shape* shape) const { return WithSubshape(index, ShapePattern<const ::xla::Shape, ShapePatternBaseImpl>( ShapePatternBaseImpl(), nullptr) .CompatibleTo(shape)); } private: Impl impl_; ShapeType** matched_shape_; }; } inline constexpr auto Shape(const ::xla::Shape** matched_shape = nullptr) { return detail::ShapePattern<const ::xla::Shape, detail::ShapePatternBaseImpl>( detail::ShapePatternBaseImpl(), matched_shape); } inline constexpr auto Shape(::xla::Shape** matched_shape) { return detail::ShapePattern<::xla::Shape, detail::ShapePatternBaseImpl>( detail::ShapePatternBaseImpl(), matched_shape); } namespace detail { inline HloInstruction* HloOperand(HloInstruction* instr, int64_t idx) { return instr->mutable_operand(idx); } inline const HloInstruction* HloOperand(const HloInstruction* instr, int64_t idx) { return instr->operand(idx); } inline std::string InstToString(const HloInstruction* inst) { return inst->ToString( HloPrintOptions().set_print_metadata(false).set_print_percent(false)); } template <typename HloInstructionType, typename Impl> class HloInstructionPattern; class HloInstructionPatternBaseImpl { public: bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst == nullptr) { EXPLAIN << "HloInstruction* is null"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "an HloInstruction"; } static constexpr bool kIsTrivialMatcher = true; }; class HloInstructionPatternNameImpl { public: explicit HloInstructionPatternNameImpl(absl::string_view name) : name_(name) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->name() != name_) { EXPLAIN << "HloInstruction not named \"" << name_ << "\""; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "named \"" << name_ << "\""; } private: absl::string_view name_; }; class HloInstructionIsImpl { public: explicit HloInstructionIsImpl(const HloInstruction* inst) : inst_(inst) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst != inst_) { EXPLAIN << "HloInstruction " << std::hex << std::nouppercase << std::showbase << reinterpret_cast<uint64_t>(inst) << " is not " << reinterpret_cast<uint64_t>(inst_) << " (" << InstToString(inst_) << ")"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is " << std::hex << std::nouppercase << std::showbase << reinterpret_cast<uint64_t>(inst_) << " (" << InstToString(inst_) << ")"; } private: const HloInstruction* inst_; }; class HloInstructionPatternOpcodeImpl { public: explicit constexpr HloInstructionPatternOpcodeImpl(HloOpcode opcode, bool invert) : opcode_(opcode), invert_(invert) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (invert_ && inst->opcode() == opcode_) { EXPLAIN << "HloInstruction has opcode " << opcode_ << ", expected anything else"; return false; } if (!invert_ && inst->opcode() != opcode_) { EXPLAIN << "HloInstruction doesn't have opcode " << opcode_; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (!invert_) { *os << "with opcode " << opcode_; } else { *os << "with any opcode other than " << opcode_; } } private: HloOpcode opcode_; bool invert_; }; class HloInstructionCustomCallTargetImpl { public: explicit HloInstructionCustomCallTargetImpl( absl::Span<const absl::string_view> custom_call_targets) : custom_call_targets_(custom_call_targets.begin(), custom_call_targets.end()) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kCustomCall || !absl::c_linear_search(custom_call_targets_, inst->custom_call_target())) { if (custom_call_targets_.size() == 1) { EXPLAIN << "HloInstruction is not a custom call with a target '" << custom_call_targets_.front() << "'"; } else { EXPLAIN << "HloInstruction is not a custom call with a target in {" << absl::StrJoin(custom_call_targets_, ", ") << "}"; } return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (custom_call_targets_.size() == 1) { *os << "custom call with target '" << custom_call_targets_.front() << "'"; } else { *os << "custom call with target in {" << absl::StrJoin(custom_call_targets_, ", ") << "}"; } } private: absl::InlinedVector<std::string, 1> custom_call_targets_; }; class HloInstructionPatternNumOperandsImpl { public: explicit constexpr HloInstructionPatternNumOperandsImpl(int64_t num_operands) : num_operands_(num_operands) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->operand_count() != num_operands_) { EXPLAIN << "HloInstruction doesn't have " << num_operands_ << " operands"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with " << num_operands_ << " operand" << (num_operands_ != 1 ? "s" : ""); } private: int64_t num_operands_; }; template <typename ShapeType, typename ShapeImpl> class HloInstructionPatternShapeImpl { public: explicit constexpr HloInstructionPatternShapeImpl( const ShapePattern<ShapeType, ShapeImpl>& shape) : shape_(shape) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (!shape_.Match(&inst->shape(), option)) { EXPLAIN << "\nin output shape"; return false; } return true; } bool Match(::xla::HloInstruction* inst, MatchOption option) const { if (!shape_.Match(inst->mutable_shape(), option)) { EXPLAIN << "\nin output shape"; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "outputting"; Indent(os, indent + kIndentInc); shape_.DescribeTo(os, indent + kIndentInc); } private: ShapePattern<ShapeType, ShapeImpl> shape_; }; template <typename OperandType, typename OperandImpl> class HloInstructionPatternOperandImpl { public: explicit constexpr HloInstructionPatternOperandImpl( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) : operand_index_(operand_index), operand_(operand) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with operand " << operand_index_ << " which is:"; Indent(os, indent + kIndentInc); operand_.DescribeTo(os, indent + kIndentInc); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (operand_index_ >= inst->operand_count()) { EXPLAIN << "desired operand index " << operand_index_ << " is out of bounds"; return false; } if (!operand_.Match(HloOperand(inst, operand_index_), option)) { EXPLAIN << "\nin operand " << operand_index_; return false; } if (option.single_user_only && inst->operand(operand_index_)->user_count() != 1) { EXPLAIN << "Operand " << operand_index_ << " of HloInstruction has " << inst->operand(operand_index_)->user_count() << " users. Expected 1."; return false; } return true; } int64_t operand_index_; HloInstructionPattern<OperandType, OperandImpl> operand_; }; template <typename OperandType, typename OperandImpl> class HloInstructionPatternOperandIfPresentImpl { public: explicit constexpr HloInstructionPatternOperandIfPresentImpl( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) : operand_index_(operand_index), operand_(operand) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "either with fewer than " << operand_index_ + 1 << " operand" << (operand_index_ + 1 != 1 ? "s" : "") << ", or with an operand " << operand_index_ << " which is:"; Indent(os, indent + kIndentInc); operand_.DescribeTo(os, indent + kIndentInc); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (operand_index_ >= inst->operand_count()) { return true; } if (!operand_.Match(HloOperand(inst, operand_index_), option)) { EXPLAIN << "\nin operand " << operand_index_; return false; } return true; } int64_t operand_index_; HloInstructionPattern<OperandType, OperandImpl> operand_; }; template <typename OperandType1, typename OperandImpl1, typename OperandType2, typename OperandImpl2> class HloInstructionPatternBinaryOperandsAnyOrderImpl { public: explicit constexpr HloInstructionPatternBinaryOperandsAnyOrderImpl( const HloInstructionPattern<OperandType1, OperandImpl1>& op1, const HloInstructionPattern<OperandType2, OperandImpl2>& op2) : op1_(op1), op2_(op2) {} bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with two operands in either order:"; Indent(os, indent); *os << " - "; op1_.DescribeTo(os, indent + 3); Indent(os, indent); *os << " - "; op2_.DescribeTo(os, indent + 3); } private: HloInstruction* operand(HloInstruction* inst, int64_t idx) const { return inst->mutable_operand(idx); } const HloInstruction* operand(const HloInstruction* inst, int64_t idx) const { return inst->operand(idx); } template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->operand_count() != 2) { EXPLAIN << "HloInstruction did not have two operands"; return false; } if (option.single_user_only) { for (int i = 0; i < 2; ++i) { if (inst->operand(i)->user_count() != 1) { EXPLAIN << "Operand " << i << " of HloInstruction has " << inst->operand(i)->user_count() << " users. Expected 1."; return false; } } } if (!option.explain_os) { auto try_match = [&](int64_t idx1, int64_t idx2) { MatchOption new_option = option; new_option.capture = false; if (op1_.Match(operand(inst, idx1), new_option) && op2_.Match(operand(inst, idx2), new_option)) { if (option.capture) { bool matched = op1_.Match(operand(inst, idx1), option) && op2_.Match(operand(inst, idx2), option); DCHECK(matched); } return true; } return false; }; return try_match(0, 1) || try_match(1, 0); } bool matches[ 2][ 2]; std::stringstream explanations[ 2][ 2]; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { MatchOption new_option = option; new_option.capture = false; new_option.explain_os = &explanations[i][j]; matches[i][j] = i == 0 ? op1_.Match(operand(inst, j), new_option) : op2_.Match(operand(inst, j), new_option); } } for (int i = 0; i < 2; ++i) { if (matches[0][i] && matches[1][(i + 1) % 2]) { if (option.capture) { auto* operand1 = operand(inst, i); auto* operand2 = operand(inst, (i + 1) % 2); bool matched = op1_.Match(operand1, option) && op2_.Match(operand2, option); DCHECK(matched); } return true; } } auto describe_matcher = [&](int matcher_idx) { EXPLAIN << "\n - "; if (matcher_idx == 0) { op1_.DescribeTo(option.explain_os, 3); } else { CHECK_EQ(matcher_idx, 1); op2_.DescribeTo(option.explain_os, 3); } for (int i = 0; i < 2; ++i) { if (matches[matcher_idx][ i]) { continue; } EXPLAIN << "\ndoes not match " << (i == 0 ? "LHS" : "RHS") << ":\n"; EXPLAIN << " - "; EXPLAIN << absl::StrReplaceAll( explanations[matcher_idx][ i].str(), {{"\n", "\n "}}); } }; bool wrote_explanation = false; for (int i = 0; !wrote_explanation && i < 2; ++i) { if (!matches[i][0] && !matches[i][1]) { EXPLAIN << "HloInstruction's operands (ignoring order) did not match " << (i == 0 ? "first" : "second") << " matcher. Specifically,"; describe_matcher(i); wrote_explanation = true; } } for (int i = 0; !wrote_explanation && i < 2; ++i) { if (matches[ 0][ i] && matches[ 1][ i]) { CHECK(!matches[0][(i + 1) % 2]); CHECK(!matches[1][(i + 1) % 2]); CHECK(!wrote_explanation); EXPLAIN << "HloInstruction's " << (i == 1 ? "LHS" : "RHS") << " operand did not match either of the two matchers. " "Specifically,"; describe_matcher(0); EXPLAIN << "\nand"; describe_matcher(1); wrote_explanation = true; } } CHECK(wrote_explanation); return false; } HloInstructionPattern<OperandType1, OperandImpl1> op1_; HloInstructionPattern<OperandType2, OperandImpl2> op2_; }; class HloInstructionPatternFusionKindImpl { public: explicit constexpr HloInstructionPatternFusionKindImpl( ::xla::HloInstruction::FusionKind kind) : kind_(kind) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with fusion kind " << ToString(kind_); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kFusion) { EXPLAIN << "HloInstruction does not have fusion kind " << ToString(kind_) << "; it's not a fusion"; return false; } if (inst->fusion_kind() != kind_) { EXPLAIN << "HloInstruction does not have fusion kind " << ToString(kind_); return false; } return true; } ::xla::HloInstruction::FusionKind kind_; }; class HloInstructionPatternTupleIndexImpl { public: explicit constexpr HloInstructionPatternTupleIndexImpl(int64_t tuple_index) : tuple_index_(tuple_index) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is a GTE with index " << tuple_index_; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kGetTupleElement) { EXPLAIN << "HloInstruction is not a GTE with index " << tuple_index_ << "; it's not a GTE at all"; return false; } if (inst->tuple_index() != tuple_index_) { EXPLAIN << "HloInstruction is not a GTE with index " << tuple_index_; return false; } return true; } int64_t tuple_index_; }; class HloInstructionPatternParameterNumImpl { public: explicit constexpr HloInstructionPatternParameterNumImpl( int64_t parameter_num) : parameter_num_(parameter_num) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is parameter " << parameter_num_; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kParameter || inst->parameter_number() != parameter_num_) { EXPLAIN << "HloInstruction is not parameter " << parameter_num_; return false; } return true; } int64_t parameter_num_; }; class HloInstructionPatternOneUseOrUserImpl { protected: bool MatchOneUser(const HloInstruction* inst, MatchOption option) const { if (inst->user_count() != 1) { EXPLAIN << "HloInstruction has " << inst->user_count() << " users, but expected exactly one."; if (inst->user_count() > 1) { EXPLAIN << "\nAll users:"; for (const HloInstruction* user : inst->users()) { EXPLAIN << "\n - " << InstToString(user); } } return false; } return true; } }; class HloInstructionPatternOneUseImpl : public HloInstructionPatternOneUseOrUserImpl { public: bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (!MatchOneUser(inst, option)) { return false; } int64_t use_count = absl::c_count_if( inst->users()[0]->operands(), [&](const HloInstruction* operand) { return operand == inst; }); if (use_count != 1) { EXPLAIN << "HloInstruction is used " << use_count << " times by its user, but is expected to be used just once: " << InstToString(inst->users()[0]); return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has exactly one use"; } }; class HloInstructionPatternOneUserImpl : public HloInstructionPatternOneUseOrUserImpl { public: bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchOneUser(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has exactly one user (but possibly is used multiple times by " "that instruction)"; } }; class HloInstructionPatternNumUserImpl { public: explicit constexpr HloInstructionPatternNumUserImpl(int64_t user_num) : user_num_(user_num) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->user_count() != user_num_) { EXPLAIN << "HloInstruction has " << inst->user_count() << " users, but expected exactly " << user_num_ << " users."; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has exactly " << user_num_ << " users (but possibly is used multiple times by " "same instruction)"; } private: int64_t user_num_; }; class HloInstructionPatternAtMostNumUserImpl { public: explicit constexpr HloInstructionPatternAtMostNumUserImpl(int64_t user_num) : user_num_(user_num) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (inst->user_count() > user_num_) { EXPLAIN << "HloInstruction has " << inst->user_count() << " users, but expected less than or equal " << user_num_ << " users."; return false; } return true; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has less than or equal " << user_num_ << " users (but possibly is used multiple times by " "same instruction)"; } private: int64_t user_num_; }; class HloInstructionPatternComparisonDirectionImpl { public: explicit constexpr HloInstructionPatternComparisonDirectionImpl( ComparisonDirection direction) : direction_(direction) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has comparison direction " << ComparisonDirectionToString(direction_); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kCompare || inst->comparison_direction() != direction_) { EXPLAIN << "HloInstruction is not comparison " << ComparisonDirectionToString(direction_); return false; } return true; } ComparisonDirection direction_; }; class HloInstructionPatternConvDnumsImpl { public: explicit HloInstructionPatternConvDnumsImpl(absl::string_view dnums) : HloInstructionPatternConvDnumsImpl( ParseConvolutionDimensionNumbers(dnums).value()) {} explicit HloInstructionPatternConvDnumsImpl(ConvolutionDimensionNumbers dnums) : dnums_(std::move(dnums)) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which has convolution dimension numbers " << ConvolutionDimensionNumbersToString(dnums_); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kConvolution && inst->opcode() != HloOpcode::kCustomCall) { EXPLAIN << "HloInstruction is not convolution or custom-call and so " "can't have convolution_dimension_numbers"; return false; } const ConvolutionDimensionNumbers& actual_dnums = inst->convolution_dimension_numbers(); if (!tsl::protobuf::util::MessageDifferencer::Equals(dnums_, actual_dnums)) { EXPLAIN << "convolution_dimension_numbers " << ConvolutionDimensionNumbersToString(actual_dnums) << " don't match expected " << ConvolutionDimensionNumbersToString(dnums_); return false; } return true; } ConvolutionDimensionNumbers dnums_; }; class HloInstructionPredicateImpl { public: explicit HloInstructionPredicateImpl(HloPredicate fn) : fn_(std::move(fn)) {} bool Match(const HloInstruction* inst, MatchOption option) const { bool match = fn_(inst); if (!match) { EXPLAIN << "HloInstruction does not match user-specified predicate"; } return match; } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which matches a user-specified predicate"; } private: HloPredicate fn_; }; class HloInstructionContractingDimsImpl { public: explicit HloInstructionContractingDimsImpl( absl::Span<const int64_t> lhs_contracting_dims, absl::Span<const int64_t> rhs_contracting_dims) : lhs_contracting_dims_(lhs_contracting_dims.begin(), lhs_contracting_dims.end()), rhs_contracting_dims_(rhs_contracting_dims.begin(), rhs_contracting_dims.end()) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "with lhs_contracting_dims {" << absl::StrJoin(lhs_contracting_dims_, ",") << "} and rhs_contracting_dims {" << absl::StrJoin(rhs_contracting_dims_, ",") << "}"; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (inst->opcode() != HloOpcode::kDot) { EXPLAIN << "HloInstruction is not dot so " "can't have dot_dimension_numbers"; return false; } const DotDimensionNumbers& dnums = inst->dot_dimension_numbers(); if (absl::MakeSpan(dnums.lhs_contracting_dimensions()) != lhs_contracting_dims_) { EXPLAIN << "lhs_contracting_dimensions {" << absl::StrJoin(dnums.lhs_contracting_dimensions(), ",") << "} don't match expected {" << absl::StrJoin(lhs_contracting_dims_, ",") << "}"; return false; } if (absl::MakeSpan(dnums.rhs_contracting_dimensions()) != rhs_contracting_dims_) { EXPLAIN << "rhs_contracting_dimensions {" << absl::StrJoin(dnums.rhs_contracting_dimensions(), ",") << "} don't match expected {" << absl::StrJoin(rhs_contracting_dims_, ",") << "}"; return false; } return true; } absl::InlinedVector<int64_t, 8> lhs_contracting_dims_; absl::InlinedVector<int64_t, 8> rhs_contracting_dims_; }; class HloInstructionReplicaGroupsImpl { public: explicit HloInstructionReplicaGroupsImpl( std::vector<std::vector<int64_t>> replica_groups) : replica_groups_(std::move(replica_groups)) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { std::vector<std::string> replica_group_strs; replica_group_strs.reserve(replica_groups_.size()); for (const std::vector<int64_t>& replica_group : replica_groups_) { replica_group_strs.push_back( absl::StrCat("{", absl::StrJoin(replica_group, ","), "}")); } *os << "with replica_group {" << absl::StrJoin(replica_group_strs, ",") << "}"; } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { const HloCollectiveInstruction* collective = DynCast<HloCollectiveInstruction>(inst); if (!collective) { EXPLAIN << "HloInstruction is not a collective"; return false; } if (absl::c_equal(collective->replica_groups(), replica_groups_, [](const ReplicaGroup& a, const std::vector<int64_t>& b) { return absl::c_equal(a.replica_ids(), b); })) { return true; } std::ostringstream desc_stream; DescribeTo(&desc_stream); std::vector<std::string> replica_group_strs; replica_group_strs.reserve(replica_groups_.size()); for (const ReplicaGroup& replica_group : collective->replica_groups()) { replica_group_strs.push_back(absl::StrCat( "{", absl::StrJoin(replica_group.replica_ids(), ","), "}")); } EXPLAIN << "replica_group {" << absl::StrJoin(replica_group_strs, ",") << "} don't match expected " << desc_stream.str(); return false; } std::vector<std::vector<int64_t>> replica_groups_; }; class HloInstructionShardingImpl { public: explicit HloInstructionShardingImpl( const std::optional<HloSharding>& sharding) : sharding_(sharding) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { if (sharding_.has_value()) { *os << "with sharding " << sharding_->ToString(); } else { *os << "with no sharding"; } } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { if (!sharding_.has_value()) { if (!inst->has_sharding()) { return true; } EXPLAIN << "HloInstruction is expected to have no sharding."; return false; } if (inst->has_sharding()) { if (inst->sharding() == sharding_.value()) { return true; } EXPLAIN << "sharding " << inst->sharding().ToString() << " don't match expected " << sharding_->ToString(); return false; } else { EXPLAIN << "HloInstruction has no sharding. Expected: " << sharding_->ToString(); return false; } } std::optional<HloSharding> sharding_; }; class HloInstructionControlDepsImpl { public: explicit HloInstructionControlDepsImpl( absl::Span<HloInstruction* const> preds, absl::Span<HloInstruction* const> succs) : preds_(preds), succs_(succs) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { auto print_deps = [os](absl::Span<HloInstruction* const> deps, absl::string_view type) { if (deps.empty()) { *os << "no control " << type; } else { *os << "control " << type << " {" << absl::StrJoin(deps, ",", fmt) << "}"; } }; *os << "with "; print_deps(preds_, "predecessors"); *os << " and "; print_deps(succs_, "successors"); } private: template <typename HloInstructionType> bool MatchImpl(HloInstructionType* inst, MatchOption option) const { auto match_deps = [&](absl::Span<HloInstruction* const> expected_deps, const PtrVec<HloInstruction*>& actual_deps, absl::string_view type) { if (!absl::c_equal(expected_deps, actual_deps)) { EXPLAIN << "HloInstruction expected to have control " << type << " {" << absl::StrJoin(expected_deps, ",", fmt) << "} but has {" << absl::StrJoin(actual_deps, ",", fmt) << "}"; return false; } return true; }; return match_deps(preds_, inst->control_predecessors(), "predecessors") && match_deps(succs_, inst->control_successors(), "successors"); } static void fmt(std::string* out, const HloInstruction* inst) { absl::StrAppend(out, inst->name()); }; absl::Span<HloInstruction* const> preds_, succs_; }; template <typename ScalarTy> class HloConstantScalarImpl { public: explicit constexpr HloConstantScalarImpl(bool match_effective_scalar) : val_(std::nullopt), match_effective_scalar_(match_effective_scalar) {} constexpr HloConstantScalarImpl(ScalarTy val, bool match_effective_scalar) : val_(val), match_effective_scalar_(match_effective_scalar) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } bool Match(::xla::HloInstruction* inst, MatchOption option) const { return MatchImpl(inst, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { *os << "which is a constant " << (match_effective_scalar_ ? "effective " : "") << "scalar"; if (val_.has_value()) { *os << " with value " << *val_; } } private: template <typename InstTy> bool MatchImpl(InstTy* inst, MatchOption option) const { const auto* const_inst = DynCast<HloConstantInstruction>(inst); if (!const_inst) { EXPLAIN << "HloInstruction is not a constant"; return false; } if (match_effective_scalar_ && !ShapeUtil::IsEffectiveScalar(inst->shape())) { EXPLAIN << "HloInstruction is not an effective scalar"; return false; } if (!match_effective_scalar_ && !ShapeUtil::IsScalar(inst->shape())) { EXPLAIN << "HloInstruction is not a scalar"; return false; } if (!val_.has_value()) { return true; } auto const_inst_scalar_or = const_inst->literal().Reshape({}); if (!const_inst_scalar_or.ok()) { EXPLAIN << "could not convert matched literal to effective scalar"; return false; } Literal const_inst_scalar = std::move(const_inst_scalar_or).value(); if (!const_inst_scalar.IsEqualAt({}, *val_)) { EXPLAIN << "HloInstruction's constant value " << const_inst_scalar.ToStringWithoutShape() << " did not match expected value " << *val_; return false; } return true; } std::optional<ScalarTy> val_; bool match_effective_scalar_; }; template <typename HloInstructionType, typename Impl> class HloInstructionPattern { private: template <typename NewImpl> auto AppendImpl(NewImpl new_impl) const { auto new_allof = AllOf<::xla::HloInstruction>(impl_, std::move(new_impl)); return HloInstructionPattern<HloInstructionType, decltype(new_allof)>( std::move(new_allof), matched_inst_); } public: explicit constexpr HloInstructionPattern(const Impl& impl, HloInstructionType** matched_inst) : impl_(impl), matched_inst_(matched_inst) {} bool Match(const ::xla::HloInstruction* inst, MatchOption option) const { if (impl_.Match(inst, option)) { if (option.capture && matched_inst_) { *matched_inst_ = inst; } return true; } if (inst != nullptr) { EXPLAIN << "\nin " << InstToString(inst); } return false; } bool Match(::xla::HloInstruction* inst, MatchOption option, bool explain_instruction = true) const { if (impl_.Match(inst, option)) { if (option.capture && matched_inst_) { *matched_inst_ = inst; } return true; } if (explain_instruction) { EXPLAIN << "\nin " << InstToString(inst); } return false; } auto WithName(absl::string_view name) const { return AppendImpl(HloInstructionPatternNameImpl(name)); } auto WithOpcode(HloOpcode opcode) const { return AppendImpl(HloInstructionPatternOpcodeImpl(opcode, false)); } auto WithCustomCallTarget( absl::Span<const absl::string_view> custom_call_targets) const { return AppendImpl(HloInstructionCustomCallTargetImpl(custom_call_targets)); } auto WithNumOperands(int64_t num_operands) const { return AppendImpl(HloInstructionPatternNumOperandsImpl(num_operands)); } auto WithoutOpcode(HloOpcode opcode) const { return AppendImpl(HloInstructionPatternOpcodeImpl(opcode, true)); } constexpr auto Is(const HloInstruction* instr) const { return AppendImpl(HloInstructionIsImpl(instr)); } constexpr auto IsConstant() const { return WithOpcode(HloOpcode::kConstant); } constexpr auto IsConstantScalar() const { return AppendImpl( HloConstantScalarImpl< int>(false)); } template <typename ScalarTy> constexpr auto IsConstantScalar(const ScalarTy& val) const { return AppendImpl( HloConstantScalarImpl<ScalarTy>(val, false)); } constexpr auto IsConstantEffectiveScalar() const { return AppendImpl( HloConstantScalarImpl< int>(true)); } template <typename ScalarTy> constexpr auto IsConstantEffectiveScalar(const ScalarTy& val) const { return AppendImpl( HloConstantScalarImpl<ScalarTy>(val, true)); } constexpr auto IsNonConstant() const { return WithoutOpcode(HloOpcode::kConstant); } template <typename ShapeType, typename ShapeImpl> constexpr auto WithShape( const ShapePattern<ShapeType, ShapeImpl>& shape) const { return AppendImpl( HloInstructionPatternShapeImpl<ShapeType, ShapeImpl>(shape)); } constexpr auto WithShape(PrimitiveType ty, absl::Span<const int64_t> dims) { return WithShape(Shape().WithElementType(ty).WithDims(dims)); } constexpr auto WithShape(PrimitiveType ty, absl::Span<const int64_t> dims, absl::Span<const int64_t> minor_to_major) { return WithShape( Shape().WithElementType(ty).WithDims(dims).WithLayout(minor_to_major)); } template <typename Dummy = void> constexpr auto WithShapeEqualTo(const ::xla::Shape* shape) const { return WithShape(Shape().EqualTo(shape)); } template <typename Dummy = void> constexpr auto WithShapeCompatibleTo(const ::xla::Shape* shape) const { return WithShape(Shape().CompatibleTo(shape)); } constexpr auto WithElementType(PrimitiveType ty) { return WithShape(Shape().WithElementType(ty)); } template <typename OperandType, typename OperandImpl> constexpr auto WithOperand( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) const { return AppendImpl( HloInstructionPatternOperandImpl<OperandType, OperandImpl>( operand_index, operand)); } template <typename OperandType, typename OperandImpl> constexpr auto WithOperandIfPresent( int64_t operand_index, const HloInstructionPattern<OperandType, OperandImpl>& operand) const { return AppendImpl( HloInstructionPatternOperandIfPresentImpl<OperandType, OperandImpl>( operand_index, operand)); } template <typename OperandType1, typename OperandImpl1, typename OperandType2, typename OperandImpl2> constexpr auto WithBinaryOperandsAnyOrder( const HloInstructionPattern<OperandType1, OperandImpl1>& op1, const HloInstructionPattern<OperandType2, OperandImpl2>& op2) const { return AppendImpl( HloInstructionPatternBinaryOperandsAnyOrderImpl< OperandType1, OperandImpl1, OperandType2, OperandImpl2>(op1, op2)); } constexpr auto WithFusionKind(HloInstruction::FusionKind kind) const { return AppendImpl(HloInstructionPatternFusionKindImpl(kind)); } constexpr auto WithTupleIndex(int64_t tuple_index) const { return AppendImpl(HloInstructionPatternTupleIndexImpl(tuple_index)); } constexpr auto WithParameterNum(int64_t parameter_num) const { return AppendImpl(HloInstructionPatternParameterNumImpl(parameter_num)); } constexpr auto WithOneUse() const { return AppendImpl(HloInstructionPatternOneUseImpl()); } constexpr auto WithOneUser() const { return AppendImpl(HloInstructionPatternOneUserImpl()); } constexpr auto WithNumUser(int64_t user_num) const { return AppendImpl(HloInstructionPatternNumUserImpl(user_num)); } constexpr auto WithAtMostNumUser(int64_t user_num) const { return AppendImpl(HloInstructionPatternAtMostNumUserImpl(user_num)); } auto WithComparisonDirection(ComparisonDirection direction) const { return AppendImpl(HloInstructionPatternComparisonDirectionImpl(direction)); } auto WithConvDnums(absl::string_view dnums) const { return AppendImpl(HloInstructionPatternConvDnumsImpl(dnums)); } auto WithConvDnums(ConvolutionDimensionNumbers dnums) const { return AppendImpl(HloInstructionPatternConvDnumsImpl(dnums)); } auto WithPredicate(HloPredicate fn) const { return AppendImpl(HloInstructionPredicateImpl(std::move(fn))); } auto WithContractingDims( absl::Span<const int64_t> lhs_contracting_dims, absl::Span<const int64_t> rhs_contracting_dims) const { return AppendImpl(HloInstructionContractingDimsImpl(lhs_contracting_dims, rhs_contracting_dims)); } auto WithReplicaGroups( std::vector<std::vector<int64_t>> replica_groups) const { return AppendImpl( HloInstructionReplicaGroupsImpl(std::move(replica_groups))); } auto WithSharding(absl::string_view sharding) const { return AppendImpl( HloInstructionShardingImpl(ParseSharding(sharding).value())); } auto WithControlDeps(absl::Span<HloInstruction* const> preds, absl::Span<HloInstruction* const> succs) { return AppendImpl(HloInstructionControlDepsImpl(preds, succs)); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { impl_.DescribeTo(os, indent); } private: Impl impl_; HloInstructionType** matched_inst_; }; template <typename Item, typename... Patterns> struct AnyOfImpl { auto operator()(const Patterns&... patterns) const { return AnyOfPattern<typename std::remove_const<Item>::type, Patterns...>( patterns...); } }; template <typename... Patterns> struct AnyOfImpl<HloInstruction, Patterns...> { auto operator()(const Patterns&... patterns) const { auto any_of = AnyOfPattern<HloInstruction, Patterns...>(patterns...); return HloInstructionPattern<HloInstruction, decltype(any_of)>( std::move(any_of), nullptr); } }; } template <typename Item, typename... Patterns> auto AnyOf(const Patterns&... patterns) { return detail::AnyOfImpl<Item, Patterns...>()(patterns...); } inline constexpr auto Op(const ::xla::HloInstruction** matched_inst = nullptr) { return detail::HloInstructionPattern<const ::xla::HloInstruction, detail::HloInstructionPatternBaseImpl>( detail::HloInstructionPatternBaseImpl(), matched_inst); } inline constexpr auto Op(::xla::HloInstruction** matched_inst) { return detail::HloInstructionPattern<::xla::HloInstruction, detail::HloInstructionPatternBaseImpl>( detail::HloInstructionPatternBaseImpl(), matched_inst); } #define XLA_NULLOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return Op(matched_inst).WithOpcode(HloOpcode::k##NAME); \ } XLA_NULLOP_PATTERN(Constant) XLA_NULLOP_PATTERN(Parameter) XLA_NULLOP_PATTERN(Iota) XLA_NULLOP_PATTERN(Rng) XLA_NULLOP_PATTERN(PartitionId) XLA_NULLOP_PATTERN(ReplicaId) #undef XLA_NULLOP_PATTERN #define XLA_UNOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return Op(matched_inst).WithOpcode(HloOpcode::k##NAME); \ } \ \ template <typename Arg> \ inline auto NAME(Arg&& arg) { \ return Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg)); \ } \ \ template <typename HloInstructionType, typename Arg> \ inline auto NAME(HloInstructionType** matched_inst, Arg&& arg) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg>(arg)); \ } XLA_UNOP_PATTERN(Abs) XLA_UNOP_PATTERN(RoundNearestAfz) XLA_UNOP_PATTERN(Bitcast) XLA_UNOP_PATTERN(BitcastConvert) XLA_UNOP_PATTERN(Broadcast) XLA_UNOP_PATTERN(Cbrt) XLA_UNOP_PATTERN(Ceil) XLA_UNOP_PATTERN(Convert) XLA_UNOP_PATTERN(Copy) XLA_UNOP_PATTERN(Cos) XLA_UNOP_PATTERN(AllReduceStart) XLA_UNOP_PATTERN(AllReduceDone) XLA_UNOP_PATTERN(AllToAll) XLA_UNOP_PATTERN(AsyncDone) XLA_UNOP_PATTERN(CollectiveBroadcast) XLA_UNOP_PATTERN(CollectivePermute) XLA_UNOP_PATTERN(CollectivePermuteStart) XLA_UNOP_PATTERN(CollectivePermuteDone) XLA_UNOP_PATTERN(Domain) XLA_UNOP_PATTERN(Erf) XLA_UNOP_PATTERN(Exp) XLA_UNOP_PATTERN(Expm1) XLA_UNOP_PATTERN(Fft) XLA_UNOP_PATTERN(Floor) XLA_UNOP_PATTERN(GetTupleElement) XLA_UNOP_PATTERN(Imag) XLA_UNOP_PATTERN(Infeed) XLA_UNOP_PATTERN(IsFinite) XLA_UNOP_PATTERN(Log) XLA_UNOP_PATTERN(Logistic) XLA_UNOP_PATTERN(Not) XLA_UNOP_PATTERN(Negate) XLA_UNOP_PATTERN(OptimizationBarrier) XLA_UNOP_PATTERN(Real) XLA_UNOP_PATTERN(Recv) XLA_UNOP_PATTERN(RecvDone) XLA_UNOP_PATTERN(ReducePrecision) XLA_UNOP_PATTERN(Reshape) XLA_UNOP_PATTERN(Reverse) XLA_UNOP_PATTERN(Rsqrt) XLA_UNOP_PATTERN(SendDone) XLA_UNOP_PATTERN(Sign) XLA_UNOP_PATTERN(Sin) XLA_UNOP_PATTERN(Slice) XLA_UNOP_PATTERN(Sqrt) XLA_UNOP_PATTERN(Tan) XLA_UNOP_PATTERN(Tanh) XLA_UNOP_PATTERN(Transpose) XLA_UNOP_PATTERN(While) #undef XLA_UNOP_PATTERN #define XLA_BINOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename Lhs, typename Rhs> \ inline auto NAME(Lhs&& lhs, Rhs&& rhs) { \ return Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)); \ } \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME(HloInstructionType** matched_inst, Lhs&& lhs, Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)); \ } #define XLA_COMMUTATIVE_BINOP_PATTERN(NAME) \ XLA_BINOP_PATTERN(NAME) \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(HloInstructionType** matched_inst, Lhs&& lhs, \ Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithBinaryOperandsAnyOrder(std::forward<Lhs>(lhs), \ std::forward<Rhs>(rhs)); \ } \ template <typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(Lhs&& lhs, Rhs&& rhs) { \ return NAME##AnyOrder<const HloInstruction>( \ nullptr, std::forward<Lhs>(lhs), std::forward<Rhs>(rhs)); \ } XLA_COMMUTATIVE_BINOP_PATTERN(Add) XLA_BINOP_PATTERN(Atan2) XLA_BINOP_PATTERN(Divide) XLA_BINOP_PATTERN(Complex) XLA_BINOP_PATTERN(Compare) XLA_BINOP_PATTERN(Convolution) XLA_BINOP_PATTERN(Dot) XLA_BINOP_PATTERN(Gather) XLA_COMMUTATIVE_BINOP_PATTERN(Maximum) XLA_COMMUTATIVE_BINOP_PATTERN(Minimum) XLA_COMMUTATIVE_BINOP_PATTERN(Multiply) XLA_BINOP_PATTERN(Outfeed) XLA_BINOP_PATTERN(Pad) XLA_BINOP_PATTERN(Power) XLA_BINOP_PATTERN(Remainder) XLA_BINOP_PATTERN(Send) XLA_BINOP_PATTERN(Subtract) XLA_COMMUTATIVE_BINOP_PATTERN(And) XLA_COMMUTATIVE_BINOP_PATTERN(Or) XLA_BINOP_PATTERN(ShiftLeft) XLA_BINOP_PATTERN(ShiftRightArithmetic) XLA_BINOP_PATTERN(ShiftRightLogical) XLA_COMMUTATIVE_BINOP_PATTERN(Xor) #undef XLA_COMMUTATIVE_BINOP_PATTERN #undef XLA_BINOP_PATTERN #define XLA_TERNOP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename Arg0, typename Arg1, typename Arg2> \ inline auto NAME(Arg0&& arg0, Arg1&& arg1, Arg2&& arg2) { \ return Op() \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2)); \ } \ \ template <typename HloInstructionType, typename Arg0, typename Arg1, \ typename Arg2> \ inline auto NAME(HloInstructionType** matched_inst, Arg0&& arg0, \ Arg1&& arg1, Arg2&& arg2) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithOperand(0, std::forward<Arg0>(arg0)) \ .WithOperand(1, std::forward<Arg1>(arg1)) \ .WithOperand(2, std::forward<Arg2>(arg2)); \ } XLA_TERNOP_PATTERN(Clamp); XLA_TERNOP_PATTERN(Select); XLA_TERNOP_PATTERN(SelectAndScatter); #undef XLA_TERNOP_PATTERN namespace detail { template <typename Matcher, typename FirstArg> inline auto WithOperands(Matcher&& m, int64_t operand_num, FirstArg&& first_arg) { return m.WithOperand(operand_num, std::forward<FirstArg>(first_arg)); } template <typename Matcher, typename FirstArg, typename... Args> inline auto WithOperands(Matcher&& m, int64_t operand_num, FirstArg&& first_arg, Args&&... args) { return WithOperands( m.WithOperand(operand_num, std::forward<FirstArg>(first_arg)), operand_num + 1, std::forward<Args>(args)...); } } #define XLA_VARIADIC_OP_PATTERN(NAME) \ inline auto NAME() { return Op().WithOpcode(HloOpcode::k##NAME); } \ \ template <typename... Args> \ inline auto NAME(Args&&... args) { \ return detail::WithOperands( \ Op().WithOpcode(HloOpcode::k##NAME).WithNumOperands(sizeof...(Args)), \ 0, std::forward<Args>(args)...); \ } \ \ template <typename HloInstructionType, typename... Args> \ inline auto NAME(HloInstructionType** matched_inst, Args&&... args) { \ return detail::WithOperands(Op(matched_inst) \ .WithOpcode(HloOpcode::k##NAME) \ .WithNumOperands(sizeof...(Args)), \ 0, \ std::forward<Args>(args)...); \ } \ \ template <typename HloInstructionType> \ inline auto NAME(HloInstructionType** matched_inst) { \ return Op(matched_inst).WithOpcode(HloOpcode::k##NAME); \ } XLA_VARIADIC_OP_PATTERN(AfterAll); XLA_VARIADIC_OP_PATTERN(AllGather) XLA_VARIADIC_OP_PATTERN(AllReduce) XLA_VARIADIC_OP_PATTERN(AsyncStart) XLA_VARIADIC_OP_PATTERN(Concatenate); XLA_VARIADIC_OP_PATTERN(Conditional); XLA_VARIADIC_OP_PATTERN(DynamicSlice) XLA_VARIADIC_OP_PATTERN(DynamicUpdateSlice) XLA_VARIADIC_OP_PATTERN(Fusion); XLA_VARIADIC_OP_PATTERN(Map) XLA_VARIADIC_OP_PATTERN(Reduce); XLA_VARIADIC_OP_PATTERN(ReduceScatter) XLA_VARIADIC_OP_PATTERN(ReduceWindow) XLA_VARIADIC_OP_PATTERN(Scatter); XLA_VARIADIC_OP_PATTERN(Sort); XLA_VARIADIC_OP_PATTERN(Tuple); XLA_VARIADIC_OP_PATTERN(Call); inline auto CustomCall() { return Op().WithOpcode(HloOpcode::kCustomCall); } template <typename HloInstructionType> auto CustomCall(HloInstructionType** matched_inst) { return Op(matched_inst).WithOpcode(HloOpcode::kCustomCall); } template < typename Arg0, typename... Args, typename std::enable_if< !std::is_convertible<Arg0, absl::string_view>::value && !std::is_convertible<Arg0, HloInstruction**>::value && !std::is_convertible<Arg0, const HloInstruction**>::value>::type* = nullptr> auto CustomCall(Arg0&& arg0, Args&&... args) { return detail::WithOperands(CustomCall().WithNumOperands(sizeof...(Args) + 1), 0, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } template <typename... Args> auto CustomCall(absl::Span<const absl::string_view> custom_call_targets, Args&&... args) { return CustomCall(std::forward<Args>(args)...) .WithCustomCallTarget(custom_call_targets); } template <typename HloInstructionType, typename Arg0, typename... Args, typename std::enable_if<!std::is_convertible< Arg0, absl::string_view>::value>::type* = nullptr> auto CustomCall(HloInstructionType** matched_inst, Arg0&& arg0, Args&&... args) { return detail::WithOperands( CustomCall(matched_inst).WithNumOperands(sizeof...(Args) + 1), 0, std::forward<Arg0>(arg0), std::forward<Args>(args)...); } template <typename HloInstructionType, typename... Args> auto CustomCall(HloInstructionType** matched_inst, absl::Span<const absl::string_view> custom_call_targets, Args&&... args) { return CustomCall(matched_inst, std::forward<Args>(args)...) .WithCustomCallTarget(custom_call_targets); } #define XLA_COMPARE_PATTERN(NAME) \ inline auto NAME() { \ return Op() \ .WithOpcode(HloOpcode::kCompare) \ .WithComparisonDirection(ComparisonDirection::k##NAME); \ } \ \ template <typename Lhs, typename Rhs> \ inline auto NAME(Lhs&& lhs, Rhs&& rhs) { \ return Op() \ .WithOpcode(HloOpcode::kCompare) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)) \ .WithComparisonDirection(ComparisonDirection::k##NAME); \ } \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME(HloInstructionType** matched_inst, Lhs&& lhs, Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::kCompare) \ .WithOperand(0, std::forward<Lhs>(lhs)) \ .WithOperand(1, std::forward<Rhs>(rhs)) \ .WithComparisonDirection(ComparisonDirection::k##NAME); \ } #define XLA_COMMUTATIVE_COMPARE_PATTERN(NAME) \ XLA_COMPARE_PATTERN(NAME) \ \ template <typename HloInstructionType, typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(HloInstructionType** matched_inst, Lhs&& lhs, \ Rhs&& rhs) { \ return Op(matched_inst) \ .WithOpcode(HloOpcode::kCompare) \ .WithBinaryOperandsAnyOrder(std::forward<Lhs>(lhs), \ std::forward<Rhs>(rhs)); \ } \ template <typename Lhs, typename Rhs> \ inline auto NAME##AnyOrder(Lhs&& lhs, Rhs&& rhs) { \ return NAME##AnyOrder<const HloInstruction>( \ nullptr, std::forward<Lhs>(lhs), std::forward<Rhs>(rhs)); \ } XLA_COMMUTATIVE_COMPARE_PATTERN(Eq); XLA_COMMUTATIVE_COMPARE_PATTERN(Ne); XLA_COMPARE_PATTERN(Ge); XLA_COMPARE_PATTERN(Gt); XLA_COMPARE_PATTERN(Le); XLA_COMPARE_PATTERN(Lt); inline auto NonConstant() { return Op().IsNonConstant(); } template <typename HloInstructionType> inline auto NonConstant(HloInstructionType** matched_inst) { return Op(matched_inst).IsNonConstant(); } template <typename Arg> inline auto GetTupleElement(Arg&& arg, int64_t tuple_index) { return Op() .WithOpcode(HloOpcode::kGetTupleElement) .WithOperand(0, std::forward<Arg>(arg)) .WithTupleIndex(tuple_index); } template <typename HloInstructionType, typename Arg> inline auto GetTupleElement(HloInstructionType** matched_inst, Arg&& arg, int64_t tuple_index) { return Op(matched_inst) .WithOpcode(HloOpcode::kGetTupleElement) .WithOperand(0, std::forward<Arg>(arg)) .WithTupleIndex(tuple_index); } inline auto Parameter(int64_t parameter_num) { return Op().WithOpcode(HloOpcode::kParameter).WithParameterNum(parameter_num); } template <typename HloInstructionType> inline auto Parameter(HloInstructionType** matched_inst, int64_t parameter_num) { return Op(matched_inst) .WithOpcode(HloOpcode::kParameter) .WithParameterNum(parameter_num); } inline auto ConstantScalar() { return Op().IsConstantScalar(); } template <typename HloInstructionType> inline auto ConstantScalar(HloInstructionType** matched_inst) { return Op(matched_inst).IsConstantScalar(); } template <typename ScalarTy> inline auto ConstantScalar(ScalarTy val) { return Op().IsConstantScalar(val); } template <typename HloInstructionType, typename ScalarTy> inline auto ConstantScalar(HloInstructionType** matched_inst, ScalarTy val) { return Op(matched_inst).IsConstantScalar(val); } inline auto ConstantEffectiveScalar() { return Op().IsConstantEffectiveScalar(); } template <typename HloInstructionType> inline auto ConstantEffectiveScalar(HloInstructionType** matched_inst) { return Op(matched_inst).IsConstantEffectiveScalar(); } template <typename ScalarTy> inline auto ConstantEffectiveScalar(ScalarTy val) { return Op().IsConstantEffectiveScalar(val); } template <typename HloInstructionType, typename ScalarTy> inline auto ConstantEffectiveScalar(HloInstructionType** matched_inst, ScalarTy val) { return Op(matched_inst).IsConstantEffectiveScalar(val); } namespace detail { class InstructionPatternInterface { public: virtual ~InstructionPatternInterface() = default; virtual bool Match(::xla::HloInstruction* instr, MatchOption option) const = 0; virtual void DescribeTo(std::ostream* os, int64_t indent) const = 0; }; template <typename Pattern> class TypedInstructionPattern : public InstructionPatternInterface { public: explicit TypedInstructionPattern(Pattern pattern) : pattern_(std::move(pattern)) {} bool Match(::xla::HloInstruction* instr, MatchOption option) const override { return pattern_.Match(instr, option); } void DescribeTo(std::ostream* os, int64_t indent) const override { pattern_.DescribeTo(os, indent); } private: Pattern pattern_; }; class HloInstructionPatternSharedImpl { public: template <typename Pattern> explicit HloInstructionPatternSharedImpl(Pattern pattern) : pattern_(std::make_shared<TypedInstructionPattern<Pattern>>( std::move(pattern))) {} bool Match(::xla::HloInstruction* instr, MatchOption option) const { return pattern_->Match(instr, option); } void DescribeTo(std::ostream* os, int64_t indent = 0) const { pattern_->DescribeTo(os, indent); } private: std::shared_ptr<InstructionPatternInterface> pattern_; }; } template <typename HloInstructionType, typename OriginalImpl> inline auto SharedSubpattern( detail::HloInstructionPattern<HloInstructionType, OriginalImpl> pattern) { auto impl = detail::HloInstructionPatternSharedImpl(std::move(pattern)); return detail::HloInstructionPattern<HloInstructionType, decltype(impl)>( std::move(impl), nullptr); } } } #undef EXPLAIN #pragma pop_macro("EXPLAIN") #endif
#include "xla/service/pattern_matcher.h" #include <memory> #include <sstream> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = match; using PatternMatcherTest = HloTestBase; TEST_F(PatternMatcherTest, AddOp) { constexpr char kModuleStr[] = R"(HloModule two_plus_two_module ENTRY %two_plus_two_computation () -> f32[] { %two = f32[] constant(2) ROOT %two_plus_two = f32[] add(f32[] %two, f32[] %two) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); const HloInstruction* matched_inst; HloInstruction* matched_operand; Shape* matched_shape; ASSERT_TRUE(Match( hlo_module->entry_computation()->root_instruction(), match::Op(&matched_inst) .WithName("two_plus_two") .WithOpcode(HloOpcode::kAdd) .WithShape(match::Shape(&matched_shape).IsDenseArray()) .WithOperand( 0, match::Op(&matched_operand).WithOpcode(HloOpcode::kConstant)))); ASSERT_NE(matched_inst, nullptr); EXPECT_EQ(matched_inst->name(), "two_plus_two"); EXPECT_EQ(matched_inst->opcode(), HloOpcode::kAdd); EXPECT_TRUE(Match(hlo_module->entry_computation()->root_instruction(), match::Add(match::Constant(), match::Constant()))); EXPECT_FALSE(Match(hlo_module->entry_computation()->root_instruction(), match::Op().WithName("bad_name"))); matched_inst = nullptr; EXPECT_FALSE(Match(hlo_module->entry_computation()->root_instruction(), match::Multiply(&matched_inst, match::Op(), match::Op()))); } TEST_F(PatternMatcherTest, ScalarShape) { auto scalar_shape = ShapeUtil::MakeShape(F32, {}); Shape* matched_shape; EXPECT_TRUE(Match(&scalar_shape, match::Shape(&matched_shape).IsScalar())); EXPECT_EQ(matched_shape, &scalar_shape); EXPECT_TRUE(Match(&scalar_shape, match::Shape().IsArray())); EXPECT_TRUE(Match(&scalar_shape, match::Shape().IsDenseArray())); EXPECT_FALSE(Match(&scalar_shape, match::Shape().IsTuple())); EXPECT_TRUE(Match(&scalar_shape, match::Shape().WithElementType(F32))); EXPECT_TRUE(Match(&scalar_shape, match::Shape().WithRank(0))); EXPECT_FALSE(Match( &scalar_shape, match::Shape().WithSubshape({0}, match::Shape()).WithElementType(F32))); } TEST_F(PatternMatcherTest, DenseArrayShape) { auto array_shape = ShapeUtil::MakeShape(F32, {2, 3, 4}); Shape* matched_shape; EXPECT_TRUE(Match(&array_shape, match::Shape(&matched_shape).IsArray())); EXPECT_EQ(matched_shape, &array_shape); EXPECT_TRUE(Match(&array_shape, match::Shape().IsDenseArray())); EXPECT_FALSE(Match(&array_shape, match::Shape().IsScalar())); EXPECT_FALSE(Match(&array_shape, match::Shape().IsTuple())); EXPECT_TRUE(Match(&array_shape, match::Shape().WithElementType(F32))); EXPECT_TRUE(Match(&array_shape, match::Shape().WithRank(3))); EXPECT_FALSE( Match(&array_shape, match::Shape().WithSubshape({0}, match::Shape()))); EXPECT_TRUE(Match(&array_shape, match::Shape().WithLayout({2, 1, 0}))); EXPECT_FALSE(Match(&array_shape, match::Shape().WithLayout({0, 1, 2}))); Layout* matched_layout; EXPECT_TRUE(Match(&array_shape, match::Shape().WithLayout(match::Layout(&matched_layout)))); EXPECT_EQ(matched_layout, &array_shape.layout()); EXPECT_TRUE(Match(&array_shape, match::Shape().IsDenseArray())); } TEST_F(PatternMatcherTest, DenseArrayShapeWithLayout) { auto array_shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {5, 2, 3}, {1, 2, 0}); Shape* matched_shape; EXPECT_TRUE( Match(&array_shape, match::Shape(&matched_shape).WithLayout({1, 2, 0}))); EXPECT_EQ(matched_shape, &array_shape); EXPECT_FALSE(Match(&array_shape, match::Shape().WithLayout({2, 0, 1}))); Layout* matched_layout; EXPECT_TRUE( Match(&array_shape, match::Shape().WithLayout( match::Layout(&matched_layout).WithMinorToMajor({1, 2, 0})))); EXPECT_EQ(matched_layout, &array_shape.layout()); } TEST_F(PatternMatcherTest, TupleShape) { auto tuple_shape = ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(F32, {1, 2, 3}), ShapeUtil::MakeShape(S32, {4, 5}), }); EXPECT_TRUE(Match(&tuple_shape, match::Shape().IsTuple())); EXPECT_FALSE(Match(&tuple_shape, match::Shape().IsArray())); EXPECT_FALSE(Match(&tuple_shape, match::Shape().IsScalar())); Shape* subshape; ASSERT_TRUE(Match( &tuple_shape, match::Shape().WithSubshape( {0}, match::Shape(&subshape).WithElementType(F32).WithRank(3)))); ASSERT_NE(subshape, nullptr); EXPECT_TRUE( ShapeUtil::Equal(*subshape, ShapeUtil::GetSubshape(tuple_shape, {0}))); EXPECT_TRUE(Match(&tuple_shape, match::Shape().WithSubshape( {0}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {0}))))); EXPECT_FALSE(Match(&tuple_shape, match::Shape().WithSubshape( {0}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {1}))))); ASSERT_TRUE(Match( &tuple_shape, match::Shape().WithSubshape( {1}, match::Shape(&subshape).WithElementType(S32).WithRank(2)))); ASSERT_NE(subshape, nullptr); EXPECT_TRUE( ShapeUtil::Equal(*subshape, ShapeUtil::GetSubshape(tuple_shape, {1}))); EXPECT_TRUE(Match(&tuple_shape, match::Shape().WithSubshape( {1}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {1}))))); EXPECT_FALSE(Match(&tuple_shape, match::Shape().WithSubshape( {1}, match::Shape().EqualTo( &ShapeUtil::GetSubshape(tuple_shape, {0}))))); EXPECT_FALSE( Match(&tuple_shape, match::Shape().WithSubshape({2}, match::Shape()))); EXPECT_FALSE( Match(&tuple_shape, match::Shape().WithSubshape({0, 0}, match::Shape()))); } TEST_F(PatternMatcherTest, FusionKind) { constexpr char kModuleStr[] = R"( HloModule test_module fused_computation { ROOT fp0 = f32[] parameter(0) } ENTRY while.v11 { p0 = f32[] parameter(0) ROOT fusion = f32[] fusion(p0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match( root, match::Op().WithFusionKind(HloInstruction::FusionKind::kLoop))); EXPECT_FALSE(Match( root, match::Op().WithFusionKind(HloInstruction::FusionKind::kInput))); EXPECT_FALSE(Match(root->operand(0), match::Op().WithFusionKind( HloInstruction::FusionKind::kLoop))); } TEST_F(PatternMatcherTest, GetTupleElement) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY while.v11 { p0 = (f32[], f32[], f32[]) parameter(0) ROOT gte = f32[] get-tuple-element(p0), index=1 })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_FALSE(Match(root, match::Op().WithTupleIndex(0))); EXPECT_TRUE(Match(root, match::Op().WithTupleIndex(1))); EXPECT_FALSE(Match(root, match::Op().WithTupleIndex(2))); EXPECT_FALSE(Match(root, match::GetTupleElement(match::Op(), 0))); EXPECT_TRUE(Match(root, match::GetTupleElement(match::Op(), 1))); } TEST_F(PatternMatcherTest, AnyOf) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(1) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(1)))); EXPECT_TRUE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(1), match::ConstantScalar(0)))); EXPECT_FALSE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(2)))); } TEST_F(PatternMatcherTest, AnyOfInstructionIsInstructionPattern) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(1) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(1)))); EXPECT_FALSE( Match(root, match::AnyOf<HloInstruction>(match::ConstantScalar(0), match::ConstantScalar(1)) .WithName("foo"))); } TEST_F(PatternMatcherTest, ConstantScalar) { using match::ConstantEffectiveScalar; using match::ConstantScalar; using match::Op; using match::Tuple; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { a = s32[] constant(1) b = s32[1,1] constant({{2}}) c = s32[1,2] constant({{2,2}}) d = f32[] constant(1) e = f32[] constant(1.25) ROOT tuple = (s32[], s32[1,1], s32[1,2], f32[], f32[]) tuple(a,b,c,d,e) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* a = root->operand(0); const HloInstruction* b = root->operand(1); const HloInstruction* c = root->operand(2); const HloInstruction* d = root->operand(3); const HloInstruction* e = root->operand(4); EXPECT_TRUE(Match(a, ConstantScalar())); EXPECT_TRUE(Match(a, ConstantScalar(1))); EXPECT_TRUE(Match(a, ConstantEffectiveScalar())); EXPECT_TRUE(Match(a, ConstantEffectiveScalar(1))); EXPECT_FALSE(Match(a, ConstantScalar(2))); EXPECT_FALSE(Match(a, ConstantScalar(2.01))); EXPECT_FALSE(Match(a, ConstantEffectiveScalar(2))); EXPECT_FALSE(Match(a, ConstantEffectiveScalar(1.01))); EXPECT_FALSE(Match(b, ConstantScalar())); EXPECT_FALSE(Match(b, ConstantScalar(2))); EXPECT_TRUE(Match(b, ConstantEffectiveScalar())); EXPECT_TRUE(Match(b, ConstantEffectiveScalar(2))); EXPECT_FALSE(Match(c, ConstantScalar())); EXPECT_FALSE(Match(c, ConstantScalar(2))); EXPECT_FALSE(Match(c, ConstantEffectiveScalar())); EXPECT_FALSE(Match(c, ConstantEffectiveScalar(2))); EXPECT_TRUE(Match(d, ConstantScalar(1))); EXPECT_TRUE(Match(d, ConstantEffectiveScalar(1))); EXPECT_TRUE(Match(d, ConstantScalar(1.0))); EXPECT_TRUE(Match(d, ConstantEffectiveScalar(1.0))); EXPECT_TRUE(Match(e, ConstantScalar(1.25f))); EXPECT_TRUE(Match(e, ConstantScalar(1.25))); EXPECT_TRUE(Match(e, ConstantEffectiveScalar(1.25))); EXPECT_FALSE(Match(e, ConstantScalar(1))); EXPECT_FALSE(Match(e, ConstantEffectiveScalar(1))); const HloInstruction* instr = nullptr; EXPECT_TRUE(Match(a, ConstantScalar(&instr))); EXPECT_EQ(instr, a); instr = nullptr; EXPECT_TRUE(Match(a, ConstantScalar(&instr, 1))); EXPECT_EQ(instr, a); instr = nullptr; EXPECT_TRUE(Match(a, ConstantEffectiveScalar(&instr))); EXPECT_EQ(instr, a); instr = nullptr; EXPECT_TRUE(Match(a, ConstantEffectiveScalar(&instr, 1))); EXPECT_EQ(instr, a); } TEST_F(PatternMatcherTest, MultiplyAnyOrder) { using match::ConstantScalar; using match::MultiplyAnyOrder; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { lhs = f16[] constant(42) rhs = f16[] constant(52) ROOT multiply = f16[] multiply(lhs, rhs) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* instr; EXPECT_TRUE(Match( root, MultiplyAnyOrder(&instr, ConstantScalar(42), ConstantScalar(52)))); EXPECT_TRUE(Match( root, MultiplyAnyOrder(&instr, ConstantScalar(52), ConstantScalar(42)))); EXPECT_TRUE(Match( root, MultiplyAnyOrder(&instr, ConstantScalar(42), ConstantScalar(52)) .IsNonConstant())); EXPECT_TRUE( Match(root, MultiplyAnyOrder(ConstantScalar(42), ConstantScalar(52)) .IsNonConstant())); } TEST_F(PatternMatcherTest, AnyOfShortCircuit) { using match::AnyOf; using match::Multiply; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { lhs = f16[] constant(42) rhs = f16[] constant(52) ROOT multiply = f16[] multiply(lhs, rhs) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); { const HloInstruction* mul = nullptr; const HloInstruction* any = nullptr; ASSERT_TRUE(Match( root, AnyOf<HloInstruction>(Multiply(&mul, Op(), Op()), Op(&any)))); EXPECT_NE(nullptr, mul); EXPECT_EQ(nullptr, any); } { const HloInstruction* mul = nullptr; const HloInstruction* any = nullptr; ASSERT_TRUE(Match( root, AnyOf<HloInstruction>(Op(&any), Multiply(&mul, Op(), Op())))); EXPECT_NE(nullptr, any); EXPECT_EQ(nullptr, mul); } } TEST_F(PatternMatcherTest, AllOf) { using match::AllOf; using match::Broadcast; using match::Constant; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(1) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); auto f16_scalar = ShapeUtil::MakeShape(F16, {}); auto f16_pattern = Constant().WithShapeEqualTo(&f16_scalar); auto f16_compatible_pattern = Constant().WithShapeCompatibleTo(&f16_scalar); auto scalar_pattern = Constant().WithShape(match::Shape().IsScalar()); ASSERT_TRUE(Match(root, scalar_pattern)); ASSERT_TRUE(Match(root, f16_pattern)); ASSERT_TRUE(Match(root, f16_compatible_pattern)); EXPECT_TRUE(Match(root, AllOf<HloInstruction>(scalar_pattern, f16_pattern, f16_compatible_pattern))); EXPECT_TRUE( Match(root, AllOf<HloInstruction>(f16_pattern, f16_compatible_pattern, scalar_pattern))); EXPECT_FALSE( Match(root, AllOf<HloInstruction>(Broadcast(Op()), f16_pattern))); EXPECT_FALSE(Match( root, AllOf<HloInstruction>(Broadcast(Op()), f16_compatible_pattern))); EXPECT_FALSE( Match(root, AllOf<HloInstruction>(Broadcast(Op()), scalar_pattern))); } TEST_F(PatternMatcherTest, AllOfNoCaptureIfNotMatch) { using match::AllOf; using match::Broadcast; using match::Constant; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT v = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* constant = nullptr; ASSERT_FALSE( Match(root, AllOf<HloInstruction>(Constant(&constant), Broadcast(Op())))); EXPECT_EQ(nullptr, constant); ASSERT_TRUE(Match(root, Constant(&constant))); EXPECT_NE(nullptr, constant); } TEST_F(PatternMatcherTest, TestNoCapture) { using match::Constant; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT v = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* constant = nullptr; ASSERT_TRUE(Match(root, Constant(&constant), {false})); EXPECT_EQ(nullptr, constant); } TEST_F(PatternMatcherTest, TestCaptureMatchedSubPatternForAnyOf) { using match::Add; using match::AddAnyOrder; using match::AnyOf; using match::Op; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { u = f16[] parameter(0) v = f16[] parameter(1) ROOT add = f16[] add(u, v) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); const HloInstruction* addend0 = nullptr; const HloInstruction* addend1 = nullptr; const HloInstruction* addend2 = nullptr; auto add2_pattern = Add(Op(&addend0), Op(&addend1)); auto add3_pattern = AnyOf<HloInstruction>( AddAnyOrder(add2_pattern, Op(&addend2)), add2_pattern, Op(&addend0)); ASSERT_TRUE(Match(root, add3_pattern)); EXPECT_NE(nullptr, addend0); EXPECT_NE(nullptr, addend1); EXPECT_EQ(nullptr, addend2); } TEST_F(PatternMatcherTest, TestConcat) { using match::Concatenate; using match::ConstantScalar; using match::Op; using match::Reshape; constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { c1 = u32[] constant(1) c2 = u32[] constant(2) c3 = u32[] constant(3) c4 = u32[] constant(4) r1 = u32[1] reshape(c1) r2 = u32[1] reshape(c2) r3 = u32[1] reshape(c3) r4 = u32[1] reshape(c4) ROOT concat = u32[4] concatenate(r1, r2, r3, r4), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); ASSERT_TRUE(Match( root, Concatenate(Reshape(ConstantScalar(1)), Reshape(ConstantScalar(2)), Reshape(ConstantScalar(3)), Reshape(ConstantScalar(4))))); ASSERT_FALSE(Match( root, Concatenate(Reshape(ConstantScalar(2)), Reshape(ConstantScalar(1)), Reshape(ConstantScalar(3)), Reshape(ConstantScalar(4))))); ASSERT_FALSE(Match( root, Concatenate(Reshape(ConstantScalar(1)), Reshape(ConstantScalar(2)), Reshape(ConstantScalar(3))))); ASSERT_FALSE(Match( root, Concatenate(Reshape(ConstantScalar(2)), Reshape(ConstantScalar(3)), Reshape(ConstantScalar(4))))); } TEST_F(PatternMatcherTest, TestWithElementType) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT v = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::Op().WithElementType(F16))); EXPECT_FALSE(Match(root, m::Op().WithElementType(F32))); } TEST_F(PatternMatcherTest, TestWithOperandIfPresent) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { a = f16[] constant(42) b = f16[] add(a, a) ROOT root = tuple(a, b) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); auto* a = root->operand(0); auto* b = root->operand(1); EXPECT_TRUE(Match(a, m::Op().WithOperandIfPresent(0, m::Iota()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(0, m::Constant()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(1, m::Constant()))); EXPECT_FALSE(Match(b, m::Op().WithOperandIfPresent(0, m::Iota()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(2, m::Iota()))); EXPECT_TRUE(Match(b, m::Op().WithOperandIfPresent(3, m::Iota()))); } TEST_F(PatternMatcherTest, TestWithPredicate) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT a = f16[] constant(42) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE( Match(root, m::Op().WithPredicate([&](const HloInstruction* instr) { return instr == root; }))); EXPECT_FALSE( Match(root, m::Op().WithPredicate([&](const HloInstruction* instr) { return instr != root; }))); } template <typename Pattern> std::string Description(const Pattern& pattern) { std::stringstream ss; pattern.DescribeTo(&ss); return ss.str(); } template <typename Elem, typename Pattern> std::string Explanation(Elem* elem, const Pattern& pattern, bool single_user_only = false) { std::stringstream ss; MatchOption options{true, single_user_only, &ss}; Match(elem, pattern, options); return ss.str(); } template <typename Elem, typename Pattern> std::string Explanation(const std::unique_ptr<Elem>& elem, const Pattern& pattern) { return Explanation(elem.get(), pattern); } template <typename Elem, typename Pattern> std::string Explanation(const Elem& elem, const Pattern& pattern) { return Explanation(&elem, pattern); } #define EXPECT_DESC_AND_EXPLANATION(elem, pattern, expected_desc, \ expected_explanation) \ do { \ EXPECT_EQ(Description(pattern), (expected_desc)); \ EXPECT_EQ(Explanation((elem), (pattern)), expected_explanation); \ } while (0) TEST_F(PatternMatcherTest, LayoutDescribeToAndExplain) { auto layout = LayoutUtil::MakeLayout({1, 2}); auto layout2 = LayoutUtil::MakeLayout({2, 2}); EXPECT_DESC_AND_EXPLANATION(static_cast<const Layout*>(nullptr), m::Layout(), "a layout", "Layout is null"); EXPECT_DESC_AND_EXPLANATION(layout2, m::Layout().EqualTo(&layout), "a layout equal to {1,2}", "Layout {2,2} is not equal to expected {1,2}"); } TEST_F(PatternMatcherTest, CustomCallTargetMatcherDescribeAndExplain) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT out = f32[] custom-call(), custom_call_target="test_target" } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, match::Op().WithCustomCallTarget({"test_target"}))); EXPECT_TRUE(Match( root, match::Op().WithCustomCallTarget({"test_target", "other_target"}))); EXPECT_TRUE(Match( root, match::Op().WithCustomCallTarget({"other_target", "test_target"}))); EXPECT_FALSE(Match(root, match::Op().WithCustomCallTarget({"other_target"}))); EXPECT_FALSE(Match(root, match::Op().WithCustomCallTarget( {"other_target", "other_target2"}))); EXPECT_DESC_AND_EXPLANATION( root, match::Op().WithCustomCallTarget({"other_target"}), "an HloInstruction custom call with target 'other_target'", "HloInstruction is not a custom call with a target 'other_target'\nin " "out = f32[] custom-call(), custom_call_target=\"test_target\""); EXPECT_DESC_AND_EXPLANATION( root, match::Op().WithCustomCallTarget({"other_target", "other_target2"}), "an HloInstruction custom call with target in {other_target, " "other_target2}", "HloInstruction is not a custom call with a target in {other_target, " "other_target2}\nin " "out = f32[] custom-call(), custom_call_target=\"test_target\""); } TEST_F(PatternMatcherTest, ShapeDescribeToAndExplain) { auto shape = ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 2}, {0, 1}); auto layout = shape.layout(); EXPECT_DESC_AND_EXPLANATION(static_cast<const Shape*>(nullptr), m::Shape(), "a shape", "Shape is null"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 2}, {1, 0}), m::Shape().EqualTo(&shape), "a shape equal to f32[1,2]{0,1}", "Shape not equal to f32[1,2]{0,1}\n" "in f32[1,2]{1,0}"); EXPECT_DESC_AND_EXPLANATION(ShapeUtil::MakeShape(F32, {2, 2}), m::Shape().CompatibleTo(&shape), "a shape compatible with f32[1,2]", "Shape not compatible with f32[1,2]\n" "in f32[2,2]{1,0}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithElementType(F16), "a shape with element type F16", "Shape does not have element type F16\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().IsScalar(), "a shape that represents a scalar", "Shape is not a scalar\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(ShapeUtil::MakeNil(), m::Shape().IsArray(), "a shape that represents an array", "Shape is not an array\n" "in ()"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().IsTuple(), "a shape that represents a tuple", "Shape is not a tuple\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().IsEffectiveScalar(), "a shape that is an effective scalar", "Shape is not an effective scalar\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithRank(42), "a shape that has 42 dimensions", "Shape does not have rank 42\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithRank(0), "a shape that is a scalar", "Shape is not a scalar\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithRank(1).IsArray(), "a shape:\n" " * that has 1 dimension AND\n" " * that represents an array", "Shape does not have rank 1\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION(ShapeUtil::MakeNil(), m::Shape().IsArray().WithRank(1), "a shape:\n" " * that represents an array AND\n" " * that has 1 dimension", "Shape is not an array\n" "in ()"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeShapeWithDenseLayout(F32, {1, 2}, {1, 0}), m::Shape().WithLayoutEqualTo(&layout), "a shape with\n a layout equal to {0,1}", "Layout {1,0} is not equal to expected {0,1}\n" "in f32[1,2]{1,0}"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithSubshapeEqualTo({10}, &shape), "a shape with subshape at index {10} which is\n" " a shape equal to f32[1,2]{0,1}", "No subshape at {10}\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {2, 2})}), m::Shape().WithSubshapeEqualTo({0}, &shape), "a shape with subshape at index {0} which is\n" " a shape equal to f32[1,2]{0,1}", "Shape not equal to f32[1,2]{0,1}\n" "in f32[2,2]{1,0}\n" "in subshape at {0}\n" "in (f32[2,2])"); EXPECT_DESC_AND_EXPLANATION(shape, m::Shape().WithSubshapeCompatibleTo({10}, &shape), "a shape with subshape at index {10} which is\n" " a shape compatible with f32[1,2]", "No subshape at {10}\n" "in f32[1,2]{0,1}"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {2, 2})}), m::Shape().WithSubshapeCompatibleTo({0}, &shape), "a shape with subshape at index {0} which is\n" " a shape compatible with f32[1,2]", "Shape not compatible with f32[1,2]\n" "in f32[2,2]{1,0}\n" "in subshape at {0}\n" "in (f32[2,2])"); EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeTupleShape({ShapeUtil::MakeTupleShape({shape})}), m::Shape().WithSubshape({0, 0}, m::Shape().IsScalar()), "a shape with subshape at index {0,0} which is\n" " a shape that represents a scalar", "Shape is not a scalar\n" "in f32[1,2]{0,1}\n" "in subshape at {0,0}\n" "in ((f32[1,2]))"); } std::unique_ptr<HloInstruction> SetName(absl::string_view name, std::unique_ptr<HloInstruction> instr) { instr->SetAndSanitizeName(name); return instr; } TEST_F(PatternMatcherTest, HloInstructionDescribeToAndExplain) { std::unique_ptr<HloInstruction> iota = SetName("i", HloInstruction::CreateIota(ShapeUtil::MakeShape(S32, {42}), 0)); std::unique_ptr<HloInstruction> constant = SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(0))); EXPECT_DESC_AND_EXPLANATION(static_cast<const HloInstruction*>(nullptr), m::Op(), "an HloInstruction", "HloInstruction* is null"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithName("foo"), "an HloInstruction named \"foo\"", "HloInstruction not named \"foo\"\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithOpcode(HloOpcode::kAdd), "an HloInstruction with opcode add", "HloInstruction doesn't have opcode add\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( constant, m::Op().IsNonConstant(), "an HloInstruction with any opcode other than constant", "HloInstruction has opcode constant, expected anything else\n" "in c = s32[] constant(0)"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithNumOperands(42), "an HloInstruction with 42 operands", "HloInstruction doesn't have 42 operands\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithShape(m::Shape().IsTuple()), "an HloInstruction outputting\n" " a shape that represents a tuple", "Shape is not a tuple\n" "in s32[42]{0}\n" "in output shape\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithShape(F32, {42}), "an HloInstruction outputting\n" " a shape:\n" " * with element type F32 AND\n" " * with dimensions [42]", "Shape does not have element type F32\n" "in s32[42]{0}\n" "in output shape\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().WithShape(S32, {128}), "an HloInstruction outputting\n" " a shape:\n" " * with element type S32 AND\n" " * with dimensions [128]", "Shape does not have dimensions [128]\n" "in s32[42]{0}\n" "in output shape\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( iota, m::Op().WithOperand(2, m::Op().WithOpcode(HloOpcode::kAdd)), "an HloInstruction with operand 2 which is:\n" " an HloInstruction with opcode add", "desired operand index 2 is out of bounds\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary(ShapeUtil::MakeShape(S32, {}), HloOpcode::kAdd, constant.get(), constant.get())), m::Op().WithOperand(1, m::Op().IsNonConstant()), "an HloInstruction with operand 1 which is:\n" " an HloInstruction with any opcode other than constant", "HloInstruction has opcode constant, expected anything else\n" "in c = s32[] constant(0)\n" "in operand 1\n" "in a = s32[] add(s32[] c, s32[] c)"); EXPECT_DESC_AND_EXPLANATION( iota, m::Op().WithFusionKind(HloInstruction::FusionKind::kLoop), "an HloInstruction with fusion kind kLoop", "HloInstruction does not have fusion kind kLoop; it's not a fusion\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( iota, m::Op().WithTupleIndex(42), "an HloInstruction which is a GTE with index 42", "HloInstruction is not a GTE with index 42; it's not a GTE at all\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION(iota, m::Op().IsConstantScalar(), "an HloInstruction which is a constant scalar", "HloInstruction is not a constant\n" "in i = s32[42]{0} iota(), iota_dimension=0"); EXPECT_DESC_AND_EXPLANATION( SetName("c", HloInstruction::CreateConstant( LiteralUtil::CreateR1<int>({1, 2}))), m::Op().IsConstantEffectiveScalar(), "an HloInstruction which is a constant effective scalar", "HloInstruction is not an effective scalar\n" "in c = s32[2]{0} constant({1, 2})"); EXPECT_DESC_AND_EXPLANATION( SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(10))), m::Op().IsConstantScalar(42), "an HloInstruction which is a constant scalar with value 42", "HloInstruction's constant value 10 did not match expected value 42\n" "in c = s32[] constant(10)"); EXPECT_DESC_AND_EXPLANATION( SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(2.25))), m::Op().IsConstantEffectiveScalar(1.25), "an HloInstruction which is a constant effective scalar with value 1.25", "HloInstruction's constant value 2.25 did not match expected value 1.25\n" "in c = f64[] constant(2.25)"); EXPECT_DESC_AND_EXPLANATION( constant, m::Op().Is(iota.get()), absl::StrCat("an HloInstruction which is 0x", absl::Hex(iota.get()), " (i = s32[42]{0} iota(), iota_dimension=0)"), absl::StrCat("HloInstruction 0x", absl::Hex(constant.get()), " is not 0x", absl::Hex(iota.get()), " (i = s32[42]{0} iota(), iota_dimension=0)\n" "in c = s32[] constant(0)")); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary(constant->shape(), HloOpcode::kAdd, constant.get(), constant.get())), m::Op().WithOperandIfPresent(0, m::Iota()), "an HloInstruction either with fewer than 1 operand, or with an operand " "0 which is:\n" " an HloInstruction with opcode iota", "HloInstruction doesn't have opcode iota\n" "in c = s32[] constant(0)\n" "in operand 0\n" "in a = s32[] add(s32[] c, s32[] c)"); EXPECT_DESC_AND_EXPLANATION( constant, m::Op().WithPredicate(HloPredicateFalse), "an HloInstruction which matches a user-specified predicate", "HloInstruction does not match user-specified predicate\n" "in c = s32[] constant(0)"); } TEST_F(PatternMatcherTest, HloInstructionMatcherAnyOrderDescribeTo) { auto scalar_s32 = ShapeUtil::MakeShape(S32, {}); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, SetName("b", HloInstruction::CreateConstant( LiteralUtil::CreateR0(0))) .get(), SetName("c", HloInstruction::CreateConstant( LiteralUtil::CreateR0(0))) .get())), m::AddAnyOrder(m::Op().WithName("b"), m::Op().WithName("bar")), "an HloInstruction:\n" " * with opcode add AND\n" " * with two operands in either order:\n" " - an HloInstruction named \"b\"\n" " - an HloInstruction named \"bar\"", "HloInstruction's operands (ignoring order) did not match second " "matcher. Specifically,\n" " - an HloInstruction named \"bar\"\n" "does not match LHS:\n" " - HloInstruction not named \"bar\"\n" " in b = s32[] constant(0)\n" "does not match RHS:\n" " - HloInstruction not named \"bar\"\n" " in c = s32[] constant(0)\n" "in a = s32[] add(s32[] b, s32[] c)"); EXPECT_DESC_AND_EXPLANATION( SetName("a", HloInstruction::CreateBinary( scalar_s32, HloOpcode::kAdd, HloInstruction::CreateParameter(0, scalar_s32, "p").get(), SetName("c", HloInstruction::CreateConstant( LiteralUtil::CreateR0(0))) .get())), m::AddAnyOrder(m::Op().IsConstantScalar(), m::Op().IsConstant()), "an HloInstruction:\n" " * with opcode add AND\n" " * with two operands in either order:\n" " - an HloInstruction which is a constant scalar\n" " - an HloInstruction with opcode constant", "HloInstruction's LHS operand did not match either of the two matchers. " "Specifically,\n" " - an HloInstruction which is a constant scalar\n" "does not match LHS:\n" " - HloInstruction is not a constant\n" " in p = s32[] parameter(0)\n" "and\n" " - an HloInstruction with opcode constant\n" "does not match LHS:\n" " - HloInstruction doesn't have opcode constant\n" " in p = s32[] parameter(0)\n" "in a = s32[] add(s32[] p, s32[] c)"); } TEST_F(PatternMatcherTest, AnyOfMatcherDescribeToAndExplain) { EXPECT_DESC_AND_EXPLANATION( ShapeUtil::MakeScalarShape(S32), m::AnyOf<Shape>(m::Shape().WithRank(1), m::Shape().WithElementType(F32)), "any of:\n" " - a shape that has 1 dimension OR\n" " - a shape with element type F32", "None of the following matchers succeeded:\n" "Matcher #1\n" " - a shape that has 1 dimension\n" "failed with\n" " - Shape does not have rank 1\n" " in s32[]\n" "Matcher #2\n" " - a shape with element type F32\n" "failed with\n" " - Shape does not have element type F32\n" " in s32[]"); } TEST_F(PatternMatcherTest, Parameter) { auto param = HloInstruction::CreateParameter(1, ShapeUtil::MakeShape(F32, {}), "p1"); auto non_param = SetName("c", HloInstruction::CreateConstant(LiteralUtil::CreateR0(0))); EXPECT_FALSE(Match(param.get(), m::Parameter(0))); EXPECT_TRUE(Match(param.get(), m::Parameter())); EXPECT_TRUE(Match(param.get(), m::Parameter(1))); EXPECT_FALSE(Match(non_param.get(), m::Parameter())); EXPECT_FALSE(Match(non_param.get(), m::Parameter(1))); EXPECT_DESC_AND_EXPLANATION(non_param, m::Parameter(1), "an HloInstruction:\n" " * with opcode parameter AND\n" " * which is parameter 1", "HloInstruction doesn't have opcode parameter\n" "in c = s32[] constant(0)"); EXPECT_EQ(Explanation(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "p0"), m::Parameter(1)), "HloInstruction is not parameter 1\n" "in p0 = f32[] parameter(0)"); } TEST_F(PatternMatcherTest, OneUseAndOneUser) { auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUse())); EXPECT_DESC_AND_EXPLANATION( param, m::Op().WithOneUse(), "an HloInstruction which has exactly one use", "HloInstruction has 0 users, but expected exactly one.\n" "in p0 = f32[] parameter(0)"); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUser())); EXPECT_DESC_AND_EXPLANATION( param, m::Op().WithOneUser(), "an HloInstruction which has exactly one user (but possibly is used " "multiple times by that instruction)", "HloInstruction has 0 users, but expected exactly one.\n" "in p0 = f32[] parameter(0)"); { auto reshape = SetName("r", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_TRUE(Match(param.get(), m::Op().WithOneUse())); EXPECT_TRUE(Match(param.get(), m::Op().WithOneUser())); auto reshape1 = SetName("r1", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUse())); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUser())); const char* kMultipleUserExplanation = "HloInstruction has 2 users, but expected exactly one.\n" "All users:\n" " - r = f32[1]{0} reshape(f32[] p0)\n" " - r1 = f32[1]{0} reshape(f32[] p0)\n" "in p0 = f32[] parameter(0)"; EXPECT_EQ(Explanation(param.get(), m::Op().WithOneUse()), kMultipleUserExplanation); EXPECT_EQ(Explanation(param.get(), m::Op().WithOneUser()), kMultipleUserExplanation); } auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param.get(), param.get())); EXPECT_TRUE(Match(param.get(), m::Op().WithOneUser())); EXPECT_FALSE(Match(param.get(), m::Op().WithOneUse())); EXPECT_EQ(Explanation(param.get(), m::Op().WithOneUse()), "HloInstruction is used 2 times by its user, but is expected to be " "used just once: add = f32[] add(f32[] p0, f32[] p0)\n" "in p0 = f32[] parameter(0)"); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyUnaryOpOneUser) { auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p"); auto reshape = SetName("reshape", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_TRUE(MatchSingleUserOnly(reshape.get(), m::Reshape(m::Op()))); EXPECT_TRUE(Match(reshape.get(), m::Reshape(m::Op().WithOneUser()))); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyUnaryOpTwoUsers) { auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p"); auto reshape = SetName("reshape", HloInstruction::CreateReshape( ShapeUtil::MakeShape(F32, {1}), param.get())); auto bitcast = SetName("bitcast", HloInstruction::CreateBitcast( ShapeUtil::MakeShape(F32, {1}), param.get())); EXPECT_TRUE(MatchSingleUserOnly(param.get(), m::Op())); EXPECT_TRUE(Match(param.get(), m::Op())); EXPECT_TRUE(MatchSingleUserOnly(bitcast.get(), m::Bitcast())); EXPECT_TRUE(Match(bitcast.get(), m::Bitcast())); EXPECT_FALSE(MatchSingleUserOnly(bitcast.get(), m::Bitcast(m::Op()))); EXPECT_FALSE(Match(bitcast.get(), m::Bitcast(m::Op().WithOneUser()))); EXPECT_EQ(Explanation(bitcast.get(), m::Bitcast(m::Op()), true), "Operand 0 of HloInstruction has 2 users. Expected 1.\nin bitcast " "= f32[1]{0} bitcast(f32[] p)"); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyBinaryOpOneUser) { auto param0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param0.get(), param0.get())); EXPECT_TRUE(MatchSingleUserOnly(add.get(), m::Add(m::Op(), m::Op()))); EXPECT_TRUE( Match(add.get(), m::Add(m::Op().WithOneUser(), m::Op().WithOneUser()))); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyBinaryOpTwoUsers) { auto param0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto param1 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p1"); auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param0.get(), param0.get())); auto mul = SetName("mul", HloInstruction::CreateBinary(ShapeUtil::MakeShape(F32, {}), HloOpcode::kMultiply, param1.get(), param0.get())); EXPECT_TRUE(MatchSingleUserOnly(mul.get(), m::Multiply())); EXPECT_TRUE(Match(mul.get(), m::Multiply())); EXPECT_FALSE(MatchSingleUserOnly(mul.get(), m::Multiply(m::Op(), m::Op()))); EXPECT_FALSE(Match( mul.get(), m::Multiply(m::Op().WithOneUser(), m::Op().WithOneUser()))); EXPECT_EQ(Explanation(mul.get(), m::Multiply(m::Op(), m::Op()), true), "Operand 1 of HloInstruction has 2 users. Expected 1.\nin mul = " "f32[] multiply(f32[] p1, f32[] p0)"); EXPECT_FALSE(MatchSingleUserOnly(add.get(), m::Add(m::Op(), m::Op()))); EXPECT_FALSE( Match(add.get(), m::Add(m::Op().WithOneUser(), m::Op().WithOneUser()))); EXPECT_EQ(Explanation(add.get(), m::Add(m::Op(), m::Op()), true), "Operand 0 of HloInstruction has 2 users. Expected 1.\nin add = " "f32[] add(f32[] p0, f32[] p0)"); } TEST_F(PatternMatcherTest, MatchSingleUserOnlyBinaryOpTwoUsersLowerLevel) { auto param0 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto param1 = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p1"); auto add = SetName("add", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kAdd, param0.get(), param0.get())); auto mul = SetName("mul", HloInstruction::CreateBinary(ShapeUtil::MakeShape(F32, {}), HloOpcode::kMultiply, param1.get(), param0.get())); auto div = SetName("div", HloInstruction::CreateBinary( ShapeUtil::MakeShape(F32, {}), HloOpcode::kDivide, add.get(), mul.get())); EXPECT_TRUE( MatchSingleUserOnly(div.get(), m::Divide(m::Add(), m::Multiply()))); EXPECT_TRUE(Match(div.get(), m::Divide(m::Add().WithOneUser(), m::Multiply().WithOneUser()))); EXPECT_FALSE(MatchSingleUserOnly( div.get(), m::Divide(m::Add(m::Op(), m::Op()), m::Multiply()))); EXPECT_FALSE(Match( div.get(), m::Divide( m::Add(m::Op().WithOneUser(), m::Op().WithOneUser()).WithOneUser(), m::Multiply().WithOneUser()))); EXPECT_EQ(Explanation(add.get(), m::Add(m::Op(), m::Op()), true), "Operand 0 of HloInstruction has 2 users. Expected 1.\nin add = " "f32[] add(f32[] p0, f32[] p0)"); } TEST_F(PatternMatcherTest, Comparison) { auto shape = ShapeUtil::MakeShape(F32, {1}); auto p0 = HloInstruction::CreateParameter(0, shape, "param.0"); auto p1 = HloInstruction::CreateParameter(1, shape, "param.1"); auto eq = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kEq); auto ne = HloInstruction::CreateCompare(shape, p0.get(), p1.get(), ComparisonDirection::kNe); auto add = HloInstruction::CreateBinary(shape, HloOpcode::kAdd, p0.get(), p1.get()); auto le = HloInstruction::CreateCompare(shape, p0.get(), add.get(), ComparisonDirection::kLe); EXPECT_TRUE(Match(eq.get(), m::Compare())); EXPECT_TRUE(Match(eq.get(), m::Eq())); EXPECT_TRUE(Match(eq.get(), m::Eq(m::Parameter(0), m::Parameter(1)))); EXPECT_TRUE(Match(eq.get(), m::EqAnyOrder(m::Parameter(1), m::Parameter(0)))); EXPECT_TRUE(Match(ne.get(), m::Compare())); EXPECT_TRUE(Match(ne.get(), m::Ne())); EXPECT_TRUE(Match( le.get(), m::Compare(m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); EXPECT_TRUE(Match(le.get(), m::Le(m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); EXPECT_FALSE(Match(eq.get(), m::Add())); EXPECT_FALSE(Match(eq.get(), m::Ne())); EXPECT_FALSE( Match(le.get(), m::Eq(m::Parameter(0), m::Add(m::Parameter(0), m::Parameter(1))))); EXPECT_FALSE(Match(eq.get(), m::Eq(m::Parameter(1), m::Parameter(0)))); EXPECT_DESC_AND_EXPLANATION( eq, m::Ne().WithOneUser(), "an HloInstruction:\n" " * with opcode compare AND\n" " * which has comparison direction NE AND\n" " * which has exactly one user (but possibly is used " "multiple times by that instruction)", "HloInstruction is not comparison NE\n" "in compare = f32[1]{0} compare(f32[1]{0} param.0, f32[1]{0} param.1), " "direction=EQ"); } TEST_F(PatternMatcherTest, ConvDnums) { TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers dnums, ParseConvolutionDimensionNumbers("bf01_oi01->bf01")); auto param = HloInstruction::CreateParameter(0, ShapeUtil::MakeShape(F32, {}), "p0"); auto op = HloInstruction::CreateCustomCall(ShapeUtil::MakeShape(F32, {}), {}, "foo"); op->set_convolution_dimension_numbers(dnums); EXPECT_TRUE(Match(op.get(), m::CustomCall().WithConvDnums(dnums))); EXPECT_TRUE( Match(op.get(), m::CustomCall().WithConvDnums("bf01_oi01->bf01"))); TF_ASSERT_OK_AND_ASSIGN(ConvolutionDimensionNumbers different_dnums, ParseConvolutionDimensionNumbers("b01f_oi01->bf01")); EXPECT_FALSE(Match(op.get(), m::CustomCall().WithConvDnums(different_dnums))); EXPECT_FALSE( Match(op.get(), m::CustomCall().WithConvDnums("b01f_oi01->bf01"))); EXPECT_FALSE( Match(param.get(), m::CustomCall().WithConvDnums("b01f_oi01->bf01"))); EXPECT_DESC_AND_EXPLANATION( op.get(), m::CustomCall().WithConvDnums("b01f_oi01->bf01"), "an HloInstruction:\n" " * with opcode custom-call AND\n" " * which has convolution dimension numbers b01f_oi01->bf01", "convolution_dimension_numbers bf01_oi01->bf01 don't match expected " "b01f_oi01->bf01\n" "in custom-call = f32[] custom-call(), dim_labels=bf01_oi01->bf01, " "custom_call_target=\"foo\""); } TEST_F(PatternMatcherTest, CustomCallMatchers) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT out = f32[] custom-call(p0, p1), custom_call_target="test_target" } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::CustomCall())); EXPECT_TRUE(Match(root, m::CustomCall({"test_target"}))); EXPECT_TRUE(Match( root, m::CustomCall({"test_target"}, m::Parameter(0), m::Parameter(1)))); EXPECT_TRUE(Match(root, m::CustomCall({"test_target", "other_target"}))); EXPECT_TRUE(Match(root, m::CustomCall({"other_target", "test_target"}))); EXPECT_TRUE(Match(root, m::CustomCall({"test_target", "other_target"}, m::Parameter(0), m::Parameter(1)))); EXPECT_TRUE(Match(root, m::CustomCall({"other_target", "test_target"}, m::Parameter(0), m::Parameter(1)))); HloInstruction* instr; EXPECT_TRUE(Match(root, m::CustomCall(&instr))); EXPECT_TRUE(Match(root, m::CustomCall(&instr, {"test_target"}))); EXPECT_TRUE(Match(root, m::CustomCall(&instr, {"test_target"}, m::Parameter(0), m::Parameter(1)))); const HloInstruction* const_instr; EXPECT_TRUE(Match(root, m::CustomCall(&const_instr))); EXPECT_TRUE(Match(root, m::CustomCall(&const_instr, {"test_target"}))); EXPECT_TRUE(Match(root, m::CustomCall(&const_instr, {"test_target"}, m::Parameter(0), m::Parameter(1)))); EXPECT_FALSE(Match(root, m::CustomCall({"other_target"}))); EXPECT_FALSE(Match(root, m::CustomCall({"other_target", "other_target2"}))); EXPECT_FALSE(Match( root, m::CustomCall({"test_target"}, m::Parameter(1), m::Parameter(0)))); } TEST_F(PatternMatcherTest, SharedSubpatternPreservesTheSemantics) { auto scalar0 = m::SharedSubpattern(m::ConstantScalar(0)); auto pattern0 = m::AnyOf<HloInstruction>(m::Convert(scalar0), scalar0); auto scalar1 = m::SharedSubpattern(m::ConstantScalar(1)); auto pattern1 = m::AnyOf<HloInstruction>(m::Convert(scalar1), scalar1); { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { ROOT constant = f16[] constant(0) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, pattern0)); EXPECT_FALSE(Match(root, pattern1)); } { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { constant = f16[] constant(0) ROOT convert = f32[] convert(constant) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, pattern0)); EXPECT_FALSE(Match(root, pattern1)); } } TEST_F(PatternMatcherTest, SharedSubpatternCanBeNested) { auto scalar0 = m::SharedSubpattern(match::ConstantScalar(0)); auto subpattern0 = m::SharedSubpattern( m::AnyOf<HloInstruction>(m::Convert(scalar0), scalar0)); auto pattern0 = m::AnyOf<HloInstruction>(m::Convert(subpattern0), subpattern0); auto scalar1 = m::SharedSubpattern(match::ConstantScalar(1)); auto subpattern1 = m::SharedSubpattern( m::AnyOf<HloInstruction>(m::Convert(scalar1), scalar1)); auto pattern1 = m::AnyOf<HloInstruction>(m::Convert(subpattern1), subpattern1); { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { constant = f16[] constant(0) convert = f32[] convert(constant) ROOT convert1 = f32[] convert(convert) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, pattern0)); EXPECT_FALSE(Match(root, pattern1)); } } TEST_F(PatternMatcherTest, TestWithContractingDims) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { %param1 = f32[2048,1024] parameter(0) %param2 = f32[1024,33708] parameter(1) ROOT %dot1 = f32[2048,33708]{1,0} dot(f32[2048,1024]{1,0} %param1, f32[1024,33708]{0,1} %param2), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::Dot().WithContractingDims({1}, {0}))); EXPECT_FALSE(Match(root, m::Dot().WithContractingDims({0}, {1}))); EXPECT_FALSE(Match(root, m::Dot().WithContractingDims({1}, {0, 1}))); EXPECT_DESC_AND_EXPLANATION( root, m::Dot().WithContractingDims({1}, {0, 1}), "an HloInstruction:\n" " * with opcode dot AND\n" " * with lhs_contracting_dims {1} and rhs_contracting_dims {0,1}", "rhs_contracting_dimensions {0} don't match expected {0,1}\n" "in dot1 = f32[2048,33708]{1,0} dot(f32[2048,1024]{1,0} param1, " "f32[1024,33708]{1,0} param2), lhs_contracting_dims={1}, " "rhs_contracting_dims={0}"); } TEST_F(PatternMatcherTest, TestWithReplicaGroups) { constexpr char kModuleStr[] = R"( HloModule test_module add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY test { input = f32[128,32]{0,1} parameter(0) ROOT all-reduce = f32[128,32]{0,1} all-reduce(input), replica_groups={{0,1},{2,3}}, to_apply=add })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* root = hlo_module->entry_computation()->root_instruction(); EXPECT_TRUE(Match(root, m::AllReduce().WithReplicaGroups({{0, 1}, {2, 3}}))); EXPECT_FALSE(Match(root, m::AllReduce().WithReplicaGroups({{}, {}}))); EXPECT_FALSE(Match(root, m::AllReduce().WithReplicaGroups({{1, 0}, {3, 2}}))); EXPECT_DESC_AND_EXPLANATION( root, m::AllReduce().WithReplicaGroups({{1, 0}, {3, 2}}), "an HloInstruction:\n" " * with opcode all-reduce AND\n" " * with replica_group {{1,0},{3,2}}", "replica_group {{0,1},{2,3}} don't match expected with replica_group " "{{1,0},{3,2}}\n" "in all-reduce = f32[128,32]{0,1} all-reduce(f32[128,32]{0,1} input), " "replica_groups={{0,1},{2,3}}, to_apply=add"); } TEST_F(PatternMatcherTest, TestWithSharding) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { p0 = f32[5,7,11,13]{3,2,1,0} parameter(0), sharding={devices=[1,2,2,1]0,1,2,3}, metadata={op_name="test"} ROOT copy = f32[5,7,11,13]{3,2,1,0} copy(p0) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* instruction = FindInstruction(hlo_module.get(), "p0"); EXPECT_TRUE( Match(instruction, m::Op().WithSharding("{devices=[1,2,2,1]0,1,2,3}"))); EXPECT_FALSE( Match(instruction, m::Op().WithSharding("{devices=[2,2,1,1]0,1,2,3}"))); EXPECT_DESC_AND_EXPLANATION( instruction, m::Op().WithSharding("{devices=[2,2,1,1]0,1,2,3}"), "an HloInstruction with sharding {devices=[2,2,1,1]0,1,2,3}", "sharding {devices=[1,2,2,1]0,1,2,3} don't match expected " "{devices=[2,2,1,1]0,1,2,3}\n" "in p0 = f32[5,7,11,13]{3,2,1,0} parameter(0), " "sharding={devices=[1,2,2,1]0,1,2,3}"); } TEST_F(PatternMatcherTest, TestWithControlDeps) { constexpr char kModuleStr[] = R"( HloModule test_module ENTRY test { p0 = f32[4] parameter(0) p1 = f32[4] parameter(1) add = f32[4] add(p0, p1) mul = f32[4] multiply(p0, p1), control-predecessors={add} div = f32[4] divide(p0, p1), control-predecessors={mul} ROOT t = (f32[4], f32[4], f32[4]) tuple(add, mul, div) })"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseAndReturnVerifiedModule(kModuleStr)); auto* add = FindInstruction(hlo_module.get(), "add"); auto* mul = FindInstruction(hlo_module.get(), "mul"); auto* div = FindInstruction(hlo_module.get(), "div"); EXPECT_TRUE(Match(add, m::Op().WithControlDeps({}, {mul}))); EXPECT_TRUE(Match(mul, m::Op().WithControlDeps({add}, {div}))); EXPECT_TRUE(Match(div, m::Op().WithControlDeps({mul}, {}))); EXPECT_FALSE(Match(div, m::Op().WithControlDeps({mul}, {div}))); EXPECT_DESC_AND_EXPLANATION( div, m::Op().WithControlDeps({mul}, {div}), "an HloInstruction with control predecessors {mul} and control " "successors {div}", "HloInstruction expected to have control successors {div} but has {}\n" "in div = f32[4]{0} divide(f32[4]{0} p0, f32[4]{0} p1), " "control-predecessors={mul}"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/pattern_matcher.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/pattern_matcher_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c8b14a4-a2fa-45f8-ab69-619597b9724e
cpp
google/tensorstore
admission_queue
tensorstore/internal/rate_limiter/admission_queue.cc
tensorstore/internal/rate_limiter/admission_queue_test.cc
#include "tensorstore/internal/rate_limiter/admission_queue.h" #include <stddef.h> #include <cassert> #include <limits> #include "absl/synchronization/mutex.h" #include "tensorstore/internal/container/intrusive_linked_list.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" namespace tensorstore { namespace internal { AdmissionQueue::AdmissionQueue(size_t limit) : limit_(limit == 0 ? std::numeric_limits<size_t>::max() : limit) {} void AdmissionQueue::Admit(RateLimiterNode* node, RateLimiterNode::StartFn fn) { assert(node->next_ == nullptr); assert(node->prev_ == nullptr); assert(node->start_fn_ == nullptr); node->start_fn_ = fn; { absl::MutexLock lock(&mutex_); if (in_flight_++ >= limit_) { internal::intrusive_linked_list::InsertBefore(RateLimiterNodeAccessor{}, &head_, node); return; } } RunStartFunction(node); } void AdmissionQueue::Finish(RateLimiterNode* node) { assert(node->next_ == nullptr); RateLimiterNode* next_node = nullptr; { absl::MutexLock lock(&mutex_); in_flight_--; next_node = head_.next_; if (next_node == &head_) return; internal::intrusive_linked_list::Remove(RateLimiterNodeAccessor{}, next_node); } RunStartFunction(next_node); } } }
#include "tensorstore/internal/rate_limiter/admission_queue.h" #include <stddef.h> #include <atomic> #include <utility> #include <gtest/gtest.h> #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" #include "tensorstore/util/executor.h" namespace { using ::tensorstore::Executor; using ::tensorstore::ExecutorTask; using ::tensorstore::internal::AdmissionQueue; using ::tensorstore::internal::adopt_object_ref; using ::tensorstore::internal::AtomicReferenceCount; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::MakeIntrusivePtr; using ::tensorstore::internal::RateLimiterNode; struct Node : public RateLimiterNode, public AtomicReferenceCount<Node> { AdmissionQueue* queue_; ExecutorTask task_; Node(AdmissionQueue* queue, ExecutorTask task) : queue_(queue), task_(std::move(task)) {} ~Node() { queue_->Finish(this); } static void Start(void* task) { IntrusivePtr<Node> self(reinterpret_cast<Node*>(task), adopt_object_ref); std::move(self->task_)(); } }; TEST(AdmissionQueueTest, Basic) { AdmissionQueue queue(1); std::atomic<size_t> done{0}; EXPECT_EQ(1, queue.limit()); EXPECT_EQ(0, queue.in_flight()); { for (int i = 0; i < 100; i++) { auto node = MakeIntrusivePtr<Node>(&queue, [&done] { done++; }); intrusive_ptr_increment(node.get()); queue.Admit(node.get(), &Node::Start); } } EXPECT_EQ(100, done); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/rate_limiter/admission_queue.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/rate_limiter/admission_queue_test.cc
4f887a6430414cd6088e1743555015b10f116d50
5c54fd05-5e24-4353-98e8-4a51907c7f2c
cpp
tensorflow/tensorflow
dot_decomposer
third_party/xla/xla/service/dot_decomposer.cc
third_party/xla/xla/service/dot_decomposer_test.cc
#include "xla/service/dot_decomposer.h" #include <algorithm> #include <cstdint> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/shape_inference.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace { absl::Status CanonicalizeDot(HloDotInstruction* original_dot) { auto computation = original_dot->parent(); const auto& original_dnums = original_dot->dot_dimension_numbers(); const int64_t num_batch_dims = original_dnums.lhs_batch_dimensions_size(); const int64_t num_contracting_dims = original_dnums.lhs_contracting_dimensions_size(); int lhs_sparse_dim = -1, rhs_sparse_dim = -1; for (const SparsityDescriptor& descriptor : original_dot->sparsity()) { (descriptor.index() == 0 ? lhs_sparse_dim : rhs_sparse_dim) = descriptor.dimension(); } auto move_dim_to_end = [&](std::vector<int64_t>& dims, int sparse_dim) { if (sparse_dim < 0) return; auto it = std::remove(dims.begin(), dims.end(), sparse_dim); *it = sparse_dim; }; const auto& lhs_shape = original_dot->operand(0)->shape(); const int64_t lhs_rank = lhs_shape.rank(); const int64_t num_lhs_non_contracting_dims = lhs_rank - num_batch_dims - num_contracting_dims; std::vector<int64_t> lhs_non_contracting_dims; lhs_non_contracting_dims.reserve(num_lhs_non_contracting_dims); int64_t lhs_contracting_size = 1; bool lhs_contracting_dynamic = false; int64_t lhs_non_contracting_size = 1; bool lhs_non_contracting_dynamic = false; std::vector<int64_t> batch_dim_sizes; batch_dim_sizes.reserve(num_batch_dims); std::vector<bool> batch_dynamic_dims; batch_dynamic_dims.reserve(num_batch_dims); for (int64_t i = 0; i < lhs_rank; ++i) { if (absl::c_linear_search(original_dnums.lhs_contracting_dimensions(), i)) { lhs_contracting_size *= lhs_shape.dimensions(i); lhs_contracting_dynamic |= lhs_shape.is_dynamic_dimension(i); } else if (absl::c_linear_search(original_dnums.lhs_batch_dimensions(), i)) { batch_dim_sizes.push_back(lhs_shape.dimensions(i)); batch_dynamic_dims.push_back(lhs_shape.is_dynamic_dimension(i)); } else { lhs_non_contracting_dims.push_back(i); lhs_non_contracting_size *= lhs_shape.dimensions(i); lhs_non_contracting_dynamic |= lhs_shape.is_dynamic_dimension(i); } } std::vector<int64_t> lhs_transpose; lhs_transpose.reserve(lhs_rank); lhs_transpose.insert(lhs_transpose.end(), original_dnums.lhs_batch_dimensions().begin(), original_dnums.lhs_batch_dimensions().end()); lhs_transpose.insert(lhs_transpose.end(), lhs_non_contracting_dims.begin(), lhs_non_contracting_dims.end()); lhs_transpose.insert(lhs_transpose.end(), original_dnums.lhs_contracting_dimensions().begin(), original_dnums.lhs_contracting_dimensions().end()); move_dim_to_end(lhs_transpose, lhs_sparse_dim); HloInstruction* lhs_operand = original_dot->mutable_operand(0); HloInstruction* transposed_lhs = computation->AddInstruction( HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(lhs_transpose, lhs_shape), lhs_operand, lhs_transpose), &lhs_operand->metadata()); std::vector<int64_t> lhs_reshape_dims = batch_dim_sizes; std::vector<bool> lhs_reshape_dynamic_dims = batch_dynamic_dims; if (lhs_non_contracting_size > 1) { lhs_reshape_dims.push_back(lhs_non_contracting_size); lhs_reshape_dynamic_dims.push_back(lhs_non_contracting_dynamic); } lhs_reshape_dims.push_back(lhs_contracting_size); lhs_reshape_dynamic_dims.push_back(lhs_contracting_dynamic); HloInstruction* reshaped_lhs = computation->AddInstruction( HloInstruction::CreateReshape( ShapeUtil::MakeShape(lhs_shape.element_type(), lhs_reshape_dims, lhs_reshape_dynamic_dims), transposed_lhs), &transposed_lhs->metadata()); const auto& rhs_shape = original_dot->operand(1)->shape(); const int64_t rhs_rank = rhs_shape.rank(); const int64_t num_rhs_non_contracting_dims = rhs_rank - num_batch_dims - num_contracting_dims; std::vector<int64_t> rhs_non_contracting_dims; rhs_non_contracting_dims.reserve(num_rhs_non_contracting_dims); int64_t rhs_non_contracting_size = 1; bool rhs_non_contracting_dynamic = false; int64_t rhs_contracting_size = 1; bool rhs_contracting_dynamic = false; for (int64_t i = 0; i < rhs_rank; ++i) { if (absl::c_linear_search(original_dnums.rhs_contracting_dimensions(), i)) { rhs_contracting_size *= rhs_shape.dimensions(i); rhs_contracting_dynamic |= rhs_shape.is_dynamic_dimension(i); } else if (!absl::c_linear_search(original_dnums.rhs_batch_dimensions(), i)) { rhs_non_contracting_dims.push_back(i); rhs_non_contracting_size *= rhs_shape.dimensions(i); rhs_non_contracting_dynamic |= rhs_shape.is_dynamic_dimension(i); } } std::vector<int64_t> rhs_transpose; rhs_transpose.reserve(rhs_rank); rhs_transpose.insert(rhs_transpose.end(), original_dnums.rhs_batch_dimensions().begin(), original_dnums.rhs_batch_dimensions().end()); rhs_transpose.insert(rhs_transpose.end(), original_dnums.rhs_contracting_dimensions().begin(), original_dnums.rhs_contracting_dimensions().end()); move_dim_to_end(rhs_transpose, rhs_sparse_dim); rhs_transpose.insert(rhs_transpose.end(), rhs_non_contracting_dims.begin(), rhs_non_contracting_dims.end()); HloInstruction* rhs_operand = original_dot->mutable_operand(1); HloInstruction* transposed_rhs = computation->AddInstruction( HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(rhs_transpose, rhs_shape), rhs_operand, rhs_transpose), &rhs_operand->metadata()); std::vector<int64_t> rhs_reshape_dims = batch_dim_sizes; rhs_reshape_dims.push_back(rhs_contracting_size); std::vector<bool> rhs_reshape_dynamic_dims = batch_dynamic_dims; rhs_reshape_dynamic_dims.push_back(rhs_contracting_dynamic); if (rhs_non_contracting_size > 1) { rhs_reshape_dims.push_back(rhs_non_contracting_size); rhs_reshape_dynamic_dims.push_back(rhs_non_contracting_dynamic); } HloInstruction* reshaped_rhs = computation->AddInstruction( HloInstruction::CreateReshape( ShapeUtil::MakeShape(rhs_shape.element_type(), rhs_reshape_dims, rhs_reshape_dynamic_dims), transposed_rhs), &transposed_rhs->metadata()); std::vector<int64_t> dot_dims = batch_dim_sizes; std::vector<bool> dot_dynamic_dims = batch_dynamic_dims; if (lhs_non_contracting_size > 1) { dot_dims.push_back(lhs_non_contracting_size); dot_dynamic_dims.push_back(lhs_non_contracting_dynamic); } if (rhs_non_contracting_size > 1) { dot_dims.push_back(rhs_non_contracting_size); dot_dynamic_dims.push_back(rhs_non_contracting_dynamic); } DotDimensionNumbers dot_dnums; for (int64_t i = 0; i < num_batch_dims; ++i) { dot_dnums.add_lhs_batch_dimensions(i); dot_dnums.add_rhs_batch_dimensions(i); } dot_dnums.add_lhs_contracting_dimensions( num_batch_dims + (lhs_non_contracting_size > 1 ? 1 : 0)); dot_dnums.add_rhs_contracting_dimensions(num_batch_dims); std::vector<SparsityDescriptor> sparsity; std::vector<HloInstruction*> sparse_meta; sparsity.reserve(original_dot->sparse_operands()); sparse_meta.reserve(original_dot->sparse_operands()); auto transpose_meta = [&](HloInstruction* original_meta, absl::Span<const int64_t> transpose) { return computation->AddInstruction( HloInstruction::CreateTranspose( ShapeUtil::PermuteDimensions(transpose, original_meta->shape()), original_meta, transpose), &original_meta->metadata()); }; for (int i = 0; i < original_dot->sparse_operands(); ++i) { SparsityDescriptor descriptor = original_dot->sparsity()[i]; descriptor.set_dimension(num_batch_dims + (descriptor.index() == 0 && lhs_non_contracting_size > 1)); sparsity.push_back(descriptor); HloInstruction* meta = original_dot->mutable_operand(HloDotInstruction::kOperands + i); HloInstruction* meta_operand; if (descriptor.index() == 0) { meta = transpose_meta(meta, lhs_transpose); meta_operand = reshaped_lhs; } else { meta = transpose_meta(meta, rhs_transpose); meta_operand = reshaped_rhs; } TF_ASSIGN_OR_RETURN(Shape result_shape, ShapeInference::InferSparseDotMetadataShape( meta_operand->shape(), dot_dnums, descriptor)); meta = computation->AddInstruction( HloInstruction::CreateReshape(result_shape, meta), &meta->metadata()); sparse_meta.push_back(meta); } HloInstruction* dot = computation->AddInstruction(HloInstruction::CreateDot( ShapeUtil::MakeShape(original_dot->shape().element_type(), dot_dims, dot_dynamic_dims), reshaped_lhs, reshaped_rhs, dot_dnums, original_dot->precision_config(), sparsity, sparse_meta)); original_dot->SetupDerivedInstruction(dot); std::unique_ptr<HloInstruction> replacement = HloInstruction::CreateReshape(original_dot->shape(), dot); VLOG(3) << "Canonicalizing dot:\n" << "\t old: " << original_dot->ToString() << "\n" << "\t new: " << dot->ToString() << "\n" << "\t -> " << replacement->ToString(); return computation->ReplaceWithNewInstruction(original_dot, std::move(replacement)); } } absl::StatusOr<bool> DotDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { std::vector<HloInstruction*> non_canonical_dots; for (auto* computation : module->MakeNonfusionComputations(execution_threads)) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kDot) { continue; } const DotDimensionNumbers& dnums = instruction->dot_dimension_numbers(); if (dnums.lhs_contracting_dimensions_size() != 1) { non_canonical_dots.push_back(instruction); continue; } if (dnums.lhs_batch_dimensions_size() + 2 < instruction->operand(0)->shape().rank() || dnums.rhs_batch_dimensions_size() + 2 < instruction->operand(1)->shape().rank()) { non_canonical_dots.push_back(instruction); continue; } if (dnums.lhs_batch_dimensions().empty() && dnums.lhs_contracting_dimensions().empty()) { non_canonical_dots.push_back(instruction); continue; } std::vector<int64_t> canonical_batch_dims( dnums.lhs_batch_dimensions_size()); absl::c_iota(canonical_batch_dims, 0); if (!absl::c_equal(dnums.lhs_batch_dimensions(), canonical_batch_dims) || !absl::c_equal(dnums.rhs_batch_dimensions(), canonical_batch_dims)) { non_canonical_dots.push_back(instruction); } } } bool changed = false; for (auto* dot : non_canonical_dots) { TF_RETURN_IF_ERROR(CanonicalizeDot(Cast<HloDotInstruction>(dot))); changed = true; } return changed; } }
#include "xla/service/dot_decomposer.h" #include <memory> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { namespace m = ::xla::match; namespace op = ::xla::testing::opcode_matchers; using DotDecomposerTest = HloTestBase; TEST_F(DotDecomposerTest, CanonicalizeMultipleNonContractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,63,512]{2,1,0} parameter(0) p1 = f32[512,512]{1,0} parameter(1) ROOT dot = f32[64,63,512]{2,1,0} dot(p0, p1), lhs_contracting_dims={2}, rhs_contracting_dims={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(AllOf(op::Dot(op::Reshape(), op::Reshape(), 1, 0), op::Shape("f32[4032,512]")))); } TEST_F(DotDecomposerTest, DontCanonicalizeIfNoNoncontractingDims) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,4]{1,0} parameter(0) p1 = f32[64,4]{1,0} parameter(1) ROOT dot = f32[64]{0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_FALSE(canonicalized); } TEST_F(DotDecomposerTest, DontAddLhsNonContractingDimIfOne) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,4]{1,0} parameter(0) p1 = f32[64,4,2,1]{3,2,1,0} parameter(1) ROOT dot = f32[64,2,1]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(AllOf(op::Dot(op::Reshape(), op::Reshape(), 1, 1), op::Shape("f32[64,2]")))); } TEST_F(DotDecomposerTest, DontAddRhsNonContractingDimIfOne) { absl::string_view module_string = R"( HloModule module ENTRY main { p0 = f32[64,4,2,1]{3,2,1,0} parameter(0) p1 = f32[64,4]{1,0} parameter(1) ROOT dot = f32[64,2,1]{2,1,0} dot(p0, p1), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(AllOf(op::Dot(op::Reshape(), op::Reshape(), 2, 1), op::Shape("f32[64,2]")))); } template <typename Arg0, typename Arg1, typename Arg2> auto SparseDotMatcher(Arg0&& arg0, Arg1&& arg1, Arg2&& arg2) { return match::Op() .WithOpcode(HloOpcode::kDot) .WithOperand(0, std::forward<Arg0>(arg0)) .WithOperand(1, std::forward<Arg1>(arg1)) .WithOperand(2, std::forward<Arg2>(arg2)); } TEST_F(DotDecomposerTest, CanonicalizeSparseLhs) { absl::string_view kHlo = R"( HloModule module ENTRY main { lhs = f32[16,4,3,7] parameter(0) rhs = f32[32,4,5,7] parameter(1) meta = u16[2,4,3,7] parameter(2) ROOT dot = f32[7,3,5] dot(lhs, rhs, meta), sparsity=L.0@2:4, lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, lhs_batch_dims={3}, rhs_batch_dims={3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(SparseDotMatcher( m::Reshape(m::Transpose(m::Parameter(0))), m::Reshape(m::Transpose(m::Parameter(1))), m::Reshape(m::Transpose(m::Parameter(2))))))); auto dot = Cast<HloDotInstruction>(root->operand(0)); auto descriptor = dot->sparsity().front(); EXPECT_EQ(descriptor.index(), 0); EXPECT_EQ(descriptor.dimension(), 2); } TEST_F(DotDecomposerTest, CanonicalizeSparseRhs) { absl::string_view kHlo = R"( HloModule module ENTRY main { lhs = f32[32,4,3,7] parameter(0) rhs = f32[16,4,5,7] parameter(1) meta = u16[2,4,5,7] parameter(2) ROOT dot = f32[7,3,5] dot(lhs, rhs, meta), sparsity=R.0@2:4, lhs_contracting_dims={0,1}, rhs_contracting_dims={0,1}, lhs_batch_dims={3}, rhs_batch_dims={3} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHlo)); TF_ASSERT_OK_AND_ASSIGN(bool canonicalized, DotDecomposer().Run(module.get())); EXPECT_TRUE(canonicalized); HloInstruction* root = module->entry_computation()->root_instruction(); EXPECT_THAT(root, GmockMatch(m::Reshape(SparseDotMatcher( m::Reshape(m::Transpose(m::Parameter(0))), m::Reshape(m::Transpose(m::Parameter(1))), m::Reshape(m::Transpose(m::Parameter(2))))))); auto dot = Cast<HloDotInstruction>(root->operand(0)); auto descriptor = dot->sparsity().front(); EXPECT_EQ(descriptor.index(), 1); EXPECT_EQ(descriptor.dimension(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dot_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/dot_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0f523235-915f-4e72-b771-0e58ab3b8a13
cpp
tensorflow/tensorflow
summary_op
tensorflow/c/kernels/summary_op.cc
tensorflow/c/kernels/summary_op_test.cc
#include <sstream> #include <string> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/c/kernels.h" #include "tensorflow/c/kernels/tensor_shape_utils.h" #include "tensorflow/c/tf_status.h" #include "tensorflow/c/tf_tensor.h" #include "tensorflow/core/framework/registration/registration.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/bfloat16.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/platform/types.h" namespace { struct Params { TF_Tensor* tags; TF_Tensor* values; TF_Status* status; explicit Params(TF_OpKernelContext* ctx) : tags(nullptr), values(nullptr), status(nullptr) { status = TF_NewStatus(); TF_GetInput(ctx, 0, &tags, status); if (TF_GetCode(status) == TF_OK) { TF_GetInput(ctx, 1, &values, status); } } ~Params() { TF_DeleteStatus(status); TF_DeleteTensor(tags); TF_DeleteTensor(values); } }; void* ScalarSummaryOp_Create(TF_OpKernelConstruction* ctx) { return nullptr; } void ScalarSummaryOp_Delete(void* kernel) {} bool IsSameSize(TF_Tensor* tensor1, TF_Tensor* tensor2); std::string SingleTag(TF_Tensor* tags); template <typename T> void ScalarSummaryOp_Compute(void* kernel, TF_OpKernelContext* ctx) { Params params(ctx); if (TF_GetCode(params.status) != TF_OK) { TF_OpKernelContext_Failure(ctx, params.status); return; } if (!IsSameSize(params.tags, params.values)) { std::ostringstream err; err << "tags and values are not the same shape: " << tensorflow::ShapeDebugString(params.tags) << " != " << tensorflow::ShapeDebugString(params.values) << SingleTag(params.tags); TF_SetStatus(params.status, TF_INVALID_ARGUMENT, err.str().c_str()); TF_OpKernelContext_Failure(ctx, params.status); return; } tensorflow::Summary s; auto tags_array = static_cast<tensorflow::tstring*>(TF_TensorData(params.tags)); auto values_array = static_cast<T*>(TF_TensorData(params.values)); for (int i = 0; i < TF_TensorElementCount(params.tags); ++i) { tensorflow::Summary::Value* v = s.add_value(); const tensorflow::tstring& Ttags_i = tags_array[i]; v->set_tag(Ttags_i.data(), Ttags_i.size()); v->set_simple_value(static_cast<float>(values_array[i])); } TF_Tensor* summary_tensor = TF_AllocateOutput(ctx, 0, TF_ExpectedOutputDataType(ctx, 0), nullptr, 0, sizeof(tensorflow::tstring), params.status); if (TF_GetCode(params.status) != TF_OK) { TF_DeleteTensor(summary_tensor); TF_OpKernelContext_Failure(ctx, params.status); return; } tensorflow::tstring* output_tstring = reinterpret_cast<tensorflow::tstring*>(TF_TensorData(summary_tensor)); CHECK(SerializeToTString(s, output_tstring)); TF_DeleteTensor(summary_tensor); } bool IsSameSize(TF_Tensor* tensor1, TF_Tensor* tensor2) { if (TF_NumDims(tensor1) != TF_NumDims(tensor2)) { return false; } for (int d = 0; d < TF_NumDims(tensor1); d++) { if (TF_Dim(tensor1, d) != TF_Dim(tensor2, d)) { return false; } } return true; } std::string SingleTag(TF_Tensor* tags) { if (TF_TensorElementCount(tags) == 1) { const char* single_tag = static_cast<tensorflow::tstring*>(TF_TensorData(tags))->c_str(); return tensorflow::strings::StrCat(" (tag '", single_tag, "')"); } else { return ""; } } template <typename T> void RegisterScalarSummaryOpKernel() { TF_Status* status = TF_NewStatus(); { auto* builder = TF_NewKernelBuilder( "ScalarSummary", tensorflow::DEVICE_CPU, &ScalarSummaryOp_Create, &ScalarSummaryOp_Compute<T>, &ScalarSummaryOp_Delete); TF_KernelBuilder_TypeConstraint( builder, "T", static_cast<TF_DataType>(tensorflow::DataTypeToEnum<T>::v()), status); CHECK_EQ(TF_OK, TF_GetCode(status)) << "Error while adding type constraint"; TF_RegisterKernelBuilder("ScalarSummary", builder, status); CHECK_EQ(TF_OK, TF_GetCode(status)) << "Error while registering Scalar Summmary kernel"; } TF_DeleteStatus(status); } TF_ATTRIBUTE_UNUSED bool IsScalarSummaryOpKernelRegistered = []() { if (SHOULD_REGISTER_OP_KERNEL("ScalarSummary")) { RegisterScalarSummaryOpKernel<int64_t>(); RegisterScalarSummaryOpKernel<tensorflow::uint64>(); RegisterScalarSummaryOpKernel<tensorflow::int32>(); RegisterScalarSummaryOpKernel<tensorflow::uint32>(); RegisterScalarSummaryOpKernel<tensorflow::uint16>(); RegisterScalarSummaryOpKernel<tensorflow::int16>(); RegisterScalarSummaryOpKernel<tensorflow::int8>(); RegisterScalarSummaryOpKernel<tensorflow::uint8>(); RegisterScalarSummaryOpKernel<Eigen::half>(); RegisterScalarSummaryOpKernel<tensorflow::bfloat16>(); RegisterScalarSummaryOpKernel<float>(); RegisterScalarSummaryOpKernel<double>(); } return true; }(); }
#include "tensorflow/c/kernels.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/device_base.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/summary.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace { class DummyDevice : public DeviceBase { public: explicit DummyDevice(Env* env) : DeviceBase(env) {} Allocator* GetAllocator(AllocatorAttributes ) override { return cpu_allocator(); } }; void ExpectSummaryMatches(const Summary& actual, const string& expected_str) { Summary expected; ASSERT_TRUE(protobuf::TextFormat::ParseFromString(expected_str, &expected)); EXPECT_EQ(expected.DebugString(), actual.DebugString()); } void TestScalarSummaryOp(Tensor* tags, Tensor* values, string expected_output, error::Code expected_code) { Status status; NodeDef def; def.set_op("ScalarSummary"); def.set_device(DEVICE_CPU); AttrValue valuesTypeAttr; SetAttrValue(values->dtype(), &valuesTypeAttr); (*def.mutable_attr())["T"] = valuesTypeAttr; def.add_input(strings::StrCat("input1: ", DataTypeString(tags->dtype()))); def.add_input(strings::StrCat("input2: ", DataTypeString(values->dtype()))); std::unique_ptr<OpKernel> kernel = CreateOpKernel(DeviceType(DEVICE_CPU), nullptr, nullptr, def, 1, &status); ASSERT_TRUE(status.ok()) << status.ToString(); OpKernelContext::Params params; DummyDevice dummy_device(nullptr); params.device = &dummy_device; params.op_kernel = kernel.get(); AllocatorAttributes alloc_attrs; params.output_attr_array = &alloc_attrs; absl::InlinedVector<TensorValue, 4UL> inputs; inputs.emplace_back(tags); inputs.emplace_back(values); params.inputs = inputs; OpKernelContext ctx(&params, 1); kernel->Compute(&ctx); ASSERT_EQ(expected_code, ctx.status().code()); if (expected_code == error::OK) { Summary summary; ASSERT_TRUE(ParseProtoUnlimited( &summary, ctx.mutable_output(0)->scalar<tstring>()())); ExpectSummaryMatches(summary, expected_output); } else { EXPECT_TRUE(absl::StrContains(ctx.status().ToString(), expected_output)) << ctx.status(); } } TEST(ScalarSummaryOpTest, SimpleFloat) { int vectorSize = 3; Tensor tags(DT_STRING, {vectorSize}); Tensor values(DT_FLOAT, {vectorSize}); tags.vec<tstring>()(0) = "tag1"; tags.vec<tstring>()(1) = "tag2"; tags.vec<tstring>()(2) = "tag3"; values.vec<float>()(0) = 1.0f; values.vec<float>()(1) = -0.73f; values.vec<float>()(2) = 10000.0f; TestScalarSummaryOp(&tags, &values, R"( value { tag: 'tag1' simple_value: 1.0 } value { tag: 'tag2' simple_value: -0.73} value { tag: 'tag3' simple_value: 10000.0})", error::OK); } TEST(ScalarSummaryOpTest, SimpleDouble) { int vectorSize = 3; Tensor tags(DT_STRING, {vectorSize}); Tensor values(DT_DOUBLE, {vectorSize}); tags.vec<tstring>()(0) = "tag1"; tags.vec<tstring>()(1) = "tag2"; tags.vec<tstring>()(2) = "tag3"; values.vec<double>()(0) = 1.0; values.vec<double>()(1) = -0.73; values.vec<double>()(2) = 10000.0; TestScalarSummaryOp(&tags, &values, R"( value { tag: 'tag1' simple_value: 1.0 } value { tag: 'tag2' simple_value: -0.73} value { tag: 'tag3' simple_value: 10000.0})", error::OK); } TEST(ScalarSummaryOpTest, SimpleHalf) { int vectorSize = 3; Tensor tags(DT_STRING, {vectorSize}); Tensor values(DT_HALF, {vectorSize}); tags.vec<tstring>()(0) = "tag1"; tags.vec<tstring>()(1) = "tag2"; tags.vec<tstring>()(2) = "tag3"; values.vec<Eigen::half>()(0) = Eigen::half(1.0); values.vec<Eigen::half>()(1) = Eigen::half(-2.0); values.vec<Eigen::half>()(2) = Eigen::half(10000.0); TestScalarSummaryOp(&tags, &values, R"( value { tag: 'tag1' simple_value: 1.0 } value { tag: 'tag2' simple_value: -2.0} value { tag: 'tag3' simple_value: 10000.0})", error::OK); } TEST(ScalarSummaryOpTest, Error_WrongDimsTags) { Tensor tags(DT_STRING, {2, 1}); Tensor values(DT_FLOAT, {2}); tags.matrix<tstring>()(0, 0) = "tag1"; tags.matrix<tstring>()(1, 0) = "tag2"; values.vec<float>()(0) = 1.0f; values.vec<float>()(1) = -2.0f; TestScalarSummaryOp(&tags, &values, "tags and values are not the same shape", error::INVALID_ARGUMENT); } TEST(ScalarSummaryOpTest, Error_WrongValuesTags) { Tensor tags(DT_STRING, {2}); Tensor values(DT_FLOAT, {2, 1}); tags.vec<tstring>()(0) = "tag1"; tags.vec<tstring>()(1) = "tag2"; values.matrix<float>()(0, 0) = 1.0f; values.matrix<float>()(1, 0) = -2.0f; TestScalarSummaryOp(&tags, &values, "tags and values are not the same shape", error::INVALID_ARGUMENT); } TEST(ScalarSummaryOpTest, Error_WrongWithSingleTag) { Tensor tags(DT_STRING, {1}); Tensor values(DT_FLOAT, {2, 1}); tags.vec<tstring>()(0) = "tag1"; values.matrix<float>()(0, 0) = 1.0f; values.matrix<float>()(1, 0) = -2.0f; TestScalarSummaryOp(&tags, &values, "tags and values are not the same shape", error::INVALID_ARGUMENT); } TEST(ScalarSummaryOpTest, IsRegistered) { const OpRegistrationData* reg; TF_CHECK_OK(OpRegistry::Global()->LookUp("ScalarSummary", &reg)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/kernels/summary_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/kernels/summary_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8585c3c1-3110-4d7f-9df7-16798a77f5b7
cpp
tensorflow/tensorflow
stochastic_convert_decomposer
third_party/xla/xla/service/stochastic_convert_decomposer.cc
third_party/xla/xla/service/stochastic_convert_decomposer_test.cc
#include "xla/service/stochastic_convert_decomposer.h" #include <cstdint> #include <limits> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/shape_inference.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { absl::Status DecomposeStochasticConvert(HloComputation* comp, HloInstruction* instruction) { CHECK(instruction->opcode() == HloOpcode::kStochasticConvert) << "requires a stochastic_convert instruction to decompose, but got: " << instruction->opcode(); CHECK(instruction->operand_count() == 2) << "requires 2 operands for stochastic convert, but got: " << instruction->operand_count(); HloInstruction* operand = instruction->mutable_operand(0); HloInstruction* random = instruction->mutable_operand(1); PrimitiveType from_type = operand->shape().element_type(); PrimitiveType random_type = random->shape().element_type(); PrimitiveType to_type = instruction->shape().element_type(); TF_RETURN_IF_ERROR(ShapeInference::InferStochasticConvertShape( operand->shape(), random->shape(), to_type) .status()); VLOG(1) << "Decomposing instruction: " << instruction->ToString(); if (primitive_util::IsSignedIntegralType(to_type)) { TF_ASSIGN_OR_RETURN(HloInstruction * operand_sign, MakeUnaryHlo(HloOpcode::kSign, operand)); TF_ASSIGN_OR_RETURN(HloInstruction * should_neg, MakeCompareHlo(Comparison::Direction::kLt, operand_sign, MakeScalarLike(operand_sign, 0))); TF_ASSIGN_OR_RETURN(HloInstruction * operand_abs, MakeUnaryHlo(HloOpcode::kAbs, operand)); TF_ASSIGN_OR_RETURN(HloInstruction * truncated_fp, MakeUnaryHlo(HloOpcode::kFloor, operand_abs)); TF_ASSIGN_OR_RETURN( HloInstruction * fractional, MakeBinaryHlo(HloOpcode::kSubtract, operand_abs, truncated_fp)); if (from_type == F16) { fractional = MakeConvertToHlo(fractional, F32); } TF_ASSIGN_OR_RETURN( HloInstruction * fixed_fractional, MakeBinaryHlo( HloOpcode::kMultiply, fractional, MakeScalarLike(fractional, IPow<double>(2, primitive_util::BitWidth( random_type))))); TF_ASSIGN_OR_RETURN( HloInstruction * should_round_up, MakeCompareHlo(Comparison::Direction::kLt, random, MakeConvertToHlo(fixed_fractional, random_type))); HloInstruction* truncated_int = MakeConvertToHlo(truncated_fp, to_type); TF_ASSIGN_OR_RETURN( truncated_int, MakeSelectHlo(should_round_up, MakeBinaryHlo(HloOpcode::kAdd, truncated_int, MakeScalarLike(truncated_int, 1)) .value(), truncated_int)); TF_ASSIGN_OR_RETURN( HloInstruction * result, MakeSelectHlo(should_neg, MakeUnaryHlo(HloOpcode::kNegate, truncated_int).value(), truncated_int)); auto to_bits = primitive_util::BitWidth(to_type); auto min = static_cast<int64_t>( (static_cast<uint64_t>(1) + ~static_cast<uint64_t>(1)) << (to_bits - 1)); TF_ASSIGN_OR_RETURN(HloInstruction * is_min, MakeCompareHlo(Comparison::Direction::kLe, operand, MakeScalarLike(operand, min))); TF_ASSIGN_OR_RETURN( result, MakeSelectHlo(is_min, MakeScalarLike(result, min), result)); auto max = static_cast<int64_t>((static_cast<uint64_t>(1) << (to_bits - 1)) - 1); TF_ASSIGN_OR_RETURN(HloInstruction * is_max, MakeCompareHlo(Comparison::Direction::kGe, operand, MakeScalarLike(operand, max))); TF_ASSIGN_OR_RETURN( result, MakeSelectHlo(is_max, MakeScalarLike(result, max), result)); TF_RETURN_IF_ERROR(instruction->ReplaceAllUsesWith(result)); TF_RETURN_IF_ERROR(comp->RemoveInstruction(instruction)); return absl::OkStatus(); } return Internal("Unsupported stochastic convert: from %s to %s", PrimitiveType_Name(from_type), PrimitiveType_Name(to_type)); } absl::StatusOr<bool> StochasticConvertDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (instruction->opcode() != HloOpcode::kStochasticConvert) { continue; } TF_RETURN_IF_ERROR(DecomposeStochasticConvert(computation, instruction)); changed = true; } } return changed; } }
#include "xla/service/stochastic_convert_decomposer.h" #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using StochasticConvertDecomposerTest = HloTestBase; using ::testing::HasSubstr; TEST_F(StochasticConvertDecomposerTest, DecomposeStochasticConvertF32ToS32) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = f32[65536]{0} parameter(0) %random_param.2 = u32[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s32[65536]{0} stochastic-convert(f32[65536]{0} %arg_param.1, u32[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Negate(), op::Select())))); } TEST_F(StochasticConvertDecomposerTest, DecomposeStochasticConvertBF16ToS8) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = bf16[65536]{0} parameter(0) %random_param.2 = u16[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s8[65536]{0} stochastic-convert(bf16[65536]{0} %arg_param.1, u16[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; TF_ASSERT_OK_AND_ASSIGN(bool changed, decomposer.Run(module.get())); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Broadcast(), op::Select(op::Compare(), op::Negate(), op::Select())))); } TEST_F(StochasticConvertDecomposerTest, WrongRandomBitWidth) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = bf16[65536]{0} parameter(0) %random_param.2 = u32[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s32[65536]{0} stochastic-convert(bf16[65536]{0} %arg_param.1, u32[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; auto result = decomposer.Run(module.get()); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("have same bits")); } TEST_F(StochasticConvertDecomposerTest, WrongRandomType) { const std::string module_str = R"( HloModule module ENTRY entry { %arg_param.1 = f32[65536]{0} parameter(0) %random_param.2 = s32[65536]{0} parameter(1) ROOT %stochastic-convert.3 = s32[65536]{0} stochastic-convert(f32[65536]{0} %arg_param.1, s32[65536]{0} %random_param.2) } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnUnverifiedModule((module_str))); StochasticConvertDecomposer decomposer; auto result = decomposer.Run(module.get()); EXPECT_NE(absl::OkStatus(), result.status()); EXPECT_THAT(result.status().message(), HasSubstr("must be unsigned integers")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/stochastic_convert_decomposer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/stochastic_convert_decomposer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
59850b8a-9af1-4d1f-93e0-83f0db49b34b
cpp
google/quiche
priority_payload_decoder
quiche/http2/decoder/payload_decoders/priority_payload_decoder.cc
quiche/http2/decoder/payload_decoders/priority_payload_decoder_test.cc
#include "quiche/http2/decoder/payload_decoders/priority_payload_decoder.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/http2_structures.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { DecodeStatus PriorityPayloadDecoder::StartDecodingPayload( FrameDecoderState* state, DecodeBuffer* db) { QUICHE_DVLOG(2) << "PriorityPayloadDecoder::StartDecodingPayload: " << state->frame_header(); QUICHE_DCHECK_EQ(Http2FrameType::PRIORITY, state->frame_header().type); QUICHE_DCHECK_LE(db->Remaining(), state->frame_header().payload_length); QUICHE_DCHECK_EQ(0, state->frame_header().flags); state->InitializeRemainders(); return HandleStatus( state, state->StartDecodingStructureInPayload(&priority_fields_, db)); } DecodeStatus PriorityPayloadDecoder::ResumeDecodingPayload( FrameDecoderState* state, DecodeBuffer* db) { QUICHE_DVLOG(2) << "PriorityPayloadDecoder::ResumeDecodingPayload" << " remaining_payload=" << state->remaining_payload() << " db->Remaining=" << db->Remaining(); QUICHE_DCHECK_EQ(Http2FrameType::PRIORITY, state->frame_header().type); QUICHE_DCHECK_LE(db->Remaining(), state->frame_header().payload_length); return HandleStatus( state, state->ResumeDecodingStructureInPayload(&priority_fields_, db)); } DecodeStatus PriorityPayloadDecoder::HandleStatus(FrameDecoderState* state, DecodeStatus status) { if (status == DecodeStatus::kDecodeDone) { if (state->remaining_payload() == 0) { state->listener()->OnPriorityFrame(state->frame_header(), priority_fields_); return DecodeStatus::kDecodeDone; } return state->ReportFrameSizeError(); } QUICHE_DCHECK( (status == DecodeStatus::kDecodeInProgress && state->remaining_payload() > 0) || (status == DecodeStatus::kDecodeError && state->remaining_payload() == 0)) << "\n status=" << status << "; remaining_payload=" << state->remaining_payload(); return status; } }
#include "quiche/http2/decoder/payload_decoders/priority_payload_decoder.h" #include <stddef.h> #include "quiche/http2/decoder/http2_frame_decoder_listener.h" #include "quiche/http2/http2_constants.h" #include "quiche/http2/test_tools/frame_parts.h" #include "quiche/http2/test_tools/frame_parts_collector.h" #include "quiche/http2/test_tools/http2_frame_builder.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/http2_structures_test_util.h" #include "quiche/http2/test_tools/payload_decoder_base_test_util.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { class PriorityPayloadDecoderPeer { public: static constexpr Http2FrameType FrameType() { return Http2FrameType::PRIORITY; } static constexpr uint8_t FlagsAffectingPayloadDecoding() { return 0; } }; namespace { struct Listener : public FramePartsCollector { void OnPriorityFrame(const Http2FrameHeader& header, const Http2PriorityFields& priority_fields) override { QUICHE_VLOG(1) << "OnPriority: " << header << "; " << priority_fields; StartAndEndFrame(header)->OnPriorityFrame(header, priority_fields); } void OnFrameSizeError(const Http2FrameHeader& header) override { QUICHE_VLOG(1) << "OnFrameSizeError: " << header; FrameError(header)->OnFrameSizeError(header); } }; class PriorityPayloadDecoderTest : public AbstractPayloadDecoderTest<PriorityPayloadDecoder, PriorityPayloadDecoderPeer, Listener> { protected: Http2PriorityFields RandPriorityFields() { Http2PriorityFields fields; test::Randomize(&fields, RandomPtr()); return fields; } }; TEST_F(PriorityPayloadDecoderTest, WrongSize) { auto approve_size = [](size_t size) { return size != Http2PriorityFields::EncodedSize(); }; Http2FrameBuilder fb; fb.Append(RandPriorityFields()); fb.Append(RandPriorityFields()); EXPECT_TRUE(VerifyDetectsFrameSizeError(0, fb.buffer(), approve_size)); } TEST_F(PriorityPayloadDecoderTest, VariousPayloads) { for (int n = 0; n < 100; ++n) { Http2PriorityFields fields = RandPriorityFields(); Http2FrameBuilder fb; fb.Append(fields); Http2FrameHeader header(fb.size(), Http2FrameType::PRIORITY, RandFlags(), RandStreamId()); set_frame_header(header); FrameParts expected(header); expected.SetOptPriority(fields); EXPECT_TRUE(DecodePayloadAndValidateSeveralWays(fb.buffer(), expected)); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/payload_decoders/priority_payload_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/decoder/payload_decoders/priority_payload_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
0ef82f61-2c0d-4c8e-ac35-17fce5a47c6e
cpp
abseil/abseil-cpp
fixed_array
absl/container/fixed_array.h
absl/container/fixed_array_test.cc
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ #define ABSL_CONTAINER_FIXED_ARRAY_H_ #include <algorithm> #include <cassert> #include <cstddef> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <new> #include <type_traits> #include "absl/algorithm/algorithm.h" #include "absl/base/config.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/throw_delegate.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/base/port.h" #include "absl/container/internal/compressed_tuple.h" #include "absl/memory/memory.h" namespace absl { ABSL_NAMESPACE_BEGIN constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); template <typename T, size_t N = kFixedArrayUseDefault, typename A = std::allocator<T>> class FixedArray { static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, "Arrays with unknown bounds cannot be used with FixedArray."); static constexpr size_t kInlineBytesDefault = 256; using AllocatorTraits = std::allocator_traits<A>; template <typename Iterator> using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible< typename std::iterator_traits<Iterator>::iterator_category, std::forward_iterator_tag>::value>; static constexpr bool NoexceptCopyable() { return std::is_nothrow_copy_constructible<StorageElement>::value && absl::allocator_is_nothrow<allocator_type>::value; } static constexpr bool NoexceptMovable() { return std::is_nothrow_move_constructible<StorageElement>::value && absl::allocator_is_nothrow<allocator_type>::value; } static constexpr bool DefaultConstructorIsNonTrivial() { return !absl::is_trivially_default_constructible<StorageElement>::value; } public: using allocator_type = typename AllocatorTraits::allocator_type; using value_type = typename AllocatorTraits::value_type; using pointer = typename AllocatorTraits::pointer; using const_pointer = typename AllocatorTraits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = typename AllocatorTraits::size_type; using difference_type = typename AllocatorTraits::difference_type; using iterator = pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; static constexpr size_type inline_elements = (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) : static_cast<size_type>(N)); FixedArray(const FixedArray& other) noexcept(NoexceptCopyable()) : FixedArray(other, AllocatorTraits::select_on_container_copy_construction( other.storage_.alloc())) {} FixedArray(const FixedArray& other, const allocator_type& a) noexcept(NoexceptCopyable()) : FixedArray(other.begin(), other.end(), a) {} FixedArray(FixedArray&& other) noexcept(NoexceptMovable()) : FixedArray(std::move(other), other.storage_.alloc()) {} FixedArray(FixedArray&& other, const allocator_type& a) noexcept(NoexceptMovable()) : FixedArray(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()), a) {} explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) : storage_(n, a) { if (DefaultConstructorIsNonTrivial()) { memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), storage_.end()); } } FixedArray(size_type n, const value_type& val, const allocator_type& a = allocator_type()) : storage_(n, a) { memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), storage_.end(), val); } FixedArray(std::initializer_list<value_type> init_list, const allocator_type& a = allocator_type()) : FixedArray(init_list.begin(), init_list.end(), a) {} template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> FixedArray(Iterator first, Iterator last, const allocator_type& a = allocator_type()) : storage_(std::distance(first, last), a) { memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last); } ~FixedArray() noexcept { for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { AllocatorTraits::destroy(storage_.alloc(), cur); } } void operator=(FixedArray&&) = delete; void operator=(const FixedArray&) = delete; size_type size() const { return storage_.size(); } constexpr size_type max_size() const { return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); } bool empty() const { return size() == 0; } size_t memsize() const { return size() * sizeof(value_type); } const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return AsValueType(storage_.begin()); } pointer data() ABSL_ATTRIBUTE_LIFETIME_BOUND { return AsValueType(storage_.begin()); } reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(i < size()); return data()[i]; } reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); } return data()[i]; } const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); } return data()[i]; } reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[0]; } const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[0]; } reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[size() - 1]; } const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_HARDENING_ASSERT(!empty()); return data()[size() - 1]; } iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return begin(); } iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); } const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); } const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return reverse_iterator(end()); } const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_reverse_iterator(end()); } const_reverse_iterator crbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return rbegin(); } reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND { return reverse_iterator(begin()); } const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_reverse_iterator(begin()); } const_reverse_iterator crend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return rend(); } void fill(const value_type& val) { std::fill(begin(), end(), val); } friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { return !(lhs == rhs); } friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { return rhs < lhs; } friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { return !(rhs < lhs); } friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { return !(lhs < rhs); } template <typename H> friend H AbslHashValue(H h, const FixedArray& v) { return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()), v.size()); } private: template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>, size_t InnerN = std::extent<OuterT>::value> struct StorageElementWrapper { InnerT array[InnerN]; }; using StorageElement = absl::conditional_t<std::is_array<value_type>::value, StorageElementWrapper<value_type>, value_type>; static pointer AsValueType(pointer ptr) { return ptr; } static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { return std::addressof(ptr->array); } static_assert(sizeof(StorageElement) == sizeof(value_type), ""); static_assert(alignof(StorageElement) == alignof(value_type), ""); class NonEmptyInlinedStorage { public: StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); } void AnnotateConstruct(size_type n); void AnnotateDestruct(size_type n); #ifdef ABSL_HAVE_ADDRESS_SANITIZER void* RedzoneBegin() { return &redzone_begin_; } void* RedzoneEnd() { return &redzone_end_ + 1; } #endif private: ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_); alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])]; ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_); }; class EmptyInlinedStorage { public: StorageElement* data() { return nullptr; } void AnnotateConstruct(size_type) {} void AnnotateDestruct(size_type) {} }; using InlinedStorage = absl::conditional_t<inline_elements == 0, EmptyInlinedStorage, NonEmptyInlinedStorage>; class Storage : public InlinedStorage { public: Storage(size_type n, const allocator_type& a) : size_alloc_(n, a), data_(InitializeData()) {} ~Storage() noexcept { if (UsingInlinedStorage(size())) { InlinedStorage::AnnotateDestruct(size()); } else { AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); } } size_type size() const { return size_alloc_.template get<0>(); } StorageElement* begin() const { return data_; } StorageElement* end() const { return begin() + size(); } allocator_type& alloc() { return size_alloc_.template get<1>(); } const allocator_type& alloc() const { return size_alloc_.template get<1>(); } private: static bool UsingInlinedStorage(size_type n) { return n <= inline_elements; } #ifdef ABSL_HAVE_ADDRESS_SANITIZER ABSL_ATTRIBUTE_NOINLINE #endif StorageElement* InitializeData() { if (UsingInlinedStorage(size())) { InlinedStorage::AnnotateConstruct(size()); return InlinedStorage::data(); } else { return reinterpret_cast<StorageElement*>( AllocatorTraits::allocate(alloc(), size())); } } container_internal::CompressedTuple<size_type, allocator_type> size_alloc_; StorageElement* data_; }; Storage storage_; }; #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL template <typename T, size_t N, typename A> constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; template <typename T, size_t N, typename A> constexpr typename FixedArray<T, N, A>::size_type FixedArray<T, N, A>::inline_elements; #endif template <typename T, size_t N, typename A> void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( typename FixedArray<T, N, A>::size_type n) { #ifdef ABSL_HAVE_ADDRESS_SANITIZER if (!n) return; ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n); ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin()); #endif static_cast<void>(n); } template <typename T, size_t N, typename A> void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( typename FixedArray<T, N, A>::size_type n) { #ifdef ABSL_HAVE_ADDRESS_SANITIZER if (!n) return; ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd()); ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data()); #endif static_cast<void>(n); } ABSL_NAMESPACE_END } #endif
#include "absl/container/fixed_array.h" #include <stdio.h> #include <cstring> #include <list> #include <memory> #include <numeric> #include <scoped_allocator> #include <stdexcept> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/exception_testing.h" #include "absl/base/options.h" #include "absl/container/internal/test_allocator.h" #include "absl/hash/hash_testing.h" #include "absl/memory/memory.h" using ::testing::ElementsAreArray; namespace { template <typename ArrayType> static bool IsOnStack(const ArrayType& a) { return a.size() <= ArrayType::inline_elements; } class ConstructionTester { public: ConstructionTester() : self_ptr_(this), value_(0) { constructions++; } ~ConstructionTester() { assert(self_ptr_ == this); self_ptr_ = nullptr; destructions++; } static int constructions; static int destructions; void CheckConstructed() { assert(self_ptr_ == this); } void set(int value) { value_ = value; } int get() { return value_; } private: ConstructionTester* self_ptr_; int value_; }; int ConstructionTester::constructions = 0; int ConstructionTester::destructions = 0; class ThreeInts { public: ThreeInts() { x_ = counter; y_ = counter; z_ = counter; ++counter; } static int counter; int x_, y_, z_; }; int ThreeInts::counter = 0; TEST(FixedArrayTest, CopyCtor) { absl::FixedArray<int, 10> on_stack(5); std::iota(on_stack.begin(), on_stack.end(), 0); absl::FixedArray<int, 10> stack_copy = on_stack; EXPECT_THAT(stack_copy, ElementsAreArray(on_stack)); EXPECT_TRUE(IsOnStack(stack_copy)); absl::FixedArray<int, 10> allocated(15); std::iota(allocated.begin(), allocated.end(), 0); absl::FixedArray<int, 10> alloced_copy = allocated; EXPECT_THAT(alloced_copy, ElementsAreArray(allocated)); EXPECT_FALSE(IsOnStack(alloced_copy)); } TEST(FixedArrayTest, MoveCtor) { absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5); for (int i = 0; i < 5; ++i) { on_stack[i] = absl::make_unique<int>(i); } absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack); for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i); EXPECT_EQ(stack_copy.size(), on_stack.size()); absl::FixedArray<std::unique_ptr<int>, 10> allocated(15); for (int i = 0; i < 15; ++i) { allocated[i] = absl::make_unique<int>(i); } absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy = std::move(allocated); for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i); EXPECT_EQ(allocated.size(), alloced_copy.size()); } TEST(FixedArrayTest, SmallObjects) { { absl::FixedArray<int> array(4); EXPECT_TRUE(IsOnStack(array)); } { absl::FixedArray<int> array(1048576); EXPECT_FALSE(IsOnStack(array)); } { absl::FixedArray<int, 100> array(100); EXPECT_TRUE(IsOnStack(array)); } { absl::FixedArray<int, 100> array(101); EXPECT_FALSE(IsOnStack(array)); } { absl::FixedArray<int> array1(0); absl::FixedArray<char> array2(0); EXPECT_LE(sizeof(array1), sizeof(array2) + 100); EXPECT_LE(sizeof(array2), sizeof(array1) + 100); } { absl::FixedArray<std::vector<int>> array(2); EXPECT_EQ(0, array[0].size()); EXPECT_EQ(0, array[1].size()); } { ThreeInts::counter = 1; absl::FixedArray<ThreeInts> array(2); EXPECT_EQ(1, array[0].x_); EXPECT_EQ(1, array[0].y_); EXPECT_EQ(1, array[0].z_); EXPECT_EQ(2, array[1].x_); EXPECT_EQ(2, array[1].y_); EXPECT_EQ(2, array[1].z_); } } TEST(FixedArrayTest, AtThrows) { absl::FixedArray<int> a = {1, 2, 3}; EXPECT_EQ(a.at(2), 3); ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range, "failed bounds check"); } TEST(FixedArrayTest, Hardened) { #if !defined(NDEBUG) || ABSL_OPTION_HARDENED absl::FixedArray<int> a = {1, 2, 3}; EXPECT_EQ(a[2], 3); EXPECT_DEATH_IF_SUPPORTED(a[3], ""); EXPECT_DEATH_IF_SUPPORTED(a[-1], ""); absl::FixedArray<int> empty(0); EXPECT_DEATH_IF_SUPPORTED(empty[0], ""); EXPECT_DEATH_IF_SUPPORTED(empty[-1], ""); EXPECT_DEATH_IF_SUPPORTED(empty.front(), ""); EXPECT_DEATH_IF_SUPPORTED(empty.back(), ""); #endif } TEST(FixedArrayRelationalsTest, EqualArrays) { for (int i = 0; i < 10; ++i) { absl::FixedArray<int, 5> a1(i); std::iota(a1.begin(), a1.end(), 0); absl::FixedArray<int, 5> a2(a1.begin(), a1.end()); EXPECT_TRUE(a1 == a2); EXPECT_FALSE(a1 != a2); EXPECT_TRUE(a2 == a1); EXPECT_FALSE(a2 != a1); EXPECT_FALSE(a1 < a2); EXPECT_FALSE(a1 > a2); EXPECT_FALSE(a2 < a1); EXPECT_FALSE(a2 > a1); EXPECT_TRUE(a1 <= a2); EXPECT_TRUE(a1 >= a2); EXPECT_TRUE(a2 <= a1); EXPECT_TRUE(a2 >= a1); } } TEST(FixedArrayRelationalsTest, UnequalArrays) { for (int i = 1; i < 10; ++i) { absl::FixedArray<int, 5> a1(i); std::iota(a1.begin(), a1.end(), 0); absl::FixedArray<int, 5> a2(a1.begin(), a1.end()); --a2[i / 2]; EXPECT_FALSE(a1 == a2); EXPECT_TRUE(a1 != a2); EXPECT_FALSE(a2 == a1); EXPECT_TRUE(a2 != a1); EXPECT_FALSE(a1 < a2); EXPECT_TRUE(a1 > a2); EXPECT_TRUE(a2 < a1); EXPECT_FALSE(a2 > a1); EXPECT_FALSE(a1 <= a2); EXPECT_TRUE(a1 >= a2); EXPECT_TRUE(a2 <= a1); EXPECT_FALSE(a2 >= a1); } } template <int stack_elements> static void TestArray(int n) { SCOPED_TRACE(n); SCOPED_TRACE(stack_elements); ConstructionTester::constructions = 0; ConstructionTester::destructions = 0; { absl::FixedArray<ConstructionTester, stack_elements> array(n); EXPECT_THAT(array.size(), n); EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n); EXPECT_THAT(array.begin() + n, array.end()); for (int i = 0; i < n; i++) { array[i].CheckConstructed(); } EXPECT_THAT(ConstructionTester::constructions, n); for (int i = 0; i < n; i++) { array[i].set(i); } for (int i = 0; i < n; i++) { EXPECT_THAT(array[i].get(), i); EXPECT_THAT(array.data()[i].get(), i); } for (int i = 0; i < n; i++) { array.data()[i].set(i + 1); } for (int i = 0; i < n; i++) { EXPECT_THAT(array[i].get(), i + 1); EXPECT_THAT(array.data()[i].get(), i + 1); } } EXPECT_EQ(ConstructionTester::constructions, ConstructionTester::destructions); } template <int elements_per_inner_array, int inline_elements> static void TestArrayOfArrays(int n) { SCOPED_TRACE(n); SCOPED_TRACE(inline_elements); SCOPED_TRACE(elements_per_inner_array); ConstructionTester::constructions = 0; ConstructionTester::destructions = 0; { using InnerArray = ConstructionTester[elements_per_inner_array]; auto array_ptr = absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n); auto& array = *array_ptr; ASSERT_EQ(array.size(), n); ASSERT_EQ(array.memsize(), sizeof(ConstructionTester) * elements_per_inner_array * n); ASSERT_EQ(array.begin() + n, array.end()); for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { (array[i])[j].CheckConstructed(); } } ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array); for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { (array[i])[j].set(i * elements_per_inner_array + j); } } for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { ASSERT_EQ((array[i])[j].get(), i * elements_per_inner_array + j); ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j); } } for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { (array.data()[i])[j].set((i + 1) * elements_per_inner_array + j); } } for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { ASSERT_EQ((array[i])[j].get(), (i + 1) * elements_per_inner_array + j); ASSERT_EQ((array.data()[i])[j].get(), (i + 1) * elements_per_inner_array + j); } } } EXPECT_EQ(ConstructionTester::constructions, ConstructionTester::destructions); } TEST(IteratorConstructorTest, NonInline) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed( kInput, kInput + ABSL_ARRAYSIZE(kInput)); ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { ASSERT_EQ(kInput[i], fixed[i]); } } TEST(IteratorConstructorTest, Inline) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed( kInput, kInput + ABSL_ARRAYSIZE(kInput)); ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { ASSERT_EQ(kInput[i], fixed[i]); } } TEST(IteratorConstructorTest, NonPod) { char const* kInput[] = {"red", "orange", "yellow", "green", "blue", "indigo", "violet"}; absl::FixedArray<std::string> const fixed(kInput, kInput + ABSL_ARRAYSIZE(kInput)); ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { ASSERT_EQ(kInput[i], fixed[i]); } } TEST(IteratorConstructorTest, FromEmptyVector) { std::vector<int> const empty; absl::FixedArray<int> const fixed(empty.begin(), empty.end()); EXPECT_EQ(0, fixed.size()); EXPECT_EQ(empty.size(), fixed.size()); } TEST(IteratorConstructorTest, FromNonEmptyVector) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput)); absl::FixedArray<int> const fixed(items.begin(), items.end()); ASSERT_EQ(items.size(), fixed.size()); for (size_t i = 0; i < items.size(); ++i) { ASSERT_EQ(items[i], fixed[i]); } } TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput)); absl::FixedArray<int> const fixed(items.begin(), items.end()); EXPECT_THAT(fixed, testing::ElementsAreArray(kInput)); } TEST(InitListConstructorTest, InitListConstruction) { absl::FixedArray<int> fixed = {1, 2, 3}; EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3})); } TEST(FillConstructorTest, NonEmptyArrays) { absl::FixedArray<int> stack_array(4, 1); EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1})); absl::FixedArray<int, 0> heap_array(4, 1); EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1})); } TEST(FillConstructorTest, EmptyArray) { absl::FixedArray<int> empty_fill(0, 1); absl::FixedArray<int> empty_size(0); EXPECT_EQ(empty_fill, empty_size); } TEST(FillConstructorTest, NotTriviallyCopyable) { std::string str = "abcd"; absl::FixedArray<std::string> strings = {str, str, str, str}; absl::FixedArray<std::string> array(4, str); EXPECT_EQ(array, strings); } TEST(FillConstructorTest, Disambiguation) { absl::FixedArray<size_t> a(1, 2); EXPECT_THAT(a, testing::ElementsAre(2)); } TEST(FixedArrayTest, ManySizedArrays) { std::vector<int> sizes; for (int i = 1; i < 100; i++) sizes.push_back(i); for (int i = 100; i <= 1000; i += 100) sizes.push_back(i); for (int n : sizes) { TestArray<0>(n); TestArray<1>(n); TestArray<64>(n); TestArray<1000>(n); } } TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) { for (int n = 1; n < 1000; n++) { ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n))); ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n))); ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n))); ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n))); } } TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) { for (int n = 1; n < 1000; n++) { TestArrayOfArrays<2, 0>(n); TestArrayOfArrays<2, 1>(n); TestArrayOfArrays<2, 64>(n); TestArrayOfArrays<2, 1000>(n); } } TEST(FixedArrayTest, AvoidParanoidDiagnostics) { absl::FixedArray<char, 32> buf(32); sprintf(buf.data(), "foo"); } TEST(FixedArrayTest, TooBigInlinedSpace) { struct TooBig { char c[1 << 20]; }; struct Data { TooBig* p; size_t size; }; static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data), "0-sized absl::FixedArray should have same size as Data."); static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data), "0-sized absl::FixedArray should have same alignment as Data."); static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data), "default-sized absl::FixedArray should have same size as Data"); static_assert( alignof(absl::FixedArray<TooBig>) == alignof(Data), "default-sized absl::FixedArray should have same alignment as Data."); } struct PickyDelete { PickyDelete() {} ~PickyDelete() {} void operator delete(void* p) { EXPECT_TRUE(false) << __FUNCTION__; ::operator delete(p); } void operator delete[](void* p) { EXPECT_TRUE(false) << __FUNCTION__; ::operator delete[](p); } }; TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); } TEST(FixedArrayTest, Data) { static const int kInput[] = {2, 3, 5, 7, 11, 13, 17}; absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput)); EXPECT_EQ(fa.data(), &*fa.begin()); EXPECT_EQ(fa.data(), &fa[0]); const absl::FixedArray<int>& cfa = fa; EXPECT_EQ(cfa.data(), &*cfa.begin()); EXPECT_EQ(cfa.data(), &cfa[0]); } TEST(FixedArrayTest, Empty) { absl::FixedArray<int> empty(0); absl::FixedArray<int> inline_filled(1); absl::FixedArray<int, 0> heap_filled(1); EXPECT_TRUE(empty.empty()); EXPECT_FALSE(inline_filled.empty()); EXPECT_FALSE(heap_filled.empty()); } TEST(FixedArrayTest, FrontAndBack) { absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3}; EXPECT_EQ(inlined.front(), 1); EXPECT_EQ(inlined.back(), 3); absl::FixedArray<int, 0> allocated = {1, 2, 3}; EXPECT_EQ(allocated.front(), 1); EXPECT_EQ(allocated.back(), 3); absl::FixedArray<int> one_element = {1}; EXPECT_EQ(one_element.front(), one_element.back()); } TEST(FixedArrayTest, ReverseIteratorInlined) { absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4}; int counter = 5; for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (auto iter = a.crbegin(); iter != a.crend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); } TEST(FixedArrayTest, ReverseIteratorAllocated) { absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4}; int counter = 5; for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (auto iter = a.crbegin(); iter != a.crend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); } TEST(FixedArrayTest, Fill) { absl::FixedArray<int, 5 * sizeof(int)> inlined(5); int fill_val = 42; inlined.fill(fill_val); for (int i : inlined) EXPECT_EQ(i, fill_val); absl::FixedArray<int, 0> allocated(5); allocated.fill(fill_val); for (int i : allocated) EXPECT_EQ(i, fill_val); absl::FixedArray<int> empty(0); empty.fill(fill_val); } #ifndef __GNUC__ TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) { using T = char; constexpr auto capacity = 10; using FixedArrType = absl::FixedArray<T, capacity>; constexpr auto scrubbed_bits = 0x95; constexpr auto length = capacity / 2; alignas(FixedArrType) unsigned char buff[sizeof(FixedArrType)]; std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrType)); FixedArrType* arr = ::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length); EXPECT_THAT(*arr, testing::Each(scrubbed_bits)); arr->~FixedArrType(); } #endif TEST(AllocatorSupportTest, CountInlineAllocations) { constexpr size_t inlined_size = 4; using Alloc = absl::container_internal::CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated = 0; int64_t active_instances = 0; { const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; Alloc alloc(&allocated, &active_instances); AllocFxdArr arr(ia, ia + inlined_size, alloc); static_cast<void>(arr); } EXPECT_EQ(allocated, 0); EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, CountOutoflineAllocations) { constexpr size_t inlined_size = 4; using Alloc = absl::container_internal::CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated = 0; int64_t active_instances = 0; { const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; Alloc alloc(&allocated, &active_instances); AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc); EXPECT_EQ(allocated, arr.size() * sizeof(int)); static_cast<void>(arr); } EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, CountCopyInlineAllocations) { constexpr size_t inlined_size = 4; using Alloc = absl::container_internal::CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated1 = 0; int64_t allocated2 = 0; int64_t active_instances = 0; Alloc alloc(&allocated1, &active_instances); Alloc alloc2(&allocated2, &active_instances); { int initial_value = 1; AllocFxdArr arr1(inlined_size / 2, initial_value, alloc); EXPECT_EQ(allocated1, 0); AllocFxdArr arr2(arr1, alloc2); EXPECT_EQ(allocated2, 0); static_cast<void>(arr1); static_cast<void>(arr2); } EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) { constexpr size_t inlined_size = 4; using Alloc = absl::container_internal::CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated1 = 0; int64_t allocated2 = 0; int64_t active_instances = 0; Alloc alloc(&allocated1, &active_instances); Alloc alloc2(&allocated2, &active_instances); { int initial_value = 1; AllocFxdArr arr1(inlined_size * 2, initial_value, alloc); EXPECT_EQ(allocated1, arr1.size() * sizeof(int)); AllocFxdArr arr2(arr1, alloc2); EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int)); static_cast<void>(arr1); static_cast<void>(arr2); } EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, SizeValAllocConstructor) { using testing::AllOf; using testing::Each; using testing::SizeIs; constexpr size_t inlined_size = 4; using Alloc = absl::container_internal::CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; { auto len = inlined_size / 2; auto val = 0; int64_t allocated = 0; AllocFxdArr arr(len, val, Alloc(&allocated)); EXPECT_EQ(allocated, 0); EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0))); } { auto len = inlined_size * 2; auto val = 0; int64_t allocated = 0; AllocFxdArr arr(len, val, Alloc(&allocated)); EXPECT_EQ(allocated, len * sizeof(int)); EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0))); } } TEST(AllocatorSupportTest, PropagatesStatefulAllocator) { constexpr size_t inlined_size = 4; using Alloc = absl::container_internal::CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; auto len = inlined_size * 2; auto val = 0; int64_t allocated = 0; AllocFxdArr arr(len, val, Alloc(&allocated)); EXPECT_EQ(allocated, len * sizeof(int)); AllocFxdArr copy = arr; EXPECT_EQ(allocated, len * sizeof(int) * 2); } #ifdef ABSL_HAVE_ADDRESS_SANITIZER TEST(FixedArrayTest, AddressSanitizerAnnotations1) { absl::FixedArray<int, 32> a(10); int* raw = a.data(); raw[0] = 0; raw[9] = 0; EXPECT_DEATH_IF_SUPPORTED(raw[-2] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[-1] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[10] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[31] = 0, "container-overflow"); } TEST(FixedArrayTest, AddressSanitizerAnnotations2) { absl::FixedArray<char, 17> a(12); char* raw = a.data(); raw[0] = 0; raw[11] = 0; EXPECT_DEATH_IF_SUPPORTED(raw[-7] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[-1] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[12] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[17] = 0, "container-overflow"); } TEST(FixedArrayTest, AddressSanitizerAnnotations3) { absl::FixedArray<uint64_t, 20> a(20); uint64_t* raw = a.data(); raw[0] = 0; raw[19] = 0; EXPECT_DEATH_IF_SUPPORTED(raw[-1] = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[20] = 0, "container-overflow"); } TEST(FixedArrayTest, AddressSanitizerAnnotations4) { absl::FixedArray<ThreeInts> a(10); ThreeInts* raw = a.data(); raw[0] = ThreeInts(); raw[9] = ThreeInts(); EXPECT_DEATH_IF_SUPPORTED(raw[-1].z_ = 0, "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[10] = ThreeInts(), "container-overflow"); EXPECT_DEATH_IF_SUPPORTED(raw[21] = ThreeInts(), "container-overflow"); } #endif TEST(FixedArrayTest, AbslHashValueWorks) { using V = absl::FixedArray<int>; std::vector<V> cases; for (int i = 0; i < 10; ++i) { V v(i); for (int j = 0; j < i; ++j) { v[j] = j; } cases.push_back(v); } EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases)); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/fixed_array.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/fixed_array_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
19886cb3-2cfb-4460-800b-3e30336fb6f2
cpp
tensorflow/tensorflow
arena
tensorflow/core/lib/core/arena.cc
tensorflow/core/lib/core/arena_test.cc
#include "tensorflow/core/lib/core/arena.h" #include <assert.h> #include <algorithm> #include <vector> #include "tensorflow/core/lib/math/math_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mem.h" namespace tensorflow { namespace core { Arena::Arena(const size_t block_size) : remaining_(0), block_size_(block_size), freestart_(nullptr), blocks_alloced_(1), overflow_blocks_(nullptr) { assert(block_size > kDefaultAlignment); first_blocks_[0].mem = reinterpret_cast<char*>(port::AlignedMalloc(block_size_, sizeof(void*))); first_blocks_[0].size = block_size_; Reset(); } Arena::~Arena() { FreeBlocks(); assert(overflow_blocks_ == nullptr); for (size_t i = 0; i < blocks_alloced_; ++i) { port::AlignedFree(first_blocks_[i].mem); } } bool Arena::SatisfyAlignment(size_t alignment) { const size_t overage = reinterpret_cast<size_t>(freestart_) & (alignment - 1); if (overage > 0) { const size_t waste = alignment - overage; if (waste >= remaining_) { return false; } freestart_ += waste; remaining_ -= waste; } DCHECK_EQ(size_t{0}, reinterpret_cast<size_t>(freestart_) & (alignment - 1)); return true; } void Arena::Reset() { FreeBlocks(); freestart_ = first_blocks_[0].mem; remaining_ = first_blocks_[0].size; CHECK(SatisfyAlignment(kDefaultAlignment)); freestart_when_empty_ = freestart_; } void Arena::MakeNewBlock(const uint32 alignment) { AllocatedBlock* block = AllocNewBlock(block_size_, alignment); freestart_ = block->mem; remaining_ = block->size; CHECK(SatisfyAlignment(alignment)); } static uint32 LeastCommonMultiple(uint32 a, uint32 b) { if (a > b) { return (a / MathUtil::GCD<uint32>(a, b)) * b; } else if (a < b) { return (b / MathUtil::GCD<uint32>(b, a)) * a; } else { return a; } } Arena::AllocatedBlock* Arena::AllocNewBlock(const size_t block_size, const uint32 alignment) { AllocatedBlock* block; if (blocks_alloced_ < TF_ARRAYSIZE(first_blocks_)) { block = &first_blocks_[blocks_alloced_++]; } else { if (overflow_blocks_ == nullptr) overflow_blocks_ = new std::vector<AllocatedBlock>; overflow_blocks_->resize(overflow_blocks_->size() + 1); block = &overflow_blocks_->back(); } uint32 adjusted_alignment = (alignment > 1 ? LeastCommonMultiple(alignment, kDefaultAlignment) : 1); adjusted_alignment = std::max(adjusted_alignment, static_cast<uint32>(sizeof(void*))); CHECK_LE(adjusted_alignment, static_cast<uint32>(1 << 20)) << "Alignment on boundaries greater than 1MB not supported."; size_t adjusted_block_size = block_size; if (adjusted_block_size > adjusted_alignment) { const uint32 excess = adjusted_block_size % adjusted_alignment; adjusted_block_size += (excess > 0 ? adjusted_alignment - excess : 0); } block->mem = reinterpret_cast<char*>( port::AlignedMalloc(adjusted_block_size, adjusted_alignment)); block->size = adjusted_block_size; CHECK(nullptr != block->mem) << "block_size=" << block_size << " adjusted_block_size=" << adjusted_block_size << " alignment=" << alignment << " adjusted_alignment=" << adjusted_alignment; return block; } void* Arena::GetMemoryFallback(const size_t size, const int alignment) { if (0 == size) { return nullptr; } CHECK(alignment > 0 && 0 == (alignment & (alignment - 1))); if (block_size_ == 0 || size > block_size_ / 4) { return AllocNewBlock(size, alignment)->mem; } if (!SatisfyAlignment(alignment) || size > remaining_) { MakeNewBlock(alignment); } CHECK_LE(size, remaining_); remaining_ -= size; void* result = freestart_; freestart_ += size; return result; } void Arena::FreeBlocks() { for (size_t i = 1; i < blocks_alloced_; ++i) { port::AlignedFree(first_blocks_[i].mem); first_blocks_[i].mem = nullptr; first_blocks_[i].size = 0; } blocks_alloced_ = 1; if (overflow_blocks_ != nullptr) { std::vector<AllocatedBlock>::iterator it; for (it = overflow_blocks_->begin(); it != overflow_blocks_->end(); ++it) { port::AlignedFree(it->mem); } delete overflow_blocks_; overflow_blocks_ = nullptr; } } } }
#include "tensorflow/core/lib/core/arena.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace core { namespace { static void TestMemory(void* mem, int size) { memset(mem, 0xaa, size); char* tmp[100]; for (size_t i = 0; i < TF_ARRAYSIZE(tmp); i++) { tmp[i] = new char[i * i + 1]; } memset(mem, 0xcc, size); for (size_t i = 0; i < TF_ARRAYSIZE(tmp); i++) { delete[] tmp[i]; } memset(mem, 0xee, size); } TEST(ArenaTest, TestBasicArena) { Arena a(1024); char* memory = a.Alloc(100); ASSERT_NE(memory, nullptr); TestMemory(memory, 100); memory = a.Alloc(100); ASSERT_NE(memory, nullptr); TestMemory(memory, 100); } TEST(ArenaTest, TestAlignment) { Arena a(1024); char* byte0 = a.Alloc(1); char* alloc_aligned8 = a.AllocAligned(17, 8); EXPECT_EQ(alloc_aligned8 - byte0, 8); char* alloc_aligned8_b = a.AllocAligned(8, 8); EXPECT_EQ(alloc_aligned8_b - alloc_aligned8, 24); char* alloc_aligned8_c = a.AllocAligned(16, 8); EXPECT_EQ(alloc_aligned8_c - alloc_aligned8_b, 8); char* alloc_aligned8_d = a.AllocAligned(8, 1); EXPECT_EQ(alloc_aligned8_d - alloc_aligned8_c, 16); } TEST(ArenaTest, TestVariousArenaSizes) { { Arena a(1024); char* memory = a.Alloc(1024); ASSERT_NE(memory, nullptr); TestMemory(memory, 1024); char* memory2 = a.Alloc(1024); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 1024); } { Arena a(1024); char* memory = a.Alloc(768); ASSERT_NE(memory, nullptr); TestMemory(memory, 768); char* memory2 = a.Alloc(768); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 768); } { Arena a(1024); char* memory = a.Alloc(10240); ASSERT_NE(memory, nullptr); TestMemory(memory, 10240); char* memory2 = a.Alloc(1234); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 1234); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/arena.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/arena_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c282ff11-8b1f-4ce2-90b0-556c13f12219
cpp
tensorflow/tensorflow
concurrency
third_party/xla/xla/backends/cpu/runtime/concurrency.h
third_party/xla/xla/backends/cpu/runtime/concurrency_test.cc
#ifndef XLA_BACKENDS_CPU_RUNTIME_CONCURRENCY_H_ #define XLA_BACKENDS_CPU_RUNTIME_CONCURRENCY_H_ #include <cstdint> #include <functional> #include <memory> #include <type_traits> #include "tsl/platform/logging.h" #define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" #include "unsupported/Eigen/CXX11/ThreadPool" namespace xla::cpu { template <typename F, std::enable_if_t<std::is_invocable_v<F, int64_t>>* = nullptr> void ScheduleAll(const Eigen::ThreadPoolDevice* intra_op_threadpool, int64_t n, F&& f) { DCHECK(n >= 0) << "n must be non-negative"; if (n == 0) return; if (n == 1) { f(0); return; } struct State { State(const Eigen::ThreadPoolDevice* intra_op_threadpool, F&& f) : intra_op_threadpool(intra_op_threadpool), f(std::forward<F>(f)) {} void Execute(std::shared_ptr<State> self, int64_t start, int64_t end) { while (end - start > 1) { uint64_t mid = (start + end) / 2; intra_op_threadpool->getPool()->Schedule( std::bind(&State::Execute, this, self, mid, end)); end = mid; } f(start); } const Eigen::ThreadPoolDevice* intra_op_threadpool; F f; }; auto s = std::make_shared<State>(intra_op_threadpool, std::forward<F>(f)); s->Execute(std::move(s), 0, n); } } #endif
#include "xla/backends/cpu/runtime/concurrency.h" #include <cstdint> #include <vector> #include "absl/algorithm/container.h" #include "absl/synchronization/blocking_counter.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" #include "tsl/platform/threadpool.h" namespace xla::cpu { namespace { TEST(ConcurrencyTest, ScheduleAll) { tsl::thread::ThreadPool thread_pool(tsl::Env::Default(), "test", 10); std::vector<int64_t> tasks(64, 0); Eigen::ThreadPoolDevice device(thread_pool.AsEigenThreadPool(), thread_pool.NumThreads()); absl::BlockingCounter counter(64); ScheduleAll(&device, 64, [&](int64_t index) { tasks[index] += 1; counter.DecrementCount(); }); counter.Wait(); ASSERT_TRUE(absl::c_all_of(tasks, [](int64_t task) { return task == 1; })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/concurrency.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/concurrency_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2f828fe0-405a-42a5-8483-81e379c54f44
cpp
tensorflow/tensorflow
nnapi_implementation
tensorflow/lite/nnapi/nnapi_implementation.cc
tensorflow/lite/nnapi/nnapi_implementation_test.cc
#include "tensorflow/lite/nnapi/nnapi_implementation.h" #include <dlfcn.h> #include <fcntl.h> #include <sys/mman.h> #include <sys/stat.h> #include <unistd.h> #include <algorithm> #include <cstdlib> #include <memory> #include "tensorflow/lite/nnapi/sl/public/NeuralNetworksSupportLibraryImpl.h" #ifdef __ANDROID__ #include <sys/system_properties.h> #endif #define EXPAND_VA_ARGS(...) , ##__VA_ARGS__ #define NNAPI_LOG(format, ...) \ fprintf(stderr, format "\n" EXPAND_VA_ARGS(__VA_ARGS__)); namespace { #ifdef __ANDROID__ const int kFirstIsolatedUid = 99000; const int kLastIsolatedUid = 99999; const int kFirstAppZygoteIsolatedUid = 90000; const int kLastAppZygoteIsolatedUid = 98999; bool IsIsolatedProcess() { int uid = getuid(); return (uid >= kFirstIsolatedUid && uid <= kLastIsolatedUid) || (uid >= kFirstAppZygoteIsolatedUid && uid <= kLastAppZygoteIsolatedUid); } int32_t GetAndroidSdkVersion() { const char* sdkProp = "ro.build.version.sdk"; char sdkVersion[PROP_VALUE_MAX]; int length = __system_property_get(sdkProp, sdkVersion); if (length != 0) { int32_t result = 0; for (int i = 0; i < length; ++i) { int digit = sdkVersion[i] - '0'; if (digit < 0 || digit > 9) { return 0xffff; } result = result * 10 + digit; } return result; } return 0; } #endif void* LoadFunction(void* handle, const char* name, bool optional) { if (handle == nullptr) { return nullptr; } void* fn = dlsym(handle, name); if (fn == nullptr && !optional) { NNAPI_LOG("nnapi error: unable to open function %s", name); } return fn; } #ifndef __ANDROID__ int ASharedMemory_create(const char* name, size_t size) { int fd = shm_open(name, O_RDWR | O_CREAT | O_EXCL, 0644); if (fd < 0) { return fd; } int result = ftruncate(fd, size); if (result < 0) { close(fd); return -1; } return fd; } uint32_t CalculateAndroidSdkVersion(NnApi const& nnapi) { bool has_10 = nnapi.ANeuralNetworksMemory_createFromFd != nullptr; bool has_11 = nnapi.ANeuralNetworksModel_relaxComputationFloat32toFloat16 != nullptr; bool has_12 = nnapi.ANeuralNetworks_getDeviceCount != nullptr; bool has_13 = nnapi.ANeuralNetworksCompilation_setTimeout != nullptr; bool has_14 = nnapi.ANeuralNetworks_getRuntimeFeatureLevel != nullptr; uint32_t sdk_version = 0; if (has_10) { sdk_version = 27; } if (sdk_version == 27 && has_11) { sdk_version = 28; } if (sdk_version == 28 && has_12) { sdk_version = 29; } if (sdk_version == 29 && has_13) { sdk_version = 30; } if (sdk_version == 30 && has_14) { sdk_version = 31; } return sdk_version; } #else ASharedMemory_create_fn getASharedMemory_create() { void* libandroid = nullptr; libandroid = dlopen("libandroid.so", RTLD_LAZY | RTLD_LOCAL); if (libandroid != nullptr) { return reinterpret_cast<ASharedMemory_create_fn>( LoadFunction(libandroid, "ASharedMemory_create", false)); } std::string libandroid_error = dlerror(); void* cutils_handle = dlopen("libcutils.so", RTLD_LAZY | RTLD_LOCAL); if (cutils_handle != nullptr) { return reinterpret_cast<ASharedMemory_create_fn>( LoadFunction(cutils_handle, "ashmem_create_region", false)); } NNAPI_LOG( "nnapi error: unable to open both library %s (%s) and library %s " "(%s)", "libandroid.so", libandroid_error.c_str(), "libcutils.so", dlerror()); return nullptr; } #endif #define LOAD_FUNCTION(handle, name) \ nnapi.name = reinterpret_cast<name##_fn>( \ LoadFunction(handle, #name, false)); #define LOAD_FUNCTION_OPTIONAL(handle, name) \ nnapi.name = reinterpret_cast<name##_fn>( \ LoadFunction(handle, #name, true)); #define LOAD_FUNCTION_RENAME(handle, name, symbol) \ nnapi.name = reinterpret_cast<name##_fn>( \ LoadFunction(handle, symbol, false)); const NnApi LoadNnApi() { NnApi nnapi = {}; nnapi.android_sdk_version = 0; #ifdef __ANDROID__ nnapi.android_sdk_version = GetAndroidSdkVersion(); if (nnapi.android_sdk_version < 27) { NNAPI_LOG("nnapi error: requires android sdk version to be at least %d", 27); nnapi.nnapi_exists = false; return nnapi; } if (nnapi.android_sdk_version <= 33 && IsIsolatedProcess()) { NNAPI_LOG("NNAPI is disabled in an isolated process"); nnapi.nnapi_exists = false; return nnapi; } #endif void* libneuralnetworks = nullptr; static const char nnapi_library_name[] = "libneuralnetworks.so"; libneuralnetworks = dlopen(nnapi_library_name, RTLD_LAZY | RTLD_LOCAL); #ifdef __ANDROID__ if (libneuralnetworks == nullptr) { const char* error = dlerror(); if (error) { NNAPI_LOG("%s\n", error); } NNAPI_LOG("nnapi error: unable to open library %s", nnapi_library_name); } #endif nnapi.nnapi_exists = libneuralnetworks != nullptr; LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksMemory_createFromFd); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksMemory_free); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_create); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_free); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_finish); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_addOperand); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_setOperandValue); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, ANeuralNetworksModel_setOperandSymmPerChannelQuantParams); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_setOperandValueFromMemory); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_addOperation); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksModel_identifyInputsAndOutputs); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksCompilation_create); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksCompilation_free); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksCompilation_setPreference); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksCompilation_finish); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_create); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_free); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_setInput); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_setInputFromMemory); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_setOutput); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_setOutputFromMemory); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksExecution_startCompute); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksEvent_wait); LOAD_FUNCTION(libneuralnetworks, ANeuralNetworksEvent_free); #ifdef __ANDROID__ nnapi.ASharedMemory_create = getASharedMemory_create(); #else if (libneuralnetworks != nullptr) { nnapi.ASharedMemory_create = ASharedMemory_create; } #endif LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksModel_relaxComputationFloat32toFloat16); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworks_getDeviceCount); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworks_getDevice); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksDevice_getName); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksDevice_getVersion); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksDevice_getFeatureLevel); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksDevice_getType); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksModel_getSupportedOperationsForDevices); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksCompilation_createForDevices); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksCompilation_setCaching); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_compute); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_getOutputOperandRank); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_getOutputOperandDimensions); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksBurst_create); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksBurst_free); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_burstCompute); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemory_createFromAHardwareBuffer); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_setMeasureTiming); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_getDuration); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksDevice_getExtensionSupport); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksModel_getExtensionOperandType); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksModel_getExtensionOperationType); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksModel_setOperandExtensionData); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksCompilation_setTimeout); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksCompilation_setPriority); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_setTimeout); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_setLoopTimeout); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemoryDesc_create); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemoryDesc_free); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemoryDesc_addInputRole); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemoryDesc_addOutputRole); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemoryDesc_setDimensions); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemoryDesc_finish); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemory_createFromDesc); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksMemory_copy); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksEvent_createFromSyncFenceFd); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksEvent_getSyncFenceFd); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_startComputeWithDependencies); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworks_getRuntimeFeatureLevel); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_enableInputAndOutputPadding); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, ANeuralNetworksExecution_setReusable); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getSessionId); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getNnApiVersion); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getModelArchHash); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getDeviceIds); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getErrorCode); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getInputDataClass); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getOutputDataClass); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_getCompilationTimeNanos); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_isCachingEnabled); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_isControlFlowUsed); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticCompilationInfo_areDynamicTensorsUsed); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getSessionId); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getNnApiVersion); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getModelArchHash); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getDeviceIds); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getExecutionMode); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getInputDataClass); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getOutputDataClass); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getErrorCode); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getRuntimeExecutionTimeNanos); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getDriverExecutionTimeNanos); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_getHardwareExecutionTimeNanos); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_isCachingEnabled); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_isControlFlowUsed); LOAD_FUNCTION_OPTIONAL( libneuralnetworks, SL_ANeuralNetworksDiagnosticExecutionInfo_areDynamicTensorsUsed); LOAD_FUNCTION_OPTIONAL(libneuralnetworks, SL_ANeuralNetworksDiagnostic_registerCallbacks); #ifndef __ANDROID__ if (nnapi.nnapi_exists && nnapi.android_sdk_version == 0) { nnapi.android_sdk_version = CalculateAndroidSdkVersion(nnapi); } #endif if (nnapi.ANeuralNetworks_getRuntimeFeatureLevel) { nnapi.nnapi_runtime_feature_level = nnapi.ANeuralNetworks_getRuntimeFeatureLevel(); } else { nnapi.nnapi_runtime_feature_level = nnapi.android_sdk_version; } return nnapi; } } std::unique_ptr<const NnApi> CreateNnApiFromSupportLibrary( const NnApiSLDriverImplFL5* nnapi_support_library_driver) { auto nnapi = std::make_unique<NnApi>(); nnapi->nnapi_exists = true; nnapi->android_sdk_version = ANEURALNETWORKS_FEATURE_LEVEL_5; nnapi->nnapi_runtime_feature_level = nnapi_support_library_driver->base.implFeatureLevel; #define ASSIGN_SL_FUNCTION_TO_NNAPI(name) \ nnapi->name = nnapi_support_library_driver->name; ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemory_createFromFd); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemory_free); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_create); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_free); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_finish); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_addOperand); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_setOperandValue); ASSIGN_SL_FUNCTION_TO_NNAPI( ANeuralNetworksModel_setOperandSymmPerChannelQuantParams); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_setOperandValueFromMemory); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_addOperation); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_identifyInputsAndOutputs); ASSIGN_SL_FUNCTION_TO_NNAPI( ANeuralNetworksModel_relaxComputationFloat32toFloat16); nnapi->ANeuralNetworksCompilation_create = nullptr; ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_free); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_setPreference); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_finish); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_create); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_free); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setInput); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setInputFromMemory); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setOutput); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setOutputFromMemory); nnapi->ANeuralNetworksExecution_startCompute = nullptr; ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksEvent_wait); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksEvent_free); #ifdef __ANDROID__ nnapi->ASharedMemory_create = getASharedMemory_create(); #else nnapi->ASharedMemory_create = ASharedMemory_create; #endif ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworks_getDeviceCount); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworks_getDevice); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksDevice_getName); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksDevice_getVersion); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksDevice_getFeatureLevel); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksDevice_getType); ASSIGN_SL_FUNCTION_TO_NNAPI( ANeuralNetworksModel_getSupportedOperationsForDevices); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_createForDevices); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_setCaching); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_setTimeout); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksCompilation_setPriority); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_compute); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setTimeout); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setLoopTimeout); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_getOutputOperandRank); ASSIGN_SL_FUNCTION_TO_NNAPI( ANeuralNetworksExecution_getOutputOperandDimensions); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksBurst_create); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksBurst_free); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_burstCompute); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemory_createFromAHardwareBuffer); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setMeasureTiming); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_getDuration); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksDevice_getExtensionSupport); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_getExtensionOperandType); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_getExtensionOperationType); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksModel_setOperandExtensionData); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemoryDesc_create); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemoryDesc_free); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemoryDesc_addInputRole); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemoryDesc_addOutputRole); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemoryDesc_setDimensions); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemoryDesc_finish); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemory_createFromDesc); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksMemory_copy); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksEvent_createFromSyncFenceFd); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksEvent_getSyncFenceFd); ASSIGN_SL_FUNCTION_TO_NNAPI( ANeuralNetworksExecution_startComputeWithDependencies); ASSIGN_SL_FUNCTION_TO_NNAPI( ANeuralNetworksExecution_enableInputAndOutputPadding); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworksExecution_setReusable); ASSIGN_SL_FUNCTION_TO_NNAPI(ANeuralNetworks_getRuntimeFeatureLevel); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getSessionId); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getNnApiVersion); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getModelArchHash); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getDeviceIds); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getErrorCode); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getInputDataClass); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getOutputDataClass); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_getCompilationTimeNanos); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_isCachingEnabled); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_isControlFlowUsed); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticCompilationInfo_areDynamicTensorsUsed); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getSessionId); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getNnApiVersion); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getModelArchHash); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getDeviceIds); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getExecutionMode); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getInputDataClass); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getOutputDataClass); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getErrorCode); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getRuntimeExecutionTimeNanos); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getDriverExecutionTimeNanos); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_getHardwareExecutionTimeNanos); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_isCachingEnabled); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_isControlFlowUsed); ASSIGN_SL_FUNCTION_TO_NNAPI( SL_ANeuralNetworksDiagnosticExecutionInfo_areDynamicTensorsUsed); ASSIGN_SL_FUNCTION_TO_NNAPI(SL_ANeuralNetworksDiagnostic_registerCallbacks); return nnapi; } const NnApi* NnApiImplementation() { static const NnApi nnapi = LoadNnApi(); return &nnapi; }
#include "tensorflow/lite/nnapi/nnapi_implementation.h" #include <gtest/gtest.h> namespace { TEST(NnapiLibTest, NnApiImplementation) { const NnApi* nnapi = NnApiImplementation(); EXPECT_NE(nnapi, nullptr); #ifdef __ANDROID__ EXPECT_GT(nnapi->android_sdk_version, 0); if (nnapi.android_sdk_version < 27) { EXPECT_FALSE(nnapi->nnapi_exists); EXPECT_EQ(nnapi->ANeuralNetworksMemory_createFromFd, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksMemory_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperand, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValue, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValueFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperation, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_identifyInputsAndOutputs, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_setPreference, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_startCompute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_wait, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_free, nullptr); EXPECT_EQ(nnapi->ASharedMemory_create, nullptr); } else { EXPECT_TRUE(nnapi->nnapi_exists); EXPECT_NE(nnapi->ANeuralNetworksMemory_createFromFd, nullptr); EXPECT_NE(nnapi->ANeuralNetworksMemory_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_create, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_finish, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_addOperand, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_setOperandValue, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_setOperandValueFromMemory, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_addOperation, nullptr); EXPECT_NE(nnapi->ANeuralNetworksModel_identifyInputsAndOutputs, nullptr); if (nnapi->android_sdk_version >= 28) { EXPECT_NE(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); } else { EXPECT_EQ(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); } EXPECT_NE(nnapi->ANeuralNetworksCompilation_create, nullptr); EXPECT_NE(nnapi->ANeuralNetworksCompilation_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksCompilation_setPreference, nullptr); EXPECT_NE(nnapi->ANeuralNetworksCompilation_finish, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_create, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_free, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setInput, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setInputFromMemory, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setOutput, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_setOutputFromMemory, nullptr); EXPECT_NE(nnapi->ANeuralNetworksExecution_startCompute, nullptr); EXPECT_NE(nnapi->ANeuralNetworksEvent_wait, nullptr); EXPECT_NE(nnapi->ANeuralNetworksEvent_free, nullptr); EXPECT_NE(nnapi->ASharedMemory_create, nullptr); } #else EXPECT_FALSE(nnapi->nnapi_exists); EXPECT_EQ(nnapi->android_sdk_version, 0); EXPECT_EQ(nnapi->ANeuralNetworksMemory_createFromFd, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksMemory_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperand, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValue, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandSymmPerChannelQuantParams, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_setOperandValueFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_addOperation, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_identifyInputsAndOutputs, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_relaxComputationFloat32toFloat16, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_setPreference, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_finish, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setInputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutput, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setOutputFromMemory, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_startCompute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_wait, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksEvent_free, nullptr); EXPECT_EQ(nnapi->ASharedMemory_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworks_getDeviceCount, nullptr); EXPECT_EQ(nnapi->ANeuralNetworks_getDevice, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksDevice_getName, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksDevice_getVersion, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksDevice_getFeatureLevel, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksModel_getSupportedOperationsForDevices, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_createForDevices, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksCompilation_setCaching, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_compute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_getOutputOperandRank, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_getOutputOperandDimensions, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksBurst_create, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksBurst_free, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_burstCompute, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksMemory_createFromAHardwareBuffer, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_setMeasureTiming, nullptr); EXPECT_EQ(nnapi->ANeuralNetworksExecution_getDuration, nullptr); #endif } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/nnapi/nnapi_implementation.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/nnapi/nnapi_implementation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bbf401b8-740f-4cd0-9b82-b7205cea4db8
cpp
google/quiche
null_encrypter
quiche/quic/core/crypto/null_encrypter.cc
quiche/quic/core/crypto/null_encrypter_test.cc
#include "quiche/quic/core/crypto/null_encrypter.h" #include <algorithm> #include <limits> #include <string> #include "absl/numeric/int128.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_utils.h" namespace quic { const size_t kHashSizeShort = 12; NullEncrypter::NullEncrypter(Perspective perspective) : perspective_(perspective) {} bool NullEncrypter::SetKey(absl::string_view key) { return key.empty(); } bool NullEncrypter::SetNoncePrefix(absl::string_view nonce_prefix) { return nonce_prefix.empty(); } bool NullEncrypter::SetIV(absl::string_view iv) { return iv.empty(); } bool NullEncrypter::SetHeaderProtectionKey(absl::string_view key) { return key.empty(); } bool NullEncrypter::EncryptPacket(uint64_t , absl::string_view associated_data, absl::string_view plaintext, char* output, size_t* output_length, size_t max_output_length) { const size_t len = plaintext.size() + GetHashLength(); if (max_output_length < len) { return false; } absl::uint128 hash; if (perspective_ == Perspective::IS_SERVER) { hash = QuicUtils::FNV1a_128_Hash_Three(associated_data, plaintext, "Server"); } else { hash = QuicUtils::FNV1a_128_Hash_Three(associated_data, plaintext, "Client"); } memmove(output + GetHashLength(), plaintext.data(), plaintext.length()); QuicUtils::SerializeUint128Short(hash, reinterpret_cast<unsigned char*>(output)); *output_length = len; return true; } std::string NullEncrypter::GenerateHeaderProtectionMask( absl::string_view ) { return std::string(5, 0); } size_t NullEncrypter::GetKeySize() const { return 0; } size_t NullEncrypter::GetNoncePrefixSize() const { return 0; } size_t NullEncrypter::GetIVSize() const { return 0; } size_t NullEncrypter::GetMaxPlaintextSize(size_t ciphertext_size) const { return ciphertext_size - std::min(ciphertext_size, GetHashLength()); } size_t NullEncrypter::GetCiphertextSize(size_t plaintext_size) const { return plaintext_size + GetHashLength(); } QuicPacketCount NullEncrypter::GetConfidentialityLimit() const { return std::numeric_limits<QuicPacketCount>::max(); } absl::string_view NullEncrypter::GetKey() const { return absl::string_view(); } absl::string_view NullEncrypter::GetNoncePrefix() const { return absl::string_view(); } size_t NullEncrypter::GetHashLength() const { return kHashSizeShort; } }
#include "quiche/quic/core/crypto/null_encrypter.h" #include "absl/base/macros.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quic { namespace test { class NullEncrypterTest : public QuicTestWithParam<bool> {}; TEST_F(NullEncrypterTest, EncryptClient) { unsigned char expected[] = { 0x97, 0xdc, 0x27, 0x2f, 0x18, 0xa8, 0x56, 0x73, 0xdf, 0x8d, 0x1d, 0xd0, 'g', 'o', 'o', 'd', 'b', 'y', 'e', '!', }; char encrypted[256]; size_t encrypted_len = 0; NullEncrypter encrypter(Perspective::IS_CLIENT); ASSERT_TRUE(encrypter.EncryptPacket(0, "hello world!", "goodbye!", encrypted, &encrypted_len, 256)); quiche::test::CompareCharArraysWithHexError( "encrypted data", encrypted, encrypted_len, reinterpret_cast<const char*>(expected), ABSL_ARRAYSIZE(expected)); } TEST_F(NullEncrypterTest, EncryptServer) { unsigned char expected[] = { 0x63, 0x5e, 0x08, 0x03, 0x32, 0x80, 0x8f, 0x73, 0xdf, 0x8d, 0x1d, 0x1a, 'g', 'o', 'o', 'd', 'b', 'y', 'e', '!', }; char encrypted[256]; size_t encrypted_len = 0; NullEncrypter encrypter(Perspective::IS_SERVER); ASSERT_TRUE(encrypter.EncryptPacket(0, "hello world!", "goodbye!", encrypted, &encrypted_len, 256)); quiche::test::CompareCharArraysWithHexError( "encrypted data", encrypted, encrypted_len, reinterpret_cast<const char*>(expected), ABSL_ARRAYSIZE(expected)); } TEST_F(NullEncrypterTest, GetMaxPlaintextSize) { NullEncrypter encrypter(Perspective::IS_CLIENT); EXPECT_EQ(1000u, encrypter.GetMaxPlaintextSize(1012)); EXPECT_EQ(100u, encrypter.GetMaxPlaintextSize(112)); EXPECT_EQ(10u, encrypter.GetMaxPlaintextSize(22)); EXPECT_EQ(0u, encrypter.GetMaxPlaintextSize(11)); } TEST_F(NullEncrypterTest, GetCiphertextSize) { NullEncrypter encrypter(Perspective::IS_CLIENT); EXPECT_EQ(1012u, encrypter.GetCiphertextSize(1000)); EXPECT_EQ(112u, encrypter.GetCiphertextSize(100)); EXPECT_EQ(22u, encrypter.GetCiphertextSize(10)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/null_encrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/null_encrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
0b6ab60b-4ff4-4235-aa67-57e09a1db005
cpp
tensorflow/tensorflow
device_base
tensorflow/core/framework/device_base.cc
tensorflow/core/framework/device_base_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/framework/device_base.h" #include <algorithm> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/synchronization/notification.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { DeviceBase::~DeviceBase() { for (auto& temp : eigen_cpu_devices_) { delete temp; } eigen_cpu_devices_.clear(); } Status DeviceContext::CopyDeviceTensorToCPUSync(const Tensor* device_tensor, StringPiece tensor_name, Device* device, Tensor* cpu_tensor) { absl::Notification n; Status status; CopyDeviceTensorToCPU(device_tensor, tensor_name, device, cpu_tensor, [&](const Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); return status; } Status DeviceContext::CopyCPUTensorToDeviceSync(const Tensor* cpu_tensor, Device* device, Tensor* device_tensor) const { absl::Notification n; Status status; CopyCPUTensorToDevice(cpu_tensor, device, device_tensor, [&](const Status& s) { status = s; n.Notify(); }); n.WaitForNotification(); return status; } const DeviceAttributes& DeviceBase::attributes() const { LOG(FATAL) << "DeviceBase does not implement attributes()"; std::abort(); } const string& DeviceBase::name() const { LOG(FATAL) << "DeviceBase does not implement name()"; std::abort(); } const DeviceNameUtils::ParsedName& DeviceBase::parsed_name() const { LOG(FATAL) << "DeviceBase does not implement parsed_name()"; std::abort(); } const std::string& DeviceBase::device_type() const { LOG(FATAL) << "DeviceBase does not implement device_type()"; std::abort(); } void DeviceBase::set_eigen_cpu_device(Eigen::ThreadPoolDevice* d) { for (int i = 1; i <= d->numThreads(); ++i) { eigen_cpu_devices_.push_back(new Eigen::ThreadPoolDevice( d->getPool(), i , d->allocator())); } } const Eigen::ThreadPoolDevice* DeviceBase::eigen_cpu_device() { const int parallelism = std::max<int>( 1, std::min<int>(GetPerThreadMaxParallelism(), eigen_cpu_devices_.size())); return eigen_cpu_devices_[parallelism - 1]; } namespace { absl::flat_hash_set<std::string>* GetSymbolicDeviceList() { static absl::flat_hash_set<std::string>* symbolic_device_list = new absl::flat_hash_set<std::string>(); return symbolic_device_list; } } void AddSymbolicExecutionDevice(const absl::string_view device_name) { GetSymbolicDeviceList()->insert(std::string(device_name)); } bool IsSymbolicExecutionDevice(const absl::string_view device_name) { absl::flat_hash_set<std::string>* symbolic_devices = GetSymbolicDeviceList(); if (symbolic_devices->contains(device_name)) { return true; } else { return false; } } }
#define EIGEN_USE_THREADS #include "tensorflow/core/framework/device_base.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/work_sharder.h" namespace tensorflow { TEST(DeviceBaseTest, CpuDevice) { DeviceBase dbase(Env::Default()); thread::ThreadPool pool(Env::Default(), "test", 16); Eigen::ThreadPoolDevice eigen_device(pool.AsEigenThreadPool(), pool.NumThreads()); ASSERT_FALSE(dbase.has_eigen_cpu_device()); dbase.set_eigen_cpu_device(&eigen_device); ASSERT_TRUE(dbase.has_eigen_cpu_device()); { auto d = dbase.eigen_cpu_device(); EXPECT_EQ(d->numThreads(), 16); } { ScopedPerThreadMaxParallelism maxp(4); auto d = dbase.eigen_cpu_device(); EXPECT_EQ(d->numThreads(), 4); } { ScopedPerThreadMaxParallelism maxp(1); auto d = dbase.eigen_cpu_device(); EXPECT_EQ(d->numThreads(), 1); } { ScopedPerThreadMaxParallelism maxp(1000); auto d = dbase.eigen_cpu_device(); EXPECT_EQ(d->numThreads(), 16); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/device_base.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/device_base_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b88e1308-3599-460c-8a88-6e076d5b4ee0
cpp
google/cel-cpp
any
common/any.cc
common/any_test.cc
#include "common/any.h" #include "absl/base/nullability.h" #include "absl/strings/string_view.h" namespace cel { bool ParseTypeUrl(absl::string_view type_url, absl::Nullable<absl::string_view*> prefix, absl::Nullable<absl::string_view*> type_name) { auto pos = type_url.find_last_of('/'); if (pos == absl::string_view::npos || pos + 1 == type_url.size()) { return false; } if (prefix) { *prefix = type_url.substr(0, pos + 1); } if (type_name) { *type_name = type_url.substr(pos + 1); } return true; } }
#include "common/any.h" #include <string> #include "google/protobuf/any.pb.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "internal/testing.h" namespace cel { namespace { TEST(Any, Value) { google::protobuf::Any any; std::string scratch; SetAnyValueFromCord(&any, absl::Cord("Hello World!")); EXPECT_EQ(GetAnyValueAsCord(any), "Hello World!"); EXPECT_EQ(GetAnyValueAsString(any), "Hello World!"); EXPECT_EQ(GetAnyValueAsStringView(any, scratch), "Hello World!"); } TEST(MakeTypeUrlWithPrefix, Basic) { EXPECT_EQ(MakeTypeUrlWithPrefix("foo", "bar.Baz"), "foo/bar.Baz"); EXPECT_EQ(MakeTypeUrlWithPrefix("foo/", "bar.Baz"), "foo/bar.Baz"); } TEST(MakeTypeUrl, Basic) { EXPECT_EQ(MakeTypeUrl("bar.Baz"), "type.googleapis.com/bar.Baz"); } TEST(ParseTypeUrl, Valid) { EXPECT_TRUE(ParseTypeUrl("type.googleapis.com/bar.Baz")); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com")); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com/")); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com/foo/")); } TEST(ParseTypeUrl, TypeName) { absl::string_view type_name; EXPECT_TRUE(ParseTypeUrl("type.googleapis.com/bar.Baz", &type_name)); EXPECT_EQ(type_name, "bar.Baz"); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com", &type_name)); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com/", &type_name)); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com/foo/", &type_name)); } TEST(ParseTypeUrl, PrefixAndTypeName) { absl::string_view prefix; absl::string_view type_name; EXPECT_TRUE(ParseTypeUrl("type.googleapis.com/bar.Baz", &prefix, &type_name)); EXPECT_EQ(prefix, "type.googleapis.com/"); EXPECT_EQ(type_name, "bar.Baz"); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com", &prefix, &type_name)); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com/", &prefix, &type_name)); EXPECT_FALSE(ParseTypeUrl("type.googleapis.com/foo/", &prefix, &type_name)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/any.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/any_test.cc
4552db5798fb0853b131b783d8875794334fae7f
d40f4bec-05dc-4d5e-acb1-12eb713ff1ff
cpp
tensorflow/tensorflow
uniform_quant_ops
tensorflow/core/ops/uniform_quant_ops.cc
tensorflow/core/ops/uniform_quant_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_params.h" namespace tensorflow { namespace { using shape_inference::DimensionHandle; using shape_inference::ShapeHandle; using tensorflow::errors::InvalidArgument; using tensorflow::errors::Unknown; absl::StatusOr<TensorShape> ToTensorShape(ShapeHandle shape_handle, int64_t rank) { TensorShape shape; for (int i = 0; i < rank; ++i) { int64_t dim_size = shape_inference::InferenceContext::Value( shape_inference::InferenceContext::DimKnownRank(shape_handle, i)); if (dim_size == shape_inference::InferenceContext::kUnknownDim) { return Unknown("Dim size unknown."); } shape.AddDim(dim_size); } return shape; } Status ScalesZeroPointsShapeValid(shape_inference::InferenceContext* context, DimensionHandle match_dimension_handle, ShapeHandle scales, ShapeHandle zero_points) { const int32_t scales_rank = shape_inference::InferenceContext::Rank(scales); const int32_t zero_points_rank = shape_inference::InferenceContext::Rank(zero_points); if (scales_rank == shape_inference::InferenceContext::kUnknownRank || zero_points_rank == shape_inference::InferenceContext::kUnknownRank) { return absl::OkStatus(); } if (scales_rank != zero_points_rank) { return InvalidArgument("scales and zero_points must have same rank."); } if (scales_rank == 0) { return absl::OkStatus(); } DimensionHandle scales_size = context->Dim(scales, 0); DimensionHandle zero_points_size = context->Dim(zero_points, 0); DimensionHandle merged_scales; TF_RETURN_IF_ERROR( context->Merge(scales_size, match_dimension_handle, &merged_scales)); DimensionHandle merged_zero_points; TF_RETURN_IF_ERROR(context->Merge(zero_points_size, match_dimension_handle, &merged_zero_points)); return absl::OkStatus(); } Status DotShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(1), 2, &rhs)); ShapeHandle lhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 0, &lhs_scales)); ShapeHandle lhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 0, &lhs_zero_points)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(4), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(5), 1, &rhs_zero_points)); ShapeHandle output_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(6), 1, &output_scales)); ShapeHandle output_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(7), 1, &output_zero_points)); DimensionHandle inner_lhs = context->Dim(lhs, 1); DimensionHandle inner_rhs = context->Dim(rhs, 0); DimensionHandle merged; TF_RETURN_IF_ERROR(context->Merge(inner_lhs, inner_rhs, &merged)); DimensionHandle output_rows = context->Dim(lhs, 0); DimensionHandle output_cols = context->Dim(rhs, 1); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid(context, output_cols, rhs_scales, rhs_zero_points)); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid( context, output_cols, output_scales, output_zero_points)); context->set_output(0, context->Matrix(output_rows, output_cols)); return absl::OkStatus(); } Status DotHybridShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRank(context->input(1), 2, &rhs)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 1, &rhs_zero_points)); DimensionHandle inner_lhs = context->Dim(lhs, 1); DimensionHandle inner_rhs = context->Dim(rhs, 0); DimensionHandle merged; TF_RETURN_IF_ERROR(context->Merge(inner_lhs, inner_rhs, &merged)); DimensionHandle output_rows = context->Dim(lhs, 0); DimensionHandle output_cols = context->Dim(rhs, 1); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid(context, output_cols, rhs_scales, rhs_zero_points)); context->set_output(0, context->Matrix(output_rows, output_cols)); return absl::OkStatus(); } struct ShapeCommonParams { ShapeHandle lhs; ShapeHandle rhs; ShapeHandle lhs_scales; ShapeHandle lhs_zero_points; ShapeHandle rhs_scales; ShapeHandle rhs_zero_points; ShapeHandle output_scales; ShapeHandle output_zero_points; bool is_output_scales_zero_points_set; ShapeCommonParams(ShapeHandle lhs, ShapeHandle rhs, ShapeHandle lhs_scales, ShapeHandle lhs_zero_points, ShapeHandle rhs_scales, ShapeHandle rhs_zero_points, ShapeHandle output_scales, ShapeHandle output_zero_points) : lhs(lhs), rhs(rhs), lhs_scales(lhs_scales), lhs_zero_points(lhs_zero_points), rhs_scales(rhs_scales), rhs_zero_points(rhs_zero_points), output_scales(output_scales), output_zero_points(output_zero_points), is_output_scales_zero_points_set(true) {} ShapeCommonParams(ShapeHandle lhs, ShapeHandle rhs, ShapeHandle rhs_scales, ShapeHandle rhs_zero_points) : lhs(lhs), rhs(rhs), rhs_scales(rhs_scales), rhs_zero_points(rhs_zero_points), is_output_scales_zero_points_set(false) {} }; Status ConvolutionShapeCommon(shape_inference::InferenceContext* context, const ShapeCommonParams& params) { const int32_t lhs_rank = shape_inference::InferenceContext::Rank(params.lhs); const int32_t rhs_rank = shape_inference::InferenceContext::Rank(params.rhs); if (lhs_rank == shape_inference::InferenceContext::kUnknownRank && rhs_rank == shape_inference::InferenceContext::kUnknownRank) { context->set_output(0, context->UnknownShape()); return absl::OkStatus(); } else if (lhs_rank == shape_inference::InferenceContext::kUnknownRank || rhs_rank == shape_inference::InferenceContext::kUnknownRank) { context->set_output( 0, context->UnknownShapeOfRank( lhs_rank == shape_inference::InferenceContext::kUnknownRank ? rhs_rank : lhs_rank)); return absl::OkStatus(); } else if (lhs_rank != rhs_rank) { return InvalidArgument("lhs and rhs must have same rank."); } auto lhs_shape = ToTensorShape(params.lhs, lhs_rank); auto rhs_shape = ToTensorShape(params.rhs, rhs_rank); if (!lhs_shape.ok() || !rhs_shape.ok()) { context->set_output(0, context->UnknownShapeOfRank(lhs_rank)); return absl::OkStatus(); } UniformQuantizedConvolutionParams convolution_params; TF_RETURN_IF_ERROR(convolution_params.LoadFromAttrs(*context)); TF_RETURN_IF_ERROR(convolution_params.ValidateOrFillParamsAndValidateShape( lhs_shape.value(), rhs_shape.value())); DimensionHandle output_feature = context->Dim( params.rhs, convolution_params.dimension_numbers().kernel_output_feature_dimension()); TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid( context, output_feature, params.rhs_scales, params.rhs_zero_points)); if (params.is_output_scales_zero_points_set) { TF_RETURN_IF_ERROR(ScalesZeroPointsShapeValid(context, output_feature, params.output_scales, params.output_zero_points)); if (shape_inference::InferenceContext::Rank(params.output_scales) > 0) { DimensionHandle scales_merged; TF_RETURN_IF_ERROR(context->Merge(context->Dim(params.rhs_scales, 0), context->Dim(params.output_scales, 0), &scales_merged)); } } TF_ASSIGN_OR_RETURN(const auto& out_shape, convolution_params.CalculateOutputShape( lhs_shape.value(), rhs_shape.value())); ShapeHandle out_shape_handle; TF_RETURN_IF_ERROR( context->MakeShapeFromTensorShape(out_shape, &out_shape_handle)); context->set_output(0, out_shape_handle); return absl::OkStatus(); } Status ConvolutionShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(1), 2, &rhs)); ShapeHandle lhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 0, &lhs_scales)); ShapeHandle lhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 0, &lhs_zero_points)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(4), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(5), 1, &rhs_zero_points)); ShapeHandle output_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(6), 1, &output_scales)); ShapeHandle output_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(7), 1, &output_zero_points)); return ConvolutionShapeCommon( context, ShapeCommonParams(lhs, rhs, lhs_scales, lhs_zero_points, rhs_scales, rhs_zero_points, output_scales, output_zero_points)); } Status ConvolutionHybridShape(shape_inference::InferenceContext* context) { ShapeHandle lhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(0), 2, &lhs)); ShapeHandle rhs; TF_RETURN_IF_ERROR(context->WithRankAtLeast(context->input(1), 2, &rhs)); ShapeHandle rhs_scales; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(2), 1, &rhs_scales)); ShapeHandle rhs_zero_points; TF_RETURN_IF_ERROR( context->WithRankAtMost(context->input(3), 1, &rhs_zero_points)); return ConvolutionShapeCommon( context, ShapeCommonParams(lhs, rhs, rhs_scales, rhs_zero_points)); } } REGISTER_OP("UniformQuantize") .Input("input: Tin") .Input("scales: float") .Input("zero_points: int32") .Output("output: Tout") .Attr("Tin: {float}") .Attr("Tout: {qint8, qint32}") .Attr("quantization_axis: int = -1") .Attr("quantization_min_val: int") .Attr("quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UniformRequantize") .Input("input: Tin") .Input("input_scales: float") .Input("input_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8, qint32}") .Attr("Tout: {qint8, qint32}") .Attr("input_quantization_axis: int = -1") .Attr("input_quantization_min_val: int") .Attr("input_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UniformDequantize") .Input("input: Tin") .Input("scales: float") .Input("zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8, qint32}") .Attr("Tout: {float}") .Attr("quantization_axis: int = -1") .Attr("quantization_min_val: int") .Attr("quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("UniformQuantizedDot") .Input("lhs: Tin") .Input("rhs: Tin") .Input("lhs_scales: float") .Input("lhs_zero_points: int32") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8}") .Attr("Tout: {qint32}") .Attr("lhs_quantization_axis: int = -1") .Attr("lhs_quantization_min_val: int") .Attr("lhs_quantization_max_val: int") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .SetShapeFn(DotShape); REGISTER_OP("UniformQuantizedDotHybrid") .Input("lhs: Tlhs") .Input("rhs: Trhs") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Output("output: Tout") .Attr("Tlhs: {float}") .Attr("Trhs: {qint8}") .Attr("Tout: {float}") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .SetShapeFn(DotHybridShape); REGISTER_OP("UniformQuantizedConvolution") .Input("lhs: Tin") .Input("rhs: Tin") .Input("lhs_scales: float") .Input("lhs_zero_points: int32") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: Tout") .Attr("Tin: {qint8}") .Attr("Tout: {qint32}") .Attr("window_strides: list(int) = []") .Attr("padding: string") .Attr("explicit_padding: list(int) = []") .Attr("lhs_dilation: list(int) = []") .Attr("rhs_dilation: list(int) = []") .Attr("batch_group_count: int = 1") .Attr("feature_group_count: int = 1") .Attr("dimension_numbers: string = ''") .Attr("lhs_quantization_axis: int = -1") .Attr("lhs_quantization_min_val: int") .Attr("lhs_quantization_max_val: int") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .SetShapeFn(ConvolutionShape); REGISTER_OP("UniformQuantizedConvolutionHybrid") .Input("lhs: Tlhs") .Input("rhs: Trhs") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Output("output: Tout") .Attr("Tlhs: {float}") .Attr("Trhs: {qint8}") .Attr("Tout: {float}") .Attr("window_strides: list(int) = []") .Attr("padding: string") .Attr("explicit_padding: list(int) = []") .Attr("lhs_dilation: list(int) = []") .Attr("rhs_dilation: list(int) = []") .Attr("batch_group_count: int = 1") .Attr("feature_group_count: int = 1") .Attr("dimension_numbers: string = ''") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .SetShapeFn(ConvolutionHybridShape); REGISTER_OP("UniformQuantizedAdd") .Input("lhs: T") .Input("rhs: T") .Input("lhs_scales: float") .Input("lhs_zero_points: int32") .Input("rhs_scales: float") .Input("rhs_zero_points: int32") .Input("output_scales: float") .Input("output_zero_points: int32") .Output("output: T") .Attr("lhs_quantization_axis: int = -1") .Attr("lhs_quantization_min_val: int") .Attr("lhs_quantization_max_val: int") .Attr("rhs_quantization_axis: int = -1") .Attr("rhs_quantization_min_val: int") .Attr("rhs_quantization_max_val: int") .Attr("output_quantization_axis: int = -1") .Attr("output_quantization_min_val: int") .Attr("output_quantization_max_val: int") .Attr("T: {qint32}") .SetShapeFn(shape_inference::BroadcastBinaryOpShapeFn); REGISTER_OP("UniformQuantizedClipByValue") .Input("operand: T") .Input("min: T") .Input("max: T") .Input("scales: float") .Input("zero_points: int32") .Output("output: T") .Attr("T: {qint32}") .Attr("quantization_axis: int = -1") .Attr("quantization_min_val: int") .Attr("quantization_max_val: int") .SetShapeFn(shape_inference::UnchangedShape); }
#include <limits> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_attr.pb.h" namespace tensorflow { namespace { constexpr int32_t kInt8Min = std::numeric_limits<int8_t>::min(); constexpr int32_t kInt8Max = std::numeric_limits<int8_t>::max(); constexpr int32_t kInt32Min = std::numeric_limits<int32_t>::min(); constexpr int32_t kInt32Max = std::numeric_limits<int32_t>::max(); } TEST(UniformQuantizedOpsTest, UniformQuantizedDotShapeInference) { ShapeInferenceTestOp op("UniformQuantizedDot"); INFER_OK(op, "[4,2];[2,3];[];[];[];[];[];[]", "[d0_0,d1_1]"); INFER_OK(op, "[4,2];[2,3];[];[];[3];[3];[];[]", "[d0_0,d1_1]"); INFER_OK(op, "[4,2];[2,3];[];[];[3];[3];[3];[3]", "[d0_0,d1_1]"); INFER_ERROR("", op, "[4,2];[6,3];[];[];[];[];[];[]"); INFER_ERROR("", op, "[4,2];[2,3];[4];[4];[];[];[];[]"); INFER_ERROR("scales and zero_points must have same rank.", op, "[4,2];[2,3];[];[];[3];[];[];[]"); INFER_ERROR("", op, "[4,2];[2,3];[];[];[6];[6];[];[]"); INFER_ERROR("", op, "[4,2];[2,3];[];[];[];[];[6];[6]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedDotHybridShapeInference) { ShapeInferenceTestOp op("UniformQuantizedDotHybrid"); INFER_OK(op, "[4,2];[2,3];[];[]", "[d0_0,d1_1]"); INFER_OK(op, "[4,2];[2,3];[3];[3]", "[d0_0,d1_1]"); INFER_ERROR("", op, "[4,2];[6,3];[];[]"); INFER_ERROR("scales and zero_points must have same rank.", op, "[4,2];[2,3];[3];[]"); INFER_ERROR("", op, "[4,2];[2,3];[6];[6]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionShapeInferencePerTensor) { ShapeInferenceTestOp op("UniformQuantizedConvolution"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolution") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("lhs_quantization_min_val", kInt8Min) .Attr("lhs_quantization_max_val", kInt8Max) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[];[];[];[];[];[]", "[2,6,37,46]"); INFER_ERROR("", op, "[2,3,40,50];[6,9,4,5];[];[];[];[];[];[]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[2];[2];[];[];[];[]"); INFER_ERROR("scales and zero_points must have same rank.", op, "[2,3,40,50];[6,3,4,5];[];[];[6];[];[];[]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[];[];[];[];[12];[12]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionShapeInferencePerChannelRhs) { ShapeInferenceTestOp op("UniformQuantizedConvolution"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolution") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("rhs_quantization_axis", 0) .Attr("lhs_quantization_min_val", kInt8Min) .Attr("lhs_quantization_max_val", kInt8Max) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[];[];[6];[6];[];[]", "[2,6,37,46]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[];[];[12];[12];[];[]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionShapeInferencePerChannelRhsAndOutput) { ShapeInferenceTestOp op("UniformQuantizedConvolution"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolution") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tin", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("rhs_quantization_axis", 0) .Attr("output_quantization_axis", 1) .Attr("lhs_quantization_min_val", kInt8Min) .Attr("lhs_quantization_max_val", kInt8Max) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("output_quantization_min_val", kInt32Min) .Attr("output_quantization_max_val", kInt32Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[];[];[6];[6];[6];[6]", "[2,6,37,46]"); } TEST(UniformQuantizedOpsTest, UniformQuantizedConvolutionHybridShapeInferencePerChannel) { ShapeInferenceTestOp op("UniformQuantizedConvolutionHybrid"); TF_ASSERT_OK(NodeDefBuilder("test", "UniformQuantizedConvolutionHybrid") .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_QINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_INT32)) .Attr("Tlhs", DT_QINT8) .Attr("Trhs", DT_QINT8) .Attr("Tout", DT_QINT32) .Attr("rhs_quantization_axis", 0) .Attr("rhs_quantization_min_val", kInt8Min) .Attr("rhs_quantization_max_val", kInt8Max) .Attr("padding", "VALID") .Finalize(&op.node_def)); INFER_OK(op, "[2,3,40,50];[6,3,4,5];[6];[6]", "[2,6,37,46]"); INFER_ERROR("", op, "[2,3,40,50];[6,3,4,5];[12];[12]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/uniform_quant_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/uniform_quant_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9c45de3c-81f9-4c01-82ae-09a5a486e55a
cpp
tensorflow/tensorflow
crop
tensorflow/lite/experimental/ml_adjacent/algo/crop.cc
tensorflow/lite/experimental/ml_adjacent/algo/crop_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/crop.h" #include <cstring> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace crop { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; using ::ml_adj::data::TypeWidth; inline void CropToBoundingBox(dim_t offset_height, dim_t offset_width, dim_t out_height, dim_t out_width, const DataRef* input, MutableDataRef* output) { const dim_t in_height = input->Dims()[1]; const dim_t in_width = input->Dims()[2]; const dim_t num_channels = input->Dims()[3]; const dim_t chunk = TypeWidth(input->Type()) * num_channels; const dim_t in_img_size = in_height * in_width; const dim_t out_img_size = out_height * out_width; for (int b = 0; b < input->Dims()[0]; ++b) { for (int i = 0; i < out_height; ++i) { const dim_t read_byte_ofs = (in_img_size * b + (i + offset_height) * in_width + offset_width) * chunk; const void* read_start_addr = reinterpret_cast<const char*>(input->Data()) + read_byte_ofs; const dim_t write_byte_ofs = chunk * (out_img_size * b + i * out_width); void* write_addr = reinterpret_cast<char*>(output->Data()) + write_byte_ofs; std::memcpy(write_addr, read_start_addr, chunk * out_width); } } } void ComputeCenterCrop(const InputPack& inputs, const OutputPack& outputs) { #ifndef NDEBUG TFLITE_CHECK(inputs.size() == 2); TFLITE_CHECK(outputs.size() == 1); #endif const DataRef* img = inputs[0]; const DataRef* frac = inputs[1]; const double frac_data = *reinterpret_cast<const double*>(frac->Data()); const dim_t in_height = img->Dims()[1]; const dim_t out_height_offset = (in_height - in_height * frac_data) / 2; const dim_t out_height = in_height - (2 * out_height_offset); const dim_t in_width = img->Dims()[2]; const dim_t out_width_offset = (in_width - in_width * frac_data) / 2; const dim_t out_width = in_width - (2 * out_width_offset); MutableDataRef* output = outputs[0]; output->Resize({img->Dims()[0], out_height, out_width, img->Dims()[3]}); CropToBoundingBox(out_height_offset, out_width_offset, out_height, out_width, img, output); } void ComputeCropToBoundingBox(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 5); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const DataRef* offset_height = inputs[1]; const dim_t offset_height_data = *reinterpret_cast<const dim_t*>(offset_height->Data()); const DataRef* offset_width = inputs[2]; const dim_t offset_width_data = *reinterpret_cast<const dim_t*>(offset_width->Data()); const DataRef* target_height = inputs[3]; const dim_t target_height_data = *reinterpret_cast<const dim_t*>(target_height->Data()); const DataRef* target_width = inputs[4]; const dim_t target_width_data = *reinterpret_cast<const dim_t*>(target_width->Data()); MutableDataRef* output = outputs[0]; output->Resize( {img->Dims()[0], target_height_data, target_width_data, img->Dims()[3]}); CropToBoundingBox(offset_height_data, offset_width_data, target_height_data, target_width_data, img, output); } } const Algo* Impl_CenterCrop() { static const Algo center_crop = {&ComputeCenterCrop, nullptr}; return &center_crop; } const Algo* Impl_CropToBoundingBox() { static const Algo crop_to_bounding_box = {&ComputeCropToBoundingBox, nullptr}; return &crop_to_bounding_box; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/crop.h" #include <cstring> #include <numeric> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; using ::testing::ElementsAreArray; namespace ml_adj { namespace crop { namespace { std::vector<float> GetIotaVec(dim_t d1, dim_t d2, dim_t d3, dim_t d4) { std::vector<float> res; res.resize(d1 * d2 * d3 * d4); std::iota(res.begin(), res.end(), 0); return res; } struct CropCenterTestParams { std::vector<dim_t> img_dims; std::vector<float> img_data; double frac; std::vector<float> expected_data; std::vector<dim_t> expected_shape; }; class CropCenterTest : public testing::TestWithParam<CropCenterTestParams> {}; TEST_P(CropCenterTest, FloatPixelType) { const CropCenterTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef frac(etype_t::f64); frac.Resize({1}); ASSERT_EQ(frac.Bytes(), sizeof(double)); std::memcpy(frac.Data(), &params.frac, frac.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* center_crop = Impl_CenterCrop(); center_crop->process({&img, &frac}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); EXPECT_THAT(absl::MakeSpan(out_data, output.NumElements()), ElementsAreArray(params.expected_data)); } INSTANTIATE_TEST_SUITE_P( CropTests, CropCenterTest, testing::ValuesIn({ CropCenterTestParams{{1, 4, 4, 1}, GetIotaVec(1, 4, 4, 1), 0.5, {5, 6, 9, 10}, {1, 2, 2, 1}}, CropCenterTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0.5, {6, 7, 8, 11, 12, 13, 16, 17, 18}, {1, 3, 3, 1}}, CropCenterTestParams{{1, 3, 3, 1}, GetIotaVec(1, 3, 3, 1), 0.5, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3, 3, 1}}, CropCenterTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0.9, GetIotaVec(1, 5, 5, 1), {1, 5, 5, 1}}, CropCenterTestParams{ {1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0.2, {12}, {1, 1, 1, 1}}, CropCenterTestParams{{1, 2, 2, 2}, GetIotaVec(1, 2, 2, 2), .7, {0, 1, 2, 3, 4, 5, 6, 7}, {1, 2, 2, 2}}, CropCenterTestParams{ {1, 3, 3, 2}, GetIotaVec(1, 3, 3, 2), .1, {8, 9}, {1, 1, 1, 2}}, CropCenterTestParams{ {2, 3, 3, 1}, GetIotaVec(2, 3, 3, 1), .1, {4, 13}, {2, 1, 1, 1}}, CropCenterTestParams{{2, 3, 3, 2}, GetIotaVec(2, 3, 3, 2), .1, {8, 9, 26, 27}, {2, 1, 1, 2}}, })); struct CropToBoundingBoxTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; dim_t offset_height; dim_t offset_width; dim_t target_height; dim_t target_width; const std::vector<dim_t> expected_shape; const std::vector<float> expected_data; }; class CropToBoundingBoxTest : public testing::TestWithParam<CropToBoundingBoxTestParams> {}; TEST_P(CropToBoundingBoxTest, FloatPixelType) { const CropToBoundingBoxTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef offset_height(etype_t::i32); offset_height.Resize({1}); ASSERT_EQ(offset_height.Bytes(), sizeof(int)); std::memcpy(offset_height.Data(), &params.offset_height, offset_height.Bytes()); OwningVectorRef offset_width(etype_t::i32); offset_width.Resize({1}); ASSERT_EQ(offset_width.Bytes(), sizeof(int)); std::memcpy(offset_width.Data(), &params.offset_width, offset_width.Bytes()); OwningVectorRef target_height(etype_t::i32); target_height.Resize({1}); ASSERT_EQ(target_height.Bytes(), sizeof(int)); std::memcpy(target_height.Data(), &params.target_height, target_height.Bytes()); OwningVectorRef target_width(etype_t::i32); target_width.Resize({1}); ASSERT_EQ(target_width.Bytes(), sizeof(int)); std::memcpy(target_width.Data(), &params.target_width, target_width.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* crop_to_bounding_box = Impl_CropToBoundingBox(); crop_to_bounding_box->process( {&img, &offset_height, &offset_width, &target_height, &target_width}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); EXPECT_THAT(absl::MakeSpan(out_data, output.NumElements()), ElementsAreArray(params.expected_data)); } INSTANTIATE_TEST_SUITE_P( CropTests, CropToBoundingBoxTest, testing::ValuesIn({ CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0, 0, 2, 2, {1, 2, 2, 1}, {0, 1, 5, 6}}, CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 3, 3, 2, 2, {1, 2, 2, 1}, {18, 19, 23, 24}}, CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 0, 3, 2, 2, {1, 2, 2, 1}, {3, 4, 8, 9}}, CropToBoundingBoxTestParams{{1, 5, 5, 1}, GetIotaVec(1, 5, 5, 1), 2, 1, 3, 3, {1, 3, 3, 1}, {11, 12, 13, 16, 17, 18, 21, 22, 23}}, CropToBoundingBoxTestParams{{1, 3, 3, 1}, GetIotaVec(1, 3, 3, 1), 0, 0, 3, 3, {1, 3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8}}, CropToBoundingBoxTestParams{{1, 3, 3, 1}, GetIotaVec(1, 3, 3, 1), 1, 1, 1, 1, {1, 1, 1, 1}, {4}}, CropToBoundingBoxTestParams{{1, 5, 5, 3}, GetIotaVec(1, 5, 5, 3), 2, 2, 2, 2, {1, 2, 2, 3}, {36, 37, 38, 39, 40, 41, 51, 52, 53, 54, 55, 56}}, CropToBoundingBoxTestParams{{2, 5, 5, 2}, GetIotaVec(2, 5, 5, 2), 2, 2, 2, 2, {2, 2, 2, 2}, {24, 25, 26, 27, 34, 35, 36, 37, 74, 75, 76, 77, 84, 85, 86, 87}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/crop.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/crop_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
101e352c-b661-4e10-bbba-e7e6d5172d99
cpp
tensorflow/tensorflow
image_grad
tensorflow/cc/gradients/image_grad.cc
tensorflow/cc/gradients/image_grad_test.cc
#include <vector> #include "tensorflow/cc/framework/grad_op_registry.h" #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/ops/image_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" namespace tensorflow { namespace ops { namespace { REGISTER_NO_GRADIENT_OP("NonMaxSuppression"); REGISTER_NO_GRADIENT_OP("NonMaxSuppressionV2"); REGISTER_NO_GRADIENT_OP("NonMaxSuppressionV3"); REGISTER_NO_GRADIENT_OP("NonMaxSuppressionV4"); REGISTER_NO_GRADIENT_OP("NonMaxSuppressionV5"); Status ResizeNearestNeighborGradHelper(const Scope& scope, const Operation& op, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { bool align_corners; TF_RETURN_IF_ERROR( GetNodeAttr(op.node()->attrs(), "align_corners", &align_corners)); bool half_pixel_centers; TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "half_pixel_centers", &half_pixel_centers)); auto x_shape = Slice(scope, Shape(scope, op.input(0)), {1}, {2}); grad_outputs->push_back(internal::ResizeNearestNeighborGrad( scope, grad_inputs[0], x_shape, internal::ResizeNearestNeighborGrad::AlignCorners(align_corners) .HalfPixelCenters(half_pixel_centers))); grad_outputs->push_back(NoGradient()); return scope.status(); } REGISTER_GRADIENT_OP("ResizeNearestNeighbor", ResizeNearestNeighborGradHelper); Status ResizeBilinearGradHelper(const Scope& scope, const Operation& op, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { bool align_corners; TF_RETURN_IF_ERROR( GetNodeAttr(op.node()->attrs(), "align_corners", &align_corners)); bool half_pixel_centers; TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "half_pixel_centers", &half_pixel_centers)); grad_outputs->push_back(internal::ResizeBilinearGrad( scope, grad_inputs[0], op.input(0), internal::ResizeBilinearGrad::AlignCorners(align_corners) .HalfPixelCenters(half_pixel_centers))); grad_outputs->push_back(NoGradient()); return scope.status(); } REGISTER_GRADIENT_OP("ResizeBilinear", ResizeBilinearGradHelper); Status ResizeBicubicGradHelper(const Scope& scope, const Operation& op, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { bool align_corners; TF_RETURN_IF_ERROR( GetNodeAttr(op.node()->attrs(), "align_corners", &align_corners)); bool half_pixel_centers; TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "half_pixel_centers", &half_pixel_centers)); grad_outputs->push_back(internal::ResizeBicubicGrad( scope, grad_inputs[0], op.input(0), internal::ResizeBicubicGrad::AlignCorners(align_corners) .HalfPixelCenters(half_pixel_centers))); grad_outputs->push_back(NoGradient()); return scope.status(); } REGISTER_GRADIENT_OP("ResizeBicubic", ResizeBicubicGradHelper); Status ScaleAndTranslateGradHelper(const Scope& scope, const Operation& op, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { string kernel_type; TF_RETURN_IF_ERROR( GetNodeAttr(op.node()->attrs(), "kernel_type", &kernel_type)); bool antialias; TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "antialias", &antialias)); grad_outputs->push_back(internal::ScaleAndTranslateGrad( scope, grad_inputs[0], op.input(0), op.input(2), op.input(3), internal::ScaleAndTranslateGrad::KernelType(kernel_type) .Antialias(antialias))); grad_outputs->push_back(NoGradient()); grad_outputs->push_back(NoGradient()); grad_outputs->push_back(NoGradient()); return scope.status(); } REGISTER_GRADIENT_OP("ScaleAndTranslate", ScaleAndTranslateGradHelper); Status CropAndResizeGradHelper(const Scope& scope, const Operation& op, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { DataType input_type; string method; TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "method", &method)); TF_RETURN_IF_ERROR(GetNodeAttr(op.node()->attrs(), "T", &input_type)); auto image_shape = Shape(scope, op.input(0)); grad_outputs->push_back(CropAndResizeGradImage( scope, grad_inputs[0], op.input(1), op.input(2), image_shape, input_type, CropAndResizeGradImage::Method(method))); grad_outputs->push_back(CropAndResizeGradBoxes( scope, grad_inputs[0], op.input(0), op.input(1), op.input(2))); grad_outputs->push_back(NoGradient()); grad_outputs->push_back(NoGradient()); return scope.status(); } REGISTER_GRADIENT_OP("CropAndResize", CropAndResizeGradHelper); } } }
#include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/grad_op_registry.h" #include "tensorflow/cc/framework/gradient_checker.h" #include "tensorflow/cc/framework/testutil.h" #include "tensorflow/cc/gradients/grad_testutil.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { namespace { using ops::Const; using ops::CropAndResize; using ops::ResizeBicubic; using ops::ResizeBilinear; using ops::ResizeNearestNeighbor; using ops::ScaleAndTranslate; class ImageGradTest : public ::testing::Test { protected: ImageGradTest() : scope_(Scope::NewRootScope()) {} enum OpType { RESIZE_NEAREST, RESIZE_BILINEAR, RESIZE_BICUBIC }; template <typename T> Tensor MakeData(const TensorShape& data_shape) { DataType data_type = DataTypeToEnum<T>::v(); Tensor data(data_type, data_shape); auto data_flat = data.flat<T>(); for (int i = 0; i < data_flat.size(); ++i) { data_flat(i) = T(i); } return data; } template <typename T> void MakeOp(const OpType op_type, const Tensor& x_data, const Input& y_shape, const bool align_corners, const bool half_pixel_centers, Output* x, Output* y) { *x = Const<T>(scope_, x_data); switch (op_type) { case RESIZE_NEAREST: *y = ResizeNearestNeighbor( scope_, *x, y_shape, ResizeNearestNeighbor::AlignCorners(align_corners)); return; case RESIZE_BILINEAR: *y = ResizeBilinear(scope_, *x, y_shape, ResizeBilinear::AlignCorners(align_corners) .HalfPixelCenters(half_pixel_centers)); return; case RESIZE_BICUBIC: *y = ResizeBicubic(scope_, *x, y_shape, ResizeBicubic::AlignCorners(align_corners) .HalfPixelCenters(half_pixel_centers)); return; } assert(false); } template <typename T> void TestResizedShapeForType(const OpType op_type, const bool align_corners, const bool half_pixel_centers) { TensorShape x_shape({1, 2, 2, 1}); Tensor x_data = MakeData<T>(x_shape); Output x, y; MakeOp<T>(op_type, x_data, {4, 6}, align_corners, half_pixel_centers, &x, &y); ClientSession session(scope_); std::vector<Tensor> outputs; TF_ASSERT_OK(session.Run({y}, &outputs)); EXPECT_EQ(outputs.size(), 1); EXPECT_EQ(outputs[0].shape(), TensorShape({1, 4, 6, 1})); } void TestResizedShape(OpType op_type) { for (const bool half_pixel_centers : {true, false}) { for (const bool align_corners : {true, false}) { if (half_pixel_centers && align_corners) { continue; } TestResizedShapeForType<Eigen::half>(op_type, align_corners, half_pixel_centers); TestResizedShapeForType<float>(op_type, align_corners, half_pixel_centers); TestResizedShapeForType<double>(op_type, align_corners, half_pixel_centers); } } } template <typename X_T, typename Y_T, typename JAC_T> void TestResizeToSmallerAndAlign(const OpType op_type, const bool align_corners, const bool half_pixel_centers) { TensorShape x_shape({1, 4, 6, 1}); Tensor x_data = MakeData<X_T>(x_shape); Output x, y; MakeOp<X_T>(op_type, x_data, {2, 3}, align_corners, half_pixel_centers, &x, &y); JAC_T max_error; TF_ASSERT_OK((ComputeGradientError<X_T, Y_T, JAC_T>( scope_, x, x_data, y, {1, 2, 3, 1}, &max_error))); EXPECT_LT(max_error, 1.5e-3); } template <typename X_T, typename Y_T, typename JAC_T> void TestResizeToLargerAndAlign(const OpType op_type, const bool align_corners, const bool half_pixel_centers) { TensorShape x_shape({1, 2, 3, 1}); Tensor x_data = MakeData<X_T>(x_shape); Output x, y; MakeOp<X_T>(op_type, x_data, {4, 6}, align_corners, half_pixel_centers, &x, &y); JAC_T max_error; TF_ASSERT_OK((ComputeGradientError<X_T, Y_T, JAC_T>( scope_, x, x_data, y, {1, 4, 6, 1}, &max_error))); EXPECT_LT(max_error, 1.5e-3); } template <typename X_T, typename Y_T, typename JAC_T> void TestResize(OpType op_type) { for (const bool half_pixel_centers : {true, false}) { for (const bool align_corners : {true, false}) { if (half_pixel_centers && align_corners) { continue; } TestResizeToSmallerAndAlign<X_T, Y_T, JAC_T>(op_type, align_corners, half_pixel_centers); TestResizeToLargerAndAlign<X_T, Y_T, JAC_T>(op_type, align_corners, half_pixel_centers); } } } Scope scope_; }; TEST_F(ImageGradTest, TestNearestNeighbor) { TestResizedShape(RESIZE_NEAREST); TestResize<float, float, float>(RESIZE_NEAREST); TestResize<double, double, double>(RESIZE_NEAREST); } TEST_F(ImageGradTest, TestBilinear) { TestResizedShape(RESIZE_BILINEAR); TestResize<float, float, float>(RESIZE_BILINEAR); TestResize<double, float, double>(RESIZE_BILINEAR); } TEST_F(ImageGradTest, TestBicubic) { TestResizedShape(RESIZE_BICUBIC); TestResize<float, float, float>(RESIZE_BICUBIC); TestResize<double, float, double>(RESIZE_BICUBIC); } class ScaleAndTranslateGradTest : public ::testing::Test { protected: ScaleAndTranslateGradTest() : scope_(Scope::NewRootScope()) {} template <typename T> Tensor MakeData(const TensorShape& data_shape) { DataType data_type = DataTypeToEnum<T>::v(); Tensor data(data_type, data_shape); auto data_flat = data.flat<T>(); for (int i = 0; i < data_flat.size(); ++i) { data_flat(i) = T(i); } return data; } template <typename T> void MakeOp(const Tensor& x_data, const Input& y_shape, Input scale, Input translation, const string& kernel_type, bool antialias, Output* x, Output* y) { *x = Const<T>(scope_, x_data); *y = ScaleAndTranslate(scope_, *x, y_shape, scale, translation, ScaleAndTranslate::KernelType(kernel_type) .Antialias(antialias) .Antialias(antialias)); TF_ASSERT_OK(scope_.status()); } template <typename X_T, typename Y_T, typename JAC_T> void TestScaleAndTranslate(const TensorShape x_shape, const int out_height, const int out_width, Input scale, Input translation, const string& kernel_type, bool antialias) { Tensor x_data = MakeData<X_T>(x_shape); Output x, y; MakeOp<X_T>(x_data, {out_height, out_width}, scale, translation, kernel_type, antialias, &x, &y); JAC_T max_error; TF_ASSERT_OK((ComputeGradientError<X_T, Y_T, JAC_T>( scope_, x, x_data, y, {1, out_height, out_width, 1}, &max_error))); EXPECT_LT(max_error, 2e-3); } const std::vector<Input> kScales = {Input{1.0f, 1.0f}, Input{0.37f, 0.47f}, Input{2.1f, 2.1f}}; const std::vector<Input> kTranslations = { Input{0.0f, 0.0f}, Input{3.14f, 1.19f}, Input{2.1f, 3.1f}, Input{100.0f, 200.0f}}; Scope scope_; }; TEST_F(ScaleAndTranslateGradTest, TestGrads) { const std::vector<std::string> kKernelTypes = {"lanczos1", "lanczos3", "lanczos5", "gaussian"}; constexpr int kOutHeight = 4; constexpr int kOutWidth = 6; const TensorShape kXShape = TensorShape({1, 2, 3, 1}); for (const Input scale : kScales) { for (const Input translation : kTranslations) { for (const std::string& kernel_type : kKernelTypes) { TestScaleAndTranslate<float, float, float>( kXShape, kOutHeight, kOutWidth, scale, translation, kernel_type, true); } } } } TEST_F(ScaleAndTranslateGradTest, TestGradsWithoutAntialias) { constexpr int kOutHeight = 4; constexpr int kOutWidth = 6; const TensorShape kXShape = TensorShape({1, 2, 3, 1}); for (const Input scale : kScales) { for (const Input translation : kTranslations) { TestScaleAndTranslate<float, float, float>(kXShape, kOutHeight, kOutWidth, scale, translation, "lanczos3", false); } } } TEST_F(ScaleAndTranslateGradTest, TestGradsWithSameShape) { const std::vector<std::string> kKernelTypes = {"lanczos3", "gaussian"}; constexpr int kOutHeight = 2; constexpr int kOutWidth = 3; const TensorShape kXShape = TensorShape({1, 2, 3, 1}); for (const Input scale : kScales) { for (const Input translation : kTranslations) { for (const std::string& kernel_type : kKernelTypes) { TestScaleAndTranslate<float, float, float>( kXShape, kOutHeight, kOutWidth, scale, translation, kernel_type, true); } } } } TEST_F(ScaleAndTranslateGradTest, TestGradsWithSmallerShape) { const std::vector<std::string> kKernelTypes = {"lanczos3", "gaussian"}; constexpr int kOutHeight = 2; constexpr int kOutWidth = 3; const TensorShape kXShape = TensorShape({1, 4, 6, 1}); for (const Input scale : kScales) { for (const Input translation : kTranslations) { for (const std::string& kernel_type : kKernelTypes) { TestScaleAndTranslate<float, float, float>( kXShape, kOutHeight, kOutWidth, scale, translation, kernel_type, true); } } } } class CropAndResizeGradTest : public ::testing::Test { protected: CropAndResizeGradTest() : scope_(Scope::NewRootScope()) {} template <typename T> Tensor MakeData(const TensorShape& data_shape) { DataType data_type = DataTypeToEnum<T>::v(); Tensor data(data_type, data_shape); auto data_flat = data.flat<T>(); for (int i = 0; i < data_flat.size(); ++i) { data_flat(i) = T(i); } return data; } template <typename T> void MakeOp(const Tensor& x_data, const Input& boxes, const Input& box_ind, const Input& crop_size, Output* x, Output* y) { *x = Const<T>(scope_, x_data); *y = CropAndResize(scope_, *x, boxes, box_ind, crop_size, CropAndResize::Method("bilinear")); TF_ASSERT_OK(scope_.status()); } template <typename X_T, typename Y_T, typename JAC_T> void TestCropAndResize() { TensorShape x_shape({1, 4, 2, 1}); Tensor x_data = MakeData<X_T>(x_shape); TensorShape box_shape({1, 4}); Tensor boxes = MakeData<X_T>(box_shape); Output x, y; MakeOp<X_T>(x_data, boxes, {0}, {1, 1}, &x, &y); JAC_T max_error; TF_ASSERT_OK((ComputeGradientError<X_T, Y_T, JAC_T>( scope_, x, x_data, y, {1, 1, 1, 1}, &max_error))); EXPECT_LT(max_error, 1e-3); } Scope scope_; }; TEST_F(CropAndResizeGradTest, TestCrop) { TestCropAndResize<float, float, float>(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/gradients/image_grad.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/gradients/image_grad_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
457750a6-4192-455a-a546-396945d39be3
cpp
google/quiche
http2_frame_builder
quiche/http2/test_tools/http2_frame_builder.cc
quiche/http2/test_tools/http2_frame_builder_test.cc
#include "quiche/http2/test_tools/http2_frame_builder.h" #ifdef WIN32 #include <winsock2.h> #else #include <arpa/inet.h> #include <netinet/in.h> #endif #include "absl/strings/str_cat.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { Http2FrameBuilder::Http2FrameBuilder(Http2FrameType type, uint8_t flags, uint32_t stream_id) { AppendUInt24(0); Append(type); AppendUInt8(flags); AppendUInt31(stream_id); } Http2FrameBuilder::Http2FrameBuilder(const Http2FrameHeader& v) { Append(v); } void Http2FrameBuilder::Append(absl::string_view s) { absl::StrAppend(&buffer_, s); } void Http2FrameBuilder::AppendBytes(const void* data, uint32_t num_bytes) { Append(absl::string_view(static_cast<const char*>(data), num_bytes)); } void Http2FrameBuilder::AppendZeroes(size_t num_zero_bytes) { char zero = 0; buffer_.append(num_zero_bytes, zero); } void Http2FrameBuilder::AppendUInt8(uint8_t value) { AppendBytes(&value, 1); } void Http2FrameBuilder::AppendUInt16(uint16_t value) { value = htons(value); AppendBytes(&value, 2); } void Http2FrameBuilder::AppendUInt24(uint32_t value) { EXPECT_EQ(value, value & 0xffffff); value = htonl(value); AppendBytes(reinterpret_cast<char*>(&value) + 1, 3); } void Http2FrameBuilder::AppendUInt31(uint32_t value) { uint32_t tmp = value & StreamIdMask(); EXPECT_EQ(value, value & StreamIdMask()) << "High-bit of uint32_t should be clear."; value = htonl(tmp); AppendBytes(&value, 4); } void Http2FrameBuilder::AppendUInt32(uint32_t value) { value = htonl(value); AppendBytes(&value, sizeof(value)); } void Http2FrameBuilder::Append(Http2ErrorCode error_code) { AppendUInt32(static_cast<uint32_t>(error_code)); } void Http2FrameBuilder::Append(Http2FrameType type) { AppendUInt8(static_cast<uint8_t>(type)); } void Http2FrameBuilder::Append(Http2SettingsParameter parameter) { AppendUInt16(static_cast<uint16_t>(parameter)); } void Http2FrameBuilder::Append(const Http2FrameHeader& v) { AppendUInt24(v.payload_length); Append(v.type); AppendUInt8(v.flags); AppendUInt31(v.stream_id); } void Http2FrameBuilder::Append(const Http2PriorityFields& v) { uint32_t tmp = v.stream_dependency & StreamIdMask(); EXPECT_EQ(tmp, v.stream_dependency); if (v.is_exclusive) { tmp |= 0x80000000; } AppendUInt32(tmp); ASSERT_LE(1u, v.weight); ASSERT_LE(v.weight, 256u); AppendUInt8(v.weight - 1); } void Http2FrameBuilder::Append(const Http2RstStreamFields& v) { Append(v.error_code); } void Http2FrameBuilder::Append(const Http2SettingFields& v) { Append(v.parameter); AppendUInt32(v.value); } void Http2FrameBuilder::Append(const Http2PushPromiseFields& v) { AppendUInt31(v.promised_stream_id); } void Http2FrameBuilder::Append(const Http2PingFields& v) { AppendBytes(v.opaque_bytes, sizeof Http2PingFields::opaque_bytes); } void Http2FrameBuilder::Append(const Http2GoAwayFields& v) { AppendUInt31(v.last_stream_id); Append(v.error_code); } void Http2FrameBuilder::Append(const Http2WindowUpdateFields& v) { EXPECT_NE(0u, v.window_size_increment) << "Increment must be non-zero."; AppendUInt31(v.window_size_increment); } void Http2FrameBuilder::Append(const Http2AltSvcFields& v) { AppendUInt16(v.origin_length); } void Http2FrameBuilder::Append(const Http2PriorityUpdateFields& v) { AppendUInt31(v.prioritized_stream_id); } void Http2FrameBuilder::WriteAt(absl::string_view s, size_t offset) { ASSERT_LE(offset, buffer_.size()); size_t len = offset + s.size(); if (len > buffer_.size()) { buffer_.resize(len); } for (size_t ndx = 0; ndx < s.size(); ++ndx) { buffer_[offset + ndx] = s[ndx]; } } void Http2FrameBuilder::WriteBytesAt(const void* data, uint32_t num_bytes, size_t offset) { WriteAt(absl::string_view(static_cast<const char*>(data), num_bytes), offset); } void Http2FrameBuilder::WriteUInt24At(uint32_t value, size_t offset) { ASSERT_LT(value, static_cast<uint32_t>(1 << 24)); value = htonl(value); WriteBytesAt(reinterpret_cast<char*>(&value) + 1, sizeof(value) - 1, offset); } void Http2FrameBuilder::SetPayloadLength(uint32_t payload_length) { WriteUInt24At(payload_length, 0); } size_t Http2FrameBuilder::SetPayloadLength() { EXPECT_GE(size(), Http2FrameHeader::EncodedSize()); uint32_t payload_length = size() - Http2FrameHeader::EncodedSize(); SetPayloadLength(payload_length); return payload_length; } } }
#include "quiche/http2/test_tools/http2_frame_builder.h" #include <string> #include "absl/strings/escaping.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { const char kHighBitSetMsg[] = "High-bit of uint32_t should be clear"; TEST(Http2FrameBuilderTest, Constructors) { { Http2FrameBuilder fb; EXPECT_EQ(0u, fb.size()); } { Http2FrameBuilder fb(Http2FrameType::DATA, 0, 123); EXPECT_EQ(9u, fb.size()); std::string expected_data; ASSERT_TRUE( absl::HexStringToBytes("000000" "00" "00" "0000007b", &expected_data)); EXPECT_EQ(expected_data, fb.buffer()); } { Http2FrameHeader header; header.payload_length = (1 << 24) - 1; header.type = Http2FrameType::HEADERS; header.flags = Http2FrameFlag::END_HEADERS; header.stream_id = StreamIdMask(); Http2FrameBuilder fb(header); EXPECT_EQ(9u, fb.size()); std::string expected_data; ASSERT_TRUE(absl::HexStringToBytes( "ffffff" "01" "04" "7fffffff", &expected_data)); EXPECT_EQ(expected_data, fb.buffer()); } } TEST(Http2FrameBuilderTest, SetPayloadLength) { Http2FrameBuilder fb(Http2FrameType::DATA, PADDED, 20000); EXPECT_EQ(9u, fb.size()); fb.AppendUInt8(50); EXPECT_EQ(10u, fb.size()); fb.Append("ten bytes."); EXPECT_EQ(20u, fb.size()); fb.AppendZeroes(50); EXPECT_EQ(70u, fb.size()); fb.SetPayloadLength(); EXPECT_EQ(70u, fb.size()); std::string expected_data; ASSERT_TRUE( absl::HexStringToBytes("00003d" "00" "08" "00004e20" "32" "74656e2062797465732e" "00000000000000000000" "00000000000000000000" "00000000000000000000" "00000000000000000000" "00000000000000000000", &expected_data)); EXPECT_EQ(expected_data, fb.buffer()); } TEST(Http2FrameBuilderTest, Settings) { Http2FrameBuilder fb(Http2FrameType::SETTINGS, 0, 0); Http2SettingFields sf; sf.parameter = Http2SettingsParameter::HEADER_TABLE_SIZE; sf.value = 1 << 12; fb.Append(sf); sf.parameter = Http2SettingsParameter::ENABLE_PUSH; sf.value = 0; fb.Append(sf); sf.parameter = Http2SettingsParameter::MAX_CONCURRENT_STREAMS; sf.value = ~0; fb.Append(sf); sf.parameter = Http2SettingsParameter::INITIAL_WINDOW_SIZE; sf.value = 1 << 16; fb.Append(sf); sf.parameter = Http2SettingsParameter::MAX_FRAME_SIZE; sf.value = 1 << 14; fb.Append(sf); sf.parameter = Http2SettingsParameter::MAX_HEADER_LIST_SIZE; sf.value = 1 << 10; fb.Append(sf); size_t payload_size = 6 * Http2SettingFields::EncodedSize(); EXPECT_EQ(Http2FrameHeader::EncodedSize() + payload_size, fb.size()); fb.SetPayloadLength(payload_size); std::string expected_data; ASSERT_TRUE( absl::HexStringToBytes("000024" "04" "00" "00000000" "0001" "00001000" "0002" "00000000" "0003" "ffffffff" "0004" "00010000" "0005" "00004000" "0006" "00000400", &expected_data)); EXPECT_EQ(expected_data, fb.buffer()); } TEST(Http2FrameBuilderTest, EnhanceYourCalm) { std::string expected_data; ASSERT_TRUE(absl::HexStringToBytes("0000000b", &expected_data)); { Http2FrameBuilder fb; fb.Append(Http2ErrorCode::ENHANCE_YOUR_CALM); EXPECT_EQ(expected_data, fb.buffer()); } { Http2FrameBuilder fb; Http2RstStreamFields rsp; rsp.error_code = Http2ErrorCode::ENHANCE_YOUR_CALM; fb.Append(rsp); EXPECT_EQ(expected_data, fb.buffer()); } } TEST(Http2FrameBuilderTest, PushPromise) { std::string expected_data; ASSERT_TRUE(absl::HexStringToBytes("7fffffff", &expected_data)); { Http2FrameBuilder fb; fb.Append(Http2PushPromiseFields{0x7fffffff}); EXPECT_EQ(expected_data, fb.buffer()); } { Http2FrameBuilder fb; EXPECT_NONFATAL_FAILURE(fb.Append(Http2PushPromiseFields{0xffffffff}), kHighBitSetMsg); EXPECT_EQ(expected_data, fb.buffer()); } } TEST(Http2FrameBuilderTest, Ping) { Http2FrameBuilder fb; Http2PingFields ping{"8 bytes"}; fb.Append(ping); const absl::string_view kData{"8 bytes\0", 8}; EXPECT_EQ(kData.size(), Http2PingFields::EncodedSize()); EXPECT_EQ(kData, fb.buffer()); } TEST(Http2FrameBuilderTest, GoAway) { std::string expected_data; ASSERT_TRUE( absl::HexStringToBytes("12345678" "00000001", &expected_data)); EXPECT_EQ(expected_data.size(), Http2GoAwayFields::EncodedSize()); { Http2FrameBuilder fb; Http2GoAwayFields ga(0x12345678, Http2ErrorCode::PROTOCOL_ERROR); fb.Append(ga); EXPECT_EQ(expected_data, fb.buffer()); } { Http2FrameBuilder fb; Http2GoAwayFields ga(0x92345678, Http2ErrorCode::PROTOCOL_ERROR); EXPECT_NONFATAL_FAILURE(fb.Append(ga), kHighBitSetMsg); EXPECT_EQ(expected_data, fb.buffer()); } } TEST(Http2FrameBuilderTest, WindowUpdate) { Http2FrameBuilder fb; fb.Append(Http2WindowUpdateFields{123456}); EXPECT_NONFATAL_FAILURE(fb.Append(Http2WindowUpdateFields{0x80000001}), kHighBitSetMsg); EXPECT_NONFATAL_FAILURE(fb.Append(Http2WindowUpdateFields{0}), "non-zero"); std::string expected_data; ASSERT_TRUE( absl::HexStringToBytes("0001e240" "00000001" "00000000", &expected_data)); EXPECT_EQ(expected_data.size(), 3 * Http2WindowUpdateFields::EncodedSize()); EXPECT_EQ(expected_data, fb.buffer()); } TEST(Http2FrameBuilderTest, AltSvc) { Http2FrameBuilder fb; fb.Append(Http2AltSvcFields{99}); fb.Append(Http2AltSvcFields{0}); std::string expected_data; ASSERT_TRUE( absl::HexStringToBytes("0063" "0000", &expected_data)); EXPECT_EQ(expected_data.size(), 2 * Http2AltSvcFields::EncodedSize()); EXPECT_EQ(expected_data, fb.buffer()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/test_tools/http2_frame_builder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/test_tools/http2_frame_builder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
547914af-97d2-4cfc-bdfe-0b2d0b6bf109
cpp
google/quiche
hpack_huffman_decoder
quiche/http2/hpack/huffman/hpack_huffman_decoder.cc
quiche/http2/hpack/huffman/hpack_huffman_decoder_test.cc
#include "quiche/http2/hpack/huffman/hpack_huffman_decoder.h" #include <bitset> #include <limits> #include <ostream> #include <sstream> #include <string> #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { namespace { typedef uint32_t HuffmanCode; typedef uint16_t HuffmanCodeBitCount; typedef std::bitset<32> HuffmanCodeBitSet; typedef std::bitset<64> HuffmanAccumulatorBitSet; static constexpr HuffmanCodeBitCount kMinCodeBitCount = 5; static constexpr HuffmanCodeBitCount kMaxCodeBitCount = 30; static constexpr HuffmanCodeBitCount kHuffmanCodeBitCount = std::numeric_limits<HuffmanCode>::digits; static_assert(std::numeric_limits<HuffmanCode>::digits >= kMaxCodeBitCount, "HuffmanCode isn't big enough."); static_assert(std::numeric_limits<HuffmanAccumulator>::digits >= kMaxCodeBitCount, "HuffmanAccumulator isn't big enough."); static constexpr HuffmanAccumulatorBitCount kHuffmanAccumulatorBitCount = std::numeric_limits<HuffmanAccumulator>::digits; static constexpr HuffmanAccumulatorBitCount kExtraAccumulatorBitCount = kHuffmanAccumulatorBitCount - kHuffmanCodeBitCount; struct PrefixInfo { uint32_t DecodeToCanonical(HuffmanCode bits) const { HuffmanCode ordinal_in_length = ((bits - first_code) >> (kHuffmanCodeBitCount - code_length)); return first_canonical + ordinal_in_length; } const HuffmanCode first_code; const uint16_t code_length; const uint16_t first_canonical; }; inline std::ostream& operator<<(std::ostream& out, const PrefixInfo& v) { return out << "{first_code: " << HuffmanCodeBitSet(v.first_code) << ", code_length: " << v.code_length << ", first_canonical: " << v.first_canonical << "}"; } PrefixInfo PrefixToInfo(HuffmanCode value) { if (value < 0b10111000000000000000000000000000) { if (value < 0b01010000000000000000000000000000) { return {0b00000000000000000000000000000000, 5, 0}; } else { return {0b01010000000000000000000000000000, 6, 10}; } } else { if (value < 0b11111110000000000000000000000000) { if (value < 0b11111000000000000000000000000000) { return {0b10111000000000000000000000000000, 7, 36}; } else { return {0b11111000000000000000000000000000, 8, 68}; } } else { if (value < 0b11111111110000000000000000000000) { if (value < 0b11111111101000000000000000000000) { if (value < 0b11111111010000000000000000000000) { return {0b11111110000000000000000000000000, 10, 74}; } else { return {0b11111111010000000000000000000000, 11, 79}; } } else { return {0b11111111101000000000000000000000, 12, 82}; } } else { if (value < 0b11111111111111100000000000000000) { if (value < 0b11111111111110000000000000000000) { if (value < 0b11111111111100000000000000000000) { return {0b11111111110000000000000000000000, 13, 84}; } else { return {0b11111111111100000000000000000000, 14, 90}; } } else { return {0b11111111111110000000000000000000, 15, 92}; } } else { if (value < 0b11111111111111110100100000000000) { if (value < 0b11111111111111101110000000000000) { if (value < 0b11111111111111100110000000000000) { return {0b11111111111111100000000000000000, 19, 95}; } else { return {0b11111111111111100110000000000000, 20, 98}; } } else { return {0b11111111111111101110000000000000, 21, 106}; } } else { if (value < 0b11111111111111111110101000000000) { if (value < 0b11111111111111111011000000000000) { return {0b11111111111111110100100000000000, 22, 119}; } else { return {0b11111111111111111011000000000000, 23, 145}; } } else { if (value < 0b11111111111111111111101111000000) { if (value < 0b11111111111111111111100000000000) { if (value < 0b11111111111111111111011000000000) { return {0b11111111111111111110101000000000, 24, 174}; } else { return {0b11111111111111111111011000000000, 25, 186}; } } else { return {0b11111111111111111111100000000000, 26, 190}; } } else { if (value < 0b11111111111111111111111111110000) { if (value < 0b11111111111111111111111000100000) { return {0b11111111111111111111101111000000, 27, 205}; } else { return {0b11111111111111111111111000100000, 28, 224}; } } else { return {0b11111111111111111111111111110000, 30, 253}; } } } } } } } } } constexpr unsigned char kCanonicalToSymbol[] = { '0', '1', '2', 'a', 'c', 'e', 'i', 'o', 's', 't', 0x20, '%', '-', '.', '/', '3', '4', '5', '6', '7', '8', '9', '=', 'A', '_', 'b', 'd', 'f', 'g', 'h', 'l', 'm', 'n', 'p', 'r', 'u', ':', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'Y', 'j', 'k', 'q', 'v', 'w', 'x', 'y', 'z', '&', '*', ',', ';', 'X', 'Z', '!', '\"', '(', ')', '?', '\'', '+', '|', '#', '>', 0x00, '$', '@', '[', ']', '~', '^', '}', '<', '`', '{', '\\', 0xc3, 0xd0, 0x80, 0x82, 0x83, 0xa2, 0xb8, 0xc2, 0xe0, 0xe2, 0x99, 0xa1, 0xa7, 0xac, 0xb0, 0xb1, 0xb3, 0xd1, 0xd8, 0xd9, 0xe3, 0xe5, 0xe6, 0x81, 0x84, 0x85, 0x86, 0x88, 0x92, 0x9a, 0x9c, 0xa0, 0xa3, 0xa4, 0xa9, 0xaa, 0xad, 0xb2, 0xb5, 0xb9, 0xba, 0xbb, 0xbd, 0xbe, 0xc4, 0xc6, 0xe4, 0xe8, 0xe9, 0x01, 0x87, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8f, 0x93, 0x95, 0x96, 0x97, 0x98, 0x9b, 0x9d, 0x9e, 0xa5, 0xa6, 0xa8, 0xae, 0xaf, 0xb4, 0xb6, 0xb7, 0xbc, 0xbf, 0xc5, 0xe7, 0xef, 0x09, 0x8e, 0x90, 0x91, 0x94, 0x9f, 0xab, 0xce, 0xd7, 0xe1, 0xec, 0xed, 0xc7, 0xcf, 0xea, 0xeb, 0xc0, 0xc1, 0xc8, 0xc9, 0xca, 0xcd, 0xd2, 0xd5, 0xda, 0xdb, 0xee, 0xf0, 0xf2, 0xf3, 0xff, 0xcb, 0xcc, 0xd3, 0xd4, 0xd6, 0xdd, 0xde, 0xdf, 0xf1, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x0b, 0x0c, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x7f, 0xdc, 0xf9, 0x0a, 0x0d, 0x16, }; constexpr size_t kShortCodeTableSize = 124; struct ShortCodeInfo { uint8_t symbol; uint8_t length; } kShortCodeTable[kShortCodeTableSize] = { {0x30, 5}, {0x30, 5}, {0x30, 5}, {0x30, 5}, {0x31, 5}, {0x31, 5}, {0x31, 5}, {0x31, 5}, {0x32, 5}, {0x32, 5}, {0x32, 5}, {0x32, 5}, {0x61, 5}, {0x61, 5}, {0x61, 5}, {0x61, 5}, {0x63, 5}, {0x63, 5}, {0x63, 5}, {0x63, 5}, {0x65, 5}, {0x65, 5}, {0x65, 5}, {0x65, 5}, {0x69, 5}, {0x69, 5}, {0x69, 5}, {0x69, 5}, {0x6f, 5}, {0x6f, 5}, {0x6f, 5}, {0x6f, 5}, {0x73, 5}, {0x73, 5}, {0x73, 5}, {0x73, 5}, {0x74, 5}, {0x74, 5}, {0x74, 5}, {0x74, 5}, {0x20, 6}, {0x20, 6}, {0x25, 6}, {0x25, 6}, {0x2d, 6}, {0x2d, 6}, {0x2e, 6}, {0x2e, 6}, {0x2f, 6}, {0x2f, 6}, {0x33, 6}, {0x33, 6}, {0x34, 6}, {0x34, 6}, {0x35, 6}, {0x35, 6}, {0x36, 6}, {0x36, 6}, {0x37, 6}, {0x37, 6}, {0x38, 6}, {0x38, 6}, {0x39, 6}, {0x39, 6}, {0x3d, 6}, {0x3d, 6}, {0x41, 6}, {0x41, 6}, {0x5f, 6}, {0x5f, 6}, {0x62, 6}, {0x62, 6}, {0x64, 6}, {0x64, 6}, {0x66, 6}, {0x66, 6}, {0x67, 6}, {0x67, 6}, {0x68, 6}, {0x68, 6}, {0x6c, 6}, {0x6c, 6}, {0x6d, 6}, {0x6d, 6}, {0x6e, 6}, {0x6e, 6}, {0x70, 6}, {0x70, 6}, {0x72, 6}, {0x72, 6}, {0x75, 6}, {0x75, 6}, {0x3a, 7}, {0x42, 7}, {0x43, 7}, {0x44, 7}, {0x45, 7}, {0x46, 7}, {0x47, 7}, {0x48, 7}, {0x49, 7}, {0x4a, 7}, {0x4b, 7}, {0x4c, 7}, {0x4d, 7}, {0x4e, 7}, {0x4f, 7}, {0x50, 7}, {0x51, 7}, {0x52, 7}, {0x53, 7}, {0x54, 7}, {0x55, 7}, {0x56, 7}, {0x57, 7}, {0x59, 7}, {0x6a, 7}, {0x6b, 7}, {0x71, 7}, {0x76, 7}, {0x77, 7}, {0x78, 7}, {0x79, 7}, {0x7a, 7}, }; } HuffmanBitBuffer::HuffmanBitBuffer() { Reset(); } void HuffmanBitBuffer::Reset() { accumulator_ = 0; count_ = 0; } size_t HuffmanBitBuffer::AppendBytes(absl::string_view input) { HuffmanAccumulatorBitCount free_cnt = free_count(); size_t bytes_available = input.size(); if (free_cnt < 8 || bytes_available == 0) { return 0; } size_t bytes_used = 0; auto* ptr = reinterpret_cast<const uint8_t*>(input.data()); do { auto b = static_cast<HuffmanAccumulator>(*ptr++); free_cnt -= 8; accumulator_ |= (b << free_cnt); ++bytes_used; } while (free_cnt >= 8 && bytes_used < bytes_available); count_ += (bytes_used * 8); return bytes_used; } HuffmanAccumulatorBitCount HuffmanBitBuffer::free_count() const { return kHuffmanAccumulatorBitCount - count_; } void HuffmanBitBuffer::ConsumeBits(HuffmanAccumulatorBitCount code_length) { QUICHE_DCHECK_LE(code_length, count_); accumulator_ <<= code_length; count_ -= code_length; } bool HuffmanBitBuffer::InputProperlyTerminated() const { auto cnt = count(); if (cnt < 8) { if (cnt == 0) { return true; } HuffmanAccumulator expected = ~(~HuffmanAccumulator() >> cnt); QUICHE_DCHECK_EQ(accumulator_ & ~expected, 0u) << "\n expected: " << HuffmanAccumulatorBitSet(expected) << "\n " << *this; return accumulator_ == expected; } return false; } std::string HuffmanBitBuffer::DebugString() const { std::stringstream ss; ss << "{accumulator: " << HuffmanAccumulatorBitSet(accumulator_) << "; count: " << count_ << "}"; return ss.str(); } HpackHuffmanDecoder::HpackHuffmanDecoder() = default; HpackHuffmanDecoder::~HpackHuffmanDecoder() = default; bool HpackHuffmanDecoder::Decode(absl::string_view input, std::string* output) { QUICHE_DVLOG(1) << "HpackHuffmanDecoder::Decode"; input.remove_prefix(bit_buffer_.AppendBytes(input)); while (true) { QUICHE_DVLOG(3) << "Enter Decode Loop, bit_buffer_: " << bit_buffer_; if (bit_buffer_.count() >= 7) { uint8_t short_code = bit_buffer_.value() >> (kHuffmanAccumulatorBitCount - 7); QUICHE_DCHECK_LT(short_code, 128); if (short_code < kShortCodeTableSize) { ShortCodeInfo info = kShortCodeTable[short_code]; bit_buffer_.ConsumeBits(info.length); output->push_back(static_cast<char>(info.symbol)); continue; } } else { size_t byte_count = bit_buffer_.AppendBytes(input); if (byte_count > 0) { input.remove_prefix(byte_count); continue; } } HuffmanCode code_prefix = bit_buffer_.value() >> kExtraAccumulatorBitCount; QUICHE_DVLOG(3) << "code_prefix: " << HuffmanCodeBitSet(code_prefix); PrefixInfo prefix_info = PrefixToInfo(code_prefix); QUICHE_DVLOG(3) << "prefix_info: " << prefix_info; QUICHE_DCHECK_LE(kMinCodeBitCount, prefix_info.code_length); QUICHE_DCHECK_LE(prefix_info.code_length, kMaxCodeBitCount); if (prefix_info.code_length <= bit_buffer_.count()) { uint32_t canonical = prefix_info.DecodeToCanonical(code_prefix); if (canonical < 256) { char c = kCanonicalToSymbol[canonical]; output->push_back(c); bit_buffer_.ConsumeBits(prefix_info.code_length); continue; } QUICHE_DLOG(ERROR) << "EOS explicitly encoded!\n " << bit_buffer_ << "\n " << prefix_info; return false; } size_t byte_count = bit_buffer_.AppendBytes(input); if (byte_count == 0) { QUICHE_DCHECK_EQ(input.size(), 0u); return true; } input.remove_prefix(byte_count); } } std::string HpackHuffmanDecoder::DebugString() const { return bit_buffer_.DebugString(); } }
#include "quiche/http2/hpack/huffman/hpack_huffman_decoder.h" #include <cstddef> #include <iostream> #include <string> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { TEST(HuffmanBitBufferTest, Reset) { HuffmanBitBuffer bb; EXPECT_TRUE(bb.IsEmpty()); EXPECT_TRUE(bb.InputProperlyTerminated()); EXPECT_EQ(bb.count(), 0u); EXPECT_EQ(bb.free_count(), 64u); EXPECT_EQ(bb.value(), 0u); } TEST(HuffmanBitBufferTest, AppendBytesAligned) { std::string s; s.push_back('\x11'); s.push_back('\x22'); s.push_back('\x33'); absl::string_view sp(s); HuffmanBitBuffer bb; sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_TRUE(sp.empty()); EXPECT_FALSE(bb.IsEmpty()) << bb; EXPECT_FALSE(bb.InputProperlyTerminated()); EXPECT_EQ(bb.count(), 24u) << bb; EXPECT_EQ(bb.free_count(), 40u) << bb; EXPECT_EQ(bb.value(), HuffmanAccumulator(0x112233) << 40) << bb; s.clear(); s.push_back('\x44'); sp = s; sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_TRUE(sp.empty()); EXPECT_EQ(bb.count(), 32u) << bb; EXPECT_EQ(bb.free_count(), 32u) << bb; EXPECT_EQ(bb.value(), HuffmanAccumulator(0x11223344) << 32) << bb; s.clear(); s.push_back('\x55'); s.push_back('\x66'); s.push_back('\x77'); s.push_back('\x88'); s.push_back('\x99'); sp = s; sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_EQ(sp.size(), 1u); EXPECT_EQ('\x99', sp[0]); EXPECT_EQ(bb.count(), 64u) << bb; EXPECT_EQ(bb.free_count(), 0u) << bb; EXPECT_EQ(bb.value(), HuffmanAccumulator(0x1122334455667788LL)) << bb; sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_EQ(sp.size(), 1u); EXPECT_EQ('\x99', sp[0]); EXPECT_EQ(bb.count(), 64u) << bb; EXPECT_EQ(bb.free_count(), 0u) << bb; EXPECT_EQ(bb.value(), HuffmanAccumulator(0x1122334455667788LL)) << bb; } TEST(HuffmanBitBufferTest, ConsumeBits) { std::string s; s.push_back('\x11'); s.push_back('\x22'); s.push_back('\x33'); absl::string_view sp(s); HuffmanBitBuffer bb; sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_TRUE(sp.empty()); bb.ConsumeBits(1); EXPECT_EQ(bb.count(), 23u) << bb; EXPECT_EQ(bb.free_count(), 41u) << bb; EXPECT_EQ(bb.value(), HuffmanAccumulator(0x112233) << 41) << bb; bb.ConsumeBits(20); EXPECT_EQ(bb.count(), 3u) << bb; EXPECT_EQ(bb.free_count(), 61u) << bb; EXPECT_EQ(bb.value(), HuffmanAccumulator(0x3) << 61) << bb; } TEST(HuffmanBitBufferTest, AppendBytesUnaligned) { std::string s; s.push_back('\x11'); s.push_back('\x22'); s.push_back('\x33'); s.push_back('\x44'); s.push_back('\x55'); s.push_back('\x66'); s.push_back('\x77'); s.push_back('\x88'); s.push_back('\x99'); s.push_back('\xaa'); s.push_back('\xbb'); s.push_back('\xcc'); s.push_back('\xdd'); absl::string_view sp(s); HuffmanBitBuffer bb; sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_EQ(sp.size(), 5u); EXPECT_FALSE(bb.InputProperlyTerminated()); bb.ConsumeBits(15); EXPECT_EQ(bb.count(), 49u) << bb; EXPECT_EQ(bb.free_count(), 15u) << bb; HuffmanAccumulator expected(0x1122334455667788); expected <<= 15; EXPECT_EQ(bb.value(), expected); sp.remove_prefix(bb.AppendBytes(sp)); EXPECT_EQ(sp.size(), 4u); EXPECT_EQ(bb.count(), 57u) << bb; EXPECT_EQ(bb.free_count(), 7u) << bb; expected |= (HuffmanAccumulator(0x99) << 7); EXPECT_EQ(bb.value(), expected) << bb << std::hex << "\n actual: " << bb.value() << "\n expected: " << expected; } class HpackHuffmanDecoderTest : public RandomDecoderTest { protected: HpackHuffmanDecoderTest() { stop_decode_on_done_ = false; } DecodeStatus StartDecoding(DecodeBuffer* b) override { input_bytes_seen_ = 0; output_buffer_.clear(); decoder_.Reset(); return ResumeDecoding(b); } DecodeStatus ResumeDecoding(DecodeBuffer* b) override { input_bytes_seen_ += b->Remaining(); absl::string_view sp(b->cursor(), b->Remaining()); if (decoder_.Decode(sp, &output_buffer_)) { b->AdvanceCursor(b->Remaining()); EXPECT_LE(input_bytes_seen_, input_bytes_expected_); if (input_bytes_expected_ == input_bytes_seen_) { if (decoder_.InputProperlyTerminated()) { return DecodeStatus::kDecodeDone; } else { return DecodeStatus::kDecodeError; } } return DecodeStatus::kDecodeInProgress; } return DecodeStatus::kDecodeError; } HpackHuffmanDecoder decoder_; std::string output_buffer_; size_t input_bytes_seen_; size_t input_bytes_expected_; }; TEST_F(HpackHuffmanDecoderTest, SpecRequestExamples) { HpackHuffmanDecoder decoder; std::string test_table[] = { "f1e3c2e5f23a6ba0ab90f4ff", "www.example.com", "a8eb10649cbf", "no-cache", "25a849e95ba97d7f", "custom-key", "25a849e95bb8e8b4bf", "custom-value", }; for (size_t i = 0; i != ABSL_ARRAYSIZE(test_table); i += 2) { std::string huffman_encoded; ASSERT_TRUE(absl::HexStringToBytes(test_table[i], &huffman_encoded)); const std::string& plain_string(test_table[i + 1]); std::string buffer; decoder.Reset(); EXPECT_TRUE(decoder.Decode(huffman_encoded, &buffer)) << decoder; EXPECT_TRUE(decoder.InputProperlyTerminated()) << decoder; EXPECT_EQ(buffer, plain_string); } } TEST_F(HpackHuffmanDecoderTest, SpecResponseExamples) { HpackHuffmanDecoder decoder; std::string test_table[] = { "6402", "302", "aec3771a4b", "private", "d07abe941054d444a8200595040b8166e082a62d1bff", "Mon, 21 Oct 2013 20:13:21 GMT", "9d29ad171863c78f0b97c8e9ae82ae43d3", "https: "94e7821dd7f2e6c7b335dfdfcd5b3960d5af27087f3672c1ab270fb5291f9587316065c0" "03ed4ee5b1063d5007", "foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1", }; for (size_t i = 0; i != ABSL_ARRAYSIZE(test_table); i += 2) { std::string huffman_encoded; ASSERT_TRUE(absl::HexStringToBytes(test_table[i], &huffman_encoded)); const std::string& plain_string(test_table[i + 1]); std::string buffer; decoder.Reset(); EXPECT_TRUE(decoder.Decode(huffman_encoded, &buffer)) << decoder; EXPECT_TRUE(decoder.InputProperlyTerminated()) << decoder; EXPECT_EQ(buffer, plain_string); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/huffman/hpack_huffman_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/huffman/hpack_huffman_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
92726b70-ffc0-4529-89cd-67ffa266f16e
cpp
google/tensorstore
json
tensorstore/index_space/json.cc
tensorstore/index_space/json_test.cc
#include "tensorstore/index_space/json.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <optional> #include <string> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/container/inlined_vector.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/json/array.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/array.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; using ::tensorstore::internal_index_space::BuilderFlags; using ::tensorstore::internal_index_space::OutputIndexMapInitializer; using ::tensorstore::internal_index_space::TransformRep; struct DomainJsonKeys { const char* rank; const char* inclusive_min; const char* inclusive_max; const char* shape; const char* exclusive_max; const char* labels; }; constexpr DomainJsonKeys kIndexDomainJsonKeys = { "rank", "inclusive_min", "inclusive_max", "shape", "exclusive_max", "labels", }; constexpr DomainJsonKeys kIndexTransformJsonKeys = { "input_rank", "input_inclusive_min", "input_inclusive_max", "input_shape", "input_exclusive_max", "input_labels", }; template <typename ElementBinder> struct ImplicitPairBinder { ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementBinder element_binder; template <typename Options, typename Obj> absl::Status operator()(std::true_type is_loading, const Options& options, Obj* obj, ::nlohmann::json* j) const { auto&& [element, is_implicit] = *obj; if (const auto* k = j->get_ptr<const ::nlohmann::json::array_t*>()) { if (k->size() != 1) { return internal_json::ExpectedError( *k, "array of size 1 indicating an implicit value"); } is_implicit = true; return element_binder(is_loading, options, &element, &(*k)[0]); } else { is_implicit = false; return element_binder(is_loading, options, &element, j); } } template <typename Options, typename Obj> absl::Status operator()(std::false_type is_loading, const Options& options, const Obj* obj, ::nlohmann::json* j) const { auto&& [element, is_implicit] = *obj; if (is_implicit) { ::nlohmann::json::array_t k(1); TENSORSTORE_RETURN_IF_ERROR( element_binder(is_loading, options, &element, &k[0])); *j = std::move(k); } else { return element_binder(is_loading, options, &element, j); } return absl::OkStatus(); } }; template <typename RankProjection, typename ValuesProjection, typename ImplicitProjection, typename ElementBinder> struct ImplicitArrayBinderImpl { RankProjection rank_ptr; ValuesProjection values_ptr; ImplicitProjection implicit_ptr; ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementBinder element_binder; template <typename Loading, typename Options, typename Obj> absl::Status operator()(Loading is_loading, const Options& options, Obj* obj, ::nlohmann::json* j) const { return jb::OptionalArray( [this](const auto& obj) { return std::invoke(values_ptr, obj).size(); }, [this](auto& obj, size_t size) { TENSORSTORE_RETURN_IF_ERROR(ValidateRank(size)); auto&& rank = std::invoke(rank_ptr, obj); if (rank == dynamic_rank) { rank = size; } else if (rank != static_cast<DimensionIndex>(size)) { return internal_json::JsonValidateArrayLength(size, rank); } std::invoke(values_ptr, obj).resize(size); return absl::OkStatus(); }, [this](auto& obj, size_t i) { auto& value = std::invoke(values_ptr, obj)[i]; auto implicit_value = std::invoke(implicit_ptr, obj)[i]; return std::pair<decltype(value), decltype(implicit_value)>( value, implicit_value); }, element_binder)(is_loading, options, obj, j); } }; template <typename T> using InlinedVector = absl::InlinedVector<T, internal::kNumInlinedDims>; struct TransformParserOutput { Index offset = 0; Index stride = 1; std::optional<DimensionIndex> input_dimension; IndexInterval index_array_bounds; SharedArray<const Index, dynamic_rank> index_array; }; struct TransformParserData { IntervalForm interval_form = IntervalForm::half_open; BuilderFlags flags{0}; DimensionIndex rank = dynamic_rank; InlinedVector<Index> lower_bounds; InlinedVector<Index> upper_bounds; DimensionSet implicit_lower_bounds; DimensionSet implicit_upper_bounds; InlinedVector<std::string> labels; std::optional<InlinedVector<TransformParserOutput>> output; Result<TransformRep::Ptr<>> Finalize(); }; constexpr auto TransformParserOutputBinder = jb::Object( jb::Member("offset", jb::Projection(&TransformParserOutput::offset, jb::DefaultValue([](Index* o) { *o = 0; }))), jb::AtMostOne("input_dimension", "index_array"), jb::Member("input_dimension", jb::Projection(&TransformParserOutput::input_dimension, jb::Optional())), jb::OptionalMember( "index_array", jb::Projection(&TransformParserOutput::index_array, jb::NestedArray())), jb::OptionalMember( "index_array_bounds", jb::Sequence(jb::Initialize([](auto* obj) { if (!obj->index_array.data()) { return absl::InvalidArgumentError( "\"index_array_bounds\" is only valid with " "\"index_array\""); } return absl::OkStatus(); }), jb::Projection(&TransformParserOutput::index_array_bounds, jb::DefaultValue( [](auto* obj) { *obj = IndexInterval::Infinite(); }, jb::IndexIntervalBinder)))), jb::OptionalMember( "stride", jb::Sequence( jb::Initialize([](auto* obj) { if (!obj->input_dimension && !obj->index_array.data()) { return absl::InvalidArgumentError( "Either \"input_dimension\" or \"index_array\" must be " "specified in " "conjunction with \"stride\""); } return absl::OkStatus(); }), jb::Projection(&TransformParserOutput::stride, jb::DefaultValue([](Index* s) { *s = 1; })))) ); template <typename T, typename ElementBinder> constexpr auto LowerBoundsBinder(ElementBinder element_binder) { using Binder = ImplicitPairBinder<absl::remove_cvref_t<ElementBinder>>; auto rank_ptr = &T::rank; auto value_ptr = &T::lower_bounds; auto implicit_ptr = &T::implicit_lower_bounds; return ImplicitArrayBinderImpl<decltype(rank_ptr), decltype(value_ptr), decltype(implicit_ptr), Binder>{ std::move(rank_ptr), std::move(value_ptr), std::move(implicit_ptr), Binder{std::move(element_binder)}}; } template <typename T, typename ElementBinder> constexpr auto UpperBoundsBinder(ElementBinder element_binder) { using Binder = ImplicitPairBinder<absl::remove_cvref_t<ElementBinder>>; auto rank_ptr = &T::rank; auto value_ptr = &T::upper_bounds; auto implicit_ptr = &T::implicit_upper_bounds; return ImplicitArrayBinderImpl<decltype(rank_ptr), decltype(value_ptr), decltype(implicit_ptr), Binder>{ std::move(rank_ptr), std::move(value_ptr), std::move(implicit_ptr), Binder{std::move(element_binder)}}; } constexpr auto IndexTransformParser( bool is_transform, DimensionIndex input_rank_constraint = dynamic_rank) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json::object_t* j) -> absl::Status { using T = TransformParserData; auto* keys = is_transform ? &kIndexTransformJsonKeys : &kIndexDomainJsonKeys; DimensionIndex* rank = is_loading ? &obj->rank : nullptr; return jb::Sequence( jb::AtLeastOne(keys->rank, keys->inclusive_min, keys->shape, keys->inclusive_max, keys->exclusive_max, keys->labels), [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json::object_t* j) -> absl::Status { if constexpr (!is_loading) { if (j->count(keys->inclusive_min) || j->count(keys->exclusive_max) || j->count(keys->labels)) { return absl::OkStatus(); } } return jb::Member( keys->rank, jb::Projection(&T::rank, jb::DefaultValue( [](DimensionIndex* o) { *o = dynamic_rank; }, jb::Integer<DimensionIndex>(0, kMaxRank))) )(is_loading, options, obj, j); }, jb::OptionalMember(keys->inclusive_min, jb::Sequence(LowerBoundsBinder<T>( jb::BoundsBinder<-kInfIndex, 0>()), jb::Initialize([](auto* obj) { obj->flags |= (BuilderFlags::kSetLower | BuilderFlags::kSetImplicitLower); }))), jb::AtMostOne(keys->shape, keys->inclusive_max, keys->exclusive_max), jb::OptionalMember( keys->shape, jb::LoadSave(jb::Sequence( UpperBoundsBinder<T>(jb::BoundsBinder<0, +kInfSize>()), jb::Initialize([](auto* obj) { obj->interval_form = IntervalForm::sized; obj->flags |= (BuilderFlags::kSetUpper | BuilderFlags::kSetImplicitUpper); })))), jb::OptionalMember( keys->inclusive_max, jb::LoadSave(jb::Sequence( UpperBoundsBinder<T>(jb::BoundsBinder<0, +kInfIndex>()), jb::Initialize([](auto* obj) { obj->interval_form = IntervalForm::closed; obj->flags |= (BuilderFlags::kSetUpper | BuilderFlags::kSetImplicitUpper); })))), jb::OptionalMember( keys->exclusive_max, jb::Sequence( UpperBoundsBinder<T>(jb::BoundsBinder<0, +kInfIndex + 1>()), jb::Initialize([](auto* obj) { obj->interval_form = IntervalForm::half_open; obj->flags |= (BuilderFlags::kSetUpper | BuilderFlags::kSetImplicitUpper); }))), jb::OptionalMember( keys->labels, jb::Projection(&T::labels, jb::DimensionLabelVector(rank))), jb::Initialize([=](auto* obj) { if (!RankConstraint::EqualOrUnspecified(input_rank_constraint, obj->rank)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected ", keys->rank, " to be ", input_rank_constraint, ", but is: ", obj->rank)); } return absl::OkStatus(); }) )(is_loading, options, obj, j); }; } constexpr auto IndexTransformOutputParser( DimensionIndex output_rank_constraint = dynamic_rank) { return [=](auto is_loading, const auto& options, auto* obj, ::nlohmann::json::object_t* j) -> absl::Status { return jb::Sequence( jb::Member("output", jb::Projection(&TransformParserData::output, jb::Optional(jb::Array( TransformParserOutputBinder)))), jb::Initialize([=](auto* obj) { if (obj->output) { if (output_rank_constraint != dynamic_rank && obj->output->size() != output_rank_constraint) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected output rank to be ", output_rank_constraint, ", but is: ", obj->output->size())); } return absl::OkStatus(); } const DimensionIndex rank = obj->rank; if (output_rank_constraint != dynamic_rank && output_rank_constraint != rank) { return absl::InvalidArgumentError("Missing \"output\" member"); } return absl::OkStatus(); }) )(is_loading, options, obj, j); }; } Result<TransformRep::Ptr<>> TransformParserData::Finalize() { if (!output) { output.emplace(rank); for (DimensionIndex i = 0; i < rank; ++i) { (*output)[i].input_dimension = i; } } const DimensionIndex output_rank = output->size(); auto transform = TransformRep::Allocate(rank, output_rank); transform->input_rank = rank; transform->output_rank = output_rank; if ((flags & BuilderFlags::kSetLower) != BuilderFlags::kDefault) { std::copy(lower_bounds.begin(), lower_bounds.end(), transform->input_origin().begin()); transform->implicit_lower_bounds = implicit_lower_bounds; } if ((flags & BuilderFlags::kSetUpper) != BuilderFlags::kDefault) { std::copy(upper_bounds.begin(), upper_bounds.end(), transform->input_shape().begin()); transform->implicit_upper_bounds = implicit_upper_bounds; } if (!labels.empty()) { std::copy(labels.begin(), labels.end(), transform->input_labels().begin()); } InlinedVector<OutputIndexMapInitializer> output_maps; output_maps.reserve(output_rank); auto maps = transform->output_index_maps(); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& out = (*output)[output_dim]; auto& map = maps[output_dim]; map.offset() = out.offset; map.stride() = out.stride; output_maps.emplace_back( out.input_dimension ? OutputIndexMapInitializer(out.input_dimension.value()) : OutputIndexMapInitializer(out.index_array, out.index_array_bounds)); } TENSORSTORE_RETURN_IF_ERROR(SetOutputIndexMapsAndValidateTransformRep( transform.get(), output_maps, interval_form, flags)); return transform; } TransformParserData MakeIndexDomainViewDataForSaving(IndexDomainView<> domain) { const DimensionIndex rank = domain.rank(); TransformParserData tmp; tmp.rank = rank; tmp.lower_bounds.resize(rank); tmp.upper_bounds.resize(rank); tmp.labels.assign(domain.labels().begin(), domain.labels().end()); tmp.implicit_lower_bounds = domain.implicit_lower_bounds(); tmp.implicit_upper_bounds = domain.implicit_upper_bounds(); bool all_implicit_lower = true; bool all_implicit_upper = true; for (DimensionIndex i = 0; i < rank; ++i) { tmp.lower_bounds[i] = domain[i].inclusive_min(); tmp.upper_bounds[i] = domain[i].exclusive_max(); all_implicit_lower = all_implicit_lower && tmp.implicit_lower_bounds[i] && (tmp.lower_bounds[i] == -kInfIndex); all_implicit_upper = all_implicit_upper && tmp.implicit_upper_bounds[i] && (tmp.upper_bounds[i] == (+kInfIndex + 1)); } if (all_implicit_lower) { tmp.lower_bounds.resize(0); } if (all_implicit_upper) { tmp.upper_bounds.resize(0); } return tmp; } TransformParserData MakeIndexTransformViewDataForSaving( IndexTransformView<> transform) { auto input_domain = transform.input_domain(); TransformParserData tmp = MakeIndexDomainViewDataForSaving(input_domain); const DimensionIndex input_rank = transform.input_rank(); const DimensionIndex output_rank = transform.output_rank(); bool all_identity = (output_rank == input_rank); tmp.output.emplace(output_rank); auto maps = transform.output_index_maps(); for (DimensionIndex i = 0; i < output_rank; ++i) { auto& output = (*tmp.output)[i]; const auto map = maps[i]; if (map.offset() != 0) { output.offset = map.offset(); all_identity = false; } if (map.method() != OutputIndexMethod::constant && map.stride() != 1) { output.stride = map.stride(); all_identity = false; } switch (map.method()) { case OutputIndexMethod::constant: all_identity = false; break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); output.input_dimension = input_dim; if (input_dim != i) all_identity = false; break; } case OutputIndexMethod::array: { all_identity = false; const auto index_array_data = map.index_array(); output.index_array = UnbroadcastArrayPreserveRank( UnownedToShared(index_array_data.array_ref())); IndexInterval index_range = index_array_data.index_range(); if (index_range != IndexInterval::Infinite() && !ValidateIndexArrayBounds(index_range, output.index_array).ok()) { output.index_array_bounds = index_range; } break; } } } if (all_identity) { tmp.output = std::nullopt; } return tmp; } } void to_json(::nlohmann::json& j, IndexTransformView<> transform) { if (!transform.valid()) { j = ::nlohmann::json(::nlohmann::json::value_t::discarded); return; } auto binder = jb::Object(IndexTransformParser(true), IndexTransformOutputParser()); auto tmp = MakeIndexTransformViewDataForSaving(transform); ::nlohmann::json::object_t obj; auto status = binder(std::false_type{}, IncludeDefaults{false}, &tmp, &obj); status.IgnoreError(); assert(status.ok()); j = std::move(obj); } void to_json(::nlohmann::json& j, IndexDomainView<> domain) { if (!domain.valid()) { j = ::nlohmann::json(::nlohmann::json::value_t::discarded); return; } auto binder = jb::Object(IndexTransformParser(false)); auto tmp = MakeIndexDomainViewDataForSaving(domain); ::nlohmann::json::object_t obj; auto status = binder(std::false_type{}, IncludeDefaults{false}, &tmp, &obj); status.IgnoreError(); assert(status.ok()); j = std::move(obj); } void to_json(::nlohmann::json& j, IndexInterval interval) { auto status = jb::IndexIntervalBinder(std::false_type{}, IncludeDefaults{false}, &interval, &j); status.IgnoreError(); assert(status.ok()); } namespace internal_index_space { Result<TransformRep::Ptr<>> ParseIndexTransformFromJson( const ::nlohmann::json& j, DimensionIndex input_rank_constraint, DimensionIndex output_rank_constraint) { if (j.is_discarded()) return TransformRep::Ptr<>(nullptr); auto result = [&]() -> Result<TransformRep::Ptr<>> { auto binder = jb::Object(IndexTransformParser(true, input_rank_constraint), IndexTransformOutputParser(output_rank_constraint) ); TENSORSTORE_ASSIGN_OR_RETURN(auto parser_data, jb::FromJson<TransformParserData>(j, binder)); return parser_data.Finalize(); }(); if (result) return result; return MaybeAnnotateStatus(result.status(), "Error parsing index transform from JSON"); } Result<TransformRep::Ptr<>> ParseIndexDomainFromJson( const ::nlohmann::json& j, DimensionIndex rank_constraint) { if (j.is_discarded()) return TransformRep::Ptr<>(nullptr); auto result = [&]() -> Result<TransformRep::Ptr<>> { auto binder = jb::Object(IndexTransformParser(false, rank_constraint)); TENSORSTORE_ASSIGN_OR_RETURN(auto parser_data, jb::FromJson<TransformParserData>(j, binder)) return parser_data.Finalize(); }(); if (result) return result; return MaybeAnnotateStatus(result.status(), "Error parsing index domain from JSON"); } } namespace internal_json_binding { TENSORSTORE_DEFINE_JSON_BINDER( ConstrainedRankJsonBinder, [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (j->is_discarded()) { *obj = options.rank().rank; return absl::OkStatus(); } TENSORSTORE_RETURN_IF_ERROR( Integer<DimensionIndex>(0, kMaxRank)(is_loading, options, obj, j)); } else { if ((!IncludeDefaults(options).include_defaults() && options.rank().rank != dynamic_rank) || *obj == dynamic_rank) { *j = ::nlohmann::json::value_t::discarded; } else { *j = *obj; } } if (!RankConstraint::EqualOrUnspecified(options.rank().rank, *obj)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected ", options.rank().rank, ", but received: ", *obj)); } return absl::OkStatus(); }) } }
#include "tensorstore/index_space/json.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal::ParseJson; IndexTransform<> MakeExampleTransform() { return tensorstore::IndexTransformBuilder<4, 3>() .input_origin({-kInfIndex, 7, -kInfIndex, 8}) .input_exclusive_max({kInfIndex + 1, 10, kInfIndex + 1, 17}) .implicit_lower_bounds({0, 0, 1, 1}) .implicit_upper_bounds({0, 0, 1, 1}) .input_labels({"x", "y", "z", "t"}) .output_constant(0, 3) .output_single_input_dimension(1, 0, 2, 2) .output_index_array(2, 7, 1, tensorstore::MakeArray<Index>({{ {{1}}, {{2}}, {{3}}, }})) .Finalize() .value(); } IndexTransform<> MakeUnlabeledExampleTransform() { return tensorstore::IndexTransformBuilder<4, 3>() .input_origin({-kInfIndex, 7, -kInfIndex, 8}) .input_exclusive_max({kInfIndex + 1, 10, kInfIndex + 1, 17}) .implicit_lower_bounds({0, 0, 1, 1}) .implicit_upper_bounds({0, 0, 1, 1}) .output_constant(0, 3) .output_single_input_dimension(1, 0, 2, 2) .output_index_array(2, 7, 1, tensorstore::MakeArray<Index>({{ {{1}}, {{2}}, {{3}}, }}), IndexInterval::Closed(1, 2)) .Finalize() .value(); } ::nlohmann::json MakeUnlabeledExampleJson() { return ParseJson(R"( { "input_inclusive_min": ["-inf", 7, ["-inf"], [8]], "input_exclusive_max": ["+inf", 10, ["+inf"], [17]], "output": [ {"offset": 3}, {"stride": 2, "input_dimension": 2}, { "offset": 7, "index_array": [[ [[1]], [[2]], [[3]] ]], "index_array_bounds": [1, 2] } ] } )"); } ::nlohmann::json MakeLabeledExampleJson() { return ParseJson(R"( { "input_inclusive_min": ["-inf", 7, ["-inf"], [8]], "input_exclusive_max": ["+inf", 10, ["+inf"], [17]], "input_labels": ["x", "y", "z", "t"], "output": [ {"offset": 3}, {"stride": 2, "input_dimension": 2}, {"offset": 7, "index_array": [[ [[1]], [[2]], [[3]] ]]} ] } )"); } TEST(ToJsonTest, Unlabeled) { EXPECT_EQ(MakeUnlabeledExampleJson(), ::nlohmann::json(MakeUnlabeledExampleTransform())); } TEST(ToJsonTest, Labeled) { EXPECT_EQ(MakeLabeledExampleJson(), ::nlohmann::json(MakeExampleTransform())); } TEST(IndexTransformJsonBinderTest, IndexArrayOutOfBounds) { tensorstore::TestJsonBinderRoundTrip<IndexTransform<>>({ {IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>({1, 2, 3})) .Finalize() .value(), { {"input_inclusive_min", {0}}, {"input_exclusive_max", {3}}, {"output", { {{"index_array", {1, 2, 3}}}, }}, }}, {IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>({1, 2, 3}), IndexInterval::UncheckedClosed(1, 2)) .Finalize() .value(), { {"input_inclusive_min", {0}}, {"input_exclusive_max", {3}}, {"output", { {{"index_array", {1, 2, 3}}, {"index_array_bounds", {1, 2}}}, }}, }}, {IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array( 0, 0, 1, tensorstore::MakeArray<Index>({1, kInfIndex + 1, 3})) .Finalize() .value(), { {"input_inclusive_min", {0}}, {"input_exclusive_max", {3}}, {"output", { {{"index_array", {1, kInfIndex + 1, 3}}}, }}, }}, }); tensorstore::TestJsonBinderToJson<IndexTransform<>>({ {IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>({1, 2, 3}), IndexInterval::Closed(1, 3)) .Finalize() .value(), ::testing::Optional(MatchesJson(::nlohmann::json{ {"input_inclusive_min", {0}}, {"input_exclusive_max", {3}}, {"output", { {{"index_array", {1, 2, 3}}}, }}, }))}, }); } TEST(ToJsonTest, NullTransform) { EXPECT_TRUE(::nlohmann::json(tensorstore::IndexTransform<>()).is_discarded()); } TEST(ToJsonTest, IdentityTransform) { EXPECT_EQ(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [4, 6] } )") .dump(), ::nlohmann::json(tensorstore::IdentityTransform( tensorstore::BoxView({1, 2}, {3, 4}))) .dump()); } TEST(ToJsonTest, Translation) { EXPECT_EQ( ::nlohmann::json({ {"input_inclusive_min", {1, 2}}, {"input_exclusive_max", {4, 6}}, {"output", { {{"offset", -1}, {"input_dimension", 0}}, {{"offset", -2}, {"input_dimension", 1}}, }}, }), ::nlohmann::json(ChainResult(tensorstore::IdentityTransform( tensorstore::BoxView({3, 4})), tensorstore::AllDims().TranslateTo({1, 2})) .value())); } void TestRoundTripJson(const ::nlohmann::json& json) { SCOPED_TRACE(json.dump()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto parsed, tensorstore::ParseIndexTransform(json)); EXPECT_EQ(json, ::nlohmann::json(parsed)); } TEST(RoundTripJsonTest, Labels) { TestRoundTripJson({ {"input_inclusive_min", {1}}, {"input_exclusive_max", {3}}, }); TestRoundTripJson({ {"input_inclusive_min", {1}}, {"input_exclusive_max", {3}}, {"input_labels", {"x"}}, }); } TEST(RoundTripJsonTest, Rank0) { TestRoundTripJson({ {"input_rank", 0}, }); } TEST(RoundTripJsonTest, Input1Output0) { TestRoundTripJson({ {"input_rank", 1}, {"output", ::nlohmann::json::array_t()}, }); } TEST(RoundTripJsonTest, LabelsOnly) { TestRoundTripJson({ {"input_labels", {"x", "y", "z"}}, }); } TEST(RoundTripJsonTest, MinOnlyNotImplicit) { TestRoundTripJson({ {"input_inclusive_min", {"-inf"}}, }); } TEST(RoundTripJsonTest, MaxOnlyNotImplicit) { TestRoundTripJson({ {"input_exclusive_max", {"+inf"}}, }); } TEST(ParseIndexTransformTest, Null) { EXPECT_EQ(IndexTransform<>(), tensorstore::ParseIndexTransform( ::nlohmann::json(::nlohmann::json::value_t::discarded))); } TEST(ParseIndexTransformTest, DynamicFromLabeled) { EXPECT_EQ(MakeExampleTransform(), tensorstore::ParseIndexTransform(MakeLabeledExampleJson())); } TEST(ParseIndexTransformTest, DynamicFromUnlabeled) { EXPECT_EQ(MakeUnlabeledExampleTransform(), tensorstore::ParseIndexTransform(MakeUnlabeledExampleJson())); } TEST(ParseIndexTransformTest, Static) { auto t = tensorstore::ParseIndexTransform<4, 3>(MakeLabeledExampleJson()); static_assert( std::is_same_v<decltype(t), Result<tensorstore::IndexTransform<4, 3>>>); EXPECT_EQ(MakeExampleTransform(), t); } TEST(ParseIndexTransformTest, IdentityTransformExclusiveMax) { EXPECT_EQ(tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_exclusive_max({5, kInfIndex + 1}) .output_identity_transform() .Finalize() .value(), tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [5, "+inf"] } )"))); } TEST(ParseIndexTransformTest, IdentityTransformInclusiveMax) { EXPECT_EQ(tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_inclusive_max({5, kInfIndex}) .output_identity_transform() .Finalize() .value(), tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_inclusive_max": [5, "+inf"] } )"))); } TEST(ParseIndexTransformTest, IdentityTransformShape) { EXPECT_EQ(tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({5, kInfSize}) .output_identity_transform() .Finalize() .value(), tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_shape": [5, "+inf"] } )"))); } TEST(ParseIndexTransformTest, IdentityTransformInputRank) { EXPECT_EQ(tensorstore::IndexTransformBuilder<>(2, 2) .output_identity_transform() .Finalize() .value(), tensorstore::ParseIndexTransform(ParseJson(R"( { "input_rank": 2 } )"))); } TEST(ParseIndexTransformTest, StaticInputRankMismatch) { EXPECT_THAT( (tensorstore::ParseIndexTransform<3, 3>(MakeLabeledExampleJson())), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Expected input_rank to be 3, but is: 4")); } TEST(ParseIndexTransformTest, StaticOutputRankMismatch) { EXPECT_THAT( (tensorstore::ParseIndexTransform<4, 2>(MakeLabeledExampleJson())), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Expected output rank to be 2, but is: 3")); } TEST(ParseIndexTransformTest, MissingInputRank) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "output": [ {"offset": 3}, {"stride": 2, "input_dimension": 2}, {"offset": 7, "index_array": [[ [[1]], [[2]], [[3]] ]]} ] } )")), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "At least one of \"input_rank\", \"input_inclusive_min\", " "\"input_shape\", \"input_inclusive_max\", \"input_exclusive_max\", " "\"input_labels\" members must be specified")); } TEST(ParseIndexTransformTest, InvalidInputRank) { EXPECT_THAT(tensorstore::ParseIndexTransform(ParseJson(R"( { "input_rank": -3 } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_rank\": " "Expected integer .*, but received: -3")); } TEST(ParseIndexTransformTest, InvalidShape) { EXPECT_THAT(tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_shape": [1, 2, 3] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_shape\": " "Array has length 3 but should have length 2")); } TEST(ParseIndexTransformTest, ExclusiveMaxAndInclusiveMax) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [5, 10], "input_inclusive_max": [5, 10] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "At most one of \"input_shape\", \"input_inclusive_max\", " "\"input_exclusive_max\" members is allowed")); } TEST(ParseIndexTransformTest, ExclusiveMaxAndShape) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [5, 10], "input_shape": [5, 10] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "At most one of \"input_shape\", \"input_inclusive_max\", " "\"input_exclusive_max\" members is allowed")); } TEST(ParseIndexTransformTest, InclusiveMaxAndShape) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_inclusive_max": [5, 10], "input_shape": [5, 10] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "At most one of \"input_shape\", \"input_inclusive_max\", " "\"input_exclusive_max\" members is allowed")); } TEST(ParseIndexTransformTest, MissingOutputs) { auto json = ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [5, 10] } )"); EXPECT_EQ((tensorstore::IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_exclusive_max({5, 10}) .output_identity_transform() .Finalize() .value()), (tensorstore::ParseIndexTransform<dynamic_rank, 2>(json))); EXPECT_THAT((tensorstore::ParseIndexTransform<dynamic_rank, 3>(json)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Missing \"output\" member")); } TEST(ParseIndexTransformTest, InvalidInterval) { EXPECT_THAT(tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 11], "input_exclusive_max": [5, 10] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ParseIndexTransformTest, UnexpectedTopLevelMember) { EXPECT_THAT((tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [5, 10], "extra": "value" } )"))), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Object includes extra members: \"extra\"")); } TEST(ParseIndexTransformTest, UnexpectedOutputMember) { EXPECT_THAT((tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [2], "output": [ {"extra": "value"} ] } )"))), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "Object includes extra members: \"extra\"")); } TEST(ParseIndexTransformTest, InvalidLabel) { EXPECT_THAT(tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, 2], "input_exclusive_max": [5, 10], "input_labels": [1, 2] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_labels\": " "Error parsing value at position 0: " "Expected string, but received: 1")); } TEST(ParseIndexTransformTest, InvalidBound) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, "a"], "input_exclusive_max": [5, 10] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_inclusive_min\": " "Error parsing value at position 1: " "Expected 64-bit signed integer or \"-inf\", " "but received: \"a\"")); } TEST(ParseIndexTransformTest, InvalidBoundPositiveInfinity) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, "+inf"], "input_exclusive_max": [5, 10] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_inclusive_min\": " "Error parsing value at position 1: " "Expected 64-bit signed integer or \"-inf\", " "but received: \"\\+inf\"")); } TEST(ParseIndexTransformTest, InvalidBoundNegativeInfinity) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1, "-inf"], "input_exclusive_max": [5, "-inf"] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_exclusive_max\": " "Error parsing value at position 1: " "Expected 64-bit signed integer or \"\\+inf\", " "but received: \"-inf\"")); } TEST(ParseIndexTransformTest, InvalidOutputOffset) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [5], "output": [ {"offset": "a"} ] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "Error parsing object member \"offset\": " "Expected 64-bit signed integer, but received: \"a\"")); } TEST(ParseIndexTransformTest, InvalidOutputStride) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [5], "output": [ {"stride": "a", "input_dimension": 0} ] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "Error parsing object member \"stride\": " "Expected 64-bit signed integer, but received: \"a\"")); } TEST(ParseIndexTransformTest, UnexpectedStride) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [5], "output": [ {"stride": 1} ] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "Error parsing object member \"stride\": " "Either \"input_dimension\" or \"index_array\" must be " "specified in conjunction with \"stride\"")); } TEST(ParseIndexTransformTest, InvalidOutputInput) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [5], "output": [ {"input_dimension": "a"} ] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "Error parsing object member \"input_dimension\": " "Expected 64-bit signed integer, but received: \"a\"")); } TEST(ParseIndexTransformTest, InvalidOutputArray) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [5], "output": [ {"index_array": "a"} ] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "Error parsing object member \"index_array\": " "Error parsing array element at position \\{\\}: " ".* received: \"a\"")); } TEST(ParseIndexTransformTest, InvalidOutputInputAndArray) { EXPECT_THAT( tensorstore::ParseIndexTransform(ParseJson(R"( { "input_inclusive_min": [1], "input_exclusive_max": [5], "output": [ {"input_dimension": 0, "index_array": [1]} ] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"output\": " "Error parsing value at position 0: " "At most one of \"input_dimension\", \"index_array\" " "members is allowed")); } TEST(ParseIndexTransformTest, DuplicateLabels) { EXPECT_THAT(tensorstore::ParseIndexTransform(ParseJson(R"( { "input_labels": ["x", "x"] } )")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index transform from JSON: " "Error parsing object member \"input_labels\": " "Dimension label.*")); } TEST(IndexDomainJsonBinderTest, Simple) { tensorstore::TestJsonBinderRoundTrip<tensorstore::IndexDomain<>>({ {tensorstore::IndexDomainBuilder<4>() .origin({-kInfIndex, 7, -kInfIndex, 8}) .exclusive_max({kInfIndex + 1, 10, kInfIndex + 1, 17}) .implicit_lower_bounds({0, 0, 1, 1}) .implicit_upper_bounds({0, 0, 1, 1}) .labels({"x", "y", "z", "t"}) .Finalize() .value(), { {"inclusive_min", {"-inf", 7, {"-inf"}, {8}}}, {"exclusive_max", {"+inf", 10, {"+inf"}, {17}}}, {"labels", {"x", "y", "z", "t"}}, }}, }); tensorstore::TestJsonBinderFromJson<tensorstore::IndexDomain<>>({ {{ {"rank", 33}, }, MatchesStatus( absl::StatusCode::kInvalidArgument, "Error parsing index domain from JSON: " "Error parsing object member \"rank\": " "Expected integer in the range \\[0, 32\\], but received: 33")}, {{ {"shape", {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}, }, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index domain from JSON: " "Error parsing object member \"shape\": " "Rank 33 is outside valid range \\[0, 32\\]")}, {{ {"labels", {"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""}}, }, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index domain from JSON: " "Error parsing object member \"labels\": " "Rank 33 is outside valid range \\[0, 32\\]")}, {{ {"inclusive_min", {"-inf", 7, {"-inf"}, {8}}}, {"exclusive_max", {"+inf", 10, {"+inf"}, {17}}}, {"labels", {"x", "y", "z", "t"}}, {"output", "abc"}, }, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing index domain from JSON: " "Object includes extra members: \"output\"")}, }); } TEST(IndexBinderTest, Basic) { using ::tensorstore::kMaxFiniteIndex; tensorstore::TestJsonBinderRoundTrip<Index>( { {-kInfIndex, "-inf"}, {+kInfIndex, "+inf"}, {-kMaxFiniteIndex, -kMaxFiniteIndex}, {0, 0}, {5, 5}, {+kMaxFiniteIndex, +kMaxFiniteIndex}, }, tensorstore::internal_json_binding::IndexBinder); tensorstore::TestJsonBinderFromJson<Index>( { {"abc", MatchesStatus(absl::StatusCode::kInvalidArgument)}, {-kInfIndex, ::testing::Optional(MatchesJson(-kInfIndex))}, {+kInfIndex, ::testing::Optional(MatchesJson(+kInfIndex))}, {-kInfIndex - 1, MatchesStatus(absl::StatusCode::kInvalidArgument)}, {kInfIndex + 1, MatchesStatus(absl::StatusCode::kInvalidArgument)}, }, tensorstore::internal_json_binding::IndexBinder); } TEST(IndexIntervalBinderTest, Basic) { using ::tensorstore::IndexInterval; tensorstore::TestJsonBinderRoundTrip<IndexInterval>({ {IndexInterval::UncheckedClosed(5, 10), {5, 10}}, {IndexInterval(), {"-inf", "+inf"}}, {IndexInterval::UncheckedClosed(5, 4), {5, 4}}, {IndexInterval::UncheckedClosed(-kInfIndex, 20), {"-inf", 20}}, {IndexInterval::UncheckedClosed(20, +kInfIndex), {20, "+inf"}}, }); tensorstore::TestJsonBinderFromJson<IndexInterval>({ {"abc", MatchesStatus(absl::StatusCode::kInvalidArgument)}, {{-kInfIndex - 1, 10}, MatchesStatus(absl::StatusCode::kInvalidArgument)}, {{10, 5}, MatchesStatus(absl::StatusCode::kInvalidArgument)}, }); } TEST(ConstrainedRankJsonBinderTest, RoundTripNoConstraintIncludeDefaults) { tensorstore::TestJsonBinderRoundTrip<DimensionIndex>( { {5, 5}, {dynamic_rank, ::nlohmann::json::value_t::discarded}, }, tensorstore::internal_json_binding::ConstrainedRankJsonBinder); } TEST(ConstrainedRankJsonBinderTest, RoundTripNoConstraintExcludeDefaults) { tensorstore::TestJsonBinderRoundTrip<DimensionIndex>( { {5, 5}, {dynamic_rank, ::nlohmann::json::value_t::discarded}, }, tensorstore::internal_json_binding::ConstrainedRankJsonBinder, tensorstore::IncludeDefaults{false}); } TEST(ConstrainedRankJsonBinderTest, RoundTripRankConstraintIncludeDefaults) { tensorstore::TestJsonBinderRoundTrip<DimensionIndex>( { {30, 30}, }, tensorstore::internal_json_binding::ConstrainedRankJsonBinder, tensorstore::JsonSerializationOptions{tensorstore::RankConstraint{30}, tensorstore::IncludeDefaults{true}}, tensorstore::RankConstraint{30}); } TEST(ConstrainedRankJsonBinderTest, FromJsonRankConstraint) { tensorstore::TestJsonBinderFromJson<DimensionIndex>( { {30, ::testing::Optional(30)}, {::nlohmann::json::value_t::discarded, ::testing::Optional(30)}, {5, MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected 30, but received: 5")}, }, tensorstore::internal_json_binding::ConstrainedRankJsonBinder, tensorstore::RankConstraint{30}); } TEST(ConstrainedRankJsonBinderTest, ToJsonRankConstraintIncludeDefaults) { tensorstore::TestJsonBinderToJson<DimensionIndex>( { {30, ::testing::Optional(MatchesJson(30))}, {dynamic_rank, ::testing::Optional(MatchesJson( ::nlohmann::json::value_t::discarded))}, {5, MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected 30, but received: 5")}, }, tensorstore::internal_json_binding::ConstrainedRankJsonBinder, tensorstore::JsonSerializationOptions{ tensorstore::RankConstraint{30}, tensorstore::IncludeDefaults{true}}); } TEST(ConstrainedRankJsonBinderTest, ToJsonRankConstraintExcludeDefaults) { tensorstore::TestJsonBinderToJson<DimensionIndex>( { {30, ::testing::Optional( MatchesJson(::nlohmann::json::value_t::discarded))}, {dynamic_rank, ::testing::Optional(MatchesJson( ::nlohmann::json::value_t::discarded))}, {5, MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected 30, but received: 5")}, }, tensorstore::internal_json_binding::ConstrainedRankJsonBinder, tensorstore::JsonSerializationOptions{tensorstore::IncludeDefaults{false}, tensorstore::RankConstraint{30}}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/json.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/json_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f8a22cdd-a9f2-4a8b-9332-c4770305a759
cpp
tensorflow/tensorflow
fill_quantization_options
tensorflow/compiler/mlir/quantization/stablehlo/utils/fill_quantization_options.cc
tensorflow/compiler/mlir/quantization/stablehlo/tests/fill_quantization_options_test.cc
#include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_options.pb.h" namespace mlir::quant::stablehlo { using ::stablehlo::quantization::CustomQuantizationMethod; using ::stablehlo::quantization::PresetQuantizationMethod; using ::stablehlo::quantization::QuantizationComponentSpec; using ::stablehlo::quantization::QuantizationOptions; using QuantizationComponent = ::stablehlo::quantization::QuantizationComponentSpec_QuantizationComponent; using BitType = ::stablehlo::quantization::QuantizationComponentSpec_BitType; using BitWidth = ::stablehlo::quantization::QuantizationComponentSpec_BitWidth; void SetQuantizationComponentSpec(QuantizationComponentSpec* spec, const QuantizationComponent& component, const BitType bit_type, const BitWidth bit_width) { spec->set_quantization_component(component); spec->set_bit_type(bit_type); spec->set_bit_width(bit_width); } ::stablehlo::quantization::QuantizationOptions FillPresetQuantizationOptions( ::stablehlo::quantization::QuantizationOptions quantization_options_) { CustomQuantizationMethod custom_method = quantization_options_.quantization_method().custom_quantization_method(); QuantizationComponentSpec *activation_component, *weight_component, *bias_component; const auto preset_method = quantization_options_.quantization_method() .preset_quantization_method() .preset_method(); if (!preset_method) return quantization_options_; switch (preset_method) { case PresetQuantizationMethod::FLOAT16: weight_component = custom_method.add_quantization_component_spec(); SetQuantizationComponentSpec(weight_component, QuantizationComponentSpec::COMPONENT_WEIGHT, QuantizationComponentSpec::BIT_TYPE_FLOAT, QuantizationComponentSpec::BIT_WIDTH_16); bias_component = custom_method.add_quantization_component_spec(); SetQuantizationComponentSpec(bias_component, QuantizationComponentSpec::COMPONENT_BIAS, QuantizationComponentSpec::BIT_TYPE_FLOAT, QuantizationComponentSpec::BIT_WIDTH_16); break; case PresetQuantizationMethod::WEIGHT_ONLY: weight_component = custom_method.add_quantization_component_spec(); SetQuantizationComponentSpec(weight_component, QuantizationComponentSpec::COMPONENT_WEIGHT, QuantizationComponentSpec::BIT_TYPE_INT, QuantizationComponentSpec::BIT_WIDTH_8); break; case PresetQuantizationMethod::POST_TRAINING_QUANTIZATION_STATIC_RANGE: activation_component = custom_method.add_quantization_component_spec(); SetQuantizationComponentSpec( activation_component, QuantizationComponentSpec::COMPONENT_ACTIVATION, QuantizationComponentSpec::BIT_TYPE_INT, QuantizationComponentSpec::BIT_WIDTH_8); weight_component = custom_method.add_quantization_component_spec(); SetQuantizationComponentSpec(weight_component, QuantizationComponentSpec::COMPONENT_WEIGHT, QuantizationComponentSpec::BIT_TYPE_INT, QuantizationComponentSpec::BIT_WIDTH_8); bias_component = custom_method.add_quantization_component_spec(); SetQuantizationComponentSpec(bias_component, QuantizationComponentSpec::COMPONENT_BIAS, QuantizationComponentSpec::BIT_TYPE_INT, QuantizationComponentSpec::BIT_WIDTH_32); break; default: break; } *quantization_options_.mutable_quantization_method() ->mutable_custom_quantization_method() = custom_method; return quantization_options_; } LogicalResult GetActivationBitWidth(QuantizationOptions quantization_options, int* bit_width) { CustomQuantizationMethod custom_method = quantization_options.quantization_method().custom_quantization_method(); for (const auto& component : custom_method.quantization_component_spec()) { if (component.quantization_component() == QuantizationComponentSpec::COMPONENT_ACTIVATION) { switch (component.bit_width()) { case QuantizationComponentSpec::BIT_WIDTH_4: *bit_width = 4; return success(); break; case QuantizationComponentSpec::BIT_WIDTH_8: *bit_width = 8; return success(); break; case QuantizationComponentSpec::BIT_WIDTH_16: *bit_width = 16; return success(); break; case QuantizationComponentSpec::BIT_WIDTH_32: *bit_width = 32; return success(); break; default: break; } } } return failure(); } }
#include "tensorflow/compiler/mlir/quantization/stablehlo/utils/fill_quantization_options.h" #include <ostream> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/quantization/stablehlo/quantization_options.pb.h" #include "tsl/platform/protobuf.h" namespace mlir::quant::stablehlo { namespace { using ::stablehlo::quantization::PresetQuantizationMethod; using ::stablehlo::quantization::QuantizationComponentSpec; using ::stablehlo::quantization::QuantizationOptions; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.SerializeAsString()) {} template <typename Message> bool MatchAndExplain(const Message& p, testing::MatchResultListener*) const { return p.SerializeAsString() == expected_; } void DescribeTo(::std::ostream* os) const { *os << expected_; } void DescribeNegationTo(::std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } void FillPresetQuantizationOptionsTestHelper( const PresetQuantizationMethod::PresetMethod preset_quantization_options, const QuantizationComponentSpec expected_activation_component, const QuantizationComponentSpec expected_weight_component, const QuantizationComponentSpec expected_bias_component) { QuantizationOptions quantization_options; quantization_options.mutable_quantization_method() ->mutable_preset_quantization_method() ->set_preset_method(preset_quantization_options); QuantizationOptions filled_quantization_options = quant::stablehlo::FillPresetQuantizationOptions(quantization_options); for (QuantizationComponentSpec component : filled_quantization_options.quantization_method() .custom_quantization_method() .quantization_component_spec()) { switch (component.quantization_component()) { case (QuantizationComponentSpec::COMPONENT_ACTIVATION): EXPECT_THAT(component, EqualsProto(expected_activation_component)); break; case (QuantizationComponentSpec::COMPONENT_WEIGHT): EXPECT_THAT(component, EqualsProto(expected_weight_component)); break; case (QuantizationComponentSpec::COMPONENT_BIAS): EXPECT_THAT(component, EqualsProto(expected_bias_component)); break; default: break; } } } TEST(FillQuantizationOptionsTest, PresetFloat16) { QuantizationComponentSpec activation_component, weight_component, bias_component; weight_component.set_quantization_component( QuantizationComponentSpec::COMPONENT_WEIGHT); weight_component.set_bit_width(QuantizationComponentSpec::BIT_WIDTH_16); weight_component.set_bit_type(QuantizationComponentSpec::BIT_TYPE_FLOAT); bias_component.set_quantization_component( QuantizationComponentSpec::COMPONENT_BIAS); bias_component.set_bit_width(QuantizationComponentSpec::BIT_WIDTH_16); bias_component.set_bit_type(QuantizationComponentSpec::BIT_TYPE_FLOAT); FillPresetQuantizationOptionsTestHelper( PresetQuantizationMethod::FLOAT16, activation_component, weight_component, bias_component); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/utils/fill_quantization_options.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/tests/fill_quantization_options_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea