ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
0d8fad02-ec28-44dc-a261-776f19b8ca59
cpp
tensorflow/tensorflow
graph_def_util
tensorflow/core/framework/graph_def_util.cc
tensorflow/core/framework/graph_def_util_test.cc
#include "tensorflow/core/framework/graph_def_util.h" #include <set> #include <unordered_map> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" namespace tensorflow { string SummarizeGraphDef(const GraphDef& graph_def) { string ret; strings::StrAppend( &ret, "versions = ", graph_def.versions().ShortDebugString(), ";\n"); for (const NodeDef& node : graph_def.node()) { strings::StrAppend(&ret, SummarizeNodeDef(node), ";\n"); } return ret; } Status ValidateExternalGraphDefSyntax(const GraphDef& graph_def) { for (const NodeDef& node : graph_def.node()) { TF_RETURN_IF_ERROR(ValidateExternalNodeDefSyntax(node)); } return absl::OkStatus(); } Status AddDefaultAttrsToGraphDef(GraphDef* graph_def, const OpRegistryInterface& op_registry, int node_offset) { return AddDefaultAttrsToGraphDef(graph_def, op_registry, node_offset, false); } Status AddDefaultAttrsToGraphDef(GraphDef* graph_def, const OpRegistryInterface& op_registry, int node_offset, bool skip_unknown_ops) { if (node_offset > graph_def->node_size()) { return errors::InvalidArgument( "Tried to add default attrs to GraphDef " "starting at offset ", node_offset, " with total nodes in graph: ", graph_def->node_size()); } for (int i = node_offset; i < graph_def->node_size(); ++i) { NodeDef* node_def = graph_def->mutable_node(i); const OpDef* op_def; Status s = op_registry.LookUpOpDef(node_def->op(), &op_def); if (s.ok()) { AddDefaultsToNodeDef(*op_def, node_def); } else if (!skip_unknown_ops) { return s; } } return absl::OkStatus(); } static Status RemoveNewDefaultAttrsFromNodeDef( NodeDef* node_def, const OpRegistryInterface& consumer_op_registry, const OpRegistryInterface& producer_op_registry, std::set<std::pair<string, string>>* op_attr_removed) { const OpDef* producer_op_def; const OpDef* consumer_op_def; TF_RETURN_IF_ERROR( producer_op_registry.LookUpOpDef(node_def->op(), &producer_op_def)); TF_RETURN_IF_ERROR( consumer_op_registry.LookUpOpDef(node_def->op(), &consumer_op_def)); std::vector<string> to_remove; for (const auto& attr : node_def->attr()) { if (!absl::StartsWith(attr.first, "_") && FindAttr(attr.first, *consumer_op_def) == nullptr) { const OpDef::AttrDef* producer_attr_def = FindAttr(attr.first, *producer_op_def); if (producer_attr_def == nullptr) { return errors::InvalidArgument( "Attr '", attr.first, "' missing in producer's OpDef: ", SummarizeOpDef(*producer_op_def), " but found in node: ", FormatNodeDefForError(*node_def)); } if (producer_attr_def->has_default_value() && AreAttrValuesEqual(producer_attr_def->default_value(), attr.second)) { to_remove.emplace_back(attr.first); } } } for (const string& attr_name : to_remove) { node_def->mutable_attr()->erase(attr_name); if (op_attr_removed != nullptr) { op_attr_removed->insert(std::make_pair(node_def->op(), attr_name)); } } return absl::OkStatus(); } static bool IsFunction(const GraphDef& graph_def, const string& op_name) { for (const auto& func_def : graph_def.library().function()) { if (op_name == func_def.signature().name()) return true; } return false; } Status RemoveNewDefaultAttrsFromGraphDef( GraphDef* graph_def, const OpRegistryInterface& consumer_op_registry, const OpRegistryInterface& producer_op_registry, std::set<std::pair<string, string>>* op_attr_removed) { for (int n = 0; n < graph_def->node_size(); ++n) { NodeDef* node_def = graph_def->mutable_node(n); if (!IsFunction(*graph_def, node_def->op())) { TF_RETURN_IF_ERROR(RemoveNewDefaultAttrsFromNodeDef( node_def, consumer_op_registry, producer_op_registry, op_attr_removed)); } } for (int f = 0; f < graph_def->library().function_size(); ++f) { FunctionDef* func_def = graph_def->mutable_library()->mutable_function(f); for (int n = 0; n < func_def->node_def_size(); ++n) { NodeDef* node_def = func_def->mutable_node_def(n); if (!IsFunction(*graph_def, node_def->op())) { TF_RETURN_IF_ERROR(RemoveNewDefaultAttrsFromNodeDef( node_def, consumer_op_registry, producer_op_registry, op_attr_removed)); } } } return absl::OkStatus(); } void StripDefaultAttributes(const OpRegistryInterface& op_registry, protobuf::RepeatedPtrField<NodeDef>* nodes) { for (int i = 0; i < nodes->size(); ++i) { NodeDef* node = nodes->Mutable(i); const OpDef* op_def; const OpRegistrationData* op_reg_data = nullptr; Status s = op_registry.LookUp(node->op(), &op_reg_data); if (!s.ok()) { VLOG(1) << "Ignoring encountered unknown operation " << SummarizeNodeDef(*node) << " when stripping default attributes. It is likely a function, " "in which case ignoring it is fine"; continue; } op_def = &op_reg_data->op_def; for (const OpDef::AttrDef& attr_def : op_def->attr()) { if (attr_def.has_default_value()) { AttrValueMap* attrs = node->mutable_attr(); const string& name = attr_def.name(); auto iter = attrs->find(name); if (iter != attrs->end()) { const AttrValue& default_value = attr_def.default_value(); if (AreAttrValuesEqual(iter->second, default_value, true)) { attrs->erase(name); } } } } } } void OpsUsedByGraph(const GraphDef& graph_def, std::set<string>* ops_used_in_graph) { std::unordered_map<string, const FunctionDef*> name_to_function; for (const auto& function : graph_def.library().function()) { name_to_function.insert( std::make_pair(function.signature().name(), &function)); } std::set<string> used_ops; std::vector<const FunctionDef*> functions_to_process; const auto mark_op_as_used = [&used_ops, &functions_to_process, &name_to_function](const string& op) { if (used_ops.insert(op).second) { const auto it = name_to_function.find(op); if (it != name_to_function.end()) { functions_to_process.push_back(it->second); } } }; for (const auto& node : graph_def.node()) { mark_op_as_used(node.op()); } while (!functions_to_process.empty()) { const FunctionDef* fun = functions_to_process.back(); functions_to_process.pop_back(); for (const auto& node : fun->node_def()) { mark_op_as_used(node.op()); } } ops_used_in_graph->clear(); for (const string& op_name : used_ops) { if (name_to_function.find(op_name) == name_to_function.end()) { ops_used_in_graph->insert(op_name); } } } Status StrippedOpListForGraph(const GraphDef& graph_def, const OpRegistryInterface& op_registry, OpList* stripped_op_list) { std::set<string> used_ops; OpsUsedByGraph(graph_def, &used_ops); stripped_op_list->clear_op(); for (const string& op_name : used_ops) { const OpDef* op_def; TF_RETURN_IF_ERROR(op_registry.LookUpOpDef(op_name, &op_def)); OpDef* stripped_op = stripped_op_list->add_op(); stripped_op->CopyFrom(*op_def); RemoveDescriptionsFromOpDef(stripped_op); } return absl::OkStatus(); } }
#include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/util/equal_graph_def.h" namespace tensorflow { namespace { Status FinalizeOpDef(const OpDefBuilder& b, OpDef* op_def) { OpRegistrationData op_reg_data; const Status s = b.Finalize(&op_reg_data); *op_def = op_reg_data.op_def; return s; } TEST(AddToGraphTest, MakeGraphDefWithNamespacedOpName) { OpList op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("Project>SomeOp"), op_list.add_op())); OpListOpRegistry registry(&op_list); GraphDef graph_def; TF_ASSERT_OK(NodeDefBuilder("node", "Project>SomeOp", &registry) .Finalize(graph_def.add_node())); } TEST(RemoveNewDefaultAttrsFromGraphDefTest, NoChangeWithDefault) { OpList op_list; TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("NoChangeWithDefault").Attr("a: int = 12"), op_list.add_op())); OpListOpRegistry registry(&op_list); GraphDef graph_def; TF_ASSERT_OK(NodeDefBuilder("ncwd", "NoChangeWithDefault", &registry) .Finalize(graph_def.add_node())); GraphDef expected_graph_def = graph_def; std::set<std::pair<string, string>> op_attr_removed; TF_ASSERT_OK(RemoveNewDefaultAttrsFromGraphDef(&graph_def, registry, registry, &op_attr_removed)); TF_EXPECT_GRAPH_EQ(expected_graph_def, graph_def); EXPECT_TRUE(op_attr_removed.empty()); } TEST(RemoveNewDefaultAttrsFromGraphDefTest, NoChangeNoDefault) { OpList op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("NoChangeNoDefault").Attr("a: int"), op_list.add_op())); OpListOpRegistry registry(&op_list); GraphDef graph_def; TF_ASSERT_OK(NodeDefBuilder("ncnd", "NoChangeNoDefault", &registry) .Attr("a", 42) .Finalize(graph_def.add_node())); GraphDef expected_graph_def = graph_def; std::set<std::pair<string, string>> op_attr_removed; TF_ASSERT_OK(RemoveNewDefaultAttrsFromGraphDef(&graph_def, registry, registry, &op_attr_removed)); TF_EXPECT_GRAPH_EQ(expected_graph_def, graph_def); EXPECT_TRUE(op_attr_removed.empty()); } TEST(RemoveNewDefaultAttrsFromGraphDefTest, UsesDefault) { OpList consumer_op_list; TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("UsesDefault"), consumer_op_list.add_op())); OpListOpRegistry consumer_registry(&consumer_op_list); OpList producer_op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("UsesDefault").Attr("a: int = 17"), producer_op_list.add_op())); OpListOpRegistry producer_registry(&producer_op_list); GraphDef produced_graph_def; TF_ASSERT_OK(NodeDefBuilder("uses_default", "UsesDefault", &producer_registry) .Finalize(produced_graph_def.add_node())); std::set<std::pair<string, string>> op_attr_removed; TF_ASSERT_OK( RemoveNewDefaultAttrsFromGraphDef(&produced_graph_def, consumer_registry, producer_registry, &op_attr_removed)); GraphDef expected_graph_def; TF_ASSERT_OK(NodeDefBuilder("uses_default", "UsesDefault", &consumer_registry) .Finalize(expected_graph_def.add_node())); TF_EXPECT_GRAPH_EQ(expected_graph_def, produced_graph_def); std::set<std::pair<string, string>> expected_removed({{"UsesDefault", "a"}}); EXPECT_EQ(expected_removed, op_attr_removed); } TEST(RemoveNewDefaultAttrsFromGraphDefTest, ChangedFromDefault) { OpList consumer_op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("ChangedFromDefault"), consumer_op_list.add_op())); OpListOpRegistry consumer_registry(&consumer_op_list); OpList producer_op_list; TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("ChangedFromDefault").Attr("a: int = 17"), producer_op_list.add_op())); OpListOpRegistry producer_registry(&producer_op_list); GraphDef produced_graph_def; TF_ASSERT_OK(NodeDefBuilder("changed_from_default", "ChangedFromDefault", &producer_registry) .Attr("a", 9) .Finalize(produced_graph_def.add_node())); GraphDef expected_graph_def = produced_graph_def; std::set<std::pair<string, string>> op_attr_removed; TF_ASSERT_OK( RemoveNewDefaultAttrsFromGraphDef(&produced_graph_def, consumer_registry, producer_registry, &op_attr_removed)); TF_EXPECT_GRAPH_EQ(expected_graph_def, produced_graph_def); EXPECT_TRUE(op_attr_removed.empty()); } TEST(RemoveNewDefaultAttrsFromGraphDefTest, UnderscoreAttrs) { OpList consumer_op_list; TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("Underscore"), consumer_op_list.add_op())); OpListOpRegistry consumer_registry(&consumer_op_list); OpList producer_op_list; TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("Underscore"), producer_op_list.add_op())); OpDef::AttrDef* attr = producer_op_list.mutable_op(0)->add_attr(); attr->set_name("_underscore"); attr->set_type("int"); attr->mutable_default_value()->set_i(17); OpListOpRegistry producer_registry(&producer_op_list); GraphDef produced_graph_def; TF_ASSERT_OK(NodeDefBuilder("node", "Underscore", &producer_registry) .Attr("_underscore", 17) .Finalize(produced_graph_def.add_node())); GraphDef expected_graph_def = produced_graph_def; std::set<std::pair<string, string>> op_attr_removed; TF_ASSERT_OK( RemoveNewDefaultAttrsFromGraphDef(&produced_graph_def, consumer_registry, producer_registry, &op_attr_removed)); TF_EXPECT_GRAPH_EQ(expected_graph_def, produced_graph_def); EXPECT_EQ(op_attr_removed.size(), 0); } TEST(RemoveNewDefaultAttrsFromGraphDefTest, HasFunction) { OpList consumer_op_list; TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("UsesDefault"), consumer_op_list.add_op())); TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("ChangedFromDefault"), consumer_op_list.add_op())); OpListOpRegistry consumer_registry(&consumer_op_list); OpList producer_op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("UsesDefault").Attr("a: int = 17"), producer_op_list.add_op())); TF_ASSERT_OK( FinalizeOpDef(OpDefBuilder("ChangedFromDefault").Attr("a: int = 17"), producer_op_list.add_op())); OpListOpRegistry producer_registry(&producer_op_list); GraphDef produced_graph_def; *produced_graph_def.mutable_library()->add_function() = FunctionDefHelper::Create( "my_func", {}, {}, {}, {{{"x"}, "UsesDefault", {}, {{"a", 17}}}, {{"y"}, "ChangedFromDefault", {}, {{"a", 99}}}}, {}); OpList function_op_list; *function_op_list.add_op() = produced_graph_def.library().function(0).signature(); OpListOpRegistry function_registry(&function_op_list); TF_ASSERT_OK(NodeDefBuilder("call_func", "my_func", &function_registry) .Finalize(produced_graph_def.add_node())); std::set<std::pair<string, string>> op_attr_removed; TF_ASSERT_OK( RemoveNewDefaultAttrsFromGraphDef(&produced_graph_def, consumer_registry, producer_registry, &op_attr_removed)); GraphDef expected_graph_def; *expected_graph_def.mutable_library()->add_function() = FunctionDefHelper::Create( "my_func", {}, {}, {}, {{{"x"}, "UsesDefault", {}, {}}, {{"y"}, "ChangedFromDefault", {}, {{"a", 99}}}}, {}); TF_ASSERT_OK(NodeDefBuilder("call_func", "my_func", &function_registry) .Finalize(expected_graph_def.add_node())); TF_EXPECT_GRAPH_EQ(expected_graph_def, produced_graph_def); EXPECT_EQ(expected_graph_def.library().DebugString(), produced_graph_def.library().DebugString()); std::set<std::pair<string, string>> expected_removed({{"UsesDefault", "a"}}); EXPECT_EQ(expected_removed, op_attr_removed); } TEST(StripDefaultAttributesTest, DefaultStripped) { OpList op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("OpName1").Attr("a: int = 12"), op_list.add_op())); OpListOpRegistry registry(&op_list); GraphDef graph_def; TF_ASSERT_OK(NodeDefBuilder("op1", "OpName1", &registry) .Finalize(graph_def.add_node())); ASSERT_EQ(1, graph_def.node(0).attr_size()); ASSERT_EQ(12, graph_def.node(0).attr().at("a").i()); StripDefaultAttributes(registry, graph_def.mutable_node()); ASSERT_EQ(1, graph_def.node_size()); ASSERT_EQ(0, graph_def.node(0).attr_size()); } TEST(StripDefaultAttributesTest, NonDefaultNotStripped) { OpList op_list; TF_ASSERT_OK(FinalizeOpDef(OpDefBuilder("OpName1").Attr("a: int = 12"), op_list.add_op())); OpListOpRegistry registry(&op_list); GraphDef graph_def; TF_ASSERT_OK(NodeDefBuilder("op1", "OpName1", &registry) .Attr("a", 9) .Finalize(graph_def.add_node())); GraphDef expected = graph_def; StripDefaultAttributes(registry, graph_def.mutable_node()); TF_EXPECT_GRAPH_EQ(expected, graph_def); } TEST(StrippedOpListForGraphTest, FlatTest) { OpList op_list; for (const string& op : {"A", "B", "C", "D"}) { OpDef* op_def = op_list.add_op(); op_def->set_name(op); op_def->set_summary("summary"); op_def->set_description("description"); op_def->set_is_commutative(op == "B"); } const string graph_ops[4][3] = { {"C", "B", "B"}, {"B", "C", "B"}, {"B", "B", "C"}, {"C", "C", "B"}}; for (const bool use_function : {false, true}) { for (int order = 0; order < 4; order++) { GraphDef graph_def; if (use_function) { FunctionDef* function_def = graph_def.mutable_library()->add_function(); function_def->mutable_signature()->set_name("F"); for (const string& op : graph_ops[order]) { function_def->add_node_def()->set_op(op); } graph_def.add_node()->set_op("F"); } else { for (const string& op : graph_ops[order]) { string name = strings::StrCat("name", graph_def.node_size()); NodeDef* node = graph_def.add_node(); node->set_name(name); node->set_op(op); } } OpList stripped_op_list; TF_ASSERT_OK(StrippedOpListForGraph(graph_def, OpListOpRegistry(&op_list), &stripped_op_list)); ASSERT_EQ(stripped_op_list.op_size(), 2); for (int i = 0; i < 2; i++) { const OpDef& op = stripped_op_list.op(i); EXPECT_EQ(op.name(), i ? "C" : "B"); EXPECT_EQ(op.summary(), ""); EXPECT_EQ(op.description(), ""); EXPECT_EQ(op.is_commutative(), !i); } std::set<string> used_ops; OpsUsedByGraph(graph_def, &used_ops); ASSERT_EQ(std::set<string>({"B", "C"}), used_ops); } } } TEST(StrippedOpListForGraphTest, NestedFunctionTest) { OpList op_list; op_list.add_op()->set_name("A"); for (const bool recursive : {false, true}) { GraphDef graph_def; FunctionDef* b = graph_def.mutable_library()->add_function(); FunctionDef* c = graph_def.mutable_library()->add_function(); b->mutable_signature()->set_name("B"); c->mutable_signature()->set_name("C"); b->add_node_def()->set_op("A"); c->add_node_def()->set_op("B"); if (recursive) { b->add_node_def()->set_op("B"); c->add_node_def()->set_op("C"); } graph_def.add_node()->set_op("C"); OpList stripped_op_list; TF_ASSERT_OK(StrippedOpListForGraph(graph_def, OpListOpRegistry(&op_list), &stripped_op_list)); ASSERT_EQ(stripped_op_list.op_size(), 1); ASSERT_EQ(stripped_op_list.op(0).name(), "A"); std::set<string> used_ops; OpsUsedByGraph(graph_def, &used_ops); ASSERT_EQ(std::set<string>({"A"}), used_ops); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/graph_def_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/graph_def_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
773b7270-3bf2-4c44-8db0-c80349766cfe
cpp
tensorflow/tensorflow
shape_inference
tensorflow/compiler/jit/shape_inference.cc
tensorflow/compiler/jit/shape_inference_test.cc
#include "tensorflow/compiler/jit/shape_inference.h" #include <cstdint> #include <map> #include <vector> #include "absl/log/log.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/jit/shape_inference_helpers.h" #include "tensorflow/core/common_runtime/shape_refiner.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { Status ShapeHandleToTensorShape(shape_inference::InferenceContext* context, const shape_inference::ShapeHandle& handle, PartialTensorShape* shape) { if (!context->RankKnown(handle)) return absl::OkStatus(); std::vector<int64_t> dims(context->Rank(handle)); for (int32_t i = 0, end = dims.size(); i < end; ++i) { dims[i] = context->Value(context->Dim(handle, i)); } return PartialTensorShape::MakePartialShape(dims.data(), dims.size(), shape); } Status PropagateShapes(Graph* graph, const std::map<int, InferredShape>& arg_shapes, const std::vector<BackEdgeHelper::BackEdge>& back_edges, ShapeRefiner* shape_refiner) { std::map<const Node*, const Node*> merge_to_next_iteration; for (const auto& e : back_edges) { if (e.src->IsNextIteration() && e.dst->IsMerge()) { merge_to_next_iteration[e.dst] = e.src; } } std::vector<Node*> order; GetReversePostOrder(*graph, &order); for (Node* n : order) { VLOG(4) << "Propagating shape for node " << n->name() << ", type: " << n->type_string(); Status status = shape_refiner->AddNode(n); if (!status.ok()) { VLOG(1) << "Shape inference failed for node " << n->name() << ": " << status; } else { shape_inference::InferenceContext* context = shape_refiner->GetContext(n); for (int i = 0; i < n->num_outputs(); i++) { shape_inference::ShapeHandle handle = context->output(i); VLOG(4) << "Output " << i << " for node " << n->name() << ": " << context->DebugString(handle); } } int index = -1; if (n->type_string() == "_Arg") { TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index)); } else if (n->type_string() == "Placeholder") { if (const auto s = GetNodeAttr(n->attrs(), "_index", &index); !s.ok()) { VLOG(1) << "Failed to get node index for node " << n->name(); } } if (index >= 0) { if (auto it = arg_shapes.find(index); it != arg_shapes.end()) { const InferredShape& arg_shape = it->second; shape_inference::InferenceContext* context = shape_refiner->GetContext(n); if (arg_shape.handle_type != DT_INVALID) { shape_inference::ShapeHandle handle; TF_RETURN_IF_ERROR(context->MakeShapeFromPartialTensorShape( arg_shape.handle_shape, &handle)); context->set_output_handle_shapes_and_types( 0, std::vector<shape_inference::ShapeAndType>{ {handle, arg_shape.handle_type}}); } shape_inference::ShapeHandle handle; TF_RETURN_IF_ERROR( context->MakeShapeFromPartialTensorShape(arg_shape.shape, &handle)); TF_RETURN_IF_ERROR(shape_refiner->SetShape(n, 0, handle)); } } if (n->type_string() == "VariableShape") { shape_inference::InferenceContext* context = shape_refiner->GetContext(n); auto handle_shapes_and_types = context->input_handle_shapes_and_types(0); if (handle_shapes_and_types && !handle_shapes_and_types->empty()) { shape_inference::ShapeHandle handle = handle_shapes_and_types->at(0).shape; TensorShapeProto shape_proto; context->ShapeHandleToProto(handle, &shape_proto); if (!shape_proto.unknown_rank()) { NodeDef const_def; const_def.set_op("Const"); Node* var_node; TF_RETURN_IF_ERROR(n->input_node(0, &var_node)); const_def.set_name( graph->NewName(absl::StrCat("var_shape_", var_node->name()))); DataType dtype = n->output_type(0); AddNodeAttr("dtype", dtype, &const_def); TensorProto value; value.set_dtype(dtype); value.mutable_tensor_shape()->add_dim()->set_size( shape_proto.dim_size()); for (const auto& dim : shape_proto.dim()) { if (dtype == DT_INT32) { value.add_int_val(dim.size()); } else { value.add_int64_val(dim.size()); } } AddNodeAttr("value", value, &const_def); for (auto const& attr : n->attrs()) { if (*attr.first.begin() == '_') { AddNodeAttr(attr.first, attr.second, &const_def); } } TF_ASSIGN_OR_RETURN(Node * const_node, graph->AddNode(const_def)); graph->AddControlEdge(var_node, const_node); std::vector<const Edge*> out_edges(n->out_edges().begin(), n->out_edges().end()); for (const Edge* e : out_edges) { if (e->IsControlEdge()) { graph->AddControlEdge(const_node, e->dst()); graph->RemoveEdge(e); } else { Node* dst = e->dst(); int dst_input = e->dst_input(); graph->RemoveEdge(e); graph->AddEdge(const_node, 0, dst, dst_input); } } } } } if (n->IsMerge() && n->output_type(0) == DT_RESOURCE) { auto iter = merge_to_next_iteration.find(n); if (iter != merge_to_next_iteration.end()) { const Node *next_iter = iter->second, *node = next_iter; do { TF_RETURN_IF_ERROR(node->input_node(0, &node)); } while (node->IsIdentity()); const Node* switch_input; bool is_loop_invariant = node->IsSwitch() && node->input_node(0, &switch_input).ok() && switch_input == n; if (is_loop_invariant) { shape_inference::InferenceContext* context = shape_refiner->GetContext(n); for (int i = 0; i < n->num_inputs(); i++) { const Node* input_node; if (n->input_node(i, &input_node).ok()) { auto shapes_and_types = context->input_handle_shapes_and_types(i); if (shapes_and_types) { context->set_output_handle_shapes_and_types(0, *shapes_and_types); } break; } } } } } } return absl::OkStatus(); } Status StoreOutputShapes(const Graph& graph, const ShapeRefiner& shape_refiner, GraphShapeInfo* shape_info) { for (const Node* node : graph.nodes()) { shape_inference::InferenceContext* context = shape_refiner.GetContext(node); if (!context) continue; auto& outputs = (*shape_info)[node->name()]; outputs.resize(context->num_outputs()); for (int i = 0; i < context->num_outputs(); ++i) { auto& output = outputs[i]; TF_RETURN_IF_ERROR( ShapeHandleToTensorShape(context, context->output(i), &output.shape)); const auto* handle_shapes_and_types = context->output_handle_shapes_and_types(i); if (handle_shapes_and_types != nullptr) { if (handle_shapes_and_types->size() == 1) { TF_RETURN_IF_ERROR(ShapeHandleToTensorShape( context, (*handle_shapes_and_types)[0].shape, &output.handle_shape)); output.handle_type = (*handle_shapes_and_types)[0].dtype; } else { } } VLOG(4) << node->name() << " output " << i << " shape" << output.shape.DebugString() << " handle_type " << DataTypeString(output.handle_type) << " handle_shape " << output.handle_shape.DebugString(); } } return absl::OkStatus(); } } Status InferShapes(Graph* graph, const std::map<int, InferredShape>& arg_shapes, const tensorflow::FunctionLibraryDefinition* fnlib_def, GraphShapeInfo* shape_info) { ShapeRefiner shape_refiner(graph->versions(), graph->op_registry()); shape_refiner.set_require_shape_inference_fns(false); BackEdgeHelper back_edge; TF_RETURN_IF_ERROR(back_edge.Remove(graph)); TF_RETURN_IF_ERROR(PropagateShapes(graph, arg_shapes, back_edge.RemovedEdges(), &shape_refiner)); TF_RETURN_IF_ERROR(back_edge.Replace()); return StoreOutputShapes(*graph, shape_refiner, shape_info); } absl::StatusOr<InferredShape> MergeInferredShapes(const InferredShape& a, const InferredShape& b) { InferredShape result; TF_RETURN_IF_ERROR(a.shape.MergeWith(b.shape, &result.shape)); if (a.handle_type == DT_INVALID) { result.handle_type = b.handle_type; } else if (b.handle_type == DT_INVALID) { result.handle_type = a.handle_type; } else if (a.handle_type == b.handle_type) { result.handle_type = a.handle_type; } else { return errors::InvalidArgument( "Mismatched resource types: ", DataTypeString(a.handle_type), " vs. ", DataTypeString(b.handle_type)); } TF_RETURN_IF_ERROR( a.handle_shape.MergeWith(b.handle_shape, &result.handle_shape)); return result; } }
#include "tensorflow/compiler/jit/shape_inference.h" #include <map> #include <memory> #include <vector> #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/compiler/jit/test_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/status.h" namespace tensorflow { namespace { TEST(ShapeInferenceTest, Basics) { Scope root = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(root.WithOpName("A"), DT_FLOAT, ops::Placeholder::Shape({2, 3})); auto b = ops::Placeholder(root.WithOpName("B"), DT_FLOAT, ops::Placeholder::Shape({3})); auto c = ops::Placeholder(root.WithOpName("C"), DT_FLOAT); auto d = ops::Add(root.WithOpName("D"), a, b); auto e = ops::Add(root.WithOpName("E"), d, c); auto f = ops::Neg(root.WithOpName("F"), e); auto g = ops::AddN(root.WithOpName("G"), std::initializer_list<Output>{e, f}); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_CHECK_OK(root.ToGraph(graph.get())); GraphShapeInfo shape_info; TF_ASSERT_OK(InferShapes(graph.get(), {}, nullptr, &shape_info)); std::map<string, std::vector<PartialTensorShape>> expected = { {"A", {PartialTensorShape({2, 3})}}, {"B", {PartialTensorShape({3})}}, {"C", {PartialTensorShape()}}, {"D", {PartialTensorShape({2, 3})}}, {"E", {PartialTensorShape()}}, {"F", {PartialTensorShape()}}, {"G", {PartialTensorShape()}}, }; TF_EXPECT_OK(ShapeAnnotationsMatch(*graph, shape_info, expected)); } TEST(ShapeInferenceTest, UseArgShapesForVariableBatchSize) { Scope root = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(root.WithOpName("A"), DT_FLOAT, ops::Placeholder::Shape({-1, 3})); auto b = ops::Placeholder(root.WithOpName("B"), DT_FLOAT, ops::Placeholder::Shape({-1, 3})); auto c = ops::Add(root.WithOpName("C"), a, b); auto d = ops::Neg(root.WithOpName("D"), c); a.node()->AddAttr("_index", 0); b.node()->AddAttr("_index", 1); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_CHECK_OK(root.ToGraph(graph.get())); std::map<int, InferredShape> arg_shapes; arg_shapes[0].shape = TensorShape({2, 3}); arg_shapes[1].shape = TensorShape({2, 3}); GraphShapeInfo shape_info; TF_ASSERT_OK(InferShapes(graph.get(), arg_shapes, nullptr, &shape_info)); std::map<string, std::vector<PartialTensorShape>> expected = { {"A", {PartialTensorShape({2, 3})}}, {"B", {PartialTensorShape({2, 3})}}, {"C", {PartialTensorShape({2, 3})}}, {"D", {PartialTensorShape({2, 3})}}, }; TF_EXPECT_OK(ShapeAnnotationsMatch(*graph, shape_info, expected)); } TEST(ShapeInferenceTest, UseArgShapesForVariableBatchSizeIncompleteUserArgs) { Scope root = Scope::NewRootScope().ExitOnError(); auto a = ops::Placeholder(root.WithOpName("A"), DT_FLOAT, ops::Placeholder::Shape({-1, 3})); auto b = ops::Placeholder(root.WithOpName("B"), DT_FLOAT, ops::Placeholder::Shape({-1, 3})); auto c = ops::Add(root.WithOpName("C"), a, b); auto d = ops::Neg(root.WithOpName("D"), c); a.node()->AddAttr("_index", 0); b.node()->AddAttr("_index", 0); std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_CHECK_OK(root.ToGraph(graph.get())); std::map<int, InferredShape> arg_shapes; arg_shapes[0].shape = TensorShape({2, 3}); GraphShapeInfo shape_info; TF_ASSERT_OK(InferShapes(graph.get(), arg_shapes, nullptr, &shape_info)); std::map<string, std::vector<PartialTensorShape>> expected = { {"A", {PartialTensorShape({2, 3})}}, {"B", {PartialTensorShape({2, 3})}}, {"C", {PartialTensorShape({2, 3})}}, {"D", {PartialTensorShape({2, 3})}}, }; TF_EXPECT_OK(ShapeAnnotationsMatch(*graph, shape_info, expected)); } TEST(ShapeInferenceTest, WhileLoop) { Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto dummy = ops::Placeholder(scope.WithOpName("Dummy"), DT_INT32, ops::Placeholder::Shape({})); auto source = ops::Placeholder(scope.WithOpName("source"), DT_INT32, ops::Placeholder::Shape({})); auto enter = ops::internal::Enter(scope.WithOpName("while/Enter"), source, "aloop"); auto enter2 = ops::internal::Enter(scope.WithOpName("while/Enter2"), source, "aloop"); auto merge = ops::Merge(scope.WithOpName("while/Merge"), std::initializer_list<Input>{enter, dummy}); auto ten = ops::Const<int32>( scope.WithOpName("while/Less/y").WithControlDependencies(merge.output), 10); auto less = ops::Less(scope.WithOpName("while/Less"), merge.output, ten); auto loop_cond = ops::LoopCond(scope.WithOpName("while/LoopCond"), less); auto switch_node = ops::Switch(scope.WithOpName("while/Switch"), merge.output, loop_cond); auto exit = ops::internal::Exit(scope.WithOpName("while/Exit"), switch_node.output_false); auto identity = ops::Identity(scope.WithOpName("while/Identity"), switch_node.output_true); auto identity_shape = ops::Const<int32>(scope.WithOpName("while/Identity/shape"), {}); auto identity_reshaped = ops::Reshape( scope.WithOpName("while/Identity/reshaped"), identity, identity_shape); auto one = ops::Const<int32>( scope.WithOpName("while/add/y").WithControlDependencies(identity), 1); auto add = ops::Add(scope.WithOpName("while/add"), identity_reshaped, one); auto next_iteration = ops::NextIteration(scope.WithOpName("while/NextIteration"), add); auto sink = ops::Identity(scope.WithOpName("sink"), exit); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(next_iteration.node(), 0, merge.output.node(), 1); TF_EXPECT_OK(scope.ToGraph(&graph)); } GraphShapeInfo shape_info; TF_ASSERT_OK(InferShapes(&graph, {}, nullptr, &shape_info)); std::map<string, std::vector<PartialTensorShape>> expected = { {"while/Identity", {PartialTensorShape()}}, {"while/add", {PartialTensorShape({})}}, }; TF_EXPECT_OK(ShapeAnnotationsMatch(graph, shape_info, expected)); } TEST(ShapeInferenceTest, WhileLoopWithResource) { Graph graph(OpRegistry::Global()); { Scope scope = Scope::NewRootScope().ExitOnError(); auto x = ops::VarHandleOp(scope.WithOpName("x"), DT_FLOAT, TensorShape({2, 3})); auto enter = ops::internal::Enter(scope.WithOpName("while/Enter"), x, "aloop"); auto dummy = ops::Placeholder(scope.WithOpName("dummy"), DT_RESOURCE); auto merge = ops::Merge(scope.WithOpName("while/Merge"), std::initializer_list<Input>{enter, dummy}); auto false_value = ops::Const<bool>(scope.WithOpName("false"), false); auto loop_cond = ops::LoopCond(scope.WithOpName("while/LoopCond"), false_value); auto switch_node = ops::Switch(scope.WithOpName("while/Switch"), merge.output, loop_cond); auto exit = ops::internal::Exit(scope.WithOpName("while/Exit"), switch_node.output_false); auto identity = ops::Identity(scope.WithOpName("while/Identity"), switch_node.output_true); auto next_iteration = ops::NextIteration(scope.WithOpName("while/NextIteration"), identity); auto sink = ops::Identity(scope.WithOpName("sink"), exit); scope.graph()->RemoveNode(dummy.node()); scope.graph()->AddEdge(next_iteration.node(), 0, merge.output.node(), 1); TF_EXPECT_OK(scope.ToGraph(&graph)); } GraphShapeInfo shape_info; TF_ASSERT_OK(InferShapes(&graph, {}, nullptr, &shape_info)); auto iter = shape_info.find("sink"); EXPECT_NE(iter, shape_info.end()); EXPECT_EQ(iter->second.size(), 1); EXPECT_EQ(iter->second.at(0).handle_type, DT_FLOAT); TensorShape resource_shape; EXPECT_TRUE(iter->second.at(0).handle_shape.AsTensorShape(&resource_shape)); EXPECT_EQ(resource_shape, TensorShape({2, 3})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/shape_inference.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/jit/shape_inference_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a08ec787-9d7c-4b53-a2d3-06716be6e35f
cpp
tensorflow/tensorflow
cutlass_gemm_fusion
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_fusion.cc
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_fusion_test.cc
#include "xla/service/gpu/kernels/cutlass_gemm_fusion.h" #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/kernels/custom_kernel_fusion.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/service/gpu/kernels/cutlass_gemm.h" #include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include "xla/service/pattern_matcher.h" #include "xla/shape.h" #include "xla/stream_executor/device_description.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { struct RootWithWorkspace { HloInstruction* root; HloInstruction* workspace; }; static RootWithWorkspace MatchRootWithWorkspace(HloInstruction* root) { RootWithWorkspace result; if (Match(root, match::Tuple(match::Op(&result.root), match::CustomCall( &result.workspace, {CustomKernelFusionPattern::kWorkspace})))) { return result; } return {root, nullptr}; } struct GemmWithUpcast { explicit GemmWithUpcast(HloDotInstruction* dot) : dot(dot) {} HloInstruction* dot; HloInstruction* lhs_upcast = nullptr; HloInstruction* rhs_upcast = nullptr; }; struct GemmWithDynamicSlice { explicit GemmWithDynamicSlice(HloDynamicUpdateSliceInstruction* update_slice) : update_slice(update_slice) {} std::vector<HloInstruction*> Instrs() { if (bitcast == nullptr) { return {dot, update_slice}; } return {dot, bitcast, update_slice}; } HloInstruction* dot = nullptr; HloInstruction* bitcast = nullptr; HloInstruction* update_slice = nullptr; }; absl::Status MatchRowMajorGemm(HloDotInstruction* dot) { if (dot->operand(0)->shape().dimensions_size() != 2 || dot->operand(1)->shape().dimensions_size() != 2) { return absl::InternalError("operands must have rank 2"); } if (dot->shape().layout().minor_to_major().back() != 0) { return absl::InternalError("The dot result must have row major layout."); } auto& dot_dims = dot->dot_dimension_numbers(); if (dot_dims.lhs_contracting_dimensions().size() != 1) { return absl::InternalError("Lhs contracting dimensions must be of size 1."); } if (dot_dims.rhs_contracting_dimensions().size() != 1) { return absl::InternalError("Rhs contracting dimensions must be of size 1."); } if (dot->operand(0)->shape().layout().minor_to_major(0) != dot_dims.lhs_contracting_dimensions()[0]) { return absl::InternalError( "Lhs contracting dimension should be along the minor axis (elements " "that are stored contigous in memory)."); } if (dot->operand(1)->shape().layout().minor_to_major(1) != dot_dims.rhs_contracting_dimensions()[0]) { return absl::InternalError( "Rhs contracting dimension should be along the major axis (elements " "that are NOT stored contigous in memory)."); } return absl::OkStatus(); } } static absl::Status MatchSimpleGemm( HloDotInstruction* dot, absl::Span<const PrimitiveType> support_dtypes) { TF_RETURN_IF_ERROR(MatchRowMajorGemm(dot)); for (PrimitiveType dtype : support_dtypes) { if (dot->operand(0)->shape().element_type() == dtype && dot->operand(1)->shape().element_type() == dtype && dot->shape().element_type() == dtype) { return absl::OkStatus(); } } return absl::InternalError("unsupported operands type"); } static absl::StatusOr<GemmWithUpcast> MatchGemmWithUpcast( HloDotInstruction* dot) { TF_RETURN_IF_ERROR(MatchRowMajorGemm(dot)); GemmWithUpcast match(dot); if (Match(const_cast<HloInstruction*>(dot->operand(0)), match::Convert(&match.lhs_upcast, match::Op())) && Match(const_cast<HloInstruction*>(dot->operand(1)), match::Convert(&match.rhs_upcast, match::Op()))) { return match; } if (Match(const_cast<HloInstruction*>(dot->operand(0)), match::Convert(&match.lhs_upcast, match::Op()))) { return match; } if (Match(const_cast<HloInstruction*>(dot->operand(1)), match::Convert(&match.rhs_upcast, match::Op()))) { return match; } return absl::InternalError("unsupported gemm with upcasing"); } template <typename Pattern> auto OptionalBitcast(HloInstruction** optional_bitcast, Pattern pattern) { return match::AnyOf<HloInstruction>(match::Bitcast(optional_bitcast, pattern), std::move(pattern)); } static absl::StatusOr<GemmWithDynamicSlice> MatchGemmWithDynamicUpdateSlice( HloDynamicUpdateSliceInstruction* update_slice) { GemmWithDynamicSlice match(update_slice); if (!Match(const_cast<HloInstruction*>(update_slice->update()), OptionalBitcast(&match.bitcast, match::Dot(&match.dot, match::Op(), match::Op())))) { return absl::InternalError("failed to match update slice instr"); } TF_RETURN_IF_ERROR(MatchRowMajorGemm(Cast<HloDotInstruction>(match.dot))); return match; } static bool AreInstructionsOnTheSameStream( absl::Span<const HloInstruction* const> instructions) { absl::flat_hash_set<int64_t> stream_set; for (const HloInstruction* inst : instructions) { auto gpu_config = inst->backend_config<GpuBackendConfig>(); if (!gpu_config.ok()) { continue; } stream_set.insert(gpu_config->operation_queue_id()); if (stream_set.size() > 1) { return false; } } return true; }; std::optional<CustomKernelFusionPattern::Match> CutlassGemmPattern::TryMatch( const se::DeviceDescription& device, HloInstruction* instr) const { auto* dot = DynCast<HloDotInstruction>(instr); if (!dot) return std::nullopt; auto matched = MatchSimpleGemm(dot, {PrimitiveType::F32}); if (!matched.ok()) return std::nullopt; CustomFusionConfig config; config.set_name("cutlass_gemm"); return Match{config, {instr}}; } std::optional<CustomKernelFusionPattern::Match> CutlassGemmWithDynamicUpdateSlicePattern::TryMatch( const se::DeviceDescription& device, HloInstruction* instr) const { auto* update_slice = DynCast<HloDynamicUpdateSliceInstruction>(instr); if (!update_slice) return std::nullopt; auto matched = MatchGemmWithDynamicUpdateSlice(update_slice); if (!matched.ok() || !AreInstructionsOnTheSameStream(matched->Instrs())) return std::nullopt; CustomFusionConfig config; config.set_name("cutlass_gemm_with_dynamic_update_slice"); Match match(config, matched->Instrs()); match.AddReplacement(matched->dot, [=](HloFusionInstruction* fusion) { HloComputation* parent = fusion->parent(); auto* dus = Cast<HloDynamicUpdateSliceInstruction>(matched->update_slice); bool has_bitcast = matched->bitcast != nullptr; const Shape dus_shape = has_bitcast ? matched->bitcast->shape() : matched->dot->shape(); auto* slice = parent->AddInstruction(HloInstruction::CreateDynamicSlice( dus_shape, fusion, dus->index_operands(), dus_shape.dimensions())); return parent->AddInstruction( HloInstruction::CreateBitcast(matched->dot->shape(), slice)); }); return match; } namespace { bool IsSupportedKernel(PrimitiveType lhs, PrimitiveType rhs, PrimitiveType dot) { constexpr std::array<std::array<PrimitiveType, 3>, 4> kSupportedKernels = { {{BF16, BF16, F32}, {F32, BF16, F32}, {BF16, S8, F32}}}; return absl::c_linear_search(kSupportedKernels, std::array<PrimitiveType, 3>{lhs, rhs, dot}); } } std::optional<CustomKernelFusionPattern::Match> CutlassGemmWithUpcastPattern::TryMatch(const se::DeviceDescription& device, HloInstruction* instr) const { auto* dot = DynCast<HloDotInstruction>(instr); if (!dot) return std::nullopt; absl::StatusOr<GemmWithUpcast> matched = MatchGemmWithUpcast(dot); if (!matched.ok()) { VLOG(3) << "No match due to unsupported gemm with upcast: " << matched.status(); return std::nullopt; } CustomFusionConfig config; config.set_name("cutlass_gemm_with_upcast"); HloInstruction* lhs = matched->lhs_upcast; HloInstruction* rhs = matched->rhs_upcast; PrimitiveType dot_type = dot->shape().element_type(); PrimitiveType lhs_type = lhs != nullptr ? lhs->operand(0)->shape().element_type() : dot->operand(0)->shape().element_type(); PrimitiveType rhs_type = rhs != nullptr ? rhs->operand(0)->shape().element_type() : dot->operand(1)->shape().element_type(); if (!IsSupportedKernel(lhs_type, rhs_type, dot_type)) { VLOG(3) << "No match due to unsupported kernel input types: " << PrimitiveType_Name(lhs_type) << "x" << PrimitiveType_Name(rhs_type) << "To" << PrimitiveType_Name(dot_type); return std::nullopt; } if (lhs != nullptr && rhs == nullptr) { return Match{config, {matched->lhs_upcast, instr}}; } else if (lhs == nullptr && rhs != nullptr) { return Match{config, {matched->rhs_upcast, instr}}; } else { return Match{config, {matched->lhs_upcast, matched->rhs_upcast, instr}}; } } class CutlassGemmFusion : public CustomKernelFusion { public: absl::StatusOr<std::vector<CustomKernel>> LoadKernels( const se::DeviceDescription& device, const HloComputation* computation) const final { auto* dot = DynCast<HloDotInstruction>(computation->root_instruction()); if (dot == nullptr) { return absl::InternalError( "cutlass_gemm requires ROOT operation to be a dot"); } TF_RETURN_IF_ERROR(MatchSimpleGemm(dot, {PrimitiveType::F32})); PrimitiveType dot_type = dot->shape().element_type(); auto* lhs = Cast<HloParameterInstruction>(dot->operand(0)); auto* rhs = Cast<HloParameterInstruction>(dot->operand(1)); kernel::gemm_universal::ArgsIndices indices = { lhs->parameter_number(), rhs->parameter_number(), computation->num_parameters()}; const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); size_t m = lhs_shape.dimensions(0); size_t k = lhs_shape.dimensions(1); size_t n = rhs_shape.dimensions(1); PrimitiveType lhs_type = lhs->shape().element_type(); PrimitiveType rhs_type = rhs->shape().element_type(); return GetCutlassGemmKernels("cutlass_gemm", dot_type, lhs_type, rhs_type, m, n, k, indices, {}, device); } }; class CutlassGemmWithUpcastFusion : public CustomKernelFusion { public: absl::StatusOr<std::vector<CustomKernel>> LoadKernels( const se::DeviceDescription& device, const HloComputation* computation) const final { auto* dot = DynCast<HloDotInstruction>(computation->root_instruction()); if (dot == nullptr) { return absl::InternalError( "cutlass_gemm_with_upcast requires ROOT operation to be a dot"); } TF_ASSIGN_OR_RETURN(GemmWithUpcast matched, MatchGemmWithUpcast(dot)); const HloParameterInstruction* lhs; const HloParameterInstruction* rhs; if (matched.lhs_upcast == nullptr && matched.rhs_upcast != nullptr) { lhs = Cast<HloParameterInstruction>(matched.dot->operand(0)); rhs = Cast<HloParameterInstruction>(matched.rhs_upcast->operand(0)); } else if (matched.lhs_upcast != nullptr && matched.rhs_upcast == nullptr) { lhs = Cast<HloParameterInstruction>(matched.lhs_upcast->operand(0)); rhs = Cast<HloParameterInstruction>(matched.dot->operand(1)); } else { lhs = Cast<HloParameterInstruction>(matched.lhs_upcast->operand(0)); rhs = Cast<HloParameterInstruction>(matched.rhs_upcast->operand(0)); } const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); size_t m = lhs_shape.dimensions(0); size_t k = lhs_shape.dimensions(1); size_t n = rhs_shape.dimensions(1); PrimitiveType dot_type = dot->shape().element_type(); PrimitiveType lhs_type = lhs_shape.element_type(); PrimitiveType rhs_type = rhs_shape.element_type(); kernel::gemm_universal::ArgsIndices args_indices = { lhs->parameter_number(), rhs->parameter_number(), computation->num_parameters()}; return GetCutlassGemmKernels("cutlass_gemm_with_upcast", dot_type, lhs_type, rhs_type, m, n, k, args_indices, {}, device); } }; class CutlassGemmWithDynamicUpdateSliceFusion : public CustomKernelFusion { public: absl::StatusOr<std::vector<CustomKernel>> LoadKernels( const se::DeviceDescription& device, const HloComputation* computation) const final { auto [root, workspace] = MatchRootWithWorkspace(computation->root_instruction()); auto* dus = DynCast<HloDynamicUpdateSliceInstruction>(root); if (dus == nullptr) { return absl::InternalError( "cutlass_gemm_with_dynamic_update_slice requires ROOT operation to " "be a dynamic update slice"); } TF_ASSIGN_OR_RETURN(auto matched, MatchGemmWithDynamicUpdateSlice(dus)); TF_RETURN_IF_ERROR( MatchSimpleGemm(Cast<HloDotInstruction>(matched.dot), {PrimitiveType::F32, PrimitiveType::BF16})); auto dot_type = matched.dot->shape().element_type(); auto* lhs = Cast<HloParameterInstruction>(matched.dot->operand(0)); auto* rhs = Cast<HloParameterInstruction>(matched.dot->operand(1)); auto* out = Cast<HloParameterInstruction>(matched.update_slice->operand(0)); kernel::gemm_universal::ArgsIndices args_indices = { lhs->parameter_number(), rhs->parameter_number(), out->parameter_number(), workspace != nullptr}; auto* offset = Cast<HloParameterInstruction>(matched.update_slice->operand(2)); kernel::gemm_universal::DynamicSliceIndices slices; slices.out = offset->parameter_number(); const Shape& lhs_shape = lhs->shape(); const Shape& rhs_shape = rhs->shape(); size_t m = lhs_shape.dimensions(0); size_t k = lhs_shape.dimensions(1); size_t n = rhs_shape.dimensions(1); PrimitiveType lhs_type = lhs->shape().element_type(); PrimitiveType rhs_type = rhs->shape().element_type(); return GetCutlassGemmKernels("cutlass_gemm_with_dynamic_update_slice", dot_type, lhs_type, rhs_type, m, n, k, args_indices, slices, device); } }; } XLA_REGISTER_CUSTOM_FUSION_PATTERN(::xla::gpu::CutlassGemmWithUpcastPattern); XLA_REGISTER_CUSTOM_FUSION_PATTERN( ::xla::gpu::CutlassGemmWithDynamicUpdateSlicePattern); XLA_REGISTER_CUSTOM_FUSION("cutlass_gemm", ::xla::gpu::CutlassGemmFusion); XLA_REGISTER_CUSTOM_FUSION("cutlass_gemm_with_upcast", ::xla::gpu::CutlassGemmWithUpcastFusion); XLA_REGISTER_CUSTOM_FUSION("cutlass_gemm_with_dynamic_update_slice", ::xla::gpu::CutlassGemmWithDynamicUpdateSliceFusion);
#include "xla/service/gpu/kernels/cutlass_gemm_fusion.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/statusor.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/literal_util.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/kernels/custom_kernel_fusion_pattern.h" #include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include "xla/service/gpu/transforms/custom_kernel_fusion_rewriter.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/verified_hlo_module.h" #include "xla/types.h" #include "xla/xla_data.pb.h" #include "tsl/platform/test.h" namespace xla::gpu { class CutlassFusionTest : public HloTestBase { public: int GpuSharedMemorySize() { return backend() .default_stream_executor() ->GetDeviceDescription() .shared_memory_per_block_optin(); } int CutlassGemmKernelSharedMemorySize(PrimitiveType dot_type, PrimitiveType lhs_type, PrimitiveType rhs_type, int m, int n, int k) { return kernel::gemm_universal::GetCutlassGemmKernels( "cutlass_gemm", dot_type, lhs_type, rhs_type, m, n, k, {0, 1, 2}, {}, backend().default_stream_executor()->GetDeviceDescription()) ->at(0) .shared_memory_bytes(); }; }; TEST_F(CutlassFusionTest, RowMajorGemm) { const char* hlo = R"( HloModule test ENTRY %main (p0: f32[15,19], p1: f32[19,17]) -> f32[15,17] { %p0 = f32[15,19]{1,0} parameter(0) %p1 = f32[19,17]{1,0} parameter(1) ROOT %r = f32[15,17]{1,0} dot(%p0, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %cutlass_gemm {{.*}} { ; CHECK: [[P0:%[^ ]+]] = f32[15,19]{1,0} parameter(0) ; CHECK: [[P1:%[^ ]+]] = f32[19,17]{1,0} parameter(1) ; CHECK: ROOT [[DOT:%[^ ]+]] = f32[15,17]{1,0} dot([[P0]], [[P1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[15,17]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"cutlass_gemm","kernel_index":0} ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithUpcast) { const char* hlo = R"( HloModule test ENTRY %main (p0: bf16[15,19], p1: f32[19,17]) -> f32[15,17] { %p0 = bf16[15,19]{1,0} parameter(0) %p1 = bf16[19,17]{1,0} parameter(1) %c1 = f32[19,17]{1,0} convert(%p1) ROOT %r = f32[15,17]{1,0} dot(%p0, %c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_upcast {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = bf16[15,19]{1,0} parameter ; CHECK-DAG: [[P1:%[^ ]+]] = bf16[19,17]{1,0} parameter ; CHECK: [[C1:%[^ ]+]] = f32[19,17]{1,0} convert([[P1]]) ; CHECK: ROOT [[DOT:%[^ ]+]] = f32[15,17]{1,0} dot([[P0]], [[C1]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[15,17]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_upcast, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"cutlass_gemm_with_upcast","kernel_index":0} ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithUpcastOfBothOperands) { const char* hlo = R"( HloModule test ENTRY %main (p0: bf16[15,19], p1: bf16[19,17]) -> f32[15,17] { %p0 = bf16[15,19]{1,0} parameter(0) %c1 = f32[15,19]{1,0} convert(%p0) %p1 = bf16[19,17]{1,0} parameter(1) %c2 = f32[19,17]{1,0} convert(%p1) ROOT %r = f32[15,17]{1,0} dot(%c1, %c2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_upcast {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = bf16[15,19]{1,0} parameter ; CHECK: [[C1:%[^ ]+]] = f32[15,19]{1,0} convert([[P0]]) ; CHECK-DAG: [[P1:%[^ ]+]] = bf16[19,17]{1,0} parameter ; CHECK: [[C2:%[^ ]+]] = f32[19,17]{1,0} convert([[P1]]) ; CHECK: ROOT [[DOT:%[^ ]+]] = f32[15,17]{1,0} dot([[C1]], [[C2]]), ; CHECK: lhs_contracting_dims={1}, rhs_contracting_dims={0} ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[15,17]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_upcast, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{"name":"cutlass_gemm_with_upcast","kernel_index":0} ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, DoNotPatternMatchNotImplementedKernelTypes) { const char* hlo = R"( HloModule test ENTRY %main (p0: bf16[15,19], p1: bf16[19,17]) -> f32[15,17] { %p0 = s8[15,19]{1,0} parameter(0) %c1 = f32[15,19]{1,0} convert(%p0) %p1 = s8[19,17]{1,0} parameter(1) %c2 = f32[19,17]{1,0} convert(%p1) ROOT %r = f32[15,17]{1,0} dot(%c1, %c2), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); absl::StatusOr<std::unique_ptr<VerifiedHloModule>> hlo_module = ParseAndReturnVerifiedModule(hlo); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); ASSERT_FALSE(pass.Run(hlo_module.value().get()).value()); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSlice) { const char* hlo = R"( HloModule test ENTRY %main (p0: f32[2,2,2], p1: f32[2,2], i: s32[]) -> f32[2,2,2] { %p0 = f32[2,2,2]{2,1,0} parameter(0) %p1 = f32[2,2]{1,0} parameter(1) %i = s32[] parameter(2) %dot = f32[2,2]{1,0} dot(%p1, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} %bc = f32[1,2,2]{2,1,0} bitcast(%dot) ROOT %r = f32[2,2,2]{2,1,0} dynamic-update-slice(%p0, %bc, %i, %i, %i) } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_dynamic_update_slice {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2,2]{2,1,0} parameter ; CHECK-DAG: [[P2:%[^ ]+]] = s32[] parameter ; CHECK-DAG: [[DOT:%[^ ]+]] = f32[2,2]{1,0} dot([[P0]], [[P0]]) ; CHECK-DAG: [[CAST:%[^ ]+]] = f32[1,2,2]{2,1,0} bitcast([[DOT]]) ; CHECK: ROOT [[DUS:%[^ ]+]] = f32[2,2,2]{2,1,0} dynamic-update-slice( ; CHECK: [[P1]], [[CAST]], [[P2]], [[P2]], [[P2]] ; CHECK: ) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[2,2,2]{2,1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_dynamic_update_slice, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{ ; CHECK: "name":"cutlass_gemm_with_dynamic_update_slice","kernel_index":0 ; CHECK: } ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithDynamicUpdateSlicePattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceMultipleUses) { const char* hlo = R"( HloModule test ENTRY %main { %p0 = f32[2,2,2]{2,1,0} parameter(0) %p1 = f32[2,2]{1,0} parameter(1) %i = s32[] parameter(2) %dot = f32[2,2]{1,0} dot(%p1, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} %add = f32[2,2]{1,0} add(%dot, %dot) %cast = f32[1,2,2]{2,1,0} bitcast(%dot) %dus = f32[2,2,2]{2,1,0} dynamic-update-slice(%p0, %cast, %i, %i, %i) ROOT %r = (f32[2,2]{1,0}, f32[2,2,2]{2,1,0}) tuple(%add, %dus) } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_dynamic_update_slice {{.*}} { ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter ; CHECK-DAG: [[P1:%[^ ]+]] = f32[2,2,2]{2,1,0} parameter ; CHECK-DAG: [[P2:%[^ ]+]] = s32[] parameter ; CHECK-DAG: [[DOT:%[^ ]+]] = f32[2,2]{1,0} dot([[P0]], [[P0]]) ; CHECK-DAG: [[CAST:%[^ ]+]] = f32[1,2,2]{2,1,0} bitcast([[DOT]]) ; CHECK: ROOT [[DUS:%[^ ]+]] = f32[2,2,2]{2,1,0} dynamic-update-slice( ; CHECK: [[P1]], [[CAST]], [[P2]], [[P2]], [[P2]] ; CHECK: ) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: [[OFFSET:%[^ ]+]] = s32[] parameter(2) ; CHECK: [[FUSION:%[^ ]+]] = f32[2,2,2]{2,1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_dynamic_update_slice, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{ ; CHECK: "name":"cutlass_gemm_with_dynamic_update_slice","kernel_index":0 ; CHECK: } ; CHECK: } ; CHECK: [[SLICE:%[^ ]+]] = f32[1,2,2]{2,1,0} dynamic-slice( ; CHECK: [[FUSION]], [[OFFSET]], [[OFFSET]], [[OFFSET]]), ; CHECK: dynamic_slice_sizes={1,2,2} ; CHECK: [[CAST:%[^. ]+]] = f32[2,2]{1,0} bitcast([[SLICE]]) ; CHECK: [[ADD:%[^. ]+]] = f32[2,2]{1,0} add([[CAST]], [[CAST]]) ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithDynamicUpdateSlicePattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceWithoutBitcast) { const char* hlo = R"( HloModule test ENTRY %main (p0: f32[4,2], p1: f32[2,2], i: s32[]) -> f32[4,2] { %p0 = f32[4,2]{1,0} parameter(0) %p1 = f32[2,2]{1,0} parameter(1) %i = s32[] parameter(2) %dot = f32[2,2]{1,0} dot(%p1, %p1), lhs_contracting_dims={1}, rhs_contracting_dims={0} ROOT %r = f32[4,2]{1,0} dynamic-update-slice(%p0, %dot, %i, %i) } )"; const char* expected = R"( ; CHECK: %cutlass_gemm_with_dynamic_update_slice {{.*}} { ; CHECK-DAG: [[P1:%[^ ]+]] = f32[4,2]{1,0} parameter ; CHECK-DAG: [[P0:%[^ ]+]] = f32[2,2]{1,0} parameter ; CHECK-DAG: [[DOT:%[^ ]+]] = f32[2,2]{1,0} dot([[P0]], [[P0]]) ; CHECK-DAG: [[P2:%[^ ]+]] = s32[] parameter ; CHECK: ROOT [[DUS:%[^ ]+]] = f32[4,2]{1,0} dynamic-update-slice([[P1]], [[DOT]], [[P2]], [[P2]]) ; CHECK: } ; CHECK: ENTRY %main {{.*}} { ; CHECK: ROOT [[FUSION:%[^ ]+]] = f32[4,2]{1,0} fusion ; CHECK: kind=kCustom, calls=%cutlass_gemm_with_dynamic_update_slice, ; CHECK: backend_config={ ; CHECK: "kind":"__custom_fusion", ; CHECK: "custom_fusion_config":{ ; CHECK: "name":"cutlass_gemm_with_dynamic_update_slice","kernel_index":0 ; CHECK: } ; CHECK: } ; CHECK: } )"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithDynamicUpdateSlicePattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); } TEST_F(CutlassFusionTest, RowMajorGemmKernel) { ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { arg0 = f32[100,784]{1,0} parameter(0) arg1 = f32[784,10]{1,0} parameter(1) gemm = (f32[100,10]{1,0}, s8[0]{0}) custom-call(arg0, arg1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} ROOT get-tuple-element = f32[100,10]{1,0} get-tuple-element((f32[100,10]{1,0}, s8[0]{0}) gemm), index=0 })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm { arg0 = f32[100,784]{1,0} parameter(0) arg1 = f32[784,10]{1,0} parameter(1) ROOT dot = f32[100,10]{1,0} dot(arg0, arg1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { arg0 = f32[100,784]{1,0} parameter(0) arg1 = f32[784,10]{1,0} parameter(1) ROOT _ = f32[100,10]{1,0} fusion(arg0, arg1), kind=kCustom, calls=cutlass_gemm, backend_config={"fusion_backend_config":{kind: "__custom_fusion", custom_fusion_config: {"name":"cutlass_gemm", "kernel_index":0}}} })"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, error_spec, false)); } TEST_F(CutlassFusionTest, GemmWithRightHandSideUpcastKernel) { ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) gemm = (f32[16,8]{1,0}, s8[0]{0}) custom-call(p0, c1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} ROOT get-tuple-element = f32[16,8]{1,0} get-tuple-element(gemm), index=0 })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm_with_upcast { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) ROOT _ = f32[16,8]{1,0} fusion(p0, p1), kind=kCustom, calls=cutlass_gemm_with_upcast, backend_config={"fusion_backend_config":{kind: "__custom_fusion", custom_fusion_config: {"name":"cutlass_gemm_with_upcast", "kernel_index":0}}} })"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, error_spec, false)); } TEST_F(CutlassFusionTest, GemmWithLeftHandAndRightHandSideUpcastKernel) { ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = bf16[16,32]{1,0} parameter(0) c0 = f32[16,32]{1,0} convert(p0) p1 = s8[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) gemm = (f32[16,8]{1,0}, s8[0]{0}) custom-call(c0, c1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} ROOT get-tuple-element = f32[16,8]{1,0} get-tuple-element(gemm), index=0 })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm_with_upcast { p0 = bf16[16,32]{1,0} parameter(0) c0 = f32[16,32]{1,0} convert(p0) p1 = s8[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) ROOT dot = f32[16,8]{1,0} dot(c0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} } ENTRY e { p0 = bf16[16,32]{1,0} parameter(0) p1 = s8[32,8]{1,0} parameter(1) ROOT _ = f32[16,8]{1,0} fusion(p0, p1), kind=kCustom, calls=cutlass_gemm_with_upcast, backend_config={"fusion_backend_config":{kind: "__custom_fusion", custom_fusion_config: {"name":"cutlass_gemm_with_upcast", "kernel_index":0}}} })"; EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, error_spec, false)); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceKernel) { if (GpuSharedMemorySize() < CutlassGemmKernelSharedMemorySize(BF16, BF16, BF16, 8, 8, 8)) { GTEST_SKIP_("The GPU does not have sufficient shared memory"); } ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = bf16[2,8,8]{2,1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) gemm.tuple = (bf16[8,8]{1,0}, s8[0]{0}) custom-call(p1, p1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} gemm = bf16[8,8]{1,0} get-tuple-element(gemm.tuple), index=0 cast = bf16[1,8,8]{2,1,0} bitcast(gemm) ROOT r = bf16[2,8,8]{2,1,0} dynamic-update-slice(p0, cast, p2, p3, p3) })"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm { p0.1 = bf16[8,8]{1,0} parameter(0) p1.1 = bf16[2,8,8]{2,1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) dot.1 = bf16[8,8]{1,0} dot(p0.1, p0.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} bc.1 = bf16[1,8,8]{2,1,0} bitcast(dot.1) r.1 = bf16[2,8,8]{2,1,0} dynamic-update-slice(p1.1, bc.1, p2, p3, p3) workspace = u8[1024]{0} custom-call(), custom_call_target="__custom_kernel_fusion$workspace", api_version=API_VERSION_TYPED_FFI ROOT tuple = (bf16[2,8,8]{2,1,0}, u8[1024]{0}) tuple(r.1, workspace) } ENTRY e { p0 = bf16[2,8,8]{2,1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) r.0 = (bf16[2,8,8]{2,1,0}, u8[1024]{0}) fusion(p1, p0, p2, p3), kind=kCustom, calls=%cutlass_gemm, backend_config={"fusion_backend_config":{"kind":"__custom_fusion","custom_fusion_config":{"name":"cutlass_gemm_with_dynamic_update_slice", "kernel_index":0}}} ROOT %get-tuple-element = bf16[2,8,8]{2,1,0} get-tuple-element(r.0), index=0 })"; Array3D<bfloat16> p0_arr(2, 8, 8); Array2D<bfloat16> p1_arr(8, 8); p1_arr.Each([](int64_t i, int64_t j, bfloat16* out) { *out = bfloat16{1.0f * i * j}; }); Array<int32_t> p2_arr({}, 1); Array<int32_t> p3_arr({}, 0); auto p0 = LiteralUtil::CreateFromArray(p0_arr); auto p1 = LiteralUtil::CreateFromArray(p1_arr); auto p2 = LiteralUtil::CreateFromArray(p2_arr); auto p3 = LiteralUtil::CreateFromArray(p3_arr); EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, {&p0, &p1, &p2, &p3}, error_spec, false)); } TEST_F(CutlassFusionTest, RowMajorGemmWithDynamicUpdateSliceKernelWithoutBitcast) { if (GpuSharedMemorySize() < CutlassGemmKernelSharedMemorySize(BF16, BF16, BF16, 8, 8, 8)) { GTEST_SKIP_("The GPU does not have sufficient shared memory"); } ErrorSpec error_spec{1e-3, 1e-3}; const char* hlo_text_cublas = R"( HloModule cublas ENTRY e { p0 = bf16[16,8]{1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) gemm.tuple = (bf16[8,8]{1,0}, s8[0]{0}) custom-call(p1, p1), custom_call_target="__cublas$gemm", backend_config={"gemm_backend_config":{"alpha_real":1,"beta":0,"dot_dimension_numbers":{"lhs_contracting_dimensions":[1],"rhs_contracting_dimensions":[0],"lhs_batch_dimensions":[],"rhs_batch_dimensions":[]},"alpha_imag":0,"precision_config":{"operand_precision":["DEFAULT","DEFAULT"]},"epilogue":"DEFAULT"}} gemm = bf16[8,8]{1,0} get-tuple-element(gemm.tuple), index=0 ROOT r = bf16[16,8]{1,0} dynamic-update-slice(p0, gemm, p2, p3) } )"; const char* hlo_text_custom_fusion = R"( HloModule cutlass cutlass_gemm { p0.1 = bf16[8,8]{1,0} parameter(0) p1.1 = bf16[16,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) dot.1 = bf16[8,8]{1,0} dot(p0.1, p0.1), lhs_contracting_dims={1}, rhs_contracting_dims={0} r.1 = bf16[16,8]{1,0} dynamic-update-slice(p1.1, dot.1, p2, p3) workspace = u8[1024]{0} custom-call(), custom_call_target="__custom_kernel_fusion$workspace", api_version=API_VERSION_TYPED_FFI ROOT tuple = (bf16[16,8]{1,0}, u8[1024]{0}) tuple(r.1, workspace) } ENTRY e { p0 = bf16[16,8]{1,0} parameter(0) p1 = bf16[8,8]{1,0} parameter(1) p2 = s32[] parameter(2) p3 = s32[] parameter(3) r.0 = (bf16[16,8]{1,0}, u8[1024]{0}) fusion(p1, p0, p2, p3), kind=kCustom, calls=%cutlass_gemm, backend_config={"fusion_backend_config":{"kind":"__custom_fusion","custom_fusion_config":{"name":"cutlass_gemm_with_dynamic_update_slice", "kernel_index":0}}} ROOT %get-tuple-element = bf16[16,8]{1,0} get-tuple-element(r.0), index=0 })"; Array2D<bfloat16> p0_arr(16, 8); Array2D<bfloat16> p1_arr(8, 8); p1_arr.Each([](int64_t i, int64_t j, bfloat16* out) { *out = bfloat16{1.0f * i * j}; }); Array<int32_t> p2_arr({}, 0); Array<int32_t> p3_arr({}, 1); auto p0 = LiteralUtil::CreateFromArray(p0_arr); auto p1 = LiteralUtil::CreateFromArray(p1_arr); auto p2 = LiteralUtil::CreateFromArray(p2_arr); auto p3 = LiteralUtil::CreateFromArray(p3_arr); EXPECT_TRUE(RunAndCompareTwoModules(hlo_text_cublas, hlo_text_custom_fusion, {&p0, &p1, &p2, &p3}, error_spec, false)); } TEST_F(CutlassFusionTest, GemmWithUpcastShouldBeFused) { const char* hlo = R"( ENTRY e { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; std::string expected = "CHECK: cutlass_gemm"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{1e-3, 1e-3})); } TEST_F(CutlassFusionTest, GemmWithUpcastWithALhsColumnMajorOperandShouldNotBeFused) { const char* hlo = R"( ENTRY e { p0 = f32[16,32]{0,1} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), std::nullopt); } TEST_F(CutlassFusionTest, GemmWithUpcastWithARhsColumnMajorOperandShouldNotBeFused) { const char* hlo = R"( ENTRY e { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[32,8]{0,1} parameter(1) c1 = f32[32,8]{0,1} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), std::nullopt); } TEST_F(CutlassFusionTest, GemmWithUpcastWithAColumnMajorDotResultShouldNotBeFused) { const char* hlo = R"( ENTRY e { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) ROOT dot = f32[16,8]{0,1} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={0} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), std::nullopt); } TEST_F(CutlassFusionTest, GemmWithUpcastLhsContractingDimensionShouldBeOnTheMinorAxis) { const char* hlo = R"( ENTRY e { p0 = f32[32,16]{1,0} parameter(0) p1 = bf16[32,8]{1,0} parameter(1) c1 = f32[32,8]{1,0} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={0}, rhs_contracting_dims={0} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), std::nullopt); } TEST_F(CutlassFusionTest, GemmWithUpcastRhsContractingDimensionShouldBeOnTheMajorAxis) { const char* hlo = R"( ENTRY e { p0 = f32[16,32]{1,0} parameter(0) p1 = bf16[8,32]{1,0} parameter(1) c1 = f32[8,32]{1,0} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={1}, rhs_contracting_dims={1} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), std::nullopt); } TEST_F(CutlassFusionTest, GemmWithUpcastWithBatchDimensionShouldNotBeFused) { const char* hlo = R"( ENTRY e { p0 = f32[4,16,32]{2,1,0} parameter(0) p1 = bf16[4,32,8]{2,1,0} parameter(1) c1 = f32[4,32,8]{2,1,0} convert(p1) ROOT dot = f32[4,16,8]{2,1,0} dot(p0, c1), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_contracting_dims={1} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); RunAndFilecheckHloRewrite(hlo, std::move(pass), std::nullopt); } TEST_F(CutlassFusionTest, GemmWithUpcastAndColumnMajorOperandsShouldBeFused) { const char* hlo = R"( ENTRY e { p0 = f32[32,16]{0,1} parameter(0) p1 = bf16[8,32]{0,1} parameter(1) c1 = f32[8,32]{0,1} convert(p1) ROOT dot = f32[16,8]{1,0} dot(p0, c1), lhs_contracting_dims={0}, rhs_contracting_dims={1} })"; CustomKernelFusionPatternRegistry patterns; patterns.Emplace<CutlassGemmWithUpcastPattern>(); auto device = TestGpuDeviceInfo::RTXA6000DeviceInfo(); CustomKernelFusionRewriter pass(&device, 0, &patterns); std::string expected = "CHECK: cutlass_gemm"; RunAndFilecheckHloRewrite(hlo, std::move(pass), expected); EXPECT_TRUE(RunAndCompare(hlo, ErrorSpec{1e-3, 1e-3})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/kernels/cutlass_gemm_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/kernels/cutlass_gemm_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b22227d5-e006-494b-ba20-d41d0438b437
cpp
abseil/abseil-cpp
sequence_lock
absl/flags/internal/sequence_lock.h
absl/flags/internal/sequence_lock_test.cc
#ifndef ABSL_FLAGS_INTERNAL_SEQUENCE_LOCK_H_ #define ABSL_FLAGS_INTERNAL_SEQUENCE_LOCK_H_ #include <stddef.h> #include <stdint.h> #include <atomic> #include <cassert> #include <cstring> #include "absl/base/optimization.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { inline constexpr size_t AlignUp(size_t x, size_t align) { return align * ((x + align - 1) / align); } class SequenceLock { public: constexpr SequenceLock() : lock_(kUninitialized) {} void MarkInitialized() { assert(lock_.load(std::memory_order_relaxed) == kUninitialized); lock_.store(0, std::memory_order_release); } bool TryRead(void* dst, const std::atomic<uint64_t>* src, size_t size) const { int64_t seq_before = lock_.load(std::memory_order_acquire); if (ABSL_PREDICT_FALSE(seq_before & 1) == 1) return false; RelaxedCopyFromAtomic(dst, src, size); std::atomic_thread_fence(std::memory_order_acquire); int64_t seq_after = lock_.load(std::memory_order_relaxed); return ABSL_PREDICT_TRUE(seq_before == seq_after); } void Write(std::atomic<uint64_t>* dst, const void* src, size_t size) { int64_t orig_seq = lock_.load(std::memory_order_relaxed); assert((orig_seq & 1) == 0); lock_.store(orig_seq + 1, std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_release); RelaxedCopyToAtomic(dst, src, size); lock_.store(orig_seq + 2, std::memory_order_release); } int64_t ModificationCount() const { int64_t val = lock_.load(std::memory_order_relaxed); assert(val != kUninitialized && (val & 1) == 0); return val / 2; } void IncrementModificationCount() { int64_t val = lock_.load(std::memory_order_relaxed); assert(val != kUninitialized); lock_.store(val + 2, std::memory_order_relaxed); } private: static void RelaxedCopyFromAtomic(void* dst, const std::atomic<uint64_t>* src, size_t size) { char* dst_byte = static_cast<char*>(dst); while (size >= sizeof(uint64_t)) { uint64_t word = src->load(std::memory_order_relaxed); std::memcpy(dst_byte, &word, sizeof(word)); dst_byte += sizeof(word); src++; size -= sizeof(word); } if (size > 0) { uint64_t word = src->load(std::memory_order_relaxed); std::memcpy(dst_byte, &word, size); } } static void RelaxedCopyToAtomic(std::atomic<uint64_t>* dst, const void* src, size_t size) { const char* src_byte = static_cast<const char*>(src); while (size >= sizeof(uint64_t)) { uint64_t word; std::memcpy(&word, src_byte, sizeof(word)); dst->store(word, std::memory_order_relaxed); src_byte += sizeof(word); dst++; size -= sizeof(word); } if (size > 0) { uint64_t word = 0; std::memcpy(&word, src_byte, size); dst->store(word, std::memory_order_relaxed); } } static constexpr int64_t kUninitialized = -1; std::atomic<int64_t> lock_; }; } ABSL_NAMESPACE_END } #endif
#include "absl/flags/internal/sequence_lock.h" #include <algorithm> #include <atomic> #include <thread> #include <tuple> #include <vector> #include "gtest/gtest.h" #include "absl/base/internal/sysinfo.h" #include "absl/container/fixed_array.h" #include "absl/time/clock.h" namespace { namespace flags = absl::flags_internal; class ConcurrentSequenceLockTest : public testing::TestWithParam<std::tuple<int, int>> { public: ConcurrentSequenceLockTest() : buf_bytes_(std::get<0>(GetParam())), num_threads_(std::get<1>(GetParam())) {} protected: const int buf_bytes_; const int num_threads_; }; TEST_P(ConcurrentSequenceLockTest, ReadAndWrite) { const int buf_words = flags::AlignUp(buf_bytes_, sizeof(uint64_t)) / sizeof(uint64_t); absl::FixedArray<std::atomic<uint64_t>> protected_buf(buf_words); for (auto& v : protected_buf) v = -1; flags::SequenceLock seq_lock; std::atomic<bool> stop{false}; std::atomic<int64_t> bad_reads{0}; std::atomic<int64_t> good_reads{0}; std::atomic<int64_t> unsuccessful_reads{0}; std::vector<std::thread> threads; for (int i = 0; i < num_threads_; i++) { threads.emplace_back([&]() { absl::FixedArray<char> local_buf(buf_bytes_); while (!stop.load(std::memory_order_relaxed)) { if (seq_lock.TryRead(local_buf.data(), protected_buf.data(), buf_bytes_)) { bool good = true; for (const auto& v : local_buf) { if (v != local_buf[0]) good = false; } if (good) { good_reads.fetch_add(1, std::memory_order_relaxed); } else { bad_reads.fetch_add(1, std::memory_order_relaxed); } } else { unsuccessful_reads.fetch_add(1, std::memory_order_relaxed); } } }); } while (unsuccessful_reads.load(std::memory_order_relaxed) < num_threads_) { absl::SleepFor(absl::Milliseconds(1)); } seq_lock.MarkInitialized(); absl::Time deadline = absl::Now() + absl::Seconds(5); for (int i = 0; i < 100 && absl::Now() < deadline; i++) { absl::FixedArray<char> writer_buf(buf_bytes_); for (auto& v : writer_buf) v = i; seq_lock.Write(protected_buf.data(), writer_buf.data(), buf_bytes_); absl::SleepFor(absl::Microseconds(10)); } stop.store(true, std::memory_order_relaxed); for (auto& t : threads) t.join(); ASSERT_GE(good_reads, 0); ASSERT_EQ(bad_reads, 0); } std::vector<int> MultiplicativeRange(int low, int high, int scale) { std::vector<int> result; for (int current = low; current < high; current *= scale) { result.push_back(current); } result.push_back(high); return result; } #ifndef ABSL_HAVE_THREAD_SANITIZER const int kMaxThreads = absl::base_internal::NumCPUs(); #else const int kMaxThreads = std::min(absl::base_internal::NumCPUs(), 4); #endif std::vector<int> InterestingBufferSizes() { std::vector<int> ret; for (int v : MultiplicativeRange(1, 128, 2)) { ret.push_back(v); if (v > 1) { ret.push_back(v - 1); } ret.push_back(v + 1); } return ret; } INSTANTIATE_TEST_SUITE_P( TestManyByteSizes, ConcurrentSequenceLockTest, testing::Combine( testing::ValuesIn(InterestingBufferSizes()), testing::ValuesIn(MultiplicativeRange(1, kMaxThreads, 2)))); class SequenceLockTest : public testing::TestWithParam<int> {}; TEST_P(SequenceLockTest, SingleThreaded) { const int size = GetParam(); absl::FixedArray<std::atomic<uint64_t>> protected_buf( flags::AlignUp(size, sizeof(uint64_t)) / sizeof(uint64_t)); flags::SequenceLock seq_lock; seq_lock.MarkInitialized(); std::vector<char> src_buf(size, 'x'); seq_lock.Write(protected_buf.data(), src_buf.data(), size); std::vector<char> dst_buf(size, '0'); ASSERT_TRUE(seq_lock.TryRead(dst_buf.data(), protected_buf.data(), size)); ASSERT_EQ(src_buf, dst_buf); } INSTANTIATE_TEST_SUITE_P(TestManyByteSizes, SequenceLockTest, testing::Range(1, 128)); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/sequence_lock.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/sequence_lock_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
298fcdc7-3af6-4de5-9d69-893e38b98c6d
cpp
tensorflow/tensorflow
hlo_fusion_analysis
third_party/xla/xla/service/gpu/hlo_fusion_analysis.cc
third_party/xla/xla/service/gpu/hlo_fusion_analysis_test.cc
#include "xla/service/gpu/hlo_fusion_analysis.h" #include <algorithm> #include <limits> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/primitive_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/reduction_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" namespace xla { namespace gpu { namespace { bool IsInputFusibleNonStridedSlices( const absl::Span<const HloInstructionAdaptor> fusion_roots) { return absl::c_all_of(fusion_roots, [&](const HloInstructionAdaptor& root) { return IsSliceWithUnitStrides(&root.instruction()); }); } bool AllSliceInputsAreCompatible( const absl::Span<const HloInstructionAdaptor> fusion_roots) { const Shape& first_slice_operand_shape = fusion_roots[0].GetOperand(0).shape(); return absl::c_all_of(fusion_roots, [&](const HloInstructionAdaptor& slice) { return ShapeUtil::EqualIgnoringElementType(slice.GetOperand(0).shape(), first_slice_operand_shape); }); } std::optional<TransposeDescription> FindConsistentTransposeHero( const absl::InlinedVector<HloInstructionAdaptor, 2>& hlo_roots, const absl::InlinedVector<HloInstructionAdaptor, 2>& heroes) { std::optional<TransposeDescription> tiled_transpose_hero; std::vector<const HloInstruction*> non_transpose_roots; for (auto [root, hero] : llvm::zip(hlo_roots, heroes)) { if (auto tr = GetDescriptionForTiledTransposeEmitter(hero.instruction())) { if (!tiled_transpose_hero) { tiled_transpose_hero = tr; } else if (!tiled_transpose_hero->IsEquivalent(*tr)) { return std::nullopt; } } else { non_transpose_roots.push_back(&root.instruction()); } } if (!tiled_transpose_hero) return std::nullopt; for (auto* root : non_transpose_roots) { if (!ShapeUtil::IsReshapeOrTransposeBitcast( root->shape(), tiled_transpose_hero->input_shape(), true)) { return std::nullopt; } } return tiled_transpose_hero; } const Shape& GetShape(const HloInstructionAdaptor& adaptor) { return adaptor.shape(); } const Shape& GetShape(const HloInstruction* instruction) { return instruction->shape(); } template <typename Container> int SmallestBitWidth(const Container& args) { int bits = std::numeric_limits<int>::max(); for (const auto& operand : args) { const Shape& shape = GetShape(operand); if (!shape.IsArray()) continue; bits = std::min(bits, shape.element_type() == PRED ? 8 : primitive_util::BitWidth(shape.element_type())); } return bits; } } HloFusionAnalysis::HloFusionAnalysis( FusionBackendConfig fusion_backend_config, std::unique_ptr<HloFusionAdaptor> fusion, absl::InlinedVector<HloInstructionAdaptor, 2> fusion_roots, absl::InlinedVector<HloInstructionAdaptor, 2> fusion_heroes, const se::DeviceDescription* device_info, std::optional<TransposeDescription> tiled_transpose, HloFusionAnalysis::InputOutputInfo input_output_info) : fusion_backend_config_(std::move(fusion_backend_config)), fusion_(std::move(fusion)), fusion_roots_(std::move(fusion_roots)), fusion_heroes_(std::move(fusion_heroes)), device_info_(device_info), tiled_transpose_(tiled_transpose), input_output_info_(std::move(input_output_info)) {} HloFusionAnalysis HloFusionAnalysis::Create( FusionBackendConfig backend_config, std::unique_ptr<HloFusionAdaptor> fusion, const se::DeviceDescription* device_info) { absl::InlinedVector<HloInstructionAdaptor, 2> roots = fusion->GetRoots(); absl::InlinedVector<HloInstructionAdaptor, 2> heroes; for (auto root : roots) { heroes.push_back(FindNonTrivialHero(root)); } InputOutputInfo input_output_info{ SmallestBitWidth(fusion->GetParameters()), SmallestBitWidth(roots), }; std::optional<TransposeDescription> tiled_transpose_hero = FindConsistentTransposeHero(roots, heroes); return HloFusionAnalysis(std::move(backend_config), std::move(fusion), std::move(roots), std::move(heroes), device_info, tiled_transpose_hero, std::move(input_output_info)); } HloFusionAnalysis HloFusionAnalysis::Create( const HloInstruction& instruction, const se::DeviceDescription& device_info) { absl::StatusOr<GpuBackendConfig> gpu_backend_config = instruction.backend_config<GpuBackendConfig>(); FusionBackendConfig fusion_backend_config = gpu_backend_config.ok() ? gpu_backend_config->fusion_backend_config() : FusionBackendConfig::default_instance(); return Create(std::move(fusion_backend_config), HloFusionAdaptor::ForInstruction(&instruction), &device_info); } HloFusionAnalysis HloFusionAnalysis::Create( const HloInstruction& producer, const HloInstruction& consumer, const se::DeviceDescription& device_info) { absl::StatusOr<GpuBackendConfig> gpu_backend_config; if (consumer.has_backend_config()) { gpu_backend_config = consumer.backend_config<GpuBackendConfig>(); } if (!gpu_backend_config.ok() && producer.has_backend_config()) { gpu_backend_config = producer.backend_config<GpuBackendConfig>(); } FusionBackendConfig fusion_backend_config = gpu_backend_config.ok() ? gpu_backend_config->fusion_backend_config() : FusionBackendConfig::default_instance(); return HloFusionAnalysis::Create( std::move(fusion_backend_config), HloFusionAdaptor::ForProducerConsumer(&producer, &consumer), &device_info); } bool HloFusionAnalysis::HasConsistentTransposeHeros() const { return tiled_transpose_.has_value(); } static bool UseConcatenateFusion( absl::Span<const HloInstructionAdaptor> roots, absl::Span<const HloInstructionAdaptor> heroes) { if (heroes.size() != 1) return false; if (heroes.front().opcode() != HloOpcode::kConcatenate) return false; if (roots.front().shape().IsTuple()) return false; if (heroes.front().instruction().operand_count() > 4) return false; return true; } HloFusionAnalysis::EmitterFusionKind HloFusionAnalysis::GetEmitterFusionKind() const { if (fusion_backend_config_.kind() == kCustomFusionKind) { return EmitterFusionKind::kCustomFusion; } if (fusion_backend_config_.kind() == kTritonFusionKind || fusion_backend_config_.kind() == kTritonGemmFusionKind) { return EmitterFusionKind::kTriton; } if (fusion_backend_config_.kind() == kCuDnnFusionKind) { return EmitterFusionKind::kCuDnn; } if (input_output_info_.smallest_input_dtype_bits < 8 || input_output_info_.smallest_output_dtype_bits < 8) { if (fusion_roots_.size() > 1 && IsInputFusibleNonStridedSlices(fusion_roots_) && AllSliceInputsAreCompatible(fusion_roots_)) { return EmitterFusionKind::kInputSlices; } return EmitterFusionKind::kLoop; } std::optional<HloInstructionAdaptor> first_reduce_hero; for (auto [root, hero] : llvm::zip(fusion_roots_, fusion_heroes_)) { if (IsRealReductionHero(root.instruction(), hero.instruction())) { first_reduce_hero = hero; break; } } if (first_reduce_hero.has_value()) { bool valid_shapes = true; Shape hero_operand_shape = first_reduce_hero->GetOperand(0).shape(); for (auto [root, hero] : llvm::zip(fusion_roots_, fusion_heroes_)) { if (root == *first_reduce_hero) { continue; } if (!IsRealReductionHero(root.instruction(), hero.instruction())) { if (ShapeUtil::ElementsIn(root.shape()) != ShapeUtil::ElementsIn(hero_operand_shape)) { valid_shapes = false; break; } } else if (!AreReductionsMultiOutputFusionCompatible( &hero.instruction(), &first_reduce_hero->instruction())) { valid_shapes = false; break; } } if (valid_shapes) { return EmitterFusionKind::kReduction; } } if (HasConsistentTransposeHeros()) { return EmitterFusionKind::kTranspose; } if (fusion_roots_.size() > 1) { if (IsInputFusibleNonStridedSlices(fusion_roots_) && AllSliceInputsAreCompatible(fusion_roots_)) { return EmitterFusionKind::kInputSlices; } return EmitterFusionKind::kLoop; } if (fusion_roots_[0].opcode() == HloOpcode::kScatter) { return EmitterFusionKind::kScatter; } if (UseConcatenateFusion(fusion_roots_, fusion_heroes_)) { return EmitterFusionKind::kConcatenate; } return EmitterFusionKind::kLoop; } const HloInstruction* HloFusionAnalysis::FindHeroReduction() const { if (GetEmitterFusionKind() != EmitterFusionKind::kReduction) { return nullptr; } const auto& roots = fusion_roots(); CHECK(!roots.empty()); for (auto [root, hero] : llvm::zip(roots, fusion_heroes_)) { if (IsRealReductionHero(root.instruction(), hero.instruction())) { return &hero.instruction(); } } LOG(FATAL) << "Did not find a hero reduction"; } } }
#include "xla/service/gpu/hlo_fusion_analysis.h" #include <gtest/gtest.h> #include "xla/protobuf_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_description.pb.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" namespace xla::gpu { namespace { class HloFusionAnalysisTest : public HloTestBase {}; TEST_F(HloFusionAnalysisTest, DoesNotPeekOutsideBoundary) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %bitcast = s32[] bitcast(%reduce) })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kLoop); auto analysis_fused = HloFusionAnalysis::Create(*root->operand(0), *root, device_info); EXPECT_EQ(analysis_fused.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionWithMultipleUsers) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add %negate = f32[] negate(%reduce) %log = f32[] log(%reduce) ROOT %tuple = (f32[], f32[]) tuple(%negate, %log) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = (f32[], f32[]) fusion(%p0, %p1), kind=kLoop, calls=fused_computation })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto analysis = HloFusionAnalysis::Create( FusionBackendConfig::default_instance(), HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()), &device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fused_computation { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %negate = f32[] negate(%reduce) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = f32[] fusion(%p0, %p1), kind=kInput, calls=fused_computation })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create( FusionBackendConfig::default_instance(), HloFusionAdaptor::ForInstruction(root), &device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusionPartiallyFused) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %fusion = f32[] fusion(%p0, %p1), kind=kInput, calls=fusion ROOT %negate = f32[] negate(%fusion) })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root->operand(0), *root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusionPartiallyFusedInConsumer) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[] parameter(0) ROOT %negate = f32[] negate(%p0) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %fusion = f32[] fusion(%reduce), kind=kInput, calls=fusion })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root->operand(0), *root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReductionEpilogueFusionPartiallyFusedInBoth) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion.1 { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) ROOT %reduce = f32[] reduce(%p0, %p1), dimensions={0}, to_apply=add } fusion.2 { %p0 = f32[] parameter(0) ROOT %negate = f32[] negate(%p0) } ENTRY main { %p0 = f32[1024] parameter(0) %p1 = f32[] parameter(1) %fusion.1 = f32[] fusion(%p0, %p1), kind=kInput, calls=fusion.1 ROOT %fusion.2 = f32[] fusion(%fusion.1), kind=kInput, calls=fusion.2 })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root->operand(0), *root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ReduceMultiOutputFusionWithTransposeBitcast) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[1024, 512]{1,0} parameter(0) %p1 = f32[] parameter(1) %reduce = f32[1024]{0} reduce(%p0, %p1), dimensions={1}, to_apply=add %bitcast = f32[512, 1024]{0,1} bitcast(%p0) ROOT res = (f32[1024]{0}, f32[512, 1024]{0,1}) tuple(%reduce, %bitcast) } ENTRY main { %p0 = f32[1024, 512]{1,0} parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = (f32[1024]{0}, f32[512, 1024]{0,1}) fusion(%p0, %p1), kind=kInput, calls=fusion })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, InvalidReduceMultiOutputFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } fusion { %p0 = f32[1024, 1024]{1,0} parameter(0) %p1 = f32[] parameter(1) %reduce = f32[1024]{0} reduce(%p0, %p1), dimensions={0}, to_apply=add %reduce2 = f32[1024]{0} reduce(%p0, %p1), dimensions={1}, to_apply=add ROOT res = (f32[1024]{0}, f32[1024]{0}) tuple(reduce, reduce2) } ENTRY main { %p0 = f32[1024, 1024]{1,0} parameter(0) %p1 = f32[] parameter(1) ROOT %fusion = (f32[1024]{0}, f32[1024]{0}) fusion(%p0, %p1), kind=kInput, calls=fusion })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root, device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kLoop); } TEST_F(HloFusionAnalysisTest, InvalidDevice) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY main { %p0 = f32[1024,128] parameter(0) %p1 = f32[] parameter(1) %reduce = f32[128] reduce(%p0, %p1), dimensions={0}, to_apply=add ROOT %bitcast = s32[128] bitcast(%reduce) })")); stream_executor::GpuDeviceInfoProto device_info_proto; stream_executor::DeviceDescription device_info(device_info_proto); auto* root = module->entry_computation()->root_instruction(); auto analysis_fused = HloFusionAnalysis::Create(*root->operand(0), *root, device_info); EXPECT_EQ(analysis_fused.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kReduction); } TEST_F(HloFusionAnalysisTest, ConcatFusion) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule test_module fused_computation { %p0 = f32[128] parameter(0) %p1 = f32[128] parameter(1) %add = f32[128] add(p0, p0) %concat = f32[256] concatenate(%add, %p1), dimensions={0} ROOT %negate = f32[256] negate(%concat) } ENTRY main { %p0 = f32[128] parameter(0) %p1 = f32[128] parameter(1) ROOT %fusion = f32[256] fusion(%p0, %p1), kind=kInput, calls=fused_computation })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create( FusionBackendConfig::default_instance(), HloFusionAdaptor::ForInstruction(root), &device_info); EXPECT_EQ(analysis.GetEmitterFusionKind(), HloFusionAnalysis::EmitterFusionKind::kConcatenate); } TEST_F(HloFusionAnalysisTest, ExtractValidGpuBackendConfig) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fused_computation.1 { %x = s32[64] parameter(0) %y = s32[64] parameter(1) ROOT %root = s32[64] add(%x, %y) } fused_computation.2 { %x = s32[64] parameter(0) %y = s32[64] parameter(1) ROOT %root = s32[64] add(%x, %y) } ENTRY entry { %x = s32[64] parameter(0) %y = s32[64] parameter(1) %fusion.1 = s32[64] fusion(%x, %y), kind=kLoop, calls=fused_computation.1, backend_config={"fusion_backend_config": {kind: "__triton"}} ROOT %fusion.2 = s32[64] fusion(%fusion.1, %y), kind=kLoop, calls=fused_computation.2 })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* consumer = module->entry_computation()->root_instruction(); auto* producer = consumer->operand(0); auto producer_analysis = HloFusionAnalysis::Create(*producer, device_info); EXPECT_EQ(producer_analysis.fusion_backend_config().kind(), kTritonFusionKind); auto producer_consumer_analysis = HloFusionAnalysis::Create(*producer, *consumer, device_info); EXPECT_EQ(producer_consumer_analysis.fusion_backend_config().kind(), kTritonFusionKind); } TEST_F(HloFusionAnalysisTest, InvalidGpuBackendConfig_SingleInstruction_Ignored) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module ENTRY entry { %x = s32[64,64,64] parameter(0) %y = s32[64,64,64] parameter(1) ROOT %root = s32[64,128,64] concatenate(x, y), dimensions={1}, backend_config={"outer_dimension_partitions": ["1"]} })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* root = module->entry_computation()->root_instruction(); auto analysis = HloFusionAnalysis::Create(*root, device_info); EXPECT_TRUE( protobuf_util::ProtobufEquals(analysis.fusion_backend_config(), FusionBackendConfig::default_instance())); } TEST_F(HloFusionAnalysisTest, InvalidGpuBackendConfig_ProducerConsumer_Ignored) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule module fused_computation { %x = s32[64] parameter(0) %y = s32[64] parameter(1) ROOT %root = s32[64] add(%x, %y) } ENTRY entry { %x = s32[64] parameter(0) %y = s32[64] parameter(1) %fusion = s32[64] fusion(%x, %y), kind=kLoop, calls=fused_computation, backend_config={"invalid_field": "some_value"} ROOT %root = s32[128] concatenate(fusion, y), dimensions={0}, backend_config={"invalid_field": "some_value"} })")); auto device_info = TestGpuDeviceInfo::RTXA6000DeviceInfo(); auto* consumer = module->entry_computation()->root_instruction(); auto* producer = consumer->operand(0); auto analysis = HloFusionAnalysis::Create(*producer, *consumer, device_info); EXPECT_TRUE( protobuf_util::ProtobufEquals(analysis.fusion_backend_config(), FusionBackendConfig::default_instance())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/hlo_fusion_analysis.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/hlo_fusion_analysis_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
db830d9b-54d6-4e33-a5a4-45840555a2d1
cpp
tensorflow/tensorflow
fuse_add_to_conv
tensorflow/lite/delegates/gpu/common/transformations/fuse_add_to_conv.cc
tensorflow/lite/delegates/gpu/common/transformations/fuse_add_to_conv_test.cc
#include "tensorflow/lite/delegates/gpu/common/transformations/fuse_add_to_conv.h" #include <any> #include <memory> #include <string> #include <variant> #include <vector> #include "absl/types/any.h" #include "absl/types/variant.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" namespace tflite { namespace gpu { namespace { void FuseBiasWithAddAttributes(const ElementwiseAttributes& add_attr, const int channels, Tensor<Linear, DataType::FLOAT32>* bias) { auto add = std::get_if<Tensor<Linear, DataType::FLOAT32>>(&add_attr.param); auto add_scalar = std::get_if<float>(&add_attr.param); if (bias->data.empty()) { *bias = MakeZeroTensor<Linear, DataType::FLOAT32>(Linear(channels)); } for (int d = 0; d < channels; ++d) { bias->data[d] += add ? add->data[d] : *add_scalar; } } class MergeConvolutionWithAdd : public SequenceTransformation { public: int ExpectedSequenceLength() const final { return 2; } TransformResult ApplyToNodesSequence(const std::vector<Node*>& sequence, GraphFloat32* graph) final { auto& conv_node = *sequence[0]; if (graph->FindInputs(conv_node.id).size() != 1) { return {TransformStatus::DECLINED, "This fusion is only applicable to ops with one runtime input."}; } auto& add_node = *sequence[1]; if (add_node.operation.type != ToString(OperationType::ADD)) { return {TransformStatus::SKIPPED, ""}; } ElementwiseAttributes add_attr = std::any_cast<ElementwiseAttributes>(add_node.operation.attributes); if (!std::holds_alternative<Tensor<Linear, DataType::FLOAT32>>( add_attr.param) && !std::holds_alternative<float>(add_attr.param)) { return {TransformStatus::DECLINED, "This fuse applicable only for broadcast or scalar addition."}; } if (conv_node.operation.type == ToString(OperationType::CONVOLUTION_2D)) { Convolution2DAttributes* conv_attr = std::any_cast<Convolution2DAttributes>( &conv_node.operation.attributes); FuseConvolution2DWithAdd(add_attr, conv_attr); } else if (conv_node.operation.type == ToString(OperationType::CONVOLUTION_TRANSPOSED)) { ConvolutionTransposedAttributes* conv_attr = std::any_cast<ConvolutionTransposedAttributes>( &conv_node.operation.attributes); FuseConvolutionTransposedWithAdd(add_attr, conv_attr); } else if (conv_node.operation.type == ToString(OperationType::DEPTHWISE_CONVOLUTION)) { DepthwiseConvolution2DAttributes* conv_attr = std::any_cast<DepthwiseConvolution2DAttributes>( &conv_node.operation.attributes); FuseDepthwiseConvolution2DWithAdd(add_attr, conv_attr); } else if (conv_node.operation.type == ToString(OperationType::FULLY_CONNECTED)) { FullyConnectedAttributes* conv_attr = std::any_cast<FullyConnectedAttributes>( &conv_node.operation.attributes); FuseFullyConnectedWithAdd(add_attr, conv_attr); } else { return {TransformStatus::SKIPPED, ""}; } absl::Status status = RemoveFollowingNode(graph, &add_node, &conv_node); if (!status.ok()) { return {TransformStatus::INVALID, "Unable to remove add node after convolution: " + std::string(status.message())}; } return {TransformStatus::APPLIED, ""}; } }; void FuseAddWithConvolution2D(const ElementwiseAttributes& add_attr, Convolution2DAttributes* attr) { auto add = std::get_if<Tensor<Linear, DataType::FLOAT32>>(&add_attr.param); auto add_scalar = std::get_if<float>(&add_attr.param); if (attr->bias.data.empty()) { attr->bias = MakeZeroTensor<Linear, DataType::FLOAT32>( Linear(attr->weights.shape.o)); } for (int d = 0; d < attr->weights.shape.o; ++d) { float sum = 0.0f; for (int s = 0; s < attr->weights.shape.i; ++s) { const float add_value = add ? add->data[s] : *add_scalar; for (int k_y = 0; k_y < attr->weights.shape.h; ++k_y) { for (int k_x = 0; k_x < attr->weights.shape.w; ++k_x) { const int index = attr->weights.shape.LinearIndex({{d, k_y, k_x, s}}); sum += add_value * attr->weights.data[index]; } } } attr->bias.data[d] += sum; } } class MergeAddWithConvolution : public SequenceTransformation { public: int ExpectedSequenceLength() const final { return 2; } TransformResult ApplyToNodesSequence(const std::vector<Node*>& sequence, GraphFloat32* graph) final { auto& conv_node = *sequence[1]; if (graph->FindInputs(conv_node.id).size() != 1) { return {TransformStatus::DECLINED, "This fusion is only applicable to ops with one runtime input."}; } auto& add_node = *sequence[0]; if (add_node.operation.type != ToString(OperationType::ADD)) { return {TransformStatus::SKIPPED, ""}; } ElementwiseAttributes add_attr = std::any_cast<ElementwiseAttributes>(add_node.operation.attributes); if (!std::holds_alternative<Tensor<Linear, DataType::FLOAT32>>( add_attr.param) && !std::holds_alternative<float>(add_attr.param)) { return {TransformStatus::DECLINED, "This fuse applicable only for broadcast or scalar addition."}; } if (conv_node.operation.type == ToString(OperationType::CONVOLUTION_2D)) { Convolution2DAttributes* conv_attr = std::any_cast<Convolution2DAttributes>( &conv_node.operation.attributes); if (conv_attr->groups != 1) { return {TransformStatus::DECLINED, "This fuse not applicable for grouped convolution."}; } if (conv_attr->padding.appended.w != 0 || conv_attr->padding.appended.h != 0 || conv_attr->padding.prepended.w != 0 || conv_attr->padding.prepended.h != 0) { return {TransformStatus::DECLINED, "This fuse applicable only for convolution that do not read " "out of bound elements."}; } FuseAddWithConvolution2D(add_attr, conv_attr); } else { return {TransformStatus::SKIPPED, ""}; } absl::Status status = RemovePrecedingNode(graph, &add_node, &conv_node); if (!status.ok()) { return {TransformStatus::INVALID, "Unable to remove mul node after convolution: " + std::string(status.message())}; } return {TransformStatus::APPLIED, ""}; } }; } std::unique_ptr<SequenceTransformation> NewMergeConvolutionWithAdd() { return std::make_unique<MergeConvolutionWithAdd>(); } std::unique_ptr<SequenceTransformation> NewMergeAddWithConvolution() { return std::make_unique<MergeAddWithConvolution>(); } void FuseConvolution2DWithAdd(const ElementwiseAttributes& add_attr, Convolution2DAttributes* attr) { FuseBiasWithAddAttributes(add_attr, attr->weights.shape.o, &attr->bias); } void FuseDepthwiseConvolution2DWithAdd(const ElementwiseAttributes& add_attr, DepthwiseConvolution2DAttributes* attr) { FuseBiasWithAddAttributes( add_attr, attr->weights.shape.o * attr->weights.shape.i, &attr->bias); } void FuseConvolutionTransposedWithAdd(const ElementwiseAttributes& add_attr, ConvolutionTransposedAttributes* attr) { FuseBiasWithAddAttributes(add_attr, attr->weights.shape.o, &attr->bias); } void FuseFullyConnectedWithAdd(const ElementwiseAttributes& add_attr, FullyConnectedAttributes* attr) { FuseBiasWithAddAttributes(add_attr, attr->weights.shape.o, &attr->bias); } } }
#include "tensorflow/lite/delegates/gpu/common/transformations/fuse_add_to_conv.h" #include <any> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/types/any.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/model_transformer.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace { TEST(MergeConvolutionWithAddTest, Smoke) { GraphFloat32 graph; auto input = graph.NewValue(); input->tensor.shape = BHWC(1, 4, 4, 8); Convolution2DAttributes conv_attr; conv_attr.padding.prepended = HW(0, 0); conv_attr.padding.appended = HW(0, 0); conv_attr.strides = HW(1, 1); conv_attr.dilations = HW(1, 1); conv_attr.weights.shape = OHWI(16, 3, 2, 8); conv_attr.weights.data.resize(conv_attr.weights.shape.DimensionsProduct()); conv_attr.bias.shape = Linear(16); conv_attr.bias.data.resize(16); Tensor<Linear, DataType::FLOAT32> add_tensor; add_tensor.shape = Linear(16); add_tensor.data.resize(16); ElementwiseAttributes add_attr; add_attr.param = add_tensor; auto conv_node = graph.NewNode(); conv_node->operation.type = ToString(OperationType::CONVOLUTION_2D); conv_node->operation.attributes = conv_attr; auto add_node = graph.NewNode(); add_node->operation.type = ToString(OperationType::ADD); add_node->operation.attributes = add_attr; ASSERT_TRUE(graph.AddConsumer(conv_node->id, input->id).ok()); Value* output = nullptr; ASSERT_TRUE(AddOutput(&graph, add_node, &output).ok()); output->tensor.shape = BHWC(1, 4, 4, 16); Value* link1 = nullptr; ASSERT_TRUE(ConnectTwoNodes(&graph, conv_node, add_node, &link1).ok()); link1->tensor.shape = BHWC(1, 4, 4, 16); ASSERT_EQ(2, graph.nodes().size()); ASSERT_EQ(3, graph.values().size()); auto transformation = NewMergeConvolutionWithAdd(); ModelTransformer transformer(&graph); transformer.Apply("merge_convolution_with_add", transformation.get()); EXPECT_EQ(1, graph.nodes().size()); EXPECT_EQ(2, graph.values().size()); EXPECT_EQ(ToString(OperationType::CONVOLUTION_2D), graph.nodes()[0]->operation.type); } TEST(FuseAddAfterConvolution2DTest, Smoke) { Convolution2DAttributes attr; attr.weights.shape = OHWI(2, 1, 2, 2); attr.weights.data = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f}; attr.bias.shape = Linear(2); attr.bias.data = {1.1f, 1.2f}; Tensor<Linear, DataType::FLOAT32> add_tensor; add_tensor.shape = Linear(2); add_tensor.data = {0.3f, 0.7f}; ElementwiseAttributes add_attr; add_attr.param = add_tensor; FuseConvolution2DWithAdd(add_attr, &attr); EXPECT_THAT(attr.weights.data, Pointwise(FloatNear(1e-6), {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f})); EXPECT_THAT(attr.bias.data, Pointwise(FloatNear(1e-6), {1.4f, 1.9f})); } TEST(FuseAddAfterDepthwiseConvolution2DTest, Smoke) { DepthwiseConvolution2DAttributes attr; attr.weights.shape = OHWI(2, 1, 2, 2); attr.weights.data = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f}; attr.bias.shape = Linear(4); attr.bias.data = {1.1f, 1.2f, 1.3f, 1.4f}; Tensor<Linear, DataType::FLOAT32> add_tensor; add_tensor.shape = Linear(4); add_tensor.data = {0.3f, 0.7f, 0.5f, 0.1f}; ElementwiseAttributes add_attr; add_attr.param = add_tensor; FuseDepthwiseConvolution2DWithAdd(add_attr, &attr); EXPECT_THAT(attr.weights.data, Pointwise(FloatNear(1e-6), {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f})); EXPECT_THAT(attr.bias.data, Pointwise(FloatNear(1e-6), {1.4f, 1.9f, 1.8f, 1.5f})); } TEST(FuseAddAfterConvolutionTransposedTest, Smoke) { ConvolutionTransposedAttributes attr; attr.weights.shape = OHWI(2, 1, 2, 2); attr.weights.data = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f}; attr.bias.shape = Linear(2); attr.bias.data = {1.1f, 1.2f}; Tensor<Linear, DataType::FLOAT32> add_tensor; add_tensor.shape = Linear(2); add_tensor.data = {0.3f, 0.7f}; ElementwiseAttributes add_attr; add_attr.param = add_tensor; FuseConvolutionTransposedWithAdd(add_attr, &attr); EXPECT_THAT(attr.weights.data, Pointwise(FloatNear(1e-6), {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f})); EXPECT_THAT(attr.bias.data, Pointwise(FloatNear(1e-6), {1.4f, 1.9f})); } TEST(FuseAddAfterFullyConnectedTest, Smoke) { FullyConnectedAttributes attr; attr.weights.shape = OHWI(2, 1, 1, 2); attr.weights.data = {0.1f, 0.2f, 0.3f, 0.4f}; attr.bias.shape = Linear(2); attr.bias.data = {1.1f, 1.2f}; Tensor<Linear, DataType::FLOAT32> add_tensor; add_tensor.shape = Linear(2); add_tensor.data = {0.3f, 0.7f}; ElementwiseAttributes add_attr; add_attr.param = add_tensor; FuseFullyConnectedWithAdd(add_attr, &attr); EXPECT_THAT(attr.weights.data, Pointwise(FloatNear(1e-6), {0.1f, 0.2f, 0.3f, 0.4f})); EXPECT_THAT(attr.bias.data, Pointwise(FloatNear(1e-6), {1.4f, 1.9f})); } TEST(MergeAddWithConvolutionTest, Smoke) { GraphFloat32 graph; auto input = graph.NewValue(); input->tensor.shape = BHWC(1, 4, 4, 2); Tensor<Linear, DataType::FLOAT32> add_tensor; add_tensor.shape = Linear(2); add_tensor.data = {1.0f, 2.0f}; ElementwiseAttributes add_attr; add_attr.param = add_tensor; Convolution2DAttributes conv_attr; conv_attr.padding.prepended = HW(0, 0); conv_attr.padding.appended = HW(0, 0); conv_attr.strides = HW(1, 1); conv_attr.dilations = HW(1, 1); conv_attr.weights.shape = OHWI(2, 1, 2, 2); conv_attr.weights.data = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f}; conv_attr.bias.shape = Linear(2); conv_attr.bias.data = {1.1f, 1.2f}; auto conv_node = graph.NewNode(); conv_node->operation.type = ToString(OperationType::CONVOLUTION_2D); conv_node->operation.attributes = conv_attr; auto add_node = graph.NewNode(); add_node->operation.type = ToString(OperationType::ADD); add_node->operation.attributes = add_attr; ASSERT_TRUE(graph.AddConsumer(add_node->id, input->id).ok()); Value* output = nullptr; ASSERT_TRUE(AddOutput(&graph, conv_node, &output).ok()); output->tensor.shape = BHWC(1, 4, 3, 2); Value* link1 = nullptr; ASSERT_TRUE(ConnectTwoNodes(&graph, add_node, conv_node, &link1).ok()); link1->tensor.shape = BHWC(1, 4, 4, 2); ASSERT_EQ(2, graph.nodes().size()); ASSERT_EQ(3, graph.values().size()); auto transformation = NewMergeAddWithConvolution(); ModelTransformer transformer(&graph); transformer.Apply("merge_add_with_convolution", transformation.get()); EXPECT_EQ(1, graph.nodes().size()); EXPECT_EQ(2, graph.values().size()); EXPECT_EQ(ToString(OperationType::CONVOLUTION_2D), graph.nodes()[0]->operation.type); Convolution2DAttributes* conv_attr_new = std::any_cast<Convolution2DAttributes>( &graph.nodes()[0]->operation.attributes); EXPECT_THAT(conv_attr_new->bias.data, Pointwise(FloatNear(1e-6), {2.7f, 5.2f})); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/transformations/fuse_add_to_conv.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/transformations/fuse_add_to_conv_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bf5c041b-feb6-4665-97af-0b6a497e1521
cpp
tensorflow/tensorflow
identify_l2_normalization
tensorflow/lite/toco/graph_transformations/identify_l2_normalization.cc
tensorflow/lite/toco/graph_transformations/tests/identify_l2_normalization_test.cc
#include <cmath> #include <memory> #include <string> #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/lite/toco/graph_transformations/graph_transformations.h" #include "tensorflow/lite/toco/model.h" #include "tensorflow/lite/toco/tooling_util.h" namespace toco { ::tensorflow::Status IdentifyL2Normalization::Run(Model* model, std::size_t op_index, bool* modified) { *modified = false; const auto div_it = model->operators.begin() + op_index; const auto* div_or_mul_op = div_it->get(); OperatorType expected_op_type_producing_div_or_mul_input; if (div_or_mul_op->type == OperatorType::kDiv) { expected_op_type_producing_div_or_mul_input = OperatorType::kSqrt; } else if (div_or_mul_op->type == OperatorType::kMul) { expected_op_type_producing_div_or_mul_input = OperatorType::kRsqrt; } else { return absl::OkStatus(); } CHECK_EQ(div_or_mul_op->inputs.size(), 2); Operator* op_producing_div_or_mul_input[2] = { GetOpWithOutput(*model, div_or_mul_op->inputs[0]), GetOpWithOutput(*model, div_or_mul_op->inputs[1]), }; if (!op_producing_div_or_mul_input[1] || op_producing_div_or_mul_input[1]->type != expected_op_type_producing_div_or_mul_input) { return absl::OkStatus(); } Operator* sqrt_or_rsqrt_op = op_producing_div_or_mul_input[1]; CHECK_EQ(sqrt_or_rsqrt_op->inputs.size(), 1); Operator* op_producing_sqrt_or_rsqrt_input = GetOpWithOutput(*model, sqrt_or_rsqrt_op->inputs[0]); if (!op_producing_sqrt_or_rsqrt_input) { return absl::OkStatus(); } Operator* add_op = nullptr; Operator* op_producing_add_input = nullptr; if (op_producing_sqrt_or_rsqrt_input->type == OperatorType::kAdd || op_producing_sqrt_or_rsqrt_input->type == OperatorType::kMaximum) { add_op = op_producing_sqrt_or_rsqrt_input; bool add_can_be_removed = false; CHECK_EQ(op_producing_sqrt_or_rsqrt_input->inputs.size(), 2); for (int i = 0; i < 2; i++) { const auto& input_array = model->GetArray(op_producing_sqrt_or_rsqrt_input->inputs[i]); if (!input_array.buffer) { continue; } if (input_array.buffer->type != ArrayDataType::kFloat) { continue; } if (RequiredBufferSizeForShape(input_array.shape()) != 1) { continue; } const auto& input_float_data = input_array.GetBuffer<ArrayDataType::kFloat>().data; if (std::abs(input_float_data[0]) > 1e-3f) { continue; } add_can_be_removed = true; op_producing_add_input = GetOpWithOutput(*model, add_op->inputs[1 - i]); break; } if (!add_can_be_removed) { AddMessageF( "Giving up trying to identify L2Normalization subgraph " " because the operator producing the input to the square root, %s," ", does not match the expected pattern", LogName(*op_producing_sqrt_or_rsqrt_input)); return absl::OkStatus(); } } Operator* sum_op = add_op ? op_producing_add_input : op_producing_sqrt_or_rsqrt_input; if (sum_op->type != OperatorType::kSum) { AddMessageF( "Giving up trying to identify L2Normalization subgraph: " "expected Sum op, got %s", LogName(*sum_op)); return absl::OkStatus(); } Operator* square_op = GetOpWithOutput(*model, sum_op->inputs[0]); if (square_op->type != OperatorType::kSquare) { AddMessageF( "Giving up trying to identify L2Normalization subgraph: " "expected Square op, got %s", LogName(*square_op)); return absl::OkStatus(); } CHECK_EQ(square_op->inputs.size(), 1); if (square_op->inputs[0] != div_or_mul_op->inputs[0]) { AddMessageF( "Giving up trying to identify L2Normalization subgraph: %s does not " "take the same input as the Mul/Div node", LogName(*square_op)); return absl::OkStatus(); } auto* l2norm_op = new L2NormalizationOperator; l2norm_op->inputs = {div_or_mul_op->inputs[0]}; l2norm_op->outputs = div_or_mul_op->outputs; model->operators.emplace(div_it, l2norm_op); AddMessageF("Creating %s replacing equivalent subgraph", LogName(*l2norm_op)); DeleteOpAndArrays(model, square_op); DeleteOpAndArrays(model, sum_op); if (add_op) { DeleteOpAndArrays(model, add_op); } DeleteOpAndArrays(model, sqrt_or_rsqrt_op); DeleteOpAndArrays(model, div_or_mul_op); *modified = true; return absl::OkStatus(); } }
#include <tuple> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/toco/graph_transformations/graph_transformations.h" #include "tensorflow/lite/toco/model.h" namespace toco { namespace { void RunIdentifyL2Normalization(const std::vector<float>& input, const std::vector<int>& input_shape, const std::vector<int>& output_shape, const bool div_square = false) { Model model; Array& input0 = model.GetOrCreateArray("input0"); Array& output = model.GetOrCreateArray("output"); *input0.mutable_shape()->mutable_dims() = input_shape; input0.data_type = ArrayDataType::kFloat; input0.GetMutableBuffer<ArrayDataType::kFloat>().data = input; *output.mutable_shape()->mutable_dims() = output_shape; auto sq_op = new TensorFlowSquareOperator; sq_op->inputs = {"input0"}; sq_op->outputs = {"output"}; Array& sumoutput = model.GetOrCreateArray("Sumoutput"); *sumoutput.mutable_shape()->mutable_dims() = output_shape; auto sum_op = new TensorFlowSumOperator; sum_op->inputs = {sq_op->outputs[0]}; sum_op->outputs = {"Sumoutput"}; if (div_square) { Array& sqrtoutput = model.GetOrCreateArray("squarertoutput"); *sqrtoutput.mutable_shape()->mutable_dims() = output_shape; auto sqrt_op = new TensorFlowSqrtOperator; sqrt_op->inputs = {sum_op->outputs[0]}; sqrt_op->outputs = {"squarertoutput"}; Array& divoutput = model.GetOrCreateArray("Divoutput"); *divoutput.mutable_shape()->mutable_dims() = output_shape; auto div_op = new DivOperator; div_op->inputs = {"input0", sqrt_op->outputs[0]}; div_op->outputs = {"Divoutput"}; model.operators.push_back(std::unique_ptr<Operator>(div_op)); model.operators.push_back(std::unique_ptr<Operator>(sqrt_op)); model.operators.push_back(std::unique_ptr<Operator>(sum_op)); model.operators.push_back(std::unique_ptr<Operator>(sq_op)); } else { Array& rsqoutput = model.GetOrCreateArray("Rsquareoutput"); *rsqoutput.mutable_shape()->mutable_dims() = output_shape; auto rsqrt_op = new TensorFlowRsqrtOperator; rsqrt_op->inputs = {sum_op->outputs[0]}; rsqrt_op->outputs = {"Rsquareoutput"}; Array& muloutput = model.GetOrCreateArray("Muloutput"); *muloutput.mutable_shape()->mutable_dims() = output_shape; auto mul_op = new MulOperator; mul_op->inputs = {"input0", rsqrt_op->outputs[0]}; mul_op->outputs = {"Muloutput"}; model.operators.push_back(std::unique_ptr<Operator>(mul_op)); model.operators.push_back(std::unique_ptr<Operator>(rsqrt_op)); model.operators.push_back(std::unique_ptr<Operator>(sum_op)); model.operators.push_back(std::unique_ptr<Operator>(sq_op)); } bool modified; ASSERT_TRUE(IdentifyL2Normalization().Run(&model, 0, &modified).ok()); for (auto& op_it : model.operators) { Operator* op = op_it.get(); if (div_square) { EXPECT_FALSE(op->type == OperatorType::kDiv); EXPECT_FALSE(op->type == OperatorType::kSqrt); } else { EXPECT_FALSE(op->type == OperatorType::kMul); EXPECT_FALSE(op->type == OperatorType::kRsqrt); } EXPECT_FALSE(op->type == OperatorType::kAdd); EXPECT_FALSE(op->type == OperatorType::kSquare); } } TEST(IdentifyL2Normalization, MulRsqrtTest) { RunIdentifyL2Normalization( {3, 1, 4, 1, -5, 9, -2, 6, 5, 3, 5, 8}, {3, 4}, {3, 4}, false); } TEST(IdentifyL2Normalization, DivSqrtNormTest) { RunIdentifyL2Normalization( {3, 1, 4, 1, -5, 9, -2, 6, 5, 3, 5, 8}, {3, 4}, {3, 4}, true); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/graph_transformations/identify_l2_normalization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/graph_transformations/tests/identify_l2_normalization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
422bf0f2-be5f-4d65-a40c-dbfaaaace216
cpp
tensorflow/tensorflow
message_wrappers
tensorflow/core/distributed_runtime/message_wrappers.cc
tensorflow/core/distributed_runtime/message_wrappers_test.cc
#include "tensorflow/core/distributed_runtime/message_wrappers.h" #include <memory> #include "absl/status/status.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/named_tensor.pb.h" namespace tensorflow { bool ParseTensorProtoToTensor(const TensorProto& tensor_proto, Tensor* out_tensor) { if (tensor_proto.dtype() > 0 && tensor_proto.dtype() <= DataType_MAX) { Tensor parsed(tensor_proto.dtype()); if (parsed.FromProto(cpu_allocator(), tensor_proto)) { *out_tensor = parsed; return true; } } return false; } const string& InMemoryRunStepRequest::session_handle() const { return session_handle_; } void InMemoryRunStepRequest::set_session_handle(const string& handle) { session_handle_ = handle; } const string& InMemoryRunStepRequest::partial_run_handle() const { return partial_run_handle_; } void InMemoryRunStepRequest::set_partial_run_handle(const string& handle) { partial_run_handle_ = handle; } size_t InMemoryRunStepRequest::num_feeds() const { return feeds_.size(); } const string& InMemoryRunStepRequest::feed_name(size_t i) const { return feeds_[i].first; } Status InMemoryRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { *out_tensor = feeds_[i].second; return absl::OkStatus(); } Status InMemoryRunStepRequest::FeedValue(size_t i, TensorProto* out_tensor) const { feeds_[i].second.AsProtoTensorContent(out_tensor); return absl::OkStatus(); } void InMemoryRunStepRequest::add_feed(const string& name, const Tensor& value) { feeds_.emplace_back(name, value); } size_t InMemoryRunStepRequest::num_fetches() const { return fetches_.size(); } const string& InMemoryRunStepRequest::fetch_name(size_t i) const { return fetches_[i]; } void InMemoryRunStepRequest::add_fetch(const string& name) { fetches_.push_back(name); } size_t InMemoryRunStepRequest::num_targets() const { return targets_.size(); } const string& InMemoryRunStepRequest::target_name(size_t i) const { return targets_[i]; } void InMemoryRunStepRequest::add_target(const string& name) { targets_.push_back(name); } const RunOptions& InMemoryRunStepRequest::options() const { return options_; } RunOptions* InMemoryRunStepRequest::mutable_options() { return &options_; } bool InMemoryRunStepRequest::store_errors_in_response_body() const { return store_errors_in_response_body_; } int64_t InMemoryRunStepRequest::request_id() const { return 0; } void InMemoryRunStepRequest::set_store_errors_in_response_body( bool store_errors) { store_errors_in_response_body_ = store_errors; } string InMemoryRunStepRequest::DebugString() const { return ToProto().DebugString(); } const RunStepRequest& InMemoryRunStepRequest::ToProto() const { if (!proto_version_) { proto_version_ = std::make_unique<RunStepRequest>(); proto_version_->set_session_handle(session_handle()); proto_version_->set_partial_run_handle(partial_run_handle()); for (size_t i = 0; i < num_feeds(); ++i) { auto feed = proto_version_->add_feed(); feed->set_name(feed_name(i)); feeds_[i].second.AsProtoTensorContent(feed->mutable_tensor()); } for (size_t i = 0; i < num_fetches(); ++i) { proto_version_->add_fetch(fetch_name(i)); } for (size_t i = 0; i < num_targets(); ++i) { proto_version_->add_target(target_name(i)); } *proto_version_->mutable_options() = options(); } return *proto_version_; } const string& MutableProtoRunStepRequest::session_handle() const { return request_.session_handle(); } void MutableProtoRunStepRequest::set_session_handle(const string& handle) { request_.set_session_handle(handle); } const string& MutableProtoRunStepRequest::partial_run_handle() const { return request_.partial_run_handle(); } void MutableProtoRunStepRequest::set_partial_run_handle(const string& handle) { request_.set_partial_run_handle(handle); } size_t MutableProtoRunStepRequest::num_feeds() const { return request_.feed_size(); } const string& MutableProtoRunStepRequest::feed_name(size_t i) const { return request_.feed(i).name(); } Status MutableProtoRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_.feed(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } Status MutableProtoRunStepRequest::FeedValue(size_t i, TensorProto* out_tensor) const { *out_tensor = request_.feed(i).tensor(); return absl::OkStatus(); } void MutableProtoRunStepRequest::add_feed(const string& name, const Tensor& value) { NamedTensorProto* feed = request_.add_feed(); feed->set_name(name); TensorProto* value_proto = feed->mutable_tensor(); value.AsProtoTensorContent(value_proto); } size_t MutableProtoRunStepRequest::num_fetches() const { return request_.fetch_size(); } const string& MutableProtoRunStepRequest::fetch_name(size_t i) const { return request_.fetch(i); } void MutableProtoRunStepRequest::add_fetch(const string& name) { request_.add_fetch(name); } size_t MutableProtoRunStepRequest::num_targets() const { return request_.target_size(); } const string& MutableProtoRunStepRequest::target_name(size_t i) const { return request_.target(i); } void MutableProtoRunStepRequest::add_target(const string& name) { request_.add_target(name); } const RunOptions& MutableProtoRunStepRequest::options() const { return request_.options(); } RunOptions* MutableProtoRunStepRequest::mutable_options() { return request_.mutable_options(); } bool MutableProtoRunStepRequest::store_errors_in_response_body() const { return request_.store_errors_in_response_body(); } void MutableProtoRunStepRequest::set_store_errors_in_response_body( bool store_errors) { request_.set_store_errors_in_response_body(store_errors); } int64_t MutableProtoRunStepRequest::request_id() const { return request_.request_id(); } string MutableProtoRunStepRequest::DebugString() const { return request_.DebugString(); } const RunStepRequest& MutableProtoRunStepRequest::ToProto() const { return request_; } ProtoRunStepRequest::ProtoRunStepRequest(const RunStepRequest* request) : request_(request) {} const string& ProtoRunStepRequest::session_handle() const { return request_->session_handle(); } const string& ProtoRunStepRequest::partial_run_handle() const { return request_->partial_run_handle(); } size_t ProtoRunStepRequest::num_feeds() const { return request_->feed_size(); } const string& ProtoRunStepRequest::feed_name(size_t i) const { return request_->feed(i).name(); } Status ProtoRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_->feed(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } Status ProtoRunStepRequest::FeedValue(size_t i, TensorProto* out_tensor) const { *out_tensor = request_->feed(i).tensor(); return absl::OkStatus(); } size_t ProtoRunStepRequest::num_fetches() const { return request_->fetch_size(); } const string& ProtoRunStepRequest::fetch_name(size_t i) const { return request_->fetch(i); } size_t ProtoRunStepRequest::num_targets() const { return request_->target_size(); } const string& ProtoRunStepRequest::target_name(size_t i) const { return request_->target(i); } const RunOptions& ProtoRunStepRequest::options() const { return request_->options(); } bool ProtoRunStepRequest::store_errors_in_response_body() const { return request_->store_errors_in_response_body(); } int64_t ProtoRunStepRequest::request_id() const { return request_->request_id(); } string ProtoRunStepRequest::DebugString() const { return request_->DebugString(); } const RunStepRequest& ProtoRunStepRequest::ToProto() const { return *request_; } const string& InMemoryRunGraphRequest::session_handle() const { return session_handle_; } bool InMemoryRunGraphRequest::create_worker_session_called() const { return create_worker_session_called_; } void InMemoryRunGraphRequest::set_session_handle(const string& handle) { session_handle_ = handle; } void InMemoryRunGraphRequest::set_create_worker_session_called(bool called) { create_worker_session_called_ = called; } const string& InMemoryRunGraphRequest::graph_handle() const { return graph_handle_; } void InMemoryRunGraphRequest::set_graph_handle(const string& handle) { graph_handle_ = handle; } int64_t InMemoryRunGraphRequest::step_id() const { return step_id_; } void InMemoryRunGraphRequest::set_step_id(int64_t step_id) { step_id_ = step_id; } const ExecutorOpts& InMemoryRunGraphRequest::exec_opts() const { return exec_opts_; } ExecutorOpts* InMemoryRunGraphRequest::mutable_exec_opts() { return &exec_opts_; } size_t InMemoryRunGraphRequest::num_sends() const { return sends_.size(); } const string& InMemoryRunGraphRequest::send_key(size_t i) const { return sends_[i].first; } Status InMemoryRunGraphRequest::SendValue(size_t i, Tensor* out_tensor) const { *out_tensor = sends_[i].second; return absl::OkStatus(); } Status InMemoryRunGraphRequest::AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) { Tensor tensor; TF_RETURN_IF_ERROR(run_step_request.FeedValue(i, &tensor)); sends_.emplace_back(send_key, std::move(tensor)); return absl::OkStatus(); } Status InMemoryRunGraphRequest::AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) { Tensor tensor; if (!ParseTensorProtoToTensor(run_callable_request.feed(i), &tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } sends_.emplace_back(send_key, std::move(tensor)); return absl::OkStatus(); } size_t InMemoryRunGraphRequest::num_recvs() const { return recvs_.size(); } const string& InMemoryRunGraphRequest::recv_key(size_t i) const { return recvs_[i]; } void InMemoryRunGraphRequest::add_recv_key(const string& recv_key) { recvs_.push_back(recv_key); } bool InMemoryRunGraphRequest::is_partial() const { return is_partial_; } void InMemoryRunGraphRequest::set_is_partial(bool is_partial) { is_partial_ = is_partial; } bool InMemoryRunGraphRequest::is_last_partial_run() const { return is_last_partial_run_; } void InMemoryRunGraphRequest::set_is_last_partial_run( bool is_last_partial_run) { is_last_partial_run_ = is_last_partial_run; } bool InMemoryRunGraphRequest::store_errors_in_response_body() const { return store_errors_in_response_body_; } void InMemoryRunGraphRequest::set_store_errors_in_response_body( bool store_errors) { store_errors_in_response_body_ = store_errors; } int64_t InMemoryRunGraphRequest::request_id() const { return request_id_; } void InMemoryRunGraphRequest::set_request_id(int64_t request_id) { request_id_ = request_id; } const RunGraphRequest& InMemoryRunGraphRequest::ToProto() const { if (!proto_version_) { proto_version_ = std::make_unique<RunGraphRequest>(); proto_version_->set_session_handle(session_handle()); proto_version_->set_create_worker_session_called( create_worker_session_called()); proto_version_->set_graph_handle(graph_handle()); proto_version_->set_step_id(step_id()); *proto_version_->mutable_exec_opts() = exec_opts(); for (size_t i = 0; i < num_sends(); ++i) { auto send = proto_version_->add_send(); send->set_name(send_key(i)); sends_[i].second.AsProtoTensorContent(send->mutable_tensor()); } for (size_t i = 0; i < num_recvs(); ++i) { proto_version_->add_recv_key(recv_key(i)); } proto_version_->set_is_partial(is_partial()); proto_version_->set_is_last_partial_run(is_last_partial_run()); } proto_version_->set_store_errors_in_response_body( store_errors_in_response_body_); proto_version_->set_request_id(request_id_); return *proto_version_; } const string& MutableProtoRunGraphRequest::session_handle() const { return request_.session_handle(); } void MutableProtoRunGraphRequest::set_session_handle(const string& handle) { request_.set_session_handle(handle); } bool MutableProtoRunGraphRequest::create_worker_session_called() const { return request_.create_worker_session_called(); } void MutableProtoRunGraphRequest::set_create_worker_session_called( bool called) { request_.set_create_worker_session_called(called); } const string& MutableProtoRunGraphRequest::graph_handle() const { return request_.graph_handle(); } void MutableProtoRunGraphRequest::set_graph_handle(const string& handle) { request_.set_graph_handle(handle); } int64_t MutableProtoRunGraphRequest::step_id() const { return request_.step_id(); } void MutableProtoRunGraphRequest::set_step_id(int64_t step_id) { request_.set_step_id(step_id); } const ExecutorOpts& MutableProtoRunGraphRequest::exec_opts() const { return request_.exec_opts(); } ExecutorOpts* MutableProtoRunGraphRequest::mutable_exec_opts() { return request_.mutable_exec_opts(); } size_t MutableProtoRunGraphRequest::num_sends() const { return request_.send_size(); } const string& MutableProtoRunGraphRequest::send_key(size_t i) const { return request_.send(i).name(); } Status MutableProtoRunGraphRequest::SendValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_.send(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } Status MutableProtoRunGraphRequest::AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) { NamedTensorProto* send = request_.add_send(); send->set_name(send_key); TF_RETURN_IF_ERROR(run_step_request.FeedValue(i, send->mutable_tensor())); return absl::OkStatus(); } Status MutableProtoRunGraphRequest::AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) { NamedTensorProto* send = request_.add_send(); send->set_name(send_key); *send->mutable_tensor() = run_callable_request.feed(i); return absl::OkStatus(); } size_t MutableProtoRunGraphRequest::num_recvs() const { return request_.recv_key_size(); } const string& MutableProtoRunGraphRequest::recv_key(size_t i) const { return request_.recv_key(i); } void MutableProtoRunGraphRequest::add_recv_key(const string& recv_key) { request_.add_recv_key(recv_key); } bool MutableProtoRunGraphRequest::is_partial() const { return request_.is_partial(); } void MutableProtoRunGraphRequest::set_is_partial(bool is_partial) { request_.set_is_partial(is_partial); } bool MutableProtoRunGraphRequest::is_last_partial_run() const { return request_.is_last_partial_run(); } void MutableProtoRunGraphRequest::set_is_last_partial_run( bool is_last_partial_run) { request_.set_is_last_partial_run(is_last_partial_run); } bool MutableProtoRunGraphRequest::store_errors_in_response_body() const { return request_.store_errors_in_response_body(); } void MutableProtoRunGraphRequest::set_store_errors_in_response_body( bool store_errors) { request_.set_store_errors_in_response_body(store_errors); } int64_t MutableProtoRunGraphRequest::request_id() const { return request_.request_id(); } void MutableProtoRunGraphRequest::set_request_id(int64_t request_id) { request_.set_request_id(request_id); } const RunGraphRequest& MutableProtoRunGraphRequest::ToProto() const { return request_; } ProtoRunGraphRequest::ProtoRunGraphRequest(const RunGraphRequest* request) : request_(request) {} const string& ProtoRunGraphRequest::session_handle() const { return request_->session_handle(); } bool ProtoRunGraphRequest::create_worker_session_called() const { return request_->create_worker_session_called(); } const string& ProtoRunGraphRequest::graph_handle() const { return request_->graph_handle(); } int64_t ProtoRunGraphRequest::step_id() const { return request_->step_id(); } const ExecutorOpts& ProtoRunGraphRequest::exec_opts() const { return request_->exec_opts(); } size_t ProtoRunGraphRequest::num_sends() const { return request_->send_size(); } const string& ProtoRunGraphRequest::send_key(size_t i) const { return request_->send(i).name(); } Status ProtoRunGraphRequest::SendValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(request_->send(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for feed value ", i); } else { return absl::OkStatus(); } } size_t ProtoRunGraphRequest::num_recvs() const { return request_->recv_key_size(); } const string& ProtoRunGraphRequest::recv_key(size_t i) const { return request_->recv_key(i); } bool ProtoRunGraphRequest::is_partial() const { return request_->is_partial(); } bool ProtoRunGraphRequest::is_last_partial_run() const { return request_->is_last_partial_run(); } bool ProtoRunGraphRequest::store_errors_in_response_body() const { return request_->store_errors_in_response_body(); } int64_t ProtoRunGraphRequest::request_id() const { return request_->request_id(); } const RunGraphRequest& ProtoRunGraphRequest::ToProto() const { return *request_; } size_t InMemoryRunGraphResponse::num_recvs() const { return recvs_.size(); } const string& InMemoryRunGraphResponse::recv_key(size_t i) const { return recvs_[i].first; } Status InMemoryRunGraphResponse::RecvValue(size_t i, TensorProto* out_tensor) { recvs_[i].second.AsProtoTensorContent(out_tensor); return absl::OkStatus(); } Status InMemoryRunGraphResponse::RecvValue(size_t i, Tensor* out_tensor) { *out_tensor = recvs_[i].second; return absl::OkStatus(); } void InMemoryRunGraphResponse::AddRecv(const string& key, const Tensor& value) { recvs_.emplace_back(key, value); } StepStats* InMemoryRunGraphResponse::mutable_step_stats() { return &step_stats_; } CostGraphDef* InMemoryRunGraphResponse::mutable_cost_graph() { return &cost_graph_; } Status InMemoryRunGraphResponse::status() const { return status_; } errors::Code InMemoryRunGraphResponse::status_code() const { return static_cast<errors::Code>(status_.code()); } void InMemoryRunGraphResponse::set_status(const Status& status) { status_ = status; } RunGraphResponse* InMemoryRunGraphResponse::get_proto() { LOG(FATAL) << "Cannot get a mutable protobuf for an InMemoryRunGraphResponse"; return nullptr; } size_t InMemoryRunGraphResponse::num_partition_graphs() const { return partition_graphs_.size(); } GraphDef* InMemoryRunGraphResponse::mutable_partition_graph(size_t i) { return &partition_graphs_[i]; } void InMemoryRunGraphResponse::AddPartitionGraph( const GraphDef& partition_graph) { partition_graphs_.push_back(partition_graph); } size_t OwnedProtoRunGraphResponse::num_recvs() const { return response_.recv_size(); } const string& OwnedProtoRunGraphResponse::recv_key(size_t i) const { return response_.recv(i).name(); } Status OwnedProtoRunGraphResponse::RecvValue(size_t i, TensorProto* out_tensor) { out_tensor->Swap(response_.mutable_recv(i)->mutable_tensor()); return absl::OkStatus(); } Status OwnedProtoRunGraphResponse::RecvValue(size_t i, Tensor* out_tensor) { if (!ParseTensorProtoToTensor(response_.recv(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for recv value ", i); } else { return absl::OkStatus(); } } void OwnedProtoRunGraphResponse::AddRecv(const string& key, const Tensor& value) { NamedTensorProto* recv = response_.add_recv(); recv->set_name(key); TensorProto* value_proto = recv->mutable_tensor(); value.AsProtoTensorContent(value_proto); } StepStats* OwnedProtoRunGraphResponse::mutable_step_stats() { return response_.mutable_step_stats(); } CostGraphDef* OwnedProtoRunGraphResponse::mutable_cost_graph() { return response_.mutable_cost_graph(); } Status OwnedProtoRunGraphResponse::status() const { return Status(static_cast<absl::StatusCode>(response_.status_code()), response_.status_error_message()); } absl::StatusCode OwnedProtoRunGraphResponse::status_code() const { return static_cast<absl::StatusCode>(response_.status_code()); } void OwnedProtoRunGraphResponse::set_status(const Status& status) { response_.set_status_code(static_cast<tsl::error::Code>(status.code())); response_.set_status_error_message(absl::StatusMessageAsCStr(status)); } RunGraphResponse* OwnedProtoRunGraphResponse::get_proto() { return &response_; } size_t OwnedProtoRunGraphResponse::num_partition_graphs() const { return response_.partition_graph_size(); } GraphDef* OwnedProtoRunGraphResponse::mutable_partition_graph(size_t i) { return response_.mutable_partition_graph(i); } void OwnedProtoRunGraphResponse::AddPartitionGraph( const GraphDef& partition_graph) { GraphDef* graph_def = response_.mutable_partition_graph()->Add(); *graph_def = partition_graph; } NonOwnedProtoRunGraphResponse::NonOwnedProtoRunGraphResponse( RunGraphResponse* response) : response_(response) {} size_t NonOwnedProtoRunGraphResponse::num_recvs() const { return response_->recv_size(); } const string& NonOwnedProtoRunGraphResponse::recv_key(size_t i) const { return response_->recv(i).name(); } Status NonOwnedProtoRunGraphResponse::RecvValue(size_t i, TensorProto* out_tensor) { out_tensor->Swap(response_->mutable_recv(i)->mutable_tensor()); return absl::OkStatus(); } Status NonOwnedProtoRunGraphResponse::RecvValue(size_t i, Tensor* out_tensor) { if (!ParseTensorProtoToTensor(response_->recv(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for recv value ", i); } else { return absl::OkStatus(); } } void NonOwnedProtoRunGraphResponse::AddRecv(const string& key, const Tensor& value) { NamedTensorProto* recv = response_->add_recv(); recv->set_name(key); TensorProto* value_proto = recv->mutable_tensor(); value.AsProtoTensorContent(value_proto); } StepStats* NonOwnedProtoRunGraphResponse::mutable_step_stats() { return response_->mutable_step_stats(); } CostGraphDef* NonOwnedProtoRunGraphResponse::mutable_cost_graph() { return response_->mutable_cost_graph(); } Status NonOwnedProtoRunGraphResponse::status() const { return Status(static_cast<absl::StatusCode>(response_->status_code()), response_->status_error_message()); } absl::StatusCode NonOwnedProtoRunGraphResponse::status_code() const { return static_cast<absl::StatusCode>(response_->status_code()); } void NonOwnedProtoRunGraphResponse::set_status(const Status& status) { response_->set_status_code(static_cast<tsl::error::Code>(status.code())); response_->set_status_error_message(absl::StatusMessageAsCStr(status)); } RunGraphResponse* NonOwnedProtoRunGraphResponse::get_proto() { return response_; } size_t NonOwnedProtoRunGraphResponse::num_partition_graphs() const { return response_->partition_graph_size(); } GraphDef* NonOwnedProtoRunGraphResponse::mutable_partition_graph(size_t i) { return response_->mutable_partition_graph(i); } void NonOwnedProtoRunGraphResponse::AddPartitionGraph( const GraphDef& partition_graph) { GraphDef* graph_def = response_->add_partition_graph(); *graph_def = partition_graph; } MutableRunStepResponseWrapper::~MutableRunStepResponseWrapper() {} size_t InMemoryRunStepResponse::num_tensors() const { return tensors_.size(); } const string& InMemoryRunStepResponse::tensor_name(size_t i) const { return tensors_[i].first; } Status InMemoryRunStepResponse::TensorValue(size_t i, Tensor* out_tensor) const { *out_tensor = tensors_[i].second; return absl::OkStatus(); } const RunMetadata& InMemoryRunStepResponse::metadata() const { return metadata_; } Status InMemoryRunStepResponse::AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* wrapper, size_t i) { Tensor tensor; TF_RETURN_IF_ERROR(wrapper->RecvValue(i, &tensor)); tensors_.emplace_back(name, tensor); return absl::OkStatus(); } RunMetadata* InMemoryRunStepResponse::mutable_metadata() { return &metadata_; } Status InMemoryRunStepResponse::status() const { return status_; } errors::Code InMemoryRunStepResponse::status_code() const { return static_cast<errors::Code>(status_.code()); } void InMemoryRunStepResponse::set_status(const Status& status) { status_ = status; } RunStepResponse* InMemoryRunStepResponse::get_proto() { LOG(FATAL) << "Cannot get a mutable protobuf for an InMemoryRunStepResponse"; return nullptr; } size_t OwnedProtoRunStepResponse::num_tensors() const { return response_.tensor_size(); } const string& OwnedProtoRunStepResponse::tensor_name(size_t i) const { return response_.tensor(i).name(); } Status OwnedProtoRunStepResponse::TensorValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(response_.tensor(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for fetch value ", i); } else { return absl::OkStatus(); } } const RunMetadata& OwnedProtoRunStepResponse::metadata() const { return response_.metadata(); } Status OwnedProtoRunStepResponse::AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) { NamedTensorProto* response_tensor = response_.add_tensor(); response_tensor->set_name(name); return run_graph_response->RecvValue(i, response_tensor->mutable_tensor()); } RunMetadata* OwnedProtoRunStepResponse::mutable_metadata() { return response_.mutable_metadata(); } Status OwnedProtoRunStepResponse::status() const { return Status(static_cast<absl::StatusCode>(response_.status_code()), response_.status_error_message()); } absl::StatusCode OwnedProtoRunStepResponse::status_code() const { return static_cast<absl::StatusCode>(response_.status_code()); } void OwnedProtoRunStepResponse::set_status(const Status& status) { response_.set_status_code(static_cast<tsl::error::Code>(status.code())); response_.set_status_error_message(absl::StatusMessageAsCStr(status)); } RunStepResponse* OwnedProtoRunStepResponse::get_proto() { return &response_; } NonOwnedProtoRunStepResponse::NonOwnedProtoRunStepResponse( RunStepResponse* response) : response_(response) {} size_t NonOwnedProtoRunStepResponse::num_tensors() const { return response_->tensor_size(); } const string& NonOwnedProtoRunStepResponse::tensor_name(size_t i) const { return response_->tensor(i).name(); } Status NonOwnedProtoRunStepResponse::TensorValue(size_t i, Tensor* out_tensor) const { if (!ParseTensorProtoToTensor(response_->tensor(i).tensor(), out_tensor)) { return errors::InvalidArgument("Invalid TensorProto for fetch value ", i); } else { return absl::OkStatus(); } } const RunMetadata& NonOwnedProtoRunStepResponse::metadata() const { return response_->metadata(); } Status NonOwnedProtoRunStepResponse::AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) { NamedTensorProto* response_tensor = response_->add_tensor(); response_tensor->set_name(name); return run_graph_response->RecvValue(i, response_tensor->mutable_tensor()); } RunMetadata* NonOwnedProtoRunStepResponse::mutable_metadata() { return response_->mutable_metadata(); } Status NonOwnedProtoRunStepResponse::status() const { return Status(static_cast<absl::StatusCode>(response_->status_code()), response_->status_error_message()); } absl::StatusCode NonOwnedProtoRunStepResponse::status_code() const { return static_cast<absl::StatusCode>(response_->status_code()); } void NonOwnedProtoRunStepResponse::set_status(const Status& status) { response_->set_status_code(static_cast<tsl::error::Code>(status.code())); response_->set_status_error_message(absl::StatusMessageAsCStr(status)); } RunStepResponse* NonOwnedProtoRunStepResponse::get_proto() { return response_; } }
#include "tensorflow/core/distributed_runtime/message_wrappers.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { namespace { Tensor TensorA() { Tensor a_tensor(DT_INT32, TensorShape({2, 2})); test::FillValues<int32>(&a_tensor, {3, 2, -1, 0}); return a_tensor; } Tensor TensorB() { Tensor b_tensor(DT_INT32, TensorShape({1, 2})); test::FillValues<int32>(&b_tensor, {1, 2}); return b_tensor; } void BuildRunStepRequest(MutableRunStepRequestWrapper* request) { request->set_session_handle("handle"); request->set_partial_run_handle("partial_handle"); request->add_feed("feed_a:0", TensorA()); request->add_feed("feed_b:0", TensorB()); request->add_fetch("fetch_x:0"); request->add_fetch("fetch_y:0"); request->add_target("target_i"); request->add_target("target_j"); request->mutable_options()->set_timeout_in_ms(37); } void CheckRunStepRequest(const RunStepRequestWrapper& request) { EXPECT_EQ("handle", request.session_handle()); EXPECT_EQ("partial_handle", request.partial_run_handle()); EXPECT_EQ(2, request.num_feeds()); EXPECT_EQ("feed_a:0", request.feed_name(0)); EXPECT_EQ("feed_b:0", request.feed_name(1)); Tensor val; TF_EXPECT_OK(request.FeedValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(request.FeedValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); EXPECT_EQ(2, request.num_fetches()); EXPECT_EQ("fetch_x:0", request.fetch_name(0)); EXPECT_EQ("fetch_y:0", request.fetch_name(1)); EXPECT_EQ("target_i", request.target_name(0)); EXPECT_EQ("target_j", request.target_name(1)); EXPECT_EQ(37, request.options().timeout_in_ms()); } void BuildRunGraphRequest(const RunStepRequestWrapper& run_step_request, MutableRunGraphRequestWrapper* run_graph_request) { run_graph_request->set_graph_handle("graph_handle"); run_graph_request->set_step_id(13); run_graph_request->mutable_exec_opts()->set_record_timeline(true); TF_EXPECT_OK(run_graph_request->AddSendFromRunStepRequest(run_step_request, 0, "send_0")); TF_EXPECT_OK(run_graph_request->AddSendFromRunStepRequest(run_step_request, 1, "send_1")); run_graph_request->add_recv_key("recv_2"); run_graph_request->add_recv_key("recv_3"); run_graph_request->set_is_partial(true); } void CheckRunGraphRequest(const RunGraphRequestWrapper& request) { EXPECT_EQ("graph_handle", request.graph_handle()); EXPECT_EQ(13, request.step_id()); EXPECT_FALSE(request.exec_opts().record_costs()); EXPECT_TRUE(request.exec_opts().record_timeline()); EXPECT_FALSE(request.exec_opts().record_partition_graphs()); EXPECT_EQ(2, request.num_sends()); Tensor val; TF_EXPECT_OK(request.SendValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(request.SendValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); EXPECT_TRUE(request.is_partial()); EXPECT_FALSE(request.is_last_partial_run()); } void BuildRunGraphResponse(MutableRunGraphResponseWrapper* run_graph_response) { run_graph_response->AddRecv("recv_2", TensorA()); run_graph_response->AddRecv("recv_3", TensorB()); run_graph_response->mutable_step_stats()->add_dev_stats()->set_device( "/cpu:0"); run_graph_response->mutable_cost_graph()->add_node()->set_name("cost_node"); GraphDef graph_def; graph_def.mutable_versions()->set_producer(1234); graph_def.mutable_versions()->set_min_consumer(1234); run_graph_response->AddPartitionGraph(graph_def); } void CheckRunGraphResponse(MutableRunGraphResponseWrapper* response) { ASSERT_EQ(2, response->num_recvs()); EXPECT_EQ("recv_2", response->recv_key(0)); EXPECT_EQ("recv_3", response->recv_key(1)); Tensor val; TF_EXPECT_OK(response->RecvValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(response->RecvValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); ASSERT_EQ(1, response->mutable_step_stats()->dev_stats_size()); EXPECT_EQ("/cpu:0", response->mutable_step_stats()->dev_stats(0).device()); ASSERT_EQ(1, response->mutable_cost_graph()->node_size()); EXPECT_EQ("cost_node", response->mutable_cost_graph()->node(0).name()); ASSERT_EQ(1, response->num_partition_graphs()); EXPECT_EQ(1234, response->mutable_partition_graph(0)->versions().producer()); EXPECT_EQ(1234, response->mutable_partition_graph(0)->versions().min_consumer()); } void BuildRunStepResponse(MutableRunGraphResponseWrapper* run_graph_response, MutableRunStepResponseWrapper* run_step_response) { TF_EXPECT_OK(run_step_response->AddTensorFromRunGraphResponse( "fetch_x:0", run_graph_response, 0)); TF_EXPECT_OK(run_step_response->AddTensorFromRunGraphResponse( "fetch_y:0", run_graph_response, 1)); *run_step_response->mutable_metadata()->mutable_step_stats() = *run_graph_response->mutable_step_stats(); protobuf::RepeatedPtrField<GraphDef>* partition_graph_defs = run_step_response->mutable_metadata()->mutable_partition_graphs(); for (size_t i = 0; i < run_graph_response->num_partition_graphs(); i++) { partition_graph_defs->Add()->Swap( run_graph_response->mutable_partition_graph(i)); } } void CheckRunStepResponse(const MutableRunStepResponseWrapper& response) { ASSERT_EQ(2, response.num_tensors()); EXPECT_EQ("fetch_x:0", response.tensor_name(0)); EXPECT_EQ("fetch_y:0", response.tensor_name(1)); Tensor val; TF_EXPECT_OK(response.TensorValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(response.TensorValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); ASSERT_EQ(1, response.metadata().step_stats().dev_stats_size()); EXPECT_EQ("/cpu:0", response.metadata().step_stats().dev_stats(0).device()); ASSERT_EQ(1, response.metadata().partition_graphs_size()); EXPECT_EQ(1234, response.metadata().partition_graphs(0).versions().producer()); EXPECT_EQ(1234, response.metadata().partition_graphs(0).versions().min_consumer()); } TEST(MessageWrappers, RunStepRequest_Basic) { InMemoryRunStepRequest in_memory_request; BuildRunStepRequest(&in_memory_request); CheckRunStepRequest(in_memory_request); MutableProtoRunStepRequest proto_request; BuildRunStepRequest(&proto_request); CheckRunStepRequest(proto_request); CheckRunStepRequest(ProtoRunStepRequest(&in_memory_request.ToProto())); CheckRunStepRequest(ProtoRunStepRequest(&proto_request.ToProto())); } TEST(MessageWrappers, RunGraphRequest_Basic) { InMemoryRunStepRequest in_memory_run_step_request; BuildRunStepRequest(&in_memory_run_step_request); MutableProtoRunStepRequest mutable_proto_run_step_request; BuildRunStepRequest(&mutable_proto_run_step_request); ProtoRunStepRequest proto_run_step_request( &mutable_proto_run_step_request.ToProto()); { InMemoryRunGraphRequest request; BuildRunGraphRequest(in_memory_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { InMemoryRunGraphRequest request; BuildRunGraphRequest(mutable_proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { InMemoryRunGraphRequest request; BuildRunGraphRequest(proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(in_memory_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(mutable_proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } } TEST(MessageWrappers, RunGraphResponse_Basic) { InMemoryRunGraphResponse in_memory_response; BuildRunGraphResponse(&in_memory_response); CheckRunGraphResponse(&in_memory_response); OwnedProtoRunGraphResponse owned_proto_response; BuildRunGraphResponse(&owned_proto_response); CheckRunGraphResponse(&owned_proto_response); RunGraphResponse response_proto; NonOwnedProtoRunGraphResponse non_owned_proto_response(&response_proto); BuildRunGraphResponse(&non_owned_proto_response); CheckRunGraphResponse(&non_owned_proto_response); } TEST(MessageWrappers, RunStepResponse_Basic) { { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/message_wrappers.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/message_wrappers_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7d0d2827-9665-4108-9bf1-a5f64ad67a81
cpp
google/tensorstore
irregular_grid
tensorstore/internal/irregular_grid.cc
tensorstore/internal/irregular_grid_test.cc
#include "tensorstore/internal/irregular_grid.h" #include <assert.h> #include <stddef.h> #include <algorithm> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal { IrregularGrid::IrregularGrid(std::vector<std::vector<Index>> inclusive_mins) : shape_(inclusive_mins.size(), 0), inclusive_mins_(std::move(inclusive_mins)) { for (size_t i = 0; i < inclusive_mins_.size(); i++) { std::sort(inclusive_mins_[i].begin(), inclusive_mins_[i].end()); auto new_it = std::unique(inclusive_mins_[i].begin(), inclusive_mins_[i].end()); inclusive_mins_[i].resize( std::distance(inclusive_mins_[i].begin(), new_it)); shape_[i] = inclusive_mins_[i].size() - 1; } } Index IrregularGrid::operator()(DimensionIndex dim, Index output_index, IndexInterval* cell_bounds) const { auto points = inclusive_min(dim); auto it = std::upper_bound(points.begin(), points.end(), output_index); Index cell = std::distance(points.begin(), it) - 1; if (cell_bounds) { if (cell < 0) { *cell_bounds = IndexInterval::UncheckedHalfOpen(-kInfIndex, points[0]); } else if (cell < points.size() - 1) { *cell_bounds = IndexInterval::UncheckedHalfOpen(points[cell], points[cell + 1]); } else { *cell_bounds = IndexInterval::UncheckedClosed(points[cell], kInfIndex); } } return cell; } IrregularGrid IrregularGrid::Make( tensorstore::span<const IndexDomain<>> domains) { absl::InlinedVector<IndexDomainView<>, 16> views; views.reserve(domains.size()); for (const auto& d : domains) views.push_back(d); return Make(tensorstore::span(views)); } IrregularGrid IrregularGrid::Make( tensorstore::span<const IndexDomainView<>> domains) { assert(!domains.empty()); DimensionIndex rank = domains[0].rank(); std::vector<std::vector<Index>> inclusive_mins; inclusive_mins.resize(rank); for (auto& d : domains) { assert(d.rank() == rank); for (DimensionIndex i = 0; i < rank; i++) { if (inclusive_mins[i].empty() || inclusive_mins[i].back() != d[i].inclusive_min()) { inclusive_mins[i].push_back(d[i].inclusive_min()); } inclusive_mins[i].push_back(d[i].exclusive_max()); } } return IrregularGrid(std::move(inclusive_mins)); } } }
#include "tensorstore/internal/irregular_grid.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/internal/grid_partition.h" #include "tensorstore/internal/grid_partition_impl.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::BoxView; using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexInterval; using ::tensorstore::kInfIndex; using ::tensorstore::internal::IrregularGrid; using ::testing::ElementsAre; TEST(IrregularGridTest, Basic) { std::vector<Index> dimension0{2, 0, -3}; std::vector<Index> dimension1{10, 45, 20, 30}; auto grid = IrregularGrid({dimension0, dimension1}); EXPECT_EQ(2, grid.rank()); EXPECT_THAT(grid.shape(), ElementsAre(2, 3)); EXPECT_THAT(grid.inclusive_min(0), ElementsAre(-3, 0, 2)); EXPECT_THAT(grid.inclusive_min(1), ElementsAre(10, 20, 30, 45)); IndexInterval grid_cell; EXPECT_EQ(grid(0, -4, &grid_cell), -1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(-kInfIndex, -4)); EXPECT_EQ(grid(0, -3, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(-3, 3)); EXPECT_EQ(grid(0, -2, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(-3, 3)); EXPECT_EQ(grid(0, -1, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(-3, 3)); EXPECT_EQ(grid(0, 0, &grid_cell), 1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(0, 2)); EXPECT_EQ(grid(0, 1, &grid_cell), 1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(0, 2)); EXPECT_EQ(grid(0, 2, &grid_cell), 2); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_EQ(grid(0, 3, &grid_cell), 2); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_EQ(grid(1, 7, &grid_cell), -1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(-kInfIndex, 9)); EXPECT_EQ(grid(1, 11, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(10, 10)); EXPECT_EQ(grid(1, 57, &grid_cell), 3); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(45, kInfIndex)); } TEST(IrregularGridTest, IndexDomain) { const Index origin1[] = {-3, 10}; const Index shape1[] = {3, 10}; const Index origin2[] = {0, 20}; const Index shape2[] = {2, 10}; const Index origin3[] = {0, 30}; const Index shape3[] = {2, 15}; std::vector<IndexDomain<>> domains( {IndexDomain<>{ BoxView<>{tensorstore::span(origin1), tensorstore::span(shape1)}}, IndexDomain<>{ BoxView<>{tensorstore::span(origin2), tensorstore::span(shape2)}}, IndexDomain<>{ BoxView<>{tensorstore::span(origin3), tensorstore::span(shape3)}}}); auto grid = IrregularGrid::Make(domains); EXPECT_EQ(2, grid.rank()); EXPECT_THAT(grid.shape(), ElementsAre(2, 3)); EXPECT_THAT(grid.inclusive_min(0), ElementsAre(-3, 0, 2)); EXPECT_THAT(grid.inclusive_min(1), ElementsAre(10, 20, 30, 45)); IndexInterval grid_cell; EXPECT_EQ(grid(0, -4, &grid_cell), -1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(-kInfIndex, -4)); EXPECT_EQ(grid(0, -3, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(-3, 3)); EXPECT_EQ(grid(0, -2, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(-3, 3)); EXPECT_EQ(grid(0, -1, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(-3, 3)); EXPECT_EQ(grid(0, 0, &grid_cell), 1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(0, 2)); EXPECT_EQ(grid(0, 1, &grid_cell), 1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(0, 2)); EXPECT_EQ(grid(0, 2, &grid_cell), 2); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_EQ(grid(0, 3, &grid_cell), 2); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_EQ(grid(1, 7, &grid_cell), -1); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(-kInfIndex, 9)); EXPECT_EQ(grid(1, 11, &grid_cell), 0); EXPECT_EQ(grid_cell, IndexInterval::UncheckedSized(10, 10)); EXPECT_EQ(grid(1, 57, &grid_cell), 3); EXPECT_EQ(grid_cell, IndexInterval::UncheckedClosed(45, kInfIndex)); } TEST(IrregularGridTest, Rank0) { std::vector<std::vector<Index>> inclusive_mins; auto grid = IrregularGrid(inclusive_mins); EXPECT_EQ(0, grid.rank()); EXPECT_TRUE(grid.shape().empty()); EXPECT_TRUE(grid.cell_origin({}).empty()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/irregular_grid.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/irregular_grid_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b7c4b8a1-814a-467f-8bfa-161939660f06
cpp
tensorflow/tensorflow
gen_node
tensorflow/core/grappler/graph_analyzer/gen_node.cc
tensorflow/core/grappler/graph_analyzer/gen_node_test.cc
#include "tensorflow/core/grappler/graph_analyzer/gen_node.h" #include "absl/memory/memory.h" #include "absl/strings/str_format.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/grappler/graph_analyzer/hash_tools.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { GenNode::GenNode(const NodeDef* node) : node_(node), op_(nullptr) {} Status GenNode::BuildGraphInMap(const GraphDef& source, GenNodeMap* map) { for (const auto& n : source.node()) { const string& name = n.name(); if (map->find(name) != map->end()) { return Status(absl::StatusCode::kInvalidArgument, "Duplicate node name '" + name + "'."); } (*map)[name] = std::make_unique<GenNode>(&n); } for (const auto& mapit : *map) { Status st = mapit.second->ParseInputs(map); if (!st.ok()) { return st; } } return absl::OkStatus(); } Status GenNode::ParseInputs(const GenNodeMap* map) { all_inputs_or_none_ = false; Status st = OpRegistry::Global()->LookUpOpDef(opcode(), &op_); if (!st.ok()) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat("Node '%s' contains an undefined operation '%s': %s", name(), opcode(), st.message())); } int n_inputs = node_->input_size(); int n_named_inputs = op_->input_arg_size(); int n_multi_inputs = 0; for (const auto& inarg : op_->input_arg()) { if (!inarg.number_attr().empty() || !inarg.type_list_attr().empty()) { ++n_multi_inputs; } } bool is_commutative = grappler::IsCommutative(*node_); if (n_multi_inputs > 1 || (n_multi_inputs > 0 && n_named_inputs > 1)) { is_commutative = false; } if (is_commutative) { n_named_inputs = 1; all_inputs_or_none_ = false; } else if (n_multi_inputs > 0) { all_inputs_or_none_ = true; } for (int i = 0; i < n_inputs; ++i) { int other_position; string other_name = ParseNodeName(node_->input(i), &other_position); auto other_it = map->find(other_name); if (other_it == map->end()) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "Node '%s' input %d refers to a non-existing node '%s'.", name(), i, other_name)); } GenNode* other_node = other_it->second.get(); int this_position = other_position < 0 ? -1 : (is_commutative ? 0 : i); if (this_position >= 0 && n_multi_inputs == 0 && this_position >= n_named_inputs) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "Node '%s' has a non-control input from '%s' at index %d but its " "operation '%s' defines only %d inputs.", name(), other_name, this_position, op_->name(), n_named_inputs)); } Port this_port(true, this_position); Port other_port(false, other_position); links_[this_port].emplace_back(LinkTarget(other_node, other_port)); other_node->links_[other_port].emplace_back(LinkTarget(this, this_port)); } return absl::OkStatus(); } bool GenNode::IsMultiInput(Port port) const { if (!port.IsInbound()) { return false; } auto it = links_.find(port); if (it == links_.end()) { return false; } return (it->second.size() > 1); } GenNode::Port::operator string() const { string result = this->IsInbound() ? "i" : "o"; if (this->IsControl()) { result.append("C"); } else { result.append(absl::StrFormat("%d", this->Id())); } return result; } } } }
#include "tensorflow/core/grappler/graph_analyzer/gen_node.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "tensorflow/core/grappler/graph_analyzer/test_tools.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { namespace test { namespace { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Ne; TEST(GenNodeTest, Port) { { GenNode::Port p(true, 100); EXPECT_THAT(p.IsInbound(), Eq(true)); EXPECT_THAT(p.IsControl(), Eq(false)); EXPECT_THAT(p.Id(), Eq(100)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(true)); EXPECT_THAT(p2.IsControl(), Eq(false)); EXPECT_THAT(p2.Id(), Eq(100)); } { GenNode::Port p(false, 0); EXPECT_THAT(p.IsInbound(), Eq(false)); EXPECT_THAT(p.IsControl(), Eq(false)); EXPECT_THAT(p.Id(), Eq(0)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(false)); EXPECT_THAT(p2.IsControl(), Eq(false)); EXPECT_THAT(p2.Id(), Eq(0)); } { GenNode::Port p(true, -100); EXPECT_THAT(p.IsInbound(), Eq(true)); EXPECT_THAT(p.IsControl(), Eq(true)); EXPECT_THAT(p.Id(), Eq(-100)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(true)); EXPECT_THAT(p2.IsControl(), Eq(true)); EXPECT_THAT(p2.Id(), Eq(-100)); } { GenNode::Port p(false, -1); EXPECT_THAT(p.IsInbound(), Eq(false)); EXPECT_THAT(p.IsControl(), Eq(true)); EXPECT_THAT(p.Id(), Eq(-1)); GenNode::Port p2 = GenNode::Port::Decode(p.Encoded()); EXPECT_THAT(p2.IsInbound(), Eq(false)); EXPECT_THAT(p2.IsControl(), Eq(true)); EXPECT_THAT(p2.Id(), Eq(-1)); } } TEST(GenNodeTest, ParseNodeNoInputs) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); auto gn1 = map["node1"].get(); ASSERT_THAT(gn1->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre()); } TEST(GenNodeTest, ParseNodeWithControl) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeSub("node3", "node1", "node2"); node3.add_input("^node1"); node3.add_input("^node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]", "oC: node3[iC]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i1]", "oC: node3[iC]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]", "iC: node1[oC], node2[oC]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(false)); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, -1)), Eq(true)); EXPECT_FALSE(gn1->AllInputsOrNone()); EXPECT_FALSE(gn2->AllInputsOrNone()); EXPECT_FALSE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeCommutative) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeMul("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0], node2[o0]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(true)); EXPECT_FALSE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiInputCommutative) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeAddN("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0], node2[o0]" )); EXPECT_THAT(gn2->IsMultiInput(GenNode::Port(false, 0)), Eq(false)); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(true)); EXPECT_FALSE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiInputNotCommutative) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeShapeN("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i1]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(false)); EXPECT_TRUE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiInputList) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeIdentityN("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); ASSERT_THAT(gn3->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node3[i1]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]" )); EXPECT_THAT(gn3->IsMultiInput(GenNode::Port(true, 0)), Eq(false)); EXPECT_TRUE(gn3->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiMultiInput) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeConst("node3"); map["node3"] = std::make_unique<GenNode>(&node3); NodeDef node4 = MakeNodeConst("node4"); map["node4"] = std::make_unique<GenNode>(&node4); NodeDef node5 = MakeNodeQuantizedConcat("node5", "node1", "node2", "node3", "node4"); map["node5"] = std::make_unique<GenNode>(&node5); auto gn1 = map["node1"].get(); auto gn2 = map["node2"].get(); auto gn3 = map["node3"].get(); auto gn4 = map["node4"].get(); auto gn5 = map["node5"].get(); ASSERT_THAT(gn5->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "o0: node5[i0]" )); EXPECT_THAT(DumpLinkMap(gn2->links()), ElementsAre( "o0: node5[i1]" )); EXPECT_THAT(DumpLinkMap(gn3->links()), ElementsAre( "o0: node5[i2]" )); EXPECT_THAT(DumpLinkMap(gn4->links()), ElementsAre( "o0: node5[i3]" )); EXPECT_THAT(DumpLinkMap(gn5->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]", "i2: node3[o0]", "i3: node4[o0]" )); EXPECT_THAT(gn5->IsMultiInput(GenNode::Port(true, 1)), Eq(false)); EXPECT_THAT(gn5->IsMultiInput(GenNode::Port(true, 2)), Eq(false)); EXPECT_TRUE(gn5->AllInputsOrNone()); } TEST(GenNodeTest, ParseNodeMultiOutput) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeBroadcastGradientArgs("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); NodeDef node4 = MakeNodeSub("node4", "node3:1", "node3:0"); map["node4"] = std::make_unique<GenNode>(&node4); auto gn4 = map["node4"].get(); ASSERT_THAT(gn4->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn4->links()), ElementsAre( "i0: node3[o1]", "i1: node3[o0]" )); } TEST(GenNodeTest, ParseNodeUndefinedOp) { GenNodeMap map; NodeDef node1; node1.set_name("node1"); node1.set_op("Zzzx"); map["node1"] = std::make_unique<GenNode>(&node1); const OpDef* opdef; Status nested_error = OpRegistry::Global()->LookUpOpDef("Zzzx", &opdef); auto gn = map["node1"].get(); ASSERT_THAT( gn->ParseInputs(&map), Eq(Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Node 'node1' contains an undefined operation 'Zzzx': ", nested_error.message())))); } TEST(GenNodeTest, ParseNodeUnexpectedInputs) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); node1.add_input("node1"); auto gn1 = map["node1"].get(); EXPECT_THAT(gn1->ParseInputs(&map), Eq(Status(absl::StatusCode::kInvalidArgument, "Node 'node1' has a non-control " "input from 'node1' at index 0 but its operation " "'Const' defines only 0 inputs."))); NodeDef node2 = MakeNodeConst("node2"); map["node2"] = std::make_unique<GenNode>(&node2); NodeDef node3 = MakeNodeSub("node3", "node1", "node2"); map["node3"] = std::make_unique<GenNode>(&node3); node3.add_input("node1"); auto gn3 = map["node3"].get(); EXPECT_THAT(gn3->ParseInputs(&map), Eq(Status(absl::StatusCode::kInvalidArgument, "Node 'node3' has a non-control " "input from 'node1' at index 2 but its operation " "'Sub' defines only 2 inputs."))); } TEST(GenNodeTest, ParseNodeControlInputsAlwaysOk) { GenNodeMap map; NodeDef node1 = MakeNodeConst("node1"); map["node1"] = std::make_unique<GenNode>(&node1); node1.add_input("^node1"); auto gn1 = map["node1"].get(); ASSERT_THAT(gn1->ParseInputs(&map), Eq(absl::OkStatus())); EXPECT_THAT(DumpLinkMap(gn1->links()), ElementsAre( "iC: node1[oC]", "oC: node1[iC]" )); } TEST(GenNodeTest, ParseNodeInvalidInput) { GenNodeMap map; NodeDef node1 = MakeNodeAddN("node1", "node2", "node3"); map["node1"] = std::make_unique<GenNode>(&node1); node1.add_input("node1"); auto gn1 = map["node1"].get(); ASSERT_THAT( gn1->ParseInputs(&map), Eq(Status( absl::StatusCode::kInvalidArgument, "Node 'node1' input 0 refers to a non-existing node 'node2'."))); } TEST(GenNodeTest, BuildGraphInMap) { GraphDef graph; (*graph.add_node()) = MakeNodeConst("node1"); (*graph.add_node()) = MakeNodeSub("node2", "node3:1", "node3:0"); (*graph.add_node()) = MakeNodeBroadcastGradientArgs("node3", "node1", "node2"); GenNodeMap map; ASSERT_THAT(GenNode::BuildGraphInMap(graph, &map), Eq(absl::OkStatus())); ASSERT_THAT(map.find("node1"), Ne(map.end())); ASSERT_THAT(map.find("node2"), Ne(map.end())); ASSERT_THAT(map.find("node3"), Ne(map.end())); EXPECT_THAT(map["node1"]->name(), Eq("node1")); EXPECT_THAT(map["node2"]->name(), Eq("node2")); EXPECT_THAT(map["node3"]->name(), Eq("node3")); EXPECT_THAT(DumpLinkMap(map["node1"]->links()), ElementsAre( "o0: node3[i0]" )); EXPECT_THAT(DumpLinkMap(map["node2"]->links()), ElementsAre( "i0: node3[o1]", "i1: node3[o0]", "o0: node3[i1]" )); EXPECT_THAT(DumpLinkMap(map["node3"]->links()), ElementsAre( "i0: node1[o0]", "i1: node2[o0]", "o0: node2[i1]", "o1: node2[i0]" )); } TEST(GenNodeTest, BuildGraphInMapDuplicateNode) { GraphDef graph; (*graph.add_node()) = MakeNodeConst("node1"); (*graph.add_node()) = MakeNodeConst("node1"); GenNodeMap map; ASSERT_THAT(GenNode::BuildGraphInMap(graph, &map), Eq(Status(absl::StatusCode::kInvalidArgument, "Duplicate node name 'node1'."))); } TEST(GenNodeTest, BuildGraphInMapParseError) { GraphDef graph; (*graph.add_node()) = MakeNodeConst("node1"); (*graph.add_node()) = MakeNodeSub("node2", "node3:1", "node3:0"); GenNodeMap map; ASSERT_THAT( GenNode::BuildGraphInMap(graph, &map), Eq(Status( absl::StatusCode::kInvalidArgument, "Node 'node2' input 0 refers to a non-existing node 'node3'."))); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/gen_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/gen_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
915dbca6-57f2-4dc1-bd74-29bf051fe4d0
cpp
google/tensorstore
collecting_sender
tensorstore/util/execution/collecting_sender.h
tensorstore/util/execution/collecting_sender_test.cc
#ifndef TENSORSTORE_UTIL_EXECUTION_COLLECTING_SENDER_H_ #define TENSORSTORE_UTIL_EXECUTION_COLLECTING_SENDER_H_ #include <utility> #include "tensorstore/util/execution/execution.h" namespace tensorstore { namespace internal { template <typename Container, typename SingleReceiver> struct CollectingReceiver { SingleReceiver receiver; Container container; template <typename CancelReceiver> friend void set_starting(CollectingReceiver& self, CancelReceiver cancel) { } template <typename... V> friend void set_value(CollectingReceiver& self, V... v) { self.container.emplace_back(std::move(v)...); } template <typename E> friend void set_error(CollectingReceiver& self, E e) { execution::set_error(self.receiver, std::move(e)); } friend void set_done(CollectingReceiver& self) { execution::set_value(self.receiver, std::move(self.container)); } friend void set_stopping(CollectingReceiver& self) {} }; template <typename Container, typename Sender> struct CollectingSender { Sender sender; template <typename Receiver> friend void submit(CollectingSender& self, Receiver receiver) { execution::submit(self.sender, CollectingReceiver<Container, Receiver>{ std::move(receiver)}); } }; template <typename Container, typename Sender> CollectingSender<Container, Sender> MakeCollectingSender(Sender sender) { return {std::move(sender)}; } } } #endif
#include "tensorstore/util/execution/collecting_sender.h" #include <ostream> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_join.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/execution/sender_util.h" #include "tensorstore/util/span.h" namespace { struct X { explicit X(int value) : value(value) {} int value; friend std::ostream& operator<<(std::ostream& os, const std::vector<X>& vec) { for (auto v : vec) { os << v.value << ' '; } return os; } }; TEST(CollectingSenderTest, SuccessX) { std::vector<std::string> log; std::vector<int> input{1, 2, 3, 4}; tensorstore::execution::submit( tensorstore::internal::MakeCollectingSender<std::vector<X>>( tensorstore::RangeFlowSender<tensorstore::span<int>>{input}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_value: 1 2 3 4 ")); } struct Y { explicit Y(int value) : value(value) {} int value; template <typename Sink> friend void AbslStringify(Sink& sink, const Y& x) { absl::Format(&sink, "%d", x.value); } template <typename Sink> friend void AbslStringify(Sink& sink, const std::vector<Y>& vec) { sink.Append(absl::StrJoin(vec, " ")); } }; TEST(CollectingSenderTest, SuccessY) { std::vector<std::string> log; std::vector<int> input{1, 2, 3, 4}; tensorstore::execution::submit( tensorstore::internal::MakeCollectingSender<std::vector<Y>>( tensorstore::RangeFlowSender<tensorstore::span<int>>{input}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_value: 1 2 3 4")); } TEST(CollectingSenderTest, Error) { std::vector<std::string> log; tensorstore::execution::submit( tensorstore::internal::MakeCollectingSender<std::vector<X>>( tensorstore::FlowSingleSender<tensorstore::ErrorSender<int>>{5}), tensorstore::LoggingReceiver{&log}); EXPECT_THAT(log, ::testing::ElementsAre("set_error: 5")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/execution/collecting_sender.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/execution/collecting_sender_test.cc
4f887a6430414cd6088e1743555015b10f116d50
65d0efa3-bde3-4dea-bcb8-1f5223d73655
cpp
tensorflow/tensorflow
byte_size
tensorflow/core/data/service/byte_size.cc
tensorflow/core/data/service/byte_size_test.cc
#include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include "absl/strings/str_cat.h" namespace tensorflow { namespace data { size_t ByteSize::ToUnsignedBytes() const { return bytes_; } double ByteSize::ToDoubleBytes() const { return static_cast<double>(bytes_); } double ByteSize::ToDoubleKB() const { return *this / ByteSize::KB(1); } double ByteSize::ToDoubleMB() const { return *this / ByteSize::MB(1); } double ByteSize::ToDoubleGB() const { return *this / ByteSize::GB(1); } double ByteSize::ToDoubleTB() const { return *this / ByteSize::TB(1); } std::string ByteSize::DebugString() const { if (*this < ByteSize::KB(1)) { return absl::StrCat(ToUnsignedBytes(), "B"); } if (*this < ByteSize::MB(1)) { return absl::StrCat(ToDoubleKB(), "KB"); } if (*this < ByteSize::GB(1)) { return absl::StrCat(ToDoubleMB(), "MB"); } if (*this < ByteSize::TB(1)) { return absl::StrCat(ToDoubleGB(), "GB"); } return absl::StrCat(ToDoubleTB(), "TB"); } } }
#include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::Eq; using ::testing::Not; TEST(ByteSizeTest, Constructors) { EXPECT_EQ(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::Bytes(1024)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 63), ByteSize::TB(size_t{1} << 23)); EXPECT_EQ(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1), ByteSize::Bytes(size_t{1} << 10)); EXPECT_EQ(ByteSize::KB(0.9), ByteSize::Bytes(1024 * 0.9)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::Bytes(1024 * 1.5)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(1024), ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1), ByteSize::Bytes(size_t{1} << 20)); EXPECT_EQ(ByteSize::MB(0.9), ByteSize::Bytes(size_t{1} << 20) * 0.9); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::Bytes(size_t{1} << 20) * 1.5); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1024), ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1), ByteSize::Bytes(size_t{1} << 30)); EXPECT_EQ(ByteSize::GB(0.9), ByteSize::Bytes(size_t{1} << 30) * 0.9); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::Bytes(size_t{1} << 30) * 1.5); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::GB(1.5)); EXPECT_EQ(ByteSize::GB(1024), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1), ByteSize::Bytes(size_t{1} << 40)); EXPECT_EQ(ByteSize::TB(0.9), ByteSize::Bytes(size_t{1} << 40) * 0.9); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::Bytes(size_t{1} << 40) * 1.5); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::TB(1024), ByteSize::TB(1024)); EXPECT_EQ(ByteSize::TB(size_t{1} << 23), ByteSize::TB(size_t{1} << 23)); EXPECT_THAT(ByteSize::Bytes(0), Not(Eq(ByteSize::Bytes(1)))); EXPECT_THAT(ByteSize::Bytes(1025), Not(Eq(ByteSize::KB(1)))); EXPECT_THAT(ByteSize::KB(1), Not(Eq(ByteSize::MB(1)))); EXPECT_THAT(ByteSize::MB(1), Not(Eq(ByteSize::GB(1)))); EXPECT_THAT(ByteSize::GB(1), Not(Eq(ByteSize::TB(1)))); EXPECT_THAT(ByteSize::TB(1), Not(Eq(ByteSize::TB(2)))); } TEST(ByteSizeTest, ConstexprConstruction) { constexpr ByteSize default_byte_size; EXPECT_EQ(default_byte_size, ByteSize::Bytes(0)); constexpr ByteSize bytes = ByteSize::Bytes(1); EXPECT_EQ(bytes, ByteSize::Bytes(1)); constexpr ByteSize kb = ByteSize::KB(1); EXPECT_EQ(kb, ByteSize::KB(1)); constexpr ByteSize mb = ByteSize::MB(1); EXPECT_EQ(mb, ByteSize::MB(1)); constexpr ByteSize gb = ByteSize::GB(1); EXPECT_EQ(gb, ByteSize::GB(1)); constexpr ByteSize tb = ByteSize::TB(1); EXPECT_EQ(tb, ByteSize::TB(1)); constexpr ByteSize tb_copy(tb); EXPECT_EQ(tb_copy, tb); } TEST(ByteSizeTest, ConvertToBytes) { EXPECT_EQ(ByteSize::Bytes(0).ToUnsignedBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleKB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleMB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleGB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleTB(), 0); EXPECT_EQ(ByteSize::Bytes(1).ToUnsignedBytes(), 1); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleBytes(), 1.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleKB(), 1.0 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleMB(), 1.0 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleGB(), 1.0 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleTB(), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::KB(0.25).ToUnsignedBytes(), 0.25 * (size_t{1} << 10)); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleBytes(), 0.25 * 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleKB(), 0.25); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleMB(), 0.25 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleGB(), 0.25 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleTB(), 0.25 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::MB(0.5).ToUnsignedBytes(), 0.5 * (size_t{1} << 20)); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleBytes(), 0.5 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleKB(), 0.5 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleMB(), 0.5); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleGB(), 0.5 / 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleTB(), 0.5 / 1024 / 1024); EXPECT_EQ(ByteSize::GB(10).ToUnsignedBytes(), 10.0 * (size_t{1} << 30)); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleBytes(), 10.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleKB(), 10.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleMB(), 10.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleGB(), 10.0); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleTB(), 10.0 / 1024); EXPECT_EQ(ByteSize::TB(1024).ToUnsignedBytes(), 1024 * (size_t{1} << 40)); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleBytes(), 1024.0 * 1024 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleKB(), 1024.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleMB(), 1024.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleGB(), 1024.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleTB(), 1024.0); } TEST(ByteSizeTest, Arithmetics) { EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::Bytes(512), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(0.5) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::KB(512), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::Bytes(512), ByteSize::Bytes(1049088)); EXPECT_EQ(ByteSize::GB(0.5) + ByteSize::MB(256) + ByteSize::MB(256), ByteSize::GB(1)); std::vector<ByteSize> GBs(1024, ByteSize::GB(1)); EXPECT_EQ(absl::c_accumulate(GBs, ByteSize::Bytes(0)), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(1) + ByteSize::TB(0.5) + ByteSize::GB(512), ByteSize::TB(2)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) - ByteSize::Bytes(512), ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::KB(512) - ByteSize::KB(512), ByteSize::MB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512), ByteSize::GB(0.5)); EXPECT_EQ(ByteSize::GB(0.5) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::TB(1) - ByteSize::GB(512) - ByteSize::GB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1) * 1024, ByteSize::KB(1)); EXPECT_EQ(ByteSize::KB(1) * 1024, ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(1) * 1024, ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(1) * 1024, ByteSize::TB(1)); EXPECT_EQ(ByteSize::Bytes(1) * 1.1, ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::KB(1) * 1.2, ByteSize::KB(1.2)); EXPECT_EQ(ByteSize::MB(1) * 1.3, ByteSize::MB(1.3)); EXPECT_EQ(ByteSize::GB(1) * 1.4, ByteSize::GB(1.4)); EXPECT_EQ(ByteSize::TB(1) * 1.5, ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::KB(1) * 0.5, ByteSize::Bytes(512)); EXPECT_EQ(ByteSize::MB(1) * 0.5, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) * 0.5, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1) * 0.25, ByteSize::GB(256)); EXPECT_EQ(1024 * ByteSize::Bytes(1), ByteSize::KB(1)); EXPECT_EQ(1024 * ByteSize::KB(1), ByteSize::MB(1)); EXPECT_EQ(1024 * ByteSize::MB(1), ByteSize::GB(1)); EXPECT_EQ(1024 * ByteSize::GB(1), ByteSize::TB(1)); EXPECT_EQ(0.9 * ByteSize::TB(1), ByteSize::GB(921.6)); EXPECT_EQ(0 * ByteSize::TB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) / 1, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) / 2, ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) / 2, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) / 2, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1.5) / 2, ByteSize::GB(768)); EXPECT_EQ(ByteSize::KB(1) / 0.5, ByteSize::KB(2)); EXPECT_EQ(ByteSize::MB(1) / 0.5, ByteSize::MB(2)); EXPECT_EQ(ByteSize::GB(1) / 0.5, ByteSize::GB(2)); EXPECT_EQ(ByteSize::TB(1) / 0.25, ByteSize::TB(4)); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0) / ByteSize::KB(1), 0.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1) / ByteSize::TB(1), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::KB(2), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(512) / ByteSize::MB(1), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::MB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::MB(1) / ByteSize::GB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::GB(1) / ByteSize::TB(1), 1.0 / 1024.0); } TEST(ByteSizeTest, Assignments) { ByteSize byte_size; EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size = ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(1)); for (size_t i = 0; i < 1023; ++i) { byte_size += ByteSize::Bytes(1); } EXPECT_EQ(byte_size, ByteSize::KB(1)); for (size_t i = 0; i < 10; ++i) { byte_size *= 2; } EXPECT_EQ(byte_size, ByteSize::MB(1)); byte_size *= 1024 * 1024; EXPECT_EQ(byte_size, ByteSize::TB(1)); for (size_t i = 0; i < 10; ++i) { byte_size /= 2; } EXPECT_EQ(byte_size, ByteSize::GB(1)); for (size_t i = 0; i < 4; ++i) { byte_size -= ByteSize::MB(256); } EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size -= ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(0)); } TEST(ByteSizeTest, Comparisons) { EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_LE(ByteSize::KB(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LE(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LE(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LT(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LE(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LE(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LE(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LT(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LE(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LE(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LE(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LT(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LE(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LT(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LE(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LT(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_LE(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::GB(1), ByteSize::MB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1)); EXPECT_GT(ByteSize::KB(1), ByteSize::Bytes(1)); EXPECT_GT(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1) + ByteSize::MB(1) + ByteSize::KB(1) + ByteSize::Bytes(1)); EXPECT_GT(ByteSize::GB(1), 0.0000001 * ByteSize::TB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1) * 1023); EXPECT_GT(ByteSize::KB(1), ByteSize::KB(3) / 4); EXPECT_GT(ByteSize::Bytes(1), ByteSize::TB(0)); EXPECT_GE(ByteSize::TB(0.5), ByteSize::GB(0.5)); EXPECT_GE(ByteSize::GB(0.5), ByteSize::MB(0.5)); EXPECT_GE(ByteSize::MB(0.5), ByteSize::KB(0.5)); EXPECT_GE(ByteSize::KB(0.5), ByteSize::Bytes(1)); EXPECT_GE(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::Bytes(0), ByteSize::Bytes(0)); } TEST(ByteSizeTest, DebugString) { EXPECT_EQ(ByteSize::Bytes(0).DebugString(), "0B"); EXPECT_EQ(ByteSize::Bytes(1).DebugString(), "1B"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 10).DebugString(), "1KB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 20).DebugString(), "1MB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 30).DebugString(), "1GB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 40).DebugString(), "1TB"); EXPECT_EQ(ByteSize::KB(0.5).DebugString(), "512B"); EXPECT_EQ(ByteSize::KB(1).DebugString(), "1KB"); EXPECT_EQ(ByteSize::KB(1.5).DebugString(), "1.5KB"); EXPECT_EQ(ByteSize::KB(1024).DebugString(), "1MB"); EXPECT_EQ(ByteSize::KB(1024 * 1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::KB(1024 * 1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::MB(0.5).DebugString(), "512KB"); EXPECT_EQ(ByteSize::MB(1).DebugString(), "1MB"); EXPECT_EQ(ByteSize::MB(1.5).DebugString(), "1.5MB"); EXPECT_EQ(ByteSize::MB(1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::MB(1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::GB(0.5).DebugString(), "512MB"); EXPECT_EQ(ByteSize::GB(1).DebugString(), "1GB"); EXPECT_EQ(ByteSize::GB(1.5).DebugString(), "1.5GB"); EXPECT_EQ(ByteSize::GB(1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(0.5).DebugString(), "512GB"); EXPECT_EQ(ByteSize::TB(1).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(1.5).DebugString(), "1.5TB"); EXPECT_EQ(ByteSize::TB(1024).DebugString(), "1024TB"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/byte_size.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/byte_size_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cc7acb88-4403-4bed-a00b-7e0ce9b987e8
cpp
tensorflow/tensorflow
ffi
third_party/xla/xla/ffi/api/ffi.h
third_party/xla/xla/ffi/api/ffi_test.cc
#ifndef XLA_FFI_API_FFI_H_ #define XLA_FFI_API_FFI_H_ #ifdef XLA_FFI_FFI_H_ #error Two different XLA FFI implementations cannot be included together. \ See README.md for more details. #endif #include <algorithm> #include <atomic> #include <cassert> #include <complex> #include <cstddef> #include <cstdint> #include <cstdlib> #include <functional> #include <iostream> #include <limits> #include <memory> #include <numeric> #include <optional> #include <ostream> #include <string> #include <string_view> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "xla/ffi/api/c_api.h" #include "xla/ffi/api/api.h" namespace xla::ffi { using TypeId = XLA_FFI_TypeId; enum class DataType : uint8_t { INVALID = XLA_FFI_DataType_INVALID, PRED = XLA_FFI_DataType_PRED, S8 = XLA_FFI_DataType_S8, S16 = XLA_FFI_DataType_S16, S32 = XLA_FFI_DataType_S32, S64 = XLA_FFI_DataType_S64, U8 = XLA_FFI_DataType_U8, U16 = XLA_FFI_DataType_U16, U32 = XLA_FFI_DataType_U32, U64 = XLA_FFI_DataType_U64, F16 = XLA_FFI_DataType_F16, F32 = XLA_FFI_DataType_F32, F64 = XLA_FFI_DataType_F64, BF16 = XLA_FFI_DataType_BF16, C64 = XLA_FFI_DataType_C64, C128 = XLA_FFI_DataType_C128, TOKEN = XLA_FFI_DataType_TOKEN, F8E5M2 = XLA_FFI_DataType_F8E5M2, F8E4M3 = XLA_FFI_DataType_F8E4M3, F8E4M3FN = XLA_FFI_DataType_F8E4M3FN, F8E4M3B11FNUZ = XLA_FFI_DataType_F8E4M3B11FNUZ, F8E5M2FNUZ = XLA_FFI_DataType_F8E5M2FNUZ, F8E4M3FNUZ = XLA_FFI_DataType_F8E4M3FNUZ, F8E3M4 = XLA_FFI_DataType_F8E3M4, }; inline constexpr DataType PRED = DataType::PRED; inline constexpr DataType S8 = DataType::S8; inline constexpr DataType S16 = DataType::S16; inline constexpr DataType S32 = DataType::S32; inline constexpr DataType S64 = DataType::S64; inline constexpr DataType U8 = DataType::U8; inline constexpr DataType U16 = DataType::U16; inline constexpr DataType U32 = DataType::U32; inline constexpr DataType U64 = DataType::U64; inline constexpr DataType F16 = DataType::F16; inline constexpr DataType F32 = DataType::F32; inline constexpr DataType F64 = DataType::F64; inline constexpr DataType BF16 = DataType::BF16; inline constexpr DataType C64 = DataType::C64; inline constexpr DataType C128 = DataType::C128; inline constexpr DataType TOKEN = DataType::TOKEN; inline constexpr DataType F8E5M2 = DataType::F8E5M2; inline constexpr DataType F8E4M3 = DataType::F8E4M3; inline constexpr DataType F8E4M3FN = DataType::F8E4M3FN; inline constexpr DataType F8E4M3B11FNUZ = DataType::F8E4M3B11FNUZ; inline constexpr DataType F8E5M2FNUZ = DataType::F8E5M2FNUZ; inline constexpr DataType F8E4M3FNUZ = DataType::F8E4M3FNUZ; inline constexpr DataType F8E3M4 = DataType::F8E3M4; inline std::ostream& operator<<(std::ostream& os, const DataType dtype) { return os << static_cast<XLA_FFI_DataType>(dtype); } constexpr size_t ByteWidth(DataType dtype) { switch (dtype) { case DataType::INVALID: case DataType::TOKEN: return 0; case DataType::PRED: return 1; case DataType::S8: case DataType::U8: case DataType::F8E5M2: case DataType::F8E4M3: case DataType::F8E4M3FN: case DataType::F8E4M3B11FNUZ: case DataType::F8E5M2FNUZ: case DataType::F8E4M3FNUZ: case DataType::F8E3M4: return 1; case DataType::S16: case DataType::U16: case DataType::F16: case DataType::BF16: return 2; case DataType::S32: case DataType::U32: case DataType::F32: return 4; case DataType::S64: case DataType::U64: case DataType::F64: return 8; case DataType::C64: return 8; case DataType::C128: return 16; } } template <typename T> class Span { public: constexpr Span() : data_(nullptr), size_(0) {} Span(T* data, size_t size) : data_(data), size_(size) {} Span(const std::vector<std::remove_const_t<T>>& vec) : Span(vec.data(), vec.size()) {} T& operator[](size_t index) const { return data_[index]; } bool operator==(const Span<T>& other) const { return size() == other.size() && std::equal(begin(), end(), other.begin()); } T& front() const { return data_[0]; } T& back() const { return data_[size_ - 1]; } Span<T> first(size_t n) const { return Span<T>(data_, n); } Span<T> last(size_t n) const { return Span<T>(data_ + size_ - n, n); } size_t size() const { return size_; } T* begin() const { return data_; } T* end() const { return data_ + size_; } private: T* data_; size_t size_; }; enum class ErrorCode : uint8_t { kOk = XLA_FFI_Error_Code_OK, kCancelled = XLA_FFI_Error_Code_CANCELLED, kUnknown = XLA_FFI_Error_Code_UNKNOWN, kInvalidArgument = XLA_FFI_Error_Code_INVALID_ARGUMENT, kDeadlineExceeded = XLA_FFI_Error_Code_DEADLINE_EXCEEDED, kNotFound = XLA_FFI_Error_Code_NOT_FOUND, kAlreadyExists = XLA_FFI_Error_Code_ALREADY_EXISTS, kPermissionDenied = XLA_FFI_Error_Code_PERMISSION_DENIED, kResourceExhausted = XLA_FFI_Error_Code_RESOURCE_EXHAUSTED, kFailedPrecondition = XLA_FFI_Error_Code_FAILED_PRECONDITION, kAborted = XLA_FFI_Error_Code_ABORTED, kOutOfRange = XLA_FFI_Error_Code_OUT_OF_RANGE, kUnimplemented = XLA_FFI_Error_Code_UNIMPLEMENTED, kInternal = XLA_FFI_Error_Code_INTERNAL, kUnavailable = XLA_FFI_Error_Code_UNAVAILABLE, kDataLoss = XLA_FFI_Error_Code_DATA_LOSS, kUnauthenticated = XLA_FFI_Error_Code_UNAUTHENTICATED, }; class Error { public: Error() = default; Error(ErrorCode errc, std::string message) : errc_(errc), message_(std::move(message)) {} Error(XLA_FFI_Error_Code errc, std::string message) : Error(static_cast<ErrorCode>(errc), std::move(message)) {} bool success() const { return errc_ == ErrorCode::kOk; } bool failure() const { return !success(); } std::optional<ErrorCode> errc() const { return errc_; } const std::string& message() const { return message_; } static Error Success() { return Error(); } static Error Internal(std::string message) { return Error(ErrorCode::kInternal, std::move(message)); } static Error InvalidArgument(std::string message) { return Error(ErrorCode::kInvalidArgument, std::move(message)); } private: ErrorCode errc_ = ErrorCode::kOk; std::string message_; }; template <typename E> class Unexpected; template <typename T, typename E> class Expected { public: constexpr Expected(T value) : data_(std::move(value)) {} constexpr Expected(Unexpected<E> u); constexpr operator bool() const { return has_value(); } constexpr T& operator*() & { return value(); } constexpr const T& operator*() const& { return value(); } constexpr T&& operator*() && { return std::move(value()); } constexpr const T& operator*() const&& { return std::move(value()); } constexpr T* operator->() { return &value(); } constexpr const T* operator->() const { return &value(); } constexpr bool has_value() const { return std::holds_alternative<T>(data_); } constexpr bool has_error() const { return std::holds_alternative<E>(data_); } constexpr T& value() & { return std::get<T>(data_); } constexpr const T& value() const& { return std::get<T>(data_); } constexpr T&& value() && { return std::get<T>(std::move(data_)); } constexpr const T& value() const&& { return std::get<T>(std::move(data_)); } constexpr E& error() & { return std::get<E>(data_); } constexpr const E& error() const& { return std::get<E>(data_); } constexpr E&& error() && { return std::get<E>(std::move(data_)); } constexpr const E&& error() const&& { return std::get<E>(std::move(data_)); } private: std::variant<T, E> data_; }; template <typename E> class Unexpected { public: constexpr Unexpected(E error) : error_(std::move(error)) {} private: template <typename, typename> friend class Expected; E error_; }; Unexpected(const char*) -> Unexpected<std::string>; template <typename T, typename E> constexpr Expected<T, E>::Expected(Unexpected<E> u) : data_(std::move(u.error_)) {} template <typename T> class ErrorOr : public Expected<T, Error> { public: using Expected<T, Error>::Expected; }; class Promise; class Future { public: explicit Future(const Promise& promise); Future(Future&&) = default; Future& operator=(Future&&) = default; template <typename F> void OnReady(F&& f); private: friend class Promise; using Waiter = std::function<void(const std::optional<Error>& error)>; enum class State : uint8_t { kPending, kAvailable, kError }; struct WaiterAndState { static_assert(alignof(std::max_align_t) >= 8 && sizeof(Waiter*) == 8); static constexpr uint64_t kStateMask = (1ull << 2) - 1; static constexpr uint64_t kPointerMask = ~kStateMask; WaiterAndState(Waiter* ptr, State state) { value = (reinterpret_cast<uintptr_t>(ptr) & kPointerMask) | (static_cast<uintptr_t>(state) & kStateMask); } WaiterAndState() : WaiterAndState(nullptr, State::kPending) {} State state() const { return static_cast<State>(value & kStateMask); } Waiter* waiter() const { return reinterpret_cast<Waiter*>(value & kPointerMask); } uintptr_t value; }; static_assert(std::atomic<WaiterAndState>::is_always_lock_free, "WaiterAndState atomic must be lock-free"); struct Data { std::atomic<WaiterAndState> waiter_and_state = WaiterAndState(); std::optional<Error> error; }; std::shared_ptr<Data> data_; }; class Promise { public: Promise() : data_(std::make_shared<Future::Data>()) {} Promise(Promise&&) = default; Promise& operator=(Promise&&) = default; void SetAvailable(); void SetError(Error error); private: friend class Future; void SetCompleted(Future::State state); std::shared_ptr<Future::Data> data_; }; inline Future::Future(const Promise& promise) : data_(promise.data_) { assert(data_.use_count() == 2 && "Promise can be used to create at most one Future"); } template <typename F> void Future::OnReady(F&& f) { static_assert(std::is_invocable_v<F, const std::optional<Error>&>, "F must be compatible with Waiter signature"); WaiterAndState old_value = data_->waiter_and_state.load(std::memory_order_acquire); if (old_value.state() != State::kPending) { f(data_->error); return; } auto* waiter = new Waiter(std::forward<F>(f)); auto new_value = WaiterAndState(waiter, State::kPending); while (!data_->waiter_and_state.compare_exchange_weak( old_value, new_value, std::memory_order_acq_rel, std::memory_order_acquire)) { if (old_value.state() != State::kPending) { assert(old_value.waiter() == nullptr); (*waiter)(data_->error); delete waiter; return; } } assert(old_value.state() == State::kPending); } inline void Promise::SetAvailable() { SetCompleted(Future::State::kAvailable); } inline void Promise::SetError(Error error) { assert(error.errc() != ErrorCode::kOk); assert(data_->error == std::nullopt); data_->error = std::move(error); SetCompleted(Future::State::kError); } inline void Promise::SetCompleted(Future::State state) { Future::WaiterAndState old_value = data_->waiter_and_state.exchange( {nullptr, state}, std::memory_order_acq_rel); assert(old_value.state() == Future::State::kPending); if (Future::Waiter* waiter = old_value.waiter()) { (*waiter)(data_->error); delete waiter; } } class AnyBuffer { public: using Dimensions = Span<const int64_t>; explicit AnyBuffer(const XLA_FFI_Buffer* buf) : buf_(buf) { assert(buf != nullptr && "XLA_FFI_Buffer must be non-null"); } DataType element_type() const { return DataType(buf_->dtype); } Dimensions dimensions() const { return Dimensions(buf_->dims, buf_->rank); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t size_bytes() const { return ByteWidth(element_type()) * element_count(); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t element_count() const { Dimensions dims = dimensions(); return std::accumulate(dims.begin(), dims.end(), int64_t{1}, std::multiplies<>()); } void* untyped_data() const { return buf_->data; } private: const XLA_FFI_Buffer* buf_; }; namespace internal { template <DataType dtype> struct always_false : std::false_type {}; template <DataType dtype> struct DataTypeToNative { static_assert(always_false<dtype>::value, "unsupported data type"); }; #define XLA_FFI_REGISTER_DATATYPE_MAPPING(data_type_value, actual_type) \ template <> \ struct DataTypeToNative<data_type_value> { \ using type = actual_type; \ }; XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::PRED, bool); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U8, uint8_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U16, uint16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U32, uint32_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::U64, uint64_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S8, int8_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S16, int16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S32, int32_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::S64, int64_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::F16, uint16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::F32, float); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::F64, double); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::BF16, uint16_t); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::C64, std::complex<float>); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::C128, std::complex<double>); XLA_FFI_REGISTER_DATATYPE_MAPPING(DataType::TOKEN, void); #undef XLA_FFI_REGISTER_DATATYPE_MAPPING inline constexpr size_t kDynamicRank = std::numeric_limits<size_t>::max(); } constexpr DataType ToComplex(DataType dtype) { switch (dtype) { case DataType::F32: return DataType::C64; case DataType::F64: return DataType::C128; default: return DataType::INVALID; } } constexpr DataType ToReal(DataType dtype) { switch (dtype) { case DataType::C64: return DataType::F32; case DataType::C128: return DataType::F64; default: return dtype; } } constexpr DataType ToImag(DataType dtype) { switch (dtype) { case DataType::C64: return DataType::F32; case DataType::C128: return DataType::F64; default: return dtype; } } template <DataType dtype> using NativeType = typename internal::DataTypeToNative<dtype>::type; template <DataType dtype> constexpr bool IsComplexType() { return std::is_same_v<NativeType<dtype>, std::complex<NativeType<ToReal(dtype)>>>; } static_assert(ToReal(DataType::C64) == DataType::F32); static_assert(ToReal(DataType::C128) == DataType::F64); static_assert(ToReal(DataType::F32) == DataType::F32); static_assert(ToComplex(DataType::F32) == DataType::C64); static_assert(ToComplex(DataType::F64) == DataType::C128); static_assert(ToComplex(DataType::S32) == DataType::INVALID); static_assert(ToComplex(ToReal(DataType::C64)) == DataType::C64); static_assert(ToComplex(ToImag(DataType::C128)) == DataType::C128); static_assert(IsComplexType<DataType::C64>()); static_assert(IsComplexType<DataType::C128>()); static_assert(!IsComplexType<DataType::F32>()); template <DataType dtype, size_t rank = internal::kDynamicRank> class Buffer { public: using Dimensions = AnyBuffer::Dimensions; explicit Buffer(const XLA_FFI_Buffer* buf) : buf_(buf) { assert(buf_ != nullptr && "XLA_FFI_Buffer must be non-null"); } DataType element_type() const { return dtype; } Dimensions dimensions() const { return Dimensions(buf_->dims, rank == internal::kDynamicRank ? buf_->rank : rank); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t size_bytes() const { return ByteWidth(dtype) * element_count(); } XLA_FFI_ATTRIBUTE_ALWAYS_INLINE size_t element_count() const { Dimensions dims = dimensions(); return std::accumulate(dims.begin(), dims.end(), int64_t{1}, std::multiplies<>()); } void* untyped_data() const { return buf_->data; } NativeType<dtype>* typed_data() const { return reinterpret_cast<NativeType<dtype>*>(untyped_data()); } private: const XLA_FFI_Buffer* buf_; }; template <DataType dtype> using BufferR0 = Buffer<dtype, 0>; template <DataType dtype> using BufferR1 = Buffer<dtype, 1>; template <DataType dtype> using BufferR2 = Buffer<dtype, 2>; template <DataType dtype> using BufferR3 = Buffer<dtype, 3>; template <DataType dtype> using BufferR4 = Buffer<dtype, 4>; using Token = BufferR0<DataType::TOKEN>; namespace internal { template <DataType dtype, size_t rank> XLA_FFI_ATTRIBUTE_ALWAYS_INLINE std::optional<Buffer<dtype, rank>> DecodeBuffer( XLA_FFI_Buffer* buf, DiagnosticEngine& diagnostic) { if (auto buf_dtype = static_cast<DataType>(buf->dtype); XLA_FFI_PREDICT_FALSE(buf_dtype != dtype)) { return diagnostic.Emit("Wrong buffer dtype: expected ") << dtype << " but got " << buf_dtype; } if constexpr (rank != internal::kDynamicRank) { if (XLA_FFI_PREDICT_FALSE(buf->rank != rank)) { return diagnostic.Emit("Wrong buffer rank: expected ") << rank << " but got " << buf->rank; } } return Buffer<dtype, rank>(buf); } } template <DataType dtype, size_t rank = internal::kDynamicRank> using ResultBuffer = Result<Buffer<dtype, rank>>; template <DataType dtype> using ResultBufferR0 = ResultBuffer<dtype, 0>; template <DataType dtype> using ResultBufferR1 = ResultBuffer<dtype, 1>; template <DataType dtype> using ResultBufferR2 = ResultBuffer<dtype, 2>; template <DataType dtype> using ResultBufferR3 = ResultBuffer<dtype, 3>; template <DataType dtype> using ResultBufferR4 = ResultBuffer<dtype, 4>; template <> struct ArgBinding<AnyBuffer> { using Arg = AnyBuffer; }; template <DataType dtype, size_t rank> struct ArgBinding<Buffer<dtype, rank>> { using Arg = Buffer<dtype, rank>; }; template <> struct RetBinding<Result<AnyBuffer>> { using Ret = AnyBuffer; }; template <DataType dtype, size_t rank> struct RetBinding<Result<Buffer<dtype, rank>>> { using Ret = Buffer<dtype, rank>; }; inline std::ostream& operator<<(std::ostream& os, const XLA_FFI_ArgType type) { switch (type) { case XLA_FFI_ArgType_BUFFER: return os << "buffer"; } } template <> struct ArgDecoding<AnyBuffer> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<AnyBuffer> Decode(XLA_FFI_ArgType type, void* arg, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_ArgType_BUFFER)) { return diagnostic.Emit("Wrong argument type: expected ") << XLA_FFI_ArgType_BUFFER << " but got " << type; } return AnyBuffer(reinterpret_cast<XLA_FFI_Buffer*>(arg)); } }; template <DataType dtype, size_t rank> struct ArgDecoding<Buffer<dtype, rank>> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<Buffer<dtype, rank>> Decode( XLA_FFI_ArgType type, void* arg, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_ArgType_BUFFER)) { return diagnostic.Emit("Wrong argument type: expected ") << XLA_FFI_ArgType_BUFFER << " but got " << type; } return internal::DecodeBuffer<dtype, rank>( reinterpret_cast<XLA_FFI_Buffer*>(arg), diagnostic); } }; class RemainingArgs : public internal::RemainingArgsBase { public: using internal::RemainingArgsBase::RemainingArgsBase; template <typename T> ErrorOr<T> get(size_t index) const { size_t idx = offset() + index; if (XLA_FFI_PREDICT_FALSE(idx >= args()->size)) { return Unexpected( Error(ErrorCode::kInvalidArgument, "Index out of range")); } DiagnosticEngine diagnostic; std::optional<T> value = ArgDecoding<T>::Decode( args()->types[idx], args()->args[idx], diagnostic); if (XLA_FFI_PREDICT_FALSE(!value.has_value())) { return Unexpected(Error::Internal(diagnostic.Result())); } return *value; } }; template <> struct internal::Decode<internal::RemainingArgsTag> { static std::optional<RemainingArgs> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return RemainingArgs(&ctx.call_frame->args, offsets.args); } }; inline std::ostream& operator<<(std::ostream& os, const XLA_FFI_RetType type) { switch (type) { case XLA_FFI_RetType_BUFFER: return os << "buffer"; } } template <> struct RetDecoding<AnyBuffer> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<Result<AnyBuffer>> Decode(XLA_FFI_RetType type, void* ret, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_RetType_BUFFER)) { return diagnostic.Emit("Wrong result type: expected ") << XLA_FFI_RetType_BUFFER << " but got " << type; } return AnyBuffer(reinterpret_cast<XLA_FFI_Buffer*>(ret)); } }; template <DataType dtype, size_t rank> struct RetDecoding<Buffer<dtype, rank>> { XLA_FFI_ATTRIBUTE_ALWAYS_INLINE static std::optional<Result<Buffer<dtype, rank>>> Decode( XLA_FFI_RetType type, void* ret, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_RetType_BUFFER)) { return diagnostic.Emit("Wrong result type: expected ") << XLA_FFI_RetType_BUFFER << " but got " << type; } return internal::DecodeBuffer<dtype, rank>( reinterpret_cast<XLA_FFI_Buffer*>(ret), diagnostic); } }; class RemainingRets : public internal::RemainingRetsBase { public: using internal::RemainingRetsBase::RemainingRetsBase; template <typename T> ErrorOr<Result<T>> get(size_t index) const { size_t idx = offset() + index; if (XLA_FFI_PREDICT_FALSE(idx >= rets()->size)) { return Unexpected( Error(ErrorCode::kInvalidArgument, "Index out of range")); } DiagnosticEngine diagnostic; std::optional<Result<T>> value = RetDecoding<T>::Decode( rets()->types[idx], rets()->rets[idx], diagnostic); if (XLA_FFI_PREDICT_FALSE(!value.has_value())) { return Unexpected(Error::Internal(diagnostic.Result())); } return *value; } }; template <> struct internal::Decode<internal::RemainingRetsTag> { static std::optional<RemainingRets> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return RemainingRets(&ctx.call_frame->rets, offsets.rets); } }; #define XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(T, TYPE) \ template <> \ struct AttrDecoding<Span<const T>> { \ using Type = Span<const T>; \ static std::optional<Type> Decode(XLA_FFI_AttrType type, void* attr, \ DiagnosticEngine& diagnostic) { \ if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_AttrType_ARRAY)) { \ return diagnostic.Emit("Wrong attribute type: expected ") \ << XLA_FFI_AttrType_ARRAY << " but got " << type; \ } \ \ auto* array = reinterpret_cast<XLA_FFI_Array*>(attr); \ if (XLA_FFI_PREDICT_FALSE(array->dtype != TYPE)) { \ return diagnostic.Emit("Wrong array data type: expected ") \ << TYPE << " but got " << array->dtype; \ } \ \ return Span<const T>(reinterpret_cast<T*>(array->data), array->size); \ } \ } XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int8_t, XLA_FFI_DataType_S8); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int16_t, XLA_FFI_DataType_S16); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int32_t, XLA_FFI_DataType_S32); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(int64_t, XLA_FFI_DataType_S64); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint8_t, XLA_FFI_DataType_U8); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint16_t, XLA_FFI_DataType_U16); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint32_t, XLA_FFI_DataType_U32); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(uint64_t, XLA_FFI_DataType_U64); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(float, XLA_FFI_DataType_F32); XLA_FFI_REGISTER_ARRAY_ATTR_DECODING(double, XLA_FFI_DataType_F64); #undef XLA_FFI_REGISTER_ARRAY_ATTR_DECODING template <typename T> struct Pointer {}; template <typename T> struct AttrDecoding<Pointer<T>> { using Type = T*; static std::optional<Type> Decode(XLA_FFI_AttrType type, void* attr, DiagnosticEngine& diagnostic) { auto* scalar = reinterpret_cast<XLA_FFI_Scalar*>(attr); if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_AttrType_SCALAR || scalar->dtype != XLA_FFI_DataType_S64)) { return diagnostic.Emit("Wrong attribute type: ") << "expected i64 scalar for passing pointer but got " << type; } static_assert(sizeof(uintptr_t) == sizeof(int64_t)); uintptr_t ptr = *reinterpret_cast<uintptr_t*>(scalar->value); return reinterpret_cast<Type>(ptr); } }; class Dictionary : public internal::DictionaryBase { public: using internal::DictionaryBase::DictionaryBase; template <typename T> ErrorOr<T> get(std::string_view name) const { DiagnosticEngine diagnostic; std::optional<T> value = internal::DictionaryBase::get<T>(name, diagnostic); if (!value.has_value()) { return Unexpected(Error::Internal(diagnostic.Result())); } return *value; } }; template <> struct internal::Decode<internal::AttrsTag<Dictionary>> { static std::optional<Dictionary> call(DecodingOffsets& offsets, DecodingContext& ctx, DiagnosticEngine& diagnostic) { return Dictionary(&ctx.call_frame->attrs); } }; template <> struct AttrDecoding<Dictionary> { using Type = Dictionary; static std::optional<Dictionary> Decode(XLA_FFI_AttrType type, void* attr, DiagnosticEngine& diagnostic) { if (XLA_FFI_PREDICT_FALSE(type != XLA_FFI_AttrType_DICTIONARY)) { return diagnostic.Emit("Wrong attribute type: expected ") << XLA_FFI_AttrType_DICTIONARY << " but got " << type; } return Dictionary(reinterpret_cast<XLA_FFI_Attrs*>(attr)); } }; namespace internal { inline XLA_FFI_Error* CreateError(const XLA_FFI_Api* api, const Error& error) { XLA_FFI_Error_Create_Args args; args.struct_size = XLA_FFI_Error_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.errc = static_cast<XLA_FFI_Error_Code>(*error.errc()); args.message = error.message().c_str(); return api->XLA_FFI_Error_Create(&args); } inline void DestroyError(const XLA_FFI_Api* api, XLA_FFI_Error* error) { XLA_FFI_Error_Destroy_Args args; args.struct_size = XLA_FFI_Error_Destroy_Args_STRUCT_SIZE; args.extension_start = nullptr; args.error = error; api->XLA_FFI_Error_Destroy(&args); } inline const char* GetErrorMessage(const XLA_FFI_Api* api, XLA_FFI_Error* error) { XLA_FFI_Error_GetMessage_Args args; args.struct_size = XLA_FFI_Error_GetMessage_Args_STRUCT_SIZE; args.extension_start = nullptr; args.error = error; api->XLA_FFI_Error_GetMessage(&args); return args.message; } } template <ExecutionStage stage> struct ResultEncoding<stage, Error> { static XLA_FFI_Error* Encode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, Error error) { if (XLA_FFI_PREDICT_TRUE(error.success())) { return nullptr; } return internal::CreateError(api, error); } }; template <typename T> struct ResultEncoding<ExecutionStage::kInstantiate, ErrorOr<std::unique_ptr<T>>> { static_assert(std::is_same_v<decltype(T::id), TypeId>, "State type must have a static `TypeId id` field"); static XLA_FFI_Error* Encode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, ErrorOr<std::unique_ptr<T>> state) { if (XLA_FFI_PREDICT_TRUE(state.has_value())) { XLA_FFI_State_Set_Args args; args.struct_size = XLA_FFI_State_Set_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.type_id = &T::id; args.state = state.value().release(); args.deleter = +[](void* state) { delete reinterpret_cast<T*>(state); }; return api->XLA_FFI_State_Set(&args); } return internal::CreateError(api, state.error()); } }; template <ExecutionStage stage> struct ResultEncoding<stage, Future> { static std::variant<XLA_FFI_Error*, XLA_FFI_Future*> Encode( const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, Future future) { XLA_FFI_Future_Create_Args args; args.struct_size = XLA_FFI_Future_Create_Args_STRUCT_SIZE; args.extension_start = nullptr; args.future = nullptr; if (auto* err = api->XLA_FFI_Future_Create(&args)) { return err; } assert(args.future != nullptr && "XLA_FFI_Future_Create failed"); future.OnReady([api, f = args.future](const std::optional<Error>& error) { auto abort_on_error = [api](XLA_FFI_Error* err) { if (XLA_FFI_PREDICT_TRUE(err == nullptr)) { return; } std::cerr << "Failed to signal XLA_FFI_Future completion: " << internal::GetErrorMessage(api, err) << std::endl; internal::DestroyError(api, err); std::abort(); }; if (XLA_FFI_PREDICT_FALSE(error.has_value())) { XLA_FFI_Future_SetError_Args args; args.struct_size = XLA_FFI_Future_SetError_Args_STRUCT_SIZE; args.extension_start = nullptr; args.future = f; args.error = internal::CreateError(api, *error); abort_on_error(api->XLA_FFI_Future_SetError(&args)); } else { XLA_FFI_Future_SetAvailable_Args args; args.struct_size = XLA_FFI_Future_SetAvailable_Args_STRUCT_SIZE; args.extension_start = nullptr; args.future = f; abort_on_error(api->XLA_FFI_Future_SetAvailable(&args)); } }); return args.future; } }; template <typename T> struct PlatformStream {}; template <typename T> struct CtxDecoding<PlatformStream<T>> { using Type = T; static_assert(std::is_pointer_v<T>, "stream type must be a pointer"); static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { XLA_FFI_Stream_Get_Args args; args.struct_size = XLA_FFI_Stream_Get_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.stream = nullptr; if (XLA_FFI_Error* error = api->XLA_FFI_Stream_Get(&args)) { diagnostic.Emit("Failed to get platform stream: ") << internal::GetErrorMessage(api, error); internal::DestroyError(api, error); return std::nullopt; } return reinterpret_cast<T>(args.stream); } }; class ScratchAllocator { public: ~ScratchAllocator(); ScratchAllocator(ScratchAllocator&&) = default; ScratchAllocator& operator=(ScratchAllocator&&) = default; std::optional<void*> Allocate(size_t size, size_t alignment = 1); private: friend struct CtxDecoding<ScratchAllocator>; ScratchAllocator(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic); struct Allocation { size_t size; void* data; }; const XLA_FFI_Api* api_; XLA_FFI_ExecutionContext* ctx_; DiagnosticEngine& diagnostic_; std::vector<Allocation> allocations_; }; template <> struct CtxDecoding<ScratchAllocator> { using Type = ScratchAllocator; static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { return ScratchAllocator(api, ctx, diagnostic); } }; inline std::optional<void*> ScratchAllocator::Allocate(size_t size, size_t alignment) { XLA_FFI_DeviceMemory_Allocate_Args args; args.struct_size = XLA_FFI_DeviceMemory_Allocate_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx_; args.size = size; args.alignment = alignment; args.data = nullptr; if (XLA_FFI_Error* error = api_->XLA_FFI_DeviceMemory_Allocate(&args)) { diagnostic_.Emit("Failed to allocate scratch memory: ") << internal::GetErrorMessage(api_, error); internal::DestroyError(api_, error); return std::nullopt; } allocations_.push_back({size, args.data}); return args.data; } inline ScratchAllocator::ScratchAllocator(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) : api_(api), ctx_(ctx), diagnostic_(diagnostic) {} inline ScratchAllocator::~ScratchAllocator() { for (Allocation& alloc : allocations_) { XLA_FFI_DeviceMemory_Free_Args args; args.struct_size = XLA_FFI_DeviceMemory_Free_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx_; args.size = alloc.size; args.data = alloc.data; if (XLA_FFI_Error* error = api_->XLA_FFI_DeviceMemory_Free(&args)) { diagnostic_.Emit("Failed to free scratch memory: ") << internal::GetErrorMessage(api_, error); internal::DestroyError(api_, error); } } } class ThreadPool { public: template <typename F> void Schedule(F&& f) { XLA_FFI_Task* task = +[](void* data) { auto* f = reinterpret_cast<F*>(data); (*f)(); delete f; }; F* data = new F(std::forward<F>(f)); XLA_FFI_ThreadPool_Schedule_Args args; args.struct_size = XLA_FFI_ThreadPool_Schedule_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx_; args.task = task; args.data = data; if (XLA_FFI_Error* error = api_->XLA_FFI_ThreadPool_Schedule(&args)) { diagnostic_.Emit("Failed to schedule task on a thread pool: ") << internal::GetErrorMessage(api_, error); internal::DestroyError(api_, error); task(data); } } private: friend struct CtxDecoding<ThreadPool>; ThreadPool(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic); const XLA_FFI_Api* api_; XLA_FFI_ExecutionContext* ctx_; DiagnosticEngine& diagnostic_; }; template <> struct CtxDecoding<ThreadPool> { using Type = ThreadPool; static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { return ThreadPool(api, ctx, diagnostic); } }; inline ThreadPool::ThreadPool(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) : api_(api), ctx_(ctx), diagnostic_(diagnostic) {} namespace internal { inline XLA_FFI_Error* RegisterType(const XLA_FFI_Api* api, std::string_view name, XLA_FFI_TypeId* type_id) { XLA_FFI_TypeId_Register_Args args; args.struct_size = XLA_FFI_TypeId_Register_Args_STRUCT_SIZE; args.extension_start = nullptr; args.name = XLA_FFI_ByteSpan{name.data(), name.size()}; args.type_id = type_id; return api->XLA_FFI_TypeId_Register(&args); } } #define XLA_FFI_REGISTER_TYPE(API, NAME, TYPE_ID) \ XLA_FFI_REGISTER_TYPE_(API, NAME, TYPE_ID, __COUNTER__) #define XLA_FFI_REGISTER_TYPE_(API, NAME, TYPE_ID, N) \ XLA_FFI_REGISTER_TYPE__(API, NAME, TYPE_ID, N) #define XLA_FFI_REGISTER_TYPE__(API, NAME, TYPE_ID, N) \ XLA_FFI_ATTRIBUTE_UNUSED static const XLA_FFI_Error* \ xla_ffi_type_##N##_registered_ = [] { \ return ::xla::ffi::internal::RegisterType(API, NAME, TYPE_ID); \ }() template <typename T> struct UserData {}; template <typename T> struct CtxDecoding<UserData<T>> { using Type = T*; static_assert(std::is_same_v<decltype(T::id), TypeId>, "UserData type must have a static `TypeId id` field"); static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { XLA_FFI_ExecutionContext_Get_Args args; args.struct_size = XLA_FFI_ExecutionContext_Get_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.type_id = &T::id; args.data = nullptr; assert(args.type_id->type_id > 0 && "type must be registered with XLA FFI"); if (XLA_FFI_Error* err = api->XLA_FFI_ExecutionContext_Get(&args); err) { diagnostic.Emit("Failed to get user data from execution context: ") << internal::GetErrorMessage(api, err); internal::DestroyError(api, err); return std::nullopt; } return static_cast<Type>(args.data); } }; template <typename T> struct State {}; template <typename T> struct CtxDecoding<State<T>> { using Type = T*; static_assert(std::is_same_v<decltype(T::id), TypeId>, "State type must have a static `TypeId id` field"); static std::optional<Type> Decode(const XLA_FFI_Api* api, XLA_FFI_ExecutionContext* ctx, DiagnosticEngine& diagnostic) { XLA_FFI_State_Get_Args args; args.struct_size = XLA_FFI_State_Get_Args_STRUCT_SIZE; args.extension_start = nullptr; args.ctx = ctx; args.type_id = &T::id; args.state = nullptr; assert(args.type_id->type_id > 0 && "type must be registered with XLA FFI"); if (XLA_FFI_Error* err = api->XLA_FFI_State_Get(&args); err) { diagnostic.Emit("Failed to get state from execution context: ") << internal::GetErrorMessage(api, err); internal::DestroyError(api, err); return std::nullopt; } return static_cast<Type>(args.state); } }; } #endif
#include "xla/ffi/api/ffi.h" #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <type_traits> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/synchronization/blocking_counter.h" #include "xla/ffi/api/c_api.h" #include "xla/ffi/call_frame.h" #include "xla/ffi/execution_context.h" #include "xla/ffi/execution_state.h" #include "xla/ffi/ffi_api.h" #include "xla/ffi/type_id_registry.h" #include "xla/primitive_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/chain.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/threadpool.h" #define EIGEN_USE_THREADS #include "unsupported/Eigen/CXX11/Tensor" namespace xla::ffi { enum class Int32BasedEnum : int32_t { kOne = 1, kTwo = 2, }; static constexpr int64_t kI32MaxValue = std::numeric_limits<int32_t>::max(); enum class Int64BasedEnum : int64_t { kOne = kI32MaxValue + 1, kTwo = kI32MaxValue + 2, }; } XLA_FFI_REGISTER_ENUM_ATTR_DECODING(::xla::ffi::Int32BasedEnum); XLA_FFI_REGISTER_ENUM_ATTR_DECODING(::xla::ffi::Int64BasedEnum); namespace xla::ffi { struct PairOfI32AndF32 { int32_t i32; float f32; }; struct TupleOfI32 { int32_t i32_0; int32_t i32_1; int32_t i32_2; int32_t i32_3; }; } XLA_FFI_REGISTER_STRUCT_ATTR_DECODING(::xla::ffi::PairOfI32AndF32, ::xla::ffi::StructMember<int32_t>("i32"), ::xla::ffi::StructMember<float>("f32")); XLA_FFI_REGISTER_STRUCT_ATTR_DECODING( ::xla::ffi::TupleOfI32, ::xla::ffi::StructMember<int32_t>("i32_0"), ::xla::ffi::StructMember<int32_t>("i32_1"), ::xla::ffi::StructMember<int32_t>("i32_2"), ::xla::ffi::StructMember<int32_t>("i32_3")); namespace xla::ffi { using ::testing::HasSubstr; using ::tsl::testing::StatusIs; TEST(FfiTest, DataTypeEnumValue) { auto encoded = [](auto value) { return static_cast<uint8_t>(value); }; EXPECT_EQ(encoded(PrimitiveType::PRED), encoded(DataType::PRED)); EXPECT_EQ(encoded(PrimitiveType::S8), encoded(DataType::S8)); EXPECT_EQ(encoded(PrimitiveType::S16), encoded(DataType::S16)); EXPECT_EQ(encoded(PrimitiveType::S32), encoded(DataType::S32)); EXPECT_EQ(encoded(PrimitiveType::S64), encoded(DataType::S64)); EXPECT_EQ(encoded(PrimitiveType::U8), encoded(DataType::U8)); EXPECT_EQ(encoded(PrimitiveType::U16), encoded(DataType::U16)); EXPECT_EQ(encoded(PrimitiveType::U32), encoded(DataType::U32)); EXPECT_EQ(encoded(PrimitiveType::U64), encoded(DataType::U64)); EXPECT_EQ(encoded(PrimitiveType::F16), encoded(DataType::F16)); EXPECT_EQ(encoded(PrimitiveType::F32), encoded(DataType::F32)); EXPECT_EQ(encoded(PrimitiveType::F64), encoded(DataType::F64)); EXPECT_EQ(encoded(PrimitiveType::BF16), encoded(DataType::BF16)); EXPECT_EQ(encoded(PrimitiveType::C64), encoded(DataType::C64)); EXPECT_EQ(encoded(PrimitiveType::C128), encoded(DataType::C128)); EXPECT_EQ(encoded(PrimitiveType::TOKEN), encoded(DataType::TOKEN)); EXPECT_EQ(encoded(PrimitiveType::F8E5M2), encoded(DataType::F8E5M2)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3), encoded(DataType::F8E4M3)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3FN), encoded(DataType::F8E4M3FN)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3B11FNUZ), encoded(DataType::F8E4M3B11FNUZ)); EXPECT_EQ(encoded(PrimitiveType::F8E5M2FNUZ), encoded(DataType::F8E5M2FNUZ)); EXPECT_EQ(encoded(PrimitiveType::F8E4M3FNUZ), encoded(DataType::F8E4M3FNUZ)); EXPECT_EQ(encoded(PrimitiveType::F8E3M4), encoded(DataType::F8E3M4)); } TEST(FfiTest, DataTypeByteWidth) { EXPECT_EQ(0, ByteWidth(DataType::TOKEN)); EXPECT_EQ(0, ByteWidth(DataType::INVALID)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::PRED), ByteWidth(DataType::PRED)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S8), ByteWidth(DataType::S8)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S16), ByteWidth(DataType::S16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S32), ByteWidth(DataType::S32)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::S64), ByteWidth(DataType::S64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U8), ByteWidth(DataType::U8)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U16), ByteWidth(DataType::U16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U32), ByteWidth(DataType::U32)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::U64), ByteWidth(DataType::U64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F16), ByteWidth(DataType::F16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F32), ByteWidth(DataType::F32)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F64), ByteWidth(DataType::F64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::BF16), ByteWidth(DataType::BF16)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::C64), ByteWidth(DataType::C64)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::C128), ByteWidth(DataType::C128)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E5M2), ByteWidth(DataType::F8E5M2)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3), ByteWidth(DataType::F8E4M3)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3FN), ByteWidth(DataType::F8E4M3FN)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3B11FNUZ), ByteWidth(DataType::F8E4M3B11FNUZ)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E5M2FNUZ), ByteWidth(DataType::F8E5M2FNUZ)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E4M3FNUZ), ByteWidth(DataType::F8E4M3FNUZ)); EXPECT_EQ(primitive_util::ByteWidth(PrimitiveType::F8E3M4), ByteWidth(DataType::F8E3M4)); } TEST(FfiTest, ErrorEnumValue) { auto encoded = [](auto value) { return static_cast<uint8_t>(value); }; EXPECT_EQ(encoded(absl::StatusCode::kOk), encoded(ErrorCode::kOk)); EXPECT_EQ(encoded(absl::StatusCode::kCancelled), encoded(ErrorCode::kCancelled)); EXPECT_EQ(encoded(absl::StatusCode::kUnknown), encoded(ErrorCode::kUnknown)); EXPECT_EQ(encoded(absl::StatusCode::kInvalidArgument), encoded(ErrorCode::kInvalidArgument)); EXPECT_EQ(encoded(absl::StatusCode::kNotFound), encoded(ErrorCode::kNotFound)); EXPECT_EQ(encoded(absl::StatusCode::kAlreadyExists), encoded(ErrorCode::kAlreadyExists)); EXPECT_EQ(encoded(absl::StatusCode::kPermissionDenied), encoded(ErrorCode::kPermissionDenied)); EXPECT_EQ(encoded(absl::StatusCode::kResourceExhausted), encoded(ErrorCode::kResourceExhausted)); EXPECT_EQ(encoded(absl::StatusCode::kFailedPrecondition), encoded(ErrorCode::kFailedPrecondition)); EXPECT_EQ(encoded(absl::StatusCode::kAborted), encoded(ErrorCode::kAborted)); EXPECT_EQ(encoded(absl::StatusCode::kOutOfRange), encoded(ErrorCode::kOutOfRange)); EXPECT_EQ(encoded(absl::StatusCode::kUnimplemented), encoded(ErrorCode::kUnimplemented)); EXPECT_EQ(encoded(absl::StatusCode::kInternal), encoded(ErrorCode::kInternal)); EXPECT_EQ(encoded(absl::StatusCode::kUnavailable), encoded(ErrorCode::kUnavailable)); EXPECT_EQ(encoded(absl::StatusCode::kDataLoss), encoded(ErrorCode::kDataLoss)); EXPECT_EQ(encoded(absl::StatusCode::kUnauthenticated), encoded(ErrorCode::kUnauthenticated)); } TEST(FfiTest, Expected) { ErrorOr<int32_t> value(42); EXPECT_TRUE(value.has_value()); EXPECT_FALSE(value.has_error()); EXPECT_EQ(*value, 42); ErrorOr<int32_t> error(Error(ErrorCode::kInternal, "Test error")); EXPECT_FALSE(error.has_value()); EXPECT_TRUE(error.has_error()); EXPECT_THAT(error.error().message(), HasSubstr("Test error")); } TEST(FfiTest, FutureSetAvailable) { Promise promise; Future future(promise); promise.SetAvailable(); future.OnReady([](const std::optional<Error>& error) { EXPECT_FALSE(error.has_value()); }); } TEST(FfiTest, FutureSetError) { Promise promise; Future future(promise); promise.SetError(Error(ErrorCode::kInternal, "Test error")); future.OnReady([](const std::optional<Error>& error) { EXPECT_TRUE(error.has_value()); EXPECT_THAT(error->message(), HasSubstr("Test error")); }); } TEST(FfiTest, FutureSetAvailableFromThreadPool) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Promise promise; Future future(promise); int32_t value = 0; absl::BlockingCounter counter(1); future.OnReady([&](const std::optional<Error>& error) { EXPECT_FALSE(error.has_value()); EXPECT_EQ(value, 42); counter.DecrementCount(); }); pool.Schedule([&]() { value = 42; promise.SetAvailable(); }); counter.Wait(); } TEST(FfiTest, FutureSetErrorFromThreadPool) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Promise promise; Future future(promise); int32_t value = 0; absl::BlockingCounter counter(1); future.OnReady([&](const std::optional<Error>& error) { EXPECT_TRUE(error.has_value()); EXPECT_THAT(error->message(), HasSubstr("Test error")); EXPECT_EQ(value, 42); counter.DecrementCount(); }); pool.Schedule([&]() { value = 42; promise.SetError(Error(ErrorCode::kInternal, "Test error")); }); counter.Wait(); } TEST(FfiTest, FutureRace) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); for (int32_t i = 0; i < 1000; ++i) { Promise promise; Future future(promise); absl::BlockingCounter counter(1); pool.Schedule([&]() { promise.SetAvailable(); }); pool.Schedule([&]() { future.OnReady([&](const std::optional<Error>& error) { EXPECT_FALSE(error.has_value()); counter.DecrementCount(); }); }); counter.Wait(); } } TEST(FfiTest, ReturnError) { CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); auto handler = Ffi::Bind().To( []() { return Error(ErrorCode::kInternal, "Test error"); }); auto status = Call(*handler, call_frame); EXPECT_EQ(status, absl::InternalError("Test error")); } TEST(FfiTest, AnyBufferArgument) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<AnyBuffer>().To([&](auto buffer) { EXPECT_EQ(buffer.untyped_data(), storage.data()); EXPECT_EQ(buffer.dimensions().size(), 2); return Error::Success(); }); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, BufferArgument) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR2<F32>>().To([&](auto buffer) { EXPECT_EQ(buffer.typed_data(), storage.data()); EXPECT_EQ(buffer.dimensions().size(), 2); return Error::Success(); }); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AnyBufferResult) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(0, 1); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Ret<AnyBuffer>().To([&](Result<AnyBuffer> buffer) { EXPECT_EQ(buffer->untyped_data(), storage.data()); EXPECT_EQ(buffer->dimensions().size(), 2); return Error::Success(); }); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, MissingBufferArgument) { CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR1<F32>>().To( [](auto) { return Error::Success(); }); auto status = Call(*handler, call_frame); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Wrong number of arguments"))); } TEST(FfiTest, WrongRankBufferArgument) { std::vector<int32_t> storage(4, 0.0); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(int32_t)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR1<F32>>().To( [](auto) { return Error::Success(); }); auto status = Call(*handler, call_frame); EXPECT_THAT(status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Wrong buffer rank: expected 1 but got 2"))); } TEST(FfiTest, WrongTypeBufferArgument) { std::vector<int32_t> storage(4, 0.0); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(int32_t)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::S32, {2, 2}); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Arg<BufferR2<F32>>().To( [](auto) { return Error::Success(); }); auto status = Call(*handler, call_frame); EXPECT_THAT( status, StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Wrong buffer dtype: expected F32 but got S32"))); } TEST(FfiTest, TokenArgument) { CallFrameBuilder builder(1, 0); builder.AddBufferArg(se::DeviceMemoryBase(), PrimitiveType::TOKEN, {}); auto call_frame = builder.Build(); auto fn = [&](Token tok) { EXPECT_EQ(tok.typed_data(), nullptr); EXPECT_EQ(tok.dimensions().size(), 0); return Error::Success(); }; auto handler = Ffi::Bind().Arg<Token>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, RemainingArgs) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto fn = [&](RemainingArgs args) { EXPECT_EQ(args.size(), 1); ErrorOr<AnyBuffer> arg0 = args.get<AnyBuffer>(0); ErrorOr<AnyBuffer> arg1 = args.get<AnyBuffer>(1); EXPECT_TRUE(arg0.has_value()); EXPECT_FALSE(arg1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().RemainingArgs().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, RemainingRets) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(0, 2); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); auto fn = [&](Result<AnyBuffer> ret, RemainingRets rets) { EXPECT_EQ(rets.size(), 1); ErrorOr<Result<AnyBuffer>> ret0 = rets.get<AnyBuffer>(0); ErrorOr<Result<AnyBuffer>> ret1 = rets.get<AnyBuffer>(1); EXPECT_TRUE(ret0.has_value()); EXPECT_FALSE(ret1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Ret<AnyBuffer>().RemainingRets().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, OptionalArgs) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); { auto fn = [&](std::optional<AnyBuffer> arg0) { EXPECT_TRUE(arg0.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalArg<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<AnyBuffer> arg0, std::optional<AnyBuffer> arg1) { EXPECT_TRUE(arg0.has_value()); EXPECT_FALSE(arg1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalArg<AnyBuffer>().OptionalArg<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](AnyBuffer arg0, std::optional<AnyBuffer> arg1) { EXPECT_FALSE(arg1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Arg<AnyBuffer>().OptionalArg<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<AnyBuffer> arg0, RemainingArgs args) { EXPECT_TRUE(arg0.has_value()); EXPECT_EQ(args.size(), 0); return Error::Success(); }; auto handler = Ffi::Bind().OptionalArg<AnyBuffer>().RemainingArgs().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } } TEST(FfiTest, OptionalRets) { std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder builder(0, 1); builder.AddBufferRet(memory, PrimitiveType::F32, {2, 2}); auto call_frame = builder.Build(); { auto fn = [&](std::optional<Result<AnyBuffer>> ret0) { EXPECT_TRUE(ret0.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalRet<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<Result<AnyBuffer>> ret0, std::optional<Result<AnyBuffer>> ret1) { EXPECT_TRUE(ret0.has_value()); EXPECT_FALSE(ret1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().OptionalRet<AnyBuffer>().OptionalRet<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](Result<AnyBuffer> ret0, std::optional<Result<AnyBuffer>> ret1) { EXPECT_FALSE(ret1.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Ret<AnyBuffer>().OptionalRet<AnyBuffer>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } { auto fn = [&](std::optional<Result<AnyBuffer>> ret0, RemainingRets rets) { EXPECT_TRUE(ret0.has_value()); EXPECT_EQ(rets.size(), 0); return Error::Success(); }; auto handler = Ffi::Bind().OptionalRet<AnyBuffer>().RemainingRets().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } } TEST(FfiTest, AutoBinding) { static constexpr char kI32[] = "i32"; auto handler = Ffi::BindTo(+[](AnyBuffer buffer, Attr<int32_t, kI32> foo) { EXPECT_EQ(*foo, 42); return Error::Success(); }); std::vector<float> storage(4, 0.0f); se::DeviceMemoryBase memory(storage.data(), 4 * sizeof(float)); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert(kI32, 42); CallFrameBuilder builder(1, 0); builder.AddBufferArg(memory, PrimitiveType::F32, {2, 2}); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AutoBindingResult) { auto handler = Ffi::BindTo(+[](Result<AnyBuffer> buffer) { return Error::Success(); }); CallFrameBuilder builder(0, 1); builder.AddBufferRet(se::DeviceMemoryBase(), PrimitiveType::F32, {}); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AutoBindingStructs) { auto handler = Ffi::BindTo(+[](PairOfI32AndF32 attrs) { EXPECT_EQ(attrs.i32, 42); EXPECT_EQ(attrs.f32, 42.0f); return Error::Success(); }); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AutoBindingDictionary) { auto handler = Ffi::BindTo(+[](Dictionary attrs) { EXPECT_EQ(*attrs.get<int32_t>("i32"), 42); EXPECT_EQ(*attrs.get<float>("f32"), 42.0f); return Error::Success(); }); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } struct TestStreamSt; using TestStream = TestStreamSt*; template <> struct CtxBinding<TestStream> { using Ctx = PlatformStream<TestStream>; }; TEST(FfiTest, BindingPlatformStreamInference) { (void)Ffi::BindTo(+[](TestStream stream) { return Error::Success(); }); } TEST(FfiTest, ArrayAttr) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("arr0", std::vector<int8_t>({1, 2, 3, 4})); attrs.Insert("arr1", std::vector<int16_t>({1, 2, 3, 4})); attrs.Insert("arr2", std::vector<int32_t>({1, 2, 3, 4})); attrs.Insert("arr3", std::vector<int64_t>({1, 2, 3, 4})); attrs.Insert("arr4", std::vector<uint8_t>({1, 2, 3, 4})); attrs.Insert("arr5", std::vector<uint16_t>({1, 2, 3, 4})); attrs.Insert("arr6", std::vector<uint32_t>({1, 2, 3, 4})); attrs.Insert("arr7", std::vector<uint64_t>({1, 2, 3, 4})); attrs.Insert("arr8", std::vector<float>({1, 2, 3, 4})); attrs.Insert("arr9", std::vector<double>({1, 2, 3, 4})); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](auto arr0, auto arr1, auto arr2, auto arr3, auto arr4, auto arr5, auto arr6, auto arr7, auto arr8, auto arr9) { EXPECT_EQ(arr0, Span<const int8_t>({1, 2, 3, 4})); EXPECT_EQ(arr1, Span<const int16_t>({1, 2, 3, 4})); EXPECT_EQ(arr2, Span<const int32_t>({1, 2, 3, 4})); EXPECT_EQ(arr3, Span<const int64_t>({1, 2, 3, 4})); EXPECT_EQ(arr4, Span<const uint8_t>({1, 2, 3, 4})); EXPECT_EQ(arr5, Span<const uint16_t>({1, 2, 3, 4})); EXPECT_EQ(arr6, Span<const uint32_t>({1, 2, 3, 4})); EXPECT_EQ(arr7, Span<const uint64_t>({1, 2, 3, 4})); EXPECT_EQ(arr8, Span<const float>({1, 2, 3, 4})); EXPECT_EQ(arr9, Span<const double>({1, 2, 3, 4})); return Error::Success(); }; auto handler = Ffi::Bind() .Attr<Span<const int8_t>>("arr0") .Attr<Span<const int16_t>>("arr1") .Attr<Span<const int32_t>>("arr2") .Attr<Span<const int64_t>>("arr3") .Attr<Span<const uint8_t>>("arr4") .Attr<Span<const uint16_t>>("arr5") .Attr<Span<const uint32_t>>("arr6") .Attr<Span<const uint64_t>>("arr7") .Attr<Span<const float>>("arr8") .Attr<Span<const double>>("arr9") .To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AttrsAsDictionary) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); attrs.Insert("str", "foo"); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](Dictionary dict) { EXPECT_EQ(dict.size(), 3); EXPECT_TRUE(dict.contains("i32")); EXPECT_TRUE(dict.contains("f32")); EXPECT_TRUE(dict.contains("str")); ErrorOr<int32_t> i32 = dict.get<int32_t>("i32"); ErrorOr<float> f32 = dict.get<float>("f32"); ErrorOr<std::string_view> str = dict.get<std::string_view>("str"); EXPECT_TRUE(i32.has_value()); EXPECT_TRUE(f32.has_value()); EXPECT_TRUE(str.has_value()); if (i32.has_value()) EXPECT_EQ(*i32, 42); if (f32.has_value()) EXPECT_EQ(*f32, 42.0f); if (str.has_value()) EXPECT_EQ(*str, "foo"); EXPECT_FALSE(dict.contains("i64")); EXPECT_FALSE(dict.get<int64_t>("i32").has_value()); EXPECT_FALSE(dict.get<int64_t>("i64").has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Attrs().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, DictionaryAttr) { CallFrameBuilder::AttributesMap dict0; dict0.try_emplace("i32", 42); CallFrameBuilder::AttributesMap dict1; dict1.try_emplace("f32", 42.0f); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("dict0", dict0); attrs.Insert("dict1", dict1); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](Dictionary dict0, Dictionary dict1) { EXPECT_EQ(dict0.size(), 1); EXPECT_EQ(dict1.size(), 1); EXPECT_TRUE(dict0.contains("i32")); EXPECT_TRUE(dict1.contains("f32")); ErrorOr<int32_t> i32 = dict0.get<int32_t>("i32"); ErrorOr<float> f32 = dict1.get<float>("f32"); EXPECT_TRUE(i32.has_value()); EXPECT_TRUE(f32.has_value()); if (i32.has_value()) EXPECT_EQ(*i32, 42); if (f32.has_value()) EXPECT_EQ(*f32, 42.0f); return Error::Success(); }; auto handler = Ffi::Bind().Attr<Dictionary>("dict0").Attr<Dictionary>("dict1").To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, StructAttr) { CallFrameBuilder::AttributesMap dict; dict.try_emplace("i32", 42); dict.try_emplace("f32", 42.0f); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("str", "foo"); attrs.Insert("i32_and_f32", dict); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](std::string_view str, PairOfI32AndF32 i32_and_f32) { EXPECT_EQ(str, "foo"); EXPECT_EQ(i32_and_f32.i32, 42); EXPECT_EQ(i32_and_f32.f32, 42.0f); return Error::Success(); }; auto handler = Ffi::Bind() .Attr<std::string_view>("str") .Attr<PairOfI32AndF32>("i32_and_f32") .To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, AttrsAsStruct) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32", 42); attrs.Insert("f32", 42.0f); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](PairOfI32AndF32 i32_and_f32) { EXPECT_EQ(i32_and_f32.i32, 42); EXPECT_EQ(i32_and_f32.f32, 42.0f); return Error::Success(); }; auto handler = Ffi::Bind().Attrs<PairOfI32AndF32>().To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, PointerAttr) { std::string foo = "foo"; auto ptr = reinterpret_cast<uintptr_t>(&foo); static_assert(sizeof(ptr) == sizeof(int64_t)); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("ptr", static_cast<int64_t>(ptr)); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](const std::string* str) { EXPECT_EQ(*str, "foo"); return Error::Success(); }; auto handler = Ffi::Bind().Attr<Pointer<std::string>>("ptr").To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, EnumAttr) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32_one", static_cast<std::underlying_type_t<Int32BasedEnum>>( Int32BasedEnum::kOne)); attrs.Insert("i32_two", static_cast<std::underlying_type_t<Int32BasedEnum>>( Int32BasedEnum::kTwo)); attrs.Insert("i64_one", static_cast<std::underlying_type_t<Int64BasedEnum>>( Int64BasedEnum::kOne)); attrs.Insert("i64_two", static_cast<std::underlying_type_t<Int64BasedEnum>>( Int64BasedEnum::kTwo)); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [&](Int32BasedEnum i32_one, Int32BasedEnum i32_two, Int64BasedEnum i64_one, Int64BasedEnum i64_two) { EXPECT_EQ(i32_one, Int32BasedEnum::kOne); EXPECT_EQ(i32_two, Int32BasedEnum::kTwo); EXPECT_EQ(i64_one, Int64BasedEnum::kOne); EXPECT_EQ(i64_two, Int64BasedEnum::kTwo); return Error::Success(); }; auto handler = Ffi::Bind() .Attr<Int32BasedEnum>("i32_one") .Attr<Int32BasedEnum>("i32_two") .Attr<Int64BasedEnum>("i64_one") .Attr<Int64BasedEnum>("i64_two") .To(fn); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, WrongEnumAttrType) { CallFrameBuilder::AttributesMap dict; dict.try_emplace("i32", 42); CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32_enum1", dict); attrs.Insert("i32_enum0", 42u); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto fn = [](Int32BasedEnum, Int32BasedEnum) { return Error::Success(); }; auto handler = Ffi::Bind() .Attr<Int32BasedEnum>("i32_enum0") .Attr<Int32BasedEnum>("i32_enum1") .To(fn); auto status = Call(*handler, call_frame); EXPECT_TRUE(absl::StrContains( status.message(), "Failed to decode all FFI handler operands (bad operands at: 0, 1)")) << "status.message():\n" << status.message() << "\n"; EXPECT_TRUE(absl::StrContains(status.message(), "Wrong scalar data type: expected S32 but got")) << "status.message():\n" << status.message() << "\n"; EXPECT_TRUE(absl::StrContains( status.message(), "Wrong attribute type: expected scalar but got dictionary")) << "status.message():\n" << status.message() << "\n"; } struct MyData { static TypeId id; std::string str; }; TypeId MyData::id = {}; XLA_FFI_REGISTER_TYPE(GetXlaFfiApi(), "my_data", &MyData::id); TEST(FfiTest, UserData) { MyData data{"foo"}; ExecutionContext execution_context; TF_ASSERT_OK(execution_context.Insert( TypeIdRegistry::TypeId(MyData::id.type_id), &data)); CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); auto fn = [&](MyData* data) { EXPECT_EQ(data->str, "foo"); return Error::Success(); }; auto handler = Ffi::Bind().Ctx<UserData<MyData>>().To(fn); CallOptions options; options.execution_context = &execution_context; auto status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); } struct MyState { static TypeId id; explicit MyState(int32_t value) : value(value) {} int32_t value; }; TypeId MyState::id = {}; XLA_FFI_REGISTER_TYPE(GetXlaFfiApi(), "state", &MyState::id); TEST(FfiTest, StatefulHandler) { ExecutionState execution_state; CallFrameBuilder builder(0, 0); auto call_frame = builder.Build(); CallOptions options; options.execution_state = &execution_state; auto instantiate = Ffi::BindInstantiate().To([]() -> ErrorOr<std::unique_ptr<MyState>> { return std::make_unique<MyState>(42); }); auto execute = Ffi::Bind().Ctx<State<MyState>>().To([](MyState* state) { EXPECT_EQ(state->value, 42); return Error::Success(); }); TF_ASSERT_OK( Call(*instantiate, call_frame, options, ExecutionStage::kInstantiate)); TF_ASSERT_OK(Call(*execute, call_frame, options)); } TEST(FfiTest, ScratchAllocator) { static void* kAddr = reinterpret_cast<void*>(0xDEADBEEF); struct TestDeviceMemoryAllocator final : public se::DeviceMemoryAllocator { size_t count; TestDeviceMemoryAllocator() : se::DeviceMemoryAllocator(nullptr), count(0) {} absl::StatusOr<se::OwningDeviceMemory> Allocate(int, uint64_t size, bool, int64_t) final { count++; return se::OwningDeviceMemory(se::DeviceMemoryBase(kAddr, size), 0, this); } absl::Status Deallocate(int, se::DeviceMemoryBase mem) final { count--; EXPECT_EQ(mem.opaque(), kAddr); return absl::OkStatus(); } absl::StatusOr<se::Stream*> GetStream(int) final { return absl::UnimplementedError("Not implemented"); } }; auto fn = [&](ScratchAllocator scratch_allocator) { auto mem = scratch_allocator.Allocate(1024); EXPECT_EQ(*mem, kAddr); return Error::Success(); }; TestDeviceMemoryAllocator allocator; auto handler = Ffi::Bind().Ctx<ScratchAllocator>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); CallOptions options; options.backend_options = CallOptions::GpuOptions{nullptr, &allocator}; auto status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); EXPECT_EQ(allocator.count, 0); } TEST(FfiTest, ScratchAllocatorUnimplemented) { auto fn = [&](ScratchAllocator scratch_allocator) { auto mem = scratch_allocator.Allocate(1024); EXPECT_FALSE(mem.has_value()); return Error::Success(); }; auto handler = Ffi::Bind().Ctx<ScratchAllocator>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); auto status = Call(*handler, call_frame); TF_ASSERT_OK(status); } TEST(FfiTest, ThreadPool) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Eigen::ThreadPoolDevice device(pool.AsEigenThreadPool(), pool.NumThreads()); auto fn = [&](ThreadPool thread_pool) { absl::BlockingCounter prepare(1); absl::BlockingCounter execute(1); thread_pool.Schedule([&] { prepare.Wait(); execute.DecrementCount(); }); prepare.DecrementCount(); execute.Wait(); return Error::Success(); }; auto handler = Ffi::Bind().Ctx<ThreadPool>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); CallOptions options; options.backend_options = CallOptions::CpuOptions{&device}; auto status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); } TEST(FfiTest, AsyncHandler) { tsl::thread::ThreadPool pool(tsl::Env::Default(), "ffi-test", 2); Eigen::ThreadPoolDevice device(pool.AsEigenThreadPool(), pool.NumThreads()); int32_t value = 0; auto fn = [&](ThreadPool thread_pool) -> Future { Promise promise; Future future(promise); thread_pool.Schedule([&, promise = std::move(promise)]() mutable { value = 42; promise.SetAvailable(); }); return future; }; auto handler = Ffi::Bind().Ctx<ThreadPool>().To(fn); CallFrame call_frame = CallFrameBuilder(0, 0).Build(); CallOptions options; options.backend_options = CallOptions::CpuOptions{&device}; { absl::Status status = Call(*handler, call_frame, options); TF_ASSERT_OK(status); EXPECT_EQ(value, 42); } value = 0; { tsl::AsyncValueRef<tsl::Chain> async_value = CallAsync(*handler, call_frame, options); tsl::BlockUntilReady(async_value); ASSERT_TRUE(async_value.IsConcrete()); EXPECT_EQ(value, 42); } } TEST(FfiTest, Metadata) { auto api = GetXlaFfiApi(); auto handler = Ffi::BindTo([]() { return Error::Success(); }); auto maybe_metadata = GetMetadata(*handler); EXPECT_TRUE(maybe_metadata.ok()); auto metadata = maybe_metadata.value(); EXPECT_EQ(metadata.api_version.major_version, api->api_version.major_version); EXPECT_EQ(metadata.api_version.minor_version, api->api_version.minor_version); EXPECT_EQ(metadata.traits, 0); } TEST(FfiTest, MetadataTraits) { auto handler = Ffi::BindTo([]() { return Error::Success(); }, {Traits::kCmdBufferCompatible}); auto maybe_metadata = GetMetadata(*handler); EXPECT_TRUE(maybe_metadata.ok()); auto metadata = maybe_metadata.value(); EXPECT_EQ(metadata.api_version.major_version, XLA_FFI_API_MAJOR); EXPECT_EQ(metadata.api_version.minor_version, XLA_FFI_API_MINOR); EXPECT_EQ(metadata.traits, XLA_FFI_HANDLER_TRAITS_COMMAND_BUFFER_COMPATIBLE); } static CallFrameBuilder WithBufferArgs(size_t num_args, size_t rank = 4) { se::DeviceMemoryBase memory; std::vector<int64_t> dims(4, 1); CallFrameBuilder builder(num_args, 0); for (size_t i = 0; i < num_args; ++i) { builder.AddBufferArg(memory, PrimitiveType::F32, dims); } return builder; } void BM_AnyBufferArgX1(benchmark::State& state) { auto call_frame = WithBufferArgs(1).Build(); auto handler = Ffi::Bind().Arg<AnyBuffer>().To([](auto buffer) { benchmark::DoNotOptimize(buffer); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_AnyBufferArgX1); void BM_AnyBufferArgX4(benchmark::State& state) { auto call_frame = WithBufferArgs(4).Build(); auto handler = Ffi::Bind() .Arg<AnyBuffer>() .Arg<AnyBuffer>() .Arg<AnyBuffer>() .Arg<AnyBuffer>() .To([](auto b0, auto b1, auto b2, auto b3) { benchmark::DoNotOptimize(b0); benchmark::DoNotOptimize(b1); benchmark::DoNotOptimize(b2); benchmark::DoNotOptimize(b3); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_AnyBufferArgX4); void BM_AsyncAnyBufferArgX1(benchmark::State& state) { auto call_frame = WithBufferArgs(1).Build(); auto handler = Ffi::Bind().Arg<AnyBuffer>().To([](auto buffer) { benchmark::DoNotOptimize(buffer); Promise promise; promise.SetAvailable(); return Future(promise); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_AsyncAnyBufferArgX1); void BM_BufferArgX1(benchmark::State& state) { auto call_frame = WithBufferArgs(1).Build(); auto handler = Ffi::Bind().Arg<BufferR4<F32>>().To([](auto buffer) { benchmark::DoNotOptimize(buffer); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_BufferArgX1); void BM_BufferArgX4(benchmark::State& state) { auto call_frame = WithBufferArgs(4).Build(); auto handler = Ffi::Bind() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .To([](auto b0, auto b1, auto b2, auto b3) { benchmark::DoNotOptimize(b0); benchmark::DoNotOptimize(b1); benchmark::DoNotOptimize(b2); benchmark::DoNotOptimize(b3); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_BufferArgX4); void BM_BufferArgX8(benchmark::State& state) { auto call_frame = WithBufferArgs(8).Build(); auto handler = Ffi::Bind() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .Arg<BufferR4<F32>>() .To([](auto b0, auto b1, auto b2, auto b3, auto b4, auto b5, auto b6, auto b7) { benchmark::DoNotOptimize(b0); benchmark::DoNotOptimize(b1); benchmark::DoNotOptimize(b2); benchmark::DoNotOptimize(b3); benchmark::DoNotOptimize(b4); benchmark::DoNotOptimize(b5); benchmark::DoNotOptimize(b6); benchmark::DoNotOptimize(b7); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_BufferArgX8); void BM_TupleOfI32Attrs(benchmark::State& state) { CallFrameBuilder::AttributesBuilder attrs; attrs.Insert("i32_0", 1); attrs.Insert("i32_1", 2); attrs.Insert("i32_2", 3); attrs.Insert("i32_3", 4); CallFrameBuilder builder(0, 0); builder.AddAttributes(attrs.Build()); auto call_frame = builder.Build(); auto handler = Ffi::Bind().Attrs<TupleOfI32>().To([](auto tuple) { benchmark::DoNotOptimize(tuple); return Error::Success(); }); for (auto _ : state) { CHECK_OK(Call(*handler, call_frame)); } } BENCHMARK(BM_TupleOfI32Attrs); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/api/ffi.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/api/ffi_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dadf7064-62b2-4cb3-8bb2-f22ef4f9c855
cpp
abseil/abseil-cpp
clock
absl/time/clock.cc
absl/time/clock_test.cc
#include "absl/time/clock.h" #include "absl/base/attributes.h" #include "absl/base/optimization.h" #ifdef _WIN32 #include <windows.h> #endif #include <algorithm> #include <atomic> #include <cerrno> #include <cstdint> #include <ctime> #include <limits> #include "absl/base/internal/spinlock.h" #include "absl/base/internal/unscaledcycleclock.h" #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/base/thread_annotations.h" namespace absl { ABSL_NAMESPACE_BEGIN Time Now() { int64_t n = absl::GetCurrentTimeNanos(); if (n >= 0) { return time_internal::FromUnixDuration( time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4)); } return time_internal::FromUnixDuration(absl::Nanoseconds(n)); } ABSL_NAMESPACE_END } #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0 #endif #if defined(__APPLE__) || defined(_WIN32) #include "absl/time/internal/get_current_time_chrono.inc" #else #include "absl/time/internal/get_current_time_posix.inc" #endif #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \ ::absl::time_internal::GetCurrentTimeNanosFromSystem() #endif #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS namespace absl { ABSL_NAMESPACE_BEGIN int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); } ABSL_NAMESPACE_END } #else #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \ ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now() #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace time_internal { #if !defined(NDEBUG) && defined(__x86_64__) constexpr int64_t kCycleClockNowMask = ~int64_t{0xff}; #else constexpr int64_t kCycleClockNowMask = ~int64_t{0}; #endif class UnscaledCycleClockWrapperForGetCurrentTime { public: static int64_t Now() { return base_internal::UnscaledCycleClock::Now() & kCycleClockNowMask; } }; } static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) { uint64_t x = seq->fetch_add(1, std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_release); return x + 2; } static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) { seq->store(x, std::memory_order_release); } enum { kScale = 30 }; static const uint64_t kMinNSBetweenSamples = 2000 << 20; static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) == kMinNSBetweenSamples, "cannot represent kMaxBetweenSamplesNSScaled"); struct TimeSampleAtomic { std::atomic<uint64_t> raw_ns{0}; std::atomic<uint64_t> base_ns{0}; std::atomic<uint64_t> base_cycles{0}; std::atomic<uint64_t> nsscaled_per_cycle{0}; std::atomic<uint64_t> min_cycles_per_sample{0}; }; struct TimeSample { uint64_t raw_ns = 0; uint64_t base_ns = 0; uint64_t base_cycles = 0; uint64_t nsscaled_per_cycle = 0; uint64_t min_cycles_per_sample = 0; }; struct ABSL_CACHELINE_ALIGNED TimeState { std::atomic<uint64_t> seq{0}; TimeSampleAtomic last_sample; int64_t stats_initializations{0}; int64_t stats_reinitializations{0}; int64_t stats_calibrations{0}; int64_t stats_slow_paths{0}; int64_t stats_fast_slow_paths{0}; uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0}; std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000}; std::atomic<uint32_t> kernel_time_seen_smaller{0}; absl::base_internal::SpinLock lock{absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY}; }; ABSL_CONST_INIT static TimeState time_state; static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock, uint64_t *cycleclock) ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { uint64_t local_approx_syscall_time_in_cycles = time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed); int64_t current_time_nanos_from_system; uint64_t before_cycles; uint64_t after_cycles; uint64_t elapsed_cycles; int loops = 0; do { before_cycles = static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); after_cycles = static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); elapsed_cycles = after_cycles - before_cycles; if (elapsed_cycles >= local_approx_syscall_time_in_cycles && ++loops == 20) { loops = 0; if (local_approx_syscall_time_in_cycles < 1000 * 1000) { local_approx_syscall_time_in_cycles = (local_approx_syscall_time_in_cycles + 1) << 1; } time_state.approx_syscall_time_in_cycles.store( local_approx_syscall_time_in_cycles, std::memory_order_relaxed); } } while (elapsed_cycles >= local_approx_syscall_time_in_cycles || last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16)); if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) { time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); } else if (time_state.kernel_time_seen_smaller.fetch_add( 1, std::memory_order_relaxed) >= 3) { const uint64_t new_approximation = local_approx_syscall_time_in_cycles - (local_approx_syscall_time_in_cycles >> 3); time_state.approx_syscall_time_in_cycles.store(new_approximation, std::memory_order_relaxed); time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); } *cycleclock = after_cycles; return current_time_nanos_from_system; } static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD; static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic, struct TimeSample *sample) { sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed); sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed); sample->nsscaled_per_cycle = atomic->nsscaled_per_cycle.load(std::memory_order_relaxed); sample->min_cycles_per_sample = atomic->min_cycles_per_sample.load(std::memory_order_relaxed); sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed); } int64_t GetCurrentTimeNanos() { uint64_t base_ns; uint64_t base_cycles; uint64_t nsscaled_per_cycle; uint64_t min_cycles_per_sample; uint64_t seq_read0; uint64_t seq_read1; uint64_t now_cycles = static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); seq_read0 = time_state.seq.load(std::memory_order_acquire); base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed); base_cycles = time_state.last_sample.base_cycles.load(std::memory_order_relaxed); nsscaled_per_cycle = time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed); min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load( std::memory_order_relaxed); std::atomic_thread_fence(std::memory_order_acquire); seq_read1 = time_state.seq.load(std::memory_order_relaxed); uint64_t delta_cycles; if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 && (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) { return static_cast<int64_t>( base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale)); } return GetCurrentTimeNanosSlowPath(); } static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) { int safe_shift = kScale; while (((a << safe_shift) >> safe_shift) != a) { safe_shift--; } uint64_t scaled_b = b >> (kScale - safe_shift); uint64_t quotient = 0; if (scaled_b != 0) { quotient = (a << safe_shift) / scaled_b; } return quotient; } static uint64_t UpdateLastSample( uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles, const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD; ABSL_ATTRIBUTE_NOINLINE static int64_t GetCurrentTimeNanosSlowPath() ABSL_LOCKS_EXCLUDED(time_state.lock) { time_state.lock.Lock(); uint64_t now_cycles; uint64_t now_ns = static_cast<uint64_t>( GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles)); time_state.last_now_cycles = now_cycles; uint64_t estimated_base_ns; struct TimeSample sample; ReadTimeSampleAtomic(&time_state.last_sample, &sample); uint64_t delta_cycles = now_cycles - sample.base_cycles; if (delta_cycles < sample.min_cycles_per_sample) { estimated_base_ns = sample.base_ns + ((delta_cycles * sample.nsscaled_per_cycle) >> kScale); time_state.stats_fast_slow_paths++; } else { estimated_base_ns = UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample); } time_state.lock.Unlock(); return static_cast<int64_t>(estimated_base_ns); } static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles, const struct TimeSample *sample) ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { uint64_t estimated_base_ns = now_ns; uint64_t lock_value = SeqAcquire(&time_state.seq); if (sample->raw_ns == 0 || sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns || now_ns < sample->raw_ns || now_cycles < sample->base_cycles) { time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); time_state.last_sample.base_ns.store(estimated_base_ns, std::memory_order_relaxed); time_state.last_sample.base_cycles.store(now_cycles, std::memory_order_relaxed); time_state.last_sample.nsscaled_per_cycle.store(0, std::memory_order_relaxed); time_state.last_sample.min_cycles_per_sample.store( 0, std::memory_order_relaxed); time_state.stats_initializations++; } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns && sample->base_cycles + 50 < now_cycles) { if (sample->nsscaled_per_cycle != 0) { uint64_t estimated_scaled_ns; int s = -1; do { s++; estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle; } while (estimated_scaled_ns / sample->nsscaled_per_cycle != (delta_cycles >> s)); estimated_base_ns = sample->base_ns + (estimated_scaled_ns >> (kScale - s)); } uint64_t ns = now_ns - sample->raw_ns; uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles); uint64_t assumed_next_sample_delta_cycles = SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle); int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns); ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) + diff_ns - (diff_ns / 16)); uint64_t new_nsscaled_per_cycle = SafeDivideAndScale(ns, assumed_next_sample_delta_cycles); if (new_nsscaled_per_cycle != 0 && diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) { time_state.last_sample.nsscaled_per_cycle.store( new_nsscaled_per_cycle, std::memory_order_relaxed); uint64_t new_min_cycles_per_sample = SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle); time_state.last_sample.min_cycles_per_sample.store( new_min_cycles_per_sample, std::memory_order_relaxed); time_state.stats_calibrations++; } else { time_state.last_sample.nsscaled_per_cycle.store( 0, std::memory_order_relaxed); time_state.last_sample.min_cycles_per_sample.store( 0, std::memory_order_relaxed); estimated_base_ns = now_ns; time_state.stats_reinitializations++; } time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); time_state.last_sample.base_ns.store(estimated_base_ns, std::memory_order_relaxed); time_state.last_sample.base_cycles.store(now_cycles, std::memory_order_relaxed); } else { time_state.stats_slow_paths++; } SeqRelease(&time_state.seq, lock_value); return estimated_base_ns; } ABSL_NAMESPACE_END } #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace { constexpr absl::Duration MaxSleep() { #ifdef _WIN32 return absl::Milliseconds( std::numeric_limits<unsigned long>::max()); #else return absl::Seconds(std::numeric_limits<time_t>::max()); #endif } void SleepOnce(absl::Duration to_sleep) { #ifdef _WIN32 Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1))); #else struct timespec sleep_time = absl::ToTimespec(to_sleep); while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) { } #endif } } ABSL_NAMESPACE_END } extern "C" { ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)( absl::Duration duration) { while (duration > absl::ZeroDuration()) { absl::Duration to_sleep = std::min(duration, absl::MaxSleep()); absl::SleepOnce(to_sleep); duration -= to_sleep; } } }
#include "absl/time/clock.h" #include "absl/base/config.h" #if defined(ABSL_HAVE_ALARM) #include <signal.h> #include <unistd.h> #ifdef _AIX typedef void (*sig_t)(int); #endif #elif defined(__linux__) || defined(__APPLE__) #error all known Linux and Apple targets have alarm #endif #include "gtest/gtest.h" #include "absl/time/time.h" namespace { TEST(Time, Now) { const absl::Time before = absl::FromUnixNanos(absl::GetCurrentTimeNanos()); const absl::Time now = absl::Now(); const absl::Time after = absl::FromUnixNanos(absl::GetCurrentTimeNanos()); EXPECT_GE(now, before); EXPECT_GE(after, now); } enum class AlarmPolicy { kWithoutAlarm, kWithAlarm }; #if defined(ABSL_HAVE_ALARM) bool alarm_handler_invoked = false; void AlarmHandler(int signo) { ASSERT_EQ(signo, SIGALRM); alarm_handler_invoked = true; } #endif bool SleepForBounded(absl::Duration d, absl::Duration lower_bound, absl::Duration upper_bound, absl::Duration timeout, AlarmPolicy alarm_policy, int* attempts) { const absl::Time deadline = absl::Now() + timeout; while (absl::Now() < deadline) { #if defined(ABSL_HAVE_ALARM) sig_t old_alarm = SIG_DFL; if (alarm_policy == AlarmPolicy::kWithAlarm) { alarm_handler_invoked = false; old_alarm = signal(SIGALRM, AlarmHandler); alarm(absl::ToInt64Seconds(d / 2)); } #else EXPECT_EQ(alarm_policy, AlarmPolicy::kWithoutAlarm); #endif ++*attempts; absl::Time start = absl::Now(); absl::SleepFor(d); absl::Duration actual = absl::Now() - start; #if defined(ABSL_HAVE_ALARM) if (alarm_policy == AlarmPolicy::kWithAlarm) { signal(SIGALRM, old_alarm); if (!alarm_handler_invoked) continue; } #endif if (lower_bound <= actual && actual <= upper_bound) { return true; } } return false; } testing::AssertionResult AssertSleepForBounded(absl::Duration d, absl::Duration early, absl::Duration late, absl::Duration timeout, AlarmPolicy alarm_policy) { const absl::Duration lower_bound = d - early; const absl::Duration upper_bound = d + late; int attempts = 0; if (SleepForBounded(d, lower_bound, upper_bound, timeout, alarm_policy, &attempts)) { return testing::AssertionSuccess(); } return testing::AssertionFailure() << "SleepFor(" << d << ") did not return within [" << lower_bound << ":" << upper_bound << "] in " << attempts << " attempt" << (attempts == 1 ? "" : "s") << " over " << timeout << (alarm_policy == AlarmPolicy::kWithAlarm ? " with" : " without") << " an alarm"; } TEST(SleepFor, Bounded) { const absl::Duration d = absl::Milliseconds(2500); const absl::Duration early = absl::Milliseconds(100); const absl::Duration late = absl::Milliseconds(300); const absl::Duration timeout = 48 * d; EXPECT_TRUE(AssertSleepForBounded(d, early, late, timeout, AlarmPolicy::kWithoutAlarm)); #if defined(ABSL_HAVE_ALARM) EXPECT_TRUE(AssertSleepForBounded(d, early, late, timeout, AlarmPolicy::kWithAlarm)); #endif } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/time/clock.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/time/clock_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
880f9741-8dae-41d1-975d-c0afa4e453ed
cpp
tensorflow/tensorflow
cpu_topology
third_party/xla/xla/pjrt/cpu/cpu_topology.cc
third_party/xla/xla/pjrt/cpu/cpu_topology_test.cc
#include "xla/pjrt/cpu/cpu_topology.h" #include <cstddef> #include <memory> #include <string> #include <utility> #include <vector> #include "xla/pjrt/cpu/cpu_topology.pb.h" namespace xla { std::unique_ptr<const CpuTopology> CpuTopology::FromProto( const CpuTopologyProto& cpu_topology_proto) { std::vector<CpuTopology::CpuDevice> devices; devices.reserve(cpu_topology_proto.cpu_devices_size()); for (size_t i = 0; i < cpu_topology_proto.cpu_devices_size(); ++i) { auto& cpu_device_proto = cpu_topology_proto.cpu_devices(i); devices.push_back(CpuDevice{cpu_device_proto.process_index(), cpu_device_proto.local_hardware_id()}); } std::vector<std::string> machine_attributes; machine_attributes.reserve(cpu_topology_proto.machine_attributes_size()); for (size_t i = 0; i < cpu_topology_proto.machine_attributes_size(); ++i) { machine_attributes.push_back(cpu_topology_proto.machine_attributes(i)); } return std::make_unique<CpuTopology>(std::move(devices), std::move(machine_attributes)); } CpuTopologyProto CpuTopology::ToProto() const { CpuTopologyProto proto; for (auto& cpu_device : cpu_devices_) { auto* cpu_device_proto = proto.add_cpu_devices(); cpu_device_proto->set_process_index(cpu_device.process_id); cpu_device_proto->set_local_hardware_id(cpu_device.local_device_id); } for (const std::string& machine_attribute : machine_attributes_) { proto.add_machine_attributes(machine_attribute); } return proto; } }
#include "xla/pjrt/cpu/cpu_topology.h" #include <memory> #include "xla/pjrt/cpu/cpu_topology.pb.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/test.h" namespace xla { namespace { TEST(CpuTopology, FromProto) { CpuTopologyProto msg; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( cpu_devices: [ { process_index: 2, local_hardware_id: 3 }] machine_attributes: [ "x86_64", "Intel" ] )pb", &msg)); std::unique_ptr<const CpuTopology> cpu_topology = CpuTopology::FromProto(msg); EXPECT_EQ(cpu_topology->devices().size(), 1); EXPECT_EQ(cpu_topology->devices()[0].process_id, 2); EXPECT_EQ(cpu_topology->devices()[0].local_device_id, 3); EXPECT_EQ(cpu_topology->machine_attributes().size(), 2); EXPECT_EQ(cpu_topology->machine_attributes()[0], "x86_64"); EXPECT_EQ(cpu_topology->machine_attributes()[1], "Intel"); } TEST(CpuTopology, ToProto) { CpuTopology cpu_topology({{2, 3}}, {"ab", "cd"}); CpuTopologyProto msg = cpu_topology.ToProto(); EXPECT_EQ(msg.cpu_devices_size(), 1); EXPECT_EQ(msg.cpu_devices(0).process_index(), 2); EXPECT_EQ(msg.cpu_devices(0).local_hardware_id(), 3); EXPECT_EQ(msg.machine_attributes_size(), 2); EXPECT_EQ(msg.machine_attributes(0), "ab"); EXPECT_EQ(msg.machine_attributes(1), "cd"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_topology.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/pjrt/cpu/cpu_topology_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7104f0ae-7ea6-4577-a737-6eb9c8a9195e
cpp
google/quiche
proof_source_x509
quiche/quic/core/crypto/proof_source_x509.cc
quiche/quic/core/crypto/proof_source_x509_test.cc
#include "quiche/quic/core/crypto/proof_source_x509.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/ssl.h" #include "quiche/quic/core/crypto/certificate_view.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/crypto/crypto_utils.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/common/quiche_endian.h" namespace quic { ProofSourceX509::ProofSourceX509( quiche::QuicheReferenceCountedPointer<Chain> default_chain, CertificatePrivateKey default_key) { if (!AddCertificateChain(default_chain, std::move(default_key))) { return; } default_certificate_ = &certificates_.front(); } std::unique_ptr<ProofSourceX509> ProofSourceX509::Create( quiche::QuicheReferenceCountedPointer<Chain> default_chain, CertificatePrivateKey default_key) { std::unique_ptr<ProofSourceX509> result( new ProofSourceX509(default_chain, std::move(default_key))); if (!result->valid()) { return nullptr; } return result; } void ProofSourceX509::GetProof( const QuicSocketAddress& , const QuicSocketAddress& , const std::string& hostname, const std::string& server_config, QuicTransportVersion , absl::string_view chlo_hash, std::unique_ptr<ProofSource::Callback> callback) { QuicCryptoProof proof; if (!valid()) { QUIC_BUG(ProofSourceX509::GetProof called in invalid state) << "ProofSourceX509::GetProof called while the object is not valid"; callback->Run(false, nullptr, proof, nullptr); return; } std::optional<std::string> payload = CryptoUtils::GenerateProofPayloadToBeSigned(chlo_hash, server_config); if (!payload.has_value()) { callback->Run(false, nullptr, proof, nullptr); return; } Certificate* certificate = GetCertificate(hostname, &proof.cert_matched_sni); proof.signature = certificate->key.Sign(*payload, SSL_SIGN_RSA_PSS_RSAE_SHA256); MaybeAddSctsForHostname(hostname, proof.leaf_cert_scts); callback->Run(!proof.signature.empty(), certificate->chain, proof, nullptr); } quiche::QuicheReferenceCountedPointer<ProofSource::Chain> ProofSourceX509::GetCertChain(const QuicSocketAddress& , const QuicSocketAddress& , const std::string& hostname, bool* cert_matched_sni) { if (!valid()) { QUIC_BUG(ProofSourceX509::GetCertChain called in invalid state) << "ProofSourceX509::GetCertChain called while the object is not " "valid"; return nullptr; } return GetCertificate(hostname, cert_matched_sni)->chain; } void ProofSourceX509::ComputeTlsSignature( const QuicSocketAddress& , const QuicSocketAddress& , const std::string& hostname, uint16_t signature_algorithm, absl::string_view in, std::unique_ptr<ProofSource::SignatureCallback> callback) { if (!valid()) { QUIC_BUG(ProofSourceX509::ComputeTlsSignature called in invalid state) << "ProofSourceX509::ComputeTlsSignature called while the object is " "not valid"; callback->Run(false, "", nullptr); return; } bool cert_matched_sni; std::string signature = GetCertificate(hostname, &cert_matched_sni) ->key.Sign(in, signature_algorithm); callback->Run(!signature.empty(), signature, nullptr); } QuicSignatureAlgorithmVector ProofSourceX509::SupportedTlsSignatureAlgorithms() const { return SupportedSignatureAlgorithmsForQuic(); } ProofSource::TicketCrypter* ProofSourceX509::GetTicketCrypter() { return nullptr; } bool ProofSourceX509::AddCertificateChain( quiche::QuicheReferenceCountedPointer<Chain> chain, CertificatePrivateKey key) { if (chain->certs.empty()) { QUIC_BUG(quic_bug_10644_1) << "Empty certificate chain supplied."; return false; } std::unique_ptr<CertificateView> leaf = CertificateView::ParseSingleCertificate(chain->certs[0]); if (leaf == nullptr) { QUIC_BUG(quic_bug_10644_2) << "Unable to parse X.509 leaf certificate in the supplied chain."; return false; } if (!key.MatchesPublicKey(*leaf)) { QUIC_BUG(quic_bug_10644_3) << "Private key does not match the leaf certificate."; return false; } certificates_.push_front(Certificate{ chain, std::move(key), }); Certificate* certificate = &certificates_.front(); for (absl::string_view host : leaf->subject_alt_name_domains()) { certificate_map_[std::string(host)] = certificate; } return true; } ProofSourceX509::Certificate* ProofSourceX509::GetCertificate( const std::string& hostname, bool* cert_matched_sni) const { QUICHE_DCHECK(valid()); auto it = certificate_map_.find(hostname); if (it != certificate_map_.end()) { *cert_matched_sni = true; return it->second; } auto dot_pos = hostname.find('.'); if (dot_pos != std::string::npos) { std::string wildcard = absl::StrCat("*", hostname.substr(dot_pos)); it = certificate_map_.find(wildcard); if (it != certificate_map_.end()) { *cert_matched_sni = true; return it->second; } } *cert_matched_sni = false; return default_certificate_; } }
#include "quiche/quic/core/crypto/proof_source_x509.h" #include <memory> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "openssl/ssl.h" #include "quiche/quic/core/crypto/certificate_view.h" #include "quiche/quic/core/crypto/proof_source.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/test_certificates.h" #include "quiche/common/platform/api/quiche_reference_counted.h" namespace quic { namespace test { namespace { quiche::QuicheReferenceCountedPointer<ProofSource::Chain> MakeChain( absl::string_view cert) { return quiche::QuicheReferenceCountedPointer<ProofSource::Chain>( new ProofSource::Chain(std::vector<std::string>{std::string(cert)})); } class ProofSourceX509Test : public QuicTest { public: ProofSourceX509Test() : test_chain_(MakeChain(kTestCertificate)), wildcard_chain_(MakeChain(kWildcardCertificate)), test_key_( CertificatePrivateKey::LoadFromDer(kTestCertificatePrivateKey)), wildcard_key_(CertificatePrivateKey::LoadFromDer( kWildcardCertificatePrivateKey)) { QUICHE_CHECK(test_key_ != nullptr); QUICHE_CHECK(wildcard_key_ != nullptr); } protected: quiche::QuicheReferenceCountedPointer<ProofSource::Chain> test_chain_, wildcard_chain_; std::unique_ptr<CertificatePrivateKey> test_key_, wildcard_key_; }; TEST_F(ProofSourceX509Test, AddCertificates) { std::unique_ptr<ProofSourceX509> proof_source = ProofSourceX509::Create(test_chain_, std::move(*test_key_)); ASSERT_TRUE(proof_source != nullptr); EXPECT_TRUE(proof_source->AddCertificateChain(wildcard_chain_, std::move(*wildcard_key_))); } TEST_F(ProofSourceX509Test, AddCertificateKeyMismatch) { std::unique_ptr<ProofSourceX509> proof_source = ProofSourceX509::Create(test_chain_, std::move(*test_key_)); ASSERT_TRUE(proof_source != nullptr); test_key_ = CertificatePrivateKey::LoadFromDer(kTestCertificatePrivateKey); EXPECT_QUIC_BUG((void)proof_source->AddCertificateChain( wildcard_chain_, std::move(*test_key_)), "Private key does not match"); } TEST_F(ProofSourceX509Test, CertificateSelection) { std::unique_ptr<ProofSourceX509> proof_source = ProofSourceX509::Create(test_chain_, std::move(*test_key_)); ASSERT_TRUE(proof_source != nullptr); ASSERT_TRUE(proof_source->AddCertificateChain(wildcard_chain_, std::move(*wildcard_key_))); bool cert_matched_sni; EXPECT_EQ(proof_source ->GetCertChain(QuicSocketAddress(), QuicSocketAddress(), "unknown.test", &cert_matched_sni) ->certs[0], kTestCertificate); EXPECT_FALSE(cert_matched_sni); EXPECT_EQ(proof_source ->GetCertChain(QuicSocketAddress(), QuicSocketAddress(), "mail.example.org", &cert_matched_sni) ->certs[0], kTestCertificate); EXPECT_TRUE(cert_matched_sni); EXPECT_EQ(proof_source ->GetCertChain(QuicSocketAddress(), QuicSocketAddress(), "www.foo.test", &cert_matched_sni) ->certs[0], kWildcardCertificate); EXPECT_TRUE(cert_matched_sni); EXPECT_EQ(proof_source ->GetCertChain(QuicSocketAddress(), QuicSocketAddress(), "www.wildcard.test", &cert_matched_sni) ->certs[0], kWildcardCertificate); EXPECT_TRUE(cert_matched_sni); EXPECT_EQ(proof_source ->GetCertChain(QuicSocketAddress(), QuicSocketAddress(), "etc.wildcard.test", &cert_matched_sni) ->certs[0], kWildcardCertificate); EXPECT_TRUE(cert_matched_sni); EXPECT_EQ(proof_source ->GetCertChain(QuicSocketAddress(), QuicSocketAddress(), "wildcard.test", &cert_matched_sni) ->certs[0], kTestCertificate); EXPECT_FALSE(cert_matched_sni); } TEST_F(ProofSourceX509Test, TlsSignature) { class Callback : public ProofSource::SignatureCallback { public: void Run(bool ok, std::string signature, std::unique_ptr<ProofSource::Details> ) override { ASSERT_TRUE(ok); std::unique_ptr<CertificateView> view = CertificateView::ParseSingleCertificate(kTestCertificate); EXPECT_TRUE(view->VerifySignature("Test data", signature, SSL_SIGN_RSA_PSS_RSAE_SHA256)); } }; std::unique_ptr<ProofSourceX509> proof_source = ProofSourceX509::Create(test_chain_, std::move(*test_key_)); ASSERT_TRUE(proof_source != nullptr); proof_source->ComputeTlsSignature(QuicSocketAddress(), QuicSocketAddress(), "example.com", SSL_SIGN_RSA_PSS_RSAE_SHA256, "Test data", std::make_unique<Callback>()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/proof_source_x509.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/proof_source_x509_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
0db8354f-3004-4343-b70d-579abe43b572
cpp
tensorflow/tensorflow
add_default_attributes
tensorflow/tools/graph_transforms/add_default_attributes.cc
tensorflow/tools/graph_transforms/add_default_attributes_test.cc
#include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_def_util.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status AddDefaultAttributes(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { std::unique_ptr<FunctionLibraryDefinition> flib_def( new FunctionLibraryDefinition(OpRegistry::Global(), input_graph_def.library())); *output_graph_def = input_graph_def; TF_RETURN_IF_ERROR(AddDefaultAttrsToGraphDef(output_graph_def, *flib_def, 0)); return OkStatus(); } REGISTER_GRAPH_TRANSFORM("add_default_attributes", AddDefaultAttributes); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status AddDefaultAttributes(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class AddDefaultAttributesTest : public ::testing::Test { protected: void TestAddDefaultAttributes() { GraphDef graph_def; NodeDef* lrn_node1 = graph_def.add_node(); lrn_node1->set_name("lrn_node1"); lrn_node1->set_op("LRN"); NodeDef* lrn_node2 = graph_def.add_node(); lrn_node2->set_name("lrn_node2"); lrn_node2->set_op("LRN"); SetNodeAttr("depth_radius", 7, lrn_node2); SetNodeAttr("bias", 2.0f, lrn_node2); SetNodeAttr("alpha", 2.0f, lrn_node2); SetNodeAttr("beta", 1.0f, lrn_node2); GraphDef result; TF_ASSERT_OK(AddDefaultAttributes(graph_def, {}, &result)); std::map<string, const NodeDef*> nodes; MapNamesToNodes(result, &nodes); EXPECT_EQ(5, nodes.at("lrn_node1")->attr().at("depth_radius").i()); EXPECT_NEAR(1.0f, nodes.at("lrn_node1")->attr().at("bias").f(), 1e-5f); EXPECT_NEAR(1.0f, nodes.at("lrn_node1")->attr().at("alpha").f(), 1e-5f); EXPECT_NEAR(0.5f, nodes.at("lrn_node1")->attr().at("beta").f(), 1e-5f); EXPECT_EQ(7, nodes.at("lrn_node2")->attr().at("depth_radius").i()); EXPECT_NEAR(2.0f, nodes.at("lrn_node2")->attr().at("bias").f(), 1e-5f); EXPECT_NEAR(2.0f, nodes.at("lrn_node2")->attr().at("alpha").f(), 1e-5f); EXPECT_NEAR(1.0f, nodes.at("lrn_node2")->attr().at("beta").f(), 1e-5f); } }; TEST_F(AddDefaultAttributesTest, TestAddDefaultAttributes) { TestAddDefaultAttributes(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/add_default_attributes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/add_default_attributes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6318f003-9cc1-4633-bfab-6c6cc68f3bfa
cpp
tensorflow/tensorflow
flatten_atrous
tensorflow/tools/graph_transforms/flatten_atrous.cc
tensorflow/tools/graph_transforms/flatten_atrous_test.cc
#include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FlattenAtrousConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"BatchToSpaceND", { {"Conv2D|DepthwiseConv2dNative", { {"SpaceToBatchND", { {"*"}, {"*"}, {"*"} } }, {"*"} } }, {"*"}, {"*"} } }, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& batch_to_space_node = match.node; const NodeDef& conv_node = match.inputs[0].node; const NodeDef& filter_node = match.inputs[0].inputs[1].node; const NodeDef& input_node = match.inputs[0].inputs[0].inputs[0].node; const NodeDef& space_to_batch_block_shape_node = match.inputs[0].inputs[0].inputs[1].node; Tensor block_shape = GetNodeTensorAttr(space_to_batch_block_shape_node, "value"); const int32_t block_height = block_shape.flat<int32>()(0); const int32_t block_width = block_shape.flat<int32>()(1); const Tensor& filter = GetNodeTensorAttr(filter_node, "value"); const int32_t filter_height = filter.dim_size(0); const int32_t filter_width = filter.dim_size(1); const int32_t in_channels = filter.dim_size(2); const int32_t out_channels = filter.dim_size(3); const int32_t upsampled_filter_height = (filter_height - 1) * block_height + 1; const int32_t upsampled_filter_width = (filter_width - 1) * block_width + 1; Tensor upsampled_filter( DT_FLOAT, TensorShape({upsampled_filter_height, upsampled_filter_width, in_channels, out_channels})); auto filter_eigen = filter.tensor<float, 4>(); auto upsampled_filter_eigen = upsampled_filter.tensor<float, 4>(); upsampled_filter_eigen.setZero(); for (int h = 0; h < filter_height; ++h) { for (int w = 0; w < filter_width; ++w) { for (int c_in = 0; c_in < in_channels; ++c_in) { for (int c_out = 0; c_out < out_channels; ++c_out) { upsampled_filter_eigen(block_height * h, block_width * w, c_in, c_out) = filter_eigen(h, w, c_in, c_out); } } } } NodeDef upsampled_filter_node; upsampled_filter_node.set_op("Const"); upsampled_filter_node.set_name(filter_node.name()); SetNodeAttr("dtype", DT_FLOAT, &upsampled_filter_node); SetNodeTensorAttr<float>("value", upsampled_filter, &upsampled_filter_node); NodeDef flattened_conv_node; flattened_conv_node.set_name(batch_to_space_node.name()); flattened_conv_node.set_op(conv_node.op()); flattened_conv_node.set_device(conv_node.device()); AddNodeInput(input_node.name(), &flattened_conv_node); AddNodeInput(upsampled_filter_node.name(), &flattened_conv_node); CopyNodeAttr(conv_node, "T", "T", &flattened_conv_node); CopyNodeAttr(conv_node, "strides", "strides", &flattened_conv_node); SetNodeAttr("padding", "SAME", &flattened_conv_node); CopyNodeAttr(conv_node, "data_format", "data_format", &flattened_conv_node); if (conv_node.op() == "Conv2D") { CopyNodeAttr(conv_node, "use_cudnn_on_gpu", "use_cudnn_on_gpu", &flattened_conv_node); } new_nodes->push_back(input_node); new_nodes->push_back(upsampled_filter_node); new_nodes->push_back(flattened_conv_node); return OkStatus(); }, {}, &replaced_graph_def)); *output_graph_def = replaced_graph_def; return OkStatus(); } REGISTER_GRAPH_TRANSFORM("flatten_atrous_conv", FlattenAtrousConv); } }
#include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FlattenAtrousConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class FlattenAtrousConvTest : public ::testing::Test { protected: template <class TConvOp> void TestFlattenAtrousConv() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 3, 3, 2})); test::FillValues<float>( &input_data, {.1f, .4f, .2f, .5f, .3f, .6f, -1.0f, -.4f, -.2f, -.5f, -.3f, -.6f, .1f, .4f, .2f, .5f, .3f, .6f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor block_shape_data(DT_INT32, TensorShape({2})); test::FillValues<int>(&block_shape_data, {2, 2}); Output block_shape_op = Const(root.WithOpName("block_shape_op"), Input::Initializer(block_shape_data)); Tensor paddings_data(DT_INT32, TensorShape({2, 2})); test::FillValues<int>(&paddings_data, {1, 2, 1, 2}); Output paddings_op = Const(root.WithOpName("paddings_op"), Input::Initializer(paddings_data)); Output space_to_batch_op = SpaceToBatchND(root.WithOpName("space_to_batch_op"), input_op, block_shape_op, paddings_op); Tensor weights_data(DT_FLOAT, TensorShape({2, 2, 2, 1})); test::FillValues<float>(&weights_data, {.1f, .2f, .3f, .4f, .1f, .2f, .3f, .4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = TConvOp(root.WithOpName("conv_op"), space_to_batch_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor crops_data(DT_INT32, TensorShape({2, 2})); test::FillValues<int>(&crops_data, {0, 1, 0, 1}); Output crops_op = Const(root.WithOpName("crops_op"), Input::Initializer(crops_data)); Output batch_to_space_op = BatchToSpaceND( root.WithOpName("output"), conv_op, block_shape_op, crops_op); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef modified_graph_def; TF_ASSERT_OK(FlattenAtrousConv(original_graph_def, {{}, {"output"}}, &modified_graph_def)); std::unique_ptr<Session> modified_session(NewSession(SessionOptions())); TF_ASSERT_OK(modified_session->Create(modified_graph_def)); std::vector<Tensor> modified_outputs; TF_ASSERT_OK(modified_session->Run({}, {"output"}, {}, &modified_outputs)); EXPECT_EQ(3, modified_graph_def.node_size()); EXPECT_EQ("input_op", modified_graph_def.node(0).name()); EXPECT_EQ("weights_op", modified_graph_def.node(1).name()); EXPECT_EQ("output", modified_graph_def.node(2).name()); EXPECT_EQ("Const", modified_graph_def.node(0).op()); EXPECT_EQ("Const", modified_graph_def.node(1).op()); EXPECT_EQ(conv_op.node()->type_string(), modified_graph_def.node(2).op()); test::ExpectTensorNear<float>(original_outputs[0], modified_outputs[0], 1e-6); } }; TEST_F(FlattenAtrousConvTest, TestFlattenAtrousConv2D) { TestFlattenAtrousConv<::tensorflow::ops::Conv2D>(); } TEST_F(FlattenAtrousConvTest, TestFlattenAtrousDepthwiseConv2dNative) { TestFlattenAtrousConv<::tensorflow::ops::DepthwiseConv2dNative>(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/flatten_atrous.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/flatten_atrous_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7c19b9ed-d84d-4088-8f01-1a38749b11b0
cpp
tensorflow/tensorflow
freeze_saved_model
tensorflow/cc/tools/freeze_saved_model.cc
tensorflow/cc/tools/freeze_saved_model_test.cc
#include "tensorflow/cc/tools/freeze_saved_model.h" #include <iostream> #include <queue> #include "absl/log/log.h" #include "absl/status/status.h" #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/public/session.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { void GetTensorNamesFromTensorInfo(const TensorInfo& tensor_info, std::unordered_set<string>* tensor_names) { if (tensor_info.has_coo_sparse()) { const TensorInfo_CooSparse& coo_sparse = tensor_info.coo_sparse(); tensor_names->insert(coo_sparse.values_tensor_name()); tensor_names->insert(coo_sparse.indices_tensor_name()); tensor_names->insert(coo_sparse.dense_shape_tensor_name()); } else if (tensor_info.has_composite_tensor()) { for (const auto& component : tensor_info.composite_tensor().components()) { tensor_names->insert(component.name()); } } else { tensor_names->insert(tensor_info.name()); } } void GetSignatureDefsInputsAndOutputs( const SavedModelBundle& saved_model_bundle, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs) { for (auto& sigdef_elem : saved_model_bundle.meta_graph_def.signature_def()) { const SignatureDef& signature_def = sigdef_elem.second; for (auto& input_elem : signature_def.inputs()) { GetTensorNamesFromTensorInfo(input_elem.second, inputs); } for (auto& output_elem : signature_def.outputs()) { GetTensorNamesFromTensorInfo(output_elem.second, outputs); } } } void GetNodeNameToNodeDefMap( GraphDef* graph_def, std::unordered_map<string, NodeDef*>* name_to_node_map) { for (size_t i = 0; i < graph_def->node_size(); i++) { NodeDef* node = graph_def->mutable_node(i); (*name_to_node_map)[node->name()] = node; } } const string GetNodeNameFromTensorName(string tensor_name) { if (tensor_name[0] == '^') { tensor_name.erase(0, 1); } std::vector<string> tensor_name_parts = str_util::Split(tensor_name, ':'); return tensor_name_parts[0]; } void GetReachableNodesAndVariables( GraphDef* graph_def, const std::unordered_set<string>& outputs, const std::unordered_map<string, NodeDef*>& name_to_node_map, std::unordered_set<string>* reachable_node_names, std::unordered_set<string>* variable_node_names) { static const std::unordered_set<string>* kVariableTypes = new std::unordered_set<string>({"Variable", "VariableV2", "VarHandleOp"}); std::queue<string> nodes_to_visit; for (const string& output_tensor_name : outputs) { nodes_to_visit.push(GetNodeNameFromTensorName(output_tensor_name)); } while (!nodes_to_visit.empty()) { const string node_name = nodes_to_visit.front(); nodes_to_visit.pop(); if (reachable_node_names->find(node_name) != reachable_node_names->end()) { continue; } reachable_node_names->insert(node_name); NodeDef* node = name_to_node_map.at(node_name); if (kVariableTypes->find(node->op()) != kVariableTypes->end()) { variable_node_names->insert(node->name()); } for (const string& input_tensor_name : node->input()) { nodes_to_visit.push(GetNodeNameFromTensorName(input_tensor_name)); } } } Status GetVariableNameToTensorMap( Session* session, const std::unordered_map<string, NodeDef*>& name_to_node_map, std::unordered_set<string> variable_names_set, std::unordered_map<string, Tensor>* variable_name_to_value_map) { if (variable_names_set.empty()) { return absl::OkStatus(); } std::vector<string> variable_names; variable_names.reserve(variable_names_set.size()); std::vector<string> tensor_names; tensor_names.reserve(variable_names_set.size()); for (const string& node_name : variable_names_set) { variable_names.push_back(node_name); NodeDef* node_def = name_to_node_map.at(node_name); if (node_def->op() == "VarHandleOp") { tensor_names.push_back(node_name + "/Read/ReadVariableOp:0"); } else { tensor_names.push_back(node_name + ":0"); } } std::vector<Tensor> outputs; TF_RETURN_IF_ERROR( session->Run( {}, tensor_names, {}, &outputs)); for (size_t i = 0; i < variable_names.size(); i++) { (*variable_name_to_value_map)[variable_names[i]] = outputs[i]; } return absl::OkStatus(); } void ConvertVariableToConstant(const NodeDef& variable_node, const Tensor& variable_value, NodeDef* const_node) { const_node->set_name(variable_node.name()); const_node->set_op("Const"); (*const_node->mutable_attr())["dtype"] = variable_node.attr().at("dtype"); variable_value.AsProtoTensorContent( (*const_node->mutable_attr())["value"].mutable_tensor()); } void ConvertReadVariableOpToIdentity(const NodeDef& node, NodeDef* identity_node) { identity_node->set_name(node.name()); identity_node->set_op("Identity"); (*identity_node->mutable_attr())["T"] = node.attr().at("dtype"); identity_node->add_input(node.input(0)); } StatusOr<string> GetVarHandleName( const std::unordered_map<string, NodeDef*>& name_to_node_map, string node_name) { const NodeDef* node = name_to_node_map.at(node_name); while (node->input_size() > 0) { auto parent = name_to_node_map.find(node->input(0)); if (parent == name_to_node_map.end()) break; node = parent->second; if (node->op() != "Identity") { VLOG(2) << "Stopping at non-identity node " << node->op(); break; } } if (node->op() == "VarHandleOp") { return node->name(); } return absl::NotFoundError("No VarHandleOp ancestor found"); } StatusOr<string> GetHandleNameIfNeedsToFreeze( const std::unordered_map<string, NodeDef*>& name_to_node_map, string node_name, const std::unordered_set<string>& variable_node_names) { StatusOr<string> var_handle_name = GetVarHandleName(name_to_node_map, node_name); if (var_handle_name.ok() && variable_node_names.count(*var_handle_name)) { return var_handle_name; } return absl::NotFoundError("No VarHandleOp ancestor found"); } Status FreezeGraphDef(const SavedModelBundle& saved_model_bundle, const std::unordered_set<string>& outputs, GraphDef* frozen_graph_def) { GraphDef graph_def = saved_model_bundle.meta_graph_def.graph_def(); *frozen_graph_def->mutable_versions() = graph_def.versions(); *frozen_graph_def->mutable_library() = graph_def.library(); if (graph_def.node_size() == 0) { return absl::OkStatus(); } std::unordered_map<string, NodeDef*> name_to_node_map; GetNodeNameToNodeDefMap(&graph_def, &name_to_node_map); std::unordered_set<string> reachable_node_names; std::unordered_set<string> variable_node_names; GetReachableNodesAndVariables(&graph_def, outputs, name_to_node_map, &reachable_node_names, &variable_node_names); std::unordered_map<string, Tensor> variable_to_value_map; TF_RETURN_IF_ERROR(GetVariableNameToTensorMap( saved_model_bundle.session.get(), name_to_node_map, variable_node_names, &variable_to_value_map)); for (const NodeDef& node : graph_def.node()) { if (reachable_node_names.find(node.name()) == reachable_node_names.end()) { continue; } if (variable_node_names.find(node.name()) != variable_node_names.end()) { ConvertVariableToConstant(node, variable_to_value_map[node.name()], frozen_graph_def->add_node()); continue; } else if (node.op() == "ReadVariableOp" && GetHandleNameIfNeedsToFreeze(name_to_node_map, node.name(), variable_node_names) .ok()) { ConvertReadVariableOpToIdentity(node, frozen_graph_def->add_node()); continue; } else if (node.op() == "Identity") { StatusOr<string> handle_name = GetHandleNameIfNeedsToFreeze( name_to_node_map, node.name(), variable_node_names); if (handle_name.ok()) { NodeDef* new_node = frozen_graph_def->add_node(); *new_node = node; (*new_node->mutable_attr())["T"] = name_to_node_map.at(*handle_name)->attr().at("dtype"); continue; } } *frozen_graph_def->add_node() = node; } return absl::OkStatus(); } } Status FreezeSavedModel(const SavedModelBundle& saved_model_bundle, GraphDef* frozen_graph_def, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs) { GetSignatureDefsInputsAndOutputs(saved_model_bundle, inputs, outputs); TF_RETURN_IF_ERROR( FreezeGraphDef(saved_model_bundle, *outputs, frozen_graph_def)); return absl::OkStatus(); } }
#include "tensorflow/cc/tools/freeze_saved_model.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/state_ops.h" #include "tensorflow/cc/saved_model/loader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { class FreezeTest : public ::testing::Test { protected: void GraphDefEqual(const GraphDef& actual, const GraphDef& expected) { EXPECT_EQ(actual.ShortDebugString(), expected.ShortDebugString()); } SignatureDef BuildSignatureDef(const std::unordered_set<string>& inputs, const std::unordered_set<string>& outputs) { SignatureDef signature_def; for (const string& input : inputs) { (*signature_def.mutable_inputs())[input].set_name(input); } for (const string& output : outputs) { (*signature_def.mutable_outputs())[output].set_name(output); } return signature_def; } void AddSignatureDefToSavedModelBundle(const SignatureDef& signature_def, const string& key, SavedModelBundle* saved_model_bundle) { MetaGraphDef* meta_graph_def = &saved_model_bundle->meta_graph_def; (*meta_graph_def->mutable_signature_def())[key] = signature_def; } Status InitializeSavedModelBundleSession( const GraphDef& graph_def, const string& init_node, SavedModelBundle* saved_model_bundle) { SessionOptions session_options; saved_model_bundle->session.reset(NewSession(session_options)); TF_RETURN_IF_ERROR(saved_model_bundle->session->Create(graph_def)); if (!init_node.empty()) { std::vector<Tensor> outputs; return saved_model_bundle->session->Run( {}, {}, {init_node}, &outputs); } return absl::OkStatus(); } Status AddGraphDefToSavedModelBundle(const GraphDef& graph_def, const string& init_node, SavedModelBundle* saved_model_bundle) { MetaGraphDef* meta_graph_def = &saved_model_bundle->meta_graph_def; *meta_graph_def->mutable_graph_def() = graph_def; return InitializeSavedModelBundleSession(graph_def, init_node, saved_model_bundle); } Status AddGraphDefWithOutputsToSavedModelBundle( const GraphDef& graph_def, const std::unordered_set<string>& outputs, const string& init_node, SavedModelBundle* saved_model_bundle) { SignatureDef signature_def = BuildSignatureDef(std::unordered_set<string>(), outputs); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", saved_model_bundle); return AddGraphDefToSavedModelBundle(graph_def, init_node, saved_model_bundle); } void RunAndCompareFrozenAndUnfrozenGraphs(Session* unfrozen_session, const GraphDef& frozen_graph_def, const string& tensor_name) { std::vector<Tensor> unfrozen_outputs; TF_ASSERT_OK(unfrozen_session->Run( {}, {tensor_name}, {}, &unfrozen_outputs)); SessionOptions session_options; std::unique_ptr<Session> frozen_session(NewSession(session_options)); TF_ASSERT_OK(frozen_session->Create(frozen_graph_def)); std::vector<Tensor> frozen_outputs; TF_ASSERT_OK(frozen_session->Run( {}, {tensor_name}, {}, &frozen_outputs)); test::ExpectTensorEqual<float>(unfrozen_outputs[0], frozen_outputs[0]); } void TestFreezeGraphWithoutDependentVariables(bool use_resource) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); Output read_var = ops::ReadVariableOp( scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); } else { Output var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), var, a); } TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDef expected_graph_def; Scope expected_scope = Scope::NewRootScope(); Output expected_a = ops::Const(expected_scope.WithOpName("a"), 10.0f, {}); Output expected_b = ops::Const(expected_scope.WithOpName("b"), 10.0f, {}); Output expected_c = ops::Mul(expected_scope.WithOpName("c"), expected_a, expected_b); TF_ASSERT_OK(expected_scope.ToGraphDef(&expected_graph_def)); GraphDefEqual(frozen_graph_def, expected_graph_def); RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } void TestFreezeGraphWithDependentVariables(bool use_resource, bool use_identity = false) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output read_var; if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); if (use_identity) { Output identity = ops::Identity(scope.WithOpName("identity"), var); read_var = ops::ReadVariableOp(scope.WithOpName("var/Read/ReadVariableOp"), identity, DataType::DT_FLOAT); } else { read_var = ops::ReadVariableOp(scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); } auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); } else { Output read_var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), read_var, a); } Output c = ops::Mul(scope.WithOpName("c"), a, read_var); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); size_t expected_nodes = use_resource ? (use_identity ? 5 : 4) : 3; EXPECT_EQ(frozen_graph_def.node_size(), expected_nodes); for (const NodeDef& node : frozen_graph_def.node()) { EXPECT_NE(node.op(), "Variable") << node.name(); EXPECT_NE(node.op(), "VariableV2") << node.name(); EXPECT_NE(node.op(), "VarHandleOp") << node.name(); EXPECT_NE(node.op(), "ReadVariableOp") << node.name(); } RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } void TestFreezeGraphWithAndWithoutDependentVariables(bool use_resource) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output read_var; if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); read_var = ops::ReadVariableOp( scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); Output var_1 = ops::VarHandleOp(scope.WithOpName("var_1"), DataType::DT_FLOAT, {}); Output read_var_1 = ops::ReadVariableOp(scope.WithOpName("var_1/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign_1 = ops::AssignVariableOp(scope.WithOpName("assign_1"), var_1, a); } else { read_var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), read_var, a); Output var_1 = ops::Variable(scope.WithOpName("var_1"), {}, DataType::DT_FLOAT); Output assign_1 = ops::Assign(scope.WithOpName("assign_1"), var_1, a); } Output c = ops::Mul(scope.WithOpName("c"), a, read_var); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); size_t expected_nodes = use_resource ? 4 : 3; EXPECT_EQ(frozen_graph_def.node_size(), expected_nodes); for (const NodeDef& node : frozen_graph_def.node()) { EXPECT_NE(node.op(), "Variable") << node.name(); EXPECT_NE(node.op(), "VariableV2") << node.name(); EXPECT_NE(node.op(), "VarHandleOp") << node.name(); EXPECT_NE(node.op(), "ReadVariableOp") << node.name(); } RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } }; TEST_F(FreezeTest, InputsAndOutputsSingleSignatureDef) { SavedModelBundle saved_model_bundle; std::unordered_set<string> expected_inputs = {"input0:0", "input1:0"}; std::unordered_set<string> expected_outputs = {"output0:0", "output1:0"}; SignatureDef signature_def = BuildSignatureDef(expected_inputs, expected_outputs); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, InputsAndOutputsMultipleSignatureDefs) { SavedModelBundle saved_model_bundle; SignatureDef signature_def_0 = BuildSignatureDef({"input0:0"}, {"output0:0"}); SignatureDef signature_def_1 = BuildSignatureDef({"input1:0"}, {"output1:0"}); AddSignatureDefToSavedModelBundle(signature_def_0, "signature_def_0", &saved_model_bundle); AddSignatureDefToSavedModelBundle(signature_def_1, "signature_def_1", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input0:0", "input1:0"}; std::unordered_set<string> expected_outputs = {"output0:0", "output1:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, GraphDefVersionsAndLibrary) { SavedModelBundle saved_model_bundle; GraphDef graph_def; graph_def.mutable_versions()->set_producer(1234); graph_def.mutable_versions()->set_min_consumer(1234); *graph_def.mutable_library()->add_function() = test::function::NonZero(); TF_ASSERT_OK( AddGraphDefToSavedModelBundle(graph_def, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithNoVariables) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithMultiOutputOperation) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), {10.0f, 10.0f}, {2}); Output axis = ops::Const(scope.WithOpName("axis"), 0, {}); OutputList split = ops::Split(scope.WithOpName("split"), axis, a, 2).output; Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), split[1], b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithControlDependency) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output source = ops::Const(scope.WithOpName("source"), 10.0f, {}); Output a = ops::Const(scope.WithOpName("a").WithControlDependencies(source), {10.0f, 10.0f}, {2}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithoutDependentVariables) { TestFreezeGraphWithoutDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithoutDependentResourceVariables) { TestFreezeGraphWithoutDependentVariables(true); } TEST_F(FreezeTest, GraphDefWithDependentVariables) { TestFreezeGraphWithDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithDependentResourceVariables) { TestFreezeGraphWithDependentVariables(true); } TEST_F(FreezeTest, GraphDefWithDependentResourceVariablesAndIdentity) { TestFreezeGraphWithDependentVariables(true, true); } TEST_F(FreezeTest, GraphDefWithAndWithoutDependentVariables) { TestFreezeGraphWithAndWithoutDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithAndWithoutDependentResourceVariables) { TestFreezeGraphWithAndWithoutDependentVariables(true); } TEST_F(FreezeTest, InputsAndOutputsCompositeTensorSignatureDef) { SavedModelBundle saved_model_bundle; SignatureDef signature_def; TensorInfo& in = (*signature_def.mutable_inputs())["input_arg"]; in.mutable_composite_tensor()->add_components()->set_name("input1:0"); in.mutable_composite_tensor()->add_components()->set_name("input2:0"); TensorInfo& out = (*signature_def.mutable_outputs())["output_arg"]; out.mutable_composite_tensor()->add_components()->set_name("output2:0"); out.mutable_composite_tensor()->add_components()->set_name("output1:0"); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input1:0", "input2:0"}; std::unordered_set<string> expected_outputs = {"output1:0", "output2:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, InputsAndOutputsSparseCooSignatureDef) { SavedModelBundle saved_model_bundle; SignatureDef signature_def; TensorInfo& in = (*signature_def.mutable_inputs())["input_arg"]; in.mutable_coo_sparse()->set_values_tensor_name("input1:0"); in.mutable_coo_sparse()->set_indices_tensor_name("input2:0"); in.mutable_coo_sparse()->set_dense_shape_tensor_name("input3:0"); TensorInfo& out = (*signature_def.mutable_outputs())["output_arg"]; out.mutable_coo_sparse()->set_values_tensor_name("output1:0"); out.mutable_coo_sparse()->set_indices_tensor_name("output2:0"); out.mutable_coo_sparse()->set_dense_shape_tensor_name("output3:0"); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input1:0", "input2:0", "input3:0"}; std::unordered_set<string> expected_outputs = {"output1:0", "output2:0", "output3:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/tools/freeze_saved_model.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/tools/freeze_saved_model_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af777e7f-ba41-48ea-b590-9d3c0803b996
cpp
tensorflow/tensorflow
floor
tensorflow/lite/experimental/shlo/ops/floor.cc
tensorflow/lite/delegates/xnnpack/floor_test.cc
#include "tensorflow/lite/experimental/shlo/ops/floor.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Floor { template <class T> T operator()(T v) const { return std::floor(v); } }; template <> F16 Floor::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Floor::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } FloorOp Create(FloorOp::Attributes) { return {}; } absl::Status Prepare(FloorOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("floor"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("floor"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(FloorOp& op, const Tensor& input, Tensor& output) { Floor floor; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), floor, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), floor, input, output); } return absl::FailedPreconditionError( "stablehlo.floor: Unsupported tensor type."); } };
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Floor, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_FLOOR, xnnpack_delegate.get()); } TEST(Floor, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .Test(BuiltinOperator_FLOOR, xnnpack_delegate.get()); } TEST(Floor, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .Test(BuiltinOperator_FLOOR, xnnpack_delegate.get()); } TEST(Floor, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_FLOOR, xnnpack_delegate.get()); } TEST(Floor, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_FLOOR, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/floor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/floor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ce35ed39-e4f0-49e6-98a4-f765d18996b3
cpp
tensorflow/tensorflow
worker_impl
tensorflow/core/data/service/worker_impl.cc
tensorflow/core/data/service/worker_impl_test.cc
#include "tensorflow/core/data/service/worker_impl.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "grpcpp/create_channel.h" #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/data_transfer.h" #include "tensorflow/core/data/service/dispatcher.pb.h" #include "tensorflow/core/data/service/dispatcher_client.h" #include "tensorflow/core/data/service/export.pb.h" #include "tensorflow/core/data/service/graph_rewriters.h" #include "tensorflow/core/data/service/grpc_util.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/snapshot_split_provider.h" #include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include "tensorflow/core/data/service/split_provider.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/utils.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/dataset.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/env_time.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/host_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/thread_annotations.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { constexpr absl::Duration kRetryInterval = absl::Seconds(5); constexpr absl::Duration kDefaultHeartBeatInterval = absl::Seconds(30); constexpr absl::Duration kDefaultDispatcherTimeout = absl::Hours(1); using WorkerConfig = experimental::WorkerConfig; Status MoveElementToResponse(std::vector<Tensor>&& element, GetElementResponse& resp) { if (element.size() != 1 || element[0].dtype() != DT_VARIANT || !TensorShapeUtils::IsScalar(element[0].shape())) { for (const auto& component : element) { UncompressedElement* uncompressed = resp.mutable_uncompressed(); component.AsProtoTensorContent(uncompressed->add_components()); } return absl::OkStatus(); } Variant& variant = element[0].scalar<Variant>()(); CompressedElement* compressed = variant.get<CompressedElement>(); if (compressed == nullptr) { return errors::FailedPrecondition( "Expected dataset to produce a CompressedElement variant tensor, but " "it produced ", variant.TypeName()); } *resp.mutable_compressed() = *compressed; return absl::OkStatus(); } WorkerConfig ApplyWorkerDefaults(const WorkerConfig& config) { WorkerConfig new_config(config); if (new_config.heartbeat_interval_ms() == 0) { new_config.set_heartbeat_interval_ms( absl::ToInt64Milliseconds(kDefaultHeartBeatInterval)); } if (new_config.dispatcher_timeout_ms() == 0) { new_config.set_dispatcher_timeout_ms( absl::ToInt64Milliseconds(kDefaultDispatcherTimeout)); } if (new_config.snapshot_max_chunk_size_bytes() == 0) { new_config.set_snapshot_max_chunk_size_bytes( kDefaultMaxChunkSize.ToUnsignedBytes()); } return new_config; } TaskDef Export(const TaskDef& task) { TaskDef result; switch (task.dataset_case()) { case TaskDef::kDatasetDef: result.set_path( "In-memory dataset graphs are omitted for brevity. To view datasets " "stored on the dispatcher, configure a `work_dir`."); break; case TaskDef::kPath: result.set_path(task.path()); break; default: break; } result.set_dataset_id(task.dataset_id()); result.set_task_id(task.task_id()); result.set_iteration_id(task.iteration_id()); result.set_num_split_providers(task.num_split_providers()); result.set_worker_address(task.worker_address()); *result.mutable_processing_mode_def() = task.processing_mode_def(); switch (task.optional_num_consumers_case()) { case TaskDef::kNumConsumers: result.set_num_consumers(task.num_consumers()); break; default: break; } result.set_num_workers(task.num_workers()); result.set_worker_index(task.worker_index()); return result; } } mutex LocalWorkers::mu_(LINKER_INITIALIZED); LocalWorkers::AddressToWorkerMap* LocalWorkers::local_workers_ = new AddressToWorkerMap(); DataServiceWorkerImpl::DataServiceWorkerImpl(const WorkerConfig& config) : config_(ApplyWorkerDefaults(config)), worker_uid_(port::JobUid()) { metrics::RecordTFDataServiceWorkerCreated(); } DataServiceWorkerImpl::~DataServiceWorkerImpl() { mutex_lock l(mu_); cancelled_ = true; task_completion_cv_.notify_one(); heartbeat_cv_.notify_one(); } Status DataServiceWorkerImpl::Start( const std::string& worker_address, const std::vector<DataTransferServerInfo>& transfer_servers) { VLOG(3) << "Starting tf.data service worker at address " << worker_address; TF_RETURN_IF_ERROR(ValidateWorkerConfig()); worker_address_ = worker_address; transfer_servers_ = transfer_servers; TF_ASSIGN_OR_RETURN(dispatcher_, CreateDispatcherClient()); auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR(grpc_util::Retry([this]() { return Heartbeat(); }, should_retry, "Worker heartbeat.", kint64max)); LOG(INFO) << "Worker registered with dispatcher running at " << config_.dispatcher_address() << ". Worker config: " << config_.DebugString(); task_completion_thread_ = absl::WrapUnique( Env::Default()->StartThread({}, "data-service-worker-task-completion", [this]() { TaskCompletionThread(); })); heartbeat_thread_ = absl::WrapUnique(Env::Default()->StartThread( {}, "data-service-worker-heartbeat", [this]() { HeartbeatThread(); })); mutex_lock l(mu_); registered_ = true; return absl::OkStatus(); } void DataServiceWorkerImpl::Stop() { absl::flat_hash_map<int64_t, std::shared_ptr<Task>> tasks; absl::flat_hash_map<SnapshotTask, std::unique_ptr<SnapshotStreamWriter>, absl::Hash<SnapshotTask>> snapshot_writers; { mutex_lock l(mu_); cancelled_ = true; tasks.swap(tasks_); snapshot_writers.swap(snapshot_writers_); } for (const auto& [task_id, task] : tasks) { StopTask(*task); } for (const auto& [unused, snapshot_writer] : snapshot_writers) { snapshot_writer->Cancel(); } Env::Default()->SleepForMicroseconds(config_.shutdown_quiet_period_ms() * 1000); } Status DataServiceWorkerImpl::ValidateWorkerConfig() const { const bool any_tag_is_empty = absl::c_any_of( config_.worker_tags(), [](const std::string& worker_tag) { return worker_tag.empty(); }); if (any_tag_is_empty) { return errors::FailedPrecondition( "Worker tags cannot be empty. Got tags {", absl::StrJoin(config_.worker_tags().begin(), config_.worker_tags().end(), ", "), "}"); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<DataServiceDispatcherClient>> DataServiceWorkerImpl::CreateDispatcherClient() const TF_LOCKS_EXCLUDED(mu_) { auto dispatcher = std::make_unique<DataServiceDispatcherClient>( config_.dispatcher_address(), config_.protocol()); auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR( grpc_util::Retry([&dispatcher]() { return dispatcher->Initialize(); }, should_retry, "Initialize dispatcher client.", kint64max)); return dispatcher; } Status DataServiceWorkerImpl::GetElementResult( const GetElementRequest* request, struct GetElementResult* result) { Task* task = nullptr; { mutex_lock l(mu_); if (cancelled_) { return errors::Cancelled("Worker is shutting down"); } if (!registered_) { return errors::Unavailable( "Worker has not yet registered with dispatcher."); } auto it = tasks_.find(request->task_id()); if (it == tasks_.end()) { if (deleted_tasks_.contains(request->task_id())) { return errors::FailedPrecondition( "Got request for local task ", request->task_id(), " of worker ", worker_address_, ", which has been deleted. You may be creating ", "a duplicate iteration which has already finished. To fix this, " "make sure to create your dataset only once, as opposed to " "re-creating it repeatedly inside a loop."); } if (finished_tasks_.contains(request->task_id())) { VLOG(3) << "Task is already finished"; result->end_of_sequence = true; result->skip = false; return absl::OkStatus(); } return errors::Unavailable("Task ", request->task_id(), " not found"); } task = it->second.get(); task->outstanding_requests++; } auto cleanup = gtl::MakeCleanup([&] { mutex_lock l(mu_); task->outstanding_requests--; cv_.notify_all(); }); TF_RETURN_IF_ERROR(EnsureTaskInitialized(*task)); TF_RETURN_IF_ERROR(task->task_runner->GetNext(*request, *result)); if (result->end_of_sequence) { mutex_lock l(mu_); VLOG(3) << "Reached end_of_sequence for task " << request->task_id(); pending_completed_tasks_.insert(request->task_id()); task_completion_cv_.notify_one(); } return absl::OkStatus(); } Status DataServiceWorkerImpl::ProcessTask(const ProcessTaskRequest* request, ProcessTaskResponse* response) { mutex_lock l(mu_); const TaskDef& task = request->task(); VLOG(3) << "Received request to process task " << task.task_id(); return ProcessTaskInternal(task); } Status DataServiceWorkerImpl::ProcessTaskInternal(const TaskDef& task_def) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::shared_ptr<Task>& task = tasks_[task_def.task_id()]; if (task) { VLOG(1) << "Received request to process already-processed task " << task->task_def.task_id(); return absl::OkStatus(); } task = std::make_unique<Task>(task_def); VLOG(3) << "Began processing for task " << task_def.task_id() << " with processing mode " << task_def.processing_mode_def().DebugString(); return absl::OkStatus(); } Status DataServiceWorkerImpl::EnsureTaskInitialized( DataServiceWorkerImpl::Task& task) { if (task.task_def.worker_address() != worker_address_) { return errors::Internal(absl::Substitute( "Dispatcher's worker address $0 does not match worker's address $1.", task.task_def.worker_address(), worker_address_)); } mutex_lock l(task.mu); if (task.initialized) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(DatasetDef dataset_def, GetDatasetDef(task.task_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<standalone::Dataset> dataset, MakeDataset(dataset_def, task.task_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<standalone::Iterator> iterator, MakeDatasetIterator(*dataset, task.task_def)); auto task_iterator = std::make_unique<StandaloneTaskIterator>( std::move(dataset), std::move(iterator)); TF_RETURN_IF_ERROR(TaskRunner::Create( config_, task.task_def, std::move(task_iterator), task.task_runner)); task.initialized = true; VLOG(3) << "Created iterator for task " << task.task_def.task_id(); return absl::OkStatus(); } absl::StatusOr<DatasetDef> DataServiceWorkerImpl::GetDatasetDef( const TaskDef& task_def) const { switch (task_def.dataset_case()) { case TaskDef::kDatasetDef: return task_def.dataset_def(); case TaskDef::kPath: { DatasetDef def; Status s = ReadDatasetDef(task_def.path(), def); if (!s.ok()) { LOG(INFO) << "Failed to read dataset from " << task_def.path() << ": " << s << ". Falling back to reading from dispatcher."; TF_RETURN_IF_ERROR( dispatcher_->GetDatasetDef(task_def.dataset_id(), def)); } return def; } case TaskDef::DATASET_NOT_SET: return errors::Internal("Unrecognized dataset case: ", task_def.dataset_case()); } } absl::StatusOr<bool> DataServiceWorkerImpl::DisableCompressionAtRuntime( const std::string& dataset_id) const { DisableCompressionAtRuntimeResponse response; absl::Time deadline = absl::FromUnixMicros(EnvTime::NowMicros()) + kDefaultDispatcherTimeout; auto should_retry = [this]() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !cancelled_; }; TF_RETURN_IF_ERROR(grpc_util::Retry( [&]() { return dispatcher_->DisableCompressionAtRuntime( dataset_id, false, response); }, should_retry, "Disable compression at runtime.", absl::ToUnixMicros(deadline))); if (response.no_compression_to_disable()) { return false; } metrics::RecordTFDataServiceRuntimeCompressionDecision( response.compression_disabled_at_runtime()); return response.compression_disabled_at_runtime(); } absl::StatusOr<std::unique_ptr<standalone::Dataset>> DataServiceWorkerImpl::MakeDataset(const DatasetDef& dataset_def, const TaskDef& task_def) const { TF_ASSIGN_OR_RETURN(bool compression_disabled_at_runtime, DisableCompressionAtRuntime(task_def.dataset_id())); GraphDef graph = dataset_def.graph(); if (VLOG_IS_ON(1)) { std::string prefix = absl::StrCat(task_def.dataset_id(), "_", worker_uid_); DumpGraphDefToFile(absl::StrCat(prefix, "-prerewrite_GraphDef"), graph); DumpProtoToFile(absl::StrCat(prefix, "-prerewrite_TaskDef"), task_def); } if (compression_disabled_at_runtime) { RemoveCompressionMapRewriter remove_compression_map_rewriter; TF_ASSIGN_OR_RETURN( graph, remove_compression_map_rewriter.ApplyRemoveCompressionMapRewrite( graph)); } TF_ASSIGN_OR_RETURN(AutoShardRewriter auto_shard_rewriter, AutoShardRewriter::Create(task_def)); TF_ASSIGN_OR_RETURN(graph, auto_shard_rewriter.ApplyAutoShardRewrite(graph)); std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), graph, &dataset)); return dataset; } absl::StatusOr<std::unique_ptr<standalone::Iterator>> DataServiceWorkerImpl::MakeDatasetIterator(standalone::Dataset& dataset, const TaskDef& task_def) const { std::unique_ptr<standalone::Iterator> iterator; if (IsNoShard(task_def.processing_mode_def()) || IsStaticShard(task_def.processing_mode_def())) { TF_RETURN_IF_ERROR(dataset.MakeIterator(&iterator)); return iterator; } if (IsDynamicShard(task_def.processing_mode_def())) { std::vector<std::unique_ptr<SplitProvider>> split_providers; split_providers.reserve(task_def.num_split_providers()); for (int i = 0; i < task_def.num_split_providers(); ++i) { split_providers.push_back(std::make_unique<DataServiceSplitProvider>( config_.dispatcher_address(), config_.protocol(), task_def.iteration_id(), i, config_.dispatcher_timeout_ms())); } TF_RETURN_IF_ERROR( dataset.MakeIterator(std::move(split_providers), &iterator)); return iterator; } return errors::InvalidArgument("Unrecognized processing mode: ", task_def.processing_mode_def().DebugString()); } void DataServiceWorkerImpl::StopTask(Task& task) TF_LOCKS_EXCLUDED(mu_) { { mutex_lock l(task.mu); task.initialized = true; } if (task.task_runner) { task.task_runner->Cancel(); } mutex_lock l(mu_); while (task.outstanding_requests > 0) { cv_.wait(l); } } Status DataServiceWorkerImpl::GetElement(const GetElementRequest* request, GetElementResponse* response) { VLOG(3) << "Received GetElement request for task " << request->task_id(); struct GetElementResult result; TF_RETURN_IF_ERROR(GetElementResult(request, &result)); response->set_end_of_sequence(result.end_of_sequence); response->set_skip_task(result.skip); if (!response->end_of_sequence() && !response->skip_task()) { TF_RETURN_IF_ERROR( MoveElementToResponse(std::move(result.components), *response)); VLOG(3) << "Producing an element for task " << request->task_id(); } return absl::OkStatus(); } Status DataServiceWorkerImpl::GetWorkerTasks( const GetWorkerTasksRequest* request, GetWorkerTasksResponse* response) { mutex_lock l(mu_); for (const auto& it : tasks_) { Task* task = it.second.get(); TaskInfo* task_info = response->add_tasks(); task_info->set_worker_address(worker_address_); task_info->set_task_id(task->task_def.task_id()); task_info->set_iteration_id(task->task_def.iteration_id()); } return absl::OkStatus(); } Status DataServiceWorkerImpl::GetSnapshotTaskProgresses( const GetSnapshotTaskProgressesRequest* request, GetSnapshotTaskProgressesResponse* response) { for (const auto& snapshot_task_progress : GetSnapshotTaskProgress()) { *response->add_snapshot_task_progresses() = snapshot_task_progress; } return absl::OkStatus(); } void DataServiceWorkerImpl::TaskCompletionThread() TF_LOCKS_EXCLUDED(mu_) { while (true) { { mutex_lock l(mu_); while (!cancelled_ && pending_completed_tasks_.empty()) { task_completion_cv_.wait(l); } if (cancelled_ && pending_completed_tasks_.empty()) { VLOG(3) << "Task completion thread shutting down"; return; } } Status s = SendTaskUpdates(); if (!s.ok()) { LOG(WARNING) << "Failed to send task updates to dispatcher: " << s; mutex_lock l(mu_); if (cancelled_) { VLOG(3) << "Task completion thread shutting down"; return; } else { task_completion_cv_.wait_for( l, absl::ToChronoMicroseconds(kRetryInterval)); } } } } Status DataServiceWorkerImpl::SendTaskUpdates() TF_LOCKS_EXCLUDED(mu_) { std::vector<TaskProgress> task_progress; { mutex_lock l(mu_); VLOG(3) << "Sending " << pending_completed_tasks_.size() << " task updates to dispatcher"; task_progress.reserve(pending_completed_tasks_.size()); for (int task_id : pending_completed_tasks_) { task_progress.emplace_back(); task_progress.back().set_task_id(task_id); task_progress.back().set_completed(true); } } TF_RETURN_IF_ERROR(dispatcher_->WorkerUpdate(worker_address_, task_progress)); mutex_lock l(mu_); for (const auto& update : task_progress) { pending_completed_tasks_.erase(update.task_id()); } VLOG(3) << "Sent " << task_progress.size() << " task updates "; return absl::OkStatus(); } void DataServiceWorkerImpl::HeartbeatThread() TF_LOCKS_EXCLUDED(mu_) { while (true) { int64_t next_heartbeat_micros = Env::Default()->NowMicros() + (config_.heartbeat_interval_ms() * 1000); { mutex_lock l(mu_); while (!cancelled_ && Env::Default()->NowMicros() < next_heartbeat_micros) { int64_t time_to_wait_micros = next_heartbeat_micros - Env::Default()->NowMicros(); heartbeat_cv_.wait_for(l, std::chrono::microseconds(time_to_wait_micros)); } if (cancelled_) { VLOG(3) << "Heartbeat thread shutting down"; return; } if (!registered_) { VLOG(1) << "Not performing heartbeat; worker is not yet registered"; continue; } } Status s = Heartbeat(); if (!s.ok()) { LOG(WARNING) << "Failed to send heartbeat to dispatcher: " << s; } } } Status DataServiceWorkerImpl::Heartbeat() { WorkerHeartbeatRequest request = BuildWorkerHeartbeatRequest(); TF_ASSIGN_OR_RETURN(WorkerHeartbeatResponse response, dispatcher_->WorkerHeartbeat(request)); UpdateTasks(response); return UpdateSnapshotWriters(response); } std::vector<ActiveTask> DataServiceWorkerImpl::GetActiveTasks() const TF_LOCKS_EXCLUDED(mu_) { std::vector<ActiveTask> active_tasks; absl::flat_hash_map<int64_t, std::shared_ptr<Task>> current_tasks; { mutex_lock l(mu_); current_tasks = tasks_; } for (const auto& [task_id, task] : current_tasks) { if (task == nullptr) { continue; } ActiveTask active_task; active_task.set_task_id(task_id); active_task.set_processing_time_nsec(0.0); bool task_initialized = false; { mutex_lock task_lock(task->mu); task_initialized = task->initialized; } if (task_initialized && task->task_runner != nullptr && task->task_runner->model() != nullptr) { std::shared_ptr<model::Model> model = task->task_runner->model(); double processing_time_nsec = model->ComputeSnapshotProcessingTimeNsec(); if (processing_time_nsec > 0) { active_task.set_processing_time_nsec(processing_time_nsec); } } active_tasks.push_back(std::move(active_task)); } return active_tasks; } std::vector<int64_t> DataServiceWorkerImpl::GetTaskIds( const std::vector<ActiveTask>& active_tasks) const { std::vector<int64_t> task_ids; task_ids.reserve(active_tasks.size()); for (const ActiveTask& active_task : active_tasks) { task_ids.push_back(active_task.task_id()); } return task_ids; } WorkerHeartbeatRequest DataServiceWorkerImpl::BuildWorkerHeartbeatRequest() const TF_LOCKS_EXCLUDED(mu_) { std::vector<ActiveTask> active_tasks = GetActiveTasks(); std::vector<int64_t> current_tasks = GetTaskIds(active_tasks); WorkerHeartbeatRequest request; request.set_worker_address(worker_address_); *request.mutable_transfer_servers() = {transfer_servers_.begin(), transfer_servers_.end()}; *request.mutable_worker_tags() = config_.worker_tags(); request.set_worker_uid(worker_uid_); *request.mutable_current_tasks() = {current_tasks.begin(), current_tasks.end()}; for (const auto& snapshot_task_progress : GetSnapshotTaskProgress()) { request.mutable_snapshot_task_progress()->insert( {snapshot_task_progress.snapshot_task().base_path(), snapshot_task_progress}); } *request.mutable_active_tasks() = {active_tasks.begin(), active_tasks.end()}; return request; } std::vector<SnapshotTaskProgress> DataServiceWorkerImpl::GetSnapshotTaskProgress() const { mutex_lock l(mu_); std::vector<SnapshotTaskProgress> snapshot_task_progress; for (const auto& [snapshot_task, stream_writer] : snapshot_writers_) { SnapshotTaskProgress progress; progress.mutable_snapshot_task()->set_base_path(snapshot_task.base_path); progress.mutable_snapshot_task()->set_stream_index( snapshot_task.stream_index); absl::StatusOr<bool> completed = stream_writer->Completed(); if (completed.ok()) { progress.set_completed(*completed); } else { *progress.mutable_status() = tsl::StatusToProto(completed.status()); } snapshot_task_progress.push_back(std::move(progress)); } return snapshot_task_progress; } void DataServiceWorkerImpl::UpdateTasks(const WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_) { std::vector<std::shared_ptr<Task>> tasks_to_delete; { mutex_lock l(mu_); for (const auto& task : response.new_tasks()) { VLOG(1) << "Received new task from dispatcher with id " << task.task_id(); if (deleted_tasks_.contains(task.task_id())) { continue; } Status s = ProcessTaskInternal(task); if (!s.ok() && !errors::IsAlreadyExists(s)) { LOG(WARNING) << "Failed to start processing task " << task.task_id() << ": " << s; } } tasks_to_delete.reserve(response.tasks_to_delete_size()); for (int64_t task_id : response.tasks_to_delete()) { VLOG(3) << "Deleting task " << task_id << " at the request of the dispatcher"; if (!tasks_.contains(task_id)) { continue; } tasks_to_delete.push_back(std::move(tasks_[task_id])); tasks_.erase(task_id); finished_tasks_.insert(task_id); } } for (const auto& task : tasks_to_delete) { StopTask(*task); } } Status DataServiceWorkerImpl::UpdateSnapshotWriters( const WorkerHeartbeatResponse& response) TF_LOCKS_EXCLUDED(mu_) { absl::flat_hash_set<SnapshotTask> assigned_snapshot_task_keys; for (const SnapshotTaskDef& snapshot_task : response.snapshot_tasks()) { SnapshotTask snapshot_task_key{snapshot_task.base_path(), snapshot_task.stream_index()}; assigned_snapshot_task_keys.insert(snapshot_task_key); { mutex_lock l(mu_); if (snapshot_writers_.contains(snapshot_task_key)) { continue; } } DatasetDef dataset_def; TF_RETURN_IF_ERROR(ReadBinaryProto( Env::Default(), DatasetDefFilePath(snapshot_task.base_path()), &dataset_def)); TF_ASSIGN_OR_RETURN(std::unique_ptr<StandaloneTaskIterator> iterator, MakeSnapshotTaskIterator(snapshot_task, dataset_def)); mutex_lock l(mu_); snapshot_writers_.emplace( snapshot_task_key, std::make_unique<SnapshotStreamWriter>( SnapshotWriterParams{ snapshot_task.base_path(), snapshot_task.stream_index(), snapshot_task.metadata().compression(), Env::Default(), ByteSize::Bytes(config_.snapshot_max_chunk_size_bytes())}, std::move(iterator))); } mutex_lock l(mu_); for (auto it = snapshot_writers_.begin(); it != snapshot_writers_.end();) { if (!assigned_snapshot_task_keys.contains(it->first)) { it->second->Cancel(); snapshot_writers_.erase(it++); } else { ++it; } } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<StandaloneTaskIterator>> DataServiceWorkerImpl::MakeSnapshotTaskIterator( const SnapshotTaskDef& snapshot_task, const DatasetDef& dataset_def) const { std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), dataset_def.graph(), &dataset)); std::vector<std::unique_ptr<SplitProvider>> split_providers; split_providers.reserve(snapshot_task.num_sources()); for (int i = 0; i < snapshot_task.num_sources(); ++i) { TF_ASSIGN_OR_RETURN(std::unique_ptr<DataServiceDispatcherClient> dispatcher, CreateDispatcherClient()); split_providers.push_back(std::make_unique<SnapshotSplitProvider>( worker_address_, snapshot_task, i, absl::Milliseconds(config_.dispatcher_timeout_ms()), std::move(dispatcher), Env::Default())); } std::unique_ptr<standalone::Iterator> iterator; TF_RETURN_IF_ERROR( dataset->MakeIterator(std::move(split_providers), &iterator)); return std::make_unique<StandaloneTaskIterator>(std::move(dataset), std::move(iterator)); } void DataServiceWorkerImpl::DeleteLocalTask(const TaskInfo& task_info) TF_LOCKS_EXCLUDED(mu_) { std::shared_ptr<Task> task; { mutex_lock l(mu_); auto it = tasks_.find(task_info.task_id()); if (it == tasks_.end() || !it->second) { return; } task = std::move(it->second); tasks_.erase(task_info.task_id()); pending_completed_tasks_.insert(task_info.task_id()); deleted_tasks_.insert(task_info.task_id()); } VLOG(2) << "Delete local task " << task_info.task_id() << " from worker " << worker_address_ << " at the request of the client."; StopTask(*task); } WorkerStateExport DataServiceWorkerImpl::ExportState() const { WorkerStateExport worker_state_export; *worker_state_export.mutable_worker_config() = config_; mutex_lock l(mu_); if (!registered_) { return worker_state_export; } for (const auto& task : tasks_) { *worker_state_export.add_tasks() = Export(task.second->task_def); } for (int64_t finished_task : finished_tasks_) { worker_state_export.add_finished_task_ids(finished_task); } for (int64_t deleted_task : deleted_tasks_) { worker_state_export.add_deleted_task_ids(deleted_task); } return worker_state_export; } void LocalWorkers::Add(absl::string_view worker_address, std::shared_ptr<DataServiceWorkerImpl> worker) { DCHECK(worker != nullptr) << "Adding a nullptr local worker is disallowed."; VLOG(1) << "Register local worker at address " << worker_address; mutex_lock l(mu_); (*local_workers_)[worker_address] = worker; } std::shared_ptr<DataServiceWorkerImpl> LocalWorkers::Get( absl::string_view worker_address) { tf_shared_lock l(mu_); AddressToWorkerMap::const_iterator it = local_workers_->find(worker_address); if (it == local_workers_->end()) { return nullptr; } return it->second; } bool LocalWorkers::Empty() { tf_shared_lock l(mu_); return local_workers_->empty(); } void LocalWorkers::Remove(absl::string_view worker_address) { VLOG(1) << "Remove local worker at address " << worker_address; mutex_lock l(mu_); local_workers_->erase(worker_address); } } }
#include "tensorflow/core/data/service/worker_impl.h" #include <memory> #include <string> #include <vector> #include "tensorflow/core/data/service/test_cluster.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::IsNull; using ::testing::NotNull; class LocalWorkersTest : public ::testing::Test { protected: void SetUp() override { test_cluster_ = std::make_unique<TestCluster>(0); TF_ASSERT_OK(test_cluster_->Initialize()); } std::unique_ptr<TestCluster> test_cluster_; }; TEST_F(LocalWorkersTest, AddRemoveLocalWorkers) { EXPECT_TRUE(LocalWorkers::Empty()); TF_ASSERT_OK(test_cluster_->AddWorker()); TF_ASSERT_OK(test_cluster_->AddWorker()); TF_ASSERT_OK(test_cluster_->AddWorker()); std::vector<std::string> worker_addresses = {test_cluster_->WorkerAddress(0), test_cluster_->WorkerAddress(1), test_cluster_->WorkerAddress(2)}; EXPECT_FALSE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), NotNull()); test_cluster_->StopWorker(0); EXPECT_FALSE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), NotNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), NotNull()); test_cluster_->StopWorkers(); EXPECT_TRUE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[0]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[1]), IsNull()); EXPECT_THAT(LocalWorkers::Get(worker_addresses[2]), IsNull()); } TEST_F(LocalWorkersTest, NoLocalWorker) { EXPECT_TRUE(LocalWorkers::Empty()); EXPECT_THAT(LocalWorkers::Get(""), IsNull()); EXPECT_THAT(LocalWorkers::Get("Invalid address"), IsNull()); EXPECT_TRUE(LocalWorkers::Empty()); LocalWorkers::Remove(""); LocalWorkers::Remove("Invalid address"); EXPECT_TRUE(LocalWorkers::Empty()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_impl.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/worker_impl_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
671484fe-b9bf-495f-ba88-1dec3ba87779
cpp
google/cel-cpp
map_type
common/types/map_type.cc
common/types/map_type_test.cc
#include <string> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "absl/strings/str_cat.h" #include "common/type.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" namespace cel { namespace common_internal { namespace { ABSL_CONST_INIT const MapTypeData kDynDynMapTypeData = { .key_and_value = {DynType(), DynType()}, }; ABSL_CONST_INIT const MapTypeData kStringDynMapTypeData = { .key_and_value = {StringType(), DynType()}, }; } absl::Nonnull<MapTypeData*> MapTypeData::Create( absl::Nonnull<google::protobuf::Arena*> arena, const Type& key, const Type& value) { MapTypeData* data = ::new (arena->AllocateAligned(sizeof(MapTypeData), alignof(MapTypeData))) MapTypeData; data->key_and_value[0] = key; data->key_and_value[1] = value; return data; } } MapType::MapType() : MapType(&common_internal::kDynDynMapTypeData) {} MapType::MapType(absl::Nonnull<google::protobuf::Arena*> arena, const Type& key, const Type& value) : MapType(key.IsDyn() && value.IsDyn() ? &common_internal::kDynDynMapTypeData : common_internal::MapTypeData::Create(arena, key, value)) {} std::string MapType::DebugString() const { return absl::StrCat("map<", key().DebugString(), ", ", value().DebugString(), ">"); } TypeParameters MapType::GetParameters() const { ABSL_DCHECK_NE(data_, 0); if ((data_ & kBasicBit) == kBasicBit) { const auto* data = reinterpret_cast<const common_internal::MapTypeData*>( data_ & kPointerMask); return TypeParameters(data->key_and_value[0], data->key_and_value[1]); } if ((data_ & kProtoBit) == kProtoBit) { const auto* descriptor = reinterpret_cast<const google::protobuf::Descriptor*>(data_ & kPointerMask); return TypeParameters(Type::Field(descriptor->map_key()), Type::Field(descriptor->map_value())); } return TypeParameters(Type(), Type()); } Type MapType::GetKey() const { ABSL_DCHECK_NE(data_, 0); if ((data_ & kBasicBit) == kBasicBit) { return reinterpret_cast<const common_internal::MapTypeData*>(data_ & kPointerMask) ->key_and_value[0]; } if ((data_ & kProtoBit) == kProtoBit) { return Type::Field( reinterpret_cast<const google::protobuf::Descriptor*>(data_ & kPointerMask) ->map_key()); } return Type(); } Type MapType::key() const { return GetKey(); } Type MapType::GetValue() const { ABSL_DCHECK_NE(data_, 0); if ((data_ & kBasicBit) == kBasicBit) { return reinterpret_cast<const common_internal::MapTypeData*>(data_ & kPointerMask) ->key_and_value[1]; } if ((data_ & kProtoBit) == kProtoBit) { return Type::Field( reinterpret_cast<const google::protobuf::Descriptor*>(data_ & kPointerMask) ->map_value()); } return Type(); } Type MapType::value() const { return GetValue(); } MapType JsonMapType() { return MapType(&common_internal::kStringDynMapTypeData); } }
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace cel { namespace { TEST(MapType, Default) { MapType map_type; EXPECT_EQ(map_type.key(), DynType()); EXPECT_EQ(map_type.value(), DynType()); } TEST(MapType, Kind) { google::protobuf::Arena arena; EXPECT_EQ(MapType(&arena, StringType(), BytesType()).kind(), MapType::kKind); EXPECT_EQ(Type(MapType(&arena, StringType(), BytesType())).kind(), MapType::kKind); } TEST(MapType, Name) { google::protobuf::Arena arena; EXPECT_EQ(MapType(&arena, StringType(), BytesType()).name(), MapType::kName); EXPECT_EQ(Type(MapType(&arena, StringType(), BytesType())).name(), MapType::kName); } TEST(MapType, DebugString) { google::protobuf::Arena arena; { std::ostringstream out; out << MapType(&arena, StringType(), BytesType()); EXPECT_EQ(out.str(), "map<string, bytes>"); } { std::ostringstream out; out << Type(MapType(&arena, StringType(), BytesType())); EXPECT_EQ(out.str(), "map<string, bytes>"); } } TEST(MapType, Hash) { google::protobuf::Arena arena; EXPECT_EQ(absl::HashOf(MapType(&arena, StringType(), BytesType())), absl::HashOf(MapType(&arena, StringType(), BytesType()))); } TEST(MapType, Equal) { google::protobuf::Arena arena; EXPECT_EQ(MapType(&arena, StringType(), BytesType()), MapType(&arena, StringType(), BytesType())); EXPECT_EQ(Type(MapType(&arena, StringType(), BytesType())), MapType(&arena, StringType(), BytesType())); EXPECT_EQ(MapType(&arena, StringType(), BytesType()), Type(MapType(&arena, StringType(), BytesType()))); EXPECT_EQ(Type(MapType(&arena, StringType(), BytesType())), Type(MapType(&arena, StringType(), BytesType()))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/map_type.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/map_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
36232e17-485a-4372-ac8e-bbcb4ca23de8
cpp
tensorflow/tensorflow
sequence_ops
tensorflow/compiler/tf2xla/kernels/sequence_ops.cc
tensorflow/core/kernels/sequence_ops_test.cc
#include "absl/status/statusor.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/value_inference.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { template <typename T> absl::StatusOr<xla::XlaOp> CreateRangeTensor( const xla::LiteralSlice& start_literal, const xla::LiteralSlice& limit_literal, const xla::LiteralSlice& delta_literal, xla::XlaBuilder* builder) { T start = start_literal.Get<T>({}); T limit = limit_literal.Get<T>({}); T delta = delta_literal.Get<T>({}); if (delta == 0) { return errors::InvalidArgument("Requires delta != 0: ", delta); } if (delta > 0) { if (start > limit) { return errors::InvalidArgument( "Requires start <= limit when delta > 0: ", start, "/", limit); } } else { if (start < limit) { return errors::InvalidArgument( "Requires start >= limit when delta < 0: ", start, "/", limit); } } int64_t size = (std::is_integral<T>::value ? static_cast<T>( limit == start ? 0 : (std::abs(limit - start) - 1) / std::abs(delta) + 1) : std::ceil(std::abs((limit - start) / delta))); return xla::ConstantR0(builder, start) + xla::ConstantR0(builder, delta) * xla::Iota(builder, xla::primitive_util::NativeToPrimitiveType<T>(), size); } class RangeOp : public XlaOpKernel { public: explicit RangeOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const TensorShape start_in_shape = ctx->InputShape(0); const TensorShape limit_in_shape = ctx->InputShape(1); const TensorShape delta_in_shape = ctx->InputShape(2); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(start_in_shape), errors::InvalidArgument("start must be a scalar, not shape ", start_in_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(limit_in_shape), errors::InvalidArgument("limit must be a scalar, not shape ", limit_in_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(delta_in_shape), errors::InvalidArgument("delta must be a scalar, not shape ", delta_in_shape.DebugString())); xla::Literal start, limit, delta; OP_REQUIRES_OK(ctx, ctx->ConstantInput( 0, &start, xla::ValueInferenceMode::kLowerBound)); OP_REQUIRES_OK(ctx, ctx->ConstantInput( 1, &limit, xla::ValueInferenceMode::kUpperBound)); OP_REQUIRES_OK(ctx, ctx->ConstantInput(2, &delta)); DataType type = input_type(0); absl::StatusOr<xla::XlaOp> output; switch (type) { case DT_INT32: output = CreateRangeTensor<int32>(start, limit, delta, ctx->builder()); break; case DT_INT64: output = CreateRangeTensor<int64_t>(start, limit, delta, ctx->builder()); break; case DT_FLOAT: output = CreateRangeTensor<float>(start, limit, delta, ctx->builder()); break; case DT_DOUBLE: output = CreateRangeTensor<double>(start, limit, delta, ctx->builder()); break; default: output = errors::InvalidArgument("Invalid type for Range ", DataTypeString(type)); } OP_REQUIRES_OK(ctx, output.status()); bool start_is_dynamic = false; OP_REQUIRES_OK(ctx, ctx->ResolveInputDynamismIntoPred(0, &start_is_dynamic)); bool limit_is_dynamic = false; OP_REQUIRES_OK(ctx, ctx->ResolveInputDynamismIntoPred(1, &limit_is_dynamic)); if (start_is_dynamic || limit_is_dynamic) { xla::XlaOp delta = ctx->Input(2); xla::XlaOp limit = ctx->Input(1); xla::XlaOp start = ctx->Input(0); if (type == DT_INT32 || type == DT_INT64) { auto dynamic_size = (xla::Abs(limit - start) + xla::Abs(delta) - xla::One(ctx->builder(), ctx->input_xla_type(0))) / xla::Abs(delta); dynamic_size = xla::ConvertElementType(dynamic_size, xla::S32); output = xla::SetDimensionSize(output.value(), dynamic_size, 0); } else { auto dynamic_size = (xla::Ceil(xla::Abs((limit - start) / delta))); dynamic_size = xla::ConvertElementType(dynamic_size, xla::S32); output = xla::SetDimensionSize(output.value(), dynamic_size, 0); } } ctx->SetOutput(0, output.value()); } }; REGISTER_XLA_OP(Name("Range") .CompileTimeConstantInput("start") .CompileTimeConstantInput("limit") .CompileTimeConstantInput("delta"), RangeOp); class LinSpaceOp : public XlaOpKernel { public: explicit LinSpaceOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const TensorShape start_in_shape = ctx->InputShape("start"); const TensorShape stop_in_shape = ctx->InputShape("stop"); const TensorShape num_in_shape = ctx->InputShape("num"); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(start_in_shape), errors::InvalidArgument("start must be a scalar, not shape ", start_in_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(stop_in_shape), errors::InvalidArgument("stop must be a scalar, not shape ", stop_in_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(num_in_shape), errors::InvalidArgument("num must be a scalar, not shape ", num_in_shape.DebugString())); int64_t num; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntScalar("num", &num)); OP_REQUIRES(ctx, num > 0, errors::InvalidArgument("Requires num > 0: ", num)); xla::XlaOp start = ctx->Input("start"); xla::XlaOp stop = ctx->Input("stop"); xla::XlaOp iota = xla::Iota(ctx->builder(), ctx->output_xla_type(0), num); xla::XlaOp step = (stop - start) / xla::ScalarLike(start, (num > 1 ? num - 1 : num)); xla::XlaOp result = iota * step + start; if (num > 1) { xla::XlaOp mask = xla::Iota(ctx->builder(), xla::S64, num); xla::XlaOp eq = xla::Eq(mask, xla::ScalarLike(mask, num - 1)); result = xla::Select(eq, stop, result); } ctx->SetOutput(0, result); } }; REGISTER_XLA_OP(Name("LinSpace").CompileTimeConstantInput("num"), LinSpaceOp); } }
#include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class RangeOpTest : public OpsTestBase { protected: void MakeOp(DataType input_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "Range") .Input(FakeInput(input_type)) .Input(FakeInput(input_type)) .Input(FakeInput(input_type)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; class LinSpaceOpTest : public OpsTestBase { protected: void MakeOp(DataType input_type, DataType index_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "LinSpace") .Input(FakeInput(input_type)) .Input(FakeInput(input_type)) .Input(FakeInput(index_type)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(RangeOpTest, Simple_D32) { MakeOp(DT_INT32); AddInputFromArray<int32>(TensorShape({}), {0}); AddInputFromArray<int32>(TensorShape({}), {10}); AddInputFromArray<int32>(TensorShape({}), {2}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_INT32, TensorShape({5})); test::FillValues<int32>(&expected, {0, 2, 4, 6, 8}); test::ExpectTensorEqual<int32>(expected, *GetOutput(0)); } TEST_F(RangeOpTest, Simple_Half) { MakeOp(DT_HALF); AddInputFromList<Eigen::half, float>(TensorShape({}), {0.5}); AddInputFromList<Eigen::half, float>(TensorShape({}), {2}); AddInputFromList<Eigen::half, float>(TensorShape({}), {0.3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_HALF, TensorShape({5})); test::FillValues<Eigen::half, float>(&expected, {0.5, 0.8, 1.1, 1.4, 1.7}); test::ExpectTensorEqual<Eigen::half>(expected, *GetOutput(0)); } TEST_F(RangeOpTest, Simple_Float) { MakeOp(DT_FLOAT); AddInputFromArray<float>(TensorShape({}), {0.5}); AddInputFromArray<float>(TensorShape({}), {2}); AddInputFromArray<float>(TensorShape({}), {0.3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({5})); test::FillValues<float>(&expected, {0.5, 0.8, 1.1, 1.4, 1.7}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(RangeOpTest, Large_Double) { MakeOp(DT_DOUBLE); AddInputFromArray<double>(TensorShape({}), {0.0}); AddInputFromArray<double>(TensorShape({}), {10000}); AddInputFromArray<double>(TensorShape({}), {0.5}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({20000})); std::vector<double> result; for (int32_t i = 0; i < 20000; ++i) result.push_back(i * 0.5); test::FillValues<double>(&expected, absl::Span<const double>(result)); test::ExpectTensorEqual<double>(expected, *GetOutput(0)); } TEST_F(LinSpaceOpTest, Simple_D32) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({}), {3.0}); AddInputFromArray<float>(TensorShape({}), {7.0}); AddInputFromArray<int32>(TensorShape({}), {3}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {3.0, 5.0, 7.0}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(LinSpaceOpTest, Exact_Endpoints) { MakeOp(DT_FLOAT, DT_INT32); AddInputFromArray<float>(TensorShape({}), {0.0}); AddInputFromArray<float>(TensorShape({}), {1.0}); AddInputFromArray<int32>(TensorShape({}), {42}); TF_ASSERT_OK(RunOpKernel()); Tensor output = *GetOutput(0); float expected_start = 0.0; float start = output.flat<float>()(0); EXPECT_EQ(expected_start, start) << expected_start << " vs. " << start; float expected_stop = 1.0; float stop = output.flat<float>()(output.NumElements() - 1); EXPECT_EQ(expected_stop, stop) << expected_stop << " vs. " << stop; } TEST_F(LinSpaceOpTest, Single_D64) { MakeOp(DT_FLOAT, DT_INT64); AddInputFromArray<float>(TensorShape({}), {9.0}); AddInputFromArray<float>(TensorShape({}), {100.0}); AddInputFromArray<int64_t>(TensorShape({}), {1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({1})); test::FillValues<float>(&expected, {9.0}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(LinSpaceOpTest, Simple_Double) { MakeOp(DT_DOUBLE, DT_INT32); AddInputFromArray<double>(TensorShape({}), {5.0}); AddInputFromArray<double>(TensorShape({}), {6.0}); AddInputFromArray<int32>(TensorShape({}), {6}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_DOUBLE, TensorShape({6})); test::FillValues<double>(&expected, {5.0, 5.2, 5.4, 5.6, 5.8, 6.0}); test::ExpectTensorEqual<double>(expected, *GetOutput(0)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/sequence_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sequence_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3d74cae6-8e08-4595-b6bf-2d5ca27cc59f
cpp
tensorflow/tensorflow
convert_mover
third_party/xla/xla/service/convert_mover.cc
third_party/xla/xla/service/convert_mover_test.cc
#include "xla/service/convert_mover.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/primitive_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { static bool IsLosslesslyConvertibleTo(const Literal& literal, PrimitiveType dst_ty) { PrimitiveType orig_ty = literal.shape().element_type(); absl::StatusOr<Literal> converted1 = literal.Convert(dst_ty); if (!converted1.ok()) { return false; } absl::StatusOr<Literal> converted2 = converted1->Convert(orig_ty); if (!converted2.ok()) { return false; } return literal == *converted2; } bool OpCommutesWithConvert(HloOpcode opcode) { switch (opcode) { case HloOpcode::kConcatenate: case HloOpcode::kPad: case HloOpcode::kReshape: case HloOpcode::kSlice: case HloOpcode::kTranspose: return true; default: return false; } } absl::StatusOr<bool> MoveConvertPrecisionOps(HloComputation* comp) { bool changed = false; for (HloInstruction* instr : comp->MakeInstructionPostOrder()) { if (!OpCommutesWithConvert(instr->opcode()) || instr->operand_count() == 0 || !absl::c_all_of(instr->operands(), [](const HloInstruction* operand) { return (operand->opcode() == HloOpcode::kConvert && operand->user_count() == 1) || operand->opcode() == HloOpcode::kConstant; })) { continue; } auto convert_op_it = absl::c_find_if(instr->operands(), HloPredicateIsOp<HloOpcode::kConvert>); if (convert_op_it == instr->operands().end()) { continue; } const HloInstruction* convert_op = *convert_op_it; if (!absl::c_all_of(instr->operands(), [&](const HloInstruction* operand) { return operand->opcode() != HloOpcode::kConvert || operand->operand(0)->shape().element_type() == convert_op->operand(0)->shape().element_type(); })) { continue; } PrimitiveType src_ty = convert_op->operand(0)->shape().element_type(); PrimitiveType dst_ty = convert_op->shape().element_type(); if (primitive_util::BitWidth(src_ty) >= primitive_util::BitWidth(dst_ty)) { continue; } if (absl::c_any_of(instr->operands(), [&](const HloInstruction* operand) { return operand->opcode() == HloOpcode::kConstant && !IsLosslesslyConvertibleTo(operand->literal(), src_ty); })) { continue; } if (primitive_util::IsSubByteNonPredType(src_ty)) { continue; } VLOG(2) << "Moving increase-precision convert op " << convert_op->ToString() << " down the graph: " << instr->ToString(); absl::InlinedVector<HloInstruction*, 8> new_operands; new_operands.reserve(instr->operand_count()); for (HloInstruction* operand : instr->operands()) { switch (operand->opcode()) { case HloOpcode::kConvert: new_operands.push_back(operand->mutable_operand(0)); break; case HloOpcode::kConstant: new_operands.push_back(MakeConvertToHlo(operand, src_ty)); break; default: LOG(FATAL) << "Unexpected opcode in " << operand->ToString(); } } Shape new_shape = instr->shape(); new_shape.set_element_type(src_ty); HloInstruction* new_instr = comp->AddInstruction( instr->CloneWithNewOperands(new_shape, new_operands)); TF_RETURN_IF_ERROR(comp->ReplaceWithNewInstruction( instr, HloInstruction::CreateConvert(instr->shape(), new_instr))); changed = true; } std::deque<HloInstruction*> work_queue; std::vector<HloInstruction*> instrs = comp->MakeInstructionPostOrder(); work_queue.insert(work_queue.end(), instrs.rbegin(), instrs.rend()); while (!work_queue.empty()) { HloInstruction* instr = work_queue.front(); work_queue.pop_front(); if (instr->opcode() != HloOpcode::kConvert || instr->operand(0)->user_count() != 1 || !OpCommutesWithConvert(instr->operand(0)->opcode())) { continue; } PrimitiveType src_ty = instr->operand(0)->shape().element_type(); PrimitiveType dst_ty = instr->shape().element_type(); if (primitive_util::BitWidth(src_ty) <= primitive_util::BitWidth(dst_ty)) { continue; } if (primitive_util::IsSubByteNonPredType(dst_ty)) { continue; } VLOG(2) << "Moving decrease-precision convert up the graph: " << instr->ToString(); HloInstruction* to_convert = instr->mutable_operand(0); absl::InlinedVector<HloInstruction*, 8> new_operands; new_operands.reserve(to_convert->operand_count()); for (HloInstruction* operand : to_convert->operands()) { work_queue.push_front(MakeConvertToHlo(operand, dst_ty)); new_operands.push_back(work_queue.front()); } Shape new_shape = to_convert->shape(); new_shape.set_element_type(dst_ty); TF_RETURN_IF_ERROR(comp->ReplaceWithNewInstruction( instr, to_convert->CloneWithNewOperands(new_shape, new_operands))); changed = true; } return changed; } } absl::StatusOr<bool> ConvertMover::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool changed_computation, MoveConvertPrecisionOps(comp)); changed |= changed_computation; } return changed; } }
#include "xla/service/convert_mover.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; class ConvertMoverTest : public HloTestBase { public: ConvertMoverTest() : HloTestBase(false, false) {} }; template <typename T> auto MatchConvertToS8(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(S8)); } template <typename T> auto MatchConvertToF16(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(F16)); } template <typename T> auto MatchConvertToF32(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(F32)); } template <typename T> auto MatchConvertToC64(T&& operand) { return m::Convert(operand).WithShape(m::Shape().WithElementType(C64)); } TEST_F(ConvertMoverTest, MoveDownThroughConcat) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(f32[10] convert(f16[10] parameter(0)), f32[10] convert(f16[10] parameter(1))), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToF32( m::Concatenate(m::Parameter(0), m::Parameter(1))))); } TEST_F(ConvertMoverTest, NoMoveDownThroughConcatWithDifferentSrcTypes) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(f32[10] convert(bf16[10] parameter(0)), f32[10] convert(f16[10] parameter(1))), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(ConvertMoverTest, MoveUpReshape) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = f16[10,10] convert(f32[10,10] reshape(f32[100] parameter(0))) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Reshape(MatchConvertToF16(m::Parameter(0))))); } TEST_F(ConvertMoverTest, MoveUpTwoTransposes) { absl::string_view module_string = R"( HloModule module ENTRY main { t1 = transpose(f32[3,4] parameter(0)), dimensions={1,0} t2 = transpose(t1), dimensions={1,0} ROOT root = f16[3,4] convert(t2) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Transpose( m::Transpose(MatchConvertToF16(m::Parameter(0)))))); } TEST_F(ConvertMoverTest, MoveDownTwoSlices) { absl::string_view module_string = R"( HloModule module ENTRY main { slice1 = f32[9] slice(f32[10] convert(f16[10] parameter(0))), slice={[0:9]} ROOT slice2 = f32[8] slice(slice1), slice={[0:8]} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToF32(m::Slice(m::Slice(m::Parameter(0)))))); } TEST_F(ConvertMoverTest, MoveDownC64) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(c64[10] convert(f32[10] parameter(0)), c64[10] convert(f32[10] parameter(1))), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToC64(m::Concatenate( m::Parameter(0), m::Parameter(1) )))); } TEST_F(ConvertMoverTest, MoveDownC64Constant) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT root = concatenate(c64[2] convert(f32[2] parameter(0)), c64[2] convert(f32[2] parameter(1)), c64[2] constant({(1,1), (-1,-1)})), dimensions={0} })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } TEST_F(ConvertMoverTest, MoveUpPad) { absl::string_view module_string = R"( HloModule module ENTRY main { pad = f32[10] pad(f32[8] parameter(0), f32[] constant(0)), padding=1_1 ROOT root = f16[10] convert(pad) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Pad(MatchConvertToF16(m::Parameter(0)), MatchConvertToF16(m::ConstantEffectiveScalar(0))))); } TEST_F(ConvertMoverTest, MoveUpPadWithOutOfRangeConstant) { absl::string_view module_string = R"( HloModule module ENTRY main { pad = s32[10] pad(s32[8] parameter(0), s32[] constant(1000)), padding=1_1 ROOT root = s8[10] convert(pad) })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Pad(MatchConvertToS8(m::Parameter(0)), MatchConvertToS8(m::ConstantEffectiveScalar(1000))))); } TEST_F(ConvertMoverTest, MoveDownPad) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT pad = f32[10] pad(f32[8] convert(f16[8] parameter(0)), f32[] constant(0)), padding=1_1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(MatchConvertToF32(m::Pad( m::Parameter(0), MatchConvertToF16(m::ConstantEffectiveScalar(0)))))); } TEST_F(ConvertMoverTest, NoMoveDownPadBecauseConstantIsOutOfRange) { absl::string_view module_string = R"( HloModule module ENTRY main { ROOT pad = f32[10] pad(f32[8] convert(f16[8] parameter(0)), f32[] constant(1e9)), padding=1_1 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); ConvertMover pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&pass, module.get())); SCOPED_TRACE(module->ToString()); EXPECT_FALSE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_mover.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/convert_mover_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e938fec1-2a3e-4a74-a363-d75017bc5abe
cpp
tensorflow/tensorflow
sample_stable_delegate_with_control_flow
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.cc
tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow_test.cc
#include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.h" #include <memory> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/lite/c/builtin_op_data.h" #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/delegates/utils/simple_opaque_delegate.h" namespace tflite { namespace example { static const int kTopLevelSubgraphIndex = -1; namespace { class SampleStableDelegateKernel : public SimpleOpaqueDelegateKernelInterface { bool IsExternalTensor(const TfLiteOpaqueTensor* opaque_tensor) const { return external_tensors_.count(opaque_tensor) != 0; } void DeriveExternalTensors() { for (const TfLiteOpaqueTensor* tensor : node_input_tensors_set_) { if (node_output_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } for (const TfLiteOpaqueTensor* tensor : node_output_tensors_set_) { if (node_input_tensors_set_.count(tensor) == 0) { external_tensors_.insert(tensor); } } } public: TfLiteStatus Init(TfLiteOpaqueContext* context, const TfLiteOpaqueDelegateParams* params) override { if (params->delegate == nullptr) return kTfLiteDelegateError; context_ = context; std::vector<int> callee_subgraph_indices; TfLiteStatus status = InitSubgraphNodes(context, kTopLevelSubgraphIndex, params->nodes_to_replace, callee_subgraph_indices); if (status != kTfLiteOk) return status; DeriveExternalTensors(); return kTfLiteOk; } TfLiteStatus InitSubgraphNodes(TfLiteOpaqueContext* context, int subgraph_index, const TfLiteIntArray* nodes_to_execute, std::vector<int>& callee_subgraph_indices) { node_input_tensors_[subgraph_index].resize(nodes_to_execute->size); node_output_tensors_[subgraph_index].resize(nodes_to_execute->size); builtin_codes_[subgraph_index].resize(nodes_to_execute->size); for (int i = 0; i < nodes_to_execute->size; ++i) { const int node_index = nodes_to_execute->data[i]; TfLiteOpaqueNode* delegated_node = nullptr; TfLiteOperator* delegated_node_registration = nullptr; TfLiteOpaqueContextGetNodeAndRegistration( context, node_index, &delegated_node, &delegated_node_registration); builtin_codes_[subgraph_index][i] = TfLiteOperatorGetBuiltInCode(delegated_node_registration); for (int n = 0; n < TfLiteOpaqueNodeNumberOfInputs(delegated_node); ++n) { auto input_tensor = TfLiteOpaqueNodeGetInput(context, delegated_node, n); node_input_tensors_[subgraph_index][i].push_back(input_tensor); if (subgraph_index == kTopLevelSubgraphIndex) { node_input_tensors_set_.insert(input_tensor); } } for (int n = 0; n < TfLiteOpaqueNodeNumberOfOutputs(delegated_node); ++n) { auto output_tensor = TfLiteOpaqueNodeGetOutput(context, delegated_node, n); node_output_tensors_[subgraph_index][i].push_back(output_tensor); if (subgraph_index == kTopLevelSubgraphIndex) { node_output_tensors_set_.insert(output_tensor); } } if (builtin_codes_[subgraph_index][i] == kTfLiteBuiltinWhile) { void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(delegated_node); TfLiteWhileParams* params = reinterpret_cast<TfLiteWhileParams*>(builtin_data); control_flow_branch_indices_[subgraph_index][i] = { params->cond_subgraph_index, params->body_subgraph_index}; for (int branch_index : control_flow_branch_indices_[subgraph_index][i]) { callee_subgraph_indices.push_back(branch_index); TfLiteStatus status; TfLiteIntArray* execution_plan; TfLiteOpaqueContext* branch_context; status = TfLiteOpaqueContextAcquireSubgraphContext( context, branch_index, &branch_context); if (status != kTfLiteOk) return status; status = TfLiteOpaqueContextGetExecutionPlan(branch_context, &execution_plan); if (status != kTfLiteOk) return status; status = InitSubgraphNodes(branch_context, branch_index, execution_plan, callee_subgraph_indices); if (status != kTfLiteOk) return status; status = TfLiteOpaqueContextReleaseSubgraphContext(context, branch_index); if (status != kTfLiteOk) return status; } } } return kTfLiteOk; } TfLiteStatus Prepare(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { if (external_tensors_.empty()) return kTfLiteOk; const int kTheInputTensorSize = helpers::CalculateNumElements((*external_tensors_.begin())); for (auto [_, node_input_tensors] : node_input_tensors_) { for (std::vector<const TfLiteOpaqueTensor*>& vecs : node_input_tensors) { for (const TfLiteOpaqueTensor* tensor : vecs) { if (IsExternalTensor(tensor)) continue; std::vector<float>& vec_memory = internal_float_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } } } for (auto [subgraph_index, node_output_tensors] : node_output_tensors_) { for (int i = 0; i < node_output_tensors.size(); ++i) { std::vector<const TfLiteOpaqueTensor*>& vecs = node_output_tensors[i]; for (int j = 0; j < vecs.size(); ++j) { const TfLiteOpaqueTensor* tensor = vecs[j]; if (IsExternalTensor(tensor)) break; if (builtin_codes_[subgraph_index][i] == kTfLiteBuiltinEqual) { std::vector<int>& vec_memory = internal_int_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } else { std::vector<float>& vec_memory = internal_float_tensors_memory_[tensor]; vec_memory.resize(kTheInputTensorSize); } } } } return kTfLiteOk; } int* GetIntRawDataSource(const TfLiteOpaqueTensor* tensor) { if (IsExternalTensor(tensor)) { return reinterpret_cast<int*>(TfLiteOpaqueTensorData(tensor)); } else { return internal_int_tensors_memory_[tensor].data(); } } float* GetFloatRawDataSource(const TfLiteOpaqueTensor* tensor) { if (IsExternalTensor(tensor)) { return reinterpret_cast<float*>(TfLiteOpaqueTensorData(tensor)); } else { return internal_float_tensors_memory_[tensor].data(); } } void CopyRawDataSource(const TfLiteOpaqueTensor* from_tensor, const TfLiteOpaqueTensor* to_tensor) { float* from_data = GetFloatRawDataSource(from_tensor); float* to_data = GetFloatRawDataSource(to_tensor); int number_of_elements = helpers::CalculateNumElements(to_tensor); memcpy(to_data, from_data, number_of_elements * sizeof(float)); } TfLiteStatus EvalArithmeticOp(int subgraph_index, int node_index) { auto node_input_tensors = node_input_tensors_[subgraph_index]; auto node_output_tensors = node_output_tensors_[subgraph_index]; auto builtin_codes = builtin_codes_[subgraph_index]; float* input1 = GetFloatRawDataSource(node_input_tensors[node_index][0]); float* input2 = GetFloatRawDataSource(node_input_tensors[node_index][1]); float* output = GetFloatRawDataSource(node_output_tensors[node_index][0]); int number_of_elements = helpers::CalculateNumElements(node_output_tensors[node_index][0]); for (int i = 0; i < number_of_elements; ++i) { switch (builtin_codes[node_index]) { case kTfLiteBuiltinAdd: output[i] = input1[i] + input2[i]; break; case kTfLiteBuiltinSub: output[i] = input1[i] - input2[i]; break; case kTfLiteBuiltinMul: output[i] = input1[i] * input2[i]; break; default: return kTfLiteDelegateError; } } return kTfLiteOk; } TfLiteStatus EvalComparisonOp(int subgraph_index, int node_index) { auto node_input_tensors = node_input_tensors_[subgraph_index]; auto node_output_tensors = node_output_tensors_[subgraph_index]; auto builtin_codes = builtin_codes_[subgraph_index]; float* input1 = GetFloatRawDataSource(node_input_tensors[node_index][0]); float* input2 = GetFloatRawDataSource(node_input_tensors[node_index][1]); int* output = GetIntRawDataSource(node_output_tensors[node_index][0]); int number_of_elements = helpers::CalculateNumElements(node_output_tensors[node_index][0]); for (int i = 0; i < number_of_elements; ++i) { switch (builtin_codes[node_index]) { case kTfLiteBuiltinEqual: output[i] = input1[i] == input2[i]; break; default: return kTfLiteDelegateError; } } return kTfLiteOk; } TfLiteStatus EvalWhileOp(int while_subgraph_index, int while_node_index) { auto branch_indices = control_flow_branch_indices_[while_subgraph_index][while_node_index]; int cond_subgraph_index = branch_indices[0]; int body_subgraph_index = branch_indices[1]; int last_cond_node_index = node_output_tensors_[cond_subgraph_index].size() - 1; int last_body_node_index = node_output_tensors_[body_subgraph_index].size() - 1; CopyRawDataSource( node_input_tensors_[while_subgraph_index][while_node_index][0], node_input_tensors_[cond_subgraph_index][0][0]); TfLiteStatus status; while (true) { status = EvalSubgraph(cond_subgraph_index); if (status != kTfLiteOk) return status; int* cond_output = GetIntRawDataSource( node_output_tensors_[cond_subgraph_index][last_cond_node_index][0]); int number_of_elements = helpers::CalculateNumElements( node_output_tensors_[cond_subgraph_index][last_cond_node_index][0]); bool condition = true; for (int i = 0; i < number_of_elements; ++i) { if (cond_output[i] == 0) { condition = false; break; } } if (!condition) { CopyRawDataSource( node_output_tensors_[body_subgraph_index][last_body_node_index][0], node_output_tensors_[while_subgraph_index][while_node_index][0]); break; } CopyRawDataSource(node_input_tensors_[cond_subgraph_index][0][0], node_input_tensors_[body_subgraph_index][0][0]); status = EvalSubgraph(body_subgraph_index); if (status != kTfLiteOk) return status; CopyRawDataSource( node_output_tensors_[body_subgraph_index][last_body_node_index][0], node_input_tensors_[cond_subgraph_index][0][0]); } return kTfLiteOk; } TfLiteStatus EvalSubgraph(int subgraph_index) { TfLiteStatus status; for (int i = 0; i < node_input_tensors_[subgraph_index].size(); ++i) { status = EvalNode(subgraph_index, i); if (status != kTfLiteOk) return status; } return kTfLiteOk; } TfLiteStatus Eval(TfLiteOpaqueContext* context, TfLiteOpaqueNode* delegated_node) override { return EvalSubgraph(kTopLevelSubgraphIndex); } TfLiteStatus EvalNode(int subgraph_index, int node_index) { TfLiteStatus status; switch (builtin_codes_[subgraph_index][node_index]) { case kTfLiteBuiltinAdd: case kTfLiteBuiltinSub: case kTfLiteBuiltinMul: status = EvalArithmeticOp(subgraph_index, node_index); break; case kTfLiteBuiltinEqual: status = EvalComparisonOp(subgraph_index, node_index); break; case kTfLiteBuiltinWhile: status = EvalWhileOp(subgraph_index, node_index); break; default: return kTfLiteDelegateError; } if (status != kTfLiteOk) { return status; } return kTfLiteOk; } private: absl::flat_hash_map<int, absl::flat_hash_map<int, std::vector<int>>> control_flow_branch_indices_; absl::flat_hash_map<int, std::vector<std::vector<const TfLiteOpaqueTensor*>>> node_input_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_input_tensors_set_; absl::flat_hash_map<int, std::vector<std::vector<const TfLiteOpaqueTensor*>>> node_output_tensors_; absl::flat_hash_set<const TfLiteOpaqueTensor*> node_output_tensors_set_; absl::flat_hash_set<const TfLiteOpaqueTensor*> external_tensors_; absl::flat_hash_map<const TfLiteOpaqueTensor*, std::vector<float>> internal_float_tensors_memory_; absl::flat_hash_map<const TfLiteOpaqueTensor*, std::vector<int>> internal_int_tensors_memory_; TfLiteOpaqueContext* context_; absl::flat_hash_map<int, std::vector<int>> builtin_codes_; }; } TfLiteStatus SampleStableDelegate::ComputeCompatibleCalleeSubgraphs( TfLiteOpaqueContext* opaque_context, int subgraph_index) { TfLiteStatus status; TfLiteOpaqueContext* current_context; status = TfLiteOpaqueContextAcquireSubgraphContext( opaque_context, subgraph_index, &current_context); if (status != kTfLiteOk) { return status; } TfLiteIntArray* execution_plan; status = TfLiteOpaqueContextGetExecutionPlan(current_context, &execution_plan); if (status != kTfLiteOk) { return status; } bool is_compatible_subgraph = true; for (int i = 0; i < execution_plan->size; ++i) { int node_index = execution_plan->data[i]; TfLiteOpaqueNode* node = nullptr; TfLiteOperator* registration = nullptr; status = TfLiteOpaqueContextGetNodeAndRegistration( current_context, node_index, &node, &registration); if (status != kTfLiteOk) { return status; } TfLiteBuiltinOperator builtin_operator = TfLiteOperatorGetBuiltInCode(registration); if (builtin_operator == kTfLiteBuiltinWhile) { void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(node); const auto* op_data = reinterpret_cast<const TfLiteWhileParams*>(builtin_data); AddCalleeSubgraphToCallerSubgraph(op_data->cond_subgraph_index, subgraph_index); ComputeCompatibleCalleeSubgraphs(opaque_context, op_data->cond_subgraph_index); AddCalleeSubgraphToCallerSubgraph(op_data->body_subgraph_index, subgraph_index); ComputeCompatibleCalleeSubgraphs(opaque_context, op_data->body_subgraph_index); } if (!IsNodeSupportedByDelegate(registration, node, current_context)) { is_compatible_subgraph = false; } } if (is_compatible_subgraph) { AddCompatibleCalleeSubgraph(subgraph_index); } status = TfLiteOpaqueContextReleaseSubgraphContext(opaque_context, subgraph_index); if (status != kTfLiteOk) { return status; } return kTfLiteOk; } TfLiteStatus SampleStableDelegate::PrepareControlFlow( TfLiteOpaqueContext* opaque_context) { constexpr int kPrimarySubgraphIndex = 0; ComputeCompatibleCalleeSubgraphs(opaque_context, kPrimarySubgraphIndex); for (const auto& [caller_subgraph_index, callee_subgraph_indices] : control_flow_subgraph_tree_) { if (callee_subgraph_indices.empty()) { continue; } bool callee_subgraphs_all_delegatable = true; for (int callee_subgraph_index : callee_subgraph_indices) { if (!IsCompatibleCalleeSubgraph(callee_subgraph_index)) { callee_subgraphs_all_delegatable = false; } } if (!callee_subgraphs_all_delegatable) { continue; } for (int callee_subgraph_index : callee_subgraph_indices) { TfLiteOpaqueContextMarkSubgraphAsDelegationSkippable( opaque_context, callee_subgraph_index); } } return kTfLiteOk; } int helpers::CalculateNumElements(const TfLiteOpaqueTensor* opaque_tensor) { int total_num_elements = 1; for (int i = 0; i < TfLiteOpaqueTensorNumDims(opaque_tensor); ++i) { total_num_elements *= TfLiteOpaqueTensorDim(opaque_tensor, i); } return total_num_elements; } bool SampleStableDelegate::IsNodeSupportedByDelegate( const TfLiteOperator* registration_external, const TfLiteOpaqueNode* node, TfLiteOpaqueContext* context) const { TfLiteBuiltinOperator builtin_operator = TfLiteOperatorGetBuiltInCode(registration_external); void* builtin_data = TfLiteOpaqueNodeGetBuiltinData(node); switch (builtin_operator) { case kTfLiteBuiltinAdd: { TfLiteAddParams* params = reinterpret_cast<TfLiteAddParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; break; } case kTfLiteBuiltinSub: { TfLiteSubParams* params = reinterpret_cast<TfLiteSubParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; break; } case kTfLiteBuiltinMul: { TfLiteMulParams* params = reinterpret_cast<TfLiteMulParams*>(builtin_data); if (!params || params->activation != kTfLiteActNone) return false; break; } case kTfLiteBuiltinEqual: break; case kTfLiteBuiltinWhile: { TfLiteWhileParams* params = reinterpret_cast<TfLiteWhileParams*>(builtin_data); if (!params || !IsCompatibleCalleeSubgraph(params->cond_subgraph_index) || !IsCompatibleCalleeSubgraph(params->body_subgraph_index)) { return false; } break; } default: return false; } if (builtin_operator == kTfLiteBuiltinWhile) { if (TfLiteOpaqueNodeNumberOfInputs(node) != 1) return false; const TfLiteOpaqueTensor* tensor = TfLiteOpaqueNodeGetInput(context, node, 0); if (!tensor || TfLiteOpaqueTensorType(tensor) != kTfLiteFloat32) return false; } else { if (TfLiteOpaqueNodeNumberOfInputs(node) != 2) return false; const TfLiteOpaqueTensor* tensor_1 = TfLiteOpaqueNodeGetInput(context, node, 0); const TfLiteOpaqueTensor* tensor_2 = TfLiteOpaqueNodeGetInput(context, node, 1); if (!tensor_1 || TfLiteOpaqueTensorType(tensor_1) != kTfLiteFloat32) return false; if (!tensor_2 || TfLiteOpaqueTensorType(tensor_2) != kTfLiteFloat32) return false; if (TfLiteOpaqueTensorNumDims(tensor_1) != TfLiteOpaqueTensorNumDims(tensor_2)) return false; for (int i = 0; i < TfLiteOpaqueTensorNumDims(tensor_1); ++i) { if (TfLiteOpaqueTensorDim(tensor_1, i) != TfLiteOpaqueTensorDim(tensor_2, i)) { return false; } } } return true; } TfLiteStatus SampleStableDelegate::Initialize(TfLiteOpaqueContext* context) { if (!has_been_initialized_) { PrepareControlFlow(context); has_been_initialized_ = true; } return kTfLiteOk; } const char* SampleStableDelegate::Name() const { return kSampleStableDelegateName; } std::unique_ptr<SimpleOpaqueDelegateKernelInterface> SampleStableDelegate::CreateDelegateKernelInterface() { return std::make_unique<SampleStableDelegateKernel>(); } } }
#include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.h" #include <cstddef> #include <memory> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace { TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithAdd) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/add.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); const float kTensorCellValue = 3.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 3); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithSub) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile("tensorflow/lite/testdata/sub.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_0 = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor_0, nullptr); const float kTensor0CellValue = 3.f; int64_t n = tflite::NumElements(input_tensor_0); std::vector<float> input_0(n, kTensor0CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_0, input_0.data(), input_0.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor_1 = TfLiteInterpreterGetInputTensor(interpreter, 1); ASSERT_NE(input_tensor_1, nullptr); n = tflite::NumElements(input_tensor_1); const float kTensor1CellValue = 2.f; std::vector<float> input_1(n, kTensor1CellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor_1, input_1.data(), input_1.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensor0CellValue - kTensor1CellValue); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } TEST(SampleStableDelegate, StaticallyLinkedDelegateAndModelWithNestedWhile) { tflite::TfLiteOpaqueDelegateUniquePtr opaque_delegate = tflite::TfLiteOpaqueDelegateFactory::Create( std::make_unique<tflite::example::SampleStableDelegate>()); ASSERT_NE(opaque_delegate, nullptr); TfLiteModel* model = TfLiteModelCreateFromFile( "tensorflow/lite/testdata/nested_while.bin"); ASSERT_NE(model, nullptr); TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate(); ASSERT_NE(options, nullptr); TfLiteInterpreterOptionsAddDelegate(options, opaque_delegate.get()); TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options); ASSERT_NE(interpreter, nullptr); TfLiteInterpreterOptionsDelete(options); ASSERT_EQ(TfLiteInterpreterAllocateTensors(interpreter), kTfLiteOk); TfLiteTensor* input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); ASSERT_NE(input_tensor, nullptr); const float kTensorCellValue = 1.f; int64_t n = tflite::NumElements(input_tensor); std::vector<float> input(n, kTensorCellValue); ASSERT_EQ(TfLiteTensorCopyFromBuffer(input_tensor, input.data(), input.size() * sizeof(float)), kTfLiteOk); ASSERT_EQ(TfLiteInterpreterInvoke(interpreter), kTfLiteOk); const TfLiteTensor* output_tensor = TfLiteInterpreterGetOutputTensor(interpreter, 0); ASSERT_NE(output_tensor, nullptr); std::vector<float> output(n, 0); ASSERT_EQ(TfLiteTensorCopyToBuffer(output_tensor, output.data(), output.size() * sizeof(float)), kTfLiteOk); for (int i = 0; i < output.size(); ++i) { EXPECT_EQ(output[i], kTensorCellValue * 2); } TfLiteInterpreterDelete(interpreter); TfLiteModelDelete(model); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate_with_control_flow_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9e6a59cb-d456-47b0-8f26-afe5f12ed80f
cpp
tensorflow/tensorflow
lower_cluster_to_runtime_ops
tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/lower_cluster_to_runtime_ops.cc
tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/lower_cluster_to_runtime_ops_test.cc
#include <memory> #include <string> #include "absl/log/log.h" #include "absl/status/status.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Pass/PassRegistry.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/Passes.h" #include "tensorflow/compiler/jit/flags.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/runtime_passes.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/sparsecore/sparsecore_passes.h" #include "tensorflow/compiler/mlir/tensorflow/utils/attribute_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/data_dumper_logger_config.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "xla/tsl/framework/device_type.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/error_payloads.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tpu/tpu_defs.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/error_logging.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace tfrt_compiler { namespace { using mlir::LogicalResult; using mlir::OpPassManager; using mlir::PassManager; using mlir::func::FuncOp; using mlir::TF::StandardPipelineOptions; void EnablePassIRPrinting(PassManager& pm, const std::string& dump_group_name, llvm::StringRef module_name) { pm.getContext()->disableMultithreading(); pm.enableIRPrinting(std::make_unique<::tensorflow::DataDumperLoggerConfig>( [module_name, dump_group_name](const std::string& pass_tag_name, mlir::Operation* op) { return DEBUG_DATA_DUMPER()->GetDumpFilename( module_name.str(), dump_group_name, pass_tag_name); }, "", true)); pm.enableTiming(); } } void AddTPULowerClusterToRuntimeOpsPassPipeline(OpPassManager& pm, llvm::StringRef module_name) { pm.addPass(mlir::TFTPU::CreateTPURewritePass(module_name)); pm.addPass(mlir::createSymbolDCEPass()); pm.addNestedPass<FuncOp>( mlir::TFDevice::CreateReplicateInvariantOpHoistingPass()); pm.addNestedPass<FuncOp>(mlir::TFDevice::CreateEmbeddingProgramKeyPass()); pm.addPass(mlir::TFTPU::CreateTPUMergeVariablesWithExecutePass()); pm.addNestedPass<FuncOp>( mlir::TFTPU::CreateExtractTPUCopyWithDynamicShapeOpPass()); pm.addNestedPass<FuncOp>( mlir::TFTPU::CreateTPUColocateCompositeResourceOps()); if (tensorflow::GetMlirCommonFlags() ->tf_mlir_enable_tpu_variable_runtime_reformatting_pass) { pm.addPass(mlir::TFTPU::CreateTPUVariableRuntimeReformattingPass()); } } void AddNonTPULowerClusterToRuntimeOpsPassPipeline( OpPassManager& pm, llvm::StringRef module_name) { pm.addPass(mlir::TFDevice::CreateXlaRewritePass()); pm.addNestedPass<FuncOp>(mlir::createCanonicalizerPass()); pm.addNestedPass<FuncOp>(mlir::createCSEPass()); pm.addPass(mlir::createSymbolDCEPass()); } void CreateTPULowerClusterToRuntimeOpsPassPipeline( OpPassManager& pm, const StandardPipelineOptions& options) { AddTPULowerClusterToRuntimeOpsPassPipeline(pm, ""); } void CreateNonTPULowerClusterToRuntimeOpsPassPipeline( OpPassManager& pm, const StandardPipelineOptions& options) { AddNonTPULowerClusterToRuntimeOpsPassPipeline(pm, ""); } tensorflow::Status RecordIfErrorStatus(const std::string error_prefix, std::string bridge_type, tsl::DeviceType device_type, absl::Status status) { if (status.ok()) { return status; } VLOG(2) << error_prefix << " " << status; tensorflow::metrics::UpdateTfMlirBridgeFirstPhaseCounter( bridge_type, mlir::TF::kMlirPh1BridgeCounterV2, device_type.type_string(), false, "failure"); std::string bridge_subcomponent = "TFXLA_PHASE_ONE_MLIR_TPU_BRIDGE"; tsl::OkOrSetErrorCounterPayload( tensorflow::core::platform::ErrorSourceProto::MLIR_BRIDGE_PHASE_1, status); if (device_type != DeviceType(DEVICE_TPU_XLA_JIT)) { bridge_subcomponent = "TFXLA_PHASE_ONE_MLIR_CPU/GPU_BRIDGE"; } tsl::error_logging::Log(mlir::TF::kBridgeComponent, bridge_subcomponent, status.ToString()) .IgnoreError(); return status; } absl::Status RunLowerClusterToRuntimeOpsPassPipeline( mlir::ModuleOp module, tsl::DeviceType xla_device_type, llvm::StringRef module_name) { PassManager runtime_lowering(module.getContext()); ::tensorflow::applyTensorflowAndCLOptions(runtime_lowering); if (xla_device_type == DeviceType(DEVICE_TPU_XLA_JIT)) { AddTPULowerClusterToRuntimeOpsPassPipeline(runtime_lowering, module_name); } else { AddNonTPULowerClusterToRuntimeOpsPassPipeline(runtime_lowering, module_name); } mlir::StatusScopedDiagnosticHandler diag_handler( module.getContext(), false, !VLOG_IS_ON(1)); if (VLOG_IS_ON(1) || DEBUG_DATA_DUMPER()->ShouldDump(module_name.str(), kDebugGroupMain)) { ::tensorflow::DumpMlirOpToFile( DEBUG_DATA_DUMPER()->GetDumpFilename(module_name.str(), kDebugGroupMain, "runtime_lowering_before"), module, llvm::StringRef(), &runtime_lowering); } if (VLOG_IS_ON(2) || DEBUG_DATA_DUMPER()->ShouldDump( module_name.str(), kDebugGroupRuntimeLowering)) { EnablePassIRPrinting(runtime_lowering, kDebugGroupRuntimeLowering, module_name); } LogicalResult result = runtime_lowering.run(module); (void)result; if (VLOG_IS_ON(1) || DEBUG_DATA_DUMPER()->ShouldDump(module_name.str(), kDebugGroupMain)) { ::tensorflow::DumpMlirOpToFile( DEBUG_DATA_DUMPER()->GetDumpFilename(module_name.str(), kDebugGroupMain, "runtime_lowering_after"), module, llvm::StringRef(), &runtime_lowering); } std::string bridge_type = xla_device_type == DeviceType(DEVICE_TPU_XLA_JIT) ? mlir::TF::kMlirPh1BridgeCounterReplicated : mlir::TF::kMlirPh1BridgeCounterNonReplicated; auto result_status = diag_handler.ConsumeStatus(); TF_RETURN_IF_ERROR( RecordIfErrorStatus("lower_cluster_to_runtime", bridge_type, xla_device_type, result_status)); return absl::OkStatus(); } void RegisterTPULowerClusterToRuntimeOpsPassPipeline() { static mlir::PassPipelineRegistration<StandardPipelineOptions> pipeline( "tfrt-lower-cluster-to-runtime-ops-tpu", "Run all the passes involved after the clustering transformations from " "the TF2XLA Bridge. Takes as input a Module with tf_device.cluster ops " "and outputs TFRT runtime ops such as TPUCompile. This pipeline is for " "TPU.", CreateTPULowerClusterToRuntimeOpsPassPipeline); } void RegisterNonTPULowerClusterToRuntimeOpsPassPipeline() { static mlir::PassPipelineRegistration<StandardPipelineOptions> pipeline( "tfrt-lower-cluster-to-runtime-ops-non-tpu", "Run all the passes involved after the clustering transformations from " "the TF2XLA Bridge. Takes as input a Module with tf_device.cluster ops " "and outputs TFRT runtime ops such as XlaLaunch. This is for CPU/GPU", CreateNonTPULowerClusterToRuntimeOpsPassPipeline); } } }
#include "tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/lower_cluster_to_runtime_ops.h" #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Visitors.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/compiler/mlir/tensorflow/utils/attribute_utils.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/tsl/framework/device_type.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tpu/tpu_defs.h" #include "tensorflow/core/util/debug_data_dumper.h" namespace tensorflow { namespace tfrt_compiler { namespace { using mlir::DialectRegistry; using mlir::MLIRContext; using mlir::ModuleOp; using mlir::OwningOpRef; using mlir::func::FuncOp; using ::tensorflow::monitoring::testing::CellReader; using tsl::DeviceType; std::string TestDataPath() { return tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/testdata/"); } static constexpr char kCompilationStreamz[] = "/tensorflow/core/tf_mlir_bridge_first_phase_v2_count"; class LowerClusterToRuntimeOpsTest : public ::testing::Test { public: LowerClusterToRuntimeOpsTest() { mlir::RegisterCommonToolingDialects(registry_); context_.appendDialectRegistry(registry_); context_.loadAllAvailableDialects(); env_ = Env::Default(); test_group_name_ = "TestGroup"; test_dir_ = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", test_dir_.c_str(), 1); } absl::Status CreateMlirModule(std::string mlir_module_filename) { std::string mlir_module_path = TestDataPath() + mlir_module_filename; mlir_module_ = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context_); if (!mlir_module_) { return absl::Status( absl::StatusCode::kNotFound, absl::StrCat("Could not find MLIR module at ", mlir_module_path)); } return absl::OkStatus(); } DialectRegistry registry_; MLIRContext context_; OwningOpRef<mlir::ModuleOp> mlir_module_; Env* env_; std::string test_dir_; std::string test_group_name_; }; TEST_F(LowerClusterToRuntimeOpsTest, SanityCheck) { TF_ASSERT_OK(CreateMlirModule("empty_func.mlir")); TF_EXPECT_OK(RunLowerClusterToRuntimeOpsPassPipeline( *mlir_module_, DeviceType(DEVICE_TPU_XLA_JIT))); } TEST_F(LowerClusterToRuntimeOpsTest, LowersClusterOpsTPU) { TF_ASSERT_OK(CreateMlirModule("basic_cluster.mlir")); TF_EXPECT_OK(RunLowerClusterToRuntimeOpsPassPipeline( *mlir_module_, DeviceType(DEVICE_TPU_XLA_JIT))); FuncOp main = mlir_module_->lookupSymbol<FuncOp>("main"); ASSERT_TRUE(main); bool has_cluster_op = false; main.walk([&](mlir::tf_device::ClusterOp) { has_cluster_op = true; return mlir::WalkResult::interrupt(); }); EXPECT_FALSE(has_cluster_op); } TEST_F(LowerClusterToRuntimeOpsTest, LowersClusterOpsCPU) { TF_ASSERT_OK(CreateMlirModule("basic_cluster.mlir")); TF_EXPECT_OK(RunLowerClusterToRuntimeOpsPassPipeline( *mlir_module_, DeviceType(DEVICE_CPU_XLA_JIT))); FuncOp main = mlir_module_->lookupSymbol<FuncOp>("main"); ASSERT_TRUE(main); bool has_cluster_op = false; main.walk([&](mlir::tf_device::ClusterOp) { has_cluster_op = true; return mlir::WalkResult::interrupt(); }); EXPECT_FALSE(has_cluster_op); } TEST_F(LowerClusterToRuntimeOpsTest, LowersClusterOpsGPU) { TF_ASSERT_OK(CreateMlirModule("basic_cluster.mlir")); TF_EXPECT_OK(RunLowerClusterToRuntimeOpsPassPipeline( *mlir_module_, DeviceType(DEVICE_GPU_XLA_JIT))); FuncOp main = mlir_module_->lookupSymbol<FuncOp>("main"); ASSERT_TRUE(main); bool has_cluster_op = false; main.walk([&](mlir::tf_device::ClusterOp) { has_cluster_op = true; return mlir::WalkResult::interrupt(); }); EXPECT_FALSE(has_cluster_op); } TEST_F(LowerClusterToRuntimeOpsTest, ErrorsWithBadCluster) { CellReader<int64_t> compilation_status(kCompilationStreamz); TF_ASSERT_OK(CreateMlirModule("malformed_cluster.mlir")); EXPECT_FALSE(RunLowerClusterToRuntimeOpsPassPipeline( *mlir_module_, DeviceType(DEVICE_TPU_XLA_JIT)) .ok()); EXPECT_EQ( compilation_status.Delta(mlir::TF::kMlirPh1BridgeCounterReplicated, mlir::TF::kMlirPh1BridgeCounterV2, "XLA_TPU_JIT", "fallback_disabled", "failure"), 1); } TEST_F(LowerClusterToRuntimeOpsTest, DumpsPipelinePasses) { std::vector<std::string> files; TF_ASSERT_OK(env_->GetChildren(test_dir_, &files)); EXPECT_THAT(files, ::testing::IsEmpty()); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); setenv("TF_DUMP_GRAPH_GROUPS", "main,runtime_lowering", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); TF_ASSERT_OK(CreateMlirModule("basic_cluster.mlir")); TF_EXPECT_OK(RunLowerClusterToRuntimeOpsPassPipeline( *mlir_module_, DeviceType(DEVICE_TPU_XLA_JIT))); TF_ASSERT_OK(env_->GetChildren(test_dir_, &files)); EXPECT_THAT(files, ::testing::SizeIs(15)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/lower_cluster_to_runtime_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/lower_cluster_to_runtime_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f20f0ac8-614d-4be5-a30f-2b86a1eedae3
cpp
tensorflow/tensorflow
snapshot_chunk_provider
tensorflow/core/data/service/snapshot/snapshot_chunk_provider.cc
tensorflow/core/data/service/snapshot/snapshot_chunk_provider_test.cc
#include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <cstdint> #include <functional> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/tstring.h" namespace tensorflow { namespace data { namespace { constexpr char kChunksRead[] = "chunks_read"; constexpr absl::string_view kSetElementDelimiter = ","; Tensor ConvertToTensor(absl::string_view s) { Tensor tensor(DT_STRING, TensorShape({})); tensor.scalar<tsl::tstring>()() = tsl::tstring(s); return tensor; } std::string AbsPath(absl::string_view snapshot_path, absl::string_view chunk) { return tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk); } void Backoff(int num_retries, tsl::Env* env) { if (num_retries >= 1) { absl::Duration retry_backoff = tsl::ComputeRetryBackoff(num_retries - 1); env->SleepForMicroseconds(absl::ToInt64Microseconds(retry_backoff)); } } } SnapshotChunkProvider::SnapshotChunkProvider(absl::string_view snapshot_path, tsl::Env* env) : snapshot_path_(snapshot_path), env_(env) {} absl::Status SnapshotChunkProvider::GetNext(Tensor* split, bool* end_of_splits) ABSL_LOCKS_EXCLUDED(mu_) { for (int num_retries = 0;; ++num_retries) { Backoff(num_retries, env_); absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR(snapshot_state_.status); if (!chunks_unread_.empty()) { std::string next_chunk = *chunks_unread_.begin(); chunks_read_.insert(next_chunk); chunks_unread_.erase(next_chunk); *split = ConvertToTensor(AbsPath(snapshot_path_, next_chunk)); *end_of_splits = false; return absl::OkStatus(); } if (snapshot_state_.snapshot_is_done) { *end_of_splits = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(UpdateSnapshot()); } } absl::Status SnapshotChunkProvider::UpdateSnapshot() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { TF_ASSIGN_OR_RETURN(snapshot_state_, GetSnapshotState()); TF_RETURN_IF_ERROR(snapshot_state_.status); TF_ASSIGN_OR_RETURN(std::vector<std::string> chunks, GetAvailableChunks()); for (const std::string& chunk : chunks) { if (!chunks_read_.contains(chunk)) { chunks_unread_.insert(std::string(chunk)); } } return absl::OkStatus(); } absl::StatusOr<SnapshotChunkProvider::SnapshotState> SnapshotChunkProvider::GetSnapshotState() { std::string error_file_path = SnapshotErrorFilePath(snapshot_path_); if (env_->FileExists(error_file_path).ok()) { StatusProto status_proto; TF_RETURN_IF_ERROR(ReadTextProto(env_, error_file_path, &status_proto)); absl::Status status = tsl::StatusFromProto(status_proto); if (status.ok()) { return absl::InternalError(absl::StrCat( "Unexpected snapshot ERROR file contains an OK status at ", error_file_path, ".")); } return SnapshotState(status); } return SnapshotState( env_->FileExists(SnapshotDoneFilePath(snapshot_path_)).ok()); } absl::StatusOr<std::vector<std::string>> SnapshotChunkProvider::GetAvailableChunks() { absl::StatusOr<std::vector<std::string>> status_or_chunks = GetChildren(CommittedChunksDirectory(snapshot_path_), env_); if (status_or_chunks.ok()) { return *std::move(status_or_chunks); } else if (absl::IsNotFound(status_or_chunks.status())) { return std::vector<std::string>{}; } return status_or_chunks.status(); } absl::Status SnapshotChunkProvider::Reset() { absl::MutexLock l(&mu_); chunks_read_.clear(); chunks_unread_.clear(); return UpdateSnapshot(); } absl::Status SnapshotChunkProvider::Save( std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) { absl::MutexLock l(&mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(full_name(kChunksRead), SetToString(chunks_read_))); return absl::OkStatus(); } absl::Status SnapshotChunkProvider::Restore( std::function<std::string(std::string)> full_name, IteratorStateReader* reader) { absl::MutexLock l(&mu_); tsl::tstring chunks_read; TF_RETURN_IF_ERROR(reader->ReadScalar(full_name(kChunksRead), &chunks_read)); chunks_read_ = SetFromString(chunks_read); return UpdateSnapshot(); } int64_t SnapshotChunkProvider::Cardinality() const { return SnapshotChunksCardinality(snapshot_path_, env_); } void SnapshotChunkProvider::Cancel() { absl::MutexLock l(&mu_); if (snapshot_state_.snapshot_is_done || !snapshot_state_.status.ok()) { return; } snapshot_state_.status = absl::CancelledError( absl::StrCat("Cancelled loading tf.data snapshot at ", snapshot_path_)); VLOG(2) << snapshot_state_.status; } std::string SnapshotChunkProvider::SetToString( const SnapshotChunkProvider::OrderedChunkSet& s) { return absl::StrJoin(s, kSetElementDelimiter); } SnapshotChunkProvider::OrderedChunkSet SnapshotChunkProvider::SetFromString( absl::string_view s) { if (s.empty()) { return {}; } std::vector<std::string> split = absl::StrSplit(s, kSetElementDelimiter); return OrderedChunkSet(split.begin(), split.end()); } bool SnapshotChunkProvider::ChunkOrder::operator()( const std::string& chunk1, const std::string& chunk2) const { absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens1 = ParseChunkFilename(chunk1); absl::StatusOr<std::tuple<int64_t, int64_t, int64_t>> tokens2 = ParseChunkFilename(chunk2); if (!tokens1.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk1 << ": " << tokens1.status(); return chunk1 < chunk2; } if (!tokens2.status().ok()) { LOG_EVERY_N_SEC(ERROR, 60) << "Failed to parse tf.data snapshot chunk file " << chunk2 << ": " << tokens2.status(); return chunk1 < chunk2; } auto [stream_index1, chunk_index1, num_records1] = *tokens1; auto [stream_index2, chunk_index2, num_records2] = *tokens2; if (chunk_index1 != chunk_index2) { return chunk_index1 < chunk_index2; } return stream_index1 < stream_index2; } } }
#include "tensorflow/core/data/service/snapshot/snapshot_chunk_provider.h" #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/tstring.h" namespace tensorflow { namespace data { namespace { using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::UnorderedElementsAreArray; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!tsl::Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::Status WriteChunk(absl::string_view snapshot_path, absl::string_view chunk_file) { return AtomicallyWriteStringToFile( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk_file), "", tsl::Env::Default()); } absl::Status SetDone(absl::string_view snapshot_path) { return AtomicallyWriteStringToFile(SnapshotDoneFilePath(snapshot_path), "", tsl::Env::Default()); } absl::Status SetStatus(absl::string_view snapshot_path, const absl::Status& status) { return AtomicallyWriteTextProto(SnapshotErrorFilePath(snapshot_path), tsl::StatusToProto(status), tsl::Env::Default()); } absl::StatusOr<std::string> GetChunk( SnapshotChunkProvider& snapshot_chunk_provider) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return absl::OutOfRangeError("No more available chunks."); } return split.unaligned_flat<tsl::tstring>().data()[0]; } absl::StatusOr<std::vector<std::string>> GetAllChunks( SnapshotChunkProvider& snapshot_chunk_provider) { std::vector<std::string> chunks; while (true) { Tensor split; bool end_of_splits = false; TF_RETURN_IF_ERROR(snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { return chunks; } chunks.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } return chunks; } std::vector<std::string> JoinPaths(absl::string_view snapshot_path, const std::vector<std::string> chunks) { std::vector<std::string> joined_chunks; for (absl::string_view chunk : chunks) { joined_chunks.push_back( tsl::io::JoinPath(CommittedChunksDirectory(snapshot_path), chunk)); } return joined_chunks; } std::string full_name(const std::string& name) { return FullName("test", name); } absl::Status SaveAndRestore(SplitProvider& split_provider) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR(split_provider.Save(full_name, &writer)); std::vector<const VariantTensorData*> variants; writer.GetData(&variants); VariantTensorDataReader reader(variants); TF_RETURN_IF_ERROR(split_provider.Restore(full_name, &reader)); return absl::OkStatus(); } TEST(SnapshotChunkProviderTest, EmptySnapshot) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(IsEmpty())); } TEST(SnapshotChunkProviderTest, SingleReader) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); absl::c_reverse(chunks); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray(JoinPaths(snapshot_path, chunks)))); } TEST(SnapshotChunkProviderTest, Cardinality) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); std::vector<std::string> chunks = {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } EXPECT_EQ(snapshot_chunk_provider.Cardinality(), kUnknownCardinality); TF_ASSERT_OK(SetDone(snapshot_path)); EXPECT_EQ(snapshot_chunk_provider.Cardinality(), 5); } TEST(SnapshotChunkProviderTest, WaitForSnapshot) { std::string snapshot_path; ASSERT_TRUE(tsl::Env::Default()->LocalTempFilename(&snapshot_path)); absl::Mutex mu; std::vector<std::string> result; std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path, &mu, &result]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::string> chunks, GetAllChunks(snapshot_chunk_provider)); absl::MutexLock l(&mu); result = std::move(chunks); })); { absl::MutexLock l(&mu); EXPECT_TRUE(result.empty()); } TF_ASSERT_OK(tsl::Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(SetDone(snapshot_path)); reader_thread.reset(); absl::MutexLock l(&mu); EXPECT_THAT(result, ElementsAreArray(JoinPaths(snapshot_path, {"chunk_0_0_0"}))); } TEST(SnapshotChunkProviderTest, ConcurrentReadWrite) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); const int num_readers = 10; absl::Mutex mu; SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::vector<std::string> result; std::vector<std::unique_ptr<tsl::Thread>> reader_threads; for (int i = 0; i < num_readers; ++i) { reader_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Reader_", i), [&snapshot_chunk_provider, &mu, &result]() { while (true) { tsl::Env::Default()->SleepForMicroseconds(25); Tensor split; bool end_of_splits = false; TF_ASSERT_OK( snapshot_chunk_provider.GetNext(&split, &end_of_splits)); if (end_of_splits) { break; } absl::MutexLock l(&mu); result.push_back(split.unaligned_flat<tsl::tstring>().data()[0]); } }))); } int num_streams = 10, num_chunks_per_stream = 50; std::vector<std::unique_ptr<tsl::Thread>> stream_threads; for (int i = 0; i < num_streams; ++i) { stream_threads.push_back(absl::WrapUnique(tsl::Env::Default()->StartThread( {}, absl::StrCat("Writer_", i), [&snapshot_path, num_chunks_per_stream, i]() { for (int j = 0; j < num_chunks_per_stream; ++j) { std::string filename = absl::StrCat("chunk_", i, "_", j, "_1"); TF_ASSERT_OK(WriteChunk(snapshot_path, filename)); tsl::Env::Default()->SleepForMicroseconds(35); } }))); } stream_threads.clear(); TF_ASSERT_OK(SetDone(snapshot_path)); reader_threads.clear(); std::vector<std::string> expected; for (int i = 0; i < num_streams; ++i) { for (int j = 0; j < num_chunks_per_stream; ++j) { expected.push_back(absl::StrCat("chunk_", i, "_", j, "_1")); } } EXPECT_THAT(result, UnorderedElementsAreArray(JoinPaths(snapshot_path, expected))); } TEST(SnapshotChunkProviderTest, SaveRestore) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::vector<std::string> chunks = {"chunk_4_4_4", "chunk_3_3_3", "chunk_2_2_2", "chunk_1_1_1", "chunk_0_0_0"}; for (absl::string_view chunk : chunks) { TF_ASSERT_OK(WriteChunk(snapshot_path, chunk)); } TF_ASSERT_OK(SetDone(snapshot_path)); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT(GetChunk(snapshot_chunk_provider), IsOkAndHolds(tsl::io::JoinPath( CommittedChunksDirectory(snapshot_path), "chunk_0_0_0"))); TF_ASSERT_OK(SaveAndRestore(snapshot_chunk_provider)); EXPECT_THAT(GetAllChunks(snapshot_chunk_provider), IsOkAndHolds(ElementsAreArray( JoinPaths(snapshot_path, {"chunk_1_1_1", "chunk_2_2_2", "chunk_3_3_3", "chunk_4_4_4"})))); } TEST(SnapshotChunkProviderTest, SnapshotError) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_path]() { SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kFailedPrecondition, "Test error.")); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); TF_ASSERT_OK( SetStatus(snapshot_path, absl::FailedPreconditionError("Test error."))); reader_thread.reset(); } TEST(SnapshotChunkProviderTest, Cancel) { TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotChunkProvider snapshot_chunk_provider(snapshot_path, tsl::Env::Default()); std::unique_ptr<tsl::Thread> reader_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( {}, "Reader", [&snapshot_chunk_provider]() { EXPECT_THAT( GetAllChunks(snapshot_chunk_provider), StatusIs(absl::StatusCode::kCancelled, HasSubstr("Cancelled loading tf.data snapshot at"))); })); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_0_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_1_0_0")); TF_ASSERT_OK(WriteChunk(snapshot_path, "chunk_2_0_0")); snapshot_chunk_provider.Cancel(); reader_thread.reset(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_chunk_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/data/service/snapshot/snapshot_chunk_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
52bb704e-dee6-462a-9567-d84486186958
cpp
tensorflow/tensorflow
graph_debug_info_builder
tensorflow/core/graph/graph_debug_info_builder.cc
tensorflow/core/graph/graph_debug_info_builder_test.cc
#include "tensorflow/core/graph/graph_debug_info_builder.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/hash/hash.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/framework/logging.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/stack_frame.h" #include "tsl/platform/path.h" namespace tensorflow { static const char* kFilenameToIgnorePrefix = "<embedded"; std::string StackFrameToString(const StackFrame& frame, int shared_prefix_length) { std::string out = absl::StrFormat( "File \"%s\", line %d, in %s", absl::StrContains(frame.file_name, kFilenameToIgnorePrefix) ? frame.file_name : frame.file_name.substr(shared_prefix_length), frame.line_number, frame.function_name); return out; } std::string ToStringHelper(absl::Span<const StackFrame> stack_frames, int shared_prefix_length) { return absl::StrJoin( stack_frames, "\n", [&](std::string* out, const StackFrame& frame) { absl::StrAppend(out, StackFrameToString(frame, shared_prefix_length)); }); } FrozenStackTrace::FrozenStackTrace(absl::Span<StackFrame const> frames, absl::Span<StackFrame const> user_frames) : frames_(frames.begin(), frames.end()), user_frames_(user_frames.begin(), user_frames.end()) { if (user_frames.empty()) { user_frames_ = frames_; } } FrozenStackTrace::FrozenStackTrace( const GraphDebugInfo::StackTrace& stack_trace, const GraphDebugInfo& debug_info) { auto push_frame = [this, &debug_info](const GraphDebugInfo::FileLineCol& frame) { int file_index = frame.file_index(); std::string file_name = (file_index >= 0 && file_index < debug_info.files_size()) ? debug_info.files(file_index) : "<UNKNOWN_FILE_NAME>"; frames_.push_back(StackFrame(file_name, frame.line(), frame.func())); }; if (!stack_trace.file_line_cols().empty()) { for (const GraphDebugInfo::FileLineCol& frame : stack_trace.file_line_cols()) { push_frame(frame); } } else { for (const uint64_t frame_id : stack_trace.frame_id()) { if (debug_info.frames_by_id().contains(frame_id)) { push_frame(debug_info.frames_by_id().at(frame_id)); } else { LOG_FIRST_N(ERROR, 5) << "No matching frame for id:" << frame_id; } } } } absl::Span<StackFrame const> FrozenStackTrace::ToFrames() const { return frames_; } std::vector<StackFrame> FrozenStackTrace::ToUncachedFrames() const { return frames_; } StackFrame FrozenStackTrace::LastUserFrame() const { return frames_.back(); } std::vector<StackFrame> FrozenStackTrace::GetUserFrames(int limit) const { std::vector<StackFrame> result; if (limit < 0 || limit > user_frames_.size()) { limit = user_frames_.size(); } result.reserve(limit); for (int i = 0; i < limit; ++i) { result.push_back(user_frames_[i]); } return result; } std::string FrozenStackTrace::ToString(const TracePrintingOptions& opts) const { int shared_prefix_length = 0; if (opts.filter_common_prefix) { std::vector<std::string> prefix_file_names; for (const StackFrame& frame : frames_) { if (!absl::StrContains(frame.file_name, kFilenameToIgnorePrefix)) { prefix_file_names.push_back(frame.file_name); } } shared_prefix_length = tsl::io::CommonPathPrefix(prefix_file_names).size(); } if (!opts.drop_internal_frames) { return ToStringHelper(frames_, shared_prefix_length); } std::vector<StackFrame> non_internal_frames; for (const StackFrame& frame : frames_) { if (!IsInternalFrameForFilename(frame.file_name)) { non_internal_frames.push_back(frame); } } return ToStringHelper(non_internal_frames, shared_prefix_length); } GraphDebugInfoBuilder::GraphDebugInfoBuilder() : debug_info_(std::make_unique<GraphDebugInfo>()) {} void GraphDebugInfoBuilder::AccumulateStackTracesMap( const StackTracesMap& stack_traces_map, absl::string_view key_suffix, const GraphDebugInfoBuilder::Options& options) { trace_to_index_.reserve(trace_to_index_.size() + stack_traces_map.size()); for (const auto& [node_name, stack_trace] : stack_traces_map) { if (stack_trace == nullptr) continue; std::string trace_key = absl::StrCat(node_name, key_suffix); AccumulateStackTrace(stack_trace, trace_key, options); } } void GraphDebugInfoBuilder::AccumulateStackTrace( std::shared_ptr<AbstractStackTrace> trace, absl::string_view traces_key, const GraphDebugInfoBuilder::Options& options) { int trace_index = 0; StackTracePointer p{trace}; auto found = trace_to_index_.find(p); if (found != trace_to_index_.end()) { trace_index = found->second; } else { trace_index = debug_info_->traces_by_id().size(); trace_to_index_[p] = trace_index; GraphDebugInfo::StackTrace& stack_trace_proto = (*debug_info_->mutable_traces_by_id())[trace_index]; if (options.user_frames) { frame_to_index_.reserve( frame_to_index_.size() + trace->GetUserFrames(options.user_frames_limit).size()); for (const auto& stack_frame : trace->GetUserFrames(options.user_frames_limit)) { AppendToStackTraceProto(stack_frame, stack_trace_proto); } } else { frame_to_index_.reserve(frame_to_index_.size() + trace->ToFrames().size()); for (const auto& stack_frame : trace->ToFrames()) { AppendToStackTraceProto(stack_frame, stack_trace_proto); } } } (*debug_info_->mutable_name_to_trace_id())[traces_key] = trace_index; } void GraphDebugInfoBuilder::AppendToStackTraceProto( const StackFrame& stack_frame, GraphDebugInfo::StackTrace& stack_trace_proto) { int frame_index = 0; auto found = frame_to_index_.find(stack_frame); if (found != frame_to_index_.end()) { frame_index = found->second; } else { frame_index = debug_info_->frames_by_id().size(); frame_to_index_[stack_frame] = frame_index; GraphDebugInfo::FileLineCol& frame = (*debug_info_->mutable_frames_by_id())[frame_index]; auto file_index = file_name_to_index_.find(stack_frame.file_name); if (file_index != file_name_to_index_.end()) { frame.set_file_index(file_index->second); } else { frame.set_file_index(new_name_index_); file_name_to_index_[stack_frame.file_name] = new_name_index_; *debug_info_->add_files() = stack_frame.file_name; new_name_index_++; } frame.set_line(stack_frame.line_number); frame.set_func(stack_frame.function_name); } stack_trace_proto.add_frame_id(frame_index); } void GraphDebugInfoBuilder::AppendGraphDebugInfo( absl::string_view prefix, const GraphDebugInfo& new_info) { for (const auto& pair : new_info.name_to_trace_id()) { auto trace = new_info.traces_by_id().at(pair.second); auto frozen = std::make_shared<FrozenStackTrace>(trace, new_info); std::string key = prefix.empty() ? pair.first : absl::StrCat(pair.first, "@", prefix); AccumulateStackTrace(frozen, key, GraphDebugInfoBuilder::Options{}); } } GraphDebugInfo GraphDebugInfoBuilder::Build() const { return *debug_info_; } absl::Status GraphDebugInfoBuilder::AppendGraphDebugInfoStr( absl::string_view prefix, absl::string_view new_info_str) { GraphDebugInfo debug_info; if (!debug_info.ParseFromArray(new_info_str.data(), new_info_str.size())) { return absl::InvalidArgumentError("Failed to parse GraphDebugInfo proto."); } AppendGraphDebugInfo(prefix, debug_info); return absl::OkStatus(); } std::string GraphDebugInfoBuilder::ToGraphDebugInfoStr() const { return Build().SerializeAsString(); } StackTracesMap LoadTracesFromDebugInfo(const GraphDebugInfo& debug_info) { StackTracesMap traces; absl::flat_hash_map<uint64_t, std::shared_ptr<AbstractStackTrace>> traces_by_id; traces_by_id.reserve(debug_info.traces_by_id_size()); for (const auto& [id, frames] : debug_info.traces_by_id()) { traces_by_id[id] = std::make_shared<FrozenStackTrace>(frames, debug_info); } traces.reserve(debug_info.name_to_trace_id_size() + debug_info.traces_size()); for (const auto& [name, trace_id] : debug_info.name_to_trace_id()) { if (!traces_by_id.contains(trace_id)) { LOG_FIRST_N(ERROR, 5) << "No matching trace for id:" << trace_id; continue; } traces[name] = traces_by_id[trace_id]; } for (const auto& [name, frames] : debug_info.traces()) { traces[name] = std::make_shared<FrozenStackTrace>(frames, debug_info); } return traces; } absl::StatusOr<StackTracesMap> LoadTracesFromDebugInfoStr( absl::string_view debug_info_str) { GraphDebugInfo debug_info; if (!debug_info.ParseFromArray(debug_info_str.data(), debug_info_str.size())) { return absl::InvalidArgumentError("Failed to parse GraphDebugInfo proto."); } return LoadTracesFromDebugInfo(debug_info); } GraphDebugInfo StackTracesMapToGraphDebugInfo(const StackTracesMap& map, bool user_frames) { GraphDebugInfoBuilder builder; GraphDebugInfoBuilder::Options options; options.user_frames = user_frames; options.user_frames_limit = -1; builder.AccumulateStackTracesMap(map, "", options); return builder.Build(); } }
#include "tensorflow/core/graph/graph_debug_info_builder.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/platform/stack_frame.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::testing::Eq; using ::testing::Ne; using ::testing::UnorderedElementsAre; class TestStackTrace : public AbstractStackTrace { public: explicit TestStackTrace(const std::vector<StackFrame> frames) : frames_(std::move(frames)) {} absl::Span<StackFrame const> ToFrames() const override { return frames_; } std::vector<StackFrame> ToUncachedFrames() const override { return frames_; } std::vector<StackFrame> GetUserFrames(int limit) const override { return frames_; } StackFrame LastUserFrame() const override { return frames_.back(); } string ToString(const TracePrintingOptions& opts) const override { auto frame = LastUserFrame(); return absl::StrCat(frame.file_name, ":", frame.line_number, ":", frame.function_name); } std::vector<StackFrame> frames_; }; TEST(GraphDebugInfoBuilderTest, AccumulateStackTrace) { auto stack_trace = std::make_shared<TestStackTrace>( std::vector<StackFrame>{{"dummy_file_alpha.cc", 20, "function_bar"}, {"dummy_file_beta.cc", 30, "function_sop"}}); GraphDebugInfoBuilder builder; builder.AccumulateStackTrace(stack_trace, "alpha_beta"); GraphDebugInfo debug_info = builder.Build(); EXPECT_THAT(debug_info.files(), UnorderedElementsAre("dummy_file_alpha.cc", "dummy_file_beta.cc")); EXPECT_THAT(debug_info.traces_by_id_size(), Eq(1)); EXPECT_THAT(debug_info.name_to_trace_id().find("alpha_beta"), Ne(debug_info.name_to_trace_id().end())); auto actual_stack_trace = debug_info.traces_by_id().at( debug_info.name_to_trace_id().at("alpha_beta")); EXPECT_THAT(actual_stack_trace.frame_id_size(), Eq(2)) << debug_info.DebugString(); } TEST(GraphDebugInfoBuilderTest, AccumulateStackTracesMap) { StackTracesMap stack_traces; stack_traces["two"] = std::make_shared<TestStackTrace>( std::vector<StackFrame>{{"dummy_file_alpha.cc", 20, "function_bar"}, {"dummy_file_beta.cc", 30, "function_sop"}}); stack_traces["scale"] = std::make_shared<TestStackTrace>(std::vector<StackFrame>{ {"dummy_file_alpha.cc", 10, "function_foo"}, {"dummy_file_beta.cc", 30, "function_sop"}, }); stack_traces["y"] = std::make_shared<TestStackTrace>(std::vector<StackFrame>{ {"dummy_file_alpha.cc", 15, "function_flex"}, {"dummy_file_alpha.cc", 20, "function_bar"}, {"dummy_file_beta.cc", 30, "function_sop"}, }); GraphDebugInfoBuilder builder; builder.AccumulateStackTracesMap(stack_traces, "@func"); GraphDebugInfo debug_info = builder.Build(); EXPECT_THAT(debug_info.files(), UnorderedElementsAre("dummy_file_alpha.cc", "dummy_file_beta.cc")); EXPECT_THAT(debug_info.name_to_trace_id_size(), Eq(3)); EXPECT_THAT(debug_info.name_to_trace_id().find("scale@func"), Ne(debug_info.name_to_trace_id().end())); auto stack_trace = debug_info.traces_by_id().at( debug_info.name_to_trace_id().at("scale@func")); EXPECT_THAT(stack_trace.frame_id_size(), Eq(2)); std::vector<GraphDebugInfo::FileLineCol> file_line_cols; for (auto& frame_id : stack_trace.frame_id()) { file_line_cols.push_back(debug_info.frames_by_id().at(frame_id)); } auto file_line_col_0 = file_line_cols[0]; auto file_line_col_1 = file_line_cols[1]; EXPECT_THAT(std::vector<int>( {file_line_col_0.file_index(), file_line_col_1.file_index()}), UnorderedElementsAre(0, 1)); EXPECT_THAT(file_line_col_0.line(), Eq(10)); EXPECT_THAT(file_line_col_0.func(), Eq("function_foo")); EXPECT_THAT(file_line_col_1.line(), Eq(30)); EXPECT_THAT(file_line_col_1.func(), Eq("function_sop")); } TEST(GraphDebugInfoBuilderTest, AppendGraphDebugInfo) { GraphDebugInfo a; { GraphDebugInfoBuilder builder; StackTracesMap stack_traces; stack_traces["two"] = std::make_shared<TestStackTrace>( std::vector<StackFrame>{{"dummy_file_alpha.cc", 20, "function_bar"}}); stack_traces["scale"] = std::make_shared<TestStackTrace>( std::vector<StackFrame>{{"dummy_file_alpha.cc", 10, "function_foo"}}); builder.AccumulateStackTracesMap(stack_traces, ""); a = builder.Build(); } GraphDebugInfo b; { GraphDebugInfoBuilder builder; StackTracesMap stack_traces; stack_traces["y"] = std::make_shared<TestStackTrace>(std::vector<StackFrame>{ {"dummy_file_alpha.cc", 15, "function_flex"}, }); builder.AccumulateStackTracesMap(stack_traces, ""); b = builder.Build(); } GraphDebugInfo c; { GraphDebugInfoBuilder builder; StackTracesMap stack_traces; stack_traces["z"] = std::make_shared<TestStackTrace>(std::vector<StackFrame>{ {"dummy_file_alpha.cc", 15, "function_flex"}, }); builder.AccumulateStackTracesMap(stack_traces, "@func3"); c = builder.Build(); } GraphDebugInfoBuilder builder; builder.AppendGraphDebugInfo("func1", a); builder.AppendGraphDebugInfo("func2", b); builder.AppendGraphDebugInfo("", c); GraphDebugInfo combined = builder.Build(); EXPECT_EQ(combined.name_to_trace_id().size(), 4); std::vector<std::string> keys{"two@func1", "scale@func1", "y@func2", "z@func3"}; for (const auto& key : keys) { EXPECT_THAT(combined.name_to_trace_id().find(key), Ne(combined.name_to_trace_id().end())); } } TEST(StackTracesMapToGraphDebugInfoTest, EmptyMap) { StackTracesMap map; GraphDebugInfo generated = StackTracesMapToGraphDebugInfo(map); EXPECT_EQ(generated.files_size(), 0); EXPECT_EQ(generated.traces_size(), 0); } TEST(StackTracesMapToGraphDebugInfoTest, EmptyFrames) { StackTracesMap map; std::vector<StackFrame> frames; auto stack_trace = std::make_shared<FrozenStackTrace>(frames); map.insert({"dummy_name", stack_trace}); GraphDebugInfo generated = StackTracesMapToGraphDebugInfo(map); EXPECT_EQ(generated.files_size(), 0); EXPECT_EQ(generated.traces_by_id_size(), 1); EXPECT_TRUE(generated.name_to_trace_id().contains("dummy_name")); } TEST(StackTracesMapToGraphDebugInfoTest, RoundTripStackTraces) { StackTracesMap map; std::vector<StackFrame> frames = { StackFrame({"dummy_file_name", 10, "dummy_function_name"}), StackFrame({"dummy_file_name", 20, "other_function_name"})}; auto stack_trace = std::make_shared<FrozenStackTrace>(frames); map.insert({"dummy_name", stack_trace}); GraphDebugInfo generated = StackTracesMapToGraphDebugInfo(map); StackTracesMap output = LoadTracesFromDebugInfo(generated); for (auto [name, trace] : output) { auto orig_trace = map[name]; EXPECT_NE(orig_trace, nullptr); EXPECT_EQ(orig_trace->ToFrames(), trace->ToFrames()); } } TEST(StackTracesTest, ToFrames) { StackTracesMap map; std::vector<StackFrame> frames = { StackFrame({"dummy_file_name", 10, "dummy_function_name"}), StackFrame({"other_file_name", 20, "other_function_name"})}; auto stack_trace = TestStackTrace(frames); EXPECT_EQ(stack_trace.ToFrames().size(), 2); auto uncached_frames = stack_trace.ToUncachedFrames(); EXPECT_EQ(uncached_frames.size(), 2); EXPECT_EQ(frames[0], uncached_frames[0]); EXPECT_EQ(frames[1], uncached_frames[1]); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/graph_debug_info_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/graph_debug_info_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
02ed9897-f442-4266-a42c-c0acb98922cf
cpp
tensorflow/tensorflow
nnapi_delegate_compatibility_checker
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.cc
tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker_test.cc
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.h" #include <cctype> #include <cstdlib> #include <functional> #include <limits> #include <memory> #include <sstream> #include <string> #include <unordered_map> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/nnapi/NeuralNetworksTypes.h" #include "tensorflow/lite/tools/delegates/compatibility/common/delegate_compatibility_checker_util.h" #include "tensorflow/lite/tools/delegates/compatibility/common/online_helper_delegate.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { namespace { void getCanonicalFeatureLevel(int runtime_feature_level, int& canonical_feature_level) { switch (runtime_feature_level) { case 1: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_1; break; case 2: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_2; break; case 3: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_3; break; case 4: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_4; break; case 5: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_5; break; case 6: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_6; break; case 7: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_7; break; case 8: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_8; break; default: canonical_feature_level = ANEURALNETWORKS_FEATURE_LEVEL_8; } } absl::Status IsValidFeatureLevelInt(const std::string& s) { if (s.size() == 1 && std::isdigit(s[0]) && s[0] > '0' && s[0] < '9') { return absl::OkStatus(); } return absl::InvalidArgumentError("Invalid runtime feature level."); } absl::Status extractRuntimeFeatureLevel( const std::unordered_map<std::string, std::string>& dcc_configs, int& runtime_feature_level) { std::string str_runtime_feature_level; if (dcc_configs.find("nnapi-runtime_feature_level") == dcc_configs.end()) { for (const auto& dcc_config : dcc_configs) { if (absl::StrContains(dcc_config.first, "nnapi")) { return absl::InvalidArgumentError( "The correct flag name is 'nnapi-runtime_feature_level"); } } str_runtime_feature_level = std::to_string(tools::kDefaultRuntimeFeatureLevel); } else { str_runtime_feature_level = dcc_configs.at("nnapi-runtime_feature_level"); RETURN_IF_ERROR(IsValidFeatureLevelInt(str_runtime_feature_level)); } runtime_feature_level = std::stoi(str_runtime_feature_level); return absl::OkStatus(); } absl::Status convertToCompatibilityFailureType( std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures, proto::OpCompatibilityResult* op_result) { for (const auto& status : map_failures) { auto compatibility_failure = op_result->add_compatibility_failures(); compatibility_failure->set_description(status.message); switch (status.type) { case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperator: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedAndroidVersion: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_VERSION); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperatorVersion: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR_VERSION); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedInputType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_INPUT_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType:: kNotRestrictedScaleCompliant: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_NOT_RESTRICTED_SCALE_COMPLIANT); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOutputType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OUTPUT_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperandSize: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_SIZE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperandValue: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_VALUE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedHybridOperator: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_HYBRID_OPERATOR); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedQuantizationType: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_QUANTIZATION_TYPE); break; case delegate::nnapi::NNAPIValidationFailureType::kMissingRequiredOperand: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_MISSING_REQUIRED_OPERAND); break; case delegate::nnapi::NNAPIValidationFailureType::kUnsupportedOperandRank: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERAND_RANK); break; case delegate::nnapi::NNAPIValidationFailureType:: kInputTensorShouldHaveConstantShape: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_INPUT_TENSOR_SHOULD_HAVE_CONSTANT_SHAPE); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedOperatorVariant: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNSUPPORTED_OPERATOR_VARIANT); break; case delegate::nnapi::NNAPIValidationFailureType::kNoActivationExpected: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_NO_ACTIVATION_EXPECTED); break; case delegate::nnapi::NNAPIValidationFailureType:: kUnsupportedQuantizationParameters: compatibility_failure->set_failure_type( proto::CompatibilityFailureType:: DCC_UNSUPPORTED_QUANTIZATION_PARAMETERS); break; default: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); compatibility_failure->set_description( "Unknown validation failure type."); } } return absl::OkStatus(); } } absl::Status tools::NnapiDelegateCompatibilityChecker::checkOpCompatibilityOnline( TfLiteContext* context, const TfLiteNode* node, const TfLiteRegistration* registration, std::unordered_map<std::string, std::string> dcc_configs, tflite::proto::OpCompatibilityResult* op_result) { std::vector<delegate::nnapi::NNAPIValidationFailure> map_failures; int runtime_feature_level; RETURN_IF_ERROR( extractRuntimeFeatureLevel(dcc_configs, runtime_feature_level)); getCanonicalFeatureLevel(runtime_feature_level, runtime_feature_level); if (NNAPIDelegateKernel::Validate( context, registration, runtime_feature_level, node, true, nullptr, &map_failures)) { op_result->set_is_supported(true); } else { RETURN_IF_ERROR(convertToCompatibilityFailureType(map_failures, op_result)); op_result->set_is_supported(false); } return absl::OkStatus(); } std::unordered_map<std::string, std::string> tools::NnapiDelegateCompatibilityChecker::getDccConfigurations() { std::unordered_map<std::string, std::string> dcc_configs; dcc_configs["nnapi-runtime_feature_level"] = std::to_string(runtime_feature_level_); return dcc_configs; } absl::Status tools::NnapiDelegateCompatibilityChecker::setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) { RETURN_IF_ERROR( extractRuntimeFeatureLevel(dcc_configs, runtime_feature_level_)); return absl::OkStatus(); } absl::Status tools::NnapiDelegateCompatibilityChecker::checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) { std::unique_ptr<tflite::Interpreter> interpreter; tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreter_builder(*model_buffer, resolver); auto dcc_configs = getDccConfigurations(); std::function<absl::Status(TfLiteContext*, const TfLiteNode*, const TfLiteRegistration*, std::unordered_map<std::string, std::string>, proto::OpCompatibilityResult*)> check_op_func_ptr = &checkOpCompatibilityOnline; OnlineHelperDelegate delegate(dcc_configs, check_op_func_ptr, result); interpreter_builder.AddDelegate(&delegate); interpreter_builder(&interpreter); return absl::OkStatus(); } absl::Status tools::NnapiDelegateCompatibilityChecker::checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) { return absl::UnimplementedError( "Offline mode is not yet supported on NNAPI delegate compatibility " "checker."); } } }
#include "tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.h" #include <cstdint> #include <limits> #include <string> #include <unordered_map> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" namespace tflite { namespace tools { #ifndef EXPECT_OK #define EXPECT_OK(x) EXPECT_TRUE(x.ok()); #endif namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; class NnapiDccTest : public ::testing::Test { protected: void SetUp() override {} void TearDown() override { compatibility_result_.Clear(); } NnapiDelegateCompatibilityChecker nnapi_dcc_; proto::CompatibilityResult compatibility_result_; }; } TEST_F(NnapiDccTest, ValidRuntimeFeatureLevel) { std::unordered_map dcc_configs = nnapi_dcc_.getDccConfigurations(); EXPECT_EQ(dcc_configs["nnapi-runtime_feature_level"], "8"); EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs["nnapi-runtime_feature_level"] = "1"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs["nnapi-runtime_feature_level"] = "8"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); dcc_configs.clear(); EXPECT_OK(nnapi_dcc_.setDccConfigurations(dcc_configs)); EXPECT_EQ(nnapi_dcc_.getDccConfigurations()["nnapi-runtime_feature_level"], "8"); } TEST_F(NnapiDccTest, InvalidRuntimeFeatureLevel) { std::unordered_map dcc_configs = nnapi_dcc_.getDccConfigurations(); dcc_configs["nnapi-runtime_feature_level"] = "03"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "a"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "28123497123489123841212344516"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "30.0"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "-30"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs["nnapi-runtime_feature_level"] = "9"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); dcc_configs.clear(); dcc_configs["nnapi-runtim_feature_level"] = "8"; EXPECT_EQ(nnapi_dcc_.setDccConfigurations(dcc_configs).code(), absl::StatusCode::kInvalidArgument); } TEST_F(NnapiDccTest, CompatibleModelOnlineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); auto model = fb_model->GetModel(); EXPECT_EQ(model->subgraphs()->size(), 1); EXPECT_EQ(model->subgraphs()->Get(0)->operators()->size(), 2); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_TRUE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 2); } TEST_F(NnapiDccTest, IncompatibleModelOperation) { AddOpModel add_op_model( {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_RELU_N1_TO_1); auto fb_model = tflite::FlatBufferModel::BuildFromModel( tflite::GetModel(add_op_model.GetModelBuffer())); ASSERT_TRUE(fb_model); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 1); } TEST_F(NnapiDccTest, IncompatibleModelFeatureLevel) { AddOpModel add_op_model({TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}}, ActivationFunctionType_NONE); auto fb_model = tflite::FlatBufferModel::BuildFromModel( tflite::GetModel(add_op_model.GetModelBuffer())); ASSERT_TRUE(fb_model); auto nnapi_configs = nnapi_dcc_.getDccConfigurations(); nnapi_configs["nnapi-runtime_feature_level"] = "2"; EXPECT_OK(nnapi_dcc_.setDccConfigurations(nnapi_configs)); EXPECT_OK(nnapi_dcc_.checkModelCompatibilityOnline(fb_model.get(), &compatibility_result_)); for (auto op_compatibility_result : compatibility_result_.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result_.compatibility_results_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/nnapi/nnapi_delegate_compatibility_checker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4d5bf531-0d43-45fa-a7f4-cfa7237f717c
cpp
tensorflow/tensorflow
remove_nodes
tensorflow/tools/graph_transforms/remove_nodes.cc
tensorflow/tools/graph_transforms/remove_nodes_test.cc
#include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/fold_constants_lib.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status RemoveNodes(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { if (!context.params.count("op")) { return errors::InvalidArgument( "remove_nodes expects at least one 'op'" "argument, e.g. remove_nodes(op=Identity)"); } int32_t max_inputs; TF_RETURN_IF_ERROR( context.GetOneInt32Parameter("max_inputs", 1, &max_inputs)); std::set<string> required_nodes; for (const string& input : context.input_names) { required_nodes.insert(NodeNameFromInput(input)); } for (const string& output : context.output_names) { required_nodes.insert(NodeNameFromInput(output)); } std::vector<string> ops_to_remove = context.params.at("op"); GraphDef current_graph_def = input_graph_def; for (const string& op : ops_to_remove) { for (int num_inputs = 1; num_inputs <= max_inputs; ++num_inputs) { OpTypePattern pattern = {op}; pattern.inputs.resize(num_inputs); for (int i = 0; i < num_inputs; ++i) { pattern.inputs[i] = {"*"}; } bool any_nodes_removed; do { any_nodes_removed = false; std::map<string, string> inputs_to_rename; GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( current_graph_def, pattern, [&inputs_to_rename, &required_nodes, &any_nodes_removed]( const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& replace_node = match.node; if (required_nodes.count(replace_node.name())) { LOG(INFO) << "Skipping replacement for " << replace_node.name(); CopyOriginalMatch(match, new_nodes); return OkStatus(); } const NodeDef& input_node = match.inputs[0].node; string target_name = input_node.name(); for (const string& input : replace_node.input()) { if (!input.compare(0, target_name.size(), target_name)) { if (input.size() == target_name.size() || input[target_name.size()] == ':') { target_name = input; break; } } } inputs_to_rename[replace_node.name()] = target_name; inputs_to_rename["^" + replace_node.name()] = "^" + input_node.name(); new_nodes->push_back(input_node); any_nodes_removed = true; return OkStatus(); }, {true}, &replaced_graph_def)); TF_RETURN_IF_ERROR( RenameNodeInputs(replaced_graph_def, inputs_to_rename, std::unordered_set<string>(), &current_graph_def)); } while (any_nodes_removed); } } *output_graph_def = current_graph_def; return OkStatus(); } REGISTER_GRAPH_TRANSFORM("remove_nodes", RemoveNodes); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status RemoveNodes(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class RemoveNodesTest : public ::testing::Test { protected: void TestRemoveNodes() { GraphDef graph_def; NodeDef* add_node1 = graph_def.add_node(); add_node1->set_name("add_node1"); add_node1->set_op("Add"); add_node1->add_input("add_node2"); add_node1->add_input("add_node3"); NodeDef* add_node2 = graph_def.add_node(); add_node2->set_name("add_node2"); add_node2->set_op("Add"); add_node2->add_input("identity_node1"); add_node2->add_input("identity_node2"); NodeDef* add_node3 = graph_def.add_node(); add_node3->set_name("add_node3"); add_node3->set_op("Add"); add_node3->add_input("identity_node1"); add_node3->add_input("const_node3"); NodeDef* identity_node1 = graph_def.add_node(); identity_node1->set_name("identity_node1"); identity_node1->set_op("Identity"); identity_node1->add_input("const_node1"); NodeDef* identity_node2 = graph_def.add_node(); identity_node2->set_name("identity_node2"); identity_node2->set_op("Identity"); identity_node2->add_input("const_node2"); NodeDef* identity_node3 = graph_def.add_node(); identity_node3->set_name("identity_node3"); identity_node3->set_op("Identity"); identity_node3->add_input("const_node3"); NodeDef* const_node1 = graph_def.add_node(); const_node1->set_name("const_node1"); const_node1->set_op("Const"); NodeDef* const_node2 = graph_def.add_node(); const_node2->set_name("const_node2"); const_node2->set_op("Const"); NodeDef* const_node3 = graph_def.add_node(); const_node3->set_name("const_node3"); const_node3->set_op("Const"); NodeDef* add_node4 = graph_def.add_node(); add_node4->set_name("add_node4"); add_node4->set_op("Add"); add_node4->add_input("add_node2"); add_node4->add_input("add_node3"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"add_node1"}; context.params.insert( std::pair<string, std::vector<string>>({"op", {string("Identity")}})); TF_ASSERT_OK(RemoveNodes(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ(1, node_lookup.count("add_node1")); EXPECT_EQ("add_node2", node_lookup.at("add_node1")->input(0)); EXPECT_EQ("add_node3", node_lookup.at("add_node1")->input(1)); EXPECT_EQ(1, node_lookup.count("add_node2")); EXPECT_EQ("const_node1", node_lookup.at("add_node2")->input(0)); EXPECT_EQ("const_node2", node_lookup.at("add_node2")->input(1)); EXPECT_EQ(1, node_lookup.count("add_node3")); EXPECT_EQ("const_node1", node_lookup.at("add_node3")->input(0)); EXPECT_EQ("const_node3", node_lookup.at("add_node3")->input(1)); EXPECT_EQ(1, node_lookup.count("add_node4")); EXPECT_EQ("add_node2", node_lookup.at("add_node4")->input(0)); EXPECT_EQ("add_node3", node_lookup.at("add_node4")->input(1)); EXPECT_EQ(0, node_lookup.count("identity_node1")); EXPECT_EQ(0, node_lookup.count("identity_node2")); EXPECT_EQ(0, node_lookup.count("identity_node3")); EXPECT_EQ(1, node_lookup.count("const_node1")); EXPECT_EQ("Const", node_lookup.at("const_node1")->op()); EXPECT_EQ(1, node_lookup.count("const_node2")); EXPECT_EQ("Const", node_lookup.at("const_node2")->op()); EXPECT_EQ(1, node_lookup.count("const_node3")); EXPECT_EQ("Const", node_lookup.at("const_node3")->op()); } void TestRemoveOutputNodes() { GraphDef graph_def; NodeDef* const_node1 = graph_def.add_node(); const_node1->set_name("const_node1"); const_node1->set_op("Const"); NodeDef* const_node2 = graph_def.add_node(); const_node2->set_name("const_node2"); const_node2->set_op("Const"); NodeDef* add_node = graph_def.add_node(); add_node->set_name("add_node"); add_node->set_op("Add"); add_node->add_input("const_node1"); add_node->add_input("const_node2"); NodeDef* identity_node = graph_def.add_node(); identity_node->set_name("identity_node"); identity_node->set_op("Identity"); identity_node->add_input("add_node"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"identity_node"}; context.params.insert( std::pair<string, std::vector<string>>({"op", {string("Identity")}})); TF_ASSERT_OK(RemoveNodes(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ(1, node_lookup.count("add_node")); EXPECT_EQ("const_node1", node_lookup.at("add_node")->input(0)); EXPECT_EQ("const_node2", node_lookup.at("add_node")->input(1)); EXPECT_EQ(1, node_lookup.count("identity_node")); EXPECT_EQ("add_node", node_lookup.at("identity_node")->input(0)); } void TestRemoveChainedNodes() { GraphDef graph_def; NodeDef* const_node1 = graph_def.add_node(); const_node1->set_name("const_node1"); const_node1->set_op("Const"); NodeDef* identity_node1 = graph_def.add_node(); identity_node1->set_name("identity_node1"); identity_node1->set_op("Identity"); identity_node1->add_input("const_node1"); NodeDef* identity_node2 = graph_def.add_node(); identity_node2->set_name("identity_node2"); identity_node2->set_op("Identity"); identity_node2->add_input("identity_node1"); NodeDef* identity_node3 = graph_def.add_node(); identity_node3->set_name("identity_node3"); identity_node3->set_op("Identity"); identity_node3->add_input("identity_node2"); NodeDef* const_node2 = graph_def.add_node(); const_node2->set_name("const_node2"); const_node2->set_op("Const"); NodeDef* add_node = graph_def.add_node(); add_node->set_name("add_node"); add_node->set_op("Add"); add_node->add_input("identity_node3"); add_node->add_input("const_node2"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"identity_node"}; context.params.insert( std::pair<string, std::vector<string>>({"op", {string("Identity")}})); TF_ASSERT_OK(RemoveNodes(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ(1, node_lookup.count("add_node")); EXPECT_EQ("const_node1", node_lookup.at("add_node")->input(0)); EXPECT_EQ("const_node2", node_lookup.at("add_node")->input(1)); EXPECT_EQ(0, node_lookup.count("identity_node1")); EXPECT_EQ(0, node_lookup.count("identity_node2")); EXPECT_EQ(0, node_lookup.count("identity_node3")); } void TestRemoveMultipleInputs() { GraphDef graph_def; NodeDef* const_node1 = graph_def.add_node(); const_node1->set_name("const_node1"); const_node1->set_op("Const"); NodeDef* const_node2 = graph_def.add_node(); const_node2->set_name("const_node2"); const_node2->set_op("Const"); NodeDef* const_node3 = graph_def.add_node(); const_node3->set_name("const_node3"); const_node3->set_op("Const"); NodeDef* const_node4 = graph_def.add_node(); const_node4->set_name("const_node4"); const_node4->set_op("Const"); NodeDef* fake_quant_node = graph_def.add_node(); fake_quant_node->set_name("fake_quant_node"); fake_quant_node->set_op("FakeQuantWithMinMaxVars"); fake_quant_node->add_input("const_node1"); fake_quant_node->add_input("const_node2"); fake_quant_node->add_input("const_node3"); NodeDef* add_node = graph_def.add_node(); add_node->set_name("add_node"); add_node->set_op("Add"); add_node->add_input("fake_quant_node"); add_node->add_input("const_node4"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"add_node"}; context.params.insert(std::pair<string, std::vector<string>>( {"op", {string("FakeQuantWithMinMaxVars")}})); context.params.insert( std::pair<string, std::vector<string>>({"max_inputs", {string("3")}})); TF_ASSERT_OK(RemoveNodes(graph_def, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); ASSERT_EQ(1, node_lookup.count("const_node1")); ASSERT_EQ(1, node_lookup.count("const_node4")); ASSERT_EQ(0, node_lookup.count("fake_quant_node")); ASSERT_EQ(1, node_lookup.count("add_node")); EXPECT_EQ("const_node1", node_lookup.at("add_node")->input(0)); EXPECT_EQ("const_node4", node_lookup.at("add_node")->input(1)); } }; TEST_F(RemoveNodesTest, TestRemoveNodes) { TestRemoveNodes(); } TEST_F(RemoveNodesTest, TestRemoveOutputNodes) { TestRemoveOutputNodes(); } TEST_F(RemoveNodesTest, TestRemoveChainedNodes) { TestRemoveChainedNodes(); } TEST_F(RemoveNodesTest, TestRemoveMultipleInputs) { TestRemoveMultipleInputs(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/remove_nodes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/remove_nodes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
aa86dfbf-cb18-4df6-841b-8d5d3aa12dbf
cpp
tensorflow/tensorflow
tf2xla_rewriter
tensorflow/compiler/mlir/tf2xla/transforms/tf2xla_rewriter.cc
tensorflow/compiler/mlir/tf2xla/transforms/tf2xla_rewriter_test.cc
#include "tensorflow/compiler/mlir/tf2xla/transforms/tf2xla_rewriter.h" #include <cstdint> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/memory/memory.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/IRMapping.h" #include "mlir/IR/Location.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/op_or_arg_name_mapper.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tpu_embedding_ops_registry.h" #include "tensorflow/compiler/mlir/tensorflow/translate/export_tf_dialect_op.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tensorflow/utils/translate_utils.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/passes.h" #include "tensorflow/compiler/tf2xla/xla_compilation_device.h" #include "tensorflow/compiler/tf2xla/xla_context.h" #include "tensorflow/compiler/tf2xla/xla_expression.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/translate/hlo_to_mhlo/hlo_function_importer.h" #include "xla/hlo/translate/hlo_to_mhlo/hlo_to_mlir_hlo.h" #include "xla/hlo/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/service/hlo.pb.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace mlir { namespace mhlo { namespace { using ::mlir::ModuleOp; using ::tensorflow::Tensor; using ::tsl::StatusOr; using ::xla::XlaComputation; class OpOrArgLocNameMapperWithoutInvalidCharacters : public tensorflow::OpOrArgLocNameMapper { public: OpOrArgLocNameMapperWithoutInvalidCharacters() = default; ~OpOrArgLocNameMapperWithoutInvalidCharacters() override = default; protected: std::string GetName(tensorflow::OpOrVal op_or_val) override { std::string name = OpOrArgLocNameMapper::GetName(op_or_val); return absl::StrReplaceAll(name, {{";", "."}}); } }; static std::unique_ptr<tensorflow::StaticDeviceMgr> CreateDeviceMgr( const std::string& device_type) { tensorflow::XlaOpRegistry::RegisterCompilationKernels(); auto device = std::make_unique<tensorflow::XlaCompilationDevice>( tensorflow::SessionOptions(), tensorflow::DeviceType(device_type)); return std::make_unique<tensorflow::StaticDeviceMgr>(std::move(device)); } bool RootInstructionIsTuple(const xla::HloModule& hlo_module) { xla::HloInstruction* root_instruction = hlo_module.entry_computation()->root_instruction(); return root_instruction->opcode() == xla::HloOpcode::kTuple; } }; LogicalResult Tf2XlaRewriter::RewriteOp(Operation* op, PatternRewriter& rewriter, const std::string& device_type) { Tf2XlaRewriter tf2xla_rewriter(op, rewriter, device_type); return tf2xla_rewriter.LegalizeOp(); } Tf2XlaRewriter::Tf2XlaRewriter(Operation* op, PatternRewriter& rewriter, const std::string& device_type) : op_(op), device_type_(device_type), rewriter_(rewriter), name_mapper_( std::make_unique<OpOrArgLocNameMapperWithoutInvalidCharacters>()), context_(nullptr), xla_builder_(op_->getName().getStringRef().str()) {} Tf2XlaRewriter::~Tf2XlaRewriter() { if (context_) context_->Unref(); } absl::StatusOr<mhlo::TupleOp> Tf2XlaRewriter::ImportXlaComputation( XlaComputation& computation) { xla::DebugOptions debug_options; TF_ASSIGN_OR_RETURN(auto hlo_module_config, xla::HloModule::CreateModuleConfigFromProto( computation.proto(), debug_options)); TF_ASSIGN_OR_RETURN( std::unique_ptr<xla::HloModule> hlo_module, xla::HloModule::CreateFromProto(computation.proto(), hlo_module_config)); if (!RootInstructionIsTuple(*hlo_module)) { return tsl::errors::InvalidArgument("Imported XLA Root is not a tuple op"); } if (op_->getNumOperands() != hlo_module->entry_computation()->num_parameters()) { return tsl::errors::InvalidArgument( "Entry computation does not have equal number of parameters to op " "operands"); } ModuleOp mlir_module = op_->getParentOfType<ModuleOp>(); mlir::OpBuilder builder(op_); mlir::SymbolTable symbol_table(mlir_module); llvm::SmallVector<mlir::Value> arguments; for (int i = 0; i < op_->getNumOperands(); i++) { arguments.push_back(op_->getOperand(i)); } TF_ASSIGN_OR_RETURN( mlir::Value root_value, xla::HloFunctionImporter::ImportInstructions( *hlo_module->entry_computation(), arguments, symbol_table, &builder)); mhlo::TupleOp root_tuple = mlir::dyn_cast_or_null<mhlo::TupleOp>(root_value.getDefiningOp()); if (!root_tuple) { return tsl::errors::InvalidArgument( "Imported XLA Root Value is not a tuple op"); } return root_tuple; } LogicalResult Tf2XlaRewriter::PrepareParams() { context_ = new tensorflow::XlaContext(nullptr, &xla_builder_, nullptr); context_->Ref(); device_mgr_ = CreateDeviceMgr(device_type_); if (!device_mgr_) return failure(); device_ = device_mgr_->ListDevices().front(); params_.device = device_; params_.resource_manager = device_->resource_manager(); auto cleanup = [](const std::string& name) {}; step_container_ = std::make_unique<tensorflow::ScopedStepContainer>( 0, cleanup); absl::Status status = step_container_->Create( device_->resource_manager(), tensorflow::XlaContext::kXlaContextResourceName, context_); if (!status.ok()) { return emitRemark(op_->getLoc()) << "failed to create XlaContext resource: " << status.ToString(); } params_.step_container = step_container_.get(); absl::StatusOr<int64_t> version_or = tensorflow::GetTfGraphProducerVersion( op_->getParentOfType<mlir::ModuleOp>()); if (!version_or.ok()) { return emitError(op_->getLoc()) << version_or.status().ToString(); } flib_def_ = std::make_unique<tensorflow::FunctionLibraryDefinition>( tensorflow::OpRegistry::Global(), tensorflow::FunctionDefLibrary()); pflr_ = std::make_unique<tensorflow::ProcessFunctionLibraryRuntime>( device_mgr_.get(), tensorflow::Env::Default(), nullptr, version_or.value(), flib_def_.get(), tensorflow::OptimizerOptions()); params_.function_library = pflr_->GetFLR(device_->name()); return success(); } bool IsBounded(Type ty) { auto ranked_ty = mlir::dyn_cast<RankedTensorType>(ty); if (!ranked_ty) return false; if (ranked_ty.hasStaticShape()) return true; auto encoding = mlir::dyn_cast_or_null<TypeExtensionsAttr>(ranked_ty.getEncoding()); if (!encoding) return false; for (int i = 0; i < ranked_ty.getRank(); ++i) { if (ranked_ty.isDynamicDim(i) && encoding.getBounds()[i] == ShapedType::kDynamic) { return false; } } return true; } bool HasSymbolRefAttr(Operation* op) { for (const auto& attr : op->getAttrs()) { Attribute attr_value = attr.getValue(); if (mlir::isa<SymbolRefAttr>(attr_value)) { return true; } else if (auto array_attr = mlir::dyn_cast<ArrayAttr>(attr_value)) { if (!array_attr.empty() && mlir::isa<SymbolRefAttr>(*array_attr.begin())) { return true; } } } return false; } LogicalResult Tf2XlaRewriter::PrepareKernelInputs( const llvm::SmallDenseSet<int>& required_consts, std::vector<tensorflow::XlaExpression>& expressions, std::vector<tensorflow::Tensor>& tensors, std::vector<tensorflow::TensorValue>& inputs) { for (auto it : llvm::enumerate(op_->getOperands())) { Value operand = it.value(); size_t idx = it.index(); tensorflow::XlaExpression expr = GetExprForOperand(operand, op_, idx); tensorflow::XlaExpression::Kind kind = expr.kind(); if (kind == tensorflow::XlaExpression::Kind::kInvalid) return failure(); expressions.push_back(expr); if (!tensorflow::DataTypeCanUseMemcpy(expr.dtype())) { return op_->emitRemark() << "skipping legalization due to unsupported type " << operand.getType(); } auto shape_or = expr.GetShape(); if (!shape_or.ok()) { return op_->emitRemark() << "failed to get shape for expression. " << expr.HumanString(); } tensors.emplace_back( device_->GetAllocator(tensorflow::AllocatorAttributes()), expr.dtype(), shape_or.value()); tensorflow::Tensor& tensor = tensors.back(); tensorflow::XlaExpression::AssignExpressionToTensor(expr, &tensor); inputs.emplace_back(&tensor); } return success(); } LogicalResult Tf2XlaRewriter::LegalizeOp() { for (Type ty : op_->getOperandTypes()) { auto ranked_ty = mlir::dyn_cast<ShapedType>(ty); if (!IsBounded(ranked_ty)) { return op_->emitRemark() << "lowering requires bounded tensor operands " << ranked_ty; } } if (HasSymbolRefAttr(op_)) { return op_->emitRemark() << "ops with symbol references are not supported"; } auto nodedef_or = tensorflow::ConvertTFDialectOpToNodeDef( op_, name_mapper_->GetUniqueName(op_), true); if (!nodedef_or.ok()) { return op_->emitRemark() << "failed to convert op to NodeDef: " << nodedef_or.status().ToString(); } if (failed(PrepareParams())) return failure(); std::shared_ptr<const tensorflow::NodeProperties> props; absl::Status status = tensorflow::NodeProperties::CreateFromNodeDef( *nodedef_or.value(), params_.function_library->GetFunctionLibraryDefinition(), &props); if (!status.ok()) { return op_->emitRemark() << "failed to create NodeProperties: " << status.ToString(); } tensorflow::OpKernel* op_kernel_raw; status = params_.function_library->CreateKernel(props, &op_kernel_raw); if (!status.ok()) { return op_->emitRemark() << "failed to create tf2xla kernel: " << status.ToString(); } auto op_kernel = absl::WrapUnique(op_kernel_raw); std::vector<int> required_constants; status = tensorflow::XlaOpRegistry::CompileTimeConstantInputs( *op_kernel, &required_constants); if (!status.ok()) { return op_->emitRemark() << "failed to compute required constants: " << status.ToString(); } llvm::SmallDenseSet<int> required_consts; required_consts.insert(required_constants.begin(), required_constants.end()); std::vector<tensorflow::XlaExpression> expressions; std::vector<tensorflow::Tensor> tensors; std::vector<tensorflow::TensorValue> inputs; expressions.reserve(op_->getNumOperands()); tensors.reserve(op_->getNumOperands()); inputs.reserve(op_->getNumOperands()); if (failed( PrepareKernelInputs(required_consts, expressions, tensors, inputs))) return failure(); params_.inputs = inputs; params_.op_kernel = op_kernel.get(); llvm::SmallVector<tensorflow::AllocatorAttributes, 4> output_attr( op_->getNumResults()); params_.output_attr_array = output_attr.data(); tensorflow::OpKernelContext op_context(&params_, op_->getNumResults()); device_->Compute(params_.op_kernel, &op_context); status = op_context.status(); if (!status.ok()) { return op_->emitRemark() << "compilation to HLO failed: " << status.ToString(); } if (failed(VerifyOpResults(op_context))) return failure(); absl::StatusOr<mhlo::TupleOp> tuple_result_or_status = CompileWithHloImporter(op_context); if (!tuple_result_or_status.ok()) { return op_->emitRemark() << tuple_result_or_status.status().ToString(); } mhlo::TupleOp tuple_result = tuple_result_or_status.value(); llvm::SmallVector<Value> output_values; if (failed(GetKernelOutputs(op_context, tuple_result, output_values))) { return failure(); } rewriter_.replaceOp(op_, output_values); return success(); } absl::StatusOr<mhlo::TupleOp> Tf2XlaRewriter::CompileWithHloImporter( tensorflow::OpKernelContext& op_context) { std::vector<xla::XlaOp> output_values; for (int i = 0, e = op_->getNumResults(); i < e; i++) { tensorflow::Tensor* output = op_context.mutable_output(i); const tensorflow::XlaExpression* expr = tensorflow::XlaExpression::CastExpressionFromTensor(*output); output_values.push_back(expr->AsXlaOp(&xla_builder_)); } absl::Span<const xla::XlaOp> return_values(output_values); xla::XlaOp root_value = xla::Tuple(&xla_builder_, return_values); TF_ASSIGN_OR_RETURN(XlaComputation computation, xla_builder_.Build(root_value, false)); return ImportXlaComputation(computation); } mlir::LogicalResult Tf2XlaRewriter::VerifyOpResults( tensorflow::OpKernelContext& op_context) { for (int i = 0, e = op_->getNumResults(); i < e; i++) { tensorflow::Tensor* output = op_context.mutable_output(i); const tensorflow::XlaExpression* expr = tensorflow::XlaExpression::CastExpressionFromTensor(*output); if (expr->kind() != tensorflow::XlaExpression::Kind::kXlaOp && expr->kind() != tensorflow::XlaExpression::Kind::kConstant) { return op_->emitRemark(absl::StrCat( "expects XlaExpression of kind kXlaOp or kConstant in compiled " "output index ", i)); } } return success(); } mlir::LogicalResult Tf2XlaRewriter::UnpackTupleResults( mhlo::TupleOp tuple_result, llvm::SmallVector<Value>& outputs) { if (tuple_result->getNumOperands() != op_->getNumResults()) { return op_->emitRemark() << "Translated TF2XLA tuple has different " "number of results than original op"; } for (int i = 0; i < tuple_result->getNumOperands(); i++) { outputs.push_back(tuple_result->getOperand(i)); } tuple_result.getOperation()->erase(); return success(); } mlir::LogicalResult Tf2XlaRewriter::GetKernelOutputs( tensorflow::OpKernelContext& op_context, mhlo::TupleOp tuple_results, llvm::SmallVector<Value>& outputs) { outputs.reserve(op_->getNumResults()); return UnpackTupleResults(tuple_results, outputs); } tensorflow::XlaExpression Tf2XlaRewriter::GetExprForOperand( Value operand, Operation* op, int64_t operand_index) { ElementsAttr const_attr; auto defining_op = operand.getDefiningOp(); ::xla::XlaOp xla_op = xla::Parameter(&xla_builder_, operand_index, xla::TypeToShape(operand.getType()), std::to_string(operand_index)); if (defining_op && matchPattern(defining_op, m_Constant(&const_attr))) { tensorflow::Tensor tensor; auto status = tensorflow::ConvertToTensor(const_attr, &tensor); if (!status.ok()) { op->emitRemark() << "skipping legalization due to failed const conversion" << status.ToString(); return tensorflow::XlaExpression::Invalid(); } return tensorflow::XlaExpression::Constant(tensor); } tensorflow::DataType dtype; auto status = tensorflow::ConvertToDataType(operand.getType(), &dtype); if (!status.ok()) { op->emitRemark() << "skipping legalization due to " << status.ToString(); return tensorflow::XlaExpression::Invalid(); } return tensorflow::XlaExpression::XlaOp(xla_op, dtype); } } }
#include "tensorflow/compiler/mlir/tf2xla/transforms/tf2xla_rewriter.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "llvm/Support/Casting.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/Visitors.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/test_utils.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/client/xla_builder.h" #include "xla/client/xla_computation.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/shape_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace mlir { namespace mhlo { using ::mlir::LogicalResult; using ::mlir::ModuleOp; using ::mlir::OpBuilder; using ::mlir::Operation; using ::mlir::func::FuncOp; using ::tsl::Status; using ::tsl::StatusOr; using ::xla::ReplicaGroup; using ::xla::ShapeUtil; using ::xla::XlaBuilder; using ::xla::XlaComputation; using ::xla::XlaOp; static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1442 : i32}} { func.func @main(%arg0: tensor<3xi64> {tf._user_specified_name = "resource", tf.aliasing_output = 3 : i64}) -> () attributes {tf.entry_function = {control_outputs = "stateful_normal/RngReadAndSkip,stateful_uniform/RngReadAndSkip,stateful_uniform_full_int/RngReadAndSkip", inputs = "stateful_normal_rngreadandskip_resource", outputs = "identity_RetVal,identity_1_RetVal,identity_2_RetVal"}} { %0:3 = "tf.Unpack"(%arg0) {axis = 0 : i64} : (tensor<3xi64>) -> (tensor<i64>, tensor<i64>, tensor<i64>) return } })"; XlaComputation GetTestXlaComputation() { XlaBuilder xla_builder("test"); auto param = Parameter(&xla_builder, 0, ShapeUtil::MakeScalarShape(xla::F32), "a"); XlaOp add = xla::Add(param, xla::ConstantR0<float>(&xla_builder, 2.0)); std::vector<XlaOp> tuple_values; tuple_values.push_back(add); xla::Tuple(&xla_builder, tuple_values); return xla_builder.Build().value(); } class EmptyPatternRewriter : public mlir::PatternRewriter { public: explicit EmptyPatternRewriter(const OpBuilder& other_builder) : mlir::PatternRewriter(other_builder) {} ~EmptyPatternRewriter() override = default; }; class Tf2XlaRewriterTestPeer { public: explicit Tf2XlaRewriterTestPeer() = delete; explicit Tf2XlaRewriterTestPeer(mlir::Operation* op) : op_builder_(op), empty_rewriter_(op_builder_), tf2xla_rewriter_(op, empty_rewriter_, "XLA_CPU_JIT") {} absl::StatusOr<TupleOp> ImportXlaComputationIntoModule( XlaComputation& computation) { return tf2xla_rewriter_.ImportXlaComputation(computation); } private: OpBuilder op_builder_; EmptyPatternRewriter empty_rewriter_; Tf2XlaRewriter tf2xla_rewriter_; }; class Tf2XlaRewriterTest : public ::testing::Test { public: void SetUp() override { tensorflow::XlaOpRegistry::RegisterCompilationKernels(); } Status CreateMlirModule(std::string module_string = kMlirModuleStr) { TF_ASSIGN_OR_RETURN( module_, test::GetMlirModuleFromString(module_string, &context_)); context_.loadAllAvailableDialects(); return absl::OkStatus(); } Status LegalizeSingleOp(Operation& op) { SourceMgrDiagnosticHandler sourceMgrHandler(source_manager_, &context_); OpBuilder op_builder(&op); EmptyPatternRewriter pattern_rewriter(op_builder); LogicalResult result = Tf2XlaRewriter::RewriteOp(&op, pattern_rewriter, "XLA_CPU_JIT"); if (!result.succeeded()) { return tsl::errors::Internal("Failed to rewrite op"); } return absl::OkStatus(); } Status LegalizeModule(std::string module_string = kMlirModuleStr) { TF_EXPECT_OK(CreateMlirModule(module_string)); FuncOp main = module_->lookupSymbol<mlir::func::FuncOp>("main"); if (!main) { return tsl::errors::InvalidArgument("Could not find a main function"); } WalkResult walk_result = main.walk([&](Operation* op) { if (op->getDialect()->getNamespace() != TF::TensorFlowDialect::getDialectNamespace()) { return WalkResult::advance(); } if (!LegalizeSingleOp(*op).ok()) { return WalkResult::interrupt(); } return WalkResult::advance(); }); if (walk_result.wasInterrupted()) { return tsl::errors::Internal("Could not legalize all ops"); } return absl::OkStatus(); } mlir::func::FuncOp GetMainFunc() { func::FuncOp main_func = module_->lookupSymbol<mlir::func::FuncOp>("main"); EXPECT_TRUE(main_func); return main_func; } mlir::Operation& GetFirstOpFromMain() { mlir::func::FuncOp main_func = GetMainFunc(); return main_func.getBody().front().front(); } absl::StatusOr<TupleOp> ImportXlaComputationIntoModule( XlaComputation& computation) { SourceMgrDiagnosticHandler sourceMgrHandler(source_manager_, &context_); mlir::Operation& first_op = GetFirstOpFromMain(); Tf2XlaRewriterTestPeer test_peer(&first_op); return test_peer.ImportXlaComputationIntoModule(computation); } protected: MLIRContext context_; OwningOpRef<ModuleOp> module_; llvm::SourceMgr source_manager_; }; TEST_F(Tf2XlaRewriterTest, LegalizesOpWithTf2xlaHloImporter) { TF_EXPECT_OK(LegalizeModule()); int num_tuple_ops = 0; module_->walk([&num_tuple_ops](TupleOp tuple_op) { num_tuple_ops += 1; }); EXPECT_EQ(num_tuple_ops, 0); } TEST_F(Tf2XlaRewriterTest, ImportsXlaComputationIntoModule) { TF_ASSERT_OK(CreateMlirModule()); XlaComputation computation = GetTestXlaComputation(); TF_ASSERT_OK_AND_ASSIGN(TupleOp root_tuple, ImportXlaComputationIntoModule(computation)); ModuleOp parent_module = root_tuple.getOperation()->getParentOfType<ModuleOp>(); EXPECT_EQ(parent_module, *module_); } TEST_F(Tf2XlaRewriterTest, FailsWithoutRootTuple) { TF_ASSERT_OK(CreateMlirModule()); XlaBuilder xla_builder("test_fail"); xla::Add(xla::ConstantR0<float>(&xla_builder, 1.0), xla::ConstantR0<float>(&xla_builder, 2.0)); XlaComputation bad_computation = xla_builder.Build().value(); EXPECT_FALSE(ImportXlaComputationIntoModule(bad_computation).ok()); } TEST_F(Tf2XlaRewriterTest, ImportsSingleComputation) { XlaBuilder builder("test_builder"); XlaComputation to_apply; { auto sub_builder = builder.CreateSubBuilder("add"); auto arg0 = Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(xla::F32), "x"); auto arg1 = Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(xla::F32), "y"); Add(arg0, arg1); TF_ASSERT_OK_AND_ASSIGN(to_apply, sub_builder->Build()); } auto x = Parameter(&builder, 0, ShapeUtil::MakeShape(xla::F32, {4, 16}), "x"); ReplicaGroup group; group.add_replica_ids(0); group.add_replica_ids(1); XlaOp reduce_scatter = ReduceScatter(x, to_apply, 1, 2, {group}); std::vector<XlaOp> tuple_values; tuple_values.push_back(reduce_scatter); xla::Tuple(&builder, tuple_values); TF_ASSERT_OK_AND_ASSIGN(XlaComputation computation, builder.Build()); EXPECT_EQ(computation.proto().computations_size(), 2); TF_ASSERT_OK(CreateMlirModule()); TF_ASSERT_OK_AND_ASSIGN(TupleOp root_tuple, ImportXlaComputationIntoModule(computation)); EXPECT_TRUE(root_tuple); int num_func_ops = 0; module_->walk([&num_func_ops](func::FuncOp func_op) { num_func_ops++; }); EXPECT_EQ(num_func_ops, 1); } TEST_F(Tf2XlaRewriterTest, InsertsConstantParameters) { static constexpr char kModuleWithConstParam[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1442 : i32}} { func.func @main(%arg0: tensor<2xf32>) -> tensor<2xf32> { %0 = "tf.Const"() {value = dense<1.42> : tensor<2xf32>} : () -> tensor<2xf32> %1 = "tf.Atan2"(%arg0, %0) : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xf32> func.return %0 : tensor<2xf32> } })"; TF_ASSERT_OK(LegalizeModule(kModuleWithConstParam)); } TEST_F(Tf2XlaRewriterTest, DoesntEnforceCompileTimeConstantCheck) { static constexpr char kModuleWithNonConstParam[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1610 : i32}} { func.func @main(%arg0: tensor<3x3x10xbf16>, %arg1: tensor<3xi32>) -> tensor<1x?x4xbf16> attributes {allow_soft_placement = false, tf.entry_function = {control_outputs = "", inputs = "_arg0,_arg1,_arg2", outputs = "_retval0"}} { %cst = "tf.Const"() {value = dense<[1, -1, 4]> : tensor<3xi32>} : () -> tensor<3xi32> %0 = "tf.Slice"(%arg0, %arg1, %cst) {_XlaHasReferenceVars = false, _xla_inferred_shapes = [#tf_type.shape<1x?x4>], device = "/job:localhost/replica:0/task:0/device:TPU:0"} : (tensor<3x3x10xbf16>, tensor<3xi32>, tensor<3xi32>) -> tensor<1x?x4xbf16> return %0 : tensor<1x?x4xbf16> } })"; TF_ASSERT_OK(LegalizeModule(kModuleWithNonConstParam)); } TEST_F(Tf2XlaRewriterTest, CreatesDefaultValues) { static constexpr char kModuleWithOpWithoutValuesThatShouldBeDefaulted[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1610 : i32}} { func.func @main() -> tensor<1x2x3x4xf32> attributes {allow_soft_placement = false, tf.entry_function = {control_outputs = "", inputs = "_arg0,_arg1,_arg2", outputs = "_retval0"}} { %cst = "tf.Const"() {value = dense<[1, 2, 3, 4]> : tensor<4xi32>} : () -> tensor<4xi32> %0 = "tf.RandomUniform"(%cst) : (tensor<4xi32>) -> tensor<1x2x3x4xf32> return %0 : tensor<1x2x3x4xf32> } })"; TF_ASSERT_OK(LegalizeModule(kModuleWithOpWithoutValuesThatShouldBeDefaulted)); } TEST_F(Tf2XlaRewriterTest, OpWithLocationDoesntBreakNodeDefName) { static constexpr char kModuleWithOpWithoutValuesThatShouldBeDefaulted[] = R"mlir( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1610 : i32}} { func.func @main(%arg0: tensor<2xf32>) -> tensor<2xf32> { %0 = "tf.Exp"(%arg0) : (tensor<2xf32>) -> tensor<2xf32> loc(fused["exp"("exp"), "exp"]) func.return %0 : tensor<2xf32> } })mlir"; TF_ASSERT_OK(LegalizeModule(kModuleWithOpWithoutValuesThatShouldBeDefaulted)); } TEST_F(Tf2XlaRewriterTest, ErrorsWithInvalidNumberOfParametersToArgs) { XlaBuilder builder("test_builder"); XlaComputation to_apply; { auto sub_builder = builder.CreateSubBuilder("add"); auto arg0 = Parameter(sub_builder.get(), 0, ShapeUtil::MakeScalarShape(xla::F32), "x"); auto arg1 = Parameter(sub_builder.get(), 1, ShapeUtil::MakeScalarShape(xla::F32), "y"); Add(arg0, arg1); TF_ASSERT_OK_AND_ASSIGN(to_apply, sub_builder->Build()); } auto a = Parameter(&builder, 0, ShapeUtil::MakeScalarShape(xla::F32), "a"); auto b = Parameter(&builder, 1, ShapeUtil::MakeScalarShape(xla::F32), "b"); XlaOp call_op = xla::Call(&builder, to_apply, {a, b}); std::vector<XlaOp> tuple_values; tuple_values.push_back(call_op); xla::Tuple(&builder, tuple_values); TF_ASSERT_OK_AND_ASSIGN(XlaComputation computation, builder.Build()); EXPECT_EQ(computation.proto().computations_size(), 2); TF_ASSERT_OK(CreateMlirModule()); absl::StatusOr<TupleOp> status_or_tuple_op = ImportXlaComputationIntoModule(computation); EXPECT_FALSE(status_or_tuple_op.ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/transforms/tf2xla_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/transforms/tf2xla_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
824e9a92-d73e-40d9-bb47-186cbd4b9da5
cpp
tensorflow/tensorflow
host_memory_transfer_asyncifier
third_party/xla/xla/service/host_memory_transfer_asyncifier.cc
third_party/xla/xla/service/host_memory_transfer_asyncifier_test.cc
#include "xla/service/host_memory_transfer_asyncifier.h" #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HostMemoryTransferAsyncifierVisitor : public DfsHloVisitorWithDefault { public: explicit HostMemoryTransferAsyncifierVisitor(int64_t host_memory_space_color) : kHostMemorySpaceColor(host_memory_space_color) {} bool Changed() const { return changed_; } absl::Status DefaultAction(HloInstruction* hlo_instruction) override { return absl::OkStatus(); } absl::Status HandleDynamicSlice(HloInstruction* dynamic_slice) override { HloInstruction* dynamic_slice_operand = dynamic_slice->mutable_operand(0); if (!dynamic_slice->shape().has_layout()) { return InternalStrCat(dynamic_slice->name(), " does not have a layout."); } if (!dynamic_slice_operand->shape().has_layout()) { return InternalStrCat(dynamic_slice->name(), "'s operand, ", dynamic_slice_operand->name(), ", does not have a layout."); } VLOG(3) << absl::StreamFormat( "\"%s\" from S(%d) to S(%d)", dynamic_slice->name(), dynamic_slice_operand->shape().layout().memory_space(), dynamic_slice->shape().layout().memory_space()); if (dynamic_slice_operand->shape().layout().memory_space() != kHostMemorySpaceColor) { return absl::OkStatus(); } if (dynamic_slice->shape().layout().memory_space() != xla::Layout::kDefaultMemorySpace) { return absl::OkStatus(); } const Shape context_shape = ShapeUtil::MakeScalarShape(U32); const Shape transfer_bytes_shape = ShapeUtil::MakeScalarShape(S32); TF_ASSIGN_OR_RETURN( HloInstruction * async_done, dynamic_slice->parent()->CreateAsyncInstructions( dynamic_slice, {context_shape, transfer_bytes_shape})); VLOG(1) << "DynamicSlice \"" << dynamic_slice->ToString() << "\" is slicing from host memory. Converting to async " << async_done->ToString(); MarkAsChanged(); return absl::OkStatus(); } absl::Status HandleDynamicUpdateSlice( HloInstruction* dynamic_update_slice) override { HloInstruction* dynamic_update_slice_operand = dynamic_update_slice->mutable_operand(0); HloInstruction* dynamic_update_slice_update = dynamic_update_slice->mutable_operand(1); if (!dynamic_update_slice->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), " does not have a layout."); } if (!dynamic_update_slice_operand->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), "'s operand, ", dynamic_update_slice_operand->name(), ", does not have a layout."); } if (!dynamic_update_slice_update->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), "'s update, ", dynamic_update_slice_update->name(), ", does not have a layout."); } if (dynamic_update_slice_update->shape().layout().memory_space() != xla::Layout::kDefaultMemorySpace) { return absl::OkStatus(); } if (dynamic_update_slice->shape().layout().memory_space() != kHostMemorySpaceColor) { return absl::OkStatus(); } if (dynamic_update_slice_operand->shape().layout().memory_space() != dynamic_update_slice->shape().layout().memory_space()) { return InternalStrCat( "Unexpected that ", dynamic_update_slice_operand->name(), "'s memory space is not the same as the dynamic-update-slice."); } const Shape context_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSIGN_OR_RETURN(HloInstruction * async_done, dynamic_update_slice->parent()->CreateAsyncInstructions( dynamic_update_slice, {context_shape})); VLOG(1) << "DynamicUpdateSlice \"" << dynamic_update_slice->ToString() << "\" is slicing into host memory space. Converting to async " << async_done->ToString(); MarkAsChanged(); return absl::OkStatus(); } absl::Status HandleCopy(HloInstruction* copy) override { HloInstruction* operand = copy->mutable_operand(0); if (!operand->shape().has_layout()) { return InternalStrCat(operand->name(), " does not have a layout."); } if (!copy->shape().has_layout()) { return InternalStrCat(copy->name(), " does not have a layout."); } const auto copy_src_memory_space = operand->shape().layout().memory_space(); const auto copy_dst_memory_space = copy->shape().layout().memory_space(); if (!((copy_src_memory_space == kHostMemorySpaceColor && copy_dst_memory_space == xla::Layout::kDefaultMemorySpace) || (copy_src_memory_space == xla::Layout::kDefaultMemorySpace && copy_dst_memory_space == kHostMemorySpaceColor))) { VLOG(2) << "Skipping copy because it is not a copy between device memory and " "host memory: " << copy->ToString(); return absl::OkStatus(); } const Shape context_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSIGN_OR_RETURN( HloInstruction * async_done, copy->parent()->CreateAsyncInstructions(copy, {context_shape})); VLOG(1) << "Copy \"" << copy->name() << "\" is between device and host memory space. Converting to async " << async_done->ToString(); MarkAsChanged(); return absl::OkStatus(); } private: const int64_t kHostMemorySpaceColor; bool changed_ = false; void MarkAsChanged() { changed_ = true; } }; } absl::StatusOr<bool> HostMemoryTransferAsyncifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HostMemoryTransferAsyncifierVisitor visitor(kHostMemorySpaceColor); for (HloComputation* computation : module->MakeNonfusionComputations()) { TF_RETURN_IF_ERROR(computation->Accept(&visitor)); } return visitor.Changed(); } }
#include "xla/service/host_memory_transfer_asyncifier.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; class HostMemoryTransferAsyncifierTest : public HloTestBase { protected: absl::StatusOr<bool> RunAsyncifier(absl::string_view hlo_string) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSIGN_OR_RETURN(bool changed, RunAsyncifier(module.get())); return changed; } absl::StatusOr<bool> RunAsyncifier(HloModule* module) { TF_EXPECT_OK(verifier().Run(module).status()); if (module->has_schedule()) { return absl::InternalError("Expected a non-scheduled module"); } HostMemoryTransferAsyncifier asyncifier(kHostMemorySpaceColor); return asyncifier.Run(module); } private: static constexpr int64_t kHostMemorySpaceColor{5}; }; TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_operand = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) host_update = f32[1,1,1]{2,1,0:T(2,128)S(5)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)S(5)} dynamic-update-slice(host_operand, host_update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { operand = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) update = f32[1,1,1]{2,1,0:T(2,128)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)} dynamic-update-slice(operand, update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { operand = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) host_update = f32[1,1,1]{2,1,0:T(2,128)S(5)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)} dynamic-update-slice(operand, host_update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_operand = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) update = f32[1,1,1]{2,1,0:T(2,128)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)S(5)} dynamic-update-slice(host_operand, update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* dynamic_update_slice_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand(0, m::Op(&dynamic_update_slice_start) .WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(dynamic_update_slice_start->called_computations().size(), 1); HloComputation* async_dynamic_slice_computation = dynamic_update_slice_start->called_computations().at(0); EXPECT_THAT(async_dynamic_slice_computation->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)S(5)} dynamic-slice(host_memory, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)} dynamic-slice(device, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)S(5)} dynamic-slice(device, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)} dynamic-slice(host_memory, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* dynamic_slice_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand(0, m::Op(&dynamic_slice_start) .WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(dynamic_slice_start->called_computations().size(), 1); HloComputation* async_dynamic_slice_computation = dynamic_slice_start->called_computations().at(0); EXPECT_THAT(async_dynamic_slice_computation->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, CopyFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, CopyFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, DISABLED_CopyFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(copy_start->called_computations().size(), 1); HloComputation* async_copy_computation = copy_start->called_computations().at(0); EXPECT_THAT(async_copy_computation->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, OldCopyFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kCopyDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kCopyStart)))); } TEST_F(HostMemoryTransferAsyncifierTest, DISABLED_CopyFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(copy_start->called_computations().size(), 1); HloComputation* async_copy_computation = copy_start->called_computations().at(0); EXPECT_THAT(async_copy_computation->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, OldCopyFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kCopyDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kCopyStart)))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_memory_transfer_asyncifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/host_memory_transfer_asyncifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c4a404f6-3ce8-42e1-9890-5427ba37c72f
cpp
google/cel-cpp
reference_resolver
runtime/reference_resolver.cc
runtime/reference_resolver_test.cc
#include "runtime/reference_resolver.h" #include "absl/base/macros.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "common/native_type.h" #include "eval/compiler/qualified_reference_resolver.h" #include "internal/casts.h" #include "internal/status_macros.h" #include "runtime/internal/runtime_friend_access.h" #include "runtime/internal/runtime_impl.h" #include "runtime/runtime.h" #include "runtime/runtime_builder.h" namespace cel { namespace { using ::cel::internal::down_cast; using ::cel::runtime_internal::RuntimeFriendAccess; using ::cel::runtime_internal::RuntimeImpl; absl::StatusOr<RuntimeImpl*> RuntimeImplFromBuilder(RuntimeBuilder& builder) { Runtime& runtime = RuntimeFriendAccess::GetMutableRuntime(builder); if (RuntimeFriendAccess::RuntimeTypeId(runtime) != NativeTypeId::For<RuntimeImpl>()) { return absl::UnimplementedError( "regex precompilation only supported on the default cel::Runtime " "implementation."); } RuntimeImpl& runtime_impl = down_cast<RuntimeImpl&>(runtime); return &runtime_impl; } google::api::expr::runtime::ReferenceResolverOption Convert( ReferenceResolverEnabled enabled) { switch (enabled) { case ReferenceResolverEnabled::kCheckedExpressionOnly: return google::api::expr::runtime::ReferenceResolverOption::kCheckedOnly; case ReferenceResolverEnabled::kAlways: return google::api::expr::runtime::ReferenceResolverOption::kAlways; } ABSL_LOG(FATAL) << "unsupported ReferenceResolverEnabled enumerator: " << static_cast<int>(enabled); } } absl::Status EnableReferenceResolver(RuntimeBuilder& builder, ReferenceResolverEnabled enabled) { CEL_ASSIGN_OR_RETURN(RuntimeImpl * runtime_impl, RuntimeImplFromBuilder(builder)); ABSL_ASSERT(runtime_impl != nullptr); runtime_impl->expr_builder().AddAstTransform( NewReferenceResolverExtension(Convert(enabled))); return absl::OkStatus(); } }
#include "runtime/reference_resolver.h" #include <cstdint> #include <utility> #include "google/api/expr/v1alpha1/checked.pb.h" #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "base/function_adapter.h" #include "common/value.h" #include "extensions/protobuf/runtime_adapter.h" #include "internal/testing.h" #include "parser/parser.h" #include "runtime/activation.h" #include "runtime/managed_value_factory.h" #include "runtime/register_function_helper.h" #include "runtime/runtime_builder.h" #include "runtime/runtime_options.h" #include "runtime/standard_runtime_builder_factory.h" #include "google/protobuf/text_format.h" namespace cel { namespace { using ::cel::extensions::ProtobufRuntimeAdapter; using ::google::api::expr::v1alpha1::CheckedExpr; using ::google::api::expr::v1alpha1::Expr; using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::parser::Parse; using ::absl_testing::StatusIs; using ::testing::HasSubstr; TEST(ReferenceResolver, ResolveQualifiedFunctions) { RuntimeOptions options; ASSERT_OK_AND_ASSIGN(RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); ASSERT_OK( EnableReferenceResolver(builder, ReferenceResolverEnabled::kAlways)); absl::Status status = RegisterHelper<BinaryFunctionAdapter<int64_t, int64_t, int64_t>>:: RegisterGlobalOverload( "com.example.Exp", [](ValueManager& value_factory, int64_t base, int64_t exp) -> int64_t { int64_t result = 1; for (int64_t i = 0; i < exp; ++i) { result *= base; } return result; }, builder.function_registry()); ASSERT_OK(status); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, Parse("com.example.Exp(2, 3) == 8")); ASSERT_OK_AND_ASSIGN(auto program, ProtobufRuntimeAdapter::CreateProgram( *runtime, parsed_expr)); ManagedValueFactory value_factory(program->GetTypeProvider(), MemoryManagerRef::ReferenceCounting()); Activation activation; ASSERT_OK_AND_ASSIGN(Value value, program->Evaluate(activation, value_factory.get())); ASSERT_TRUE(value->Is<BoolValue>()); EXPECT_TRUE(value.GetBool().NativeValue()); } TEST(ReferenceResolver, ResolveQualifiedFunctionsCheckedOnly) { RuntimeOptions options; ASSERT_OK_AND_ASSIGN(RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); ASSERT_OK(EnableReferenceResolver( builder, ReferenceResolverEnabled::kCheckedExpressionOnly)); absl::Status status = RegisterHelper<BinaryFunctionAdapter<int64_t, int64_t, int64_t>>:: RegisterGlobalOverload( "com.example.Exp", [](ValueManager& value_factory, int64_t base, int64_t exp) -> int64_t { int64_t result = 1; for (int64_t i = 0; i < exp; ++i) { result *= base; } return result; }, builder.function_registry()); ASSERT_OK(status); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, Parse("com.example.Exp(2, 3) == 8")); EXPECT_THAT(ProtobufRuntimeAdapter::CreateProgram(*runtime, parsed_expr), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("No overloads provided"))); } constexpr absl::string_view kIdentifierExpression = R"pb( reference_map: { key: 3 value: { name: "com.example.x" } } reference_map: { key: 4 value: { overload_id: "add_int64" } } reference_map: { key: 7 value: { name: "com.example.y" } } type_map: { key: 3 value: { primitive: INT64 } } type_map: { key: 4 value: { primitive: INT64 } } type_map: { key: 7 value: { primitive: INT64 } } source_info: { location: "<input>" line_offsets: 30 positions: { key: 1 value: 0 } positions: { key: 2 value: 3 } positions: { key: 3 value: 11 } positions: { key: 4 value: 14 } positions: { key: 5 value: 16 } positions: { key: 6 value: 19 } positions: { key: 7 value: 27 } } expr: { id: 4 call_expr: { function: "_+_" args: { id: 3 # compilers typically already apply this rewrite, but older saved # expressions might preserve the original parse. select_expr { operand { id: 8 select_expr { operand: { id: 9 ident_expr { name: "com" } } field: "example" } } field: "x" } } args: { id: 7 ident_expr: { name: "com.example.y" } } } })pb"; TEST(ReferenceResolver, ResolveQualifiedIdentifiers) { RuntimeOptions options; ASSERT_OK_AND_ASSIGN(RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); ASSERT_OK(EnableReferenceResolver( builder, ReferenceResolverEnabled::kCheckedExpressionOnly)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); CheckedExpr checked_expr; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kIdentifierExpression, &checked_expr)); ASSERT_OK_AND_ASSIGN(auto program, ProtobufRuntimeAdapter::CreateProgram( *runtime, checked_expr)); ManagedValueFactory value_factory(program->GetTypeProvider(), MemoryManagerRef::ReferenceCounting()); Activation activation; activation.InsertOrAssignValue("com.example.x", value_factory.get().CreateIntValue(3)); activation.InsertOrAssignValue("com.example.y", value_factory.get().CreateIntValue(4)); ASSERT_OK_AND_ASSIGN(Value value, program->Evaluate(activation, value_factory.get())); ASSERT_TRUE(value->Is<IntValue>()); EXPECT_EQ(value.GetInt().NativeValue(), 7); } TEST(ReferenceResolver, ResolveQualifiedIdentifiersSkipParseOnly) { RuntimeOptions options; ASSERT_OK_AND_ASSIGN(RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); ASSERT_OK(EnableReferenceResolver( builder, ReferenceResolverEnabled::kCheckedExpressionOnly)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); CheckedExpr checked_expr; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kIdentifierExpression, &checked_expr)); Expr unchecked_expr = checked_expr.expr(); ASSERT_OK_AND_ASSIGN(auto program, ProtobufRuntimeAdapter::CreateProgram( *runtime, checked_expr.expr())); ManagedValueFactory value_factory(program->GetTypeProvider(), MemoryManagerRef::ReferenceCounting()); Activation activation; activation.InsertOrAssignValue("com.example.x", value_factory.get().CreateIntValue(3)); activation.InsertOrAssignValue("com.example.y", value_factory.get().CreateIntValue(4)); ASSERT_OK_AND_ASSIGN(Value value, program->Evaluate(activation, value_factory.get())); ASSERT_TRUE(value->Is<ErrorValue>()); EXPECT_THAT(value.GetError().NativeValue(), StatusIs(absl::StatusCode::kUnknown, HasSubstr("\"com\""))); } constexpr absl::string_view kEnumExpr = R"pb( reference_map: { key: 8 value: { name: "google.api.expr.test.v1.proto2.GlobalEnum.GAZ" value: { int64_value: 2 } } } reference_map: { key: 9 value: { overload_id: "equals" } } type_map: { key: 8 value: { primitive: INT64 } } type_map: { key: 9 value: { primitive: BOOL } } type_map: { key: 10 value: { primitive: INT64 } } source_info: { location: "<input>" line_offsets: 1 line_offsets: 64 line_offsets: 77 positions: { key: 1 value: 13 } positions: { key: 2 value: 19 } positions: { key: 3 value: 23 } positions: { key: 4 value: 28 } positions: { key: 5 value: 33 } positions: { key: 6 value: 36 } positions: { key: 7 value: 43 } positions: { key: 8 value: 54 } positions: { key: 9 value: 59 } positions: { key: 10 value: 62 } } expr: { id: 9 call_expr: { function: "_==_" args: { id: 8 ident_expr: { name: "google.api.expr.test.v1.proto2.GlobalEnum.GAZ" } } args: { id: 10 const_expr: { int64_value: 2 } } } })pb"; TEST(ReferenceResolver, ResolveEnumConstants) { RuntimeOptions options; ASSERT_OK_AND_ASSIGN(RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); ASSERT_OK(EnableReferenceResolver( builder, ReferenceResolverEnabled::kCheckedExpressionOnly)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); CheckedExpr checked_expr; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kEnumExpr, &checked_expr)); ASSERT_OK_AND_ASSIGN(auto program, ProtobufRuntimeAdapter::CreateProgram( *runtime, checked_expr)); ManagedValueFactory value_factory(program->GetTypeProvider(), MemoryManagerRef::ReferenceCounting()); Activation activation; ASSERT_OK_AND_ASSIGN(Value value, program->Evaluate(activation, value_factory.get())); ASSERT_TRUE(value->Is<BoolValue>()); EXPECT_TRUE(value.GetBool().NativeValue()); } TEST(ReferenceResolver, ResolveEnumConstantsSkipParseOnly) { RuntimeOptions options; ASSERT_OK_AND_ASSIGN(RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); ASSERT_OK(EnableReferenceResolver( builder, ReferenceResolverEnabled::kCheckedExpressionOnly)); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); CheckedExpr checked_expr; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString(kEnumExpr, &checked_expr)); Expr unchecked_expr = checked_expr.expr(); ASSERT_OK_AND_ASSIGN(auto program, ProtobufRuntimeAdapter::CreateProgram( *runtime, unchecked_expr)); ManagedValueFactory value_factory(program->GetTypeProvider(), MemoryManagerRef::ReferenceCounting()); Activation activation; ASSERT_OK_AND_ASSIGN(Value value, program->Evaluate(activation, value_factory.get())); ASSERT_TRUE(value->Is<ErrorValue>()); EXPECT_THAT( value.GetError().NativeValue(), StatusIs(absl::StatusCode::kUnknown, HasSubstr("\"google.api.expr.test.v1.proto2.GlobalEnum.GAZ\""))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/reference_resolver.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/reference_resolver_test.cc
4552db5798fb0853b131b783d8875794334fae7f
167d38bf-d218-48de-bf28-3f9bb553562d
cpp
tensorflow/tensorflow
stringpiece
tensorflow/core/lib/core/stringpiece.h
third_party/xla/third_party/tsl/tsl/platform/stringpiece_test.cc
#ifndef TENSORFLOW_CORE_LIB_CORE_STRINGPIECE_H_ #define TENSORFLOW_CORE_LIB_CORE_STRINGPIECE_H_ #include "tensorflow/core/platform/stringpiece.h" #endif
#include "tsl/platform/stringpiece.h" #include <unordered_map> #include "tsl/platform/test.h" namespace tsl { TEST(StringPiece, Ctor) { { const char* hello = "hello"; absl::string_view s20(hello); EXPECT_TRUE(s20.data() == hello); EXPECT_EQ(5, s20.size()); absl::string_view s21(hello, 4); EXPECT_TRUE(s21.data() == hello); EXPECT_EQ(4, s21.size()); absl::string_view s22(hello, 6); EXPECT_TRUE(s22.data() == hello); EXPECT_EQ(6, s22.size()); } { string hola = "hola"; absl::string_view s30(hola); EXPECT_TRUE(s30.data() == hola.data()); EXPECT_EQ(4, s30.size()); hola.push_back('\0'); hola.append("h2"); hola.push_back('\0'); absl::string_view s31(hola); EXPECT_TRUE(s31.data() == hola.data()); EXPECT_EQ(8, s31.size()); } } TEST(StringPiece, ConversionToString) { EXPECT_EQ("", string(absl::string_view(""))); EXPECT_EQ("foo", string(absl::string_view("foo"))); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/core/stringpiece.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/stringpiece_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e49e8816-3d1e-41ac-87bf-ca044879aeaf
cpp
tensorflow/tensorflow
fold_batch_norms
tensorflow/tools/graph_transforms/fold_batch_norms.cc
tensorflow/tools/graph_transforms/fold_batch_norms_test.cc
#include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/fold_constants_lib.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FoldBatchNorms(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"Mul", { {"Conv2D|MatMul|DepthwiseConv2dNative", { {"*"}, {"Const"}, } }, {"Const"}, } }, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& mul_node = match.node; const NodeDef& conv_node = match.inputs[0].node; const NodeDef& input_node = match.inputs[0].inputs[0].node; const NodeDef& weights_node = match.inputs[0].inputs[1].node; const NodeDef& mul_values_node = match.inputs[1].node; for (const auto& node : {conv_node, weights_node, mul_values_node}) { if (output_nodes.count(node.name())) { new_nodes->insert(new_nodes->end(), {mul_node, conv_node, input_node, weights_node, mul_values_node}); return OkStatus(); } } Tensor weights = GetNodeTensorAttr(weights_node, "value"); Tensor mul_values = GetNodeTensorAttr(mul_values_node, "value"); int64_t weights_cols; if (conv_node.op() == "Conv2D") { weights_cols = weights.shape().dim_size(3); } else if (conv_node.op() == "DepthwiseConv2dNative") { weights_cols = weights.shape().dim_size(2) * weights.shape().dim_size(3); } else { weights_cols = weights.shape().dim_size(1); } if ((mul_values.shape().dims() != 1) || (mul_values.shape().dim_size(0) != weights_cols)) { return errors::InvalidArgument( "Mul constant input to batch norm has bad shape: ", mul_values.shape().DebugString()); } auto weights_vector = weights.flat<float>(); Tensor scaled_weights(DT_FLOAT, weights.shape()); auto scaled_weights_vector = scaled_weights.flat<float>(); for (int64_t row = 0; row < weights_vector.dimension(0); ++row) { scaled_weights_vector(row) = weights_vector(row) * mul_values.flat<float>()(row % weights_cols); } NodeDef scaled_weights_node; scaled_weights_node.set_op("Const"); scaled_weights_node.set_name(weights_node.name()); SetNodeAttr("dtype", DT_FLOAT, &scaled_weights_node); SetNodeTensorAttr<float>("value", scaled_weights, &scaled_weights_node); new_nodes->push_back(scaled_weights_node); new_nodes->push_back(input_node); NodeDef new_conv_node; new_conv_node = conv_node; new_conv_node.set_name(mul_node.name()); new_nodes->push_back(new_conv_node); return OkStatus(); }, {}, &replaced_graph_def)); *output_graph_def = replaced_graph_def; return OkStatus(); } REGISTER_GRAPH_TRANSFORM("fold_batch_norms", FoldBatchNorms); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FoldBatchNorms(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class FoldBatchNormsTest : public ::testing::Test { protected: void TestFoldBatchNormsConv2D() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mul_values_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mul_values_data, {2.0f, 3.0f}); Output mul_values_op = Const(root.WithOpName("mul_values"), Input::Initializer(mul_values_data)); Output mul_op = Mul(root.WithOpName("output"), conv_op, mul_values_op); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK( FoldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("Mul", node.op()); } } void TestFoldBatchNormsDepthwiseConv2dNative() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = DepthwiseConv2dNative(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mul_values_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&mul_values_data, {2.0f, 3.0f, 4.0f, 5.0f}); Output mul_values_op = Const(root.WithOpName("mul_values"), Input::Initializer(mul_values_data)); Output mul_op = Mul(root.WithOpName("output"), conv_op, mul_values_op); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK( FoldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("Mul", node.op()); } } void TestFoldBatchNormsConv2DShared() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mul_values_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mul_values_data, {2.0f, 3.0f}); Output mul_values_op = Const(root.WithOpName("mul_values"), Input::Initializer(mul_values_data)); Output mul_op = Mul(root.WithOpName("output"), conv_op, mul_values_op); Tensor mul_values_data_2(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mul_values_data_2, {1.0f, 2.0f}); Output mul_values_op_2 = Const(root.WithOpName("mul_values_2"), Input::Initializer(mul_values_data)); Output mul_op_2 = Mul(root.WithOpName("output_2"), conv_op, mul_values_op_2); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output", "output_2"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldBatchNorms( original_graph_def, {{}, {"output", "output_2"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK( fused_session->Run({}, {"output", "output_2"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); test::ExpectTensorNear<float>(original_outputs[1], fused_outputs[1], 1e-5); } void TestFoldBatchNormsMatMul() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output matmul_op = MatMul(root.WithOpName("matmul_op"), input_op, weights_op); Tensor mul_values_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mul_values_data, {2.0f, 3.0f}); Output mul_values_op = Const(root.WithOpName("mul_values"), Input::Initializer(mul_values_data)); Output mul_op = Mul(root.WithOpName("output"), matmul_op, mul_values_op); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK( FoldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("Mul", node.op()); } } }; TEST_F(FoldBatchNormsTest, TestFoldBatchNormsConv2D) { TestFoldBatchNormsConv2D(); } TEST_F(FoldBatchNormsTest, TestFoldBatchNormsMatMul) { TestFoldBatchNormsMatMul(); } TEST_F(FoldBatchNormsTest, TestFoldBatchNormsDepthwiseConv2dNative) { TestFoldBatchNormsDepthwiseConv2dNative(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/fold_batch_norms.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/fold_batch_norms_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
23361921-0139-49e4-8795-9f4dd027c06f
cpp
tensorflow/tensorflow
conv_pointwise
tensorflow/lite/delegates/gpu/common/tasks/special/conv_pointwise.cc
tensorflow/lite/delegates/gpu/common/tasks/special/conv_pointwise_test.cc
#include "tensorflow/lite/delegates/gpu/common/tasks/special/conv_pointwise.h" #include <cstdint> #include <map> #include <memory> #include <set> #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/util.h" namespace tflite { namespace gpu { namespace { std::string GenerateCode(const ConvPointwiseAttributes& attr) { std::string c = R"( MAIN_FUNCTION($0) { int linear_id = GLOBAL_ID_0; int X = linear_id / args.dst_tensor.Batch(); int B = linear_id % args.dst_tensor.Batch(); args.weights_tensor.SetBatchRef(B); args.src_tensor.SetBatchRef(B); args.dst_tensor.SetBatchRef(B); int Y = GLOBAL_ID_1; int S = GLOBAL_ID_2; if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || S >= args.dst_tensor.Slices()) return; int4 offset0 = args.offsets.Read(S * 2 + 0, 0); int4 offset1 = args.offsets.Read(S * 2 + 1, 0); ACCUM_FLT4 res = INIT_ACCUM_FLT4(0.0f); FLT4 last_mask; int last_src_ch = (args.src_tensor.Slices() - 1) * 4; last_mask.x = INIT_FLT(1.0f); last_mask.y = last_src_ch + 1 < args.src_tensor.Channels() ? INIT_FLT(1.0f) : INIT_FLT(0.0f); last_mask.z = last_src_ch + 2 < args.src_tensor.Channels() ? INIT_FLT(1.0f) : INIT_FLT(0.0f); last_mask.w = last_src_ch + 3 < args.src_tensor.Channels() ? INIT_FLT(1.0f) : INIT_FLT(0.0f); for (int s = 0; s < args.src_tensor.Slices(); ++s) { FLT4 src = args.src_tensor.Read(X, Y, s); FLT4 w0 = args.weights_tensor.Read(X + offset0.x, Y + offset0.y, s); FLT4 w1 = args.weights_tensor.Read(X + offset0.z, Y + offset0.w, s); FLT4 w2 = args.weights_tensor.Read(X + offset1.x, Y + offset1.y, s); FLT4 w3 = args.weights_tensor.Read(X + offset1.z, Y + offset1.w, s); FLT4 mask = INIT_FLT4(1.0f); if (s == (args.src_tensor.Slices() - 1)) { mask = last_mask; } src *= mask; res.x += dot(src, w0); res.y += dot(src, w1); res.z += dot(src, w2); res.w += dot(src, w3); } FLT4 result = TO_FLT4(res); )"; if (attr.mean) { c += " result = result / INIT_FLT(args.src_tensor.Channels());\n"; } c += " args.dst_tensor.Write(result, X, Y, S);\n"; c += "}\n"; return c; } struct NodeContext { Node* node; std::vector<Value*> inputs; std::vector<Value*> outputs; }; absl::Status IsNode(const GraphFloat32& graph, OperationType op_type, int inputs_count, int outputs_count, Node* node, NodeContext* node_context) { const std::string op_desc = ToString(op_type); node_context->node = node; if (node_context->node == nullptr) { return absl::NotFoundError(absl::StrCat("Invalid ", op_desc, " node.")); } if (OperationTypeFromString(node_context->node->operation.type) != op_type) { return absl::InternalError( absl::StrCat("Not correct node type. Expected ", op_desc, ", received ", node_context->node->operation.type)); } node_context->inputs = graph.FindInputs(node_context->node->id); node_context->outputs = graph.FindOutputs(node_context->node->id); if (inputs_count != -1) { if (node_context->inputs.size() != inputs_count) { return absl::InternalError( absl::StrCat("Expected ", inputs_count, " input in a ", op_desc, " node. Node has ", node_context->inputs.size())); } } if (node_context->outputs.size() != outputs_count) { return absl::InternalError( absl::StrCat("Expected ", outputs_count, " output in a ", op_desc, " node. Node has ", node_context->outputs.size())); } return absl::OkStatus(); } absl::Status IsMeanNode(const GraphFloat32& graph, Node* node, NodeContext* node_context) { RETURN_IF_ERROR(IsNode(graph, OperationType::MEAN, 1, 1, node, node_context)); auto mean_attr = absl::any_cast<MeanAttributes>(node_context->node->operation.attributes); if (mean_attr.dims != std::set<Axis>{Axis::CHANNELS}) { return absl::InternalError("Expected mean node with channels reduction."); } return absl::OkStatus(); } absl::Status IsReduceSumNode(const GraphFloat32& graph, Node* node, NodeContext* node_context) { RETURN_IF_ERROR( IsNode(graph, OperationType::REDUCE_SUM, 1, 1, node, node_context)); auto reduce_attr = std::any_cast<ReduceAttributes>(node_context->node->operation.attributes); if (reduce_attr.dims != std::set<Axis>{Axis::CHANNELS}) { return absl::InternalError( "Expected reduce_sum node with channels reduction."); } return absl::OkStatus(); } absl::Status IsMulNode(const GraphFloat32& graph, Node* node, NodeContext* node_context) { RETURN_IF_ERROR(IsNode(graph, OperationType::MUL, 2, 1, node, node_context)); if (node_context->inputs[0]->tensor.shape != node_context->inputs[1]->tensor.shape) { return absl::InternalError("Expected mul node with 2 equal tensors."); } return absl::OkStatus(); } absl::Status IsSliceNode(const GraphFloat32& graph, Node* node, NodeContext* node_context) { RETURN_IF_ERROR( IsNode(graph, OperationType::SLICE, 1, 1, node, node_context)); auto slice_attr = absl::any_cast<SliceAttributes>(node_context->node->operation.attributes); if (slice_attr.strides != BHWC(1, 1, 1, 1)) { return absl::InternalError("Not valid attributes in slice node."); } return absl::OkStatus(); } absl::Status IsConcatNode(const GraphFloat32& graph, Node* node, NodeContext* node_context) { RETURN_IF_ERROR( IsNode(graph, OperationType::CONCAT, -1, 1, node, node_context)); auto concat_attr = absl::any_cast<ConcatAttributes>( node_context->node->operation.attributes); if (concat_attr.axis != Axis::CHANNELS) { return absl::InternalError("Not valid attributes in concat node."); } return absl::OkStatus(); } absl::Status GetOffset(const GraphFloat32& graph, NodeId concat_input_node, NodeId second_commom_input_id, int* offset_x, int* offset_y, std::set<NodeId>* consumed_nodes) { NodeContext reduce_node, mul_node, slice_node; absl::Status status = IsMeanNode(graph, graph.FindProducer(concat_input_node), &reduce_node); if (!status.ok()) { RETURN_IF_ERROR(IsReduceSumNode( graph, graph.FindProducer(concat_input_node), &reduce_node)); } RETURN_IF_ERROR(IsMulNode( graph, graph.FindProducer(reduce_node.inputs[0]->id), &mul_node)); const ValueId slice_output_id = mul_node.inputs[0]->id == second_commom_input_id ? mul_node.inputs[1]->id : mul_node.inputs[0]->id; RETURN_IF_ERROR( IsSliceNode(graph, graph.FindProducer(slice_output_id), &slice_node)); auto slice_attr = absl::any_cast<SliceAttributes>(slice_node.node->operation.attributes); *offset_x = slice_attr.starts.w; *offset_y = slice_attr.starts.h; consumed_nodes->insert(reduce_node.node->id); consumed_nodes->insert(mul_node.node->id); consumed_nodes->insert(slice_node.node->id); return absl::OkStatus(); } } GPUOperation CreateConvPointwise(const OperationDef& definition, const ConvPointwiseAttributes& attr) { const int dst_channels = attr.offsets.size(); const int dst_depth = DivideRoundUp(dst_channels, 4); std::vector<int32_t> offsets_data(dst_depth * 2 * 4, 0); for (int i = 0; i < attr.offsets.size(); ++i) { offsets_data[i * 2 + 0] = attr.offsets[i].x; offsets_data[i * 2 + 1] = attr.offsets[i].y; } for (int i = attr.offsets.size(); i < offsets_data.size() / 2; ++i) { offsets_data[i * 2 + 0] = attr.offsets.back().x; offsets_data[i * 2 + 1] = attr.offsets.back().y; } GPUOperation op(definition); op.AddSrcTensor("src_tensor", definition.src_tensors[0]); op.AddSrcTensor("weights_tensor", definition.src_tensors[1]); op.AddDstTensor("dst_tensor", definition.dst_tensors[0]); op.code_ = GenerateCode(attr); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; TensorDescriptor desc = CreateConstantHWVec4TensorDescriptor( DataType::INT32, TensorStorageType::TEXTURE_2D, dst_depth * 2, 1, reinterpret_cast<uint8_t*>(offsets_data.data())); op.args_.AddObject("offsets", std::make_unique<TensorDescriptor>(desc)); return op; } absl::Status TryFusedPointwiseConv( const GraphFloat32& graph, NodeId first_node_id, CalculationsPrecision precision, const std::map<ValueId, TensorDescriptor>& tensor_descriptors, std::set<NodeId>* consumed_nodes, GPUOperationsSubgraph* gpu_subgraph) { NodeContext slice_node; RETURN_IF_ERROR( IsSliceNode(graph, graph.GetNode(first_node_id), &slice_node)); const auto& first_commom_input = slice_node.inputs[0]; auto slice_consumers = graph.FindConsumers(slice_node.outputs[0]->id); if (slice_consumers.size() != 1) { return absl::NotFoundError("FusedPointwiseConv not suitable."); } NodeContext mul_node; RETURN_IF_ERROR(IsMulNode(graph, slice_consumers[0], &mul_node)); const auto& second_commom_input = mul_node.inputs[0]->id == slice_node.outputs[0]->id ? mul_node.inputs[1] : mul_node.inputs[0]; auto mul_consumers = graph.FindConsumers(mul_node.outputs[0]->id); if (mul_consumers.size() != 1) { return absl::NotFoundError("FusedPointwiseConv not suitable."); } NodeContext reduce_node; bool mean = true; absl::Status status = IsMeanNode(graph, mul_consumers[0], &reduce_node); if (!status.ok()) { RETURN_IF_ERROR(IsReduceSumNode(graph, mul_consumers[0], &reduce_node)); mean = false; } auto reduce_consumers = graph.FindConsumers(reduce_node.outputs[0]->id); if (reduce_consumers.size() != 1) { return absl::NotFoundError("FusedPointwiseConv not suitable."); } NodeContext concat_node; RETURN_IF_ERROR(IsConcatNode(graph, reduce_consumers[0], &concat_node)); ConvPointwiseAttributes op_attr; op_attr.mean = mean; std::set<NodeId> temp_consumed_nodes; for (const auto& concat_input : concat_node.inputs) { int offset_x, offset_y; RETURN_IF_ERROR(GetOffset(graph, concat_input->id, second_commom_input->id, &offset_x, &offset_y, &temp_consumed_nodes)); op_attr.offsets.push_back(int2(offset_x, offset_y)); } consumed_nodes->insert(temp_consumed_nodes.begin(), temp_consumed_nodes.end()); consumed_nodes->insert(concat_node.node->id); OperationDef op_def; op_def.precision = precision; auto it = tensor_descriptors.find(second_commom_input->id); if (it != tensor_descriptors.end()) { op_def.src_tensors.push_back(it->second); } it = tensor_descriptors.find(first_commom_input->id); if (it != tensor_descriptors.end()) { op_def.src_tensors.push_back(it->second); } it = tensor_descriptors.find(concat_node.outputs[0]->id); if (it != tensor_descriptors.end()) { op_def.dst_tensors.push_back(it->second); } std::unique_ptr<GPUOperation>* gpu_op = InitSingleOpSubgraph({second_commom_input, first_commom_input}, {concat_node.outputs[0]}, gpu_subgraph); auto operation = CreateConvPointwise(op_def, op_attr); *gpu_op = std::make_unique<GPUOperation>(std::move(operation)); return absl::OkStatus(); } } }
#include "tensorflow/lite/delegates/gpu/common/tasks/special/conv_pointwise.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/precision.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/task/testing_util.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace cl { TEST_F(OpenCLOperationTest, SliceMulMeanConcat) { TestExecutionEnvironment* env = &exec_env_; TensorFloat32 src_tensor; src_tensor.shape = BHWC(1, 2, 1, 2); src_tensor.data = {3.0f, 4.0f, 5.0f, 6.0f}; TensorFloat32 weights_tensor; weights_tensor.shape = BHWC(1, 2, 1, 2); weights_tensor.data = {1.0f, 2.0f, 1.0f, 2.0f}; ConvPointwiseAttributes op_attr; op_attr.mean = true; op_attr.offsets.push_back(int2(0, 0)); for (auto precision : env->GetSupportedPrecisions()) { auto data_type = DeduceDataTypeFromPrecision(precision); for (auto storage : env->GetSupportedStorages(data_type)) { const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-2f; OperationDef op_def; op_def.precision = precision; op_def.src_tensors.push_back({data_type, storage, Layout::HWC}); op_def.src_tensors.push_back({data_type, storage, Layout::HWC}); op_def.dst_tensors.push_back({data_type, storage, Layout::HWC}); TensorFloat32 dst_tensor; GPUOperation operation = CreateConvPointwise(op_def, op_attr); ASSERT_OK(env->ExecuteGPUOperation( {src_tensor, weights_tensor}, std::make_unique<GPUOperation>(std::move(operation)), BHWC(1, 2, 1, 2), &dst_tensor)); ASSERT_OK(PointWiseNear({5.5f, 5.5f, 8.5f, 8.5f}, dst_tensor.data, eps)); } } } TEST_F(OpenCLOperationTest, SliceMulSumConcat) { TestExecutionEnvironment* env = &exec_env_; TensorFloat32 src_tensor; src_tensor.shape = BHWC(1, 2, 1, 2); src_tensor.data = {3.0f, 4.0f, 5.0f, 6.0f}; TensorFloat32 weights_tensor; weights_tensor.shape = BHWC(1, 2, 1, 2); weights_tensor.data = {1.0f, 2.0f, 1.0f, 2.0f}; ConvPointwiseAttributes op_attr; op_attr.mean = false; op_attr.offsets.push_back(int2(0, 0)); for (auto precision : env->GetSupportedPrecisions()) { auto data_type = DeduceDataTypeFromPrecision(precision); for (auto storage : env->GetSupportedStorages(data_type)) { const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-2f; OperationDef op_def; op_def.precision = precision; op_def.src_tensors.push_back({data_type, storage, Layout::HWC}); op_def.src_tensors.push_back({data_type, storage, Layout::HWC}); op_def.dst_tensors.push_back({data_type, storage, Layout::HWC}); TensorFloat32 dst_tensor; GPUOperation operation = CreateConvPointwise(op_def, op_attr); ASSERT_OK(env->ExecuteGPUOperation( {src_tensor, weights_tensor}, std::make_unique<GPUOperation>(std::move(operation)), BHWC(1, 2, 1, 2), &dst_tensor)); ASSERT_OK( PointWiseNear({11.0f, 11.0f, 17.0f, 17.0f}, dst_tensor.data, eps)); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/special/conv_pointwise.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/tasks/special/conv_pointwise_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3394c0a7-db8c-4a2f-8b1d-18e30532a010
cpp
tensorflow/tensorflow
sparse_to_dense
tensorflow/lite/kernels/sparse_to_dense.cc
tensorflow/lite/kernels/sparse_to_dense_test.cc
#include <stdint.h> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/op_macros.h" namespace tflite { namespace ops { namespace builtin { namespace sparse_to_dense { constexpr int kIndicesTensor = 0; constexpr int kOutputShapeTensor = 1; constexpr int kValueInputTensor = 2; constexpr int kDefaultValueTensor = 3; constexpr int kOutputTensor = 0; constexpr int kMaxDimensions = 4; template <typename T> TfLiteStatus Resize(TfLiteContext* context, const TfLiteTensor* output_shape, TfLiteTensor* output) { const int output_dimensions = NumElements(output_shape); TfLiteIntArray* output_shape_array = TfLiteIntArrayCreate(output_dimensions); for (int i = 0; i < output_dimensions; ++i) { output_shape_array->data[i] = GetTensorData<T>(output_shape)[i]; } return context->ResizeTensor(context, output, output_shape_array); } TfLiteStatus CheckDimensionsMatch(TfLiteContext* context, const TfLiteTensor* indices, const TfLiteTensor* output_shape, const TfLiteTensor* values) { switch (NumDimensions(indices)) { case 0: case 1: { if (NumDimensions(values) == 0) { TF_LITE_ENSURE_EQ(context, NumElements(indices), NumElements(values)); } TF_LITE_ENSURE_EQ(context, NumElements(output_shape), 1); break; } case 2: { TF_LITE_ENSURE_EQ(context, SizeOfDimension(indices, 1), NumElements(output_shape)); if (NumDimensions(values) == 0) TF_LITE_ENSURE_EQ(context, SizeOfDimension(indices, 0), NumElements(values)); break; } default: TF_LITE_KERNEL_LOG(context, "Wrong indices dimensions %d, should be less than 3.", NumDimensions(indices)); return kTfLiteError; } return kTfLiteOk; } template <typename T> TfLiteStatus GetIndicesVector(TfLiteContext* context, const TfLiteTensor* indices, const int num_indices, std::vector<std::vector<T>>* indices_vector) { switch (NumDimensions(indices)) { case 0: case 1: { const auto indices_data = GetTensorData<T>(indices); for (int i = 0; i < num_indices; ++i) { std::vector<T> index({0, 0, 0, indices_data[i]}); indices_vector->push_back(index); } break; } case 2: { const int true_dimensions = SizeOfDimension(indices, 1); TF_LITE_ENSURE(context, true_dimensions <= kMaxDimensions); for (int i = 0; i < num_indices; ++i) { std::vector<T> index; index.reserve(kMaxDimensions); for (int j = 0; j < kMaxDimensions - true_dimensions; ++j) { index.push_back(0); } for (int j = 0; j < true_dimensions; ++j) { index.push_back(GetTensorData<T>(indices)[i * true_dimensions + j]); } indices_vector->push_back(index); } break; } default: TF_LITE_KERNEL_LOG(context, "Indices dimensions problem, got %d dimensions", NumDimensions(indices)); return kTfLiteError; } return kTfLiteOk; } TfLiteStatus ResizeOutputShape(TfLiteContext* context, const TfLiteTensor* output_shape, TfLiteTensor* output) { if (output_shape->type == kTfLiteInt32) { return Resize<int32_t>(context, output_shape, output); } else if (output_shape->type == kTfLiteInt64) { return Resize<int64_t>(context, output_shape, output); } else { TF_LITE_KERNEL_LOG(context, "Dense shape type %d not supported.", output_shape->type); return kTfLiteError; } } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 4); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kIndicesTensor, &indices)); const TfLiteTensor* output_shape; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kOutputShapeTensor, &output_shape)); const TfLiteTensor* values; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueInputTensor, &values)); const TfLiteTensor* default_value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kDefaultValueTensor, &default_value)); TF_LITE_ASSERT(NumDimensions(indices) >= 0); TF_LITE_ENSURE(context, NumDimensions(indices) < 3); TF_LITE_ASSERT(NumDimensions(output_shape) >= 0); TF_LITE_ENSURE_EQ(context, NumDimensions(output_shape), 1); TF_LITE_ASSERT(NumDimensions(values) >= 0); TF_LITE_ENSURE(context, NumDimensions(values) < 2); TF_LITE_ENSURE_EQ(context, NumElements(default_value), 1); TF_LITE_ENSURE( context, indices->type == kTfLiteInt32 || indices->type == kTfLiteInt64); TF_LITE_ENSURE(context, output_shape->type == kTfLiteInt32 || output_shape->type == kTfLiteInt64); TF_LITE_ENSURE(context, values->type == kTfLiteInt32 || values->type == kTfLiteInt64 || values->type == kTfLiteInt8 || values->type == kTfLiteUInt8 || values->type == kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, values->type, default_value->type); TF_LITE_ENSURE_OK( context, CheckDimensionsMatch(context, indices, output_shape, values)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); output->type = values->type; TF_LITE_ENSURE_EQ(context, NumDimensions(output_shape), 1); if (!IsConstantOrPersistentTensor(output_shape)) { SetTensorToDynamic(output); return kTfLiteOk; } return ResizeOutputShape(context, output_shape, output); } template <typename T, typename TI> TfLiteStatus SparseToDenseImpl(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kIndicesTensor, &indices)); const TfLiteTensor* output_shape; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kOutputShapeTensor, &output_shape)); const TfLiteTensor* values; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueInputTensor, &values)); const TfLiteTensor* default_value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kDefaultValueTensor, &default_value)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_OK(context, ResizeOutputShape(context, output_shape, output)); } const int num_indices = SizeOfDimension(indices, 0); const bool value_is_scalar = NumDimensions(values) == 0; std::vector<std::vector<TI>> indices_vector; indices_vector.reserve(num_indices); TF_LITE_ENSURE_OK(context, GetIndicesVector<TI>(context, indices, num_indices, &indices_vector)); reference_ops::SparseToDense(indices_vector, GetTensorData<T>(values), *GetTensorData<T>(default_value), value_is_scalar, GetTensorShape(output), GetTensorData<T>(output)); return kTfLiteOk; } template <typename T> TfLiteStatus EvalForIndexType(TfLiteContext* context, TfLiteNode* node, const TfLiteTensor* indices) { switch (indices->type) { case kTfLiteInt32: { return SparseToDenseImpl<T, int32_t>(context, node); } case kTfLiteInt64: { return SparseToDenseImpl<T, int64_t>(context, node); } default: TF_LITE_KERNEL_LOG( context, "Indice type %s is currently not supported by sparse to dense.", TfLiteTypeGetName(indices->type)); return kTfLiteError; } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kIndicesTensor, &indices)); const TfLiteTensor* values; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueInputTensor, &values)); switch (values->type) { case kTfLiteFloat32: return EvalForIndexType<float>(context, node, indices); case kTfLiteInt32: return EvalForIndexType<int32_t>(context, node, indices); case kTfLiteInt64: return EvalForIndexType<int64_t>(context, node, indices); case kTfLiteInt8: return EvalForIndexType<int8_t>(context, node, indices); case kTfLiteUInt8: return EvalForIndexType<uint8_t>(context, node, indices); default: TF_LITE_KERNEL_LOG( context, "Value type %s is currently not supported by sparse to dense.", TfLiteTypeGetName(values->type)); return kTfLiteError; } } } TfLiteRegistration* Register_SPARSE_TO_DENSE() { static TfLiteRegistration r = {nullptr, nullptr, sparse_to_dense::Prepare, sparse_to_dense::Eval}; return &r; } } } }
#include <stdint.h> #include <initializer_list> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; enum class TestType { kPersistentRo = 0, kConstant = 1, kDynamic = 2, }; template <typename T> class SparseToDenseOpModel : public SingleOpModel { public: SparseToDenseOpModel(std::initializer_list<int> indices_shape, std::initializer_list<int> output_shape_shape, std::initializer_list<int> values_shape, T default_value, TensorType tensor_index_type, TensorType tensor_input_type, std::initializer_list<int> output_shape_data, TestType test_type) : test_type_(test_type) { indices_ = AddInput(tensor_index_type); output_shape_ = test_type == TestType::kConstant ? AddConstInput(TensorType_INT32, output_shape_data, output_shape_shape) : AddInput(TensorType_INT32); values_ = AddInput(tensor_input_type); default_value_ = AddInput(tensor_input_type); output_ = AddOutput(tensor_input_type); SetBuiltinOp(BuiltinOperator_SPARSE_TO_DENSE, BuiltinOptions_SparseToDenseOptions, CreateSparseToDenseOptions(builder_, false).Union()); BuildInterpreter({indices_shape, output_shape_shape, values_shape, {1}}, -1, false, true, false); if (test_type == TestType::kPersistentRo) { interpreter_->tensor(output_shape_)->allocation_type = kTfLitePersistentRo; interpreter_->ResizeInputTensorStrict(output_shape_, output_shape_shape); PopulateTensor<int32_t>(output_shape_, output_shape_data); } AllocateAndDelegate(true); PopulateTensor<T>(default_value_, {default_value}); } int indices() { return indices_; } int output_shape() { return output_shape_; } int values() { return values_; } bool IsDynamicOutput() { const TfLiteTensor* tensor = interpreter_->tensor(output_); return tensor->allocation_type == kTfLiteDynamic; } std::vector<T> GetOutput() { return ExtractVector<T>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } private: int indices_; int output_shape_; int values_; int default_value_; int output_; TestType test_type_; }; class SparseToDenseOpModelTest : public ::testing::TestWithParam<TestType> {}; TEST_P(SparseToDenseOpModelTest, ZeroDimensionTest) { SparseToDenseOpModel<float> m({1}, {1}, {1}, 0, TensorType_INT32, TensorType_FLOAT32, {5}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {3}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {5}); } m.PopulateTensor<float>(m.values(), {7}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT(m.GetOutput(), ElementsAreArray({0, 0, 0, 7, 0})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({5})); } TEST_P(SparseToDenseOpModelTest, OneDimensionTest) { SparseToDenseOpModel<float> m({3}, {1}, {3}, 0, TensorType_INT32, TensorType_FLOAT32, {7}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {1, 3, 5}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {7}); } m.PopulateTensor<float>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT(m.GetOutput(), ElementsAreArray({0, 2, 0, 4, 0, 6, 0})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({7})); } TEST_P(SparseToDenseOpModelTest, TwoDimensionsTest) { SparseToDenseOpModel<float> m({3, 3}, {3}, {3}, 0, TensorType_INT32, TensorType_FLOAT32, {3, 3, 3}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<float>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } TEST_P(SparseToDenseOpModelTest, Int64IndexTest) { SparseToDenseOpModel<float> m({3, 3}, {3}, {3}, -1, TensorType_INT64, TensorType_FLOAT32, {3, 3, 3}, GetParam()); m.PopulateTensor<int64_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<float>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT( m.GetOutput(), ElementsAreArray({2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } TEST_P(SparseToDenseOpModelTest, DefaultValueTest) { SparseToDenseOpModel<float> m({3, 3}, {3}, {3}, -1, TensorType_INT32, TensorType_FLOAT32, {3, 3, 3}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<float>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT( m.GetOutput(), ElementsAreArray({2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } TEST_P(SparseToDenseOpModelTest, Int32ValueTest) { SparseToDenseOpModel<int32_t> m({3, 3}, {3}, {3}, -1, TensorType_INT32, TensorType_INT32, {3, 3, 3}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<int32_t>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT( m.GetOutput(), ElementsAreArray({2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } TEST_P(SparseToDenseOpModelTest, Int64ValueTest) { SparseToDenseOpModel<int64_t> m({3, 3}, {3}, {3}, -1, TensorType_INT32, TensorType_INT64, {3, 3, 3}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<int64_t>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT( m.GetOutput(), ElementsAreArray({2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } TEST_P(SparseToDenseOpModelTest, Int8ValueTest) { SparseToDenseOpModel<int8_t> m({3, 3}, {3}, {3}, -1, TensorType_INT32, TensorType_INT8, {3, 3, 3}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<int8_t>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT( m.GetOutput(), ElementsAreArray({2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 4, -1, -1, 6, -1, -1, -1, -1, -1, -1, -1})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } TEST_P(SparseToDenseOpModelTest, UInt8ValueTest) { SparseToDenseOpModel<uint8_t> m({3, 3}, {3}, {3}, 1, TensorType_INT32, TensorType_UINT8, {3, 3, 3}, GetParam()); m.PopulateTensor<int32_t>(m.indices(), {0, 0, 0, 1, 2, 1, 2, 0, 1}); if (GetParam() != TestType::kConstant) { m.PopulateTensor<int32_t>(m.output_shape(), {3, 3, 3}); } m.PopulateTensor<uint8_t>(m.values(), {2, 4, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); ASSERT_EQ(m.IsDynamicOutput(), GetParam() == TestType::kDynamic); EXPECT_THAT(m.GetOutput(), ElementsAreArray({2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1})); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 3})); } INSTANTIATE_TEST_SUITE_P(SparseToDenseOpModelTest, SparseToDenseOpModelTest, ::testing::Values(TestType::kPersistentRo, TestType::kConstant, TestType::kDynamic)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/sparse_to_dense.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/sparse_to_dense_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b007e8c5-3217-4f91-b2a8-1b4f0950743e
cpp
tensorflow/tensorflow
pooling
tensorflow/lite/delegates/gpu/gl/kernels/pooling.cc
tensorflow/lite/delegates/gpu/cl/kernels/pooling_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/pooling.h" #include <algorithm> #include <any> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { absl::Status GenerateMaxPoolingCode(const Pooling2DAttributes& attr, const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { if (attr.padding.prepended.h > attr.kernel.h || attr.padding.prepended.w > attr.kernel.w) { return absl::InvalidArgumentError("Padding is bigger than kernel."); } std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"stride", int2(attr.strides.w, attr.strides.h)}, {"offset", int2(attr.padding.prepended.w, attr.padding.prepended.h)}, {"window_h", attr.kernel.h}, {"window_w", attr.kernel.w}, }; std::string source = R"( const highp float inf = -(1.0f / 0.0f); value_0 = vec4(inf);)"; if (attr.output_indices) { source += R"( ivec4 value_1; )"; } source += R"( ivec2 base_coord = gid.xy * $stride$ - $offset$; for (int a = 0; a < $window_h$; ++a) { for (int b = 0; b < $window_w$; ++b) { ivec2 coord = base_coord + ivec2(b, a); if (coord.x < 0 || coord.y < 0 || coord.x >= $input_data_0_w$ || coord.y >= $input_data_0_h$) { continue; } vec4 input_ = $input_data_0[coord.x, coord.y, gid.z]$;)"; if (attr.output_indices) { source += R"( int window_index = a * $window_w$ + b; if (input_.x > value_0.x) value_1.x = window_index; if (input_.y > value_0.y) value_1.y = window_index; if (input_.z > value_0.z) value_1.z = window_index; if (input_.w > value_0.w) value_1.w = window_index;)"; } source += R"( value_0 = max(value_0, input_); } } )"; *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } absl::Status GenerateAveragePoolingCode( const Pooling2DAttributes& attr, const NodeShader::GenerationContext& ctx, GeneratedCode* generated_code) { std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"stride", int2(attr.strides.w, attr.strides.h)}, {"offset", int2(attr.padding.prepended.w, attr.padding.prepended.h)}, {"window_h", attr.kernel.h}, {"window_w", attr.kernel.w}, }; auto x_in_bounds = [input_width = ctx.input_shapes[0][2], kernel_width = attr.kernel.w](int64_t x) -> bool { return 0 <= x && x + kernel_width <= input_width; }; auto y_in_bounds = [input_height = ctx.input_shapes[0][1], kernel_height = attr.kernel.h](int64_t y) -> bool { return 0 <= y && y + kernel_height <= input_height; }; const int64_t output_shape_max_y = ctx.output_shapes[0][1] - 1; const int64_t output_shape_max_x = ctx.output_shapes[0][2] - 1; const int64_t base_x = -attr.padding.prepended.w; const int64_t base_y = -attr.padding.prepended.h; const bool bounds_check_necessary = !(x_in_bounds(base_x) && x_in_bounds(base_x + output_shape_max_x * attr.strides.w) && y_in_bounds(base_y) && y_in_bounds(base_y + output_shape_max_y * attr.strides.h)); std::string source = bounds_check_necessary ? R"( int window_size = 0; for (int a = 0; a < $window_h$; ++a) { for (int b = 0; b < $window_w$; ++b) { ivec2 coord = gid.xy * $stride$ - $offset$ + ivec2(b, a); if (coord.x >= 0 && coord.y >= 0 && coord.x < $input_data_0_w$ && coord.y < $input_data_0_h$) { value_0 += $input_data_0[coord.x, coord.y, gid.z]$; window_size++; } } } value_0 /= float(window_size); )" : R"( for (int a = 0; a < $window_h$; ++a) { for (int b = 0; b < $window_w$; ++b) { ivec2 coord = gid.xy * $stride$ - $offset$ + ivec2(b, a); value_0 += $input_data_0[coord.x, coord.y, gid.z]$; } } value_0 /= float($window_h$ * $window_w$); )"; *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } class Pooling : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { const auto& attr = std::any_cast<const Pooling2DAttributes&>(ctx.op_attr); switch (attr.type) { case PoolingType::AVERAGE: return GenerateAveragePoolingCode(attr, ctx, generated_code); case PoolingType::MAX: return GenerateMaxPoolingCode(attr, ctx, generated_code); default: return absl::InvalidArgumentError("Incorrect attributes' type."); } } }; } std::unique_ptr<NodeShader> NewPoolingNodeShader() { return std::make_unique<Pooling>(); } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/pooling_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, AveragePooling) { auto status = AveragePoolingTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, AveragePoolingNonEmptyPadding) { auto status = AveragePoolingNonEmptyPaddingTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, MaxPooling) { auto status = MaxPoolingTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, MaxPoolingIndices) { auto status = MaxPoolingIndicesTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/pooling.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/pooling_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
986d4332-9393-4e1e-9d83-25ea2e3f208e
cpp
tensorflow/tensorflow
cpu_info
third_party/xla/third_party/tsl/tsl/platform/cpu_info.cc
third_party/xla/third_party/tsl/tsl/platform/cpu_info_test.cc
#include "tsl/platform/cpu_info.h" #include "absl/base/call_once.h" #include "tsl/platform/logging.h" #include "tsl/platform/platform.h" #include "tsl/platform/types.h" #if defined(PLATFORM_IS_X86) #include <mutex> #endif #if defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) #include <sys/auxv.h> #ifndef HWCAP_CPUID #define HWCAP_CPUID (1 << 11) #endif #include <fstream> #endif #ifdef PLATFORM_IS_X86 #ifdef PLATFORM_WINDOWS #define GETCPUID(a, b, c, d, a_inp, c_inp) \ { \ int cpu_info[4] = {-1}; \ __cpuidex(cpu_info, a_inp, c_inp); \ a = cpu_info[0]; \ b = cpu_info[1]; \ c = cpu_info[2]; \ d = cpu_info[3]; \ } #else #define GETCPUID(a, b, c, d, a_inp, c_inp) \ asm("mov %%rbx, %%rdi\n" \ "cpuid\n" \ "xchg %%rdi, %%rbx\n" \ : "=a"(a), "=D"(b), "=c"(c), "=d"(d) \ : "a"(a_inp), "2"(c_inp)) #endif #endif namespace tsl { namespace port { namespace { #ifdef PLATFORM_IS_X86 class CPUIDInfo; void InitCPUIDInfo(); CPUIDInfo *cpuid = nullptr; #ifdef PLATFORM_WINDOWS int GetXCR0EAX() { return _xgetbv(0); } #else int GetXCR0EAX() { int eax, edx; asm("XGETBV" : "=a"(eax), "=d"(edx) : "c"(0)); return eax; } #endif class CPUIDInfo { public: CPUIDInfo() : have_adx_(0), have_aes_(0), have_amx_bf16_(0), have_amx_fp16_(0), have_amx_int8_(0), have_amx_tile_(0), have_avx_(0), have_avx2_(0), have_avx512f_(0), have_avx512cd_(0), have_avx512er_(0), have_avx512pf_(0), have_avx512vl_(0), have_avx512bw_(0), have_avx512dq_(0), have_avx512vbmi_(0), have_avx512ifma_(0), have_avx512_4vnniw_(0), have_avx512_4fmaps_(0), have_avx512_bf16_(0), have_avx512_fp16_(0), have_avx512_vnni_(0), have_avx_vnni_(0), have_avx_vnni_int8_(0), have_avx_ne_convert_(0), have_bmi1_(0), have_bmi2_(0), have_cmov_(0), have_cmpxchg16b_(0), have_cmpxchg8b_(0), have_f16c_(0), have_fma_(0), have_mmx_(0), have_pclmulqdq_(0), have_popcnt_(0), have_prefetchw_(0), have_prefetchwt1_(0), have_rdrand_(0), have_rdseed_(0), have_smap_(0), have_sse_(0), have_sse2_(0), have_sse3_(0), have_sse4_1_(0), have_sse4_2_(0), have_ssse3_(0), have_hypervisor_(0) {} static void Initialize() { CHECK(cpuid == nullptr) << __func__ << " ran more than once"; cpuid = new CPUIDInfo; uint32 eax, ebx, ecx, edx; GETCPUID(eax, ebx, ecx, edx, 0, 0); cpuid->vendor_str_.append(reinterpret_cast<char *>(&ebx), 4); cpuid->vendor_str_.append(reinterpret_cast<char *>(&edx), 4); cpuid->vendor_str_.append(reinterpret_cast<char *>(&ecx), 4); GETCPUID(eax, ebx, ecx, edx, 1, 0); cpuid->model_num_ = static_cast<int>((eax >> 4) & 0xf); cpuid->family_ = static_cast<int>((eax >> 8) & 0xf); cpuid->have_aes_ = (ecx >> 25) & 0x1; cpuid->have_cmov_ = (edx >> 15) & 0x1; cpuid->have_cmpxchg16b_ = (ecx >> 13) & 0x1; cpuid->have_cmpxchg8b_ = (edx >> 8) & 0x1; cpuid->have_mmx_ = (edx >> 23) & 0x1; cpuid->have_pclmulqdq_ = (ecx >> 1) & 0x1; cpuid->have_popcnt_ = (ecx >> 23) & 0x1; cpuid->have_rdrand_ = (ecx >> 30) & 0x1; cpuid->have_sse2_ = (edx >> 26) & 0x1; cpuid->have_sse3_ = ecx & 0x1; cpuid->have_sse4_1_ = (ecx >> 19) & 0x1; cpuid->have_sse4_2_ = (ecx >> 20) & 0x1; cpuid->have_sse_ = (edx >> 25) & 0x1; cpuid->have_ssse3_ = (ecx >> 9) & 0x1; cpuid->have_hypervisor_ = (ecx >> 31) & 1; const uint64 xcr0_xmm_mask = 0x2; const uint64 xcr0_ymm_mask = 0x4; const uint64 xcr0_maskreg_mask = 0x20; const uint64 xcr0_zmm0_15_mask = 0x40; const uint64 xcr0_zmm16_31_mask = 0x80; const uint64 xcr0_avx_mask = xcr0_xmm_mask | xcr0_ymm_mask; const uint64 xcr0_avx512_mask = xcr0_avx_mask | xcr0_maskreg_mask | xcr0_zmm0_15_mask | xcr0_zmm16_31_mask; const bool have_avx = ((ecx >> 27) & 0x1) && ((GetXCR0EAX() & xcr0_avx_mask) == xcr0_avx_mask) && ((ecx >> 28) & 0x1); const bool have_avx512 = ((ecx >> 27) & 0x1) && ((GetXCR0EAX() & xcr0_avx512_mask) == xcr0_avx512_mask); cpuid->have_avx_ = have_avx; cpuid->have_fma_ = have_avx && ((ecx >> 12) & 0x1); cpuid->have_f16c_ = have_avx && ((ecx >> 29) & 0x1); GETCPUID(eax, ebx, ecx, edx, 7, 0); const uint32 kMaxNumSubLeaves = eax; cpuid->have_adx_ = (ebx >> 19) & 0x1; cpuid->have_avx2_ = have_avx && ((ebx >> 5) & 0x1); cpuid->have_bmi1_ = (ebx >> 3) & 0x1; cpuid->have_bmi2_ = (ebx >> 8) & 0x1; cpuid->have_prefetchwt1_ = ecx & 0x1; cpuid->have_rdseed_ = (ebx >> 18) & 0x1; cpuid->have_smap_ = (ebx >> 20) & 0x1; cpuid->have_avx512f_ = have_avx512 && ((ebx >> 16) & 0x1); cpuid->have_avx512cd_ = have_avx512 && ((ebx >> 28) & 0x1); cpuid->have_avx512er_ = have_avx512 && ((ebx >> 27) & 0x1); cpuid->have_avx512pf_ = have_avx512 && ((ebx >> 26) & 0x1); cpuid->have_avx512vl_ = have_avx512 && ((ebx >> 31) & 0x1); cpuid->have_avx512bw_ = have_avx512 && ((ebx >> 30) & 0x1); cpuid->have_avx512dq_ = have_avx512 && ((ebx >> 17) & 0x1); cpuid->have_avx512vbmi_ = have_avx512 && ((ecx >> 1) & 0x1); cpuid->have_avx512ifma_ = have_avx512 && ((ebx >> 21) & 0x1); cpuid->have_avx512_4vnniw_ = have_avx512 && ((edx >> 2) & 0x1); cpuid->have_avx512_4fmaps_ = have_avx512 && ((edx >> 3) & 0x1); cpuid->have_avx512_vnni_ = have_avx512 && ((ecx >> 11) & 0x1); cpuid->have_amx_tile_ = (edx >> 24) & 0x1; cpuid->have_amx_int8_ = (edx >> 25) & 0x1; cpuid->have_amx_bf16_ = (edx >> 22) & 0x1; cpuid->have_avx512_fp16_ = have_avx512 && ((edx >> 23) & 0x1); if (kMaxNumSubLeaves >= 1) { GETCPUID(eax, ebx, ecx, edx, 7, 1); cpuid->have_avx_vnni_ = (eax >> 4) & 0x1; cpuid->have_avx512_bf16_ = have_avx512 && ((eax >> 5) & 0x1); cpuid->have_amx_fp16_ = (eax >> 21) & 0x1; cpuid->have_avx_vnni_int8_ = (edx >> 4) & 0x1; cpuid->have_avx_ne_convert_ = (edx >> 5) & 0x1; } } static bool TestFeature(CPUFeature feature) { InitCPUIDInfo(); switch (feature) { case ADX: return cpuid->have_adx_; case AES: return cpuid->have_aes_; case AMX_BF16: return cpuid->have_amx_bf16_; case AMX_FP16: return cpuid->have_amx_fp16_; case AMX_INT8: return cpuid->have_amx_int8_; case AMX_TILE: return cpuid->have_amx_tile_; case AVX2: return cpuid->have_avx2_; case AVX: return cpuid->have_avx_; case AVX512F: return cpuid->have_avx512f_; case AVX512CD: return cpuid->have_avx512cd_; case AVX512PF: return cpuid->have_avx512pf_; case AVX512ER: return cpuid->have_avx512er_; case AVX512VL: return cpuid->have_avx512vl_; case AVX512BW: return cpuid->have_avx512bw_; case AVX512DQ: return cpuid->have_avx512dq_; case AVX512VBMI: return cpuid->have_avx512vbmi_; case AVX512IFMA: return cpuid->have_avx512ifma_; case AVX512_4VNNIW: return cpuid->have_avx512_4vnniw_; case AVX512_4FMAPS: return cpuid->have_avx512_4fmaps_; case AVX512_BF16: return cpuid->have_avx512_bf16_; case AVX512_FP16: return cpuid->have_avx512_fp16_; case AVX512_VNNI: return cpuid->have_avx512_vnni_; case AVX_VNNI: return cpuid->have_avx_vnni_; case AVX_VNNI_INT8: return cpuid->have_avx_vnni_int8_; case AVX_NE_CONVERT: return cpuid->have_avx_ne_convert_; case BMI1: return cpuid->have_bmi1_; case BMI2: return cpuid->have_bmi2_; case CMOV: return cpuid->have_cmov_; case CMPXCHG16B: return cpuid->have_cmpxchg16b_; case CMPXCHG8B: return cpuid->have_cmpxchg8b_; case F16C: return cpuid->have_f16c_; case FMA: return cpuid->have_fma_; case MMX: return cpuid->have_mmx_; case PCLMULQDQ: return cpuid->have_pclmulqdq_; case POPCNT: return cpuid->have_popcnt_; case PREFETCHW: return cpuid->have_prefetchw_; case PREFETCHWT1: return cpuid->have_prefetchwt1_; case RDRAND: return cpuid->have_rdrand_; case RDSEED: return cpuid->have_rdseed_; case SMAP: return cpuid->have_smap_; case SSE2: return cpuid->have_sse2_; case SSE3: return cpuid->have_sse3_; case SSE4_1: return cpuid->have_sse4_1_; case SSE4_2: return cpuid->have_sse4_2_; case SSE: return cpuid->have_sse_; case SSSE3: return cpuid->have_ssse3_; case HYPERVISOR: return cpuid->have_hypervisor_; default: break; } return false; } string vendor_str() const { return vendor_str_; } int family() const { return family_; } int model_num() { return model_num_; } private: int have_adx_ : 1; int have_aes_ : 1; int have_amx_bf16_ : 1; int have_amx_fp16_ : 1; int have_amx_int8_ : 1; int have_amx_tile_ : 1; int have_avx_ : 1; int have_avx2_ : 1; int have_avx512f_ : 1; int have_avx512cd_ : 1; int have_avx512er_ : 1; int have_avx512pf_ : 1; int have_avx512vl_ : 1; int have_avx512bw_ : 1; int have_avx512dq_ : 1; int have_avx512vbmi_ : 1; int have_avx512ifma_ : 1; int have_avx512_4vnniw_ : 1; int have_avx512_4fmaps_ : 1; int have_avx512_bf16_ : 1; int have_avx512_fp16_ : 1; int have_avx512_vnni_ : 1; int have_avx_vnni_ : 1; int have_avx_vnni_int8_ : 1; int have_avx_ne_convert_ : 1; int have_bmi1_ : 1; int have_bmi2_ : 1; int have_cmov_ : 1; int have_cmpxchg16b_ : 1; int have_cmpxchg8b_ : 1; int have_f16c_ : 1; int have_fma_ : 1; int have_mmx_ : 1; int have_pclmulqdq_ : 1; int have_popcnt_ : 1; int have_prefetchw_ : 1; int have_prefetchwt1_ : 1; int have_rdrand_ : 1; int have_rdseed_ : 1; int have_smap_ : 1; int have_sse_ : 1; int have_sse2_ : 1; int have_sse3_ : 1; int have_sse4_1_ : 1; int have_sse4_2_ : 1; int have_ssse3_ : 1; int have_hypervisor_ : 1; string vendor_str_; int family_; int model_num_; }; absl::once_flag cpuid_once_flag; void InitCPUIDInfo() { absl::call_once(cpuid_once_flag, CPUIDInfo::Initialize); } #endif #if defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) class CPUIDInfo; void InitCPUIDInfo(); CPUIDInfo *cpuid = nullptr; class CPUIDInfo { public: CPUIDInfo() : implementer_(0), variant_(0), cpunum_(0), is_arm_neoverse_v1_(0), is_arm_neoverse_n1_(0) {} static void Initialize() { if (cpuid != nullptr) return; cpuid = new CPUIDInfo; if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) { return; } int present_cpu = -1; #ifndef PLATFORM_WINDOWS std::ifstream CPUspresent; CPUspresent.open("/sys/devices/system/cpu/present", std::ios::in); if (CPUspresent.is_open()) { std::string line; if (static_cast<bool>(getline(CPUspresent, line))) { auto ending = line.end(); for (auto i = line.begin(); i < line.end(); ++i) { if (*i == '-' || *i == ',') { ending = i; break; } } line.erase(ending, line.end()); present_cpu = std::stoi(line); } } #endif if (present_cpu == -1) { return; } #ifndef PLATFORM_WINDOWS std::stringstream str; str << "/sys/devices/system/cpu/cpu" << present_cpu << "/regs/identification/midr_el1"; std::ifstream midr_el1_file(str.str(), std::ios::in); if (midr_el1_file.is_open()) { std::string line; if (static_cast<bool>(getline(midr_el1_file, line))) { uint32 midr_el1 = std::stoul(line, nullptr, 16); cpuid->implementer_ = (midr_el1 >> 24) & 0xFF; cpuid->variant_ = (midr_el1 >> 20) & 0xF; cpuid->cpunum_ = (midr_el1 >> 4) & 0xFFF; if (cpuid->implementer_ == 0x41) { switch (cpuid->cpunum_) { case 0xd40: cpuid->is_arm_neoverse_v1_ = 1; break; case 0xd0c: cpuid->is_arm_neoverse_n1_ = 1; break; default: break; } } } } #endif } int implementer() const { return implementer_; } int cpunum() const { return cpunum_; } static bool TestAarch64CPU(Aarch64CPU cpu) { InitCPUIDInfo(); switch (cpu) { case ARM_NEOVERSE_V1: return cpuid->is_arm_neoverse_v1_; default: return 0; } } private: int implementer_; int variant_; int cpunum_; int is_arm_neoverse_v1_; int is_arm_neoverse_n1_; }; absl::once_flag cpuid_once_flag; void InitCPUIDInfo() { absl::call_once(cpuid_once_flag, CPUIDInfo::Initialize); } #endif } bool TestCPUFeature(CPUFeature feature) { #ifdef PLATFORM_IS_X86 return CPUIDInfo::TestFeature(feature); #else return false; #endif } bool TestAarch64CPU(Aarch64CPU cpu) { #if defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) return CPUIDInfo::TestAarch64CPU(cpu); #else return false; #endif } std::string CPUVendorIDString() { #ifdef PLATFORM_IS_X86 InitCPUIDInfo(); return cpuid->vendor_str(); #else return ""; #endif } int CPUFamily() { #ifdef PLATFORM_IS_X86 InitCPUIDInfo(); return cpuid->family(); #elif defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) InitCPUIDInfo(); return cpuid->implementer(); #else return 0; #endif } int CPUModelNum() { #ifdef PLATFORM_IS_X86 InitCPUIDInfo(); return cpuid->model_num(); #elif defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) InitCPUIDInfo(); return cpuid->cpunum(); #else return 0; #endif } int CPUIDNumSMT() { #ifdef PLATFORM_IS_X86 uint32 eax, ebx, ecx, edx; GETCPUID(eax, ebx, ecx, edx, 0, 0); if (eax >= 11) { GETCPUID(eax, ebx, ecx, edx, 11, 0); if (ebx != 0 && ((ecx & 0xff00) >> 8) == 1) { return 1 << (eax & 0x1f); } } #endif return 0; } } }
#include "tsl/platform/cpu_info.h" #include "tsl/platform/test.h" namespace tsl { TEST(CPUInfo, CommonX86CPU) { if (port::TestCPUFeature(port::CPUFeature::SSE)) { EXPECT_TRUE(port::IsX86CPU()); } } TEST(CPUInfo, Aarch64NeoverseV1CPU) { if (port::TestAarch64CPU(port::Aarch64CPU::ARM_NEOVERSE_V1)) { EXPECT_TRUE(port::IsAarch64CPU()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cpu_info.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cpu_info_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fba84131-3d0e-4f17-933c-2161333e37ff
cpp
tensorflow/tensorflow
dynamic_stitch_op
tensorflow/compiler/tf2xla/kernels/dynamic_stitch_op.cc
tensorflow/core/kernels/dynamic_stitch_op_test.cc
#include <algorithm> #include <vector> #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal_util.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" namespace tensorflow { namespace { class DynamicStitchOp : public XlaOpKernel { public: explicit DynamicStitchOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES( ctx, ctx->num_inputs() > 0, errors::InvalidArgument("DynamicStitchOp: Must have some inputs")); OP_REQUIRES(ctx, ctx->num_inputs() % 2 == 0, errors::InvalidArgument( "DynamicStitchOp: Must have even number of arguments")); const int n = ctx->num_inputs() / 2; const DataType dt = ctx->input_type(n); DataTypeVector expected; for (int i = 0; i < n; i++) { expected.push_back(DT_INT32); } for (int i = 0; i < n; i++) { expected.push_back(dt); } OP_REQUIRES_OK(ctx, ctx->MatchSignature(expected, {dt})); } void Compile(XlaOpKernelContext* ctx) override { std::vector<xla::Literal> indices_input; OP_REQUIRES_OK(ctx, ctx->ConstantInputList("indices", &indices_input)); std::vector<xla::XlaOp> data; std::vector<TensorShape> data_shapes; OP_REQUIRES_OK(ctx, ctx->InputList("data", &data, &data_shapes)); std::vector<xla::Literal> indices(indices_input.size()); const TensorShape& data0_shape = data_shapes[0]; TensorShape indices0_shape; OP_REQUIRES_OK( ctx, XLAShapeToTensorShape(indices_input[0].shape(), &indices0_shape)); for (int input_num = 0; input_num < indices_input.size(); input_num++) { TensorShape indices_shape; OP_REQUIRES_OK(ctx, XLAShapeToTensorShape(indices_input[input_num].shape(), &indices_shape)); TensorShape& data_shape = data_shapes[input_num]; if (!TensorShapeUtils::StartsWith(data_shape, indices_shape)) { for (int64_t i = 0; i < indices_shape.dims(); ++i) { data_shape.set_dim(i, indices_shape.dim_size(i)); data[input_num] = xla::SliceInDim(data[input_num], 0, indices_shape.dim_size(i), 1, i); } } OP_REQUIRES( ctx, TensorShapeUtils::StartsWith(data_shape, indices_shape), errors::InvalidArgument("data[", input_num, "].shape = ", data_shape.DebugString(), " does not start with indices[", input_num, "].shape = ", indices_shape.DebugString())); OP_REQUIRES( ctx, input_num == 0 || SameExtraShape(data0_shape, indices0_shape, data_shape, indices_shape), errors::InvalidArgument( "Need data[0].shape[", indices0_shape.dims(), ":] = data[", input_num, "].shape[", indices_shape.dims(), ":], got data[0].shape = ", data0_shape.DebugString(), ", data[", input_num, "].shape = ", data_shape.DebugString(), ", indices[0].shape = ", indices0_shape.DebugString(), ", indices[", input_num, "].shape = ", indices_shape.DebugString())); OP_REQUIRES_OK(ctx, XlaHelpers::ReshapeLiteral(indices_input[input_num], {indices_shape.num_elements()}, &indices[input_num])); } int max_index = -1; for (int input_num = 0; input_num < indices.size(); input_num++) { for (int i = 0; i < indices[input_num].shape().dimensions(0); ++i) { max_index = std::max(max_index, indices[input_num].Get<int>({i})); } } int number_of_indices = max_index + 1; int64_t result_rank = 1 + data0_shape.dims() - indices0_shape.dims(); if (number_of_indices == 0) { std::vector<int64_t> result_shape(result_rank); for (int d = indices0_shape.dims(); d < data0_shape.dims(); d++) { result_shape[d - indices0_shape.dims() + 1] = data0_shape.dim_size(d); } xla::PrimitiveType element_type = ctx->input_xla_type(ctx->num_inputs() - 1); xla::Literal empty_literal = xla::Literal::CreateFromShape( xla::ShapeUtil::MakeShape(element_type, result_shape)); ctx->SetOutput(0, xla::ConstantLiteral(ctx->builder(), empty_literal)); return; } std::vector<int32> src_input_vector(number_of_indices); std::vector<int32> src_slice_vector(number_of_indices); std::vector<bool> src_index_used(number_of_indices); int index_used_count = 0; for (int input_num = 0; input_num < indices.size(); input_num++) { for (int i = 0; i < indices[input_num].shape().dimensions(0); ++i) { int index = indices[input_num].Get<int>({i}); OP_REQUIRES( ctx, index >= 0, errors::InvalidArgument("indices[", index, "] is out of range")); src_input_vector[index] = input_num; src_slice_vector[index] = i; if (!src_index_used[index]) { src_index_used[index] = true; ++index_used_count; } } } OP_REQUIRES(ctx, index_used_count == number_of_indices, errors::InvalidArgument("not all indices are used")); std::vector<xla::XlaOp> input(indices.size()); for (int input_num = 0; input_num < indices.size(); input_num++) { TensorShape new_shape; new_shape.AddDim(indices[input_num].shape().dimensions(0)); for (int d = indices0_shape.dims(); d < data0_shape.dims(); d++) { new_shape.AddDim(data0_shape.dim_size(d)); } auto handle = data[input_num]; if (new_shape == data_shapes[input_num]) { input[input_num] = handle; } else { input[input_num] = xla::Reshape(handle, new_shape.dim_sizes()); } } std::vector<int64_t> slice_start(result_rank); std::vector<int64_t> slice_limit(result_rank); std::vector<int64_t> stride(result_rank, 1); for (int d = indices0_shape.dims(); d < data0_shape.dims(); d++) { slice_limit[1 + d - indices0_shape.dims()] = data0_shape.dim_size(d); } std::vector<xla::XlaOp> to_concat(number_of_indices); for (int index_num = 0; index_num < number_of_indices; index_num++) { const auto& expression = input[src_input_vector[index_num]]; slice_start[0] = src_slice_vector[index_num]; slice_limit[0] = src_slice_vector[index_num] + 1; to_concat[index_num] = xla::Slice(expression, slice_start, slice_limit, stride); } ctx->SetOutput(0, xla::ConcatInDim(ctx->builder(), to_concat, 0)); } private: static bool SameExtraShape(const TensorShape& data0_shape, const TensorShape& indices0, const TensorShape& data1_shape, const TensorShape& indices1) { const int extra0 = data0_shape.dims() - indices0.dims(); const int extra1 = data1_shape.dims() - indices1.dims(); if (extra0 != extra1) return false; for (int i = 0; i < extra0; i++) { if (data0_shape.dim_size(indices0.dims() + i) != data1_shape.dim_size(indices1.dims() + i)) { return false; } } return true; } }; REGISTER_XLA_OP(Name("DynamicStitch").CompileTimeConstantInput("indices"), DynamicStitchOp); REGISTER_XLA_OP( Name("ParallelDynamicStitch").CompileTimeConstantInput("indices"), DynamicStitchOp); } }
#include <functional> #include <memory> #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class DynamicStitchOpTest : public OpsTestBase { protected: void MakeOp(int n, DataType dt) { TF_ASSERT_OK(NodeDefBuilder("myop", "DynamicStitch") .Input(FakeInput(n, DT_INT32)) .Input(FakeInput(n, dt)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(DynamicStitchOpTest, Simple_OneD) { MakeOp(2, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 7}); AddInputFromArray<int32>(TensorShape({5}), {1, 6, 2, 3, 5}); AddInputFromArray<float>(TensorShape({3}), {0, 40, 70}); AddInputFromArray<float>(TensorShape({5}), {10, 60, 20, 30, 50}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({8})); test::FillValues<float>(&expected, {0, 10, 20, 30, 40, 50, 60, 70}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(DynamicStitchOpTest, Simple_TwoD) { MakeOp(3, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 7}); AddInputFromArray<int32>(TensorShape({2}), {1, 6}); AddInputFromArray<int32>(TensorShape({3}), {2, 3, 5}); AddInputFromArray<float>(TensorShape({3, 2}), {0, 1, 40, 41, 70, 71}); AddInputFromArray<float>(TensorShape({2, 2}), {10, 11, 60, 61}); AddInputFromArray<float>(TensorShape({3, 2}), {20, 21, 30, 31, 50, 51}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({8, 2})); test::FillValues<float>(&expected, {0, 1, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(DynamicStitchOpTest, IndicesNotCoverAllPortions) { MakeOp(1, DT_FLOAT); AddInputFromArray<int32>(TensorShape({1}), {2}); AddInputFromArray<float>(TensorShape({1}), {1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), DT_FLOAT, TensorShape({3})); test::FillValues<float>(&expected, {0, 0, 1}); test::ExpectTensorEqual<float>(expected, *GetOutput(0)); } TEST_F(DynamicStitchOpTest, Error_IndicesMultiDimensional) { MakeOp(2, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 7}); AddInputFromArray<int32>(TensorShape({1, 5}), {1, 6, 2, 3, 5}); AddInputFromArray<float>(TensorShape({3}), {0, 40, 70}); AddInputFromArray<float>(TensorShape({5}), {10, 60, 20, 30, 50}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains( s.ToString(), "data[1].shape = [5] does not start with indices[1].shape = [1,5]")) << s; } TEST_F(DynamicStitchOpTest, Error_DataNumDimsMismatch) { MakeOp(2, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 7}); AddInputFromArray<int32>(TensorShape({5}), {1, 6, 2, 3, 5}); AddInputFromArray<float>(TensorShape({3}), {0, 40, 70}); AddInputFromArray<float>(TensorShape({1, 5}), {10, 60, 20, 30, 50}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains( s.ToString(), "data[1].shape = [1,5] does not start with indices[1].shape = [5]")) << s; } TEST_F(DynamicStitchOpTest, Error_DataDimSizeMismatch) { MakeOp(2, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 5}); AddInputFromArray<int32>(TensorShape({4}), {1, 6, 2, 3}); AddInputFromArray<float>(TensorShape({3, 1}), {0, 40, 70}); AddInputFromArray<float>(TensorShape({4, 2}), {10, 11, 60, 61, 20, 21, 30, 31}); Status s = RunOpKernel(); EXPECT_TRUE( absl::StrContains(s.ToString(), "Need data[0].shape[1:] = data[1].shape[1:], got " "data[0].shape = [3,1], data[1].shape = [4,2]")) << s; } TEST_F(DynamicStitchOpTest, Error_DataAndIndicesSizeMismatch) { MakeOp(2, DT_FLOAT); AddInputFromArray<int32>(TensorShape({3}), {0, 4, 7}); AddInputFromArray<int32>(TensorShape({5}), {1, 6, 2, 3, 5}); AddInputFromArray<float>(TensorShape({3}), {0, 40, 70}); AddInputFromArray<float>(TensorShape({4}), {10, 60, 20, 30}); Status s = RunOpKernel(); EXPECT_TRUE(absl::StrContains( s.ToString(), "data[1].shape = [4] does not start with indices[1].shape = [5]")) << s; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/dynamic_stitch_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/dynamic_stitch_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
626a0766-a0f3-40f1-ae8f-10783946c2f8
cpp
tensorflow/tensorflow
audio_microfrontend
tensorflow/lite/experimental/microfrontend/audio_microfrontend.cc
tensorflow/lite/experimental/microfrontend/audio_microfrontend_test.cc
#include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/experimental/microfrontend/lib/frontend.h" #include "tensorflow/lite/experimental/microfrontend/lib/frontend_util.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace audio_microfrontend { constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; typedef struct { int sample_rate; FrontendState* state; int left_context; int right_context; int frame_stride; bool zero_padding; int out_scale; bool out_float; } TfLiteAudioMicrofrontendParams; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* data = new TfLiteAudioMicrofrontendParams; const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap(); data->sample_rate = m["sample_rate"].AsInt32(); struct FrontendConfig config; config.window.size_ms = m["window_size"].AsInt32(); config.window.step_size_ms = m["window_step"].AsInt32(); config.filterbank.num_channels = m["num_channels"].AsInt32(); config.filterbank.upper_band_limit = m["upper_band_limit"].AsFloat(); config.filterbank.lower_band_limit = m["lower_band_limit"].AsFloat(); config.noise_reduction.smoothing_bits = m["smoothing_bits"].AsInt32(); config.noise_reduction.even_smoothing = m["even_smoothing"].AsFloat(); config.noise_reduction.odd_smoothing = m["odd_smoothing"].AsFloat(); config.noise_reduction.min_signal_remaining = m["min_signal_remaining"].AsFloat(); config.pcan_gain_control.enable_pcan = m["enable_pcan"].AsBool(); config.pcan_gain_control.strength = m["pcan_strength"].AsFloat(); config.pcan_gain_control.offset = m["pcan_offset"].AsFloat(); config.pcan_gain_control.gain_bits = m["gain_bits"].AsInt32(); config.log_scale.enable_log = m["enable_log"].AsBool(); config.log_scale.scale_shift = m["scale_shift"].AsInt32(); data->state = new FrontendState; FrontendPopulateState(&config, data->state, data->sample_rate); data->left_context = m["left_context"].AsInt32(); data->right_context = m["right_context"].AsInt32(); data->frame_stride = m["frame_stride"].AsInt32(); data->zero_padding = m["zero_padding"].AsBool(); data->out_scale = m["out_scale"].AsInt32(); data->out_float = m["out_float"].AsBool(); return data; } void Free(TfLiteContext* context, void* buffer) { auto* data = reinterpret_cast<TfLiteAudioMicrofrontendParams*>(buffer); FrontendFreeStateContents(data->state); delete data->state; delete data; } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { auto* data = reinterpret_cast<TfLiteAudioMicrofrontendParams*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1); TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt16); output->type = kTfLiteInt32; if (data->out_float) { output->type = kTfLiteFloat32; } TfLiteIntArray* output_size = TfLiteIntArrayCreate(2); int num_frames = 0; if (input->dims->data[0] >= data->state->window.size) { num_frames = (input->dims->data[0] - data->state->window.size) / data->state->window.step / data->frame_stride + 1; } output_size->data[0] = num_frames; output_size->data[1] = data->state->filterbank.num_channels * (1 + data->left_context + data->right_context); return context->ResizeTensor(context, output, output_size); } template <typename T> void GenerateFeatures(TfLiteAudioMicrofrontendParams* data, const TfLiteTensor* input, TfLiteTensor* output) { const int16_t* audio_data = GetTensorData<int16_t>(input); int64_t audio_size = input->dims->data[0]; T* filterbanks_flat = GetTensorData<T>(output); int num_frames = 0; if (audio_size >= data->state->window.size) { num_frames = (input->dims->data[0] - data->state->window.size) / data->state->window.step + 1; } std::vector<std::vector<T>> frame_buffer(num_frames); int frame_index = 0; while (audio_size > 0) { size_t num_samples_read; struct FrontendOutput output = FrontendProcessSamples( data->state, audio_data, audio_size, &num_samples_read); audio_data += num_samples_read; audio_size -= num_samples_read; if (output.values != nullptr) { frame_buffer[frame_index].reserve(output.size); int i; for (i = 0; i < output.size; ++i) { frame_buffer[frame_index].push_back(static_cast<T>(output.values[i]) / data->out_scale); } ++frame_index; } } int index = 0; std::vector<T> pad(data->state->filterbank.num_channels, 0); int anchor; for (anchor = 0; anchor < frame_buffer.size(); anchor += data->frame_stride) { int frame; for (frame = anchor - data->left_context; frame <= anchor + data->right_context; ++frame) { std::vector<T>* feature; if (data->zero_padding && (frame < 0 || frame >= frame_buffer.size())) { feature = &pad; } else if (frame < 0) { feature = &frame_buffer[0]; } else if (frame >= frame_buffer.size()) { feature = &frame_buffer[frame_buffer.size() - 1]; } else { feature = &frame_buffer[frame]; } for (auto f : *feature) { filterbanks_flat[index++] = f; } } } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* data = reinterpret_cast<TfLiteAudioMicrofrontendParams*>(node->user_data); FrontendReset(data->state); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (data->out_float) { GenerateFeatures<float>(data, input, output); } else { GenerateFeatures<int32>(data, input, output); } return kTfLiteOk; } } TfLiteRegistration* Register_AUDIO_MICROFRONTEND() { static TfLiteRegistration r = { audio_microfrontend::Init, audio_microfrontend::Free, audio_microfrontend::Prepare, audio_microfrontend::Eval}; return &r; } } } }
#include "tensorflow/lite/experimental/microfrontend/audio_microfrontend.h" #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { namespace { using ::testing::ElementsAreArray; class MicroFrontendOpModel : public SingleOpModel { public: MicroFrontendOpModel(int n_input, int n_frame, int n_frequency_per_frame, int n_left_context, int n_right_context, int n_frame_stride, const std::vector<std::vector<int>>& input_shapes) : n_input_(n_input), n_frame_(n_frame), n_frequency_per_frame_(n_frequency_per_frame), n_left_context_(n_left_context), n_right_context_(n_right_context), n_frame_stride_(n_frame_stride) { input_ = AddInput(TensorType_INT16); output_ = AddOutput(TensorType_INT32); flexbuffers::Builder fbb; fbb.Map([&]() { fbb.Int("sample_rate", 1000); fbb.Int("window_size", 25); fbb.Int("window_step", 10); fbb.Int("num_channels", 2); fbb.Float("upper_band_limit", 450.0); fbb.Float("lower_band_limit", 8.0); fbb.Int("smoothing_bits", 10); fbb.Float("even_smoothing", 0.025); fbb.Float("odd_smoothing", 0.06); fbb.Float("min_signal_remaining", 0.05); fbb.Bool("enable_pcan", true); fbb.Float("pcan_strength", 0.95); fbb.Float("pcan_offset", 80.0); fbb.Int("gain_bits", 21); fbb.Bool("enable_log", true); fbb.Int("scale_shift", 6); fbb.Int("left_context", n_left_context); fbb.Int("right_context", n_right_context); fbb.Int("frame_stride", n_frame_stride); fbb.Bool("zero_padding", true); fbb.Int("out_scale", 1); fbb.Bool("out_float", false); }); fbb.Finish(); SetCustomOp("MICRO_FRONTEND", fbb.GetBuffer(), Register_AUDIO_MICROFRONTEND); BuildInterpreter(input_shapes); } void SetInput(const std::vector<int16_t>& data) { PopulateTensor(input_, data); } std::vector<int> GetOutput() { return ExtractVector<int>(output_); } int num_inputs() { return n_input_; } int num_frmes() { return n_frame_; } int num_frequency_per_frame() { return n_frequency_per_frame_; } int num_left_context() { return n_left_context_; } int num_right_context() { return n_right_context_; } int num_frame_stride() { return n_frame_stride_; } protected: int input_; int output_; int n_input_; int n_frame_; int n_frequency_per_frame_; int n_left_context_; int n_right_context_; int n_frame_stride_; }; class BaseMicroFrontendTest : public ::testing::Test { protected: std::vector<int16_t> micro_frontend_input_; void VerifyGoldens(const std::vector<int16_t>& input, const std::vector<std::vector<int>>& output, MicroFrontendOpModel* micro_frontend, float tolerance = 1e-5) { const int num_inputs = micro_frontend->num_inputs(); EXPECT_GT(num_inputs, 0); const int num_frames = micro_frontend->num_frmes(); EXPECT_GT(num_frames, 0); EXPECT_EQ(num_frames, output.size()); const int num_frequency_per_frame = micro_frontend->num_frequency_per_frame(); EXPECT_GT(num_frequency_per_frame, 0); EXPECT_EQ(num_frequency_per_frame, output[0].size()); micro_frontend->SetInput(input); ASSERT_EQ(micro_frontend->Invoke(), kTfLiteOk); std::vector<int> output_flattened; int anchor; for (anchor = 0; anchor < output.size(); anchor += micro_frontend->num_frame_stride()) { int frame; for (frame = anchor - micro_frontend->num_left_context(); frame <= anchor + micro_frontend->num_right_context(); ++frame) { if (frame < 0 || frame >= output.size()) { int j; for (j = 0; j < num_frequency_per_frame; ++j) { output_flattened.push_back(0.0); } } else { for (auto data_point : output[frame]) { output_flattened.push_back(data_point); } } } } EXPECT_THAT(micro_frontend->GetOutput(), ElementsAreArray(output_flattened)); } }; class TwoConsecutive36InputsMicroFrontendTest : public BaseMicroFrontendTest { void SetUp() override { micro_frontend_input_ = { 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768, 0, 32767, 0, -32768}; } }; TEST_F(TwoConsecutive36InputsMicroFrontendTest, MicroFrontendBlackBoxTest) { const int n_input = 36; const int n_frame = 2; const int n_frequency_per_frame = 2; MicroFrontendOpModel micro_frontend(n_input, n_frame, n_frequency_per_frame, 1, 1, 1, { {n_input}, }); const std::vector<std::vector<int>> micro_frontend_golden_output = { {479, 425}, {436, 378}}; VerifyGoldens(micro_frontend_input_, micro_frontend_golden_output, &micro_frontend); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/microfrontend/audio_microfrontend.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/microfrontend/audio_microfrontend_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0389467c-ba24-47c6-a136-10cfbb920e4a
cpp
google/arolla
batched_forest_evaluator
arolla/decision_forest/batched_evaluation/batched_forest_evaluator.cc
arolla/decision_forest/batched_evaluation/batched_forest_evaluator_test.cc
#include "arolla/decision_forest/batched_evaluation/batched_forest_evaluator.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/array/array.h" #include "arolla/array/qtype/types.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/pointwise_evaluation/forest_evaluator.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/buffer.h" #include "arolla/memory/frame.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/array_like/frame_iter.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/threading.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { absl::StatusOr<TypedValue> AddFullFloatArrays(TypedRef a, TypedRef b) { if (a.GetType() == GetDenseArrayQType<float>() && b.GetType() == GetDenseArrayQType<float>()) { const auto& va = a.UnsafeAs<DenseArray<float>>(); const auto& vb = b.UnsafeAs<DenseArray<float>>(); DCHECK_EQ(va.size(), vb.size()); DCHECK(va.IsFull() && vb.IsFull()); Buffer<float>::Builder bldr(va.size()); auto sa = va.values.span(); auto sb = vb.values.span(); auto sr = bldr.GetMutableSpan(); for (int64_t i = 0; i < va.size(); ++i) { sr[i] = sa[i] + sb[i]; } return TypedValue::FromValue(DenseArray<float>{std::move(bldr).Build()}); } else if (a.GetType() == GetArrayQType<float>() && b.GetType() == GetArrayQType<float>()) { const auto& va = a.UnsafeAs<Array<float>>(); const auto& vb = b.UnsafeAs<Array<float>>(); DCHECK_EQ(va.size(), vb.size()); DCHECK(va.IsFullForm() && vb.IsFullForm()); Buffer<float>::Builder bldr(va.size()); auto sa = va.dense_data().values.span(); auto sb = vb.dense_data().values.span(); auto sr = bldr.GetMutableSpan(); for (int64_t i = 0; i < va.size(); ++i) { sr[i] = sa[i] + sb[i]; } return TypedValue::FromValue(Array<float>{std::move(bldr).Build()}); } else { return absl::InternalError("Invalid type in BatchedForestEvaluator/Add"); } } absl::StatusOr<std::vector<ForestEvaluator>> CreatePointwiseEvaluators( const BatchedForestEvaluator::CompilationParams& params, const DecisionForest& decision_forest, const std::vector<TypedSlot>& inputs, const std::vector<ForestEvaluator::Output>& outputs) { int64_t split_count = 0; for (const auto& tree : decision_forest.GetTrees()) { split_count += tree.split_nodes.size(); } int64_t evaluator_count = std::max<int64_t>( 1, (split_count + params.optimal_splits_per_evaluator - 1) / params.optimal_splits_per_evaluator); std::vector<ForestEvaluator> evaluators; evaluators.reserve(evaluator_count); if (evaluator_count == 1) { ASSIGN_OR_RETURN(auto evaluator, ForestEvaluator::Compile(decision_forest, inputs, outputs)); evaluators.push_back(std::move(evaluator)); return evaluators; } int64_t splits_per_evaluator = (split_count + evaluator_count - 1) / evaluator_count; int64_t estimated_trees_per_evaluator = (decision_forest.GetTrees().size() + evaluator_count - 1) / evaluator_count; std::vector<DecisionTree> trees; trees.reserve(estimated_trees_per_evaluator); int64_t current_split_count = 0; for (const auto& tree : decision_forest.GetTrees()) { trees.push_back(tree); current_split_count += tree.split_nodes.size(); if (current_split_count >= splits_per_evaluator) { ASSIGN_OR_RETURN(auto partial_forest, DecisionForest::FromTrees(std::move(trees))); ASSIGN_OR_RETURN(auto evaluator, ForestEvaluator::Compile( *partial_forest, inputs, outputs)); evaluators.push_back(std::move(evaluator)); trees.clear(); trees.reserve(estimated_trees_per_evaluator); current_split_count = 0; } } if (!trees.empty()) { ASSIGN_OR_RETURN(auto partial_forest, DecisionForest::FromTrees(std::move(trees))); ASSIGN_OR_RETURN(auto evaluator, ForestEvaluator::Compile(*partial_forest, inputs, outputs)); evaluators.push_back(std::move(evaluator)); } return evaluators; } } absl::NoDestructor<std::unique_ptr<ThreadingInterface>> BatchedForestEvaluator::threading_; int64_t BatchedForestEvaluator::min_rows_per_thread_; absl::StatusOr<std::unique_ptr<BatchedForestEvaluator>> BatchedForestEvaluator::Compile(const DecisionForest& decision_forest, absl::Span<const TreeFilter> groups, const CompilationParams& params) { FrameLayout::Builder bldr; std::vector<SlotMapping> input_slots_mapping; TypedSlot placeholder = TypedSlot::FromSlot(FrameLayout::Slot<float>::UnsafeUninitializedSlot()); std::vector<TypedSlot> input_pointwise_slots; for (const auto& kv : decision_forest.GetRequiredQTypes()) { TypedSlot pointwise_slot = AddSlot(kv.second, &bldr); while (input_pointwise_slots.size() <= kv.first) { input_pointwise_slots.push_back(placeholder); } input_pointwise_slots[kv.first] = pointwise_slot; input_slots_mapping.push_back({kv.first, pointwise_slot}); } std::vector<ForestEvaluator::Output> pointwise_outputs; std::vector<TypedSlot> output_pointwise_slots; pointwise_outputs.reserve(groups.size()); output_pointwise_slots.reserve(groups.size()); for (const TreeFilter& filter : groups) { auto slot = bldr.AddSlot<float>(); pointwise_outputs.push_back({filter, slot}); output_pointwise_slots.push_back(TypedSlot::FromSlot(slot)); } auto pointwise_layout = std::move(bldr).Build(); ASSIGN_OR_RETURN( std::vector<ForestEvaluator> pointwise_evaluators, CreatePointwiseEvaluators(params, decision_forest, input_pointwise_slots, pointwise_outputs)); return absl::WrapUnique(new BatchedForestEvaluator( std::move(pointwise_layout), std::move(input_slots_mapping), std::move(output_pointwise_slots), std::move(pointwise_evaluators))); } absl::Status BatchedForestEvaluator::GetInputsFromSlots( absl::Span<const TypedSlot> input_slots, ConstFramePtr frame, std::vector<TypedRef>* input_arrays) const { if (input_slots.size() < input_count_) { return absl::InvalidArgumentError( absl::StrFormat("not enough inputs: at least %d expected, %d found", input_count_, input_slots.size())); } for (auto m : input_mapping_) { input_arrays->push_back( TypedRef::FromSlot(input_slots[m.input_index], frame)); } return absl::OkStatus(); } absl::Status BatchedForestEvaluator::EvalBatch( absl::Span<const TypedSlot> input_slots, absl::Span<const TypedSlot> output_slots, FramePtr frame, RawBufferFactory* buffer_factory, std::optional<int64_t> row_count) const { std::vector<TypedRef> input_arrays; input_arrays.reserve(input_mapping_.size()); RETURN_IF_ERROR(GetInputsFromSlots(input_slots, frame, &input_arrays)); if (!row_count.has_value()) { if (!input_arrays.empty()) { ASSIGN_OR_RETURN(row_count, GetArraySize(input_arrays[0])); } else if (!input_slots.empty()) { ASSIGN_OR_RETURN(row_count, GetArraySize(TypedRef::FromSlot(input_slots[0], frame))); } } int thread_count = 1; auto run_evaluator = [&](const ForestEvaluator& eval) -> absl::Status { ASSIGN_OR_RETURN( auto frame_iterator, FrameIterator::Create( input_arrays, {input_pointwise_slots_.data(), input_arrays.size()}, output_slots, output_pointwise_slots_, &pointwise_layout_, FrameIterator::Options{.row_count = row_count, .frame_buffer_count = 64 * thread_count, .buffer_factory = buffer_factory})); if (thread_count > 1) { frame_iterator.ForEachFrame([&eval](FramePtr f) { eval.Eval(f, f); }, **threading_, thread_count); } else { frame_iterator.ForEachFrame([&eval](FramePtr f) { eval.Eval(f, f); }); } return frame_iterator.StoreOutput(frame); }; if (pointwise_evaluators_.size() == 1) { return run_evaluator(pointwise_evaluators_.front()); } else { std::vector<TypedValue> res_sum; res_sum.reserve(output_slots.size()); RETURN_IF_ERROR(run_evaluator(pointwise_evaluators_.front())); for (const auto& s : output_slots) { res_sum.push_back(TypedValue::FromSlot(s, frame)); } for (int eval_id = 1; eval_id < pointwise_evaluators_.size() - 1; ++eval_id) { RETURN_IF_ERROR(run_evaluator(pointwise_evaluators_[eval_id])); for (int i = 0; i < output_slots.size(); ++i) { ASSIGN_OR_RETURN( res_sum[i], AddFullFloatArrays(res_sum[i].AsRef(), TypedRef::FromSlot(output_slots[i], frame))); } } RETURN_IF_ERROR(run_evaluator(pointwise_evaluators_.back())); for (int i = 0; i < output_slots.size(); ++i) { ASSIGN_OR_RETURN( TypedValue full_sum, AddFullFloatArrays(res_sum[i].AsRef(), TypedRef::FromSlot(output_slots[i], frame))); RETURN_IF_ERROR(full_sum.CopyToSlot(output_slots[i], frame)); } return absl::OkStatus(); } } }
#include "arolla/decision_forest/batched_evaluation/batched_forest_evaluator.h" #include <cmath> #include <cstdint> #include <limits> #include <memory> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/status/statusor.h" #include "arolla/array/array.h" #include "arolla/array/qtype/types.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" #include "arolla/decision_forest/split_conditions/set_of_values_split_condition.h" #include "arolla/decision_forest/testing/test_util.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/threading.h" namespace arolla { namespace { absl::StatusOr<DecisionForestPtr> CreateTestForest() { constexpr float kInf = std::numeric_limits<float>::infinity(); constexpr auto S = DecisionTreeNodeId::SplitNodeId; constexpr auto A = DecisionTreeNodeId::AdjustmentId; std::vector<DecisionTree> trees(2); trees[0].tag = {.submodel_id = 0}; trees[0].adjustments = {0.5, 1.5, 2.5, 3.5}; trees[0].split_nodes = { {S(1), S(2), IntervalSplit(0, 1.5, kInf)}, {A(0), A(2), SetOfValuesSplit<int64_t>(1, {1, 2}, false)}, {A(1), A(3), IntervalSplit(0, -kInf, 10)}}; trees[1].tag = {.submodel_id = 1}; trees[1].adjustments = {-1.0, 1.0}; trees[1].split_nodes = {{A(0), A(1), IntervalSplit(0, 1, 5)}}; return DecisionForest::FromTrees(std::move(trees)); } TEST(BatchedForestEvaluator, EvalBatch) { ASSERT_OK_AND_ASSIGN(auto forest, CreateTestForest()); std::vector<TreeFilter> groups{{.submodels = {0}}, {.submodels = {1}}}; ASSERT_OK_AND_ASSIGN(auto eval, BatchedForestEvaluator::Compile(*forest, groups)); FrameLayout::Builder bldr; auto in1_slot = bldr.AddSlot<DenseArray<float>>(); auto in2_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto out1_slot = bldr.AddSlot<DenseArray<float>>(); auto out2_slot = bldr.AddSlot<DenseArray<float>>(); FrameLayout layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(in1_slot, CreateDenseArray<float>({0, 0, 1.2, 1.6, 7.0, 13.5, NAN})); frame.Set(in2_slot, CreateDenseArray<int64_t>({3, 1, 1, 1, 1, 1, {}})); { ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out1_slot), TypedSlot::FromSlot(out2_slot)}, frame)); EXPECT_THAT(frame.Get(out1_slot), ::testing::ElementsAre(0.5, 2.5, 2.5, 3.5, 3.5, 1.5, 0.5)); EXPECT_THAT(frame.Get(out2_slot), ::testing::ElementsAre(-1, -1, 1, 1, -1, -1, -1)); } frame.Set(out1_slot, DenseArray<float>()); frame.Set(out2_slot, DenseArray<float>()); { BatchedForestEvaluator::SetThreading(std::make_unique<StdThreading>(2)); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out1_slot), TypedSlot::FromSlot(out2_slot)}, frame)); EXPECT_THAT(frame.Get(out1_slot), ::testing::ElementsAre(0.5, 2.5, 2.5, 3.5, 3.5, 1.5, 0.5)); EXPECT_THAT(frame.Get(out2_slot), ::testing::ElementsAre(-1, -1, 1, 1, -1, -1, -1)); BatchedForestEvaluator::SetThreading(nullptr); } frame.Set(out1_slot, DenseArray<float>()); frame.Set(out2_slot, DenseArray<float>()); { BatchedForestEvaluator::SetThreading(std::make_unique<StdThreading>(2), 1); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out1_slot), TypedSlot::FromSlot(out2_slot)}, frame)); EXPECT_THAT(frame.Get(out1_slot), ::testing::ElementsAre(0.5, 2.5, 2.5, 3.5, 3.5, 1.5, 0.5)); EXPECT_THAT(frame.Get(out2_slot), ::testing::ElementsAre(-1, -1, 1, 1, -1, -1, -1)); BatchedForestEvaluator::SetThreading(nullptr); } } TEST(BatchedForestEvaluator, UnusedInputs) { constexpr auto A = DecisionTreeNodeId::AdjustmentId; DecisionTree tree; tree.adjustments = {-1, 1}; tree.split_nodes = {{A(0), A(1), IntervalSplit(2, 0, 1)}}; ASSERT_OK_AND_ASSIGN(auto forest, DecisionForest::FromTrees({tree})); ASSERT_OK_AND_ASSIGN(auto eval, BatchedForestEvaluator::Compile(*forest)); FrameLayout::Builder bldr; auto unused1_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto unused2_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto in_slot = bldr.AddSlot<DenseArray<float>>(); auto out_slot = bldr.AddSlot<DenseArray<float>>(); FrameLayout layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(in_slot, CreateDenseArray<float>({-1, 0.5, 2})); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(unused1_slot), TypedSlot::FromSlot(unused2_slot), TypedSlot::FromSlot(in_slot)}, {TypedSlot::FromSlot(out_slot)}, frame)); EXPECT_THAT(frame.Get(out_slot), ::testing::ElementsAre(-1, 1, -1)); } TEST(BatchedForestEvaluator, AllInputUnused) { std::vector<DecisionTree> trees(1); trees[0].adjustments = {1.5}; ASSERT_OK_AND_ASSIGN(DecisionForestPtr forest, DecisionForest::FromTrees(std::move(trees))); std::vector<TreeFilter> groups{{.submodels = {0}}}; ASSERT_OK_AND_ASSIGN(auto eval, BatchedForestEvaluator::Compile(*forest, groups)); FrameLayout::Builder bldr; auto in1_slot = bldr.AddSlot<DenseArray<float>>(); auto in2_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto out_slot = bldr.AddSlot<DenseArray<float>>(); FrameLayout layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(in1_slot, CreateDenseArray<float>({0, 0, 1.2, 1.6, 7.0, 13.5, NAN})); frame.Set(in2_slot, CreateDenseArray<int64_t>({3, 1, 1, 1, 1, 1, {}})); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out_slot)}, frame)); EXPECT_THAT(frame.Get(out_slot), ::testing::ElementsAre(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5)); } TEST(BatchedForestEvaluator, SplitCountPerEvaluator) { constexpr int64_t min_num_splits = 10; constexpr int64_t max_num_splits = 30; constexpr int64_t num_trees = 100; constexpr int64_t batch_size = 10; absl::BitGen rnd; constexpr int64_t min_total_split_count = num_trees * min_num_splits; int64_t split_count_per_evaluator = absl::Uniform<int64_t>( rnd, min_total_split_count / 5, min_total_split_count * 4 / 5); auto forest = CreateRandomFloatForest(&rnd, 10, true, min_num_splits, max_num_splits, num_trees); ASSERT_OK_AND_ASSIGN(auto evaluator, BatchedForestEvaluator::Compile(*forest)); ASSERT_OK_AND_ASSIGN( auto subdivided_evaluator, BatchedForestEvaluator::Compile(*forest, {TreeFilter()}, {split_count_per_evaluator})); std::vector<TypedSlot> slots; FrameLayout::Builder layout_builder; ASSERT_OK(CreateArraySlotsForForest(*forest, &layout_builder, &slots)); auto dense_array_output_slot = layout_builder.AddSlot<DenseArray<float>>(); auto array_output_slot = layout_builder.AddSlot<Array<float>>(); FrameLayout layout = std::move(layout_builder).Build(); MemoryAllocation ctx(&layout); FramePtr frame = ctx.frame(); for (auto slot : slots) { ASSERT_OK(FillArrayWithRandomValues(batch_size, slot, frame, &rnd)); } ASSERT_OK(evaluator->EvalBatch(slots, {TypedSlot::FromSlot(dense_array_output_slot)}, frame, nullptr, batch_size)); ASSERT_OK(evaluator->EvalBatch(slots, {TypedSlot::FromSlot(array_output_slot)}, frame, nullptr, batch_size)); DenseArray<float> dense_array1 = frame.Get(dense_array_output_slot); Array<float> array1 = frame.Get(array_output_slot); frame.Set(dense_array_output_slot, DenseArray<float>()); frame.Set(array_output_slot, Array<float>()); ASSERT_OK(subdivided_evaluator->EvalBatch( slots, {TypedSlot::FromSlot(dense_array_output_slot)}, frame, nullptr, batch_size)); ASSERT_OK(subdivided_evaluator->EvalBatch( slots, {TypedSlot::FromSlot(array_output_slot)}, frame, nullptr, batch_size)); DenseArray<float> dense_array2 = frame.Get(dense_array_output_slot); Array<float> array2 = frame.Get(array_output_slot); ASSERT_EQ(dense_array1.size(), batch_size); ASSERT_EQ(array1.size(), batch_size); ASSERT_EQ(dense_array2.size(), batch_size); ASSERT_EQ(array2.size(), batch_size); for (int64_t i = 0; i < batch_size; ++i) { bool present = array1[i].present; EXPECT_EQ(array2[i].present, present); EXPECT_EQ(dense_array1[i].present, present); EXPECT_EQ(dense_array2[i].present, present); if (present) { float value = array1[i].value; EXPECT_FLOAT_EQ(array2[i].value, value); EXPECT_FLOAT_EQ(dense_array1[i].value, value); EXPECT_FLOAT_EQ(dense_array2[i].value, value); } } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/batched_evaluation/batched_forest_evaluator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/batched_evaluation/batched_forest_evaluator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
ead10a6f-65f0-4f43-9abf-756f28550ec5
cpp
tensorflow/tensorflow
ceil
tensorflow/lite/experimental/shlo/ops/ceil.cc
tensorflow/lite/delegates/xnnpack/ceil_test.cc
#include "tensorflow/lite/experimental/shlo/ops/ceil.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Ceil { template <class T> T operator()(T v) const { return std::ceil(v); } }; template <> F16 Ceil::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Ceil::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } CeilOp Create(CeilOp::Attributes) { return {}; } absl::Status Prepare(CeilOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("ceil"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("ceil"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(CeilOp& op, const Tensor& input, Tensor& output) { Ceil ceil; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), ceil, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), ceil, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } };
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Ceil, 4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_CEIL, xnnpack_delegate.get()); } TEST(Ceil, 3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, width, channels}) .Test(BuiltinOperator_CEIL, xnnpack_delegate.get()); } TEST(Ceil, 2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, channels}) .Test(BuiltinOperator_CEIL, xnnpack_delegate.get()); } TEST(Ceil, 1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); UnaryElementwiseTester().Shape({batch}).Test(BuiltinOperator_CEIL, xnnpack_delegate.get()); } TEST(Ceil, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); UnaryElementwiseTester() .Shape({batch, height, width, channels}) .Test(BuiltinOperator_CEIL, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/ceil.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/ceil_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ebea579e-d2e7-430c-8d2e-95b124dbf235
cpp
abseil/abseil-cpp
damerau_levenshtein_distance
absl/strings/internal/damerau_levenshtein_distance.cc
absl/strings/internal/damerau_levenshtein_distance_test.cc
#include "absl/strings/internal/damerau_levenshtein_distance.h" #include <algorithm> #include <array> #include <numeric> #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace strings_internal { uint8_t CappedDamerauLevenshteinDistance(absl::string_view s1, absl::string_view s2, uint8_t cutoff) { const uint8_t MAX_SIZE = 100; const uint8_t _cutoff = std::min(MAX_SIZE, cutoff); const uint8_t cutoff_plus_1 = static_cast<uint8_t>(_cutoff + 1); if (s1.size() > s2.size()) std::swap(s1, s2); if (s1.size() + _cutoff < s2.size() || s2.size() > MAX_SIZE) return cutoff_plus_1; if (s1.empty()) return static_cast<uint8_t>(s2.size()); const uint8_t lower_diag = _cutoff - static_cast<uint8_t>(s2.size() - s1.size()); const uint8_t upper_diag = _cutoff; std::array<std::array<uint8_t, MAX_SIZE + 2>, MAX_SIZE + 2> d; std::iota(d[0].begin(), d[0].begin() + upper_diag + 1, 0); d[0][cutoff_plus_1] = cutoff_plus_1; for (size_t i = 1; i <= s1.size(); ++i) { size_t j_begin = 1; if (i > lower_diag) { j_begin = i - lower_diag; d[i][j_begin - 1] = cutoff_plus_1; } else { d[i][0] = static_cast<uint8_t>(i); } size_t j_end = i + upper_diag; if (j_end > s2.size()) { j_end = s2.size(); } else { d[i][j_end + 1] = cutoff_plus_1; } for (size_t j = j_begin; j <= j_end; ++j) { const uint8_t deletion_distance = d[i - 1][j] + 1; const uint8_t insertion_distance = d[i][j - 1] + 1; const uint8_t mismatched_tail_cost = s1[i - 1] == s2[j - 1] ? 0 : 1; const uint8_t mismatch_distance = d[i - 1][j - 1] + mismatched_tail_cost; uint8_t transposition_distance = _cutoff + 1; if (i > 1 && j > 1 && s1[i - 1] == s2[j - 2] && s1[i - 2] == s2[j - 1]) transposition_distance = d[i - 2][j - 2] + 1; d[i][j] = std::min({cutoff_plus_1, deletion_distance, insertion_distance, mismatch_distance, transposition_distance}); } } return d[s1.size()][s2.size()]; } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/damerau_levenshtein_distance.h" #include <cstdint> #include "gmock/gmock.h" #include "gtest/gtest.h" namespace { using absl::strings_internal::CappedDamerauLevenshteinDistance; TEST(Distance, TestDistances) { EXPECT_THAT(CappedDamerauLevenshteinDistance("ab", "ab", 6), uint8_t{0}); EXPECT_THAT(CappedDamerauLevenshteinDistance("a", "b", 6), uint8_t{1}); EXPECT_THAT(CappedDamerauLevenshteinDistance("ca", "abc", 6), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "ad", 6), uint8_t{2}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "cadb", 6), uint8_t{4}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "bdac", 6), uint8_t{4}); EXPECT_THAT(CappedDamerauLevenshteinDistance("ab", "ab", 0), uint8_t{0}); EXPECT_THAT(CappedDamerauLevenshteinDistance("", "", 0), uint8_t{0}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", "abc", 6), uint8_t{0}); for (auto res : {"", "ca", "efg", "ea", "ce", "ceb", "eca", "cae", "cea", "bea"}) { EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", res, 6), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance(res, "abc", 6), uint8_t{3}); } for (auto res : {"a", "b", "c", "ba", "cb", "bca", "cab", "cba", "ace", "efc", "ebf", "aef", "ae", "be", "eb", "ec", "ecb", "bec", "bce", "cbe", "ace", "eac", "aeb", "bae", "eab", "eba"}) { EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", res, 6), uint8_t{2}); EXPECT_THAT(CappedDamerauLevenshteinDistance(res, "abc", 6), uint8_t{2}); } for (auto res : {"ab", "ac", "bc", "acb", "bac", "ebc", "aec", "abe"}) { EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", res, 6), uint8_t{1}); EXPECT_THAT(CappedDamerauLevenshteinDistance(res, "abc", 6), uint8_t{1}); } } TEST(Distance, TestCutoff) { EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "a", 3), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "a", 2), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "a", 1), uint8_t{2}); EXPECT_THAT(CappedDamerauLevenshteinDistance("abcdefg", "a", 2), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance("a", "abcde", 2), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(102, 'a'), std::string(102, 'a'), 105), uint8_t{101}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'), std::string(100, 'a'), 100), uint8_t{0}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'), std::string(100, 'b'), 100), uint8_t{100}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'), std::string(99, 'a'), 2), uint8_t{1}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'), std::string(101, 'a'), 2), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'), std::string(101, 'a'), 2), uint8_t{3}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(UINT8_MAX + 1, 'a'), std::string(UINT8_MAX + 1, 'b'), UINT8_MAX), uint8_t{101}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(UINT8_MAX - 1, 'a'), std::string(UINT8_MAX - 1, 'b'), UINT8_MAX), uint8_t{101}); EXPECT_THAT( CappedDamerauLevenshteinDistance(std::string(UINT8_MAX, 'a'), std::string(UINT8_MAX, 'b'), UINT8_MAX), uint8_t{101}); EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(UINT8_MAX - 1, 'a'), std::string(UINT8_MAX - 1, 'a'), UINT8_MAX), uint8_t{101}); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/damerau_levenshtein_distance.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/damerau_levenshtein_distance_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
5fe37cdb-4572-49d7-8a2a-00bf0f3af8ef
cpp
google/quiche
quic_client_session_cache
quiche/quic/core/crypto/quic_client_session_cache.cc
quiche/quic/core/crypto/quic_client_session_cache_test.cc
#include "quiche/quic/core/crypto/quic_client_session_cache.h" #include <memory> #include <string> #include <utility> #include "quiche/quic/core/quic_clock.h" namespace quic { namespace { const size_t kDefaultMaxEntries = 1024; bool IsValid(SSL_SESSION* session, uint64_t now) { if (!session) return false; return !(now + 1 < SSL_SESSION_get_time(session) || now >= SSL_SESSION_get_time(session) + SSL_SESSION_get_timeout(session)); } bool DoApplicationStatesMatch(const ApplicationState* state, ApplicationState* other) { if ((state && !other) || (!state && other)) return false; if ((!state && !other) || *state == *other) return true; return false; } } QuicClientSessionCache::QuicClientSessionCache() : QuicClientSessionCache(kDefaultMaxEntries) {} QuicClientSessionCache::QuicClientSessionCache(size_t max_entries) : cache_(max_entries) {} QuicClientSessionCache::~QuicClientSessionCache() { Clear(); } void QuicClientSessionCache::Insert(const QuicServerId& server_id, bssl::UniquePtr<SSL_SESSION> session, const TransportParameters& params, const ApplicationState* application_state) { QUICHE_DCHECK(session) << "TLS session is not inserted into client cache."; auto iter = cache_.Lookup(server_id); if (iter == cache_.end()) { CreateAndInsertEntry(server_id, std::move(session), params, application_state); return; } QUICHE_DCHECK(iter->second->params); if (params == *iter->second->params && DoApplicationStatesMatch(application_state, iter->second->application_state.get())) { iter->second->PushSession(std::move(session)); return; } cache_.Erase(iter); CreateAndInsertEntry(server_id, std::move(session), params, application_state); } std::unique_ptr<QuicResumptionState> QuicClientSessionCache::Lookup( const QuicServerId& server_id, QuicWallTime now, const SSL_CTX* ) { auto iter = cache_.Lookup(server_id); if (iter == cache_.end()) return nullptr; if (!IsValid(iter->second->PeekSession(), now.ToUNIXSeconds())) { QUIC_DLOG(INFO) << "TLS Session expired for host:" << server_id.host(); cache_.Erase(iter); return nullptr; } auto state = std::make_unique<QuicResumptionState>(); state->tls_session = iter->second->PopSession(); if (iter->second->params != nullptr) { state->transport_params = std::make_unique<TransportParameters>(*iter->second->params); } if (iter->second->application_state != nullptr) { state->application_state = std::make_unique<ApplicationState>(*iter->second->application_state); } if (!iter->second->token.empty()) { state->token = iter->second->token; iter->second->token.clear(); } return state; } void QuicClientSessionCache::ClearEarlyData(const QuicServerId& server_id) { auto iter = cache_.Lookup(server_id); if (iter == cache_.end()) return; for (auto& session : iter->second->sessions) { if (session) { QUIC_DLOG(INFO) << "Clear early data for for host: " << server_id.host(); session.reset(SSL_SESSION_copy_without_early_data(session.get())); } } } void QuicClientSessionCache::OnNewTokenReceived(const QuicServerId& server_id, absl::string_view token) { if (token.empty()) { return; } auto iter = cache_.Lookup(server_id); if (iter == cache_.end()) { return; } iter->second->token = std::string(token); } void QuicClientSessionCache::RemoveExpiredEntries(QuicWallTime now) { auto iter = cache_.begin(); while (iter != cache_.end()) { if (!IsValid(iter->second->PeekSession(), now.ToUNIXSeconds())) { iter = cache_.Erase(iter); } else { ++iter; } } } void QuicClientSessionCache::Clear() { cache_.Clear(); } void QuicClientSessionCache::CreateAndInsertEntry( const QuicServerId& server_id, bssl::UniquePtr<SSL_SESSION> session, const TransportParameters& params, const ApplicationState* application_state) { auto entry = std::make_unique<Entry>(); entry->PushSession(std::move(session)); entry->params = std::make_unique<TransportParameters>(params); if (application_state) { entry->application_state = std::make_unique<ApplicationState>(*application_state); } cache_.Insert(server_id, std::move(entry)); } QuicClientSessionCache::Entry::Entry() = default; QuicClientSessionCache::Entry::Entry(Entry&&) = default; QuicClientSessionCache::Entry::~Entry() = default; void QuicClientSessionCache::Entry::PushSession( bssl::UniquePtr<SSL_SESSION> session) { if (sessions[0] != nullptr) { sessions[1] = std::move(sessions[0]); } sessions[0] = std::move(session); } bssl::UniquePtr<SSL_SESSION> QuicClientSessionCache::Entry::PopSession() { if (sessions[0] == nullptr) return nullptr; bssl::UniquePtr<SSL_SESSION> session = std::move(sessions[0]); sessions[0] = std::move(sessions[1]); sessions[1] = nullptr; return session; } SSL_SESSION* QuicClientSessionCache::Entry::PeekSession() { return sessions[0].get(); } }
#include "quiche/quic/core/crypto/quic_client_session_cache.h" #include <memory> #include <string> #include <utility> #include <vector> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/common/quiche_text_utils.h" namespace quic { namespace test { namespace { const QuicTime::Delta kTimeout = QuicTime::Delta::FromSeconds(1000); const QuicVersionLabel kFakeVersionLabel = 0x01234567; const QuicVersionLabel kFakeVersionLabel2 = 0x89ABCDEF; const uint64_t kFakeIdleTimeoutMilliseconds = 12012; const uint8_t kFakeStatelessResetTokenData[16] = { 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F}; const uint64_t kFakeMaxPacketSize = 9001; const uint64_t kFakeInitialMaxData = 101; const bool kFakeDisableMigration = true; const auto kCustomParameter1 = static_cast<TransportParameters::TransportParameterId>(0xffcd); const char* kCustomParameter1Value = "foo"; const auto kCustomParameter2 = static_cast<TransportParameters::TransportParameterId>(0xff34); const char* kCustomParameter2Value = "bar"; std::vector<uint8_t> CreateFakeStatelessResetToken() { return std::vector<uint8_t>( kFakeStatelessResetTokenData, kFakeStatelessResetTokenData + sizeof(kFakeStatelessResetTokenData)); } TransportParameters::LegacyVersionInformation CreateFakeLegacyVersionInformation() { TransportParameters::LegacyVersionInformation legacy_version_information; legacy_version_information.version = kFakeVersionLabel; legacy_version_information.supported_versions.push_back(kFakeVersionLabel); legacy_version_information.supported_versions.push_back(kFakeVersionLabel2); return legacy_version_information; } TransportParameters::VersionInformation CreateFakeVersionInformation() { TransportParameters::VersionInformation version_information; version_information.chosen_version = kFakeVersionLabel; version_information.other_versions.push_back(kFakeVersionLabel); return version_information; } std::unique_ptr<TransportParameters> MakeFakeTransportParams() { auto params = std::make_unique<TransportParameters>(); params->perspective = Perspective::IS_CLIENT; params->legacy_version_information = CreateFakeLegacyVersionInformation(); params->version_information = CreateFakeVersionInformation(); params->max_idle_timeout_ms.set_value(kFakeIdleTimeoutMilliseconds); params->stateless_reset_token = CreateFakeStatelessResetToken(); params->max_udp_payload_size.set_value(kFakeMaxPacketSize); params->initial_max_data.set_value(kFakeInitialMaxData); params->disable_active_migration = kFakeDisableMigration; params->custom_parameters[kCustomParameter1] = kCustomParameter1Value; params->custom_parameters[kCustomParameter2] = kCustomParameter2Value; return params; } static const char kCachedSession[] = "30820ad7020101020203040402130104206594ce84e61a866b56163c4ba09079aebf1d4f" "6cbcbd38dc9d7066a38a76c9cf0420ec9062063582a4cc0a44f9ff93256a195153ba6032" "0cf3c9189990932d838adaa10602046196f7b9a205020302a300a382039f3082039b3082" "0183a00302010202021001300d06092a864886f70d010105050030623111300f06035504" "030c08426f677573204941310b300906035504080c024d41310b30090603550406130255" "533121301f06092a864886f70d0109011612626f67757340626f6775732d69612e636f6d" "3110300e060355040a0c07426f6775734941301e170d3231303132383136323030315a17" "0d3331303132363136323030315a3069311d301b06035504030c14746573745f6563632e" "6578616d706c652e636f6d310b300906035504080c024d41310b30090603550406130255" "53311e301c06092a864886f70d010901160f626f67757340626f6775732e636f6d310e30" "0c060355040a0c05426f6775733059301306072a8648ce3d020106082a8648ce3d030107" "034200041ba5e2b6f24e64990b9f24ae6d23473d8c77fbcfb7f554f36559529a69a57170" "a10a81b7fe4a36ebf37b0a8c5e467a8443d8b8c002892aa5c1194bd843f42c9aa31f301d" "301b0603551d11041430128210746573742e6578616d706c652e636f6d300d06092a8648" "86f70d0101050500038202010019921d54ac06948763d609215f64f5d6540e3da886c6c9" "61bc737a437719b4621416ef1229f39282d7d3234e1a5d57535473066233bd246eec8e96" "1e0633cf4fe014c800e62599981820ec33d92e74ded0fa2953db1d81e19cb6890b6305b6" "3ede8d3e9fcf3c09f3f57283acf08aa57be4ee9a68d00bb3e2ded5920c619b5d83e5194a" "adb77ae5d61ed3e0a5670f0ae61cc3197329f0e71e3364dcab0405e9e4a6646adef8f022" "6415ec16c8046307b1769029fe780bd576114dde2fa9b4a32aa70bc436549a24ee4907a9" "045f6457ce8dfd8d62cc65315afe798ae1a948eefd70b035d415e73569c48fb20085de1a" "87de039e6b0b9a5fcb4069df27f3a7a1409e72d1ac739c72f29ef786134207e61c79855f" "c22e3ee5f6ad59a7b1ff0f18d79776f1c95efaebbebe381664132a58a1e7ff689945b7e0" "88634b0872feeefbf6be020884b994c6a7ff435f2b3f609077ff97cb509cfa17ff479b34" "e633e4b5bc46b20c5f27c80a2e2943f795a928acd5a3fc43c3af8425ad600c048b41d87e" "6361bc72fc4e5e44680a3d325674ba6ffa760d2fc7d9e4847a8e0dd9d35a543324e18b94" "2d42af6391ed1dd54a39e3f4a4c6b32486eb4ba72815dbd89c56fc053743a0b0483ce676" "15defce6800c629b99d0cbc56da162487f475b7c246099eaf1e6d10a022b2f49c6af1da3" "e8ed66096f267c4a76976b9572db7456ef90278330a4020400aa81b60481b3494e534543" "55524500f3439e548c21d2ad6e5634cc1cc0045730819702010102020304040213010400" "0420ec9062063582a4cc0a44f9ff93256a195153ba60320cf3c9189990932d838adaa106" "02046196f7b9a205020302a300a4020400b20302011db5060404130800cdb807020500ff" "ffffffb9050203093a80ba0404026833bb030101ffbc23042100d27d985bfce04833f02d" "38366b219f4def42bc4ba1b01844d1778db11731487dbd020400be020400b20302011db3" "8205da308205d6308203bea00302010202021000300d06092a864886f70d010105050030" "62310b3009060355040613025553310b300906035504080c024d413110300e060355040a" "0c07426f67757343413111300f06035504030c08426f6775732043413121301f06092a86" "4886f70d0109011612626f67757340626f6775732d63612e636f6d3020170d3231303132" "383136313935385a180f32303730303531313136313935385a30623111300f0603550403" "0c08426f677573204941310b300906035504080c024d41310b3009060355040613025553" "3121301f06092a864886f70d0109011612626f67757340626f6775732d69612e636f6d31" "10300e060355040a0c07426f677573494130820222300d06092a864886f70d0101010500" "0382020f003082020a028202010096c03a0ffc61bcedcd5ec9bf6f848b8a066b43f08377" "3af518a6a0044f22e666e24d2ae741954e344302c4be04612185bd53bcd848eb322bf900" "724eb0848047d647033ffbddb00f01d1de7c1cdb684f83c9bf5fd18ff60afad5a53b0d7d" "2c2a50abc38df019cd7f50194d05bc4597a1ef8570ea04069a2c36d74496af126573ca18" "8e470009b56250fadf2a04e837ee3837b36b1f08b7a0cfe2533d05f26484ce4e30203d01" "517fffd3da63d0341079ddce16e9ab4dbf9d4049e5cc52326031e645dd682fe6220d9e0e" "95451f5a82f3e1720dc13e8499466426a0bdbea9f6a76b3c9228dd3c79ab4dcc4c145ef0" "e78d1ee8bfd4650692d7e28a54bed809d8f7b37fe24c586be59cc46638531cb291c8c156" "8f08d67e768e51563e95a639c1f138b275ffad6a6a2a042ba9e26ad63c2ce63b600013f0" "a6f0703ee51c4f457f7bab0391c2fc4c5bb3213742c9cf9941bff68cc2e1cc96139d35ed" "1885244ddde0bf658416c486701841b81f7b17503d08c59a4db08a2a80755e007aa3b6c7" "eadcaa9e07c8325f3689f100de23970b12c9d9f6d0a8fb35ba0fd75c64410318db4a13ac" "3972ad16cdf6408af37013c7bcd7c42f20d6d04c3e39436c7531e8dafa219dd04b784ef0" "3c70ee5a4782b33cafa925aa3deca62a14aed704f179b932efabc2b0c5c15a8a99bfc9e6" "189dce7da50ea303594b6af9c933dd54b6e9d17c472d0203010001a38193308190300f06" "03551d130101ff040530030101ff301d0603551d0e041604141a98e80029a80992b7e5e0" "068ab9b3486cd839d6301f0603551d23041830168014780beeefe2fa419c48a438bdb30b" "e37ef0b7a94e300b0603551d0f0404030202a430130603551d25040c300a06082b060105" "05070301301b0603551d11041430128207426f67757343418207426f6775734941300d06" "092a864886f70d010105050003820201009e822ed8064b1aabaddf1340010ea147f68c06" "5a5a599ea305349f1b0e545a00817d6e55c7bf85560fab429ca72186c4d520b52f5cc121" "abd068b06f3111494431d2522efa54642f907059e7db80b73bb5ecf621377195b8700bba" "df798cece8c67a9571548d0e6592e81ae5d934877cb170aef18d3b97f635600fe0890d98" "f88b33fe3d1fd34c1c915beae4e5c0b133f476c40b21d220f16ce9cdd9e8f97a36a31723" "68875f052c9271648d9cb54687c6fdc3ea96f2908003bc5e5e79de00a21da7b8429f8b08" "af4c4d34641e386d72eabf5f01f106363f2ffd18969bf0bb9a4d17627c6427ff772c4308" "83c276feef5fc6dba9582c22fdbe9df7e8dfca375695f028ed588df54f3c86462dbf4c07" "91d80ca738988a1419c86bb4dd8d738b746921f01f39422e5ffd488b6f00195b996e6392" "3a820a32cd78b5989f339c0fcf4f269103964a30a16347d0ffdc8df1f3653ddc1515fa09" "22c7aef1af1fbcb23e93ae7622ab1ee11fcfa98319bad4c37c091cad46bd0337b3cc78b5" "5b9f1ea7994acc1f89c49a0b4cb540d2137e266fd43e56a9b5b778217b6f77df530e1eaf" "b3417262b5ddb86d3c6c5ac51e3f326c650dcc2434473973b7182c66220d1f3871bde7ee" "47d3f359d3d4c5bdd61baa684c03db4c75f9d6690c9e6e3abe6eaf5fa2c33c4daf26b373" "d85a1e8a7d671ac4a0a97b14e36e81280de4593bbb12da7695b5060404130800cdb60301" "0100b70402020403b807020500ffffffffb9050203093a80ba0404026833bb030101ffbd" "020400be020400"; class QuicClientSessionCacheTest : public QuicTest { public: QuicClientSessionCacheTest() : ssl_ctx_(SSL_CTX_new(TLS_method())) { clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); } protected: bssl::UniquePtr<SSL_SESSION> NewSSLSession() { std::string cached_session; EXPECT_TRUE(absl::HexStringToBytes(kCachedSession, &cached_session)); SSL_SESSION* session = SSL_SESSION_from_bytes( reinterpret_cast<const uint8_t*>(cached_session.data()), cached_session.size(), ssl_ctx_.get()); QUICHE_DCHECK(session); return bssl::UniquePtr<SSL_SESSION>(session); } bssl::UniquePtr<SSL_SESSION> MakeTestSession( QuicTime::Delta timeout = kTimeout) { bssl::UniquePtr<SSL_SESSION> session = NewSSLSession(); SSL_SESSION_set_time(session.get(), clock_.WallNow().ToUNIXSeconds()); SSL_SESSION_set_timeout(session.get(), timeout.ToSeconds()); return session; } bssl::UniquePtr<SSL_CTX> ssl_ctx_; MockClock clock_; }; TEST_F(QuicClientSessionCacheTest, SingleSession) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto params2 = MakeFakeTransportParams(); auto session2 = MakeTestSession(); SSL_SESSION* unowned2 = session2.get(); QuicServerId id2("b.com", 443); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(nullptr, cache.Lookup(id2, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(0u, cache.size()); cache.Insert(id1, std::move(session), *params, nullptr); EXPECT_EQ(1u, cache.size()); EXPECT_EQ( *params, *(cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())->transport_params)); EXPECT_EQ(nullptr, cache.Lookup(id2, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(1u, cache.size()); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(0u, cache.size()); auto session3 = MakeTestSession(); SSL_SESSION* unowned3 = session3.get(); QuicServerId id3("c.com", 443); cache.Insert(id3, std::move(session3), *params, nullptr); cache.Insert(id2, std::move(session2), *params2, nullptr); EXPECT_EQ(2u, cache.size()); EXPECT_EQ( unowned2, cache.Lookup(id2, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ( unowned3, cache.Lookup(id3, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(nullptr, cache.Lookup(id2, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(nullptr, cache.Lookup(id3, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(0u, cache.size()); } TEST_F(QuicClientSessionCacheTest, MultipleSessions) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(); SSL_SESSION* unowned2 = session2.get(); auto session3 = MakeTestSession(); SSL_SESSION* unowned3 = session3.get(); cache.Insert(id1, std::move(session), *params, nullptr); cache.Insert(id1, std::move(session2), *params, nullptr); cache.Insert(id1, std::move(session3), *params, nullptr); EXPECT_EQ( unowned3, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ( unowned2, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); } TEST_F(QuicClientSessionCacheTest, DifferentTransportParams) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(); auto session3 = MakeTestSession(); SSL_SESSION* unowned3 = session3.get(); cache.Insert(id1, std::move(session), *params, nullptr); cache.Insert(id1, std::move(session2), *params, nullptr); params->perspective = Perspective::IS_SERVER; cache.Insert(id1, std::move(session3), *params, nullptr); auto resumption_state = cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get()); EXPECT_EQ(unowned3, resumption_state->tls_session.get()); EXPECT_EQ(*params.get(), *resumption_state->transport_params); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); } TEST_F(QuicClientSessionCacheTest, DifferentApplicationState) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(); auto session3 = MakeTestSession(); SSL_SESSION* unowned3 = session3.get(); ApplicationState state; state.push_back('a'); cache.Insert(id1, std::move(session), *params, &state); cache.Insert(id1, std::move(session2), *params, &state); cache.Insert(id1, std::move(session3), *params, nullptr); auto resumption_state = cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get()); EXPECT_EQ(unowned3, resumption_state->tls_session.get()); EXPECT_EQ(nullptr, resumption_state->application_state); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); } TEST_F(QuicClientSessionCacheTest, BothStatesDifferent) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(); auto session3 = MakeTestSession(); SSL_SESSION* unowned3 = session3.get(); ApplicationState state; state.push_back('a'); cache.Insert(id1, std::move(session), *params, &state); cache.Insert(id1, std::move(session2), *params, &state); params->perspective = Perspective::IS_SERVER; cache.Insert(id1, std::move(session3), *params, nullptr); auto resumption_state = cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get()); EXPECT_EQ(unowned3, resumption_state->tls_session.get()); EXPECT_EQ(*params.get(), *resumption_state->transport_params); EXPECT_EQ(nullptr, resumption_state->application_state); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); } TEST_F(QuicClientSessionCacheTest, SizeLimit) { QuicClientSessionCache cache(2); auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(); SSL_SESSION* unowned2 = session2.get(); QuicServerId id2("b.com", 443); auto session3 = MakeTestSession(); SSL_SESSION* unowned3 = session3.get(); QuicServerId id3("c.com", 443); cache.Insert(id1, std::move(session), *params, nullptr); cache.Insert(id2, std::move(session2), *params, nullptr); cache.Insert(id3, std::move(session3), *params, nullptr); EXPECT_EQ(2u, cache.size()); EXPECT_EQ( unowned2, cache.Lookup(id2, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ( unowned3, cache.Lookup(id3, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); } TEST_F(QuicClientSessionCacheTest, ClearEarlyData) { QuicClientSessionCache cache; SSL_CTX_set_early_data_enabled(ssl_ctx_.get(), 1); auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(); EXPECT_TRUE(SSL_SESSION_early_data_capable(session.get())); EXPECT_TRUE(SSL_SESSION_early_data_capable(session2.get())); cache.Insert(id1, std::move(session), *params, nullptr); cache.Insert(id1, std::move(session2), *params, nullptr); cache.ClearEarlyData(id1); auto resumption_state = cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get()); EXPECT_FALSE( SSL_SESSION_early_data_capable(resumption_state->tls_session.get())); resumption_state = cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get()); EXPECT_FALSE( SSL_SESSION_early_data_capable(resumption_state->tls_session.get())); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); } TEST_F(QuicClientSessionCacheTest, Expiration) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(3 * kTimeout); SSL_SESSION* unowned2 = session2.get(); QuicServerId id2("b.com", 443); cache.Insert(id1, std::move(session), *params, nullptr); cache.Insert(id2, std::move(session2), *params, nullptr); EXPECT_EQ(2u, cache.size()); clock_.AdvanceTime(kTimeout * 2); EXPECT_EQ(2u, cache.size()); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(1u, cache.size()); EXPECT_EQ( unowned2, cache.Lookup(id2, clock_.WallNow(), ssl_ctx_.get())->tls_session.get()); EXPECT_EQ(1u, cache.size()); } TEST_F(QuicClientSessionCacheTest, RemoveExpiredEntriesAndClear) { QuicClientSessionCache cache; auto params = MakeFakeTransportParams(); auto session = MakeTestSession(); quic::QuicServerId id1("a.com", 443); auto session2 = MakeTestSession(3 * kTimeout); quic::QuicServerId id2("b.com", 443); cache.Insert(id1, std::move(session), *params, nullptr); cache.Insert(id2, std::move(session2), *params, nullptr); EXPECT_EQ(2u, cache.size()); clock_.AdvanceTime(kTimeout * 2); EXPECT_EQ(2u, cache.size()); cache.RemoveExpiredEntries(clock_.WallNow()); EXPECT_EQ(nullptr, cache.Lookup(id1, clock_.WallNow(), ssl_ctx_.get())); EXPECT_EQ(1u, cache.size()); cache.Clear(); EXPECT_EQ(0u, cache.size()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_client_session_cache.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/quic_client_session_cache_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
fc6b01ea-f0a3-4da6-bd55-c32d499105a4
cpp
tensorflow/tensorflow
curl_http_request
third_party/xla/third_party/tsl/tsl/platform/cloud/curl_http_request.cc
third_party/xla/third_party/tsl/tsl/platform/cloud/curl_http_request_test.cc
#include "tsl/platform/cloud/curl_http_request.h" #include <algorithm> #include "xla/tsl/lib/gtl/map_util.h" #include "xla/tsl/util/env_var.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" #include "tsl/platform/scanner.h" #include "tsl/platform/str_util.h" #include "tsl/platform/types.h" #define CHECK_CURL_OK(expr) CHECK_EQ(expr, CURLE_OK) namespace tsl { namespace { constexpr uint64 kVerboseOutput = 0; class LibCurlProxy : public LibCurl { public: static LibCurlProxy* Load() { static LibCurlProxy* libcurl = []() -> LibCurlProxy* { curl_global_init(CURL_GLOBAL_ALL); return new LibCurlProxy; }(); return libcurl; } CURL* curl_easy_init() override { return ::curl_easy_init(); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, uint64 param) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, const char* param) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, void* param) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(void*, size_t, size_t, FILE*)) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(const void*, size_t, size_t, void*)) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, int (*param)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow)) override { return ::curl_easy_setopt(curl, option, param); } CURLcode curl_easy_perform(CURL* curl) override { return ::curl_easy_perform(curl); } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, uint64* value) override { return ::curl_easy_getinfo(curl, info, value); } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, double* value) override { return ::curl_easy_getinfo(curl, info, value); } void curl_easy_cleanup(CURL* curl) override { return ::curl_easy_cleanup(curl); } char* curl_easy_escape(CURL* curl, const char* str, int length) override { return ::curl_easy_escape(curl, str, length); } curl_slist* curl_slist_append(curl_slist* list, const char* str) override { return ::curl_slist_append(list, str); } void curl_slist_free_all(curl_slist* list) override { return ::curl_slist_free_all(list); } void curl_free(void* p) override { ::curl_free(p); } }; } CurlHttpRequest::CurlHttpRequest() : CurlHttpRequest(LibCurlProxy::Load()) {} CurlHttpRequest::CurlHttpRequest(LibCurl* libcurl, Env* env) : libcurl_(libcurl), env_(env) { default_response_buffer_.reserve(CURL_MAX_WRITE_SIZE); curl_ = libcurl_->curl_easy_init(); CHECK(curl_ != nullptr) << "Couldn't initialize a curl session."; std::string value = ""; TF_CHECK_OK(ReadStringFromEnvVar("CURL_CA_BUNDLE", "", &value)); if (!value.empty()) { CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_CAINFO, value.c_str())); } CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_VERBOSE, kVerboseOutput)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_USERAGENT, "TSL")); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_NOSIGNAL, 1L)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_1)); CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_NOPROGRESS, uint64{0})); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_XFERINFODATA, this)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_XFERINFOFUNCTION, &CurlHttpRequest::ProgressCallback)); SetResultBuffer(&default_response_buffer_); } CurlHttpRequest::~CurlHttpRequest() { if (curl_headers_) { libcurl_->curl_slist_free_all(curl_headers_); } if (resolve_list_) { libcurl_->curl_slist_free_all(resolve_list_); } if (put_body_) { if (fclose(put_body_) != 0) { LOG(ERROR) << "fclose() failed: " << strerror(errno); } } if (curl_) { libcurl_->curl_easy_cleanup(curl_); } } string CurlHttpRequest::EscapeString(const string& str) { char* out_char_str = libcurl_->curl_easy_escape(curl_, str.c_str(), 0); string out_str(out_char_str); libcurl_->curl_free(out_char_str); return out_str; } void CurlHttpRequest::SetUri(const string& uri) { CheckNotSent(); is_uri_set_ = true; uri_ = uri; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_URL, uri.c_str())); } void CurlHttpRequest::SetRange(uint64 start, uint64 end) { CheckNotSent(); CHECK_CURL_OK(libcurl_->curl_easy_setopt( curl_, CURLOPT_RANGE, strings::StrCat(start, "-", end).c_str())); } void CurlHttpRequest::AddHeader(const string& name, const string& value) { CheckNotSent(); curl_headers_ = libcurl_->curl_slist_append( curl_headers_, strings::StrCat(name, ": ", value).c_str()); } void CurlHttpRequest::AddResolveOverride(const string& hostname, int64_t port, const string& ip_addr) { CheckNotSent(); resolve_list_ = libcurl_->curl_slist_append( resolve_list_, strings::StrCat(hostname, ":", port, ":", ip_addr).c_str()); } void CurlHttpRequest::AddAuthBearerHeader(const string& auth_token) { CheckNotSent(); if (!auth_token.empty()) { AddHeader("Authorization", strings::StrCat("Bearer ", auth_token)); } } void CurlHttpRequest::SetRequestStats(RequestStats* stats) { CheckNotSent(); CHECK(stats_ == nullptr) << "SetRequestStats already called"; stats_ = stats; } void CurlHttpRequest::SetDeleteRequest() { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kDelete; CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_CUSTOMREQUEST, "DELETE")); } absl::Status CurlHttpRequest::SetPutFromFile(const string& body_filepath, size_t offset) { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPut; if (put_body_) { if (fclose(put_body_) != 0) { LOG(ERROR) << "fclose() failed: " << strerror(errno); } } put_body_ = fopen(body_filepath.c_str(), "r"); if (!put_body_) { return errors::InvalidArgument("Couldn't open the specified file: " + body_filepath); } fseek(put_body_, 0, SEEK_END); const auto size = ftell(put_body_) - offset; fseek(put_body_, offset, SEEK_SET); curl_headers_ = libcurl_->curl_slist_append( curl_headers_, strings::StrCat("Content-Length: ", size).c_str()); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_PUT, 1)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(put_body_))); return absl::OkStatus(); } void CurlHttpRequest::SetPutEmptyBody() { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPut; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_PUT, 1)); AddHeader("Content-Length", "0"); AddHeader("Transfer-Encoding", "identity"); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READFUNCTION, &CurlHttpRequest::ReadCallback)); } void CurlHttpRequest::SetPostFromBuffer(const char* buffer, size_t size) { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPost; curl_headers_ = libcurl_->curl_slist_append( curl_headers_, strings::StrCat("Content-Length: ", size).c_str()); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_POST, 1)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READFUNCTION, &CurlHttpRequest::ReadCallback)); post_body_buffer_ = absl::string_view(buffer, size); } void CurlHttpRequest::SetPostEmptyBody() { CheckNotSent(); CheckMethodNotSet(); is_method_set_ = true; method_ = RequestMethod::kPost; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_POST, 1)); AddHeader("Content-Length", "0"); AddHeader("Transfer-Encoding", "identity"); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_READFUNCTION, &CurlHttpRequest::ReadCallback)); } void CurlHttpRequest::SetResultBuffer(std::vector<char>* out_buffer) { CheckNotSent(); CHECK(out_buffer != nullptr); out_buffer->clear(); response_buffer_ = out_buffer; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_WRITEDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_WRITEFUNCTION, &CurlHttpRequest::WriteCallback)); } void CurlHttpRequest::SetResultBufferDirect(char* buffer, size_t size) { CHECK(buffer != nullptr); CheckNotSent(); direct_response_ = DirectResponseState{buffer, size, 0, 0}; CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_WRITEDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt( curl_, CURLOPT_WRITEFUNCTION, &CurlHttpRequest::WriteCallbackDirect)); } bool CurlHttpRequest::IsDirectResponse() const { return direct_response_.buffer_ != nullptr; } size_t CurlHttpRequest::WriteCallbackDirect(const void* ptr, size_t size, size_t nmemb, void* userdata) { CHECK(ptr != nullptr); auto that = reinterpret_cast<CurlHttpRequest*>(userdata); DirectResponseState* state = &that->direct_response_; CHECK(state->buffer_ != nullptr); CHECK(state->bytes_transferred_ <= state->buffer_size_); size_t curl_bytes_received = size * nmemb; size_t user_buffer_bytes_available = state->buffer_size_ - state->bytes_transferred_; size_t bytes_to_copy = std::min<size_t>(curl_bytes_received, user_buffer_bytes_available); memcpy(&state->buffer_[state->bytes_transferred_], ptr, bytes_to_copy); state->bytes_transferred_ += bytes_to_copy; state->bytes_received_ += curl_bytes_received; return bytes_to_copy; } size_t CurlHttpRequest::GetResultBufferDirectBytesTransferred() { CHECK(direct_response_.buffer_ != nullptr); return direct_response_.bytes_transferred_; } void CurlHttpRequest::SetTimeouts(uint32 connection, uint32 inactivity, uint32 total) { CheckNotSent(); connect_timeout_secs_ = connection; inactivity_timeout_secs_ = inactivity; request_timeout_secs_ = total; } size_t CurlHttpRequest::WriteCallback(const void* ptr, size_t size, size_t nmemb, void* this_object) { CHECK(ptr); auto that = reinterpret_cast<CurlHttpRequest*>(this_object); CHECK(that->response_buffer_); const size_t bytes_to_copy = size * nmemb; that->response_buffer_->insert( that->response_buffer_->end(), reinterpret_cast<const char*>(ptr), reinterpret_cast<const char*>(ptr) + bytes_to_copy); return bytes_to_copy; } size_t CurlHttpRequest::ReadCallback(void* ptr, size_t size, size_t nmemb, FILE* this_object) { CHECK(ptr); auto that = reinterpret_cast<CurlHttpRequest*>(this_object); CHECK(that->post_body_read_ <= that->post_body_buffer_.size()); const size_t bytes_to_copy = std::min( size * nmemb, that->post_body_buffer_.size() - that->post_body_read_); memcpy(ptr, that->post_body_buffer_.data() + that->post_body_read_, bytes_to_copy); that->post_body_read_ += bytes_to_copy; return bytes_to_copy; } size_t CurlHttpRequest::HeaderCallback(const void* ptr, size_t size, size_t nmemb, void* this_object) { CHECK(ptr); auto that = reinterpret_cast<CurlHttpRequest*>(this_object); absl::string_view header(reinterpret_cast<const char*>(ptr), size * nmemb); absl::string_view name, value; if (strings::Scanner(header) .ScanEscapedUntil(':') .StopCapture() .OneLiteral(": ") .GetResult(&value, &name)) { string str_value(value); absl::StripTrailingAsciiWhitespace(&str_value); that->response_headers_[string(name)] = str_value; } return size * nmemb; } absl::Status CurlHttpRequest::Send() { CheckNotSent(); CHECK(is_uri_set_) << "URI has not been set."; is_sent_ = true; if (curl_headers_) { CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_HTTPHEADER, curl_headers_)); } if (resolve_list_) { CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_RESOLVE, resolve_list_)); } CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_HEADERDATA, reinterpret_cast<void*>(this))); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_HEADERFUNCTION, &CurlHttpRequest::HeaderCallback)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_TIMEOUT, request_timeout_secs_)); CHECK_CURL_OK(libcurl_->curl_easy_setopt(curl_, CURLOPT_CONNECTTIMEOUT, connect_timeout_secs_)); char error_buffer[CURL_ERROR_SIZE] = {0}; CHECK_CURL_OK( libcurl_->curl_easy_setopt(curl_, CURLOPT_ERRORBUFFER, error_buffer)); if (stats_ != nullptr) { stats_->RecordRequest(this, uri_, method_); } const CURLcode curl_result = libcurl_->curl_easy_perform(curl_); TF_RETURN_IF_ERROR(CURLcodeToStatus(curl_result, error_buffer)); double written_size = 0; CHECK_CURL_OK(libcurl_->curl_easy_getinfo(curl_, CURLINFO_SIZE_DOWNLOAD, &written_size)); CHECK_CURL_OK(libcurl_->curl_easy_getinfo(curl_, CURLINFO_RESPONSE_CODE, &response_code_)); auto get_error_message = [this]() -> string { string error_message = strings::StrCat( "Error executing an HTTP request: HTTP response code ", response_code_); absl::string_view body = GetResponse(); if (!body.empty()) { return strings::StrCat( error_message, " with body '", body.substr(0, std::min(body.size(), response_to_error_limit_)), "'"); } return error_message; }; absl::Status result; switch (response_code_) { case 200: case 201: case 204: case 206: result = absl::OkStatus(); break; case 416: response_buffer_->clear(); if (IsDirectResponse()) { direct_response_.bytes_transferred_ = 0; } result = absl::OkStatus(); break; case 400: case 406: case 411: case 414: result = errors::InvalidArgument(get_error_message()); break; case 401: case 403: case 407: result = errors::PermissionDenied(get_error_message()); break; case 404: case 410: result = errors::NotFound(get_error_message()); break; case 302: case 303: case 304: case 307: case 412: case 413: result = errors::FailedPrecondition(get_error_message()); break; case 308: case 409: case 429: case 500: case 502: case 503: default: result = errors::Unavailable(get_error_message()); break; } if (!result.ok()) { response_buffer_->clear(); } if (stats_ != nullptr) { stats_->RecordResponse(this, uri_, method_, result); } return result; } void CurlHttpRequest::CheckMethodNotSet() const { CHECK(!is_method_set_) << "HTTP method has been already set."; } void CurlHttpRequest::CheckNotSent() const { CHECK(!is_sent_) << "The request has already been sent."; } absl::string_view CurlHttpRequest::GetResponse() const { absl::string_view response; if (IsDirectResponse()) { response = absl::string_view(direct_response_.buffer_, direct_response_.bytes_transferred_); } else { response = absl::string_view(response_buffer_->data(), response_buffer_->size()); } return response; } string CurlHttpRequest::GetResponseHeader(const string& name) const { const auto& header = response_headers_.find(name); return header != response_headers_.end() ? header->second : ""; } uint64 CurlHttpRequest::GetResponseCode() const { return response_code_; } int CurlHttpRequest::ProgressCallback(void* this_object, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow) { auto that = reinterpret_cast<CurlHttpRequest*>(this_object); const auto now = that->env_->NowSeconds(); const auto current_progress = dlnow + ulnow; if (that->last_progress_timestamp_ == 0 || current_progress > that->last_progress_bytes_) { that->last_progress_timestamp_ = now; that->last_progress_bytes_ = current_progress; return 0; } if (now - that->last_progress_timestamp_ > that->inactivity_timeout_secs_) { double lookup_time = -1; const auto lookup_time_status = that->libcurl_->curl_easy_getinfo( that->curl_, CURLINFO_NAMELOOKUP_TIME, &lookup_time); double connect_time = -1; const auto connect_time_status = that->libcurl_->curl_easy_getinfo( that->curl_, CURLINFO_CONNECT_TIME, &connect_time); double pretransfer_time = -1; const auto pretransfer_time_status = that->libcurl_->curl_easy_getinfo( that->curl_, CURLINFO_PRETRANSFER_TIME, &pretransfer_time); double starttransfer_time = -1; const auto starttransfer_time_status = that->libcurl_->curl_easy_getinfo( that->curl_, CURLINFO_STARTTRANSFER_TIME, &starttransfer_time); LOG(ERROR) << "The transmission of request " << this_object << " (URI: " << that->uri_ << ") has been stuck at " << current_progress << " of " << dltotal + ultotal << " bytes for " << now - that->last_progress_timestamp_ << " seconds and will be aborted. CURL timing information: " << "lookup time: " << lookup_time << " (" << curl_easy_strerror(lookup_time_status) << "), connect time: " << connect_time << " (" << curl_easy_strerror(connect_time_status) << "), pre-transfer time: " << pretransfer_time << " (" << curl_easy_strerror(pretransfer_time_status) << "), start-transfer time: " << starttransfer_time << " (" << curl_easy_strerror(starttransfer_time_status) << ")"; return 1; } return 0; } absl::Status CurlHttpRequest::CURLcodeToStatus(CURLcode code, const char* error_buffer) { if (code == CURLE_OK) { return absl::OkStatus(); } string error_message = strings::StrCat( "Error executing an HTTP request: libcurl code ", code, " meaning '", curl_easy_strerror(code), "', error details: "); if (code == CURLE_WRITE_ERROR && IsDirectResponse() && direct_response_.bytes_received_ > direct_response_.buffer_size_) { string overflow_message = strings::StrCat( "Received ", direct_response_.bytes_received_, " response bytes ", "for a ", direct_response_.buffer_size_, "-byte buffer"); uint64 response_code = 0; const CURLcode get_response_result = libcurl_->curl_easy_getinfo( curl_, CURLINFO_RESPONSE_CODE, &response_code); if (get_response_result == CURLE_OK && response_code == 416) { return absl::OkStatus(); } return errors::FailedPrecondition( strings::StrCat(error_message, overflow_message)); } if (code == CURLE_COULDNT_RESOLVE_HOST || code == CURLE_SSL_CACERT_BADFILE) { return errors::FailedPrecondition( strings::StrCat(error_message, error_buffer)); } return errors::Unavailable( strings::StrCat(error_message, *error_buffer ? error_buffer : "(none)")); } }
#include "tsl/platform/cloud/curl_http_request.h" #include <fstream> #include <string> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/mem.h" #include "tsl/platform/path.h" #include "tsl/platform/platform.h" #include "tsl/platform/test.h" namespace tsl { namespace { const string kTestContent = "random original scratch content"; class FakeEnv : public EnvWrapper { public: FakeEnv() : EnvWrapper(Env::Default()) {} uint64 NowSeconds() const override { return now_; } uint64 now_ = 10000; }; class FakeLibCurl : public LibCurl { public: FakeLibCurl(const string& response_content, uint64 response_code) : response_content_(response_content), response_code_(response_code) {} FakeLibCurl(const string& response_content, uint64 response_code, std::vector<std::tuple<uint64, curl_off_t>> progress_ticks, FakeEnv* env) : response_content_(response_content), response_code_(response_code), progress_ticks_(std::move(progress_ticks)), env_(env) {} FakeLibCurl(const string& response_content, uint64 response_code, const std::vector<string>& response_headers) : response_content_(response_content), response_code_(response_code), response_headers_(response_headers) {} CURL* curl_easy_init() override { is_initialized_ = true; return reinterpret_cast<CURL*>(this); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, uint64 param) override { switch (option) { case CURLOPT_POST: is_post_ = param; break; case CURLOPT_PUT: is_put_ = param; break; default: break; } return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, const char* param) override { return curl_easy_setopt(curl, option, reinterpret_cast<void*>(const_cast<char*>(param))); } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, void* param) override { switch (option) { case CURLOPT_URL: url_ = reinterpret_cast<char*>(param); break; case CURLOPT_RANGE: range_ = reinterpret_cast<char*>(param); break; case CURLOPT_CUSTOMREQUEST: custom_request_ = reinterpret_cast<char*>(param); break; case CURLOPT_HTTPHEADER: headers_ = reinterpret_cast<std::vector<string>*>(param); break; case CURLOPT_ERRORBUFFER: error_buffer_ = reinterpret_cast<char*>(param); break; case CURLOPT_CAINFO: ca_info_ = reinterpret_cast<char*>(param); break; case CURLOPT_WRITEDATA: write_data_ = reinterpret_cast<FILE*>(param); break; case CURLOPT_HEADERDATA: header_data_ = reinterpret_cast<FILE*>(param); break; case CURLOPT_READDATA: read_data_ = reinterpret_cast<FILE*>(param); break; case CURLOPT_XFERINFODATA: progress_data_ = param; break; default: break; } return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(void*, size_t, size_t, FILE*)) override { read_callback_ = param; return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, size_t (*param)(const void*, size_t, size_t, void*)) override { switch (option) { case CURLOPT_WRITEFUNCTION: write_callback_ = param; break; case CURLOPT_HEADERFUNCTION: header_callback_ = param; break; default: break; } return CURLE_OK; } CURLcode curl_easy_setopt(CURL* curl, CURLoption option, int (*param)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow)) override { progress_callback_ = param; return CURLE_OK; } CURLcode curl_easy_perform(CURL* curl) override { if (is_post_ || is_put_) { char buffer[3]; int bytes_read; posted_content_ = ""; do { bytes_read = read_callback_(buffer, 1, sizeof(buffer), read_data_); posted_content_ = strings::StrCat( posted_content_, absl::string_view(buffer, bytes_read)); } while (bytes_read > 0); } if (write_data_ || write_callback_) { size_t bytes_handled = write_callback_( response_content_.c_str(), 1, response_content_.size(), write_data_); if (bytes_handled != response_content_.size()) { curl_easy_perform_result_ = CURLE_WRITE_ERROR; } } for (const auto& header : response_headers_) { header_callback_(header.c_str(), 1, header.size(), header_data_); } if (error_buffer_) { strncpy(error_buffer_, curl_easy_perform_error_message_.c_str(), curl_easy_perform_error_message_.size() + 1); } for (const auto& tick : progress_ticks_) { env_->now_ = std::get<0>(tick); if (progress_callback_(progress_data_, 0, std::get<1>(tick), 0, 0)) { return CURLE_ABORTED_BY_CALLBACK; } } return curl_easy_perform_result_; } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, uint64* value) override { switch (info) { case CURLINFO_RESPONSE_CODE: *value = response_code_; break; default: break; } return CURLE_OK; } CURLcode curl_easy_getinfo(CURL* curl, CURLINFO info, double* value) override { switch (info) { case CURLINFO_SIZE_DOWNLOAD: *value = response_content_.size(); break; default: break; } return CURLE_OK; } void curl_easy_cleanup(CURL* curl) override { is_cleaned_up_ = true; } curl_slist* curl_slist_append(curl_slist* list, const char* str) override { std::vector<string>* v = list ? reinterpret_cast<std::vector<string>*>(list) : new std::vector<string>(); v->push_back(str); return reinterpret_cast<curl_slist*>(v); } char* curl_easy_escape(CURL* curl, const char* str, int length) override { const string victim = "/"; const string encoded = "%2F"; string temp_str = str; std::string::size_type n = 0; while ((n = temp_str.find(victim, n)) != std::string::npos) { temp_str.replace(n, victim.size(), encoded); n += encoded.size(); } char* out_char_str = reinterpret_cast<char*>( port::Malloc(sizeof(char) * temp_str.size() + 1)); std::copy(temp_str.begin(), temp_str.end(), out_char_str); out_char_str[temp_str.size()] = '\0'; return out_char_str; } void curl_slist_free_all(curl_slist* list) override { delete reinterpret_cast<std::vector<string>*>(list); } void curl_free(void* p) override { port::Free(p); } string response_content_; uint64 response_code_; std::vector<string> response_headers_; string url_; string range_; string custom_request_; string ca_info_; char* error_buffer_ = nullptr; bool is_initialized_ = false; bool is_cleaned_up_ = false; std::vector<string>* headers_ = nullptr; bool is_post_ = false; bool is_put_ = false; void* write_data_ = nullptr; size_t (*write_callback_)(const void* ptr, size_t size, size_t nmemb, void* userdata) = nullptr; void* header_data_ = nullptr; size_t (*header_callback_)(const void* ptr, size_t size, size_t nmemb, void* userdata) = nullptr; FILE* read_data_ = nullptr; size_t (*read_callback_)(void* ptr, size_t size, size_t nmemb, FILE* userdata) = &fread; int (*progress_callback_)(void* clientp, curl_off_t dltotal, curl_off_t dlnow, curl_off_t ultotal, curl_off_t ulnow) = nullptr; void* progress_data_ = nullptr; string posted_content_; CURLcode curl_easy_perform_result_ = CURLE_OK; string curl_easy_perform_error_message_; std::vector<std::tuple<uint64, curl_off_t>> progress_ticks_; FakeEnv* env_ = nullptr; }; TEST(CurlHttpRequestTest, GetRequest) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("get response", string(scratch.begin(), scratch.end())); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ("", libcurl.ca_info_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_Direct) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch(100, 0); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBufferDirect(scratch.data(), scratch.capacity()); TF_EXPECT_OK(http_request.Send()); string expected_response = "get response"; size_t response_bytes_transferred = http_request.GetResultBufferDirectBytesTransferred(); EXPECT_EQ(expected_response.size(), response_bytes_transferred); EXPECT_EQ( "get response", string(scratch.begin(), scratch.begin() + response_bytes_transferred)); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ("", libcurl.ca_info_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_CustomCaInfoFlag) { static char set_var[] = "CURL_CA_BUNDLE=test"; putenv(set_var); FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("get response", string(scratch.begin(), scratch.end())); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ("test", libcurl.ca_info_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_Direct_ResponseTooLarge) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch(5, 0); http_request.SetUri("http: http_request.SetResultBufferDirect(scratch.data(), scratch.size()); const absl::Status& status = http_request.Send(); EXPECT_EQ(error::FAILED_PRECONDITION, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 23 meaning " "'Failed writing received data to disk/application', error details: " "Received 12 response bytes for a 5-byte buffer", status.message()); EXPECT_EQ(5, http_request.GetResultBufferDirectBytesTransferred()); EXPECT_EQ("get r", string(scratch.begin(), scratch.begin() + 5)); } TEST(CurlHttpRequestTest, GetRequest_Direct_RangeOutOfBound) { FakeLibCurl libcurl("get response", 416); CurlHttpRequest http_request(&libcurl); const string initialScratch = "abcde"; std::vector<char> scratch; scratch.insert(scratch.end(), initialScratch.begin(), initialScratch.end()); http_request.SetUri("http: http_request.SetRange(0, 4); http_request.SetResultBufferDirect(scratch.data(), scratch.size()); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ(416, http_request.GetResponseCode()); EXPECT_EQ(0, http_request.GetResultBufferDirectBytesTransferred()); EXPECT_EQ("get r", string(scratch.begin(), scratch.end())); } TEST(CurlHttpRequestTest, GetRequest_Empty) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.resize(0); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(scratch.empty()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("100-199", libcurl.range_); EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); EXPECT_EQ(200, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_RangeOutOfBound) { FakeLibCurl libcurl("get response", 416); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(scratch.empty()); EXPECT_EQ(416, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_503) { FakeLibCurl libcurl("get response", 503); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: http_request.SetResultBuffer(&scratch); const auto& status = http_request.Send(); EXPECT_EQ(error::UNAVAILABLE, status.code()); EXPECT_EQ( "Error executing an HTTP request: HTTP response code 503 with body " "'get response'", status.message()); } TEST(CurlHttpRequestTest, GetRequest_HttpCode0) { FakeLibCurl libcurl("get response", 0); libcurl.curl_easy_perform_result_ = CURLE_OPERATION_TIMEDOUT; libcurl.curl_easy_perform_error_message_ = "Operation timed out"; CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: const auto& status = http_request.Send(); EXPECT_EQ(error::UNAVAILABLE, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 28 meaning " "'Timeout was reached', error details: Operation timed out", status.message()); EXPECT_EQ(0, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_CouldntResolveHost) { FakeLibCurl libcurl("get response", 0); libcurl.curl_easy_perform_result_ = CURLE_COULDNT_RESOLVE_HOST; libcurl.curl_easy_perform_error_message_ = "Could not resolve host 'metadata'"; CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: const auto& status = http_request.Send(); EXPECT_EQ(error::FAILED_PRECONDITION, status.code()); EXPECT_EQ( absl::StrCat( "Error executing an HTTP request: libcurl code 6 meaning ", (kIsOpenSource ? "'Couldn't resolve host name', error details: " : "'Could not resolve hostname', error details: "), "Could not resolve host ", "'metadata'"), status.message()); EXPECT_EQ(0, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, GetRequest_SslBadCertfile) { FakeLibCurl libcurl("get response", 0); libcurl.curl_easy_perform_result_ = CURLE_SSL_CACERT_BADFILE; libcurl.curl_easy_perform_error_message_ = "error setting certificate verify locations:"; CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.end(), kTestContent.begin(), kTestContent.end()); http_request.SetUri("http: const auto& status = http_request.Send(); EXPECT_EQ(error::FAILED_PRECONDITION, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 77 meaning " "'Problem with the SSL CA cert (path? access rights?)', error details: " "error setting certificate verify locations:", status.message()); EXPECT_EQ(0, http_request.GetResponseCode()); } TEST(CurlHttpRequestTest, ResponseHeaders) { FakeLibCurl libcurl( "get response", 200, {"Location: abcd", "Content-Type: text", "unparsable header"}); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("abcd", http_request.GetResponseHeader("Location")); EXPECT_EQ("text", http_request.GetResponseHeader("Content-Type")); EXPECT_EQ("", http_request.GetResponseHeader("Not-Seen-Header")); } TEST(CurlHttpRequestTest, PutRequest_WithBody_FromFile) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); auto content_filename = io::JoinPath(testing::TmpDir(), "content"); std::ofstream content(content_filename, std::ofstream::binary); content << "post body content"; content.close(); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); TF_EXPECT_OK(http_request.SetPutFromFile(content_filename, 0)); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(2, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 17", (*libcurl.headers_)[1]); EXPECT_TRUE(libcurl.is_put_); EXPECT_EQ("post body content", libcurl.posted_content_); std::remove(content_filename.c_str()); } TEST(CurlHttpRequestTest, PutRequest_WithBody_FromFile_NonZeroOffset) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); auto content_filename = io::JoinPath(testing::TmpDir(), "content"); std::ofstream content(content_filename, std::ofstream::binary); content << "post body content"; content.close(); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); TF_EXPECT_OK(http_request.SetPutFromFile(content_filename, 7)); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("dy content", libcurl.posted_content_); std::remove(content_filename.c_str()); } TEST(CurlHttpRequestTest, PutRequest_WithoutBody) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPutEmptyBody(); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(3, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 0", (*libcurl.headers_)[1]); EXPECT_EQ("Transfer-Encoding: identity", (*libcurl.headers_)[2]); EXPECT_TRUE(libcurl.is_put_); EXPECT_EQ("", libcurl.posted_content_); } TEST(CurlHttpRequestTest, PostRequest_WithBody_FromMemory) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); string content = "post body content"; http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPostFromBuffer(content.c_str(), content.size()); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(2, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 17", (*libcurl.headers_)[1]); EXPECT_TRUE(libcurl.is_post_); EXPECT_EQ("post body content", libcurl.posted_content_); } TEST(CurlHttpRequestTest, PostRequest_WithoutBody) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPostEmptyBody(); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("", libcurl.custom_request_); EXPECT_EQ(3, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_EQ("Content-Length: 0", (*libcurl.headers_)[1]); EXPECT_EQ("Transfer-Encoding: identity", (*libcurl.headers_)[2]); EXPECT_TRUE(libcurl.is_post_); EXPECT_EQ("", libcurl.posted_content_); } TEST(CurlHttpRequestTest, DeleteRequest) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetDeleteRequest(); TF_EXPECT_OK(http_request.Send()); EXPECT_TRUE(libcurl.is_initialized_); EXPECT_EQ("http: EXPECT_EQ("DELETE", libcurl.custom_request_); EXPECT_EQ(1, libcurl.headers_->size()); EXPECT_EQ("Authorization: Bearer fake-bearer", (*libcurl.headers_)[0]); EXPECT_FALSE(libcurl.is_post_); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_NoUri) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); ASSERT_DEATH((void)http_request.Send(), "URI has not been set"); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_TwoSends) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); ASSERT_DEATH((void)http_request.Send(), "The request has already been sent"); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_ReusingAfterSend) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); ASSERT_DEATH(http_request.SetUri("http: "The request has already been sent"); } TEST(CurlHttpRequestTest, WrongSequenceOfCalls_SettingMethodTwice) { FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetDeleteRequest(); ASSERT_DEATH(http_request.SetPostEmptyBody(), "HTTP method has been already set"); } TEST(CurlHttpRequestTest, EscapeString) { FakeLibCurl libcurl("get response", 200); CurlHttpRequest http_request(&libcurl); const string test_string = "a/b/c"; EXPECT_EQ("a%2Fb%2Fc", http_request.EscapeString(test_string)); } TEST(CurlHttpRequestTest, ErrorReturnsNoResponse) { FakeLibCurl libcurl("get response", 500); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); EXPECT_EQ(error::UNAVAILABLE, http_request.Send().code()); EXPECT_EQ("", string(scratch.begin(), scratch.end())); } TEST(CurlHttpRequestTest, ProgressIsOk) { FakeEnv env; FakeLibCurl libcurl( "test", 200, { std::make_tuple(100, 0) , std::make_tuple(110, 0) , std::make_tuple(200, 100) }, &env); CurlHttpRequest http_request(&libcurl, &env); http_request.SetUri("http: TF_EXPECT_OK(http_request.Send()); } TEST(CurlHttpRequestTest, ProgressIsStuck) { FakeEnv env; FakeLibCurl libcurl( "test", 200, { std::make_tuple(100, 10) , std::make_tuple(130, 10) , std::make_tuple(170, 10) }, &env); CurlHttpRequest http_request(&libcurl, &env); http_request.SetUri("http: auto status = http_request.Send(); EXPECT_EQ(error::UNAVAILABLE, status.code()); EXPECT_EQ( "Error executing an HTTP request: libcurl code 42 meaning 'Operation " "was aborted by an application callback', error details: (none)", status.message()); } class TestStats : public HttpRequest::RequestStats { public: ~TestStats() override = default; void RecordRequest(const HttpRequest* request, const string& uri, HttpRequest::RequestMethod method) override { has_recorded_request_ = true; record_request_request_ = request; record_request_uri_ = uri; record_request_method_ = method; } void RecordResponse(const HttpRequest* request, const string& uri, HttpRequest::RequestMethod method, const absl::Status& result) override { has_recorded_response_ = true; record_response_request_ = request; record_response_uri_ = uri; record_response_method_ = method; record_response_result_ = result; } const HttpRequest* record_request_request_ = nullptr; string record_request_uri_ = "http: HttpRequest::RequestMethod record_request_method_ = HttpRequest::RequestMethod::kGet; const HttpRequest* record_response_request_ = nullptr; string record_response_uri_ = "http: HttpRequest::RequestMethod record_response_method_ = HttpRequest::RequestMethod::kGet; absl::Status record_response_result_; bool has_recorded_request_ = false; bool has_recorded_response_ = false; }; class StatsTestFakeLibCurl : public FakeLibCurl { public: StatsTestFakeLibCurl(TestStats* stats, const string& response_content, uint64 response_code) : FakeLibCurl(response_content, response_code), stats_(stats) {} CURLcode curl_easy_perform(CURL* curl) override { CHECK(!performed_request_); performed_request_ = true; stats_had_recorded_request_ = stats_->has_recorded_request_; stats_had_recorded_response_ = stats_->has_recorded_response_; return FakeLibCurl::curl_easy_perform(curl); }; TestStats* stats_; bool performed_request_ = false; bool stats_had_recorded_request_; bool stats_had_recorded_response_; }; TEST(CurlHttpRequestTest, StatsGetSuccessful) { TestStats stats; StatsTestFakeLibCurl libcurl(&stats, "get response", 200); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetRequestStats(&stats); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); TF_EXPECT_OK(http_request.Send()); EXPECT_EQ("get response", string(scratch.begin(), scratch.end())); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_response_method_); TF_EXPECT_OK(stats.record_response_result_); EXPECT_TRUE(libcurl.performed_request_); EXPECT_TRUE(libcurl.stats_had_recorded_request_); EXPECT_FALSE(libcurl.stats_had_recorded_response_); } TEST(CurlHttpRequestTest, StatsGetNotFound) { TestStats stats; StatsTestFakeLibCurl libcurl(&stats, "get other response", 404); CurlHttpRequest http_request(&libcurl); std::vector<char> scratch; scratch.insert(scratch.begin(), kTestContent.begin(), kTestContent.end()); scratch.reserve(100); http_request.SetRequestStats(&stats); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetRange(100, 199); http_request.SetResultBuffer(&scratch); absl::Status s = http_request.Send(); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kGet, stats.record_response_method_); EXPECT_TRUE(absl::IsNotFound(stats.record_response_result_)); EXPECT_EQ(s, stats.record_response_result_); EXPECT_TRUE(libcurl.performed_request_); EXPECT_TRUE(libcurl.stats_had_recorded_request_); EXPECT_FALSE(libcurl.stats_had_recorded_response_); } TEST(CurlHttpRequestTest, StatsPost) { TestStats stats; FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetRequestStats(&stats); string content = "post body content"; http_request.SetUri("http: http_request.SetPostFromBuffer(content.c_str(), content.size()); TF_EXPECT_OK(http_request.Send()); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kPost, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kPost, stats.record_response_method_); TF_EXPECT_OK(stats.record_response_result_); } TEST(CurlHttpRequestTest, StatsDelete) { TestStats stats; FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetRequestStats(&stats); http_request.SetUri("http: http_request.SetDeleteRequest(); TF_EXPECT_OK(http_request.Send()); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kDelete, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kDelete, stats.record_response_method_); TF_EXPECT_OK(stats.record_response_result_); } TEST(CurlHttpRequestTest, StatsPut) { TestStats stats; FakeLibCurl libcurl("", 200); CurlHttpRequest http_request(&libcurl); http_request.SetRequestStats(&stats); http_request.SetUri("http: http_request.AddAuthBearerHeader("fake-bearer"); http_request.SetPutEmptyBody(); TF_EXPECT_OK(http_request.Send()); ASSERT_TRUE(stats.has_recorded_request_); EXPECT_EQ(&http_request, stats.record_request_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kPut, stats.record_request_method_); ASSERT_TRUE(stats.has_recorded_response_); EXPECT_EQ(&http_request, stats.record_response_request_); EXPECT_EQ("http: EXPECT_EQ(HttpRequest::RequestMethod::kPut, stats.record_response_method_); TF_EXPECT_OK(stats.record_response_result_); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/curl_http_request.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/curl_http_request_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
62bcdf42-4fcb-4005-9282-b66430d5d200
cpp
tensorflow/tensorflow
fold_old_batch_norms
tensorflow/tools/graph_transforms/fold_old_batch_norms.cc
tensorflow/tools/graph_transforms/fold_old_batch_norms_test.cc
#include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/fold_constants_lib.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { namespace { Status ErrorIfNotVector(const Tensor& input, const string& input_name, int expected_width) { if ((input.shape().dims() != 1) || (input.shape().dim_size(0) != expected_width)) { return errors::InvalidArgument( input_name, " input to batch norm has bad shape: ", input.shape().DebugString()); } return OkStatus(); } Status GetScaleAndOffsetValues(const NodeMatch& match, std::vector<float>* scale_values, std::vector<float>* offset_values) { const NodeDef& batch_norm_node = match.node; CHECK(batch_norm_node.op() == "BatchNormWithGlobalNormalization" || batch_norm_node.op() == "FusedBatchNorm"); const bool is_fused = batch_norm_node.op() == "FusedBatchNorm"; const int mean_idx = is_fused ? 3 : 1; const int var_idx = is_fused ? 4 : 2; const int beta_idx = is_fused ? 2 : 3; const int gamma_idx = is_fused ? 1 : 4; const string epsilon_attr = is_fused ? "epsilon" : "variance_epsilon"; const bool scale_after_normalization = is_fused || batch_norm_node.attr().at("scale_after_normalization").b(); const NodeDef& mean_node = match.inputs[mean_idx].node; CHECK_EQ("Const", mean_node.op()); const NodeDef& variance_node = match.inputs[var_idx].node; CHECK_EQ("Const", variance_node.op()); const NodeDef& beta_node = match.inputs[beta_idx].node; CHECK_EQ("Const", beta_node.op()); const NodeDef& gamma_node = match.inputs[gamma_idx].node; CHECK_EQ("Const", gamma_node.op()); Tensor mean = GetNodeTensorAttr(mean_node, "value"); Tensor variance = GetNodeTensorAttr(variance_node, "value"); Tensor beta = GetNodeTensorAttr(beta_node, "value"); Tensor gamma = GetNodeTensorAttr(gamma_node, "value"); const float variance_epsilon = batch_norm_node.attr().at(epsilon_attr).f(); const int64_t num_cols = mean.shape().dim_size(0); TF_RETURN_IF_ERROR(ErrorIfNotVector(variance, "Variance", num_cols)); TF_RETURN_IF_ERROR(ErrorIfNotVector(beta, "Beta", num_cols)); TF_RETURN_IF_ERROR(ErrorIfNotVector(gamma, "gamma", num_cols)); scale_values->resize(num_cols); offset_values->resize(num_cols); if (scale_after_normalization) { for (int i = 0; i < num_cols; ++i) { (*scale_values)[i] = (1.0f / sqrtf(variance.flat<float>()(i) + variance_epsilon)) * gamma.flat<float>()(i); } } else { for (int i = 0; i < num_cols; ++i) { (*scale_values)[i] = (1.0f / sqrtf(variance.flat<float>()(i) + variance_epsilon)); } } for (int i = 0; i < num_cols; ++i) { (*offset_values)[i] = (-mean.flat<float>()(i) * (*scale_values)[i]) + beta.flat<float>()(i); } return OkStatus(); } Status FuseScaleOffsetToConvWeights(const std::vector<float>& scale_values, const std::vector<float>& offset_values, const NodeMatch& conv_node_match, const string& conv_output_name, std::vector<NodeDef>* new_nodes) { const NodeDef& conv_node = conv_node_match.node; const NodeDef& input_node = conv_node_match.inputs[0].node; const NodeDef& weights_node = conv_node_match.inputs[1].node; CHECK_EQ("Const", weights_node.op()); Tensor weights = GetNodeTensorAttr(weights_node, "value"); int64_t weights_cols; if (conv_node.op() == "Conv2D") { weights_cols = weights.shape().dim_size(3); } else if (conv_node.op() == "DepthwiseConv2dNative") { weights_cols = weights.shape().dim_size(2) * weights.shape().dim_size(3); } else { weights_cols = weights.shape().dim_size(1); } CHECK_EQ(weights_cols, scale_values.size()); auto weights_vector = weights.flat<float>(); Tensor scaled_weights(DT_FLOAT, weights.shape()); auto scaled_weights_vector = scaled_weights.flat<float>(); for (int64_t row = 0; row < weights_vector.dimension(0); ++row) { scaled_weights_vector(row) = weights_vector(row) * scale_values[row % weights_cols]; } Tensor bias_offset(DT_FLOAT, {weights_cols}); auto bias_offset_vector = bias_offset.flat<float>(); for (int64_t col = 0; col < weights_cols; ++col) { bias_offset_vector(col) = offset_values[col]; } NodeDef scaled_weights_node; scaled_weights_node.set_op("Const"); scaled_weights_node.set_name(weights_node.name()); SetNodeAttr("dtype", DT_FLOAT, &scaled_weights_node); SetNodeTensorAttr<float>("value", scaled_weights, &scaled_weights_node); new_nodes->push_back(scaled_weights_node); new_nodes->push_back(input_node); new_nodes->push_back(conv_node); NodeDef bias_offset_node; bias_offset_node.set_op("Const"); bias_offset_node.set_name(conv_node.name() + "_bn_offset"); SetNodeAttr("dtype", DT_FLOAT, &bias_offset_node); SetNodeTensorAttr<float>("value", bias_offset, &bias_offset_node); new_nodes->push_back(bias_offset_node); NodeDef bias_add_node; bias_add_node.set_op("BiasAdd"); bias_add_node.set_name(conv_output_name); if (conv_node.attr().count("data_format")) { CopyNodeAttr(conv_node, "data_format", "data_format", &bias_add_node); } CopyNodeAttr(conv_node, "T", "T", &bias_add_node); AddNodeInput(conv_node.name(), &bias_add_node); AddNodeInput(bias_offset_node.name(), &bias_add_node); new_nodes->push_back(bias_add_node); return OkStatus(); } Status FuseBatchNormWithConv(const NodeMatch& match, std::vector<NodeDef>* new_nodes) { std::vector<float> scale_values; std::vector<float> offset_values; TF_RETURN_IF_ERROR( GetScaleAndOffsetValues(match, &scale_values, &offset_values)); const NodeDef& batch_norm_node = match.node; TF_RETURN_IF_ERROR( FuseScaleOffsetToConvWeights(scale_values, offset_values, match.inputs[0], batch_norm_node.name(), new_nodes)); return OkStatus(); } Status FuseBatchNormWithBatchToSpace(const NodeMatch& match, std::vector<NodeDef>* new_nodes) { std::vector<float> scale_values; std::vector<float> offset_values; TF_RETURN_IF_ERROR( GetScaleAndOffsetValues(match, &scale_values, &offset_values)); const NodeDef& batch_norm_node = match.node; const NodeMatch& batch_to_space_node_match = match.inputs[0]; const NodeMatch& conv_node_match = batch_to_space_node_match.inputs[0]; const NodeDef& batch_to_space_node = batch_to_space_node_match.node; const NodeDef& conv_node = conv_node_match.node; string biasadd_name = conv_node.name() + "/biasadd"; TF_RETURN_IF_ERROR(FuseScaleOffsetToConvWeights( scale_values, offset_values, conv_node_match, biasadd_name, new_nodes)); NodeDef new_batch_to_space_node = batch_to_space_node; new_batch_to_space_node.set_name(batch_norm_node.name()); new_batch_to_space_node.set_input(0, biasadd_name); new_nodes->push_back(batch_to_space_node_match.inputs[1].node); new_nodes->push_back(batch_to_space_node_match.inputs[2].node); new_nodes->push_back(new_batch_to_space_node); return OkStatus(); } Status FuseBatchNormWithConvConcat(const NodeMatch& match, std::vector<NodeDef>* new_nodes) { std::vector<float> scale_values; std::vector<float> offset_values; TF_RETURN_IF_ERROR( GetScaleAndOffsetValues(match, &scale_values, &offset_values)); const NodeDef& batch_norm_node = match.node; const NodeMatch& concat_node_match = match.inputs[0]; NodeDef concat_node = concat_node_match.node; CHECK_EQ("ConcatV2", concat_node.op()); NodeDef axis_node = concat_node_match.inputs[2].node; CHECK_EQ("Const", axis_node.op()); Tensor axis = GetNodeTensorAttr(axis_node, "value"); int32_t axis_scalar = (axis.scalar<int32>())(); std::vector<float> scale0(scale_values); std::vector<float> offset0(offset_values); std::vector<float> scale1(scale_values); std::vector<float> offset1(offset_values); if (axis_scalar == 3) { const NodeDef& weights0_node = concat_node_match.inputs[0].inputs[1].node; Tensor weights0 = GetNodeTensorAttr(weights0_node, "value"); const int64_t split_cols = weights0.shape().dim_size(3); scale0.erase(scale0.begin() + split_cols, scale0.end()); offset0.erase(offset0.begin() + split_cols, offset0.end()); scale1.erase(scale1.begin(), scale1.begin() + split_cols); offset1.erase(offset1.begin(), offset1.begin() + split_cols); } const string concat0_output_name = concat_node.name() + "_bn_in0"; TF_RETURN_IF_ERROR( FuseScaleOffsetToConvWeights(scale0, offset0, concat_node_match.inputs[0], concat0_output_name, new_nodes)); const string concat1_output_name = concat_node.name() + "_bn_in1"; TF_RETURN_IF_ERROR( FuseScaleOffsetToConvWeights(scale1, offset1, concat_node_match.inputs[1], concat1_output_name, new_nodes)); new_nodes->push_back(concat_node_match.inputs[2].node); concat_node.set_name(batch_norm_node.name()); concat_node.set_input(0, concat0_output_name); concat_node.set_input(1, concat1_output_name); new_nodes->push_back(concat_node); return OkStatus(); } } Status FoldOldBatchNorms(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef current_graph_def = input_graph_def; bool did_graph_change; do { did_graph_change = false; GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( current_graph_def, {"BatchNormWithGlobalNormalization|FusedBatchNorm", { {"Conv2D|DepthwiseConv2dNative", { {"*"}, {"Const"}, } }, {"Const"}, {"Const"}, {"Const"}, {"Const"}, } }, [&did_graph_change](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { TF_RETURN_IF_ERROR(FuseBatchNormWithConv(match, new_nodes)); did_graph_change = true; return OkStatus(); }, {}, &replaced_graph_def)); current_graph_def = replaced_graph_def; } while (did_graph_change); do { did_graph_change = false; GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( current_graph_def, {"BatchNormWithGlobalNormalization|FusedBatchNorm", { {"BatchToSpaceND", { {"Conv2D|DepthwiseConv2dNative", { {"*"}, {"Const"}, } }, {"Const"}, {"Const"}, } }, {"Const"}, {"Const"}, {"Const"}, {"Const"}, } }, [&did_graph_change](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { TF_RETURN_IF_ERROR(FuseBatchNormWithBatchToSpace(match, new_nodes)); did_graph_change = true; return OkStatus(); }, {}, &replaced_graph_def)); current_graph_def = replaced_graph_def; } while (did_graph_change); do { did_graph_change = false; GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( current_graph_def, {"BatchNormWithGlobalNormalization|FusedBatchNorm", { {"ConcatV2|Concat", { {"Conv2D|DepthwiseConv2dNative", { {"*"}, {"Const"}, } }, {"Conv2D|DepthwiseConv2dNative", { {"*"}, {"Const"}, } }, {"Const"}, }, }, {"Const"}, {"Const"}, {"Const"}, {"Const"}, } }, [&did_graph_change](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { TF_RETURN_IF_ERROR(FuseBatchNormWithConvConcat(match, new_nodes)); did_graph_change = true; return OkStatus(); }, {}, &replaced_graph_def)); current_graph_def = replaced_graph_def; } while (did_graph_change); *output_graph_def = current_graph_def; return OkStatus(); } REGISTER_GRAPH_TRANSFORM("fold_old_batch_norms", FoldOldBatchNorms); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FoldOldBatchNorms(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class FoldOldBatchNormsTest : public ::testing::Test { protected: void TestFoldOldBatchNorms() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mean_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mean_data, {10.0f, 20.0f}); Output mean_op = Const(root.WithOpName("mean_op"), Input::Initializer(mean_data)); Tensor variance_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&variance_data, {0.25f, 0.5f}); Output variance_op = Const(root.WithOpName("variance_op"), Input::Initializer(variance_data)); Tensor beta_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&beta_data, {0.1f, 0.6f}); Output beta_op = Const(root.WithOpName("beta_op"), Input::Initializer(beta_data)); Tensor gamma_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&gamma_data, {1.0f, 2.0f}); Output gamma_op = Const(root.WithOpName("gamma_op"), Input::Initializer(gamma_data)); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); NodeDef batch_norm_node; batch_norm_node.set_op("BatchNormWithGlobalNormalization"); batch_norm_node.set_name("output"); AddNodeInput("conv_op", &batch_norm_node); AddNodeInput("mean_op", &batch_norm_node); AddNodeInput("variance_op", &batch_norm_node); AddNodeInput("beta_op", &batch_norm_node); AddNodeInput("gamma_op", &batch_norm_node); SetNodeAttr("T", DT_FLOAT, &batch_norm_node); SetNodeAttr("variance_epsilon", 0.00001f, &batch_norm_node); SetNodeAttr("scale_after_normalization", false, &batch_norm_node); *(original_graph_def.mutable_node()->Add()) = batch_norm_node; original_graph_def.mutable_versions()->set_producer(8); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldOldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("BatchNormWithGlobalNormalization", node.op()); } } void TestFoldOldBatchNormsAfterDepthwiseConv2dNative() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = DepthwiseConv2dNative(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mean_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&mean_data, {10.0f, 20.0f, 30.0f, 40.0f}); Output mean_op = Const(root.WithOpName("mean_op"), Input::Initializer(mean_data)); Tensor variance_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&variance_data, {0.25f, 0.5f, 0.75f, 1.0f}); Output variance_op = Const(root.WithOpName("variance_op"), Input::Initializer(variance_data)); Tensor beta_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&beta_data, {0.1f, 0.6f, 1.1f, 1.6f}); Output beta_op = Const(root.WithOpName("beta_op"), Input::Initializer(beta_data)); Tensor gamma_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&gamma_data, {1.0f, 2.0f, 3.0f, 4.0f}); Output gamma_op = Const(root.WithOpName("gamma_op"), Input::Initializer(gamma_data)); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); NodeDef batch_norm_node; batch_norm_node.set_op("BatchNormWithGlobalNormalization"); batch_norm_node.set_name("output"); AddNodeInput("conv_op", &batch_norm_node); AddNodeInput("mean_op", &batch_norm_node); AddNodeInput("variance_op", &batch_norm_node); AddNodeInput("beta_op", &batch_norm_node); AddNodeInput("gamma_op", &batch_norm_node); SetNodeAttr("T", DT_FLOAT, &batch_norm_node); SetNodeAttr("variance_epsilon", 0.00001f, &batch_norm_node); SetNodeAttr("scale_after_normalization", false, &batch_norm_node); *(original_graph_def.mutable_node()->Add()) = batch_norm_node; original_graph_def.mutable_versions()->set_producer(8); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldOldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("BatchNormWithGlobalNormalization", node.op()); } } void TestFoldFusedBatchNorms() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mean_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mean_data, {10.0f, 20.0f}); Output mean_op = Const(root.WithOpName("mean_op"), Input::Initializer(mean_data)); Tensor variance_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&variance_data, {0.25f, 0.5f}); Output variance_op = Const(root.WithOpName("variance_op"), Input::Initializer(variance_data)); Tensor beta_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&beta_data, {0.1f, 0.6f}); Output beta_op = Const(root.WithOpName("beta_op"), Input::Initializer(beta_data)); Tensor gamma_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&gamma_data, {1.0f, 2.0f}); Output gamma_op = Const(root.WithOpName("gamma_op"), Input::Initializer(gamma_data)); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); NodeDef batch_norm_node; batch_norm_node.set_op("FusedBatchNorm"); batch_norm_node.set_name("output"); AddNodeInput("conv_op", &batch_norm_node); AddNodeInput("gamma_op", &batch_norm_node); AddNodeInput("beta_op", &batch_norm_node); AddNodeInput("mean_op", &batch_norm_node); AddNodeInput("variance_op", &batch_norm_node); SetNodeAttr("T", DT_FLOAT, &batch_norm_node); SetNodeAttr("epsilon", 0.00001f, &batch_norm_node); SetNodeAttr("is_training", false, &batch_norm_node); *(original_graph_def.mutable_node()->Add()) = batch_norm_node; std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldOldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 2e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("FusedBatchNorm", node.op()); } } void TestFoldFusedBatchNormsAfterDepthwiseConv2dNative() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 1, 6, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = DepthwiseConv2dNative(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor mean_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&mean_data, {10.0f, 20.0f, 30.0f, 40.0f}); Output mean_op = Const(root.WithOpName("mean_op"), Input::Initializer(mean_data)); Tensor variance_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&variance_data, {0.25f, 0.5f, 0.75f, 1.0f}); Output variance_op = Const(root.WithOpName("variance_op"), Input::Initializer(variance_data)); Tensor beta_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&beta_data, {0.1f, 0.6f, 1.1f, 1.6f}); Output beta_op = Const(root.WithOpName("beta_op"), Input::Initializer(beta_data)); Tensor gamma_data(DT_FLOAT, TensorShape({4})); test::FillValues<float>(&gamma_data, {1.0f, 2.0f, 3.0f, 4.0f}); Output gamma_op = Const(root.WithOpName("gamma_op"), Input::Initializer(gamma_data)); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); NodeDef batch_norm_node; batch_norm_node.set_op("FusedBatchNorm"); batch_norm_node.set_name("output"); AddNodeInput("conv_op", &batch_norm_node); AddNodeInput("gamma_op", &batch_norm_node); AddNodeInput("beta_op", &batch_norm_node); AddNodeInput("mean_op", &batch_norm_node); AddNodeInput("variance_op", &batch_norm_node); SetNodeAttr("T", DT_FLOAT, &batch_norm_node); SetNodeAttr("epsilon", 0.00001f, &batch_norm_node); SetNodeAttr("is_training", false, &batch_norm_node); *(original_graph_def.mutable_node()->Add()) = batch_norm_node; std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldOldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectClose(original_outputs[0], fused_outputs[0], 2e-5, 2e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("FusedBatchNorm", node.op()); } } void TestFoldFusedBatchNormsWithConcat(const bool split) { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; auto input_shape = split ? TensorShape({1, 1, 6, 2}) : TensorShape({1, 1, 12, 1}); Tensor input_data(DT_FLOAT, input_shape); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input0_op = Const(root.WithOpName("input_op0"), Input::Initializer(input_data)); auto weight_shape = split ? TensorShape({1, 2, 2, 1}) : TensorShape({1, 2, 1, 2}); Tensor weights0_data(DT_FLOAT, weight_shape); test::FillValues<float>(&weights0_data, {1.0f, 2.0f, 3.0f, 4.0f}); Output weights0_op = Const(root.WithOpName("weights1_op"), Input::Initializer(weights0_data)); Output conv0_op = Conv2D(root.WithOpName("conv1_op"), input0_op, weights0_op, {1, 1, 1, 1}, "VALID"); Output input1_op = Const(root.WithOpName("input1_op"), Input::Initializer(input_data)); Tensor weights1_data(DT_FLOAT, weight_shape); test::FillValues<float>(&weights1_data, {1.0f, 2.0f, 3.0f, 4.0f}); Output weights1_op = Const(root.WithOpName("weights1_op"), Input::Initializer(weights1_data)); Output conv1_op = Conv2D(root.WithOpName("conv1_op"), input1_op, weights1_op, {1, 1, 1, 1}, "VALID"); Tensor shape_tensor(DT_INT32, TensorShape({})); int32_t concat_axis = split ? 3 : 2; test::FillValues<int32>(&shape_tensor, {concat_axis}); Output shape_op = Const(root.WithOpName("shape_op"), Input::Initializer(shape_tensor)); Output concat_op = Concat(root.WithOpName("concat_op"), {conv0_op, conv1_op}, shape_op); Tensor mean_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mean_data, {10.0f, 20.0f}); Output mean_op = Const(root.WithOpName("mean_op"), Input::Initializer(mean_data)); Tensor variance_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&variance_data, {0.25f, 0.5f}); Output variance_op = Const(root.WithOpName("variance_op"), Input::Initializer(variance_data)); Tensor beta_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&beta_data, {0.1f, 0.6f}); Output beta_op = Const(root.WithOpName("beta_op"), Input::Initializer(beta_data)); Tensor gamma_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&gamma_data, {1.0f, 2.0f}); Output gamma_op = Const(root.WithOpName("gamma_op"), Input::Initializer(gamma_data)); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); NodeDef batch_norm_node; batch_norm_node.set_op("FusedBatchNorm"); batch_norm_node.set_name("output"); AddNodeInput("concat_op", &batch_norm_node); AddNodeInput("gamma_op", &batch_norm_node); AddNodeInput("beta_op", &batch_norm_node); AddNodeInput("mean_op", &batch_norm_node); AddNodeInput("variance_op", &batch_norm_node); SetNodeAttr("T", DT_FLOAT, &batch_norm_node); SetNodeAttr("epsilon", 0.00001f, &batch_norm_node); SetNodeAttr("is_training", false, &batch_norm_node); *(original_graph_def.mutable_node()->Add()) = batch_norm_node; std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldOldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectClose(original_outputs[0], fused_outputs[0]); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("FusedBatchNorm", node.op()); } } }; void TestFoldFusedBatchNormsWithBatchToSpace() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({2, 1, 3, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("conv_op"), input_op, weights_op, {1, 1, 1, 1}, "VALID"); Tensor block_shape_data(DT_INT32, TensorShape({2})); test::FillValues<int32>(&block_shape_data, {1, 2}); Output block_shape_op = Const(root.WithOpName("block_shape_op"), Input::Initializer(block_shape_data)); Tensor crops_data(DT_INT32, TensorShape({2, 2})); test::FillValues<int32>(&crops_data, {0, 0, 0, 1}); Output crops_op = Const(root.WithOpName("crops_op"), Input::Initializer(crops_data)); Output batch_to_space_op = BatchToSpaceND(root.WithOpName("batch_to_space_op"), conv_op, block_shape_op, crops_data); Tensor mean_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&mean_data, {10.0f, 20.0f}); Output mean_op = Const(root.WithOpName("mean_op"), Input::Initializer(mean_data)); Tensor variance_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&variance_data, {0.25f, 0.5f}); Output variance_op = Const(root.WithOpName("variance_op"), Input::Initializer(variance_data)); Tensor beta_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&beta_data, {0.1f, 0.6f}); Output beta_op = Const(root.WithOpName("beta_op"), Input::Initializer(beta_data)); Tensor gamma_data(DT_FLOAT, TensorShape({2})); test::FillValues<float>(&gamma_data, {1.0f, 2.0f}); Output gamma_op = Const(root.WithOpName("gamma_op"), Input::Initializer(gamma_data)); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); NodeDef batch_norm_node; batch_norm_node.set_op("FusedBatchNorm"); batch_norm_node.set_name("output"); AddNodeInput("batch_to_space_op", &batch_norm_node); AddNodeInput("gamma_op", &batch_norm_node); AddNodeInput("beta_op", &batch_norm_node); AddNodeInput("mean_op", &batch_norm_node); AddNodeInput("variance_op", &batch_norm_node); SetNodeAttr("T", DT_FLOAT, &batch_norm_node); SetNodeAttr("epsilon", 0.00001f, &batch_norm_node); SetNodeAttr("is_training", false, &batch_norm_node); *(original_graph_def.mutable_node()->Add()) = batch_norm_node; std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FoldOldBatchNorms(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("FusedBatchNormWithBatchToSpace", node.op()); } } TEST_F(FoldOldBatchNormsTest, TestFoldOldBatchNorms) { TestFoldOldBatchNorms(); } TEST_F(FoldOldBatchNormsTest, TestFoldFusedBatchNorms) { TestFoldFusedBatchNorms(); } TEST_F(FoldOldBatchNormsTest, TestFoldFusedBatchNormsWithConcat) { TestFoldFusedBatchNormsWithConcat(true); TestFoldFusedBatchNormsWithConcat(false); } TEST_F(FoldOldBatchNormsTest, TestFoldFusedBatchNormsWithBatchToSpace) { TestFoldFusedBatchNormsWithBatchToSpace(); } TEST_F(FoldOldBatchNormsTest, TestFoldOldBatchNormsAfterDepthwiseConv2dNative) { TestFoldOldBatchNormsAfterDepthwiseConv2dNative(); } TEST_F(FoldOldBatchNormsTest, TestFoldFusedBatchNormsAfterDepthwiseConv2dNative) { TestFoldFusedBatchNormsAfterDepthwiseConv2dNative(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/fold_old_batch_norms.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/fold_old_batch_norms_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d6649578-7be7-42e1-8e40-fd3691a3885d
cpp
tensorflow/tensorflow
mapped_ptr_container_sorter
third_party/xla/xla/service/mapped_ptr_container_sorter.h
third_party/xla/xla/service/mapped_ptr_container_sorter_test.cc
#ifndef XLA_SERVICE_MAPPED_PTR_CONTAINER_SORTER_H_ #define XLA_SERVICE_MAPPED_PTR_CONTAINER_SORTER_H_ #include <array> #include <cstddef> #include <functional> #include <limits> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { template <typename PointedToTy> class MappedPtrContainerSorter { public: using MapPtrFn = absl::FunctionRef<const PointedToTy*(const PointedToTy*)>; using UnmappedPtrIndexFn = absl::FunctionRef<size_t(const PointedToTy*)>; static UnmappedPtrIndexFn IndexBeforeMappedElementsFn(); static UnmappedPtrIndexFn IndexAfterMappedElementsFn(); static UnmappedPtrIndexFn InvalidIndexFn(); template <typename OrderedTy, typename UnorderedTy> static absl::Status Sort(MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, UnorderedTy& unordered_container); private: class SortedIndices { public: SortedIndices(size_t max_partial_order_exclusive, size_t unordered_container_size) : max_partial_order_exclusive_(max_partial_order_exclusive), unordered_container_size_(unordered_container_size), mapped_element_indices_by_partial_order_( max_partial_order_exclusive) {} absl::Status AddMappedElement(size_t unordered_container_index, size_t partial_order); void AddUnmappedElement(size_t unordered_container_index, size_t target_index_amongst_mapped_elements); std::string ToString() const; absl::StatusOr<std::vector<size_t>> Flatten() const; private: SortedIndices() = delete; size_t max_partial_order_exclusive_; size_t unordered_container_size_; std::vector<std::vector<size_t>> mapped_element_indices_by_partial_order_; absl::flat_hash_map<size_t, std::vector<size_t>> target_index_to_unmapped_element_index_; }; static size_t IndexBeforeMappedElements() { return std::numeric_limits<size_t>::max() - 2; } static size_t IndexAfterMappedElements() { return std::numeric_limits<size_t>::max() - 1; } static size_t InvalidIndex() { return std::numeric_limits<size_t>::max(); } template <typename OrderedTy, typename UnorderedTy> static absl::StatusOr<std::vector<size_t>> ComputeNewIndices( MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, const UnorderedTy& unordered_container); template <typename UnorderedTy> static void Reorder(std::vector<size_t> new_indices, UnorderedTy& unordered_container); }; namespace mapped_ptr_container_sorter_internal { template <typename I, typename O> struct PtrGetter { static O Get(I i); }; template <typename T> struct PtrGetter<T* const&, const T*> { static const T* Get(T* const& p) { return p; } }; template <typename T> struct PtrGetter<T const* const&, const T*> { static const T* Get(T const* const& p) { return p; } }; template <typename T> struct PtrGetter<T*&, T*> { static T* Get(T*& p) { return p; } }; template <typename T> struct PtrGetter<const std::unique_ptr<T>&, const T*> { static const T* Get(const std::unique_ptr<T>& p) { return p.get(); } }; template <typename T> struct PtrGetter<std::unique_ptr<T>&, T*> { static T* Get(std::unique_ptr<T>& p) { return p.get(); } }; } template <typename PointedToTy> typename MappedPtrContainerSorter<PointedToTy>::UnmappedPtrIndexFn MappedPtrContainerSorter<PointedToTy>::IndexBeforeMappedElementsFn() { static const auto fn = [](const PointedToTy*) { return IndexBeforeMappedElements(); }; return fn; } template <typename PointedToTy> typename MappedPtrContainerSorter<PointedToTy>::UnmappedPtrIndexFn MappedPtrContainerSorter<PointedToTy>::IndexAfterMappedElementsFn() { static const auto fn = [](const PointedToTy*) { return IndexAfterMappedElements(); }; return fn; } template <typename PointedToTy> typename MappedPtrContainerSorter<PointedToTy>::UnmappedPtrIndexFn MappedPtrContainerSorter<PointedToTy>::InvalidIndexFn() { static const auto fn = [](const PointedToTy*) { return InvalidIndex(); }; return fn; } template <typename PointedToTy> absl::Status MappedPtrContainerSorter<PointedToTy>::SortedIndices::AddMappedElement( size_t unordered_container_index, size_t partial_order) { if (partial_order >= mapped_element_indices_by_partial_order_.size()) { return InternalStrCat("invalid partial order: ", partial_order, " v max(", mapped_element_indices_by_partial_order_.size(), ")"); } mapped_element_indices_by_partial_order_[partial_order].push_back( unordered_container_index); return absl::OkStatus(); } template <typename PointedToTy> void MappedPtrContainerSorter<PointedToTy>::SortedIndices::AddUnmappedElement( size_t unordered_container_index, size_t target_index_amongst_mapped_elements) { target_index_to_unmapped_element_index_[target_index_amongst_mapped_elements] .push_back(unordered_container_index); } template <typename PointedToTy> std::string MappedPtrContainerSorter<PointedToTy>::SortedIndices::ToString() const { std::vector<std::string> mapped_element_strs; mapped_element_strs.reserve(mapped_element_indices_by_partial_order_.size()); for (const auto& indices : mapped_element_indices_by_partial_order_) { mapped_element_strs.push_back( absl::StrCat("[", absl::StrJoin(indices, ", "), "]")); } std::vector<std::string> unmapped_element_strs; unmapped_element_strs.reserve(target_index_to_unmapped_element_index_.size()); for (const auto& kv : target_index_to_unmapped_element_index_) { std::string key = absl::StrCat(kv.first); if (kv.first == IndexBeforeMappedElements()) { key = "before_mapped"; } if (kv.first == IndexAfterMappedElements()) { key = "after_mapped"; } if (kv.first == InvalidIndex()) { key = "invalid"; } unmapped_element_strs.push_back( absl::StrCat(key, ": [", absl::StrJoin(kv.second, ", "), "]")); } return absl::StrCat( "max_partial_order_exclusive_: ", max_partial_order_exclusive_, "\n", "unordered_container_size_: ", unordered_container_size_, "\n", "mapped_element_indices_by_partial_order_: [", absl::StrJoin(mapped_element_strs, ", "), "]\n", "target_index_to_unmapped_element_index_: {", absl::StrJoin(unmapped_element_strs, ", "), "}\n"); } template <typename PointedToTy> absl::StatusOr<std::vector<size_t>> MappedPtrContainerSorter<PointedToTy>::SortedIndices::Flatten() const { std::vector<size_t> result(unordered_container_size_, InvalidIndex()); size_t next_available_index = 0; auto next_index_fn = [&]() -> absl::StatusOr<size_t> { if (next_available_index >= unordered_container_size_) { return InternalStrCat( "invalid unordered_container index: ", next_available_index, " v size(", unordered_container_size_, ")"); } return next_available_index++; }; if (target_index_to_unmapped_element_index_.contains( IndexBeforeMappedElements())) { const auto& indices = target_index_to_unmapped_element_index_.at(IndexBeforeMappedElements()); for (size_t index : indices) { TF_ASSIGN_OR_RETURN(result[index], next_index_fn()); } } size_t num_inserted_mapped_elements = 0; for (const auto& mapped_element_indices : mapped_element_indices_by_partial_order_) { for (size_t mapped_element_index : mapped_element_indices) { TF_ASSIGN_OR_RETURN(result[mapped_element_index], next_index_fn()); ++num_inserted_mapped_elements; if (target_index_to_unmapped_element_index_.contains( num_inserted_mapped_elements - 1)) { const auto& unmapped_element_indices = target_index_to_unmapped_element_index_.at( num_inserted_mapped_elements - 1); for (size_t unmapped_element_index : unmapped_element_indices) { TF_ASSIGN_OR_RETURN(result[unmapped_element_index], next_index_fn()); } } } } if (target_index_to_unmapped_element_index_.contains( IndexAfterMappedElements())) { const auto& indices = target_index_to_unmapped_element_index_.at(IndexAfterMappedElements()); for (size_t index : indices) { TF_ASSIGN_OR_RETURN(result[index], next_index_fn()); } } absl::flat_hash_set<size_t> used_indices; for (size_t index : result) { if (used_indices.contains(index)) { return InternalStrCat( "2 elements in unordered_container are destined for the same " "index: ", index); } if (index >= unordered_container_size_) { return InvalidArgumentStrCat("invalid unordered_container index: ", index, " v size(", unordered_container_size_, ")"); } } return result; } template <typename PointedToTy> template <typename OrderedTy, typename UnorderedTy> absl::StatusOr<std::vector<size_t>> MappedPtrContainerSorter<PointedToTy>::ComputeNewIndices( MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, const UnorderedTy& unordered_container) { using UnorderedPtrGetter = mapped_ptr_container_sorter_internal::PtrGetter< typename UnorderedTy::const_reference, const PointedToTy*>; using OrderedPtrGetter = mapped_ptr_container_sorter_internal::PtrGetter< typename OrderedTy::const_reference, const PointedToTy*>; if (unordered_container.size() >= IndexBeforeMappedElements()) { return InvalidArgumentStrCat("Unordered container is too large to sort."); } absl::flat_hash_set<const PointedToTy*> unordered_ptrs; for (const auto& unordered_element : unordered_container) { const PointedToTy* ptr = UnorderedPtrGetter::Get(unordered_element); unordered_ptrs.insert(ptr); } absl::flat_hash_map<const PointedToTy*, std::list<size_t>> mapped_ptr_to_partial_order; size_t next_partial_order_value = 0; for (const auto& ordered_element : ordered_container) { const PointedToTy* ordered_ptr = OrderedPtrGetter::Get(ordered_element); const PointedToTy* unordered_ptr = map_ptr(ordered_ptr); if (!unordered_ptr) { continue; } if (!unordered_ptrs.contains(unordered_ptr)) { continue; } mapped_ptr_to_partial_order[unordered_ptr].push_back( next_partial_order_value); ++next_partial_order_value; } SortedIndices result(next_partial_order_value, unordered_container.size()); for (size_t i = 0; i < unordered_container.size(); ++i) { const PointedToTy* ptr = UnorderedPtrGetter::Get(unordered_container[i]); if (!mapped_ptr_to_partial_order.contains(ptr)) { result.AddUnmappedElement(i, unmapped_index(ptr)); continue; } auto& index_list = mapped_ptr_to_partial_order[ptr]; TF_RETURN_IF_ERROR(result.AddMappedElement(i, index_list.front())); if (index_list.size() > 1) { index_list.pop_front(); } } VLOG(5) << "Pre flatten unordered_container result:\n" << result.ToString(); return result.Flatten(); } template <typename PointedToTy> template <typename UnorderedTy> void MappedPtrContainerSorter<PointedToTy>::Reorder( std::vector<size_t> new_indices, UnorderedTy& unordered_container) { size_t old_pos = 0; while (old_pos < new_indices.size()) { size_t new_pos = new_indices[old_pos]; if (old_pos == new_pos) { ++old_pos; continue; } std::swap(new_indices[old_pos], new_indices[new_pos]); std::swap(unordered_container[old_pos], unordered_container[new_pos]); } } template <typename PointedToTy> template <typename OrderedTy, typename UnorderedTy> absl::Status MappedPtrContainerSorter<PointedToTy>::Sort( MapPtrFn map_ptr, UnmappedPtrIndexFn unmapped_index, const OrderedTy& ordered_container, UnorderedTy& unordered_container) { std::vector<size_t> indices; TF_ASSIGN_OR_RETURN( indices, ComputeNewIndices(map_ptr, unmapped_index, ordered_container, unordered_container)); Reorder(std::move(indices), unordered_container); return absl::OkStatus(); } } #endif
#include "xla/service/mapped_ptr_container_sorter.h" #include <cstddef> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/functional/bind_front.h" #include "absl/log/log.h" #include "xla/test.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::Pointee; std::vector<std::unique_ptr<std::string>> CreateUniquePtrContainer( const std::vector<std::string>& values) { std::vector<std::unique_ptr<std::string>> container; for (auto value : values) { container.push_back(std::make_unique<std::string>(value)); } return container; } class MappedPtrContainerSorterTest : public ::testing::Test { public: using Sorter = MappedPtrContainerSorter<std::string>; MappedPtrContainerSorterTest() : ordered_unique_ptrs_(CreateUniquePtrContainer( {"m0", "m1", "m2", "m3", "not_in_unordered"})), unordered_unique_ptrs_( CreateUniquePtrContainer({"m3", "m1", "m0", "m2"})) { for (auto& unique : ordered_unique_ptrs_) { ordered_raw_ptrs_.push_back(unique.get()); ordered_const_raw_ptrs_.push_back(unique.get()); } for (auto& unique : unordered_unique_ptrs_) { unordered_raw_ptrs_.push_back(unique.get()); unordered_const_raw_ptrs_.push_back(unique.get()); } } protected: const std::string* MapPtr(const std::string* ordered) const { for (size_t i = 0; i < unordered_unique_ptrs_.size(); ++i) { if (*ordered == *unordered_unique_ptrs_[i]) { return unordered_unique_ptrs_[i].get(); } } return nullptr; } auto MapPtrFn() const { return absl::bind_front(&MappedPtrContainerSorterTest::MapPtr, this); } void AddUnmappedElementsToUnorderedUniquePtrs() { unordered_unique_ptrs_.insert(unordered_unique_ptrs_.begin(), std::make_unique<std::string>("u0")); unordered_unique_ptrs_.insert(unordered_unique_ptrs_.begin() + 2, std::make_unique<std::string>("u1")); unordered_unique_ptrs_.insert(unordered_unique_ptrs_.begin() + 3, std::make_unique<std::string>("u2")); unordered_unique_ptrs_.insert(unordered_unique_ptrs_.end(), std::make_unique<std::string>("u3")); } std::vector<std::unique_ptr<std::string>> ordered_unique_ptrs_; std::vector<std::unique_ptr<std::string>> unordered_unique_ptrs_; std::vector<std::string*> ordered_raw_ptrs_; std::vector<std::string*> unordered_raw_ptrs_; std::vector<const std::string*> ordered_const_raw_ptrs_; std::vector<const std::string*> unordered_const_raw_ptrs_; }; TEST_F(MappedPtrContainerSorterTest, SortUniquePtrs) { TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, RawPtrs) { TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_raw_ptrs_, unordered_raw_ptrs_)); EXPECT_THAT( unordered_raw_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, ConstRawPtrs) { TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_const_raw_ptrs_, unordered_const_raw_ptrs_)); EXPECT_THAT( unordered_const_raw_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, DifferentContainerTypes) { std::list<std::unique_ptr<std::string>> ordered_ptrs; for (auto& ptr : ordered_unique_ptrs_) { ordered_ptrs.push_back(std::move(ptr)); } TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::InvalidIndexFn(), ordered_ptrs, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, WithUnmappedPtrsAfterMappedPtrs) { AddUnmappedElementsToUnorderedUniquePtrs(); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexAfterMappedElementsFn(), ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre(Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")), Pointee(std::string("u0")), Pointee(std::string("u1")), Pointee(std::string("u2")), Pointee(std::string("u3")))); } TEST_F(MappedPtrContainerSorterTest, WithUnmappedPtrsBeforeMappedPtrs) { AddUnmappedElementsToUnorderedUniquePtrs(); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexBeforeMappedElementsFn(), ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT(unordered_unique_ptrs_, ElementsAre( Pointee(std::string("u0")), Pointee(std::string("u1")), Pointee(std::string("u2")), Pointee(std::string("u3")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, WithUnmappedPtrsInCustomLocations) { auto unmapped_ptr_index = [](const std::string* s) -> size_t { if (*s == "u0") { return Sorter::IndexAfterMappedElementsFn()(s); } if (*s == "u1") { return 2; } if (*s == "u2") { return 2; } if (*s == "u3") { return Sorter::IndexBeforeMappedElementsFn()(s); } LOG(FATAL) << "We should not be getting an unmapped ptr index for " << *s; }; AddUnmappedElementsToUnorderedUniquePtrs(); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), unmapped_ptr_index, ordered_unique_ptrs_, unordered_unique_ptrs_)); EXPECT_THAT( unordered_unique_ptrs_, ElementsAre( Pointee(std::string("u3")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("u1")), Pointee(std::string("u2")), Pointee(std::string("m3")), Pointee(std::string("u0")) )); } TEST_F(MappedPtrContainerSorterTest, ManyOrderedElementsMapToFewUnorderedElements) { std::string* ordered_m1 = nullptr; for (auto ptr : ordered_raw_ptrs_) { if (*ptr == "m1") { ordered_m1 = ptr; break; } } ASSERT_NE(ordered_m1, nullptr); std::string* unordered_m1 = nullptr; for (auto ptr : unordered_raw_ptrs_) { if (*ptr == "m1") { unordered_m1 = ptr; break; } } ASSERT_NE(unordered_m1, nullptr); ordered_raw_ptrs_.insert(ordered_raw_ptrs_.begin(), ordered_m1); ordered_raw_ptrs_.push_back(ordered_m1); unordered_raw_ptrs_.push_back(unordered_m1); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexBeforeMappedElementsFn(), ordered_raw_ptrs_, unordered_raw_ptrs_)); EXPECT_THAT( unordered_raw_ptrs_, ElementsAre( Pointee(std::string("m1")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, FewOrderedElementsMapToManyUnorderedElements) { std::string* ordered_m1 = nullptr; for (auto ptr : ordered_raw_ptrs_) { if (*ptr == "m1") { ordered_m1 = ptr; break; } } ASSERT_NE(ordered_m1, nullptr); std::string* unordered_m1 = nullptr; for (auto ptr : unordered_raw_ptrs_) { if (*ptr == "m1") { unordered_m1 = ptr; break; } } ASSERT_NE(unordered_m1, nullptr); ordered_raw_ptrs_.insert(ordered_raw_ptrs_.begin(), ordered_m1); unordered_raw_ptrs_.push_back(unordered_m1); unordered_raw_ptrs_.push_back(unordered_m1); TF_EXPECT_OK(Sorter::Sort(MapPtrFn(), Sorter::IndexBeforeMappedElementsFn(), ordered_raw_ptrs_, unordered_raw_ptrs_)); EXPECT_THAT( unordered_raw_ptrs_, ElementsAre( Pointee(std::string("m1")), Pointee(std::string("m0")), Pointee(std::string("m1")), Pointee(std::string("m1")), Pointee(std::string("m2")), Pointee(std::string("m3")))); } TEST_F(MappedPtrContainerSorterTest, InvalidUnmappedIndex) { unordered_unique_ptrs_.push_back(std::make_unique<std::string>("u0")); auto unmapped_index_fn = [](const std::string* unmapped) -> size_t { if (*unmapped == "u0") { return 4; } return Sorter::IndexBeforeMappedElementsFn()(unmapped); }; EXPECT_FALSE(Sorter::Sort(MapPtrFn(), unmapped_index_fn, ordered_unique_ptrs_, unordered_unique_ptrs_) .ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/mapped_ptr_container_sorter.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/mapped_ptr_container_sorter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
49b48a75-9413-4452-9358-84307792442c
cpp
tensorflow/tensorflow
gpu_debug_allocator
tensorflow/core/common_runtime/gpu/gpu_debug_allocator.cc
tensorflow/core/common_runtime/gpu/gpu_debug_allocator_test.cc
#include "tensorflow/core/common_runtime/gpu/gpu_debug_allocator.h" #include <cstddef> #include <cstdint> #include <optional> #include <vector> #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #define MASK_WORDS 2 #define MASK_BYTES (MASK_WORDS * sizeof(int64_t)) namespace tensorflow { namespace { int64_t* NewMask(int64_t word) { int64_t* m = new int64_t[MASK_WORDS]; for (int i = 0; i < MASK_WORDS; ++i) { m[i] = word; } return m; } int64_t* before_mask = NewMask(0xabababababababab); int64_t* after_mask = NewMask(0xcdcdcdcdcdcdcdcd); bool CheckMask(se::StreamExecutor* exec, void* ptr, int64_t* mask) { se::DeviceMemory<int64_t> gpu_ptr{se::DeviceMemoryBase{ptr, MASK_BYTES}}; int64_t tmp[MASK_WORDS]; absl::Status result = exec->SynchronousMemcpyD2H(gpu_ptr, MASK_BYTES, tmp); if (!result.ok()) { LOG(FATAL) << "Could not copy debug mask, " << result; } bool ok = true; for (int i = 0; i < MASK_WORDS; ++i) { ok &= (mask[i] == tmp[i]); if (!ok) { LOG(ERROR) << "i=" << i << " mask=" << reinterpret_cast<const void*>(mask[i]) << " field=" << reinterpret_cast<const void*>(tmp[i]); } } return ok; } void InitMask(se::StreamExecutor* exec, void* ptr, int64_t* mask) { se::DeviceMemory<int64_t> gpu_ptr{se::DeviceMemoryBase{ptr, MASK_BYTES}}; absl::Status result = exec->SynchronousMemcpyH2D(mask, MASK_BYTES, &gpu_ptr); if (!result.ok()) { LOG(FATAL) << "Could not copy debug mask, " << result; } } } GPUDebugAllocator::GPUDebugAllocator(Allocator* allocator, tsl::PlatformDeviceId platform_device_id) : base_allocator_(allocator) { stream_exec_ = se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); } GPUDebugAllocator::~GPUDebugAllocator() { delete base_allocator_; } void* GPUDebugAllocator::AllocateRaw(size_t alignment, size_t num_bytes) { num_bytes += (2 * MASK_BYTES); void* allocated_ptr = base_allocator_->AllocateRaw(alignment, num_bytes); if (allocated_ptr == nullptr) return allocated_ptr; void* rv = static_cast<char*>(allocated_ptr) + MASK_BYTES; InitMask(stream_exec_, allocated_ptr, before_mask); size_t req_size = base_allocator_->RequestedSize(allocated_ptr); InitMask(stream_exec_, static_cast<char*>(allocated_ptr) + req_size - MASK_BYTES, after_mask); return rv; } void GPUDebugAllocator::DeallocateRaw(void* ptr) { if (ptr != nullptr) { CHECK(CheckHeader(ptr)) << "before_mask has been overwritten"; CHECK(CheckFooter(ptr)) << "after_mask has been overwritten"; ptr = static_cast<void*>(static_cast<char*>(ptr) - MASK_BYTES); } base_allocator_->DeallocateRaw(ptr); } bool GPUDebugAllocator::TracksAllocationSizes() const { return true; } size_t GPUDebugAllocator::RequestedSize(const void* ptr) const { auto req_size = base_allocator_->RequestedSize(static_cast<const char*>(ptr) - MASK_BYTES); return req_size - 2 * MASK_BYTES; } size_t GPUDebugAllocator::AllocatedSize(const void* ptr) const { return base_allocator_->AllocatedSize(static_cast<const char*>(ptr) - MASK_BYTES); } int64_t GPUDebugAllocator::AllocationId(const void* ptr) const { return base_allocator_->AllocationId(static_cast<const char*>(ptr) - MASK_BYTES); } std::optional<tsl::AllocatorStats> GPUDebugAllocator::GetStats() { return base_allocator_->GetStats(); } bool GPUDebugAllocator::ClearStats() { return base_allocator_->ClearStats(); } bool GPUDebugAllocator::CheckHeader(void* ptr) { return CheckMask(stream_exec_, static_cast<char*>(ptr) - MASK_BYTES, before_mask); } bool GPUDebugAllocator::CheckFooter(void* ptr) { char* original_ptr = static_cast<char*>(ptr) - MASK_BYTES; size_t req_size = base_allocator_->RequestedSize(original_ptr); return CheckMask(stream_exec_, original_ptr + req_size - MASK_BYTES, after_mask); } GPUNanResetAllocator::GPUNanResetAllocator( Allocator* allocator, tsl::PlatformDeviceId platform_device_id) : base_allocator_(allocator) { stream_exec_ = se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); } GPUNanResetAllocator::~GPUNanResetAllocator() { delete base_allocator_; } void* GPUNanResetAllocator::AllocateRaw(size_t alignment, size_t num_bytes) { void* allocated_ptr = base_allocator_->AllocateRaw(alignment, num_bytes); if (allocated_ptr == nullptr) return allocated_ptr; size_t req_size = base_allocator_->RequestedSize(allocated_ptr); std::vector<float> nans((req_size + sizeof(float) - 1) / sizeof(float), std::nanf("")); se::DeviceMemory<float> nan_ptr{ se::DeviceMemoryBase{static_cast<float*>(allocated_ptr), req_size}}; absl::Status result = stream_exec_->SynchronousMemcpyH2D(&nans[0], req_size, &nan_ptr); if (!result.ok()) { LOG(ERROR) << "Could not initialize to NaNs, " << result; } return allocated_ptr; } void GPUNanResetAllocator::DeallocateRaw(void* ptr) { if (ptr != nullptr) { size_t req_size = base_allocator_->RequestedSize(ptr); std::vector<float> nans((req_size + sizeof(float) - 1) / sizeof(float), std::nanf("")); se::DeviceMemory<float> nan_ptr{ se::DeviceMemoryBase{static_cast<float*>(ptr), req_size}}; absl::Status result = stream_exec_->SynchronousMemcpyH2D(&nans[0], req_size, &nan_ptr); if (!result.ok()) { LOG(ERROR) << "Could not initialize to NaNs, " << result; } } base_allocator_->DeallocateRaw(ptr); } size_t GPUNanResetAllocator::RequestedSize(const void* ptr) const { return base_allocator_->RequestedSize(ptr); } size_t GPUNanResetAllocator::AllocatedSize(const void* ptr) const { return base_allocator_->AllocatedSize(ptr); } std::optional<tsl::AllocatorStats> GPUNanResetAllocator::GetStats() { return base_allocator_->GetStats(); } bool GPUNanResetAllocator::ClearStats() { return base_allocator_->ClearStats(); } }
#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) #include "tensorflow/core/common_runtime/gpu/gpu_debug_allocator.h" #include <algorithm> #include <vector> #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/device_id.h" #include "xla/tsl/lib/gtl/inlined_vector.h" #include "tensorflow/core/common_runtime/device/device_mem_allocator.h" #include "tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.h" #include "tensorflow/core/framework/typed_allocator.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tensorflow { namespace { se::StreamExecutor* ExecutorForPlatformDeviceId( tsl::PlatformDeviceId platform_device_id) { return se::GPUMachineManager() ->ExecutorForDevice(platform_device_id.value()) .value(); } TEST(GPUDebugAllocatorTest, OverwriteDetection_None) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); for (int s : {8}) { std::vector<int64_t> cpu_array(s); memset(&cpu_array[0], 0, cpu_array.size() * sizeof(int64_t)); int64_t* gpu_array = TypedAllocator::Allocate<int64_t>(&a, cpu_array.size(), {}); se::DeviceMemory<int64_t> gpu_array_ptr{se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], s * sizeof(int64_t), &gpu_array_ptr)); EXPECT_TRUE(a.CheckHeader(gpu_array)); EXPECT_TRUE(a.CheckFooter(gpu_array)); a.DeallocateRaw(gpu_array); } } TEST(GPUDebugAllocatorTest, OverwriteDetection_Header) { for (int s : {8, 211}) { EXPECT_DEATH( { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator( absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<int64_t> cpu_array(s); memset(&cpu_array[0], 0, cpu_array.size() * sizeof(int64_t)); int64_t* gpu_array = TypedAllocator::Allocate<int64_t>(&a, cpu_array.size(), {}); se::DeviceMemory<int64_t> gpu_array_ptr{ se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(int64_t), &gpu_array_ptr)); se::DeviceMemory<int64_t> gpu_hdr_ptr{ se::DeviceMemoryBase{gpu_array - 1}}; float pi = 3.1417; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D(&pi, sizeof(float), &gpu_hdr_ptr)); a.DeallocateRaw(gpu_array); }, ""); } } TEST(GPUDebugAllocatorTest, OverwriteDetection_Footer) { for (int s : {8, 22}) { EXPECT_DEATH( { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator( absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<int64_t> cpu_array(s); memset(&cpu_array[0], 0, cpu_array.size() * sizeof(int64_t)); int64_t* gpu_array = TypedAllocator::Allocate<int64_t>(&a, cpu_array.size(), {}); se::DeviceMemory<int64_t> gpu_array_ptr{ se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(int64_t), &gpu_array_ptr)); se::DeviceMemory<int64_t> gpu_ftr_ptr{ se::DeviceMemoryBase{gpu_array + s}}; float pi = 3.1417; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D(&pi, sizeof(float), &gpu_ftr_ptr)); a.DeallocateRaw(gpu_array); }, ""); } } TEST(GPUDebugAllocatorTest, ResetToNan) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUNanResetAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<float> cpu_array(1024); std::vector<float> cpu_array_result(1024); float* gpu_array = TypedAllocator::Allocate<float>(&a, cpu_array.size(), {}); se::DeviceMemory<float> gpu_array_ptr{se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array.size() * sizeof(float), &cpu_array[0])); for (float f : cpu_array) { ASSERT_FALSE(std::isfinite(f)); } cpu_array[0] = 1.0; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(float), &gpu_array_ptr)); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); ASSERT_EQ(1.0, cpu_array_result[0]); a.DeallocateRaw(gpu_array); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); for (float f : cpu_array_result) { ASSERT_FALSE(std::isfinite(f)); } } TEST(GPUDebugAllocatorTest, ResetToNanWithHeaderFooter) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUNanResetAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); std::vector<float> cpu_array(1024); std::vector<float> cpu_array_result(1024); float* gpu_array = TypedAllocator::Allocate<float>(&a, cpu_array.size(), {}); se::DeviceMemory<float> gpu_array_ptr{se::DeviceMemoryBase{gpu_array}}; TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array.size() * sizeof(float), &cpu_array[0])); for (float f : cpu_array) { ASSERT_FALSE(std::isfinite(f)); } cpu_array[0] = 1.0; TF_CHECK_OK(stream_exec->SynchronousMemcpyH2D( &cpu_array[0], cpu_array.size() * sizeof(float), &gpu_array_ptr)); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); ASSERT_EQ(1.0, cpu_array_result[0]); a.DeallocateRaw(gpu_array); TF_CHECK_OK(stream_exec->SynchronousMemcpyD2H( gpu_array_ptr, cpu_array_result.size() * sizeof(float), &cpu_array_result[0])); for (float f : cpu_array_result) { ASSERT_FALSE(std::isfinite(f)); } } TEST(GPUDebugAllocatorTest, TracksSizes) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); EXPECT_EQ(true, a.TracksAllocationSizes()); } TEST(GPUDebugAllocatorTest, AllocatedVsRequested) { const tsl::PlatformDeviceId platform_device_id(0); auto stream_exec = ExecutorForPlatformDeviceId(platform_device_id); GPUDebugAllocator a( new GPUBFCAllocator(absl::WrapUnique(new DeviceMemAllocator( stream_exec, platform_device_id, stream_executor::MemoryType::kDevice, {}, {})), 1 << 30, "", {}), platform_device_id); float* t1 = TypedAllocator::Allocate<float>(&a, 1, {}); EXPECT_EQ(4, a.RequestedSize(t1)); EXPECT_EQ(256, a.AllocatedSize(t1)); a.DeallocateRaw(t1); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_debug_allocator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/gpu/gpu_debug_allocator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ad0c7e00-9ae2-4443-ae99-f6f4b58dc22e
cpp
tensorflow/tensorflow
scc
tensorflow/core/grappler/utils/scc.cc
tensorflow/core/grappler/utils/scc_test.cc
#include "tensorflow/core/grappler/utils/scc.h" #include <stack> #include <unordered_map> #include <unordered_set> #include <vector> #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { struct SCCNodeData { SCCNodeData() : node(nullptr), index(-1), lowlink(-1), onstack(false), caller(nullptr), caller_loop_location(-1) {} void ResetStack(int new_index, SCCNodeData* new_caller) { index = new_index; lowlink = new_index; onstack = true; caller = new_caller; caller_loop_location = 0; } const NodeDef* node; int index; int lowlink; bool onstack; std::vector<SCCNodeData*> children; SCCNodeData* caller; int caller_loop_location; }; void StrongConnect(SCCNodeData* v, std::stack<SCCNodeData*>* stack, int* index, std::unordered_map<const NodeDef*, int>* components, int* scc_index) { v->ResetStack(*index , nullptr ); ++*index; stack->push(v); v->caller = nullptr; v->caller_loop_location = 0; SCCNodeData* last = v; while (true) { if (last->caller_loop_location < last->children.size()) { SCCNodeData* w = last->children[last->caller_loop_location]; ++(last->caller_loop_location); if (w->index == -1) { w->ResetStack(*index , last ); ++*index; stack->push(w); last = w; } else if (w->onstack == true) { last->lowlink = std::min(last->lowlink, w->index); } } else { if (last->lowlink == last->index) { SCCNodeData* top; while (true) { top = stack->top(); stack->pop(); top->onstack = false; (*components)[top->node] = *scc_index; if (top == last) { break; } } ++*scc_index; } SCCNodeData* next_last = last->caller; if (next_last == nullptr) { break; } else { next_last->lowlink = std::min(next_last->lowlink, last->lowlink); last = next_last; } } } } void StronglyConnectedComponents( const GraphDef& graph, std::unordered_map<const NodeDef*, int>* components, int* num_components) { std::stack<SCCNodeData*> stack; std::unordered_map<string, SCCNodeData*> name_to_data; std::vector<SCCNodeData> node_data_container; node_data_container.reserve(graph.node_size()); std::unordered_map<const NodeDef*, SCCNodeData*> node_to_data; for (const NodeDef& node : graph.node()) { SCCNodeData node_data; node_data.node = &node; node_data_container.push_back(node_data); name_to_data[node.name()] = &(*node_data_container.rbegin()); node_to_data[&node] = &(*node_data_container.rbegin()); } for (const NodeDef& node : graph.node()) { for (const string& input : node.input()) { auto it = name_to_data.find(NodeName(input)); if (it != name_to_data.end()) { it->second->children.push_back(node_to_data[&node]); } } } components->clear(); *num_components = 0; int index = 0; for (auto& v : node_data_container) { if (v.index == -1) { StrongConnect(&v, &stack, &index, components, num_components); } } std::vector<int> counts_per_component(*num_components, 0); for (auto& component : *components) { DCHECK(component.second >= 0); DCHECK(component.second < *num_components); counts_per_component[component.second]++; } bool has_single_element_component = false; for (auto& component : *components) { if (counts_per_component[component.second] == 1) { component.second = -1; (*num_components)--; has_single_element_component = true; } } if (has_single_element_component) { (*num_components) += 1; } } int IdentifyLoops(const GraphDef& graph, std::unordered_map<const NodeDef*, std::vector<int>>* loops) { int num_components = 0; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(graph, &components, &num_components); if (num_components <= 1) { if (!components.empty() && components.begin()->second == -1) { return 0; } } std::unordered_map<int, std::vector<const NodeDef*>> component_ids; for (const auto it : components) { int id = it.second; if (id < 0) { continue; } component_ids[id].push_back(it.first); } int loop_id = 0; for (const auto& component : component_ids) { const std::vector<const NodeDef*>& component_nodes = component.second; std::vector<std::pair<NodeDef*, string>> next_iter_nodes; GraphDef subgraph; std::unordered_map<const NodeDef*, const NodeDef*> subgraph_mapping; for (const auto& component_node : component_nodes) { NodeDef* node = subgraph.add_node(); *node = *component_node; subgraph_mapping[node] = component_node; if (IsNextIteration(*node)) { CHECK_EQ(1, node->input_size()); next_iter_nodes.emplace_back(node, node->input(0)); } } if (next_iter_nodes.size() == 1) { for (const auto& component_node : component_nodes) { (*loops)[component_node].push_back(loop_id); } ++loop_id; } else { for (int i = 0; i < next_iter_nodes.size(); ++i) { for (int j = 0; j < next_iter_nodes.size(); ++j) { next_iter_nodes[j].first->clear_input(); if (i == j) { *next_iter_nodes[j].first->add_input() = next_iter_nodes[j].second; } } int num_components = 0; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(subgraph, &components, &num_components); CHECK_GE(num_components, 1); for (const auto it : components) { int id = it.second; if (id < 0) { continue; } (*loops)[subgraph_mapping[it.first]].push_back(loop_id); } ++loop_id; } } } return loop_id; } } }
#include "tensorflow/core/grappler/utils/scc.h" #include <memory> #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/virtual_cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/inputs/trivial_test_graph_input_yielder.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class SCCTest : public ::testing::Test { public: void SetUp() override { std::unordered_map<string, DeviceProperties> devices; DeviceProperties unknown_device; devices["MY_DEVICE"] = unknown_device; cluster_ = std::make_unique<VirtualCluster>(devices); TF_CHECK_OK(cluster_->Provision()); } void TearDown() override { cluster_.reset(); } protected: static NodeDef CreateNode(const string& name, absl::Span<const string> inputs) { NodeDef node; node.set_name(name); for (const string& input : inputs) { node.add_input(input); } return node; } std::unique_ptr<VirtualCluster> cluster_; }; TEST_F(SCCTest, NoLoops) { TrivialTestGraphInputYielder fake_input(4, 1, 10, false, cluster_->GetDeviceNames()); GrapplerItem item; CHECK(fake_input.NextItem(&item)); std::unordered_map<const NodeDef*, int> components; int num_components; StronglyConnectedComponents(item.graph, &components, &num_components); EXPECT_EQ(num_components, 1); for (const auto& node : item.graph.node()) { EXPECT_EQ(-1, components[&node]); } } TEST_F(SCCTest, DisjointCycleAndPath) { GraphDef graph; *graph.add_node() = CreateNode("a", {"d"}); *graph.add_node() = CreateNode("b", {"a"}); *graph.add_node() = CreateNode("c", {"b"}); *graph.add_node() = CreateNode("d", {"c"}); *graph.add_node() = CreateNode("e", {}); *graph.add_node() = CreateNode("f", {"e"}); *graph.add_node() = CreateNode("g", {"f"}); *graph.add_node() = CreateNode("h", {"g"}); std::vector<const NodeDef*> nodes; std::unordered_map<string, const NodeDef*> name_to_node; for (const auto& n : graph.node()) { nodes.push_back(&n); name_to_node[n.name()] = &n; } int num_components; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(graph, &components, &num_components); EXPECT_EQ(num_components, 2); for (const auto& pair : {std::make_pair("a", "b"), std::make_pair("a", "c"), std::make_pair("a", "d")}) { EXPECT_EQ(components[name_to_node[pair.first]], components[name_to_node[pair.second]]); } for (const auto& node : {"e", "f", "g", "h"}) EXPECT_EQ(-1, components[name_to_node[node]]); } } TEST_F(SCCTest, WikipediaExample) { GraphDef graph; *graph.add_node() = CreateNode("a", {"c"}); *graph.add_node() = CreateNode("b", {"a", "d"}); *graph.add_node() = CreateNode("c", {"b", "d", "f"}); *graph.add_node() = CreateNode("d", {"e"}); *graph.add_node() = CreateNode("e", {"d"}); *graph.add_node() = CreateNode("f", {"e", "g"}); *graph.add_node() = CreateNode("g", {"f", "h"}); *graph.add_node() = CreateNode("h", {"h"}); std::vector<const NodeDef*> nodes; std::unordered_map<string, const NodeDef*> name_to_node; for (const auto& n : graph.node()) { nodes.push_back(&n); name_to_node[n.name()] = &n; } int num_components; std::unordered_map<const NodeDef*, int> components; StronglyConnectedComponents(graph, &components, &num_components); EXPECT_EQ(num_components, 4); for (const auto& pair : {std::make_pair("a", "b"), std::make_pair("a", "c"), std::make_pair("d", "e"), std::make_pair("f", "g")}) { EXPECT_EQ(components[name_to_node[pair.first]], components[name_to_node[pair.second]]); } for (const auto& pair : {std::make_pair("a", "d"), std::make_pair("a", "f"), std::make_pair("a", "h"), std::make_pair("d", "f"), std::make_pair("d", "h"), std::make_pair("f", "h")}) { EXPECT_NE(components[name_to_node[pair.first]], components[name_to_node[pair.second]]); } } TEST_F(SCCTest, TensorFlowLoop) { const string gdef_ascii = R"EOF( node { name: "Const" op: "Const" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 0 } } } } node { name: "while/Enter" op: "Enter" input: "Const" attr { key: "T" value { type: DT_INT32 } } attr { key: "frame_name" value { s: "while/while/" } } attr { key: "is_constant" value { b: false } } attr { key: "parallel_iterations" value { i: 10 } } } node { name: "while/Merge" op: "Merge" input: "while/Enter" input: "while/NextIteration" attr { key: "N" value { i: 2 } } attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Less/y" op: "Const" input: "^while/Merge" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 10 } } } } node { name: "while/Less" op: "Less" input: "while/Merge" input: "while/Less/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/LoopCond" op: "LoopCond" input: "while/Less" } node { name: "while/Switch" op: "Switch" input: "while/Merge" input: "while/LoopCond" attr { key: "T" value { type: DT_INT32 } } attr { key: "_class" value { list { s: "loc:@while/Merge" } } } } node { name: "while/Identity" op: "Identity" input: "while/Switch:1" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Add/y" op: "Const" input: "^while/Identity" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "value" value { tensor { dtype: DT_INT32 tensor_shape { } int_val: 1 } } } } node { name: "while/Add" op: "Add" input: "while/Identity" input: "while/Add/y" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/NextIteration" op: "NextIteration" input: "while/Add" attr { key: "T" value { type: DT_INT32 } } } node { name: "while/Exit" op: "Exit" input: "while/Switch" attr { key: "T" value { type: DT_INT32 } } } versions { producer: 11 } )EOF"; GrapplerItem item; CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &item.graph)); std::unordered_map<const NodeDef*, int> components; int num_components; StronglyConnectedComponents(item.graph, &components, &num_components); EXPECT_EQ(num_components, 2); for (const auto& node : item.graph.node()) { if (node.name() == "Const" || node.name() == "while/Enter" || node.name() == "while/Exit") { EXPECT_EQ(-1, components[&node]); } else { EXPECT_LE(0, components[&node]); } } } TEST_F(SCCTest, NestedLoops) { GrapplerItem item; string filename = io::JoinPath( testing::TensorFlowSrcRoot(), "core/grappler/costs/graph_properties_testdata/nested_loop.pbtxt"); TF_CHECK_OK(ReadGraphDefFromFile(filename, &item.graph)); for (const auto& node : item.graph.node()) { std::cout << node.DebugString() << std::endl; } std::unordered_map<const NodeDef*, std::vector<int>> loops; int num_loops = IdentifyLoops(item.graph, &loops); EXPECT_EQ(4, num_loops); for (const auto& node_info : loops) { std::cout << node_info.first->name() << " ["; for (int i : node_info.second) { std::cout << " " << i; } std::cout << "]" << std::endl; } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/scc.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/utils/scc_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5c50ee19-4508-40ba-8d7f-ca5923c7ad9a
cpp
tensorflow/tensorflow
latency_hiding_scheduler
third_party/xla/xla/service/latency_hiding_scheduler.cc
third_party/xla/xla/service/latency_hiding_scheduler_test.cc
#include "xla/service/latency_hiding_scheduler.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <functional> #include <limits> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_reachability.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/map_util.h" #include "xla/service/dump.h" #include "xla/service/hlo_alias_analysis.h" #include "xla/service/hlo_buffer.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/service/hlo_value.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "xla/xla.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { const int64_t kDefaultMemorySpace = 0; bool IsNopInstruction(const HloInstruction& hlo) { HloOpcode op = hlo.opcode(); return op == HloOpcode::kGetTupleElement || op == HloOpcode::kBitcast || op == HloOpcode::kConstant || op == HloOpcode::kParameter || op == HloOpcode::kBroadcast || op == HloOpcode::kIota || hlo.IsEffectiveBitcast() || (op == HloOpcode::kTuple && hlo.user_count() == 1 && hlo.users().front()->opcode() == HloOpcode::kWhile); } bool InstructionDefinesValue(const HloInstruction* instruction, const HloValue* value) { if (value->defining_instruction() == instruction) { return true; } if (value->shape().has_layout() && value->shape().layout().memory_space() != kDefaultMemorySpace) { return false; } if (instruction->opcode() == HloOpcode::kAsyncStart) { if (instruction->async_wrapped_opcode() == HloOpcode::kCall) { return instruction->async_wrapped_instruction() ->called_computations()[0] ->root_instruction() == value->defining_instruction(); } return instruction->async_wrapped_instruction() == value->defining_instruction(); } return false; } bool InstructionFirstDefinesBuffer( const HloInstruction* instruction, const BufferInfoTracker::ValueInfo& buffer_value_info) { if (buffer_value_info.first_definition == instruction) { return true; } if (buffer_value_info.value->values()[0]->shape().has_layout() && buffer_value_info.value->values()[0]->shape().layout().memory_space() != kDefaultMemorySpace) { return false; } if (instruction->opcode() == HloOpcode::kAsyncStart) { if (instruction->async_wrapped_opcode() == HloOpcode::kCall) { return instruction->async_wrapped_instruction() ->called_computations()[0] ->root_instruction() == buffer_value_info.first_definition; } return instruction->async_wrapped_instruction() == buffer_value_info.first_definition; } return false; } } CanonicalAsyncOp DefaultGetCanonicalAsyncOp(const HloInstruction& hlo) { switch (hlo.opcode()) { case HloOpcode::kAsyncStart: case HloOpcode::kAsyncDone: if (hlo.async_wrapped_opcode() == HloOpcode::kCall) { return {hlo.opcode(), hlo.async_wrapped_instruction() ->called_computations()[0] ->root_instruction() ->opcode()}; } return {hlo.opcode(), hlo.async_wrapped_opcode()}; case HloOpcode::kAllReduceStart: return {HloOpcode::kAsyncStart, HloOpcode::kAllReduce}; case HloOpcode::kAllGatherStart: return {HloOpcode::kAsyncStart, HloOpcode::kAllGather}; case HloOpcode::kCollectivePermuteStart: return {HloOpcode::kAsyncStart, HloOpcode::kCollectivePermute}; case HloOpcode::kCopyStart: return {HloOpcode::kAsyncStart, HloOpcode::kCopy}; case HloOpcode::kCopyDone: return {HloOpcode::kAsyncDone, HloOpcode::kCopy}; case HloOpcode::kAllReduceDone: return {HloOpcode::kAsyncDone, HloOpcode::kAllReduce}; case HloOpcode::kAllGatherDone: return {HloOpcode::kAsyncDone, HloOpcode::kAllGather}; case HloOpcode::kCollectivePermuteDone: return {HloOpcode::kAsyncDone, HloOpcode::kCollectivePermute}; default: return {hlo.opcode(), hlo.opcode()}; } } bool LatencyEstimator::IsAsyncPair(const HloGraphNode& from, const HloGraphNode& target) const { CanonicalAsyncOp from_op = GetCanonicalAsyncOp(from.GetInstr()); CanonicalAsyncOp target_op = GetCanonicalAsyncOp(target.GetInstr()); return from_op.outer == HloOpcode::kAsyncStart && target_op.outer == HloOpcode::kAsyncDone && from_op.inner == target_op.inner; } bool LatencyEstimator::IsP2pPair(const HloGraphNode& from, const HloGraphNode& target) const { return (from.GetInstr().opcode() == HloOpcode::kSend && target.GetInstr().opcode() == HloOpcode::kSendDone) || (from.GetInstr().opcode() == HloOpcode::kRecv && target.GetInstr().opcode() == HloOpcode::kRecvDone); } LatencyEstimator::TimeCost ApproximateLatencyEstimator::GetLatencyBetween( const HloGraphNode& from, const HloGraphNode& target) const { if (IsAsyncPair(from, target)) { return kHighLatency; } return kLowLatency; } LatencyEstimator::TimeCost ApproximateLatencyEstimator::NodeCost( const HloInstruction* instr) const { if (instr->IsLoopFusion()) { return kMediumCost; } if (instr->IsOutputFusion() || instr->opcode() == HloOpcode::kConvolution) { return kHighCost; } return kLowCost; } bool AsyncTracker::IsSupportedAsyncDone(const HloInstruction& hlo) const { CanonicalAsyncOp op = GetCanonicalAsyncOp(hlo); if (op.outer == HloOpcode::kSendDone || op.outer == HloOpcode::kRecvDone) { return config_.schedule_send_recvs; } if (op.outer == HloOpcode::kAsyncDone) { if (hlo.IsAsynchronous() && hlo.async_execution_thread() != hlo.parent()->execution_thread()) { return true; } switch (op.inner) { case HloOpcode::kAllToAll: case HloOpcode::kAllGather: case HloOpcode::kAllReduce: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCopy: case HloOpcode::kReduceScatter: return true; default: return false; } } return false; } bool AsyncTracker::IsSupportedAsyncStart(const HloInstruction& hlo) const { CanonicalAsyncOp op = GetCanonicalAsyncOp(hlo); if (op.outer == HloOpcode::kSend || op.outer == HloOpcode::kRecv) { return config_.schedule_send_recvs; } if (op.outer == HloOpcode::kAsyncStart) { if (hlo.IsAsynchronous() && hlo.async_execution_thread() != hlo.parent()->execution_thread()) { return true; } switch (op.inner) { case HloOpcode::kAllToAll: case HloOpcode::kAllGather: case HloOpcode::kAllReduce: case HloOpcode::kCollectiveBroadcast: case HloOpcode::kCollectivePermute: case HloOpcode::kCopy: case HloOpcode::kReduceScatter: return true; default: return false; } } return false; } ResourcesVector AsyncTracker::GetResourcesFromInstructionImpl( const HloInstruction& hlo) const { CanonicalAsyncOp op = GetCanonicalAsyncOp(hlo); auto get_resource_for_op = [](HloOpcode op) -> ResourceType { switch (op) { case HloOpcode::kAllReduce: return ResourceType::kAllReduce; case HloOpcode::kAllGather: return ResourceType::kAllGather; case HloOpcode::kAllToAll: return ResourceType::kAllToAll; case HloOpcode::kCollectiveBroadcast: return ResourceType::kCollectiveBroadcast; case HloOpcode::kCollectivePermute: return ResourceType::kCollectivePermute; case HloOpcode::kCopy: return ResourceType::kCopy; case HloOpcode::kReduceScatter: return ResourceType::kReduceScatter; default: return ResourceType::kNoResource; } }; if (op.outer == HloOpcode::kAsyncStart || op.outer == HloOpcode::kAsyncDone) { ResourceType type = get_resource_for_op(op.inner); if (type == ResourceType::kNoResource) { return {}; } ResourceUsageType usage = op.outer == HloOpcode::kAsyncStart ? ResourceUsageType::kResourceRelease : ResourceUsageType::kResourceOccupy; return {std::make_pair(ResourceTypeToIndex(type), usage)}; } switch (hlo.opcode()) { case HloOpcode::kAfterAll: return ResourcesVector{ std::make_pair(ResourceTypeToIndex(ResourceType::kSendHost), ResourceUsageType::kNoResource)}; case HloOpcode::kRecv: return ResourcesVector{ static_cast<const HloSendRecvInstruction*>(&hlo)->is_host_transfer() ? std::make_pair( config_.force_send_recv_to_use_same_resource ? ResourceTypeToIndex(ResourceType::kSendHost) : ResourceTypeToIndex(ResourceType::kRecvHost), ResourceUsageType::kResourceRelease) : std::make_pair(ResourceTypeToIndex(ResourceType::kSendRecv), ResourceUsageType::kResourceRelease)}; case HloOpcode::kSend: return ResourcesVector{ static_cast<const HloSendRecvInstruction*>(&hlo)->is_host_transfer() ? std::make_pair(ResourceTypeToIndex(ResourceType::kSendHost), ResourceUsageType::kResourceRelease) : std::make_pair(ResourceTypeToIndex(ResourceType::kSendRecv), ResourceUsageType::kResourceRelease)}; case HloOpcode::kRecvDone: return ResourcesVector{ static_cast<const HloSendRecvInstruction*>(hlo.operand(0)) ->is_host_transfer() ? std::make_pair( config_.force_send_recv_to_use_same_resource ? ResourceTypeToIndex(ResourceType::kSendHost) : ResourceTypeToIndex(ResourceType::kRecvHost), ResourceUsageType::kResourceOccupy) : std::make_pair(ResourceTypeToIndex(ResourceType::kSendRecv), ResourceUsageType::kResourceOccupy)}; case HloOpcode::kSendDone: return ResourcesVector{ static_cast<const HloSendRecvInstruction*>(hlo.operand(0)) ->is_host_transfer() ? std::make_pair(ResourceTypeToIndex(ResourceType::kSendHost), ResourceUsageType::kResourceOccupy) : std::make_pair(ResourceTypeToIndex(ResourceType::kSendRecv), ResourceUsageType::kResourceOccupy)}; default: return ResourcesVector{}; } } ResourcesVector AsyncTracker::GetResourcesFromInstruction( const HloInstruction& hlo) const { if (!resources_cache_.contains(&hlo)) { resources_cache_.insert({&hlo, GetResourcesFromInstructionImpl(hlo)}); } return resources_cache_.at(&hlo); } int64_t AsyncTracker::GetNumResourcesPerInstruction( ResourceType resource_type, const HloInstruction& instr) const { return GetNumResourcesPerInstruction(ResourceTypeToIndex(resource_type), instr); } int64_t AsyncTracker::GetNumResourcesPerInstruction( int64_t resource_type, const HloInstruction& instr) const { if (instr.called_computations().empty() || instr.opcode() == HloOpcode::kAsyncStart || instr.opcode() == HloOpcode::kAsyncDone) { return absl::c_any_of(GetResourcesFromInstruction(instr), [resource_type](const ResourcePair& resource) { return resource.second == ResourceUsageType::kResourceOccupy && (resource_type == resource.first); }) ? 1 : 0; } std::function<void(const HloComputation*)> recursively_compute_resource_map = [this, &recursively_compute_resource_map](const HloComputation* computation) { absl::flat_hash_map<int64_t, int64_t> per_opcode_map; for (HloInstruction* instr : computation->instructions()) { if (IsSupportedAsyncDone(*instr)) { for (auto& resource : GetResourcesFromInstruction(*instr)) { ++per_opcode_map[resource.first]; } } for (const HloComputation* called_comp : instr->called_computations()) { auto it = async_in_computation_cache_.find(called_comp); if (it == async_in_computation_cache_.end()) { recursively_compute_resource_map(called_comp); it = async_in_computation_cache_.find(called_comp); CHECK(it != async_in_computation_cache_.end()); } for (auto& called_per_opcode_pair : it->second) { per_opcode_map[called_per_opcode_pair.first] += called_per_opcode_pair.second; } } } async_in_computation_cache_[computation] = std::move(per_opcode_map); }; int64_t num_resources = 0; for (const HloComputation* computation : instr.called_computations()) { auto it = async_in_computation_cache_.find(computation); if (it == async_in_computation_cache_.end()) { recursively_compute_resource_map(computation); it = async_in_computation_cache_.find(computation); CHECK(it != async_in_computation_cache_.end()); } auto opcode_it = it->second.find(resource_type); if (opcode_it == it->second.end()) { continue; } num_resources += opcode_it->second; } return num_resources; } void AsyncTracker::SetConcurrentResourceLimits( absl::flat_hash_map<int64_t, int64_t>& max_concurrent_resource) const { max_concurrent_resource[ResourceTypeToIndex( ResourceType::kCollectiveBroadcast)] = config_.collective_broadcast_overlap_limit; max_concurrent_resource[ResourceTypeToIndex( ResourceType::kCollectivePermute)] = config_.collective_permute_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kCopy)] = config_.copy_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kAllToAll)] = config_.all_to_all_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kAllGather)] = config_.all_gather_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kAllReduce)] = config_.all_reduce_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kReduceScatter)] = config_.reduce_scatter_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kSendRecv)] = config_.send_recv_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kSendHost)] = config_.send_recv_host_overlap_limit; max_concurrent_resource[ResourceTypeToIndex(ResourceType::kRecvHost)] = config_.send_recv_host_overlap_limit; const int64_t first_target_resource = AsyncTracker::GetFirstTargetDefinedResource(); for (int64_t i = 0; i < GetNumTargetDefinedResources(); ++i) { max_concurrent_resource[first_target_resource + i] = GetNumAvailableResources(first_target_resource + i); } } absl::string_view AsyncTracker::GetResourceName(int64_t resource_type) const { switch (resource_type) { case ResourceTypeToIndex(ResourceType::kNoResource): return "kNoResource"; case ResourceTypeToIndex(ResourceType::kAllToAll): return "kAllToAll"; case ResourceTypeToIndex(ResourceType::kAllGather): return "kAllGather"; case ResourceTypeToIndex(ResourceType::kAllReduce): return "kAllReduce"; case ResourceTypeToIndex(ResourceType::kCollectiveBroadcast): return "kCollectiveBroadcast"; case ResourceTypeToIndex(ResourceType::kCollectivePermute): return "kCollectivePermute"; case ResourceTypeToIndex(ResourceType::kCopy): return "kCopy"; case ResourceTypeToIndex(ResourceType::kSendRecv): return "kSendRecv"; case ResourceTypeToIndex(ResourceType::kSendHost): return "kSendHost"; case ResourceTypeToIndex(ResourceType::kRecvHost): return "kRecvHost"; case ResourceTypeToIndex(ResourceType::kReduceScatter): return "kReduceScatter"; default: return "Not a valid default resource"; } } absl::string_view AsyncTracker::GetResourceUsageName( ResourceUsageType resource_usage_type) const { return GetResourceUsageName(ResourceUsageTypeToIndex(resource_usage_type)); } ResourceHazardType AsyncTracker::GetResourceHazardType( int64_t resource_type) const { return ResourceHazardType::kUnshareable; } absl::string_view AsyncTracker::GetResourceUsageName( int64_t resource_usage_type) const { switch (resource_usage_type) { case ResourceUsageTypeToIndex(ResourceUsageType::kNoResource): return "kNoResource"; case ResourceUsageTypeToIndex(ResourceUsageType::kResourceOccupy): return "kResourceOccupy"; case ResourceUsageTypeToIndex(ResourceUsageType::kResourceRelease): return "kResourceRelease"; default: return "Not a valid resource usage type"; } } int64_t AsyncTracker::GetNumTargetDefinedResources() const { return 0; } int64_t AsyncTracker::GetNumAvailableResources(int64_t resource_type) const { return 0; } absl::InlinedVector<int64_t, 1> AsyncTracker::GetReleasedShareableResourcesFromVector( const ResourcesVector& resources) const { return {}; } absl::InlinedVector<int64_t, 1> AsyncTracker::GetOccupiedShareableResourcesFromVector( const ResourcesVector& resources) const { return {}; } absl::InlinedVector<int64_t, 1> AsyncTracker::GetOccupiedSerialResourcesFromVector( const ResourcesVector& resources) const { return {}; } absl::InlinedVector<int64_t, 1> AsyncTracker::GetReleasedNonextendableResourcesFromVector( const ResourcesVector& resources) const { return {}; } bool AsyncTracker::ReleasesSelectiveResource(const HloGraphNode* node) const { return absl::c_any_of( node->GetResources(), [&](const ResourcePair& resource) { return resource.second == ResourceUsageType::kResourceRelease && GetResourceHazardType(resource.first) == ResourceHazardType::kSelective; }); } bool AsyncTracker::OccupiesSelectiveResource(const HloGraphNode* node) const { return absl::c_any_of( node->GetResources(), [&](const ResourcePair& resource) { return resource.second == ResourceUsageType::kResourceOccupy && GetResourceHazardType(resource.first) == ResourceHazardType::kSelective; }); } BufferInfoTracker::BufferInfoTracker( const HloModule* module, const HloAliasAnalysis* alias_analysis, const HloCostAnalysis::ShapeSizeFunction& shape_size_bytes) { buffer_infos_.resize(alias_analysis->buffers().back().id() + 1); std::function<void(const HloComputation*)> process_computation = [&process_computation, module, alias_analysis, this, &shape_size_bytes](const HloComputation* computation) { const HloInstructionSequence& sequence = module->schedule().sequence(computation); for (int idx = 0; idx < sequence.size(); ++idx) { const HloInstruction* instruction = sequence.instructions()[idx]; for (auto* called_computation : instruction->called_computations()) { if (called_computation->IsFusionComputation()) { continue; } process_computation(called_computation); } ShapeUtil::ForEachSubshape( instruction->shape(), [&](const Shape& subshape, const ShapeIndex& index) { for (const HloBuffer* buffer : alias_analysis->ComputeBuffersAt(instruction, index)) { if (buffer_infos_[buffer->id()].value == nullptr) { buffer_infos_[buffer->id()] = CreateBufferInfo(buffer, instruction, shape_size_bytes); } } }); } }; process_computation(module->entry_computation()); } void ModulePressureState::InitializePressureStates() { memory_pressure_states_.clear(); std::function<void(HloComputation*, const MemoryPressureTracker::LiveBufferSet&)> process_computation = [this, &process_computation]( HloComputation* computation, const MemoryPressureTracker::LiveBufferSet& initial_live_buffers) { const HloInstructionSequence& sequence = module_->schedule().sequence(computation); MemoryPressureTracker tracker(hlo_alias_analysis_, buffer_tracker_, memory_pressure_states_); tracker.Initialize(computation, initial_live_buffers); VLOG(6) << "Pressure at bottom for " << computation->name() << ": " << tracker.memory_usage(); for (int idx = sequence.size() - 1; idx >= 0; --idx) { const HloInstruction* instruction = sequence.instructions()[idx]; if (!instruction->called_computations().empty()) { for (auto* called_computation : instruction->called_computations()) { if (called_computation->IsFusionComputation()) { continue; } process_computation(called_computation, tracker.live_buffers()); } } VLOG(10) << "Instruction: " << instruction->ToString(); VLOG(10) << "Pressure change: " << tracker.MemoryPressureDifference(instruction).first; VLOG(10) << "Current usage: " << tracker.memory_usage(); tracker.UpdateBuffers(instruction); VLOG(10) << "Current usage after update: " << tracker.memory_usage(); VLOG(10) << "Current peak after update: " << tracker.pressure_state().memory_peak; } VLOG(6) << "Pressure peak for " << computation->name() << ": " << tracker.pressure_state().memory_peak; UpdatePressureStateForComputation(computation, tracker.pressure_state()); }; process_computation(module_->entry_computation(), {}); } void MemoryPressureTracker::Initialize( const HloComputation* computation, const LiveBufferSet& initial_live_buffers) { live_memory_usage_ = 0; initial_memory_pressure_ = 0; pressure_state_ = MemoryPressureState{}; output_buffers_.clear(); defined_buffers_.clear(); live_buffers_set_.clear(); for (auto* instruction : computation->instructions()) { auto& output_values = this->output_buffers_[instruction]; auto& defined_values = this->defined_buffers_[instruction]; ShapeUtil::ForEachSubshape( instruction->shape(), [&](const Shape& subshape, const ShapeIndex& index) { for (const HloBuffer* buffer : hlo_alias_analysis_->ComputeBuffersAt(instruction, index)) { output_values.push_back(std::make_pair( buffer_tracker_.GetBufferInfo(buffer->id()), index)); if (absl::c_any_of(buffer->values(), [&](const HloValue* value) { return InstructionDefinesValue(instruction, value); })) { defined_values.push_back( buffer_tracker_.GetBufferInfo(buffer->id())); } } }); } if (!initial_live_buffers.empty()) { for (HloBuffer::Id id : initial_live_buffers) { auto& buffer = buffer_tracker_.GetBufferInfo(id); if (buffer.value->values()[0]->shape().has_layout() && buffer.value->values()[0]->shape().layout().memory_space() != 0) { continue; } live_buffers_[buffer.value->id()] = 1; initial_memory_pressure_ += buffer.buffer_size; } live_buffers_set_ = initial_live_buffers; } else { absl::c_fill(live_buffers_, 0); } pressure_state_.live_ids_at_bottom = live_buffers_set_; } void MemoryPressureTracker::UpdateBuffers(const HloInstruction* instruction) { int64_t computations_peak = 0; for (auto* called_comp : instruction->called_computations()) { if (called_comp->IsFusionComputation()) { continue; } auto it = pressure_state_cache_.find(called_comp); CHECK(it != pressure_state_cache_.end()); computations_peak = std::max(computations_peak, it->second.memory_peak); } if (pressure_state_.memory_peak < live_memory_usage_ + computations_peak) { pressure_state_.memory_peak = live_memory_usage_ + computations_peak; } for (auto* op : instruction->operands()) { auto& output_values = output_buffers_[op]; for (auto& info : output_values) { if (ShouldSkipBufferAllocations(instruction, info.second, info.first.first_definition) || (info.first.value->values()[0]->shape().has_layout() && info.first.value->values()[0]->shape().layout().memory_space() != kDefaultMemorySpace)) { continue; } if (live_buffers_[info.first.value->id()] == 0) { live_buffers_[info.first.value->id()] = 1; live_buffers_set_.insert(info.first.value->id()); live_memory_usage_ += info.first.buffer_size; } } } pressure_state_.memory_peak = std::max(live_memory_usage_, pressure_state_.memory_peak); auto it = defined_buffers_.find(instruction); CHECK(it != defined_buffers_.end()); if (!ShouldSkipBufferReleases(instruction)) { for (auto& b : it->second) { if (b.value->values()[0]->shape().has_layout() && b.value->values()[0]->shape().layout().memory_space() != kDefaultMemorySpace) { continue; } if (live_buffers_[b.value->id()] != 0) { if (InstructionFirstDefinesBuffer(instruction, b)) { live_memory_usage_ -= b.buffer_size; live_buffers_set_.erase(b.value->id()); } } } } } std::pair<int64_t, int64_t> MemoryPressureTracker::MemoryPressureDifference( const HloInstruction* instruction) const { int64_t increase = 0; int64_t peak = 0; if (!instruction->called_computations().empty()) { int64_t called_comp_peak = 0; for (auto* called_comp : instruction->called_computations()) { if (called_comp->IsFusionComputation()) { continue; } auto it = pressure_state_cache_.find(called_comp); CHECK(it != pressure_state_cache_.end()); peak = called_comp_peak = std::max(called_comp_peak, it->second.memory_peak); } } for (auto* op : instruction->operands()) { auto it = output_buffers_.find(op); CHECK(it != output_buffers_.end()); for (auto& b : it->second) { if (ShouldSkipBufferAllocations(instruction, b.second, b.first.first_definition) || (b.first.value->values()[0]->shape().has_layout() && b.first.value->values()[0]->shape().layout().memory_space() != kDefaultMemorySpace)) { continue; } if (!live_buffers_[b.first.value->id()]) { increase += b.first.buffer_size; } } } peak = std::max(increase, peak); auto it = defined_buffers_.find(instruction); CHECK(it != defined_buffers_.end()); if (!ShouldSkipBufferReleases(instruction)) { for (auto& b : it->second) { if (b.value->values()[0]->shape().has_layout() && b.value->values()[0]->shape().layout().memory_space() != kDefaultMemorySpace) { continue; } if (live_buffers_[b.value->id()]) { if (InstructionFirstDefinesBuffer(instruction, b)) { increase -= b.buffer_size; } } } } return std::make_pair(increase, peak); } DefaultSchedulerCore::ScheduleCandidate InitializeCandidate( HloGraphNode* node, const DefaultSchedulerCore::SchedulingState& sched_state) { DefaultSchedulerCore::ScheduleCandidate cand; cand.node = node; return cand; } namespace { int64_t GetNumHopsToClosestSelectiveOverlap( const DefaultSchedulerCore::ReadyQueueSet& ready_set, const HloGraphNode* node) { int64_t num_hops_to_closest_selective_resource_occupier = std::numeric_limits<int64_t>::max(); for (const HloGraphNode* n : ready_set) { if (n == node) { continue; } num_hops_to_closest_selective_resource_occupier = std::min(num_hops_to_closest_selective_resource_occupier, n->GetNumHopsToClosestSelectiveResourceOccupier()); } return num_hops_to_closest_selective_resource_occupier; } class ReadySetLt { public: explicit ReadySetLt( const DefaultSchedulerCore::SchedulingState* sched_state, DefaultSchedulerCore::TargetSchedulingRule target_scheduling_rule, DefaultSchedulerCore::TargetSchedulingRule early_target_scheduling_rule) : sched_state_(*sched_state), target_scheduling_rule_(target_scheduling_rule), early_target_scheduling_rule_(early_target_scheduling_rule) {} DefaultSchedulerCore::CandidateResult operator()( DefaultSchedulerCore::ScheduleCandidate& a, DefaultSchedulerCore::ScheduleCandidate& b) const { if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a.node->GetForceEarly(), a, b.node->GetForceEarly(), b, "kForceEarly")) { return *value; } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( !a.node->GetForceDelay(), a, !b.node->GetForceDelay(), b, "kForceDelay")) { return *value; } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( IsNop(*a.node), a, IsNop(*b.node), b, "kIsNop")) { return *value; } std::pair<int64_t, int64_t> a_increase = std::make_pair(0LL, 0LL); std::pair<int64_t, int64_t> b_increase = std::make_pair(0LL, 0LL); if (sched_state_.config.memory_limit != UINT64_MAX && sched_state_.memory_pressure_tracker->memory_usage() > (sched_state_.config.memory_limit / 2)) { a_increase = GetMemoryPressureChanges(a); b_increase = GetMemoryPressureChanges(b); if (sched_state_.memory_pressure_tracker->memory_usage() >= sched_state_.config.memory_limit) { if (sched_state_.config.depth_based_memory_pressure_reduction) { if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_increase.first < 0 && a_increase.first < b_increase.first, a, b_increase.first < 0 && b_increase.first < a_increase.first, b, "kOnlyDecreaseMemoryOverLimit")) { return *value; } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a.node->GetGraphDepth() > b.node->GetGraphDepth(), a, b.node->GetGraphDepth() > a.node->GetGraphDepth(), b, "kDepthOverLimit")) { return *value; } } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_increase.first < b_increase.first, a, b_increase.first < a_increase.first, b, "kDecreaseMemoryOverLimit")) { return *value; } } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_increase.second + sched_state_.memory_pressure_tracker->memory_usage() <= sched_state_.config.memory_limit, a, b_increase.second + sched_state_.memory_pressure_tracker->memory_usage() <= sched_state_.config.memory_limit, b, "kMemoryPeakOverLimit")) { return *value; } } if (early_target_scheduling_rule_) { if (auto value = early_target_scheduling_rule_(a, b)) { return *value; } } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( ShouldScheduleAsyncDone(a), a, ShouldScheduleAsyncDone(b), b, "kScheduleDone")) { return *value; } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( PastDueCyclesForNonextendableResource(a) > PastDueCyclesForNonextendableResource(b), a, PastDueCyclesForNonextendableResource(b) > PastDueCyclesForNonextendableResource(a), b, "kReleaseNonextendable")) { return *value; } if (sched_state_.config.enable_release_start_policy) { const ApproximateLatencyEstimator::TimeCost a_ready_interval = a.node->GetReadyTime() - sched_state_.current_time; const ApproximateLatencyEstimator::TimeCost b_ready_interval = b.node->GetReadyTime() - sched_state_.current_time; bool a_ready_and_release = a_ready_interval <= 0 && a.node->DoesReleaseResource(ResourceType::kCollectivePermute); bool b_ready_and_release = b_ready_interval <= 0 && b.node->DoesReleaseResource(ResourceType::kCollectivePermute); if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_ready_and_release, a, b_ready_and_release, b, "kScheduleStart")) { return *value; } if (a_ready_and_release && b_ready_and_release) { if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_ready_interval < b_ready_interval, a, b_ready_interval < a_ready_interval, b, "kScheduleStart")) { return *value; } } } auto async_depth_0_candidate = [this](DefaultSchedulerCore::ScheduleCandidate& a, DefaultSchedulerCore::ScheduleCandidate& b) -> std::optional<DefaultSchedulerCore::CandidateResult> { if (auto value = DefaultSchedulerCore::ChooseBestCandidate( !(a.node->DoesReleaseAnyResource() && a.node->GetAsyncDepth() == 0 && !IsResourceConstrained(a)), a, !(b.node->DoesReleaseAnyResource() && b.node->GetAsyncDepth() == 0 && !IsResourceConstrained(b)), b, "kStartAtZeroDepth")) { return value; } return std::nullopt; }; if (sched_state_.config.aggressive_scheduling_policies && sched_state_.config.prioritize_async_depth_over_stall) { if (auto value = async_depth_0_candidate(a, b)) { return *value; } } const ApproximateLatencyEstimator::TimeCost a_ready_interval = std::max(a.node->GetReadyTime() - sched_state_.current_time, 0.0); const ApproximateLatencyEstimator::TimeCost b_ready_interval = std::max(b.node->GetReadyTime() - sched_state_.current_time, 0.0); if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_ready_interval < b_ready_interval, a, b_ready_interval < a_ready_interval, b, "kLessStall")) { return *value; } if (sched_state_.config.resource_serializing) { const int64_t a_num_conflicting_resources = GetNumConflictingSerialResources(a); const int64_t b_num_conflicting_resources = GetNumConflictingSerialResources(b); if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_num_conflicting_resources < b_num_conflicting_resources, a, b_num_conflicting_resources < a_num_conflicting_resources, b, "kLessSerialResourceConflict")) { return *value; } } if (sched_state_.config.aggressive_scheduling_policies && !sched_state_.config.prioritize_async_depth_over_stall) { if (auto value = async_depth_0_candidate(a, b)) { return *value; } } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a.node->DoesReleaseAnyResource() && IsResourceConstrained(a), a, b.node->DoesReleaseAnyResource() && IsResourceConstrained(b), b, "kFreeBackedupResource")) { return *value; } if (sched_state_.config.aggressive_scheduling_policies) { if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a.node->GetAsyncDepth() > b.node->GetAsyncDepth(), a, b.node->GetAsyncDepth() > a.node->GetAsyncDepth(), b, "kAsyncDepth")) { return *value; } if (!sched_state_.next_ready_stack.empty()) { HloGraphNode::TimeCost latest_ready = sched_state_.next_ready_stack.front()->GetReadyTime(); HloGraphNode::TimeCost a_cost_diff = std::abs( latest_ready - sched_state_.current_time - a.node->GetCost()); HloGraphNode::TimeCost b_cost_diff = std::abs( latest_ready - sched_state_.current_time - b.node->GetCost()); if (auto value = DefaultSchedulerCore::ChooseBestCandidate( !a.node->DoesReleaseAnyResource() && a_cost_diff < b_cost_diff, a, !b.node->DoesReleaseAnyResource() && b_cost_diff < a_cost_diff, b, "kAvoidWaste")) { return *value; } } } bool a_operands = absl::c_any_of( a.node->GetInstr().operands(), [async_tracker = sched_state_.async_tracker](const HloInstruction* i) { return async_tracker->IsSupportedAsyncDone(*i); }); bool b_operands = absl::c_any_of( b.node->GetInstr().operands(), [async_tracker = sched_state_.async_tracker](const HloInstruction* i) { return async_tracker->IsSupportedAsyncDone(*i); }); if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_operands, a, b_operands, b, "kUnlockDone")) { return *value; } if (target_scheduling_rule_) { if (auto value = target_scheduling_rule_(a, b)) { return *value; } } if (sched_state_.config.enable_selective_resources && sched_state_.selective_resource_releasers.empty()) { int64_t distance_to_selective_overlap_for_a = GetNumHopsToClosestSelectiveOverlap(sched_state_.ready_set, a.node); int64_t distance_to_selective_overlap_for_b = GetNumHopsToClosestSelectiveOverlap(sched_state_.ready_set, b.node); int64_t max_distance = sched_state_.config.max_hops_to_closest_selective_overlap; if (auto value = DefaultSchedulerCore::ChooseBestCandidate( (a.node->GetValuableForSelectiveOverlap() && distance_to_selective_overlap_for_a <= max_distance), b, (b.node->GetValuableForSelectiveOverlap() && distance_to_selective_overlap_for_b <= max_distance), a, "kNotValuableForSelectiveOverlap")) { return *value; } } if (sched_state_.config.aggressive_scheduling_policies) { int ready_if_a_scheduled = ReadyIfScheduled(*a.node); int ready_if_b_scheduled = ReadyIfScheduled(*b.node); if (auto value = DefaultSchedulerCore::ChooseBestCandidate( ready_if_a_scheduled > ready_if_b_scheduled, a, ready_if_b_scheduled > ready_if_a_scheduled, b, "kCreatesMoreReadyNodes")) { return *value; } } if (auto value = DefaultSchedulerCore::ChooseBestCandidate( a_increase.first < 0, a, b_increase.first < 0, b, "kDecreaseMemory")) { return *value; } if (sched_state_.sched_graph.OriginalInstructionPosition( &a.node->GetInstr()) > sched_state_.sched_graph.OriginalInstructionPosition( &b.node->GetInstr())) { return {a, "kOriginalOrder"}; } return {b, "kOriginalOrder"}; } private: const DefaultSchedulerCore::SchedulingState& sched_state_; DefaultSchedulerCore::TargetSchedulingRule target_scheduling_rule_; DefaultSchedulerCore::TargetSchedulingRule early_target_scheduling_rule_; int ReadyIfScheduled(const HloGraphNode& gn) const { int ready_nodes_if_scheduled = 0; for (auto& pred : gn.GetPredecessors()) { if (pred.Target().GetOutdegree() == 1) { ++ready_nodes_if_scheduled; } } return ready_nodes_if_scheduled; } static bool IsNop(const HloGraphNode& gn) { return IsNopInstruction(gn.GetInstr()); } bool IsResourceConstrained( DefaultSchedulerCore::ScheduleCandidate& cand) const { if (cand.resource_constrained) { return *cand.resource_constrained; } if (cand.node->GetResources().empty()) { cand.resource_constrained = false; return *(cand.resource_constrained); } cand.resource_constrained = false; for (const auto& [resource_type, usage_type] : cand.node->GetResources()) { auto max_it = sched_state_.max_concurrent_resource.find(resource_type); auto res_it = sched_state_.resource_users_in_queue.find(resource_type); cand.resource_constrained = max_it != sched_state_.max_concurrent_resource.end() && max_it->second == 0 && res_it != sched_state_.resource_users_in_queue.end() && res_it->second > 0; if (*cand.resource_constrained) { return *cand.resource_constrained; } } return *cand.resource_constrained; } bool ShouldScheduleAsyncDone( DefaultSchedulerCore::ScheduleCandidate& gn_cand) const { if (!gn_cand.node->DoesOccupyAnyResource()) { return false; } return !ShouldDelaySendHostDone(gn_cand); } HloGraphNode::TimeCost PastDueCyclesForNonextendableResource( DefaultSchedulerCore::ScheduleCandidate& cand) const { if (sched_state_.async_tracker ->GetReleasedNonextendableResourcesFromVector( cand.node->GetResources()) .empty()) { return 0.0; } return std::max(sched_state_.current_time - cand.node->GetReadyTime(), 0.0); } bool ShouldDelaySendHostDone( DefaultSchedulerCore::ScheduleCandidate& gn_cand) const { const HloGraphNode& gn = *gn_cand.node; if (!gn.UsesResourceType(ResourceType::kSendHost).has_value() || gn.GetInstr().opcode() != HloOpcode::kSendDone) { return false; } const HloGraphNode& start = sched_state_.sched_graph.GetNode(gn.GetInstr().operand(0)); const LatencyEstimator::TimeCost latency = sched_state_.latency_estimator->GetLatencyBetween(start, gn); if (!gn_cand.estimated_connected_send_ready_time.has_value()) { HloGraphNode::TimeCost start_ready_time = 0; for (const auto& succ : start.GetSuccessors()) { if (succ.Target().GetReadyTime() >= std::numeric_limits<HloGraphNode::TimeCost>::max()) { return false; } start_ready_time = std::max( start_ready_time, succ.Latency() + succ.Target().GetReadyTime()); } gn_cand.estimated_connected_send_ready_time = start_ready_time; } if (*gn_cand.estimated_connected_send_ready_time - sched_state_.current_time <= latency) { return false; } return true; } std::pair<int64_t, int64_t> GetMemoryPressureChanges( DefaultSchedulerCore::ScheduleCandidate& cand) const { if (cand.pressure_change) { return *cand.pressure_change; } std::optional<std::pair<int64_t, int64_t>> start_result; if (this->sched_state_.async_tracker->IsSupportedAsyncDone( cand.node->GetInstr())) { const HloInstruction* start = cand.node->GetInstr().operand_count() > 0 ? cand.node->GetInstr().operand(0) : nullptr; if (start != nullptr && this->sched_state_.async_tracker->IsSupportedAsyncStart(*start)) { start_result = sched_state_.memory_pressure_tracker->MemoryPressureDifference( start); } } cand.pressure_change = sched_state_.memory_pressure_tracker->MemoryPressureDifference( &cand.node->GetInstr()); if (start_result.has_value()) { cand.pressure_change->first = std::min(start_result->first, cand.pressure_change->first); cand.pressure_change->second = std::max(start_result->second, cand.pressure_change->second); } return *cand.pressure_change; } int64_t GetNumConflictingSerialResources( DefaultSchedulerCore::ScheduleCandidate& cand) const { auto resources = sched_state_.async_tracker->GetOccupiedSerialResourcesFromVector( cand.node->GetResources()); int64_t num_conflicting_resources = 0; for (int64_t resource : resources) { if (!sched_state_.resources_in_flight.contains(resource)) continue; num_conflicting_resources += sched_state_.resources_in_flight.at(resource); } return num_conflicting_resources; } }; enum SkipNodeReason { kShouldSkipNodeFunction, kExceedsOverlapLimit, }; absl::string_view SkipNodeReasonString(SkipNodeReason reason) { switch (reason) { case SkipNodeReason::kShouldSkipNodeFunction: return "Skipped due to kShouldSkipNodeFunction."; case SkipNodeReason::kExceedsOverlapLimit: return "Skipped due to kExceedsOverlapLimit."; } } } absl::StatusOr<HloGraphNode*> DefaultSchedulerCore::FindAndExtractBestNodeAvailable( DefaultSchedulerCore::SchedulingState& sched_state, DefaultSchedulerCore::ShouldSkipNodeFunction should_skip_node) { absl::InlinedVector<std::pair<HloGraphNode*, SkipNodeReason>, 2> skipped_nodes_and_reasons; auto scheduling_instruction_crosses_overlap_limit = [&sched_state](const HloInstruction& instr) { for (const auto& [resource, limit] : sched_state.max_concurrent_resource) { auto it = sched_state.resources_in_flight.find(resource); if (it == sched_state.resources_in_flight.end() || it->second == 0) { continue; } const int64_t num_resources_needed = sched_state.async_tracker->GetNumResourcesPerInstruction(resource, instr); if (limit < num_resources_needed) { return true; } } return false; }; VLOG(2) << "Current time: " << sched_state.current_time; ReadySetLt ready_lt{&sched_state, target_scheduling_rule_, early_target_scheduling_rule_}; ScheduleCandidate ready_chosen; auto chosen_it = sched_state.ready_set.end(); for (auto ready_node_it = sched_state.ready_set.begin(), e = sched_state.ready_set.end(); ready_node_it != e; ++ready_node_it) { if (should_skip_node && should_skip_node(*ready_node_it)) { if (ready_chosen.node == nullptr) { skipped_nodes_and_reasons.push_back( {*ready_node_it, SkipNodeReason::kShouldSkipNodeFunction}); } continue; } if (scheduling_instruction_crosses_overlap_limit( (*ready_node_it)->GetInstr())) { if (ready_chosen.node == nullptr) { skipped_nodes_and_reasons.push_back( {*ready_node_it, SkipNodeReason::kExceedsOverlapLimit}); } continue; } ScheduleCandidate ready_candidate = InitializeCandidate(*ready_node_it, sched_state); if (ready_chosen.node == nullptr) { ready_chosen = ready_candidate; chosen_it = ready_node_it; VLOG(2) << "Choosing from ready (" << ready_chosen.node->GetInstr().name() << ") Reason: First Candidate"; continue; } CandidateResult cand_result = ready_lt(ready_candidate, ready_chosen); const bool new_candidate_selected = cand_result.result.node == *ready_node_it; auto print_pressure_change = [](const std::optional<std::pair<int64_t, int64_t>>& p) { if (p.has_value()) { return std::to_string(p.value().first); } return std::string("N/A"); }; VLOG(2) << "Choosing from ready (" << (new_candidate_selected ? ready_candidate.node->GetInstr().name() : ready_chosen.node->GetInstr().name()) << ") vs (" << (new_candidate_selected ? ready_chosen.node->GetInstr().name() : ready_candidate.node->GetInstr().name()) << ") Reason: " << cand_result.reason << " mem pressure chosen " << print_pressure_change( (new_candidate_selected ? ready_candidate : ready_chosen) .pressure_change) << " mem pressure other " << print_pressure_change( (new_candidate_selected ? ready_chosen : ready_candidate) .pressure_change); if (new_candidate_selected) { ready_chosen = cand_result.result; chosen_it = ready_node_it; } } if (ready_chosen.node == nullptr) { return absl::InternalError(absl::StrCat( "FindAndExtractBestNodeAvailable failed to find a node to " "schedule, skipped nodes: ", absl::StrJoin(skipped_nodes_and_reasons, "; ", [](std::string* out, const auto& pair) { absl::StrAppend(out, pair.first->GetInstr().name(), ": ", SkipNodeReasonString(pair.second)); }))); } CHECK(chosen_it != sched_state.ready_set.end()); std::swap(*chosen_it, sched_state.ready_set.back()); sched_state.ready_set.pop_back(); return ready_chosen.node; } void DefaultSchedulerCore::LogInstruction(const HloInstruction* instr) const { VLOG(5) << instr->ToString(); } void PrintOccupierList( std::vector<std::pair<HloEdge*, HloGraphNode::TimeCost>>& occupiers) { for (int64_t i = 0; i < occupiers.size(); i++) { VLOG(3) << "\tOccupier " << i << ": " << occupiers[i].first->Target().GetInstr().name() << ", projected finish time: " << occupiers[i].second << " original latency: " << occupiers[i].first->OriginalLatency() << " latency: " << occupiers[i].first->Latency(); } } bool DefaultSchedulerCore::DeleteOccupierFromResource( HloGraphNode::TimeCost current_time, HloEdge& edge, std::vector<std::pair<HloEdge*, HloGraphNode::TimeCost>>& occupiers) { if (absl::c_any_of( occupiers, [&edge](const std::pair<HloEdge*, HloGraphNode::TimeCost>& element) { return element.first == &edge; }) == false) { return false; } std::vector<std::pair<HloEdge*, HloGraphNode::TimeCost>>::iterator it = occupiers.begin(); int64_t num_occupiers = occupiers.size(); HloGraphNode::TimeCost prev_time = current_time; HloGraphNode::TimeCost accumulated_saved_time = 0; while (it != occupiers.end() && it->first != &edge) { if (it->second <= current_time) { num_occupiers--; it++; continue; } HloGraphNode::TimeCost remaining_time_of_edge = it->second - prev_time; prev_time = it->second; CHECK_GT(num_occupiers, 0); HloGraphNode::TimeCost current_saved_time = remaining_time_of_edge / num_occupiers; accumulated_saved_time += current_saved_time; CHECK_GE(it->second, accumulated_saved_time); it->second -= accumulated_saved_time; num_occupiers--; it++; } CHECK(it != occupiers.end()); if (it->second > current_time) { HloGraphNode::TimeCost remaining_time_of_edge = it->second - prev_time; HloGraphNode::TimeCost current_saved_time = remaining_time_of_edge / num_occupiers; accumulated_saved_time += current_saved_time; } it = occupiers.erase(it); for (; it != occupiers.end(); it++) { it->second -= accumulated_saved_time; } return true; } bool DefaultSchedulerCore::AddOccupierToResource( HloGraphNode::TimeCost current_time, HloEdge& new_edge, std::vector<std::pair<HloEdge*, HloGraphNode::TimeCost>>& occupiers) { CHECK(new_edge.OriginalLatency() > 0 && current_time >= 0); auto new_edge_remaining = new_edge.OriginalLatency(); std::vector<std::pair<HloEdge*, HloGraphNode::TimeCost>>::iterator it = occupiers.begin(); int64_t num_occupiers = occupiers.size(); HloGraphNode::TimeCost prev_time = current_time; HloGraphNode::TimeCost accumulated_delay = 0; while (it != occupiers.end() && it->second - prev_time <= new_edge_remaining * num_occupiers) { if (it->second <= current_time) { num_occupiers--; it++; continue; } HloGraphNode::TimeCost remaining_time_of_edge = it->second - prev_time; prev_time = it->second; CHECK_GT(num_occupiers, 0); HloGraphNode::TimeCost current_delay = remaining_time_of_edge / num_occupiers; new_edge_remaining -= current_delay; accumulated_delay += current_delay; it->second += accumulated_delay; num_occupiers--; it++; } num_occupiers++; HloGraphNode::TimeCost adjusted_remaining_time = new_edge_remaining * num_occupiers; it = occupiers.insert( it, std::make_pair(&new_edge, prev_time + accumulated_delay + adjusted_remaining_time)); it++; accumulated_delay += new_edge_remaining; CHECK(new_edge.OriginalLatency() - 0.0001 < accumulated_delay && accumulated_delay < new_edge.OriginalLatency() + 0.0001); for (; it != occupiers.end(); it++) { it->second += accumulated_delay; } return true; } absl::StatusOr<HloGraphNode::TimeCost> DefaultSchedulerCore::ScheduleNode( HloGraphNode* n, DefaultSchedulerCore::SchedulingState* sched_state) const { sched_state->new_sequence_reversed.push_back( const_cast<HloInstruction*>(&n->GetInstr())); n->SetScheduled(); if (sched_state->config.enable_selective_resources && n->ReleasesSelectiveResource()) { auto it = std::find(sched_state->selective_resource_releasers.begin(), sched_state->selective_resource_releasers.end(), n); if (it == sched_state->selective_resource_releasers.end()) { LOG(WARNING) << "Selective resource releasers list does not contain node " "that releases a selective resource: " << n->ToString(); } else { sched_state->selective_resource_releasers.erase(it); } } if (sched_state->config.enable_selective_resources && !n->GetValuableForSelectiveOverlap()) { for (HloGraphNode* node : sched_state->selective_resource_releasers) { node->SetReadyTime(node->GetReadyTime() + n->GetCost()); } } for (auto& resource : n->GetResources()) { if (resource.second == ResourceUsageType::kResourceRelease) { ++(sched_state->max_concurrent_resource[resource.first]); } else if (resource.second == ResourceUsageType::kResourceOccupy) { --(sched_state->max_concurrent_resource[resource.first]); --(sched_state->resource_users_in_queue[resource.first]); } } HloGraphNode::TimeCost schedule_time = sched_state->current_time; for (const HloEdge& pred : n->GetSuccessors()) { const HloGraphNode::TimeCost time_from_edge = pred.Target().GetReadyTime() + pred.Latency(); schedule_time = std::max(schedule_time, time_from_edge); if (sched_state->config.resource_sharing) { auto occupied_resources = n->GetShareableResourcesOnEdge(pred); for (const int64_t resource : occupied_resources) { auto occupiers = sched_state->shareable_resource_occupiers[resource]; for (auto [occupier_edge, edge_pft] : occupiers) { if (occupier_edge == &pred) { VLOG(3) << "Ready time of scheduled node " << n->GetInstr().name() << " before update with pft: " << edge_pft << ", ready_time: " << schedule_time; schedule_time = std::max(schedule_time, edge_pft); VLOG(3) << "Ready time of scheduled node " << n->GetInstr().name() << " after update with pft: " << edge_pft << ", ready_time: " << schedule_time; } } } } } n->SetReadyTime(schedule_time); HloGraphNode::TimeCost current_time = schedule_time + n->GetCost(); if (sched_state->config.resource_sharing) { for (HloEdge& edge : n->GetSuccessors()) { auto released_resources = n->GetShareableResourcesOnEdge(edge); for (const int64_t resource : released_resources) { CHECK(DeleteOccupierFromResource( schedule_time, edge, sched_state->shareable_resource_occupiers[resource])); if (VLOG_IS_ON(2)) { VLOG(3) << "Occupier list for " << sched_state->async_tracker->GetResourceName(resource) << ": "; PrintOccupierList( sched_state->shareable_resource_occupiers[resource]); } } } for (HloEdge& edge : n->GetPredecessors()) { for (HloEdge& inverse_edge : edge.Target().GetSuccessors()) { if (&(inverse_edge.Target()) == n) { auto occupied_resources = edge.Target().GetShareableResourcesOnEdge(inverse_edge); for (const int64_t resource : occupied_resources) { CHECK(AddOccupierToResource( current_time, inverse_edge, sched_state->shareable_resource_occupiers[resource])); if (VLOG_IS_ON(2)) { VLOG(3) << "Occupier list for " << sched_state->async_tracker->GetResourceName(resource) << ": "; PrintOccupierList( sched_state->shareable_resource_occupiers[resource]); } } break; } } } } auto ready_time_cmp = [](const HloGraphNode* a, const HloGraphNode* b) { return a->GetReadyTime() > b->GetReadyTime(); }; while (!sched_state->next_ready_stack.empty()) { const HloGraphNode* node = sched_state->next_ready_stack.front(); if (node->GetReadyTime() < current_time) { std::pop_heap(sched_state->next_ready_stack.begin(), sched_state->next_ready_stack.end(), ready_time_cmp); sched_state->next_ready_stack.pop_back(); continue; } break; } for (HloEdge& edge : n->GetPredecessors()) { const int64_t current_outdegree = edge.Target().GetOutdegree(); if (current_outdegree != 1) { edge.Target().SetOutdegree(current_outdegree - 1); continue; } edge.Target().SetOutdegree(0); LatencyEstimator::TimeCost ready_time = current_time; for (const HloEdge& pred : edge.Target().GetSuccessors()) { const LatencyEstimator::TimeCost edge_time = pred.Target().GetReadyTime() + pred.Latency(); ready_time = std::max(ready_time, edge_time); if (sched_state->config.resource_sharing) { auto occupied_resources = edge.Target().GetShareableResourcesOnEdge(pred); for (const int64_t resource : occupied_resources) { auto occupiers = sched_state->shareable_resource_occupiers[resource]; for (auto [occupier_edge, edge_pft] : occupiers) { if (occupier_edge == &pred) { VLOG(3) << "Ready time of predecessor " << edge.Target().GetInstr().name() << " before update with pft: " << edge_pft << ", ready_time: " << ready_time; ready_time = std::max(ready_time, edge_pft); VLOG(3) << "Ready time of predecessor " << edge.Target().GetInstr().name() << " after update with pft: " << edge_pft << ", ready_time: " << ready_time; } } } } } for (auto& resource : edge.Target().GetResources()) { if (resource.second == ResourceUsageType::kResourceOccupy) { ++(sched_state->resource_users_in_queue[resource.first]); } } edge.Target().SetReadyTime(ready_time); sched_state->ready_set.push_back(&edge.Target()); if (edge.Target().GetReadyTime() > current_time) { sched_state->next_ready_stack.push_back(&edge.Target()); std::push_heap(sched_state->next_ready_stack.begin(), sched_state->next_ready_stack.end(), ready_time_cmp); } if (sched_state->config.enable_selective_resources && edge.Target().ReleasesSelectiveResource()) { sched_state->selective_resource_releasers.push_back(&edge.Target()); } } ++sched_state->scheduled_count; for (auto& resource : n->GetResources()) { if (resource.second == ResourceUsageType::kResourceRelease) { --sched_state->resources_in_flight[resource.first]; } else if (resource.second == ResourceUsageType::kResourceOccupy) { ++sched_state->resources_in_flight[resource.first]; } } VLOG(10) << "Memory pressure before schedule: " << sched_state->memory_pressure_tracker->memory_usage(); VLOG(10) << "Memory peak before schedule: " << sched_state->memory_pressure_tracker->pressure_state().memory_peak; sched_state->memory_pressure_tracker->UpdateBuffers(&n->GetInstr()); VLOG(10) << "Memory pressure after schedule: " << sched_state->memory_pressure_tracker->memory_usage(); VLOG(10) << "Memory peak after schedule: " << sched_state->memory_pressure_tracker->pressure_state().memory_peak; return current_time; } std::string HloEdge::ToString() const { return absl::StrCat("\tEdge: ", target_->GetInstr().name(), " latency: ", Latency(), "\n"); } bool HloScheduleGraph::IsPredecessorTransitively( const HloGraphNode* node, const HloGraphNode* possible_predecessor) { absl::flat_hash_set<const HloGraphNode*> visited = {possible_predecessor}; std::vector<const HloGraphNode*> to_visit_queue = {node}; while (!to_visit_queue.empty()) { const HloGraphNode* curr = to_visit_queue.back(); to_visit_queue.pop_back(); if (curr == possible_predecessor) { return true; } if (visited.contains(curr)) { continue; } visited.insert(curr); for (const auto& edge : curr->GetPredecessors()) { auto user_node_it = nodes_.find(&edge.Target().GetInstr()); to_visit_queue.push_back(user_node_it->second.get()); } } return false; } HloScheduleGraph::HloScheduleGraph( const std::vector<HloInstruction*>* post_order_instructions, HloAliasAnalysis* alias_analysis, const LatencyEstimator* latency_estimator, const AsyncTracker* async_tracker) : original_order_(post_order_instructions->begin(), post_order_instructions->end()) { HloComputation* comp = (*post_order_instructions)[0]->parent(); auto reachability = HloReachabilityMap::Build(comp); int64_t current_pos = 0; std::vector<const HloInstruction*> while_instrs; for (HloInstruction* instr : *post_order_instructions) { auto [new_node_it, inserted] = nodes_.try_emplace( instr, std::make_unique<HloGraphNode>(instr, current_pos)); CHECK(inserted) << "Expected the value to not be already in the map"; instr_order_map_[instr] = current_pos++; new_node_it->second->predecessors_.reserve(instr->operand_count()); new_node_it->second->successors_.reserve(instr->user_count()); new_node_it->second->cost_ = latency_estimator->NodeCost(instr); new_node_it->second->resources_ = async_tracker->GetResourcesFromInstruction(*instr); new_node_it->second->released_shareable_resources_ = async_tracker->GetReleasedShareableResourcesFromVector( new_node_it->second->GetResources()); new_node_it->second->occupied_shareable_resources_ = async_tracker->GetOccupiedShareableResourcesFromVector( new_node_it->second->GetResources()); new_node_it->second->releases_selective_resource_ = async_tracker->ReleasesSelectiveResource(new_node_it->second.get()); new_node_it->second->occupies_selective_resource_ = async_tracker->OccupiesSelectiveResource(new_node_it->second.get()); if (instr->opcode() == HloOpcode::kWhile) { while_instrs.push_back(instr); } } auto add_dependency_helper = [latency_estimator](HloGraphNode* from, HloGraphNode* to) { const LatencyEstimator::TimeCost latency = latency_estimator->GetLatencyBetween(*from, *to); from->successors_.push_back(HloEdge(latency, to)); to->predecessors_.push_back(HloEdge(latency, from)); ++to->indegree_; ++from->outdegree_; }; for (const HloInstruction* instr : *post_order_instructions) { auto node_it = nodes_.find(instr); CHECK(node_it != nodes_.end()) << "We should have just allocated a node"; HloGraphNode* instr_node = node_it->second.get(); VLOG(10) << "Adding users for " << instr_node->GetInstr().ToString(); for (const HloInstruction* user : instr->users()) { VLOG(10) << "\tUser: " << user->ToString(); auto user_node_it = nodes_.find(user); CHECK(user_node_it != nodes_.end()); HloGraphNode* user_node = user_node_it->second.get(); add_dependency_helper(instr_node, user_node); } for (const HloInstruction* ctrl_succ : instr->control_successors()) { VLOG(10) << "\tCtrl Successor: " << ctrl_succ->ToString(); auto ctrl_succ_node_it = nodes_.find(ctrl_succ); CHECK(ctrl_succ_node_it != nodes_.end()); HloGraphNode* ctrl_succ_node = ctrl_succ_node_it->second.get(); add_dependency_helper(instr_node, ctrl_succ_node); } if (async_tracker->IsSupportedAsyncDone(*instr)) { const HloInstruction* async_start = instr->operand(0); if (alias_analysis != nullptr) { for (const HloBuffer* buffer : alias_analysis->ComputeBuffersAt(instr, {})) { for (const HloValue* value : buffer->values()) { if (value->defining_instruction() == instr) { continue; } for (const HloUse& use : value->GetUses()) { if (ContainsKey(instr_order_map_, use.instruction)) { if (use.instruction == async_start || reachability->IsReachable(instr, use.instruction)) { continue; } auto it = nodes_.find(use.instruction); CHECK(it != nodes_.end()); HloGraphNode* pred_node = it->second.get(); it = nodes_.find(async_start); CHECK(it != nodes_.end()); HloGraphNode* start_node = it->second.get(); if (IsPredecessorTransitively(pred_node, start_node)) { continue; } pred_node->successors_.push_back(HloEdge(1, start_node)); start_node->predecessors_.push_back(HloEdge(1, pred_node)); ++pred_node->outdegree_; ++start_node->indegree_; } } } } } } if (instr->opcode() == HloOpcode::kSendDone) { for (const auto* ctrl_pred : instr->control_predecessors()) { if (ctrl_pred->opcode() != HloOpcode::kRecvDone) { continue; } const HloInstruction* dependent_while_instr = nullptr; for (const auto* while_hlo : while_instrs) { if (!reachability->IsReachable(ctrl_pred, while_hlo)) { continue; } if (dependent_while_instr == nullptr) { dependent_while_instr = while_hlo; continue; } if (OriginalInstructionPosition(while_hlo) < OriginalInstructionPosition(dependent_while_instr)) { dependent_while_instr = while_hlo; } } if (dependent_while_instr != nullptr) { auto send_done_it = nodes_.find(instr); CHECK(send_done_it != nodes_.end()); HloGraphNode* send_done_node = send_done_it->second.get(); auto while_it = nodes_.find(dependent_while_instr); CHECK(while_it != nodes_.end()); HloGraphNode* while_node = while_it->second.get(); send_done_node->successors_.push_back(HloEdge(1, while_node)); while_node->predecessors_.push_back(HloEdge(1, send_done_node)); ++send_done_node->outdegree_; ++while_node->indegree_; } break; } } } } std::string HloScheduleGraph::ToString( const AsyncTracker* async_tracker) const { std::string result; std::vector<std::pair<const HloGraphNode*, int>> stack; for (const auto& node : nodes_) { if (node.second->predecessors_.empty()) { stack.push_back(std::make_pair(node.second.get(), 0)); } } std::vector<const HloGraphNode*> order; absl::flat_hash_set<const HloGraphNode*> visited; while (!stack.empty()) { auto& val = stack.back(); if (val.second == val.first->successors_.size()) { order.push_back(val.first); stack.pop_back(); continue; } const int64_t next_child = val.second++; if (visited.insert(&val.first->successors_[next_child].Target()).second) { stack.push_back( std::make_pair(&val.first->successors_[next_child].Target(), 0)); } } for (auto it = order.rbegin(), e = order.rend(); it != e; ++it) { absl::StrAppend(&result, (*it)->ToString(async_tracker)); } return result; } HloGraphNode& HloScheduleGraph::GetNode(const HloInstruction* instr) const { auto it = nodes_.find(instr); CHECK(it != nodes_.end()); return *it->second; } std::vector<HloGraphNode*> HloScheduleGraph::FindBottomRoots() const { std::vector<HloGraphNode*> roots; for (const HloInstruction* instr : original_order_) { HloGraphNode& node = GetNode(instr); if (node.GetOutdegree() == 0) { roots.push_back(&node); } } return roots; } std::vector<HloGraphNode*> HloScheduleGraph::FindTopRoots() const { std::vector<HloGraphNode*> roots; for (const HloInstruction* instr : original_order_) { HloGraphNode& node = GetNode(instr); if (node.GetIndegree() == 0) { roots.push_back(&node); } } return roots; } void HloScheduleGraph::InitializeGraphAnalysis( const AsyncTracker* async_tracker) { absl::flat_hash_map<HloGraphNode*, int> current_rank; std::vector<HloGraphNode*> stack; for (const HloInstruction* instr : original_order_) { HloGraphNode& node = GetNode(instr); current_rank[&node] = node.GetIndegree(); node.SetAsyncDepth(0.0); node.SetDepth(0.0); node.SetGraphDepth(0); if (node.GetIndegree() == 0) { stack.push_back(&node); } } while (!stack.empty()) { auto* node = stack.back(); stack.pop_back(); if (async_tracker->OccupiesSelectiveResource(node)) { node->num_hops_to_closest_selective_resource_occupier_ = 0; } else { int64_t closest_predecessor_distance = std::numeric_limits<int64_t>::max(); for (auto& pred : node->GetPredecessors()) { closest_predecessor_distance = std::min( closest_predecessor_distance, pred.Target().num_hops_to_closest_selective_resource_occupier_); } if (closest_predecessor_distance != std::numeric_limits<int64_t>::max()) { node->num_hops_to_closest_selective_resource_occupier_ = closest_predecessor_distance + 1; } } if (async_tracker->IsSupportedAsyncDone(node->GetInstr())) { for (auto& pred : node->GetPredecessors()) { node->SetAsyncDepth( std::max(pred.Target().GetAsyncDepth() + pred.Latency(), node->GetAsyncDepth())); node->SetDepth(std::max( pred.Target().GetDepth() + pred.Target().GetCost() + pred.Latency(), node->GetDepth())); node->SetGraphDepth( std::max(pred.Target().GetGraphDepth() + 1, node->GetGraphDepth())); } } else { for (auto& pred : node->GetPredecessors()) { node->SetAsyncDepth( std::max(pred.Target().GetAsyncDepth(), node->GetAsyncDepth())); node->SetDepth(std::max( pred.Target().GetDepth() + pred.Target().GetCost() + pred.Latency(), node->GetDepth())); node->SetGraphDepth( std::max(pred.Target().GetGraphDepth() + 1, node->GetGraphDepth())); } } for (auto& succ : node->GetSuccessors()) { if (--current_rank[&succ.Target()] == 0) { stack.push_back(&succ.Target()); } } } } absl::Status DefaultSchedulerCore::InitializeScheduler( const HloModule* module) { TF_ASSIGN_OR_RETURN(alias_analysis_, HloAliasAnalysis::Run(module)); module_pressure_state_ = std::make_unique<ModulePressureState>( module, alias_analysis_.get(), shape_size_bytes_); module_pressure_state_->InitializePressureStates(); module_pressure_state_->SetMemoryPeak(0); return absl::OkStatus(); } absl::Status DefaultSchedulerCore::SchedulingStep( SchedulingState* sched_state) { TF_ASSIGN_OR_RETURN(HloGraphNode * node, FindAndExtractBestNodeAvailable( *sched_state, nullptr)); CHECK(node != nullptr); TF_ASSIGN_OR_RETURN(sched_state->current_time, ScheduleNode(node, sched_state)); VLOG(2) << "Scheduled: " << node->GetInstr().name(); XLA_VLOG_LINES(5, node->ToString()); return absl::OkStatus(); } absl::StatusOr<std::vector<HloInstruction*>> DefaultSchedulerCore::ScheduleComputation(const HloComputation* computation) { const HloSchedule& module_schedule = computation->parent()->schedule(); MemoryPressureTracker memory_pressure_tracker( alias_analysis_.get(), module_pressure_state_->buffer_tracker(), module_pressure_state_->pressure_state_cache()); memory_pressure_tracker.Initialize( computation, module_pressure_state_->GetPressureStateForComputation(computation) .live_ids_at_bottom); SchedulingState sched_state( &module_schedule.sequence(computation), alias_analysis_.get(), latency_estimator_, async_tracker_, &memory_pressure_tracker, config_); async_tracker_->PostProcessScheduleGraph(&sched_state.sched_graph, latency_estimator_); sched_state.sched_graph.InitializeGraphAnalysis(async_tracker_); VLOG(5) << "Just built graph:"; XLA_VLOG_LINES(5, sched_state.sched_graph.ToString(async_tracker_)); async_tracker_->SetConcurrentResourceLimits( sched_state.max_concurrent_resource); auto roots = sched_state.sched_graph.FindBottomRoots(); for (HloGraphNode* root : roots) { root->SetReadyTime(0.0); } VLOG(5) << "Initial memory pressure for " << computation->name() << ": " << memory_pressure_tracker.memory_usage(); sched_state.ready_set.insert(sched_state.ready_set.end(), roots.begin(), roots.end()); while (!sched_state.ready_set.empty()) { VLOG(10) << "Current ready time: " << sched_state.current_time; VLOG(2) << "Current ready queue:"; XLA_VLOG_LINES(2, [&sched_state]() { struct LogFormatter { void operator()(std::string* out, const HloGraphNode* n) const { out->append(absl::StrCat("\t", n->GetInstr().name(), " Ready time: ", n->GetReadyTime(), " Depth: ", n->GetGraphDepth())); } }; return absl::StrJoin(sched_state.ready_set, "\n", LogFormatter()); }()); TF_RETURN_IF_ERROR(SchedulingStep(&sched_state)); } if (VLOG_IS_ON(5)) { VLOG(5) << "New order"; for (auto r_it = sched_state.new_sequence_reversed.rbegin(), e_it = sched_state.new_sequence_reversed.rend(); r_it != e_it; ++r_it) { LogInstruction(*r_it); } } module_pressure_state_->UpdatePressureStateForComputation( computation, memory_pressure_tracker.pressure_state()); absl::c_reverse(sched_state.new_sequence_reversed); if (post_processing_fn_) { post_processing_fn_(sched_state); } CHECK_EQ(sched_state.new_sequence_reversed.size(), sched_state.sched_graph.GetOriginalInstrList().size()) << "Not all instructions have been scheduled " << sched_state.new_sequence_reversed.size() << " vs " << sched_state.sched_graph.GetOriginalInstrList().size(); VLOG(2) << "Total time: " << sched_state.sched_graph .GetNode(sched_state.new_sequence_reversed.front()) .GetReadyTime(); const auto& debug_options = xla::GetDebugOptionsFromFlags(); if (debug_options.xla_dump_latency_hiding_schedule() && computation->IsEntryComputation()) { int core_freq = latency_estimator_->CyclesPerMicrosecond(); DumpLatencyHidingSchedule(computation, sched_state.sched_graph, sched_state.new_sequence_reversed, core_freq, debug_options); } return std::move(sched_state.new_sequence_reversed); } void DefaultSchedulerCore::DumpLatencyHidingSchedule( const HloComputation* computation, const HloScheduleGraph& schedule_graph, const std::vector<HloInstruction*>& instructions, const int cycles_per_microsecond, const DebugOptions& debug_options) { ScheduleProto proto; proto.set_computation_id(computation->unique_id()); proto.set_cycles_per_microsecond(cycles_per_microsecond); const HloGraphNode& first_node = schedule_graph.GetNode(instructions.front()); const double total_time = first_node.GetReadyTime() + first_node.GetCost(); for (const HloInstruction* instr : instructions) { const HloGraphNode& instr_node = schedule_graph.GetNode(instr); const double start_time = total_time - (instr_node.GetReadyTime() + instr_node.GetCost()); const double end_time = start_time + instr_node.GetCost(); ScheduleProto::Instruction* instr_msg = proto.add_instructions(); instr_msg->set_id(instr->unique_id()); instr_msg->set_start_timestamp_cycles(start_time); instr_msg->set_end_timestamp_cycles(end_time); } *proto.mutable_hlo_module() = computation->parent()->ToProto(); const std::string fn = absl::StrFormat("%s.schedule", computation->name()); DumpProtobufToFile(proto, debug_options, fn); } LatencyHidingScheduler::SchedulerStatistics LatencyHidingScheduler::LatencyHidingStatistics( const HloComputation* computation, const LatencyEstimator* latency_estimator, const AsyncTracker* async_tracker, const HloCostAnalysis::ShapeSizeFunction& shape_size_bytes) { const HloModule* module = computation->parent(); absl::flat_hash_map< HloOpcode, std::vector<std::tuple<const HloInstruction*, int64_t, int64_t>>> outstanding_collectives; double current_time = 0; enum class AsyncKind { kNotAsync, kAllGather, kAllReduce, kCollectivePermute, kAllToAll, kReduceScatter, kSend, kRecv, kCollectiveBroadcast, }; auto opcode_to_async_kind = [](HloOpcode opcode) { switch (opcode) { case HloOpcode::kAllGather: return AsyncKind::kAllGather; case HloOpcode::kAllReduce: return AsyncKind::kAllReduce; case HloOpcode::kCollectiveBroadcast: return AsyncKind::kCollectiveBroadcast; case HloOpcode::kCollectivePermute: return AsyncKind::kCollectivePermute; case HloOpcode::kAllToAll: return AsyncKind::kAllToAll; case HloOpcode::kReduceScatter: return AsyncKind::kReduceScatter; case HloOpcode::kSend: return AsyncKind::kSend; case HloOpcode::kRecv: return AsyncKind::kRecv; default: return AsyncKind::kNotAsync; } }; auto find_node_successor_edge = [](const HloGraphNode& graph_node, const HloGraphNode& successor_node) { auto edge_it = std::find_if(graph_node.GetSuccessors().begin(), graph_node.GetSuccessors().end(), [&successor_node](const HloEdge& edge) { return &edge.Target() == &successor_node; }); CHECK(edge_it != graph_node.GetSuccessors().end()); return edge_it; }; auto find_outstanding_async = [&outstanding_collectives, async_tracker](const HloInstruction* instr) { const auto& collective_vec = outstanding_collectives[async_tracker->GetCanonicalAsyncOp(*instr) .inner]; auto it = absl::c_find_if( collective_vec, [instr](const std::tuple<const HloInstruction*, int64_t, int64_t>& p) { return instr == std::get<0>(p); }); CHECK(it != collective_vec.end()); return it; }; absl::flat_hash_map<AsyncKind, double> wasted_time_per_collective; SchedulerConfig config; config.schedule_send_recvs = true; config.use_real_cost_model = true; std::unique_ptr<HloAliasAnalysis> hlo_alias_analysis = HloAliasAnalysis::Run(module).value(); auto instructions_post_order = computation->MakeInstructionPostOrder(); HloScheduleGraph schedule_graph(&instructions_post_order, nullptr, latency_estimator, async_tracker); async_tracker->PostProcessScheduleGraph(&schedule_graph, latency_estimator); int64_t curr_pos = 0; for (const HloInstruction* instr : module->schedule().sequence(computation).instructions()) { const HloGraphNode& instr_node = schedule_graph.GetNode(instr); current_time += instr_node.GetCost(); if (async_tracker->IsSupportedAsyncStart(*instr)) { outstanding_collectives[async_tracker->GetCanonicalAsyncOp(*instr).inner] .push_back({instr, current_time, curr_pos}); } else if (async_tracker->IsSupportedAsyncDone(*instr)) { const HloInstruction* start_instr = instr->operand(0); if (async_tracker->IsSupportedAsyncStart(*start_instr)) { auto it = find_outstanding_async(start_instr); const HloGraphNode& start_node = schedule_graph.GetNode(std::get<0>(*it)); auto edge_it = find_node_successor_edge(start_node, instr_node); const double async_wasted_cycles = std::max( 0.0, edge_it->Latency() - (current_time - std::get<1>(*it))); AsyncKind kind = opcode_to_async_kind( async_tracker->GetCanonicalAsyncOp(*start_instr).inner); wasted_time_per_collective[kind] += async_wasted_cycles; current_time += async_wasted_cycles; } } curr_pos++; } ModulePressureState module_pressure_state(module, hlo_alias_analysis.get(), shape_size_bytes); module_pressure_state.InitializePressureStates(); const MemoryPressureTracker::MemoryPressureState* memory_pressure_state = module_pressure_state.ComputationIsMemoryTracked(computation) ? &module_pressure_state.GetPressureStateForComputation(computation) : nullptr; MemoryPressureTracker mem_pressure_tracker( hlo_alias_analysis.get(), module_pressure_state.buffer_tracker(), module_pressure_state.pressure_state_cache()); if (memory_pressure_state != nullptr) { mem_pressure_tracker.Initialize(computation, memory_pressure_state->live_ids_at_bottom); } return LatencyHidingScheduler::SchedulerStatistics{ computation, wasted_time_per_collective[AsyncKind::kAllGather], wasted_time_per_collective[AsyncKind::kAllReduce], wasted_time_per_collective[AsyncKind::kCollectiveBroadcast], wasted_time_per_collective[AsyncKind::kCollectivePermute], wasted_time_per_collective[AsyncKind::kAllToAll], wasted_time_per_collective[AsyncKind::kReduceScatter], wasted_time_per_collective[AsyncKind::kSend], wasted_time_per_collective[AsyncKind::kRecv], current_time, memory_pressure_state ? mem_pressure_tracker.initial_memory_pressure() + memory_pressure_state->memory_peak : 0}; } std::string LatencyHidingScheduler::SchedulerStatisticsString( const SchedulerStatistics& sched_stats) { std::string result; if (const HloComputation* comp = sched_stats.computation) { absl::StrAppend(&result, "For computation: ", comp->name(), ", module ", comp->parent()->name(), "(", comp->parent()->unique_id(), ")\n"); } absl::StrAppend(&result, "Total wasted cycles: ", sched_stats.all_gather_wasted_cycles + sched_stats.all_reduce_wasted_cycles + sched_stats.collective_broadcast_wasted_cycles + sched_stats.collective_permute_wasted_cycles + sched_stats.all_to_all_wasted_cycles + sched_stats.reduce_scatter_wasted_cycles + sched_stats.send_wasted_cycles + sched_stats.recv_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for all-reduce: ", sched_stats.all_reduce_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for all-gather: ", sched_stats.all_gather_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for collective-broadcast: ", sched_stats.collective_broadcast_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for collective-permute: ", sched_stats.collective_permute_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for all-to-all: ", sched_stats.all_to_all_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for reduce-scatter: ", sched_stats.reduce_scatter_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for send: ", sched_stats.send_wasted_cycles, "\n"); absl::StrAppend(&result, "Wasted cycles for recv: ", sched_stats.recv_wasted_cycles, "\n"); absl::StrAppend(&result, "Total cycles: ", sched_stats.total_cycles, "\n"); absl::StrAppend(&result, "Memory pressure peak (bytes): ", sched_stats.memory_pressure_peak, "\n"); return result; } void LatencyHidingScheduler::LogScheduleStatistics( const HloComputation* computation) { XLA_VLOG_LINES(1, SchedulerStatisticsString(LatencyHidingStatistics( computation, latency_estimator_.get(), async_tracker_.get(), shape_size_bytes_))); } absl::StatusOr<bool> LatencyHidingScheduler::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(5) << "Original module:"; XLA_VLOG_LINES(5, module->ToString()); std::vector<HloComputation*> computations_to_schedule; computations_to_schedule.reserve(module->computation_count()); for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { for (auto* instr : computation->instructions()) { if (async_tracker_->IsSupportedAsyncStart(*instr) || async_tracker_->IsSupportedAsyncDone(*instr)) { computations_to_schedule.push_back(computation); break; } } } if (computations_to_schedule.empty()) { return false; } absl::flat_hash_map<HloComputation*, std::vector<HloInstruction*>> saved_schedules; TF_RETURN_IF_ERROR(scheduler_core_->InitializeScheduler(module)); for (HloComputation* computation : computations_to_schedule) { TF_ASSIGN_OR_RETURN(std::vector<HloInstruction*> new_schedule, scheduler_core_->ScheduleComputation(computation)); saved_schedules[computation] = std::move(new_schedule); } uint64_t initial_memory_limit = scheduler_core_->GetMemoryLimit(); for (int64_t iter = 0; iter < scheduler_core_->GetRerunTimes() && scheduler_core_->GetMemoryPeak() > initial_memory_limit; iter++) { LOG(INFO) << "LatencyHidingScheduler current memory usage: " << scheduler_core_->GetMemoryPeak() << " bytes, does not fit in limit: " << scheduler_core_->GetMemoryLimit() << ". Setting the new limit to " << scheduler_core_->GetMemoryLimit() * 0.9; TF_RETURN_IF_ERROR(scheduler_core_->InitializeScheduler(module)); scheduler_core_->SetMemoryLimit(scheduler_core_->GetMemoryLimit() * 0.9); for (HloComputation* computation : computations_to_schedule) { TF_ASSIGN_OR_RETURN(std::vector<HloInstruction*> new_schedule, scheduler_core_->ScheduleComputation(computation)); saved_schedules[computation] = std::move(new_schedule); } } LOG(INFO) << "LatencyHidingScheduler current memory usage: " << scheduler_core_->GetMemoryPeak() << " bytes. Current limit: " << scheduler_core_->GetMemoryLimit(); for (HloComputation* computation : computations_to_schedule) { VLOG(1) << "Statistics before scheduling:"; LogScheduleStatistics(computation); module->schedule().set_sequence( computation, absl::MakeConstSpan(saved_schedules[computation])); VLOG(1) << "Statistics after scheduling:"; LogScheduleStatistics(computation); } return true; } }
#include "xla/service/latency_hiding_scheduler.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <functional> #include <iterator> #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/async_collective_creator.h" #include "xla/service/hlo_cost_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { constexpr int kMaxConcurrentAsyncCollectivePermutes = 5; int PositionInVector(absl::Span<HloInstruction* const> vec, const HloInstruction* element) { return std::distance(vec.begin(), std::find(vec.begin(), vec.end(), element)); } bool MaxConcurrentCollectivePermutesBelowThreshold( absl::Span<HloInstruction* const> instruction_sequence) { int max_concurrent_collective_permutes = 0; int num_concurrent_collective_permutes = 0; for (HloInstruction* instruction : instruction_sequence) { if (instruction->opcode() == HloOpcode::kCollectivePermuteStart) { num_concurrent_collective_permutes += 1; max_concurrent_collective_permutes = std::max(max_concurrent_collective_permutes, num_concurrent_collective_permutes); } if (instruction->opcode() == HloOpcode::kCollectivePermuteDone) { num_concurrent_collective_permutes -= 1; } } int max_num_collective_permutes_threshold = kMaxConcurrentAsyncCollectivePermutes; return max_concurrent_collective_permutes <= max_num_collective_permutes_threshold; } int GetIndex(absl::Span<HloInstruction* const> instruction_sequence, absl::string_view hlo_name) { return absl::c_find_if(instruction_sequence, [hlo_name](HloInstruction* instruction) { return instruction->name() == hlo_name; }) - instruction_sequence.begin(); } int GetOpcodeIndexUsingMetaData( HloOpcode opcode, absl::Span<HloInstruction* const> instruction_sequence, absl::string_view metadata_name) { return absl::c_find_if(instruction_sequence, [metadata_name, opcode](HloInstruction* instruction) { return instruction->metadata().op_name() == metadata_name && instruction->opcode() == opcode; }) - instruction_sequence.begin(); } SchedulerConfig GetDefaultSchedConfig() { SchedulerConfig sched_cfg; sched_cfg.collective_permute_overlap_limit = kMaxConcurrentAsyncCollectivePermutes; sched_cfg.send_recv_overlap_limit = INT32_MAX; return sched_cfg; } class TestLatencyEstimator : public LatencyEstimator { public: TimeCost GetLatencyBetween(const HloGraphNode& from, const HloGraphNode& target) const override { static constexpr TimeCost kLowLatency = 1.0; if (from.GetInstr().opcode() == HloOpcode::kCollectivePermuteStart && target.GetInstr().opcode() == HloOpcode::kCollectivePermuteDone) { return kLowLatency * ShapeUtil::ElementsIn(from.GetInstr().operand(0)->shape()); } return kLowLatency; } TimeCost NodeCost(const HloInstruction* instr) const override { if (instr->IsLoopFusion()) { return instr->shape().IsTuple() ? kMediumCost : kLowCost * ShapeUtil::ElementsIn(instr->shape()); } if (instr->IsOutputFusion() || instr->opcode() == HloOpcode::kConvolution) { return instr->shape().IsTuple() ? kHighCost : kMediumCost * ShapeUtil::ElementsIn(instr->shape()); } return kLowCost; } int CyclesPerMicrosecond() const override { return 1; } public: static constexpr TimeCost kLowCost = 1.0; static constexpr TimeCost kMediumCost = 1000.0; static constexpr TimeCost kHighCost = 5000.0; }; absl::StatusOr<bool> RunScheduler( HloModule* module, SchedulerConfig sched_config = GetDefaultSchedConfig(), std::unique_ptr<LatencyEstimator> latency_estimator = std::make_unique<ApproximateLatencyEstimator>(), std::unique_ptr<AsyncTracker> async_tracker = nullptr) { AsyncCollectiveCreator::CollectiveCreatorConfig config{ HloPredicateTrue, HloPredicateTrue, HloPredicateTrue, HloPredicateTrue}; TF_ASSIGN_OR_RETURN(bool value, AsyncCollectiveCreator(std::move(config)).Run(module)); HloCostAnalysis::ShapeSizeFunction shape_size_bytes = [&shape_size_bytes](const Shape& shape) -> int64_t { int64_t shape_size = 0; if (shape.IsTuple()) { for (auto& sub_shape : shape.tuple_shapes()) { shape_size += shape_size_bytes(sub_shape); } return shape_size; } return ShapeUtil::ByteSizeOfElements(shape); }; if (!async_tracker) { async_tracker = std::make_unique<AsyncTracker>(sched_config); } auto scheduler_core = std::make_unique<DefaultSchedulerCore>( shape_size_bytes, async_tracker.get(), latency_estimator.get(), sched_config); TF_ASSIGN_OR_RETURN( value, LatencyHidingScheduler(std::move(latency_estimator), std::move(async_tracker), std::move(scheduler_core), shape_size_bytes) .Run(module)); return value; } } class LatencyHidingSchedulerTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> ParseHloText( absl::string_view hlo_string) { TF_ASSIGN_OR_RETURN( auto hlo_module, ParseAndReturnVerifiedModule(hlo_string, GetModuleConfigForTest())); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(hlo_module)); } }; TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncSimple) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, c0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetIndex(new_instruction_sequence, "a2") - 1); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncBalance) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[1,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[1,8,256,256], f32[2,8,256,256]) all-gather-start( f32[1,8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[2,8,256,256] all-gather-done( (f32[1,8,256,256], f32[2,8,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ag-done), metadata={op_type="Bitcast" op_name="ag0"} %ag-start.2 = (f32[1,8,256,256], f32[2,8,256,256]) all-gather-start( f32[1,8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done.2 = f32[2,8,256,256] all-gather-done( (f32[1,8,256,256], f32[2,8,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} %ag-done-bc.2 = f32[16,256,256] bitcast(f32[2,8,256,256] %ag-done.2), metadata={op_type="Bitcast" op_name="ag1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllGather" op_name="c0"} c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllGather" op_name="c1"} a2 = f32[16,256,256]{2,1,0} add(c1, c0) ROOT t = (f32[16,256,256], f32[16,256,256], f32[16,256,256]) tuple(a2, %ag-done-bc.2, %ag-done-bc) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncReshaped) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[1,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[1,8,256,256], f32[2,8,256,256]) all-gather-start( f32[1,8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[2,8,256,256] all-gather-done( (f32[1,8,256,256], f32[2,8,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ag-done), metadata={op_type="Bitcast" op_name="ag0"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done-bc, c0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetIndex(new_instruction_sequence, "a2") - 2); EXPECT_EQ(GetOpcodeIndexUsingMetaData(HloOpcode::kBitcast, new_instruction_sequence, "ag0"), GetIndex(new_instruction_sequence, "a2") - 1); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncOverlapped) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(1) %replica_id = u32[]{:T(128)} replica-id() %add.1 = u32[]{:T(128)} add(replica_id, constant.19) %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %convert.1 = f32[]{:T(128)} convert(u32[]{:T(128)} %add.1) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert.1), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-start.2 = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.2), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done.2 = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, %ag-done.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncOverlapped2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(1) %replica_id = u32[]{:T(128)} replica-id() %add.1 = u32[]{:T(128)} add(replica_id, constant.19) %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %convert.1 = f32[]{:T(128)} convert(u32[]{:T(128)} %add.1) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert.1), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-start.2 = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.2), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done.2 = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) c0 = f32[16,256,256]{2,1,0} convolution(ag-done, ag-done.2), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%c0, %c1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllGatherAsyncOverlapped3) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(1) %replica_id = u32[]{:T(128)} replica-id() %add.1 = u32[]{:T(128)} add(replica_id, constant.19) %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %convert.1 = f32[]{:T(128)} convert(u32[]{:T(128)} %add.1) p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[8,256,256]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert.1), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-start.2 = (f32[8,256,256], f32[16,256,256]) all-gather-start(f32[8,256,256] %color_operand.2), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag1"} %ag-done = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} %ag-done.2 = f32[16,256,256] all-gather-done((f32[8,256,256], f32[16,256,256]) %ag-start.2), metadata={op_type="AllGather" op_name="ag1"} c0 = f32[16,256,256]{2,1,0} convolution(ag-done, ag-done.2), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, %ag-done.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherStart, new_instruction_sequence, "ag1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllGatherDone, new_instruction_sequence, "ag1")); } TEST_F(LatencyHidingSchedulerTest, AllReduceAsyncBalance) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true %add { %p0 = f32[] parameter(0) %p1 = f32[] parameter(1) ROOT %a = f32[] add(p0, p1) } ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[2,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[2,8,256,256]{3,2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ar-start = f32[2,8,256,256] all-reduce-start( f32[2,8,256,256] %color_operand.1), replica_groups={{0,1}}, to_apply=%add, metadata={op_type="AllReduce" op_name="ar0"} %ar-start.2 = f32[2,8,256,256] all-reduce-start( f32[2,8,256,256] %color_operand.2), replica_groups={{0,1}}, to_apply=%add, metadata={op_type="AllReduce" op_name="ar1"} %ar-done = f32[2,8,256,256] all-reduce-done( f32[2,8,256,256] %ar-start), metadata={op_type="AllReduce" op_name="ar0"} %ar-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ar-done), metadata={op_type="Bitcast" op_name="ar0"} %ar-done.2 = f32[2,8,256,256] all-reduce-done( f32[2,8,256,256] %ar-start.2), metadata={op_type="AllReduce" op_name="ar1"} %ar-done-bc.2 = f32[16,256,256] bitcast(f32[2,8,256,256] %ar-done.2), metadata={op_type="Bitcast" op_name="ar1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllReduce" op_name="c0"} c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllReduce" op_name="c1"} a2 = f32[16,256,256]{2,1,0} add(c1, c0) ROOT t = (f32[16,256,256], f32[16,256,256], f32[16,256,256]) tuple(a2, %ar-done-bc.2, %ar-done-bc) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceDone, new_instruction_sequence, "ar0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceStart, new_instruction_sequence, "ar0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceDone, new_instruction_sequence, "ar1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAllReduceStart, new_instruction_sequence, "ar1")); } TEST_F(LatencyHidingSchedulerTest, WhileLoopAliasingBug) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) collective-permute.1 = bf16[8]{0} collective-permute(gte0), source_target_pairs={{0,1},{1,2},{2,3}} add0 = bf16[8]{0} add(collective-permute.1, bitcast) negate = bf16[8]{0} negate(add0) collective-permute.2 = bf16[8]{0} collective-permute(collective-permute.1), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte1) } ENTRY entry { p0 = bf16[8]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[8]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte0 = bf16[8]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 ROOT add = bf16[8]{0} add(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* while_body = hlo_module->GetComputationWithName("while_body"); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(while_body).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } const HloInstruction* cp_start = while_body->root_instruction()->operand(0)->operand(0); EXPECT_EQ(cp_start->opcode(), HloOpcode::kCollectivePermuteStart); EXPECT_LT(GetIndex(new_instruction_sequence, "add0"), GetIndex(new_instruction_sequence, cp_start->name())); } TEST_F(LatencyHidingSchedulerTest, WhileLoopAliasingBug2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = bf16[8]{0} get-tuple-element(param), index=1 gte2 = pred[] get-tuple-element(param), index=2 negate1 = bf16[8]{0} negate(gte1) collective-permute.1 = bf16[8]{0} collective-permute(gte0), source_target_pairs={{0,1},{1,2},{2,3}} negate0 = bf16[8]{0} negate(collective-permute.1) collective-permute.2 = bf16[8]{0} collective-permute(negate1), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate0, gte2) } ENTRY entry { p0 = bf16[8]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[8]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body gte0 = bf16[8]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 ROOT add = bf16[8]{0} add(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* while_body = hlo_module->GetComputationWithName("while_body"); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(while_body).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } const HloInstruction* cp_start_2 = while_body->root_instruction()->operand(0)->operand(0); EXPECT_EQ(cp_start_2->opcode(), HloOpcode::kCollectivePermuteStart); const HloInstruction* cp_done_1 = while_body->root_instruction()->operand(1)->operand(0); EXPECT_EQ(cp_done_1->opcode(), HloOpcode::kCollectivePermuteDone); EXPECT_LT(GetIndex(new_instruction_sequence, cp_done_1->name()), GetIndex(new_instruction_sequence, cp_start_2->name())); } TEST_F(LatencyHidingSchedulerTest, SingleCollectivePermuteTest) { absl::string_view hlo_string = R"( HloModule single_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { %parameter.1 = bf16[8]{0} parameter(0), sharding={replicated} ROOT %collective-permute.1 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{0,1},{1,2},{2,3}}, channel_id=1 } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(new_instruction_sequence.size(), 3); EXPECT_EQ(new_instruction_sequence[1]->opcode(), HloOpcode::kCollectivePermuteStart); EXPECT_EQ(new_instruction_sequence[2]->opcode(), HloOpcode::kCollectivePermuteDone); } TEST_F(LatencyHidingSchedulerTest, InplaceUpdateCPTest) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true %fused_computation.1 (param_0.1: f32[4,4,128], param_1.2: u32[]) -> f32[4,4,128] { %param_0.1 = f32[4,4,128]{2,1,0:T(4,128)} parameter(0) %constant.15 = f32[]{:T(128)} constant(1) %broadcast.2 = f32[2,4,128]{2,1,0:T(4,128)} broadcast(f32[]{:T(128)} %constant.15), dimensions={} %param_1.2 = u32[] parameter(1) %constant.14 = u32[] constant(0) ROOT %dynamic-update-slice.1 = f32[4,4,128]{2,1,0:T(4,128)} dynamic-update-slice(f32[4,4,128]{2,1,0:T(4,128)} %param_0.1, f32[2,4,128]{2,1,0:T(4,128)} %broadcast.2, u32[] %param_1.2, u32[] %constant.14, u32[] %constant.14) } ENTRY %module_spmd () -> f32[4,4,128] { %constant.8 = u32[] constant(0) %constant.5 = u32[] constant(2) %tuple.1 = (u32[], u32[], u32[]) tuple(u32[] %constant.8, u32[] %constant.8, u32[] %constant.8) %tuple = (u32[], u32[], u32[]) tuple(u32[] %constant.5, u32[] %constant.8, u32[] %constant.8) %custom-call = f32[4,4,128]{2,1,0:T(4,128)} custom-call(), custom_call_target="AllocateBuffer" %fusion.1 = f32[4,4,128]{2,1,0:T(4,128)} fusion(f32[4,4,128]{2,1,0:T(4,128)} %custom-call, u32[] %constant.5), kind=kLoop, calls=%fused_computation.1 %collective-permute = f32[4,4,128]{2,1,0:T(4,128)} collective-permute(f32[4,4,128]{2,1,0:T(4,128)} %fusion.1, f32[4,4,128]{2,1,0:T(4,128)} %fusion.1, (u32[], u32[], u32[]) %tuple, (u32[], u32[], u32[]) %tuple.1), channel_id=958, source_target_pairs={{0,4},{4,0},{1,5},{5,1},{2,6},{6,2},{3,7},{7,3}}, slice_sizes={{2,4,128}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"},\"scoped_memory_configs\":[]}" ROOT %copy.3 = f32[4,4,128]{2,1,0:T(4,128)} copy(f32[4,4,128]{2,1,0:T(4,128)} %collective-permute) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(new_instruction_sequence.size(), original_instruction_sequence.size() + 1); } TEST_F(LatencyHidingSchedulerTest, InplaceUpdateCPTest2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true %sum (x.336: f32[], y.336: f32[]) -> f32[] { %x.336 = f32[]{:T(128)} parameter(0) %y.336 = f32[]{:T(128)} parameter(1) ROOT %add.5252 = f32[]{:T(128)} add(f32[]{:T(128)} %x.336, f32[]{:T(128)} %y.336) } ENTRY %module () -> f32[33708,1024] { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[2128,8,128]{2,1,0:T(8,128)} broadcast(f32[]{:T(128)} %convert), dimensions={} %all-gather.1 = f32[4256,8,128]{2,1,0:T(8,128)} all-gather(f32[2128,8,128]{2,1,0:T(8,128)} %color_operand.1), replica_groups={{0,6},{2,4},{3,5},{1,7}}, dimensions={0} %custom-call = f32[33712,8,128]{2,1,0:T(8,128)} custom-call(), custom_call_target="AllocateBuffer" %dynamic-update-slice = f32[33712,8,128]{2,1,0:T(8,128)} dynamic-update-slice(f32[33712,8,128]{2,1,0:T(8,128)} %custom-call, f32[4256,8,128]{2,1,0:T(8,128)} %all-gather.1, u32[] %constant.19, u32[] %constant.19, u32[] %constant.19) %tuple.7 = (u32[], u32[], u32[]) tuple(u32[] %constant.19, u32[] %constant.19, u32[] %constant.19) %constant.20 = u32[] constant(4256) %tuple.8 = (u32[], u32[], u32[]) tuple(u32[] %constant.20, u32[] %constant.19, u32[] %constant.19) %collective-permute.3 = f32[33712,8,128]{2,1,0:T(8,128)} collective-permute(f32[33712,8,128]{2,1,0:T(8,128)} %dynamic-update-slice, f32[33712,8,128]{2,1,0:T(8,128)} %dynamic-update-slice, (u32[], u32[], u32[]) %tuple.7, (u32[], u32[], u32[]) %tuple.8), source_target_pairs={{0,2},{2,3},{3,1},{1,0},{6,4},{4,5},{5,7},{7,6}}, slice_sizes={{4256,8,128}} %tuple.9 = (u32[], u32[], u32[]) tuple(u32[] %constant.20, u32[] %constant.19, u32[] %constant.19) %constant.21 = u32[] constant(8512) %tuple.10 = (u32[], u32[], u32[]) tuple(u32[] %constant.21, u32[] %constant.19, u32[] %constant.19) %collective-permute.4 = f32[33712,8,128]{2,1,0:T(8,128)} collective-permute(f32[33712,8,128]{2,1,0:T(8,128)} %collective-permute.3, f32[33712,8,128]{2,1,0:T(8,128)} %collective-permute.3, (u32[], u32[], u32[]) %tuple.9, (u32[], u32[], u32[]) %tuple.10), source_target_pairs={{0,2},{2,3},{3,1},{1,0},{6,4},{4,5},{5,7},{7,6}}, slice_sizes={{4256,8,128}} %tuple.11 = (u32[], u32[], u32[]) tuple(u32[] %constant.21, u32[] %constant.19, u32[] %constant.19) %constant.22 = u32[] constant(12768) %tuple.12 = (u32[], u32[], u32[]) tuple(u32[] %constant.22, u32[] %constant.19, u32[] %constant.19) %collective-permute.5 = f32[33712,8,128]{2,1,0:T(8,128)} collective-permute(f32[33712,8,128]{2,1,0:T(8,128)} %collective-permute.4, f32[33712,8,128]{2,1,0:T(8,128)} %collective-permute.4, (u32[], u32[], u32[]) %tuple.11, (u32[], u32[], u32[]) %tuple.12), source_target_pairs={{0,2},{2,3},{3,1},{1,0},{6,4},{4,5},{5,7},{7,6}}, slice_sizes={{4256,8,128}} ROOT %bitcast.16 = f32[33708,1024]{1,0:T(8,128)} bitcast(f32[33712,8,128]{2,1,0:T(8,128)} %collective-permute.5) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(new_instruction_sequence.size(), original_instruction_sequence.size() + 4); } TEST_F(LatencyHidingSchedulerTest, TwoCollectivePermuteTypesOverlap) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = (f32[16,64,256]{2,1,0}, f32[16,64,256]{2,1,0}, f32[16,128,256]{2,1,0}) parameter(0) gte0 = f32[16,64,256]{2,1,0} get-tuple-element(param), index=0 gte1 = f32[16,64,256]{2,1,0} get-tuple-element(param), index=1 cp0 = f32[16,64,256]{2,1,0} collective-permute(gte0), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp0"} cp1 = f32[16,64,256]{2,1,0} collective-permute(cp0), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp1"} c0 = f32[16,256,256]{2,1,0} convolution(gte0, gte1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb cp2 = f32[16,64,256]{2,1,0} collective-permute(gte1), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp2"} c1 = f32[16,256,256]{2,1,0} convolution(cp0, gte1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb cp3 = f32[16,64,256]{2,1,0} collective-permute(cp2), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp3"} gte2 = f32[16,128,256]{2,1,0} get-tuple-element(param), index=2 const0 = u32[] constant(0) const1 = u32[] constant(8) tuple0 = (u32[], u32[], u32[]) tuple(u32[] const0, u32[] const0, u32[] const0) tuple1 = (u32[], u32[], u32[]) tuple(u32[] const1, u32[] const0, u32[] const0) cp4 = f32[16,128,256]{2,1,0} collective-permute(gte2, gte2, tuple0, tuple1), source_target_pairs={{2,3},{3,2}}, slice_sizes={{8,128,256}}, metadata={op_type="CollectivePermute" op_name="cp4"} cp5 = f32[16,128,256]{2,1,0} collective-permute(cp4, cp4, tuple0, tuple1), source_target_pairs={{2,3},{3,2}}, slice_sizes={{8,128,256}}, metadata={op_type="CollectivePermute" op_name="cp5"} ROOT tuple = (f32[16,256,256]{2,1,0}, f32[16,64,256]{2,1,0}, f32[16,128,256]{2,1,0}) tuple(c1, cp3, cp5) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(new_instruction_sequence.size(), original_instruction_sequence.size() + 6); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp0"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp2"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp4"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp0"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp2"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp4"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp1"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp3"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp5"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp1"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp3"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp5"), GetIndex(new_instruction_sequence, "c1")); } TEST_F(LatencyHidingSchedulerTest, SerialCollectivePermutesTest) { absl::string_view hlo_string = R"( HloModule serial_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { %parameter.1 = bf16[8]{0} parameter(0) %collective-permute.2 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{0,1},{1,2},{2,3}} %add.3 = bf16[8]{0} add(%parameter.1, %parameter.1) %add.4 = bf16[8]{0} add(%add.3, parameter.1) %add.5 = bf16[8]{0} add(%collective-permute.2, %add.4) %collective-permute.6 = bf16[8]{0} collective-permute(bf16[8]{0} add.5), source_target_pairs={{1,0},{0,3},{3,2}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(original_instruction_sequence.size(), 6); EXPECT_EQ(new_instruction_sequence.size(), 8); EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[0]), PositionInVector(new_instruction_sequence, original_instruction_sequence[2])); EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[2]), PositionInVector(new_instruction_sequence, original_instruction_sequence[3])); EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[3]), PositionInVector(new_instruction_sequence, original_instruction_sequence[4])); EXPECT_EQ(original_instruction_sequence[0]->user_count(), 3); EXPECT_EQ(original_instruction_sequence[0]->users()[0]->opcode(), HloOpcode::kCollectivePermuteStart); HloInstruction* collective_permute_start_1 = original_instruction_sequence[0]->users()[0]; EXPECT_EQ( PositionInVector(new_instruction_sequence, original_instruction_sequence[0]) + 1, PositionInVector(new_instruction_sequence, collective_permute_start_1)); EXPECT_EQ(collective_permute_start_1->user_count(), 1); EXPECT_EQ(collective_permute_start_1->users()[0]->opcode(), HloOpcode::kCollectivePermuteDone); HloInstruction* collective_permute_done_1 = collective_permute_start_1->users()[0]; EXPECT_TRUE( (PositionInVector(new_instruction_sequence, collective_permute_done_1) + 1 == PositionInVector(new_instruction_sequence, collective_permute_done_1->users()[0])) || (PositionInVector(new_instruction_sequence, collective_permute_done_1) + 1 == PositionInVector(new_instruction_sequence, collective_permute_done_1->users()[1]))); EXPECT_TRUE( (PositionInVector(new_instruction_sequence, collective_permute_done_1) < PositionInVector(new_instruction_sequence, collective_permute_done_1->users()[0]))); EXPECT_EQ(new_instruction_sequence[7]->opcode(), HloOpcode::kCollectivePermuteDone); EXPECT_GT( PositionInVector(new_instruction_sequence, new_instruction_sequence[7]->operand(0)), PositionInVector(new_instruction_sequence, collective_permute_done_1)); } TEST_F(LatencyHidingSchedulerTest, BackToBackCollectivePerGmutesTest) { absl::string_view hlo_string = R"( HloModule back_to_back_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { %parameter.1 = bf16[8]{0} parameter(0) %collective-permute.2 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{0,1},{1,2},{2,3}} %collective-permute.6 = bf16[8]{0} collective-permute(bf16[8]{0} collective-permute.2), source_target_pairs={{1,0},{0,3},{3,2}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_EQ(original_instruction_sequence.size(), 3); EXPECT_EQ(new_instruction_sequence.size(), 5); EXPECT_EQ(original_instruction_sequence[0]->user_count(), 1); EXPECT_EQ(original_instruction_sequence[0]->users()[0]->opcode(), HloOpcode::kCollectivePermuteStart); HloInstruction* collective_permute_start_1 = original_instruction_sequence[0]->users()[0]; EXPECT_EQ( PositionInVector(new_instruction_sequence, original_instruction_sequence[0]) + 1, PositionInVector(new_instruction_sequence, collective_permute_start_1)); EXPECT_EQ(collective_permute_start_1->user_count(), 1); EXPECT_EQ(collective_permute_start_1->users()[0]->opcode(), HloOpcode::kCollectivePermuteDone); HloInstruction* collective_permute_done_1 = collective_permute_start_1->users()[0]; EXPECT_TRUE( (PositionInVector(new_instruction_sequence, collective_permute_done_1) + 1 == PositionInVector(new_instruction_sequence, collective_permute_done_1->users()[0])) || (PositionInVector(new_instruction_sequence, collective_permute_done_1) + 1 == PositionInVector(new_instruction_sequence, collective_permute_done_1->users()[1]))); EXPECT_TRUE( (PositionInVector(new_instruction_sequence, collective_permute_done_1) < PositionInVector(new_instruction_sequence, collective_permute_done_1->users()[0]))); EXPECT_EQ(new_instruction_sequence[4]->opcode(), HloOpcode::kCollectivePermuteDone); EXPECT_GT( PositionInVector(new_instruction_sequence, new_instruction_sequence[4]->operand(0)), PositionInVector(new_instruction_sequence, collective_permute_done_1)); } TEST_F(LatencyHidingSchedulerTest, ParallelCollectivePermutesTest) { absl::string_view hlo_string = R"( HloModule single_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { %parameter.1 = bf16[8]{0} parameter(0) %collective-permute.2 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{0,1},{1,2},{2,3}} %constant.3 = bf16[] constant(1) %broadcast.4 = bf16[8]{0} broadcast(bf16[] %constant.3), dimensions={} %add.5 = bf16[8]{0} add(bf16[8]{0} %collective-permute.2, bf16[8]{0} %broadcast.4) %collective-permute.6 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{1,0},{0,3},{3,2}} %add.6 = bf16[8]{0} add(bf16[8]{0} %collective-permute.6, bf16[8]{0} %add.5) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[0]), PositionInVector(new_instruction_sequence, original_instruction_sequence[2])); EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[2]), PositionInVector(new_instruction_sequence, original_instruction_sequence[3])); EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[3]), PositionInVector(new_instruction_sequence, original_instruction_sequence[4])); EXPECT_LT(PositionInVector(new_instruction_sequence, original_instruction_sequence[4]), PositionInVector(new_instruction_sequence, original_instruction_sequence[6])); EXPECT_EQ(original_instruction_sequence[0]->user_count(), 2); EXPECT_EQ(original_instruction_sequence[0]->users()[0]->opcode(), HloOpcode::kCollectivePermuteStart); EXPECT_EQ(original_instruction_sequence[0]->users()[1]->opcode(), HloOpcode::kCollectivePermuteStart); int collective_permute_1_pos = PositionInVector( new_instruction_sequence, original_instruction_sequence[0]->users()[0]); int collective_permute_2_pos = PositionInVector( new_instruction_sequence, original_instruction_sequence[0]->users()[1]); EXPECT_TRUE((collective_permute_1_pos == collective_permute_2_pos + 1) || (collective_permute_1_pos + 1 == collective_permute_2_pos)); } TEST_F(LatencyHidingSchedulerTest, MaxConcurrentCollectivePermutesTest) { absl::string_view hlo_string = R"( HloModule single_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { %parameter.1 = bf16[8]{0} parameter(0) %parameter.2 = bf16[8]{0} parameter(1) %parameter.3 = bf16[8]{0} parameter(2) %collective-permute.4 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{0,1},{1,2},{2,3}} %collective-permute.5 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.1), source_target_pairs={{1,0},{0,3},{3,2}} %collective-permute.6 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.2), source_target_pairs={{0,1},{1,2},{2,3}} %collective-permute.7 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.2), source_target_pairs={{1,0},{0,3},{3,2}} %collective-permute.8 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.3), source_target_pairs={{0,1},{1,2},{2,3}} %collective-permute.9 = bf16[8]{0} collective-permute(bf16[8]{0} parameter.3), source_target_pairs={{1,0},{0,3},{3,2}} %add.10 = bf16[8]{0} add(bf16[8]{0} %collective-permute.8, bf16[8]{0} %collective-permute.9) %add.11 = bf16[8]{0} add(bf16[8]{0} %collective-permute.7, bf16[8]{0} %add.10) %add.12 = bf16[8]{0} add(bf16[8]{0} %collective-permute.6, bf16[8]{0} %add.11) %add.13 = bf16[8]{0} add(bf16[8]{0} %collective-permute.5, bf16[8]{0} %add.12) ROOT %add.14 = bf16[8]{0} add(bf16[8]{0} %collective-permute.4, bf16[8]{0} %add.13) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_TRUE( MaxConcurrentCollectivePermutesBelowThreshold(new_instruction_sequence)); } TEST_F(LatencyHidingSchedulerTest, BalanceChainedCollectivePermutesNoOverlap) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { param = bf16[8]{0} parameter(0) collective-permute.1 = bf16[8]{0} collective-permute(param), source_target_pairs={{0,1},{1,2},{2,3}} copy.2 = bf16[8]{0} copy(collective-permute.1) ROOT collective-permute.2 = bf16[8]{0} collective-permute(copy.2), source_target_pairs={{1,0},{0,3},{3,2}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } } TEST_F(LatencyHidingSchedulerTest, ExistingSingleCollectivePermuteAsyncTest) { absl::string_view hlo_string = R"( HloModule single_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb %collective-permute-start.1 = (f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}, u32[], u32[]) collective-permute-start( f32[16,256,256]{2,1,0} p2), source_target_pairs={{0,1},{1,2},{2,3}}, channel_id=1, metadata={op_type="CollectivePermute" op_name="cp0"} %collective-permute-done.1 = f32[16,256,256]{2,1,0} collective-permute-done( (f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}, u32[], u32[]) collective-permute-start.1), metadata={op_type="CollectivePermute" op_name="cp0"} ROOT a = f32[16,256,256]{2,1,0} add(c0, collective-permute-done.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp0"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GE(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp0"), GetIndex(new_instruction_sequence, "c0")); } TEST_F(LatencyHidingSchedulerTest, BalanceChainExtended) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) cp0 = f32[16,256,256]{2,1,0} collective-permute(p2), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp0"} cp1 = f32[16,256,256]{2,1,0} collective-permute(p3), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp1"} c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb t0 = (f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}) tuple(cp0, cp1) gte0 = f32[16,256,256]{2,1,0} get-tuple-element(t0), index=0 gte1 = f32[16,256,256]{2,1,0} get-tuple-element(t0), index=1 cp2 = f32[16,256,256]{2,1,0} collective-permute(gte0), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp2"} a2 = f32[16,256,256]{2,1,0} add(cp2, c0) cp3 = f32[16,256,256]{2,1,0} collective-permute(gte1), source_target_pairs={{0,1},{1,0}}, metadata={op_type="CollectivePermute" op_name="cp3"} ROOT tuple = (f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}) tuple(a2, cp3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp0"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp1"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp0"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp1"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp2"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteStart, new_instruction_sequence, "cp3"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp2"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kCollectivePermuteDone, new_instruction_sequence, "cp3"), GetIndex(new_instruction_sequence, "c1")); } TEST_F(LatencyHidingSchedulerTest, BalanceChainedCollectivePermutesLoopedEinsum) { std::string hlo_string = R"( HloModule module, is_scheduled=true %fused_computation.1793 (param_0.4944: s32[16], param_1.5648: u32[], param_2.3959: u32[], param_3.3338: u32[], param_4.2302: u32[]) -> (s32[1], s32[1], s32[1], s32[1]) { %param_0.4944 = s32[16]{0:T(128)} parameter(0) %param_1.5648 = u32[]{:T(128)} parameter(1) %dynamic-slice.1806 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4944, u32[]{:T(128)} %param_1.5648), dynamic_slice_sizes={1} %param_2.3959 = u32[]{:T(128)} parameter(2) %dynamic-slice.1807 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4944, u32[]{:T(128)} %param_2.3959), dynamic_slice_sizes={1} %param_3.3338 = u32[]{:T(128)} parameter(3) %dynamic-slice.1808 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4944, u32[]{:T(128)} %param_3.3338), dynamic_slice_sizes={1} %param_4.2302 = u32[]{:T(128)} parameter(4) %dynamic-slice.1809 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4944, u32[]{:T(128)} %param_4.2302), dynamic_slice_sizes={1} ROOT %tuple.1384 = (s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %dynamic-slice.1806, s32[1]{0:T(128)} %dynamic-slice.1807, s32[1]{0:T(128)} %dynamic-slice.1808, s32[1]{0:T(128)} %dynamic-slice.1809) } %fused_computation.109 (param_0.225: bf16[8,1024,1,20,256,1,1]) -> bf16[8,1024,1,20,256,1,1,1] { %param_0.225 = bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} parameter(0) ROOT %bitcast.713 = bf16[8,1024,1,20,256,1,1,1]{4,1,7,3,2,0,6,5:T(8,128)(2,1)} bitcast(bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %param_0.225) } %fused_computation.110.clone (param_0.251: s32[], param_1.277: bf16[1,20,256,1,16,4,288,1], param_2.190: s32[]) -> bf16[1,20,256,2,1,4,288,1] { %param_1.277 = bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} parameter(1) %constant.6014 = bf16[]{:T(256)} constant(-inf) %pad.370 = bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} pad(bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %param_1.277, bf16[]{:T(256)} %constant.6014), padding=0_0x0_0x0_0x0_1x0_0x0_0x0_0x0_0 %constant.6004 = s32[]{:T(128)} constant(0) %param_0.251 = s32[]{:T(128)} parameter(0) %dynamic-slice.1503 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} dynamic-slice(bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %pad.370, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %param_0.251, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004), dynamic_slice_sizes={1,20,256,2,1,4,288,1} %pad.369 = bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} pad(bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %param_1.277, bf16[]{:T(256)} %constant.6014), padding=0_0x0_0x0_0x1_0x0_0x0_0x0_0x0_0 %param_2.190 = s32[]{:T(128)} parameter(2) %dynamic-slice.1502 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} dynamic-slice(bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %pad.369, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %param_2.190, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004, s32[]{:T(128)} %constant.6004), dynamic_slice_sizes={1,20,256,2,1,4,288,1} ROOT %maximum.513 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} maximum(bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %dynamic-slice.1503, bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %dynamic-slice.1502) } %fused_computation.108 (param_0.235: bf16[8,1024,1,20,256,1,1], param_1.276: s32[], param_2.187: bf16[1,20,256,1,16,4,288,1], param_3.145: s32[]) -> bf16[2,1,4,288,8,1024,1,1] { %param_1.276 = s32[]{:T(128)} parameter(1) %param_2.187 = bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} parameter(2) %param_3.145 = s32[]{:T(128)} parameter(3) %fusion.132 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} fusion(s32[]{:T(128)} %param_1.276, bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %param_2.187, s32[]{:T(128)} %param_3.145), kind=kLoop, calls=%fused_computation.110.clone %param_0.235 = bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} parameter(0) %fusion.129 = bf16[8,1024,1,20,256,1,1,1]{4,1,7,3,2,0,6,5:T(8,128)(2,1)} fusion(bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %param_0.235), kind=kLoop, calls=%fused_computation.109 ROOT %convolution.170 = bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} convolution(bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %fusion.132, bf16[8,1024,1,20,256,1,1,1]{4,1,7,3,2,0,6,5:T(8,128)(2,1)} %fusion.129), window={size=1x1x8x1x20x1 pad=0_0x0_0x7_7x0_0x0_0x0_0 rhs_reversal=0x0x1x0x0x0}, dim_labels=34f501b2_2o34i015->501b2f34 } %fused_computation.117 (param_0.248: bf16[1,4,288,8,1024,1,1], param_1.273: bf16[2,1,4,288,8,1024,1,1]) -> bf16[1,4,288,8,1024,1,1] { %param_0.248 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} parameter(0) %param_1.273 = bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} parameter(1) %slice.1252 = bf16[1,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} slice(bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %param_1.273), slice={[0:1], [0:1], [0:4], [0:288], [0:8], [0:1024], [0:1], [0:1]} %bitcast.719 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} bitcast(bf16[1,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %slice.1252) ROOT %add.3083 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} add(bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %param_0.248, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %bitcast.719) } %fused_computation.107 (param_0.223: bf16[8,1024,1,20,256,1,1]) -> bf16[8,1024,1,20,256,1,1,1] { %param_0.223 = bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} parameter(0) ROOT %bitcast.711 = bf16[8,1024,1,20,256,1,1,1]{4,1,7,3,2,0,6,5:T(8,128)(2,1)} bitcast(bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %param_0.223) } %fused_computation.111.clone (param_0.250: s32[], param_1.275: bf16[1,20,256,1,16,4,288,1], param_2.189: s32[]) -> bf16[1,20,256,2,1,4,288,1] { %param_1.275 = bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} parameter(1) %constant.6009 = bf16[]{:T(256)} constant(-inf) %pad.374 = bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} pad(bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %param_1.275, bf16[]{:T(256)} %constant.6009), padding=0_0x0_0x0_0x0_1x0_0x0_0x0_0x0_0 %constant.5999 = s32[]{:T(128)} constant(0) %param_0.250 = s32[]{:T(128)} parameter(0) %dynamic-slice.1507 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} dynamic-slice(bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %pad.374, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %param_0.250, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999), dynamic_slice_sizes={1,20,256,2,1,4,288,1} %pad.373 = bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} pad(bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %param_1.275, bf16[]{:T(256)} %constant.6009), padding=0_0x0_0x0_0x1_0x0_0x0_0x0_0x0_0 %param_2.189 = s32[]{:T(128)} parameter(2) %dynamic-slice.1506 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} dynamic-slice(bf16[1,20,256,2,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %pad.373, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %param_2.189, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999, s32[]{:T(128)} %constant.5999), dynamic_slice_sizes={1,20,256,2,1,4,288,1} ROOT %maximum.514 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} maximum(bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %dynamic-slice.1507, bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %dynamic-slice.1506) } %fused_computation.106 (param_0.239: bf16[8,1024,1,20,256,1,1], param_1.274: s32[], param_2.185: bf16[1,20,256,1,16,4,288,1], param_3.144: s32[]) -> bf16[2,1,4,288,8,1024,1,1] { %param_1.274 = s32[]{:T(128)} parameter(1) %param_2.185 = bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} parameter(2) %param_3.144 = s32[]{:T(128)} parameter(3) %fusion.133 = bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} fusion(s32[]{:T(128)} %param_1.274, bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %param_2.185, s32[]{:T(128)} %param_3.144), kind=kLoop, calls=%fused_computation.111.clone %param_0.239 = bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} parameter(0) %fusion.127 = bf16[8,1024,1,20,256,1,1,1]{4,1,7,3,2,0,6,5:T(8,128)(2,1)} fusion(bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %param_0.239), kind=kLoop, calls=%fused_computation.107 ROOT %convolution.169 = bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} convolution(bf16[1,20,256,2,1,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %fusion.133, bf16[8,1024,1,20,256,1,1,1]{4,1,7,3,2,0,6,5:T(8,128)(2,1)} %fusion.127), window={size=1x1x8x1x20x1 pad=0_0x0_0x7_7x0_0x0_0x0_0 rhs_reversal=0x0x1x0x0x0}, dim_labels=34f501b2_2o34i015->501b2f34 } %fused_computation.115 (param_0.244: bf16[1,4,288,8,1024,1,1], param_1.270: bf16[2,1,4,288,8,1024,1,1]) -> bf16[1,4,288,8,1024,1,1] { %param_0.244 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} parameter(0) %param_1.270 = bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} parameter(1) %slice.1249 = bf16[1,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} slice(bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %param_1.270), slice={[0:1], [0:1], [0:4], [0:288], [0:8], [0:1024], [0:1], [0:1]} %bitcast.716 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} bitcast(bf16[1,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %slice.1249) ROOT %add.3082 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} add(bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %param_0.244, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %bitcast.716) } %fused_computation.113 (param_0.241: bf16[1,4,288,8,1024,1,1], param_1.267: bf16[2,4,288,8,1024,1,1]) -> bf16[1,4,288,8,1024,1,1] { %param_0.241 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} parameter(0) %param_1.267 = bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} parameter(1) %slice.1246 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} slice(bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %param_1.267), slice={[1:2], [0:4], [0:288], [0:8], [0:1024], [0:1], [0:1]} ROOT %add.3081 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} add(bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %param_0.241, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %slice.1246) } %fused_computation.112 (param_0.240: bf16[1,4,288,8,1024,1,1], param_1.265: bf16[2,4,288,8,1024,1,1]) -> bf16[1,4,288,8,1024,1,1] { %param_0.240 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} parameter(0) %param_1.265 = bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} parameter(1) %slice.1245 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} slice(bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %param_1.265), slice={[1:2], [0:4], [0:288], [0:8], [0:1024], [0:1], [0:1]} ROOT %add.3080 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} add(bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %param_0.240, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %slice.1245) } )"; hlo_string += R"( ENTRY entry { %param.163 = (bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) parameter(0) %get-tuple-element.20289 = bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)} get-tuple-element((bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) %param.163), index=0 %get-tuple-element.20290 = bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} get-tuple-element((bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) %param.163), index=1 %get-tuple-element.20291 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} get-tuple-element((bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) %param.163), index=2 %collective-permute.8 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} collective-permute(bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %get-tuple-element.20291), channel_id=22, source_target_pairs={{0,15},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6},{8,7},{9,8},{10,9},{11,10},{12,11},{13,12},{14,13},{15,14}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"}}" %iota.36 = s32[16]{0:T(128)} iota(), iota_dimension=0 %constant.3283 = u32[1024]{0:T(1024)} constant({...}) %partition-id.6 = u32[]{:T(128)} partition-id() %dynamic-slice.254 = u32[1]{0:T(128)} dynamic-slice(u32[1024]{0:T(1024)} %constant.3283, u32[]{:T(128)} %partition-id.6), dynamic_slice_sizes={1} %bitcast.55 = u32[]{:T(128)} bitcast(u32[1]{0:T(128)} %dynamic-slice.254) %constant.5148 = u32[]{:T(128)} constant(8) %add.2615 = u32[]{:T(128)} add(u32[]{:T(128)} %bitcast.55, u32[]{:T(128)} %constant.5148) %get-tuple-element.20293 = u32[]{:T(128)} get-tuple-element((bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) %param.163), index=4 %copy.2385 = u32[]{:T(128)} copy(u32[]{:T(128)} %get-tuple-element.20293) %constant.3305 = u32[]{:T(128)} constant(1) %add.1503 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.2385, u32[]{:T(128)} %constant.3305) %subtract.200 = u32[]{:T(128)} subtract(u32[]{:T(128)} %add.2615, u32[]{:T(128)} %add.1503) %constant.4875 = u32[]{:T(128)} constant(15) %and.29 = u32[]{:T(128)} and(u32[]{:T(128)} %subtract.200, u32[]{:T(128)} %constant.4875) %add.1504 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1503, u32[]{:T(128)} %bitcast.55) %constant.3285 = u32[]{:T(128)} constant(9) %add.1506 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1504, u32[]{:T(128)} %constant.3285) %and.28 = u32[]{:T(128)} and(u32[]{:T(128)} %add.1506, u32[]{:T(128)} %constant.4875) %subtract.198 = u32[]{:T(128)} subtract(u32[]{:T(128)} %add.2615, u32[]{:T(128)} %copy.2385) %and.27 = u32[]{:T(128)} and(u32[]{:T(128)} %subtract.198, u32[]{:T(128)} %constant.4875) %add.1498 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.2385, u32[]{:T(128)} %bitcast.55) %add.1500 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1498, u32[]{:T(128)} %constant.3285) %and.26 = u32[]{:T(128)} and(u32[]{:T(128)} %add.1500, u32[]{:T(128)} %constant.4875) %fusion.1987 = (s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) fusion(s32[16]{0:T(128)} %iota.36, u32[]{:T(128)} %and.29, u32[]{:T(128)} %and.28, u32[]{:T(128)} %and.27, u32[]{:T(128)} %and.26), kind=kLoop, calls=%fused_computation.1793 %get-tuple-element.19793 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1987), index=3 %bitcast.56 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.19793) %bitcast.54 = bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} bitcast(bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)} %get-tuple-element.20289) %get-tuple-element.19792 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1987), index=2 %bitcast.57 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.19792) %fusion.128 = bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} fusion(bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %get-tuple-element.20290, s32[]{:T(128)} %bitcast.56, bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %bitcast.54, s32[]{:T(128)} %bitcast.57), kind=kOutput, calls=%fused_computation.108 %fusion.139 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} fusion(bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %collective-permute.8, bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %fusion.128), kind=kLoop, calls=%fused_computation.117 %collective-permute.10 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} collective-permute(bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %fusion.139), channel_id=24, source_target_pairs={{0,15},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6},{8,7},{9,8},{10,9},{11,10},{12,11},{13,12},{14,13},{15,14}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"}}" %get-tuple-element.19791 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1987), index=1 %bitcast.60 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.19791) %get-tuple-element.19790 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1987), index=0 %bitcast.61 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.19790) %fusion.126 = bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} fusion(bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %get-tuple-element.20290, s32[]{:T(128)} %bitcast.60, bf16[1,20,256,1,16,4,288,1]{2,6,3,1,0,7,5,4:T(8,128)(2,1)} %bitcast.54, s32[]{:T(128)} %bitcast.61), kind=kOutput, calls=%fused_computation.106 %fusion.137 = bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} fusion(bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %collective-permute.10, bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %fusion.126), kind=kLoop, calls=%fused_computation.115 %get-tuple-element.20292 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} get-tuple-element((bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) %param.163), index=3 %collective-permute.9 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} collective-permute(bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %get-tuple-element.20292), channel_id=23, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,0}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"1\"}}" %bitcast.63 = bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} bitcast(bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %fusion.128) %fusion.135 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} fusion(bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %collective-permute.9, bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %bitcast.63), kind=kLoop, calls=%fused_computation.113 %collective-permute.11 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} collective-permute(bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %fusion.135), channel_id=25, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,0}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"1\"}}" %bitcast.64 = bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} bitcast(bf16[2,1,4,288,8,1024,1,1]{5,3,0,7,6,4,2,1:T(8,128)(2,1)} %fusion.126) %fusion.134 = bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} fusion(bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %collective-permute.11, bf16[2,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %bitcast.64), kind=kLoop, calls=%fused_computation.112 %constant.5023 = u32[]{:T(128)} constant(2) %add.1925 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.2385, u32[]{:T(128)} %constant.5023) ROOT %tuple.1457 = (bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)}, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)}, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)}, u32[]{:T(128)}) tuple(bf16[1,20,256,16,4,288,1]{2,5,1,4,3,6,0:T(8,128)(2,1)} %get-tuple-element.20289, bf16[8,1024,1,20,256,1,1]{4,1,3,0,6,5,2:T(8,128)(2,1)} %get-tuple-element.20290, bf16[1,4,288,8,1024,1,1]{4,2,3,1,6,5,0:T(8,128)(2,1)} %fusion.137, bf16[1,4,288,8,1024,1,1]{4,2,0,3,1,6,5:T(8,128)(2,1)} %fusion.134, u32[]{:T(128)} %add.1925) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start"), GetIndex(new_instruction_sequence, "fusion.128")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "fusion.128")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done"), GetIndex(new_instruction_sequence, "fusion.128")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.2"), GetIndex(new_instruction_sequence, "fusion.128")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.1"), GetIndex(new_instruction_sequence, "fusion.126")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.3"), GetIndex(new_instruction_sequence, "fusion.126")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.1"), GetIndex(new_instruction_sequence, "fusion.126")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.3"), GetIndex(new_instruction_sequence, "fusion.126")); } TEST_F(LatencyHidingSchedulerTest, MoveCentainConv) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) cp0 = f32[16,256,256]{2,1,0} collective-permute(p2), source_target_pairs={{0,1},{1,0}} cp1 = f32[16,256,256]{2,1,0} collective-permute(p3), source_target_pairs={{0,1},{1,0}} c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb a0 = f32[16,256,256]{2,1,0} add(cp0, c1) cp2 = f32[16,256,256]{2,1,0} collective-permute(a0), source_target_pairs={{0,1},{1,0}} a2 = f32[16,256,256]{2,1,0} add(cp2, c0) a1 = f32[16,256,256]{2,1,0} add(cp1, c1) cp3 = f32[16,256,256]{2,1,0} collective-permute(a1), source_target_pairs={{0,1},{1,0}} ROOT tuple = (f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}) tuple(a2, cp3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.1"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.1"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.3"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.2"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.3"), GetIndex(new_instruction_sequence, "c0")); } TEST_F(LatencyHidingSchedulerTest, BalanceChainedCollectivePermutesLoopedEinsum2) { std::string hlo_string = R"( HloModule module, is_scheduled=true %fused_computation.1851 (param_0.5170: s32[32], param_1.5848: u32[], param_2.4103: u32[], param_3.3513: u32[], param_4.2356: u32[]) -> (s32[1], s32[1], s32[1], s32[1]) { %param_0.5170 = s32[32]{0:T(128)} parameter(0) %param_1.5848 = u32[]{:T(128)} parameter(1) %dynamic-slice.1636 = s32[1]{0:T(128)} dynamic-slice(s32[32]{0:T(128)} %param_0.5170, u32[]{:T(128)} %param_1.5848), dynamic_slice_sizes={1} %param_2.4103 = u32[]{:T(128)} parameter(2) %dynamic-slice.1637 = s32[1]{0:T(128)} dynamic-slice(s32[32]{0:T(128)} %param_0.5170, u32[]{:T(128)} %param_2.4103), dynamic_slice_sizes={1} %param_3.3513 = u32[]{:T(128)} parameter(3) %dynamic-slice.1638 = s32[1]{0:T(128)} dynamic-slice(s32[32]{0:T(128)} %param_0.5170, u32[]{:T(128)} %param_3.3513), dynamic_slice_sizes={1} %param_4.2356 = u32[]{:T(128)} parameter(4) %dynamic-slice.1639 = s32[1]{0:T(128)} dynamic-slice(s32[32]{0:T(128)} %param_0.5170, u32[]{:T(128)} %param_4.2356), dynamic_slice_sizes={1} ROOT %tuple.1297 = (s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %dynamic-slice.1636, s32[1]{0:T(128)} %dynamic-slice.1637, s32[1]{0:T(128)} %dynamic-slice.1638, s32[1]{0:T(128)} %dynamic-slice.1639) } %fused_computation.117 (param_0.249: bf16[16,1024,1,10,256,1]) -> bf16[16,1024,1,10,256,1,1] { %param_0.249 = bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} parameter(0) ROOT %bitcast.672 = bf16[16,1024,1,10,256,1,1]{4,1,6,3,2,0,5:T(8,128)(2,1)} bitcast(bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %param_0.249) } %fused_computation.124.clone (param_0.277: s32[], param_1.330: bf16[1,10,256,1,32,576,1], param_2.233: s32[]) -> bf16[1,10,256,2,1,576,1] { %param_1.330 = bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} parameter(1) %constant.5658 = bf16[]{:T(256)} constant(-inf) %pad.357 = bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} pad(bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %param_1.330, bf16[]{:T(256)} %constant.5658), padding=0_0x0_0x0_0x0_1x0_0x0_0x0_0 %constant.5648 = s32[]{:T(128)} constant(0) %param_0.277 = s32[]{:T(128)} parameter(0) %dynamic-slice.1327 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} dynamic-slice(bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %pad.357, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %param_0.277, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648), dynamic_slice_sizes={1,10,256,2,1,576,1} %pad.363 = bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} pad(bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %param_1.330, bf16[]{:T(256)} %constant.5658), padding=0_0x0_0x0_0x1_0x0_0x0_0x0_0 %param_2.233 = s32[]{:T(128)} parameter(2) %dynamic-slice.1333 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} dynamic-slice(bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %pad.363, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %param_2.233, s32[]{:T(128)} %constant.5648, s32[]{:T(128)} %constant.5648), dynamic_slice_sizes={1,10,256,2,1,576,1} ROOT %maximum.510 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} maximum(bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %dynamic-slice.1327, bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %dynamic-slice.1333) } %fused_computation.116 (param_0.264: bf16[16,1024,1,10,256,1], param_1.329: s32[], param_2.230: bf16[1,10,256,1,32,576,1], param_3.197: s32[]) -> bf16[2,1,576,16,1024,1,1] { %param_1.329 = s32[]{:T(128)} parameter(1) %param_2.230 = bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} parameter(2) %param_3.197 = s32[]{:T(128)} parameter(3) %fusion.155 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} fusion(s32[]{:T(128)} %param_1.329, bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %param_2.230, s32[]{:T(128)} %param_3.197), kind=kLoop, calls=%fused_computation.124.clone %param_0.264 = bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} parameter(0) %fusion.147 = bf16[16,1024,1,10,256,1,1]{4,1,6,3,2,0,5:T(8,128)(2,1)} fusion(bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %param_0.264), kind=kLoop, calls=%fused_computation.117 ROOT %convolution.168 = bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} convolution(bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %fusion.155, bf16[16,1024,1,10,256,1,1]{4,1,6,3,2,0,5:T(8,128)(2,1)} %fusion.147), window={size=1x16x1x10x1 pad=0_0x15_15x0_0x0_0x0_0 rhs_reversal=0x1x0x0x0}, dim_labels=23f40b1_1o23i04->40b1f23 } %fused_computation.123 (param_0.258: bf16[1,576,16,1024,1,1], param_1.306: bf16[2,1,576,16,1024,1,1]) -> bf16[1,576,16,1024,1,1] { %param_0.258 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} parameter(0) %param_1.306 = bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} parameter(1) %slice.1132 = bf16[1,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} slice(bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %param_1.306), slice={[0:1], [0:1], [0:576], [0:16], [0:1024], [0:1], [0:1]} %bitcast.678 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} bitcast(bf16[1,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %slice.1132) ROOT %add.3125 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} add(bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %param_0.258, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %bitcast.678) } %fused_computation.115 (param_0.247: bf16[16,1024,1,10,256,1]) -> bf16[16,1024,1,10,256,1,1] { %param_0.247 = bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} parameter(0) ROOT %bitcast.670 = bf16[16,1024,1,10,256,1,1]{4,1,6,3,2,0,5:T(8,128)(2,1)} bitcast(bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %param_0.247) } %fused_computation.125.clone (param_0.276: s32[], param_1.328: bf16[1,10,256,1,32,576,1], param_2.232: s32[]) -> bf16[1,10,256,2,1,576,1] { %param_1.328 = bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} parameter(1) %constant.5653 = bf16[]{:T(256)} constant(-inf) %pad.360 = bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} pad(bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %param_1.328, bf16[]{:T(256)} %constant.5653), padding=0_0x0_0x0_0x0_1x0_0x0_0x0_0 %constant.5643 = s32[]{:T(128)} constant(0) %param_0.276 = s32[]{:T(128)} parameter(0) %dynamic-slice.1330 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} dynamic-slice(bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %pad.360, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %param_0.276, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643), dynamic_slice_sizes={1,10,256,2,1,576,1} %pad.366 = bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} pad(bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %param_1.328, bf16[]{:T(256)} %constant.5653), padding=0_0x0_0x0_0x1_0x0_0x0_0x0_0 %param_2.232 = s32[]{:T(128)} parameter(2) %dynamic-slice.1336 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} dynamic-slice(bf16[1,10,256,2,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %pad.366, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %param_2.232, s32[]{:T(128)} %constant.5643, s32[]{:T(128)} %constant.5643), dynamic_slice_sizes={1,10,256,2,1,576,1} ROOT %maximum.512 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} maximum(bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %dynamic-slice.1330, bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %dynamic-slice.1336) } %fused_computation.114 (param_0.269: bf16[16,1024,1,10,256,1], param_1.327: s32[], param_2.228: bf16[1,10,256,1,32,576,1], param_3.196: s32[]) -> bf16[2,1,576,16,1024,1,1] { %param_1.327 = s32[]{:T(128)} parameter(1) %param_2.228 = bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} parameter(2) %param_3.196 = s32[]{:T(128)} parameter(3) %fusion.157 = bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} fusion(s32[]{:T(128)} %param_1.327, bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %param_2.228, s32[]{:T(128)} %param_3.196), kind=kLoop, calls=%fused_computation.125.clone %param_0.269 = bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} parameter(0) %fusion.145 = bf16[16,1024,1,10,256,1,1]{4,1,6,3,2,0,5:T(8,128)(2,1)} fusion(bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %param_0.269), kind=kLoop, calls=%fused_computation.115 ROOT %convolution.167 = bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} convolution(bf16[1,10,256,2,1,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %fusion.157, bf16[16,1024,1,10,256,1,1]{4,1,6,3,2,0,5:T(8,128)(2,1)} %fusion.145), window={size=1x16x1x10x1 pad=0_0x15_15x0_0x0_0x0_0 rhs_reversal=0x1x0x0x0}, dim_labels=23f40b1_1o23i04->40b1f23 } %fused_computation.121 (param_0.254: bf16[1,576,16,1024,1,1], param_1.303: bf16[2,1,576,16,1024,1,1]) -> bf16[1,576,16,1024,1,1] { %param_0.254 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} parameter(0) %param_1.303 = bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} parameter(1) %slice.1129 = bf16[1,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} slice(bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %param_1.303), slice={[0:1], [0:1], [0:576], [0:16], [0:1024], [0:1], [0:1]} %bitcast.675 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} bitcast(bf16[1,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %slice.1129) ROOT %add.3124 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} add(bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %param_0.254, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %bitcast.675) } %fused_computation.119 (param_0.251: bf16[1,576,16,1024,1,1], param_1.300: bf16[2,576,16,1024,1,1]) -> bf16[1,576,16,1024,1,1] { %param_0.251 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} parameter(0) %param_1.300 = bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} parameter(1) %slice.1126 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} slice(bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %param_1.300), slice={[1:2], [0:576], [0:16], [0:1024], [0:1], [0:1]} ROOT %add.3123 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} add(bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %param_0.251, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %slice.1126) } %fused_computation.118 (param_0.250: bf16[1,576,16,1024,1,1], param_1.298: bf16[2,576,16,1024,1,1]) -> bf16[1,576,16,1024,1,1] { %param_0.250 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} parameter(0) %param_1.298 = bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} parameter(1) %slice.1125 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} slice(bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %param_1.298), slice={[1:2], [0:576], [0:16], [0:1024], [0:1], [0:1]} ROOT %add.3122 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} add(bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %param_0.250, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %slice.1125) } )"; hlo_string += R"( ENTRY entry { %constant.4782 = u32[]{:T(128)} constant(16) %constant.4661 = u32[]{:T(128)} constant(2) %constant.4517 = u32[]{:T(128)} constant(31) %constant.3078 = u32[]{:T(128)} constant(1) %constant.3060 = u32[]{:T(128)} constant(17) %partition-id.6 = u32[]{:T(128)} partition-id() %param.139 = (bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) parameter(0) %get-tuple-element.16007 = u32[]{:T(128)} get-tuple-element((bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.139), index=4 %copy.1385 = u32[]{:T(128)} copy(u32[]{:T(128)} %get-tuple-element.16007) %add.1492 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.1385, u32[]{:T(128)} %constant.3078) %add.1938 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.1385, u32[]{:T(128)} %constant.4661) %get-tuple-element.16004 = bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} get-tuple-element((bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.139), index=1 %get-tuple-element.16003 = bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)} get-tuple-element((bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.139), index=0 %bitcast.58 = bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} bitcast(bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)} %get-tuple-element.16003) %get-tuple-element.16005 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} get-tuple-element((bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.139), index=2 %get-tuple-element.16006 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} get-tuple-element((bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.139), index=3 %constant.3058 = u32[1024]{0:T(1024)} constant({...}) %dynamic-slice.218 = u32[1]{0:T(128)} dynamic-slice(u32[1024]{0:T(1024)} %constant.3058, u32[]{:T(128)} %partition-id.6), dynamic_slice_sizes={1} %bitcast.59 = u32[]{:T(128)} bitcast(u32[1]{0:T(128)} %dynamic-slice.218) %add.1493 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1492, u32[]{:T(128)} %bitcast.59) %add.1495 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1493, u32[]{:T(128)} %constant.3060) %and.28 = u32[]{:T(128)} and(u32[]{:T(128)} %add.1495, u32[]{:T(128)} %constant.4517) %add.2636 = u32[]{:T(128)} add(u32[]{:T(128)} %bitcast.59, u32[]{:T(128)} %constant.4782) %subtract.200 = u32[]{:T(128)} subtract(u32[]{:T(128)} %add.2636, u32[]{:T(128)} %add.1492) %and.29 = u32[]{:T(128)} and(u32[]{:T(128)} %subtract.200, u32[]{:T(128)} %constant.4517) %subtract.198 = u32[]{:T(128)} subtract(u32[]{:T(128)} %add.2636, u32[]{:T(128)} %copy.1385) %and.27 = u32[]{:T(128)} and(u32[]{:T(128)} %subtract.198, u32[]{:T(128)} %constant.4517) %add.1487 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.1385, u32[]{:T(128)} %bitcast.59) %add.1489 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1487, u32[]{:T(128)} %constant.3060) %and.26 = u32[]{:T(128)} and(u32[]{:T(128)} %add.1489, u32[]{:T(128)} %constant.4517) %iota.60 = s32[32]{0:T(128)} iota(), iota_dimension=0 %fusion.2068 = (s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) fusion(s32[32]{0:T(128)} %iota.60, u32[]{:T(128)} %and.29, u32[]{:T(128)} %and.28, u32[]{:T(128)} %and.27, u32[]{:T(128)} %and.26), kind=kLoop, calls=%fused_computation.1851 %get-tuple-element.15499 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.2068), index=3 %bitcast.60 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.15499) %get-tuple-element.15498 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.2068), index=2 %bitcast.61 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.15498) %get-tuple-element.15497 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.2068), index=1 %bitcast.64 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.15497) %get-tuple-element.15496 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.2068), index=0 %bitcast.65 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.15496) %collective-permute.9 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} collective-permute(bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %get-tuple-element.16006), channel_id=23, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,16},{16,17},{17,18},{18,19},{19,20},{20,21},{21,22},{22,23},{23,24},{24,25},{25,26},{26,27},{27,28},{28,29},{29,30},{30,31},{31,0}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"1\"}}" %collective-permute.8 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} collective-permute(bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %get-tuple-element.16005), channel_id=22, source_target_pairs={{0,31},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6},{8,7},{9,8},{10,9},{11,10},{12,11},{13,12},{14,13},{15,14},{16,15},{17,16},{18,17},{19,18},{20,19},{21,20},{22,21},{23,22},{24,23},{25,24},{26,25},{27,26},{28,27},{29,28},{30,29},{31,30}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"}}" %fusion.144 = bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} fusion(bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %get-tuple-element.16004, s32[]{:T(128)} %bitcast.64, bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %bitcast.58, s32[]{:T(128)} %bitcast.65), kind=kOutput, calls=%fused_computation.114 %bitcast.68 = bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} bitcast(bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %fusion.144) %fusion.146 = bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} fusion(bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %get-tuple-element.16004, s32[]{:T(128)} %bitcast.60, bf16[1,10,256,1,32,576,1]{2,5,3,1,0,6,4:T(8,128)(2,1)} %bitcast.58, s32[]{:T(128)} %bitcast.61), kind=kOutput, calls=%fused_computation.116 %fusion.153 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} fusion(bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %collective-permute.8, bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %fusion.146), kind=kLoop, calls=%fused_computation.123 %collective-permute.10 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} collective-permute(bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %fusion.153), channel_id=24, source_target_pairs={{0,31},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6},{8,7},{9,8},{10,9},{11,10},{12,11},{13,12},{14,13},{15,14},{16,15},{17,16},{18,17},{19,18},{20,19},{21,20},{22,21},{23,22},{24,23},{25,24},{26,25},{27,26},{28,27},{29,28},{30,29},{31,30}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"}}" %fusion.151 = bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} fusion(bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %collective-permute.10, bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %fusion.144), kind=kLoop, calls=%fused_computation.121 %bitcast.67 = bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} bitcast(bf16[2,1,576,16,1024,1,1]{4,2,0,6,5,3,1:T(8,128)(2,1)} %fusion.146) %fusion.149 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} fusion(bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %collective-permute.9, bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %bitcast.67), kind=kLoop, calls=%fused_computation.119 %collective-permute.11 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} collective-permute(bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %fusion.149), channel_id=25, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,16},{16,17},{17,18},{18,19},{19,20},{20,21},{21,22},{22,23},{23,24},{24,25},{25,26},{26,27},{27,28},{28,29},{29,30},{30,31},{31,0}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"1\"}}" %fusion.148 = bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} fusion(bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %collective-permute.11, bf16[2,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %bitcast.68), kind=kLoop, calls=%fused_computation.118 ROOT %tuple.1373 = (bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)}, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)}, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) tuple(bf16[1,10,256,32,576,1]{2,4,1,3,5,0:T(8,128)(2,1)} %get-tuple-element.16003, bf16[16,1024,1,10,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %get-tuple-element.16004, bf16[1,576,16,1024,1,1]{3,1,2,5,4,0:T(8,128)(2,1)} %fusion.151, bf16[1,576,16,1024,1,1]{3,1,0,2,5,4:T(8,128)(2,1)} %fusion.148, u32[]{:T(128)} %add.1938) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start"), GetIndex(new_instruction_sequence, "fusion.146")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.1"), GetIndex(new_instruction_sequence, "fusion.146")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done"), GetIndex(new_instruction_sequence, "fusion.146")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.1"), GetIndex(new_instruction_sequence, "fusion.146")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "fusion.144")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.3"), GetIndex(new_instruction_sequence, "fusion.144")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.2"), GetIndex(new_instruction_sequence, "fusion.144")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.3"), GetIndex(new_instruction_sequence, "fusion.144")); } TEST_F(LatencyHidingSchedulerTest, BalanceChainedCollectivePermutesLoopedEinsum3) { std::string hlo_string = R"( HloModule module, is_scheduled=true %fused_computation.1799 (param_0.4926: s32[16], param_1.5709: u32[], param_2.3976: u32[], param_3.3386: u32[], param_4.2299: u32[]) -> (s32[1], s32[1], s32[1], s32[1]) { %param_0.4926 = s32[16]{0:T(128)} parameter(0) %param_1.5709 = u32[]{:T(128)} parameter(1) %dynamic-slice.1611 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4926, u32[]{:T(128)} %param_1.5709), dynamic_slice_sizes={1} %param_2.3976 = u32[]{:T(128)} parameter(2) %dynamic-slice.1612 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4926, u32[]{:T(128)} %param_2.3976), dynamic_slice_sizes={1} %param_3.3386 = u32[]{:T(128)} parameter(3) %dynamic-slice.1613 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4926, u32[]{:T(128)} %param_3.3386), dynamic_slice_sizes={1} %param_4.2299 = u32[]{:T(128)} parameter(4) %dynamic-slice.1614 = s32[1]{0:T(128)} dynamic-slice(s32[16]{0:T(128)} %param_0.4926, u32[]{:T(128)} %param_4.2299), dynamic_slice_sizes={1} ROOT %tuple.1346 = (s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) tuple(s32[1]{0:T(128)} %dynamic-slice.1611, s32[1]{0:T(128)} %dynamic-slice.1612, s32[1]{0:T(128)} %dynamic-slice.1613, s32[1]{0:T(128)} %dynamic-slice.1614) } %fused_computation.243 (param_0.505: bf16[8,2048,2,576,1,1], param_1.586: bf16[8,2048,2,576,1,1]) -> bf16[8,2048,4,576,1,1] { %param_1.586 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} parameter(1) %constant.5838 = bf16[]{:T(256)} constant(-inf) %pad.368 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} pad(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %param_1.586, bf16[]{:T(256)} %constant.5838), padding=0_0x0_0x0_2x0_0x0_0x0_0 %param_0.505 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} parameter(0) %pad.367 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} pad(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %param_0.505, bf16[]{:T(256)} %constant.5838), padding=0_0x0_0x2_0x0_0x0_0x0_0 ROOT %maximum.528 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} maximum(bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %pad.368, bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %pad.367) } %fused_computation.244 (param_0.507: bf16[8,2048,2,576,1,1], param_1.585: bf16[8,2048,2,576,1,1]) -> bf16[8,2048,4,576,1,1] { %param_1.585 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} parameter(1) %constant.5832 = bf16[]{:T(256)} constant(-inf) %pad.370 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} pad(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %param_1.585, bf16[]{:T(256)} %constant.5832), padding=0_0x0_0x0_2x0_0x0_0x0_0 %param_0.507 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} parameter(0) %pad.369 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} pad(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %param_0.507, bf16[]{:T(256)} %constant.5832), padding=0_0x0_0x2_0x0_0x0_0x0_0 ROOT %maximum.529 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} maximum(bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %pad.370, bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %pad.369) } %fused_computation.247 (param_0.511: bf16[8,2048,2,2,576,1,1]) -> bf16[8,2048,2,2,576,1,1] { %param_0.511 = bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} parameter(0) ROOT %copy.2292 = bf16[8,2048,2,2,576,1,1]{1,4,2,3,6,5,0:T(8,128)(2,1)} copy(bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} %param_0.511) } %fused_computation.248.clone (param_0.526: s32[], param_1.589: bf16[1,32,576,1,36,256,1], param_2.400: s32[]) -> bf16[2,2,576,1,36,256,1] { %param_1.589 = bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} parameter(1) %constant.5843 = bf16[]{:T(256)} constant(-inf) %pad.378 = bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} pad(bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %param_1.589, bf16[]{:T(256)} %constant.5843), padding=0_1x0_0x0_0x0_0x0_0x0_0x0_0 %constant.5853 = s32[]{:T(128)} constant(0) %param_0.526 = s32[]{:T(128)} parameter(0) %dynamic-slice.1382 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} dynamic-slice(bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %pad.378, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %param_0.526, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853), dynamic_slice_sizes={2,2,576,1,36,256,1} %pad.377 = bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} pad(bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %param_1.589, bf16[]{:T(256)} %constant.5843), padding=1_0x0_0x0_0x0_0x0_0x0_0x0_0 %param_2.400 = s32[]{:T(128)} parameter(2) %dynamic-slice.1381 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} dynamic-slice(bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %pad.377, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %param_2.400, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853, s32[]{:T(128)} %constant.5853), dynamic_slice_sizes={2,2,576,1,36,256,1} ROOT %maximum.532 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} maximum(bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %dynamic-slice.1382, bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %dynamic-slice.1381) } %fused_computation.246 (param_0.521: bf16[8,2048,2,2,576,1,1], param_1.588: s32[], param_2.399: bf16[1,32,576,1,36,256,1], param_3.247: s32[]) -> bf16[8,2048,1,36,256,1,1] { %param_0.521 = bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} parameter(0) %fusion.268 = bf16[8,2048,2,2,576,1,1]{1,4,2,3,6,5,0:T(8,128)(2,1)} fusion(bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} %param_0.521), kind=kLoop, calls=%fused_computation.247 %param_1.588 = s32[]{:T(128)} parameter(1) %param_2.399 = bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} parameter(2) %param_3.247 = s32[]{:T(128)} parameter(3) %fusion.271 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} fusion(s32[]{:T(128)} %param_1.588, bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %param_2.399, s32[]{:T(128)} %param_3.247), kind=kLoop, calls=%fused_computation.248.clone ROOT %convolution.172 = bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} convolution(bf16[8,2048,2,2,576,1,1]{1,4,2,3,6,5,0:T(8,128)(2,1)} %fusion.268, bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %fusion.271), window={size=1x1x36x2x2 pad=0_0x0_0x35_35x0_0x0_0 rhs_reversal=0x1x1x0x0}, dim_labels=0b43f12_43i12o0->0b12f34 } %fused_computation.245 (param_0.508: bf16[8,2048,2,2,576,1,1]) -> bf16[8,2048,2,2,576,1,1] { %param_0.508 = bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} parameter(0) ROOT %copy.2290 = bf16[8,2048,2,2,576,1,1]{1,4,2,3,6,5,0:T(8,128)(2,1)} copy(bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} %param_0.508) } %fused_computation.249.clone (param_0.525: s32[], param_1.587: bf16[1,32,576,1,36,256,1], param_2.398: s32[]) -> bf16[2,2,576,1,36,256,1] { %param_1.587 = bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} parameter(1) %constant.5837 = bf16[]{:T(256)} constant(-inf) %pad.382 = bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} pad(bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %param_1.587, bf16[]{:T(256)} %constant.5837), padding=0_1x0_0x0_0x0_0x0_0x0_0x0_0 %constant.5848 = s32[]{:T(128)} constant(0) %param_0.525 = s32[]{:T(128)} parameter(0) %dynamic-slice.1386 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} dynamic-slice(bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %pad.382, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %param_0.525, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848), dynamic_slice_sizes={2,2,576,1,36,256,1} %pad.381 = bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} pad(bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %param_1.587, bf16[]{:T(256)} %constant.5837), padding=1_0x0_0x0_0x0_0x0_0x0_0x0_0 %param_2.398 = s32[]{:T(128)} parameter(2) %dynamic-slice.1385 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} dynamic-slice(bf16[2,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %pad.381, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %param_2.398, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848, s32[]{:T(128)} %constant.5848), dynamic_slice_sizes={2,2,576,1,36,256,1} ROOT %maximum.533 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} maximum(bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %dynamic-slice.1386, bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %dynamic-slice.1385) } %fused_computation.241 (param_0.503: bf16[8,2048,1,36,256,1], param_1.561: bf16[8,2048,1,36,256,1,1], param_2.397: bf16[8,2048,2,2,576,1,1], param_3.246: s32[], param_4.127: bf16[1,32,576,1,36,256,1], param_5.55: s32[]) -> bf16[8,2048,1,36,256,1] { %param_0.503 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} parameter(0) %param_1.561 = bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} parameter(1) %bitcast.599 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} bitcast(bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} %param_1.561) %add.3146 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} add(bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %param_0.503, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %bitcast.599) %param_2.397 = bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} parameter(2) %fusion.266 = bf16[8,2048,2,2,576,1,1]{1,4,2,3,6,5,0:T(8,128)(2,1)} fusion(bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} %param_2.397), kind=kLoop, calls=%fused_computation.245 %param_3.246 = s32[]{:T(128)} parameter(3) %param_4.127 = bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} parameter(4) %param_5.55 = s32[]{:T(128)} parameter(5) %fusion.272 = bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} fusion(s32[]{:T(128)} %param_3.246, bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %param_4.127, s32[]{:T(128)} %param_5.55), kind=kLoop, calls=%fused_computation.249.clone %convolution.171 = bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} convolution(bf16[8,2048,2,2,576,1,1]{1,4,2,3,6,5,0:T(8,128)(2,1)} %fusion.266, bf16[2,2,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %fusion.272), window={size=1x1x36x2x2 pad=0_0x0_0x35_35x0_0x0_0 rhs_reversal=0x1x1x0x0}, dim_labels=0b43f12_43i12o0->0b12f34 %bitcast.596 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} bitcast(bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} %convolution.171) ROOT %add.3143 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} add(bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %add.3146, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %bitcast.596) } )"; hlo_string += R"( ENTRY entry { %constant.4735 = u32[]{:T(128)} constant(2) %constant.4598 = u32[]{:T(128)} constant(15) %constant.3341 = u32[]{:T(128)} constant(1) %partition-id.16 = u32[]{:T(128)} partition-id() %param.149 = (bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) parameter(0) %get-tuple-element.21127 = u32[]{:T(128)} get-tuple-element((bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.149), index=4 %copy.2357 = u32[]{:T(128)} copy(u32[]{:T(128)} %get-tuple-element.21127) %add.1530 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.2357, u32[]{:T(128)} %constant.3341) %add.1943 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.2357, u32[]{:T(128)} %constant.4735) %get-tuple-element.21124 = bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)} get-tuple-element((bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.149), index=1 %bitcast.98 = bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} bitcast(bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)} %get-tuple-element.21124) %get-tuple-element.21123 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} get-tuple-element((bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.149), index=0 %get-tuple-element.21125 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} get-tuple-element((bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.149), index=2 %get-tuple-element.21126 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} get-tuple-element((bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) %param.149), index=3 %constant.3344 = s32[16]{0:T(128)} constant({...}) %constant.3339 = u32[256]{0:T(256)} constant({...}) %dynamic-slice.312 = u32[1]{0:T(128)} dynamic-slice(u32[256]{0:T(256)} %constant.3339, u32[]{:T(128)} %partition-id.16), dynamic_slice_sizes={1} %bitcast.99 = u32[]{:T(128)} bitcast(u32[1]{0:T(128)} %dynamic-slice.312) %add.1531 = u32[]{:T(128)} add(u32[]{:T(128)} %add.1530, u32[]{:T(128)} %bitcast.99) %and.40 = u32[]{:T(128)} and(u32[]{:T(128)} %add.1531, u32[]{:T(128)} %constant.4598) %add.2637 = u32[]{:T(128)} add(u32[]{:T(128)} %bitcast.99, u32[]{:T(128)} %constant.4598) %subtract.216 = u32[]{:T(128)} subtract(u32[]{:T(128)} %add.2637, u32[]{:T(128)} %add.1530) %and.41 = u32[]{:T(128)} and(u32[]{:T(128)} %subtract.216, u32[]{:T(128)} %constant.4598) %subtract.214 = u32[]{:T(128)} subtract(u32[]{:T(128)} %add.2637, u32[]{:T(128)} %copy.2357) %and.39 = u32[]{:T(128)} and(u32[]{:T(128)} %subtract.214, u32[]{:T(128)} %constant.4598) %add.1527 = u32[]{:T(128)} add(u32[]{:T(128)} %copy.2357, u32[]{:T(128)} %bitcast.99) %and.38 = u32[]{:T(128)} and(u32[]{:T(128)} %add.1527, u32[]{:T(128)} %constant.4598) %fusion.1974 = (s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) fusion(s32[16]{0:T(128)} %constant.3344, u32[]{:T(128)} %and.41, u32[]{:T(128)} %and.40, u32[]{:T(128)} %and.39, u32[]{:T(128)} %and.38), kind=kLoop, calls=%fused_computation.1799 %get-tuple-element.20616 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1974), index=3 %bitcast.100 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.20616) %get-tuple-element.20615 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1974), index=2 %bitcast.101 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.20615) %get-tuple-element.20614 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1974), index=1 %bitcast.104 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.20614) %get-tuple-element.20613 = s32[1]{0:T(128)} get-tuple-element((s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}, s32[1]{0:T(128)}) %fusion.1974), index=0 %bitcast.105 = s32[]{:T(128)} bitcast(s32[1]{0:T(128)} %get-tuple-element.20613) %copy.2356 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} copy(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %get-tuple-element.21126) %collective-permute.23 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} collective-permute(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %copy.2356), channel_id=51, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,0}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"1\"},\"scoped_memory_configs\":[]}" %copy.2354 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} copy(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %get-tuple-element.21123) %collective-permute.22 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} collective-permute(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %copy.2354), channel_id=50, source_target_pairs={{0,15},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6},{8,7},{9,8},{10,9},{11,10},{12,11},{13,12},{14,13},{15,14}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"},\"scoped_memory_configs\":[]}" %fusion.264 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} fusion(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %copy.2356, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %copy.2354), kind=kLoop, calls=%fused_computation.243 %bitcast.97 = bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} bitcast(bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %fusion.264) %collective-permute.24 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} collective-permute(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %collective-permute.22), channel_id=52, source_target_pairs={{0,15},{1,0},{2,1},{3,2},{4,3},{5,4},{6,5},{7,6},{8,7},{9,8},{10,9},{11,10},{12,11},{13,12},{14,13},{15,14}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"0\"},\"scoped_memory_configs\":[]}" %fusion.265 = bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} fusion(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %collective-permute.23, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %collective-permute.22), kind=kLoop, calls=%fused_computation.244 %collective-permute.25 = bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} collective-permute(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %collective-permute.23), channel_id=53, source_target_pairs={{0,1},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,10},{10,11},{11,12},{12,13},{13,14},{14,15},{15,0}}, backend_config="{\"flag_configs\":[],\"barrier_config\":{\"barrier_type\":\"CUSTOM\",\"id\":\"1\"},\"scoped_memory_configs\":[]}" %bitcast.103 = bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} bitcast(bf16[8,2048,4,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %fusion.265) %fusion.267 = bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} fusion(bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} %bitcast.97, s32[]{:T(128)} %bitcast.100, bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %bitcast.98, s32[]{:T(128)} %bitcast.101), kind=kOutput, calls=%fused_computation.246 %fusion.262 = bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} fusion(bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %get-tuple-element.21125, bf16[8,2048,1,36,256,1,1]{4,1,6,5,3,2,0:T(8,128)(2,1)} %fusion.267, bf16[8,2048,2,2,576,1,1]{1,4,6,5,3,2,0:T(8,128)(2,1)} %bitcast.103, s32[]{:T(128)} %bitcast.104, bf16[1,32,576,1,36,256,1]{5,2,0,1,4,3,6:T(8,128)(2,1)} %bitcast.98, s32[]{:T(128)} %bitcast.105), kind=kOutput, calls=%fused_computation.241 ROOT %tuple.1419 = (bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)}, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)}, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)}, u32[]{:T(128)}) tuple(bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %collective-permute.24, bf16[32,576,1,36,256,1]{4,1,0,3,5,2:T(8,128)(2,1)} %get-tuple-element.21124, bf16[8,2048,1,36,256,1]{4,1,3,0,5,2:T(8,128)(2,1)} %fusion.262, bf16[8,2048,2,576,1,1]{1,3,2,0,5,4:T(8,128)(2,1)} %collective-permute.25, u32[]{:T(128)} %add.1943) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start"), GetIndex(new_instruction_sequence, "fusion.267")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.1"), GetIndex(new_instruction_sequence, "fusion.267")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done"), GetIndex(new_instruction_sequence, "fusion.267")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.1"), GetIndex(new_instruction_sequence, "fusion.267")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "fusion.262")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.3"), GetIndex(new_instruction_sequence, "fusion.262")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.2"), GetIndex(new_instruction_sequence, "fusion.262")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.3"), GetIndex(new_instruction_sequence, "fusion.262")); } TEST_F(LatencyHidingSchedulerTest, MoveCentainConv2) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,64]{2,1,0} parameter(3) cp0 = f32[16,64,256]{2,1,0} collective-permute(p0), source_target_pairs={{0,1},{1,0}} cp1 = f32[16,64,256]{2,1,0} collective-permute(p1), source_target_pairs={{0,1},{1,0}} cp2 = f32[16,64,256]{2,1,0} collective-permute(cp0), source_target_pairs={{0,1},{1,0}} cp3 = f32[16,64,256]{2,1,0} collective-permute(cp1), source_target_pairs={{0,1},{1,0}} a0 = f32[16,64,256]{2,1,0} add(cp0, cp1) c0 = f32[16,64,256]{2,1,0} convolution(p2, p3), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(a0, c0), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT tuple = (f32[16,64,256]{2,1,0}, f32[16,64,256]{2,1,0}, f32[16,256,256]{2,1,0}) tuple(cp2, cp3, c1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.1"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done"), GetIndex(new_instruction_sequence, "c0")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.1"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.3"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.2"), GetIndex(new_instruction_sequence, "c1")); EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-done.3"), GetIndex(new_instruction_sequence, "c1")); } TEST_F(LatencyHidingSchedulerTest, WhileOverlapLimit) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) collective-permute.1 = bf16[8]{0} collective-permute(gte0), source_target_pairs={{0,1},{1,2},{2,3}} add0 = bf16[8]{0} add(collective-permute.1, bitcast) negate = bf16[8]{0} negate(add0) collective-permute.2 = bf16[8]{0} collective-permute(collective-permute.1), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte1) } ENTRY entry { p0 = bf16[8]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[8]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body collective-permute.3 = bf16[8]{0} collective-permute(p1), source_target_pairs={{0,1},{1,2},{2,3}} gte0 = bf16[8]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 add = bf16[8]{0} add(gte0, gte1) ROOT add2 = bf16[8]{0} add(add, collective-permute.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 2; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "while")); } TEST_F(LatencyHidingSchedulerTest, WhileNestedOverlapLimit) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) collective-permute.1 = bf16[8]{0} collective-permute(gte0), source_target_pairs={{0,1},{1,2},{2,3}} add0 = bf16[8]{0} add(collective-permute.1, bitcast) negate = bf16[8]{0} negate(add0) ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.1, negate, gte1) } while_cond2 { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body2 { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) while.1 = (bf16[8]{0}, bf16[8]{0}, pred[]) while(param), condition=while_cond, body=while_body gte0 = bf16[8]{0} get-tuple-element(while.1), index=0 gte1 = pred[] get-tuple-element(while.1), index=2 bitcast = bf16[8]{0} bitcast(gte0) negate = bf16[8]{0} negate(bitcast) collective-permute.2 = bf16[8]{0} collective-permute(negate), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte1) } ENTRY entry { p0 = bf16[8]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[8]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond2, body=while_body2 collective-permute.3 = bf16[8]{0} collective-permute(p1), source_target_pairs={{0,1},{1,2},{2,3}} gte0 = bf16[8]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 add = bf16[8]{0} add(gte0, gte1) ROOT add2 = bf16[8]{0} add(add, collective-permute.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 2; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_GT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "while")); } TEST_F(LatencyHidingSchedulerTest, WhileOverlapUnderLimit) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[8]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[8]{0} get-tuple-element(param), index=0 gte1 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) collective-permute.1 = bf16[8]{0} collective-permute(gte0), source_target_pairs={{0,1},{1,2},{2,3}} add0 = bf16[8]{0} add(collective-permute.1, bitcast) negate = bf16[8]{0} negate(add0) collective-permute.2 = bf16[8]{0} collective-permute(collective-permute.1), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte1) } ENTRY entry { p0 = bf16[8]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[8]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[8]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body collective-permute.3 = bf16[8]{0} collective-permute(p1), source_target_pairs={{0,1},{1,2},{2,3}} gte0 = bf16[8]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 add = bf16[8]{0} add(gte0, gte1) ROOT add2 = bf16[8]{0} add(add, collective-permute.3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 3; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "collective-permute-start.2"), GetIndex(new_instruction_sequence, "while")); } TEST_F(LatencyHidingSchedulerTest, WhileOverlapLimitAllGather) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[4]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[4]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[4]{0} get-tuple-element(param), index=0 gte1 = bf16[8]{0} get-tuple-element(param), index=1 gte2 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) all-gather.1 = bf16[8]{0} all-gather(gte0), replica_groups={{0,1},{2,3}}, dimensions={0}, channel_id=1 add0 = bf16[8]{0} add(all-gather.1, bitcast) negate = bf16[8]{0} negate(add0) collective-permute.2 = bf16[4]{0} collective-permute(gte0), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[4]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte2) } ENTRY entry { p0 = bf16[4]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[4]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[4]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body all-gather.2 = bf16[8]{0} all-gather(p0), replica_groups={{0,1},{2,3}}, dimensions={0}, channel_id=2 gte0 = bf16[4]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 ROOT tuple.2 = (bf16[4]{0}, bf16[8]{0}, bf16[8]{0}) tuple(gte0, gte1, all-gather.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 2; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_GT(GetIndex(new_instruction_sequence, "all-gather-start.1"), GetIndex(new_instruction_sequence, "while")); } TEST_F(LatencyHidingSchedulerTest, WhileOverlapUnderLimitAllGather) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[4]{0}, bf16[8]{0}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[4]{0}, bf16[8]{0}, pred[]) parameter(0) gte0 = bf16[4]{0} get-tuple-element(param), index=0 gte1 = bf16[8]{0} get-tuple-element(param), index=1 gte2 = pred[] get-tuple-element(param), index=2 bitcast = bf16[8]{0} bitcast(gte0) all-gather.1 = bf16[8]{0} all-gather(gte0), replica_groups={{0,1},{2,3}}, dimensions={0}, channel_id=1 add0 = bf16[8]{0} add(all-gather.1, bitcast) negate = bf16[8]{0} negate(add0) collective-permute.2 = bf16[4]{0} collective-permute(gte0), source_target_pairs={{1,0},{0,3},{3,2}} ROOT tuple = (bf16[4]{0}, bf16[8]{0}, pred[]) tuple(collective-permute.2, negate, gte2) } ENTRY entry { p0 = bf16[4]{0} parameter(0) p1 = bf16[8]{0} parameter(1) p2 = pred[] parameter(2) tuple = (bf16[4]{0}, bf16[8]{0}, pred[]) tuple(p0, p1, p2) while = (bf16[4]{0}, bf16[8]{0}, pred[]) while(tuple), condition=while_cond, body=while_body all-gather.2 = bf16[8]{0} all-gather(p0), replica_groups={{0,1},{2,3}}, dimensions={0}, channel_id=2 gte0 = bf16[4]{0} get-tuple-element(while), index=0 gte1 = bf16[8]{0} get-tuple-element(while), index=1 ROOT tuple.2 = (bf16[4]{0}, bf16[8]{0}, bf16[8]{0}) tuple(gte0, gte1, all-gather.2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 2; sched_config.all_gather_overlap_limit = 2; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "all-gather-start.1"), GetIndex(new_instruction_sequence, "while")); } TEST_F(LatencyHidingSchedulerTest, AllToAllAsyncBalance) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true async_computation { p = f32[2,8,256,256] parameter(0) ROOT ata = f32[2,8,256,256] all-to-all(p), dimensions={0}, replica_groups={{0,1}} } async_computation.2 { p.2 = f32[2,8,256,256] parameter(0) ROOT ata.1 = f32[2,8,256,256] all-to-all(p.2), dimensions={0}, replica_groups={{0,1}} } ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[2,8,256,256]{3,2,1,0} broadcast( f32[]{:T(128)} %convert), dimensions={} %color_operand.2 = f32[2,8,256,256]{3,2,1,0} broadcast( f32[]{:T(128)} %convert), dimensions={} %ata-start = ((f32[2,8,256,256]), f32[2,8,256,256], u32[], u32[]) async-start( f32[2,8,256,256] %color_operand.1), calls=async_computation, metadata={op_type="AllToAll" op_name="ata0"} %ata-start.2 = ((f32[2,8,256,256]), f32[2,8,256,256], u32[], u32[]) async-start( f32[2,8,256,256] %color_operand.2), calls=async_computation.2, metadata={op_type="AllToAll" op_name="ata1"} %ata-done = f32[2,8,256,256] async-done(%ata-start), calls=async_computation, metadata={op_type="AllToAll" op_name="ata0"} %ata-done-bc = f32[16,256,256] bitcast(f32[2,8,256,256] %ata-done), metadata={op_type="Bitcast" op_name="ata0"} %ata-done.2 = f32[2,8,256,256] async-done(%ata-start.2), calls=async_computation.2, metadata={op_type="AllToAll" op_name="ata1"} %ata-done-bc.2 = f32[16,256,256] bitcast(f32[2,8,256,256] %ata-done.2), metadata={op_type="Bitcast" op_name="ata1"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllToAll" op_name="c0"} c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllToAll" op_name="c1"} a2 = f32[16,256,256]{2,1,0} add(c1, c0) ROOT t = (f32[16,256,256], f32[16,256,256], f32[16,256,256]) tuple(a2, %ata-done-bc.2, %ata-done-bc) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get()).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAsyncDone, new_instruction_sequence, "ata0")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c0"), GetOpcodeIndexUsingMetaData(HloOpcode::kAsyncStart, new_instruction_sequence, "ata0")); EXPECT_LT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAsyncDone, new_instruction_sequence, "ata1")); EXPECT_GT(GetOpcodeIndexUsingMetaData(HloOpcode::kConvolution, new_instruction_sequence, "c1"), GetOpcodeIndexUsingMetaData(HloOpcode::kAsyncStart, new_instruction_sequence, "ata1")); } TEST_F(LatencyHidingSchedulerTest, ReleaseOneThatStallsLessFirst) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[1024,2048,2048]{2,1,0} parameter(2) p3 = f32[2048,2048,2048]{2,1,0} parameter(3) cp1s = (f32[1024,2048,2048]{2,1,0}, f32[1024,2048,2048]{2,1,0}, u32[], u32[]) collective-permute-start(p2), source_target_pairs={{1,0},{0,3},{3,2}} cp2s = (f32[2048,2048,2048]{2,1,0}, f32[2048,2048,2048]{2,1,0}, u32[], u32[]) collective-permute-start(p3), source_target_pairs={{1,0},{0,3},{3,2}} c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb, metadata={op_type="AllToAll" op_name="c0"} cp1d = f32[1024,2048,2048]{2,1,0} collective-permute-done(cp1s) cp2d = f32[2048,2048,2048]{2,1,0} collective-permute-done(cp2s) ROOT tuple.2 = (f32[16,256,256]{2,1,0}, f32[1024,2048,2048]{2,1,0}, f32[2048,2048,2048]{2,1,0}) tuple(c0, cp1d, cp2d) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 2; sched_config.all_gather_overlap_limit = 2; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config, std::make_unique<TestLatencyEstimator>()) .ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "cp2s"), GetIndex(new_instruction_sequence, "cp1s")); } TEST_F(LatencyHidingSchedulerTest, ReleaseStartWhenLatencyDue) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY entry { p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[128,2048,2048]{2,1,0} parameter(1) p2 = f32[512,2048,2048]{2,1,0} parameter(2) cp1s = (f32[512,2048,2048]{2,1,0}, f32[512,2048,2048]{2,1,0}, u32[], u32[]) collective-permute-start(p2), source_target_pairs={{1,0},{0,3},{3,2}} cp1d = f32[512,2048,2048]{2,1,0} collective-permute-done(cp1s) cp2s = (f32[128,2048,2048]{2,1,0}, f32[128,2048,2048]{2,1,0}, u32[], u32[]) collective-permute-start(p1), source_target_pairs={{1,0},{0,3},{3,2}} cp2d = f32[128,2048,2048]{2,1,0} collective-permute-done(cp2s) cp3s = (f32[128,2048,2048]{2,1,0}, f32[128,2048,2048]{2,1,0}, u32[], u32[]) collective-permute-start(cp2d), source_target_pairs={{1,0},{0,3},{3,2}} cp3d = f32[128,2048,2048]{2,1,0} collective-permute-done(cp3s) slice = f32[16,64,256]{2,1,0} slice(f32[512,2048,2048]{2,1,0} cp1d), slice={[0:16], [0:64], [0:256]} c0 = f32[16,256,256]{2,1,0} convolution(p0, slice), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, slice), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT tuple.2 = (f32[16,256,256]{2,1,0}, f32[16,256,256]{2,1,0}, f32[128,2048,2048]{2,1,0}, f32[128,2048,2048]{2,1,0}) tuple(c0, c1, cp2d, cp3d) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.aggressive_scheduling_policies = true; sched_config.enable_release_start_policy = true; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config, std::make_unique<TestLatencyEstimator>()) .ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } EXPECT_LT(GetIndex(new_instruction_sequence, "cp2s"), GetIndex(new_instruction_sequence, "c0")); EXPECT_LT(GetIndex(new_instruction_sequence, "c0"), GetIndex(new_instruction_sequence, "cp2d")); EXPECT_LT(GetIndex(new_instruction_sequence, "cp2d"), GetIndex(new_instruction_sequence, "cp3s")); EXPECT_LT(GetIndex(new_instruction_sequence, "cp3s"), GetIndex(new_instruction_sequence, "c1")); EXPECT_LT(GetIndex(new_instruction_sequence, "c1"), GetIndex(new_instruction_sequence, "cp3d")); } TEST_F(LatencyHidingSchedulerTest, AsyncTrackerTestForTargetDefinedResources) { class AsyncTrackerForMyTarget : public AsyncTracker { enum class MyTargetResourceType { kTargetResource0 = 0, kNumTargetResources = 1, }; public: explicit AsyncTrackerForMyTarget(const SchedulerConfig& config, int64_t target_resource0_limit = 3) : AsyncTracker(config), target_resource0_limit_(target_resource0_limit) {} absl::string_view GetResourceName(int64_t resource_type) const override { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return AsyncTracker::GetResourceName(resource_type); } CHECK_LE(resource_type, first_target_resource + GetNumTargetDefinedResources()); switch (resource_type - first_target_resource) { case static_cast<int64_t>(MyTargetResourceType::kTargetResource0): return "kTargetResource0"; default: return ""; } } ResourceHazardType GetResourceHazardType( int64_t resource_type) const override { const int64_t first_target_resource = GetFirstTargetDefinedResource(); if (resource_type < first_target_resource) { return AsyncTracker::GetResourceHazardType(resource_type); } CHECK_LE(resource_type, first_target_resource + GetNumTargetDefinedResources()); switch (resource_type - first_target_resource) { case static_cast<int64_t>(MyTargetResourceType::kTargetResource0): return ResourceHazardType::kShareable; default: return ResourceHazardType::kUnshareable; } } int64_t GetNumTargetDefinedResources() const override { return static_cast<int64_t>(MyTargetResourceType::kNumTargetResources); } int64_t GetNumAvailableResources(int64_t resource_type) const override { const int64_t first_target_resource = AsyncTracker::GetFirstTargetDefinedResource(); CHECK_GE(resource_type, first_target_resource); CHECK_LT(resource_type, first_target_resource + GetNumTargetDefinedResources()); switch (resource_type - first_target_resource) { case (static_cast<int64_t>(MyTargetResourceType::kTargetResource0)): return static_cast<int64_t>(target_resource0_limit_); default: return 1; } } private: const int64_t target_resource0_limit_; }; const int64_t target_resource0_overlap_limit = 5; AsyncTrackerForMyTarget async_tracker_for_my_target( SchedulerConfig(), target_resource0_overlap_limit); CHECK_EQ(async_tracker_for_my_target.GetNumTargetDefinedResources(), 1); const int64_t target_resource0_index = static_cast<int64_t>(ResourceType::kTargetDefinedResourcesBound) + 1; CHECK_EQ(async_tracker_for_my_target.GetResourceName(target_resource0_index), "kTargetResource0"); CHECK_EQ( static_cast<int64_t>(async_tracker_for_my_target.GetResourceHazardType( target_resource0_index)), static_cast<int64_t>(ResourceHazardType::kShareable)); CHECK_EQ(async_tracker_for_my_target.GetNumAvailableResources( target_resource0_index), target_resource0_overlap_limit); } TEST_F(LatencyHidingSchedulerTest, AddDeleteOccupierForSharedResource) { std::vector<std::pair<HloEdge*, HloGraphNode::TimeCost>> occupiers; std::function<bool(std::vector<double>)> check_eq = [&occupiers]( std::vector<double> times) { if (times.size() != occupiers.size()) { return false; } int64_t i = 0; for (auto it = occupiers.begin(); it != occupiers.end(); ++it) { if (std::abs(times[i] - it->second) > 0.0001) { VLOG(1) << "PFT in occupier list does not match the given value (at index " << i << "): " << it->second << " vs " << times[i]; return false; } i++; } return true; }; HloEdge edge1(3, nullptr); HloEdge edge2(3, nullptr); HloEdge edge3(1, nullptr); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({3})); DefaultSchedulerCore::AddOccupierToResource(1, edge2, occupiers); CHECK(check_eq({5, 6})); DefaultSchedulerCore::AddOccupierToResource(1, edge3, occupiers); CHECK(check_eq({4, 6, 7})); occupiers.clear(); edge1.SetOriginalLatency(1); edge2.SetOriginalLatency(2); edge3.SetOriginalLatency(3); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({1})); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({2, 3})); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({3, 5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({1})); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({2, 4})); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({3, 5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({2})); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({2, 3})); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({3, 5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({2})); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({4, 5})); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({3, 5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({3})); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({2, 4})); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({3, 5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({3})); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({4, 5})); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({3, 5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({1})); DefaultSchedulerCore::AddOccupierToResource(1, edge2, occupiers); CHECK(check_eq({1, 3})); DefaultSchedulerCore::AddOccupierToResource(2, edge3, occupiers); CHECK(check_eq({1, 4, 6})); HloEdge edge0(0.5, nullptr); DefaultSchedulerCore::AddOccupierToResource(2, edge0, occupiers); CHECK(check_eq({1, 3.5, 4.5, 6.5})); occupiers.clear(); edge1.SetOriginalLatency(1); edge2.SetOriginalLatency(2); edge3.SetOriginalLatency(3); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({3, 5, 6})); auto res = DefaultSchedulerCore::DeleteOccupierFromResource(0, edge0, occupiers); CHECK(!res); DefaultSchedulerCore::DeleteOccupierFromResource(0, edge1, occupiers); CHECK(check_eq({4, 5})); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); CHECK(check_eq({3, 5, 6})); DefaultSchedulerCore::DeleteOccupierFromResource(0, edge2, occupiers); CHECK(check_eq({2, 4})); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); CHECK(check_eq({3, 5, 6})); DefaultSchedulerCore::DeleteOccupierFromResource(0, edge3, occupiers); CHECK(check_eq({2, 3})); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); CHECK(check_eq({3, 5, 6})); DefaultSchedulerCore::DeleteOccupierFromResource(1, edge1, occupiers); CHECK(check_eq({4.3333333, 5.3333333})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); DefaultSchedulerCore::DeleteOccupierFromResource(4, edge1, occupiers); CHECK(check_eq({5, 6})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); DefaultSchedulerCore::DeleteOccupierFromResource(4, edge2, occupiers); CHECK(check_eq({3, 5.5})); occupiers.clear(); DefaultSchedulerCore::AddOccupierToResource(0, edge1, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge2, occupiers); DefaultSchedulerCore::AddOccupierToResource(0, edge3, occupiers); DefaultSchedulerCore::DeleteOccupierFromResource(4, edge3, occupiers); CHECK(check_eq({3, 4.5})); } TEST_F(LatencyHidingSchedulerTest, DepthPressureReduction) { absl::string_view hlo_string = R"( HloModule serial_collective_permute_test, is_scheduled=true ENTRY after_optimizations_test { %parameter.1 = bf16[8]{0} parameter(0) %parameter.2 = bf16[8]{0} parameter(1) %parameter.3 = bf16[8]{0} parameter(2) %parameter.4 = bf16[8]{0} parameter(3) %collective-permute.2 = bf16[8]{0} collective-permute(parameter.1), source_target_pairs={{0,1},{1,2},{2,3}} %a = bf16[8]{0} add(collective-permute.2, parameter.2) %b = bf16[8]{0} add(a, parameter.3) %c = bf16[8]{0} add(b, parameter.4) %d = bf16[8]{0} add(c, parameter.4) %c1 = bf16[8]{0} copy(d) %e = bf16[8]{0} add(d, parameter.3) %c0 = bf16[8]{0} copy(e) %f = bf16[8]{0} add(e, parameter.2) %h = bf16[8]{0} add(c0, b) %g = bf16[8]{0} add(c1, c) %i = bf16[8]{0} add(f, a) ROOT %t = (bf16[8]{0}, bf16[8]{0}, bf16[8]{0}, bf16[8]{0}) tuple(f, g, h, i) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); auto sched_config = GetDefaultSchedConfig(); sched_config.memory_limit = 0; sched_config.depth_based_memory_pressure_reduction = true; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } const HloInstruction* f = FindInstruction(hlo_module.get(), "f"); const HloInstruction* g = FindInstruction(hlo_module.get(), "g"); EXPECT_LT(PositionInVector(new_instruction_sequence, g), PositionInVector(new_instruction_sequence, f)); } TEST_F(LatencyHidingSchedulerTest, RerunWithSmallerMemoryLimit) { absl::string_view hlo_string = R"( HloModule rerun_scheduler_test, is_scheduled=true ENTRY main { p0 = bf16[8]{0} parameter(0) c = bf16[] constant(0) b = bf16[43]{0} broadcast(c), dimensions={} s = bf16[1]{0} slice(b), slice={[0:1]} cp = bf16[8]{0} collective-permute(p0), source_target_pairs={{0,1},{1,2},{2,3}} ROOT tuple = (bf16[8]{0}, bf16[1]{0}) tuple(cp, s) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); auto sched_config = GetDefaultSchedConfig(); sched_config.memory_limit = 110; sched_config.rerun = 1; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } const HloInstruction* s = FindInstruction(hlo_module.get(), "s"); const HloInstruction* cps = FindInstruction(hlo_module.get(), "collective-permute-start"); EXPECT_LT(PositionInVector(new_instruction_sequence, s), PositionInVector(new_instruction_sequence, cps)); } TEST_F(LatencyHidingSchedulerTest, MultipleAsyncDoneOperationsDoNotCreateLoop) { absl::string_view hlo_string = R"( HloModule multiple_async_done_scheduler_test, is_scheduled=true called_computation { ROOT %param = s32[<=4096]{0:T(8)M(1024)} parameter(0) } ENTRY main { %while_body_forward_pass_input_tuple = (s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}) parameter(0), backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_SCALAR"} %get-tuple-element.0 = s32[<=4096]{0:T(8)M(1024)} get-tuple-element( (s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}) %while_body_forward_pass_input_tuple), index=0, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_SCALAR"} %get-tuple-element.1 = s32[<=4096]{0:T(8)M(1024)} get-tuple-element( (s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}) %while_body_forward_pass_input_tuple), index=1, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_SCALAR"} %call-start.1 = ((s32[<=4096]{0:T(8)M(1024)}), s32[<=4096]{0:T(8)M(1024)}, u32[]{:T(8)S(8)}) call-start(s32[<=4096]{0:T(8)M(1024)} %get-tuple-element.1), async_execution_thread="sparsecore", to_apply=%called_computation %call-done.1 = s32[<=4096]{0:T(8)M(1024)} call-done(((s32[<=4096]{0:T(8)M(1024)}), s32[<=4096]{0:T(8)M(1024)}, u32[]{:T(8)S(8)}) %call-start.1) %call-start.2 = ((s32[<=4096]{0:T(8)M(1024)}), s32[<=4096]{0:T(8)M(1024)}, u32[]{:T(8)S(8)}) call-start(s32[<=4096]{0:T(8)M(1024)} %call-done.1), async_execution_thread="sparsecore", to_apply=%called_computation %call-done.2 = s32[<=4096]{0:T(8)M(1024)} call-done(((s32[<=4096]{0:T(8)M(1024)}), s32[<=4096]{0:T(8)M(1024)}, u32[]{:T(8)S(8)}) %call-start.2) %call-start.3 = ((s32[<=4096]{0:T(8)M(1024)}), s32[<=4096]{0:T(8)M(1024)}, u32[]{:T(8)S(8)}) call-start(s32[<=4096]{0:T(8)M(1024)} %get-tuple-element.0), async_execution_thread="sparsecore", to_apply=%called_computation %call-done.3 = s32[<=4096]{0:T(8)M(1024)} call-done(((s32[<=4096]{0:T(8)M(1024)}), s32[<=4096]{0:T(8)M(1024)}, u32[]{:T(8)S(8)}) %call-start.3) ROOT %tuple.6 = (s32[<=4096]{0:T(8)M(1024)}, s32[<=4096]{0:T(8)M(1024)}) tuple(s32[<=4096]{0:T(8)M(1024)} %call-done.2, s32[<=4096]{0:T(8)M(1024)} %call-done.3), backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_SCALAR"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); auto sched_config = GetDefaultSchedConfig(); EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); } TEST_F(LatencyHidingSchedulerTest, CopyScheduling) { absl::string_view hlo_string = R"( HloModule EinsumTest, is_scheduled=true ENTRY AddR2 { y_host = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(1) z = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(2) x = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(0) convolution = bf16[12800,12800]{1,0:T(8,128)(2,1)} convolution(x, z), dim_labels=bf_io->bf copy-start = (bf16[12800,12800]{1,0:T(8,128)(2,1)}, bf16[12800,12800]{1,0:T(8,128)(2,1)}, u32[]{:S(2)}) copy-start(y_host) copy-done = bf16[12800,12800]{1,0:T(8,128)(2,1)} copy-done(copy-start) ROOT convolution.1 = bf16[12800,12800]{1,0:T(8,128)(2,1)} convolution(convolution, copy-done), dim_labels=bf_io->bf } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); auto sched_config = GetDefaultSchedConfig(); EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); const HloInstruction* conv = FindInstruction(hlo_module.get(), "convolution"); const HloInstruction* cps = FindInstruction(hlo_module.get(), "copy-start"); const HloInstruction* cpd = FindInstruction(hlo_module.get(), "copy-done"); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_LT(PositionInVector(new_instruction_sequence, cps), PositionInVector(new_instruction_sequence, conv)); EXPECT_LT(PositionInVector(new_instruction_sequence, conv), PositionInVector(new_instruction_sequence, cpd)); XLA_VLOG_LINES(1, hlo_module->ToString()); } TEST_F(LatencyHidingSchedulerTest, MaxCopyScheduling) { absl::string_view hlo_string = R"( HloModule EinsumTest, is_scheduled=true ENTRY AddR2 { y_host = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(1) q_host = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(3) z = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(2) x = bf16[12800,12800]{1,0:T(8,128)(2,1)} parameter(0) convolution = bf16[12800,12800]{1,0:T(8,128)(2,1)} convolution(x, z), dim_labels=bf_io->bf copy-start = (bf16[12800,12800]{1,0:T(8,128)(2,1)}, bf16[12800,12800]{1,0:T(8,128)(2,1)}, u32[]{:S(2)}) copy-start(y_host) copy-done = bf16[12800,12800]{1,0:T(8,128)(2,1)} copy-done(copy-start) copy-start2 = (bf16[12800,12800]{1,0:T(8,128)(2,1)}, bf16[12800,12800]{1,0:T(8,128)(2,1)}, u32[]{:S(2)}) copy-start(q_host) copy-done2 = bf16[12800,12800]{1,0:T(8,128)(2,1)} copy-done(copy-start2) ROOT t = (bf16[12800,12800]{1,0:T(8,128)(2,1)}, bf16[12800,12800]{1,0:T(8,128)(2,1)}) tuple(copy-done2, copy-done) } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); auto sched_config = GetDefaultSchedConfig(); EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); const HloInstruction* conv = FindInstruction(hlo_module.get(), "convolution"); const HloInstruction* cps = FindInstruction(hlo_module.get(), "copy-start"); const HloInstruction* cps2 = FindInstruction(hlo_module.get(), "copy-start2"); const HloInstruction* cpd2 = FindInstruction(hlo_module.get(), "copy-done2"); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_LT(PositionInVector(new_instruction_sequence, cps2), PositionInVector(new_instruction_sequence, conv)); EXPECT_LT(PositionInVector(new_instruction_sequence, conv), PositionInVector(new_instruction_sequence, cpd2)); EXPECT_LT(PositionInVector(new_instruction_sequence, cps), PositionInVector(new_instruction_sequence, cpd2)); XLA_VLOG_LINES(1, hlo_module->ToString()); } TEST_F(LatencyHidingSchedulerTest, ScheduleLoopPeeledSendDoneBeforeWhile) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true while_cond { param = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, pred[]) parameter(0) ROOT gte = pred[] get-tuple-element(param), index=2 } while_body { param = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, pred[]) parameter(0) gte0 = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} get-tuple-element(param), index=0 gte1 = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} get-tuple-element(param), index=1 %add.0 = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} add(gte0, gte1) gte2 = pred[] get-tuple-element(param), index=2 ROOT tuple = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, pred[]) tuple(%add.0, gte1, gte2) } ENTRY %entry { %p0 = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} parameter(0) %p1 = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} parameter(1) %after-all = token[] after-all() %send = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, u32[], token[]) send(bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} %p0, token[] %after-all), channel_id=1246, is_host_transfer=true, frontend_attributes={_xla_host_transfer_handler_name="xla_megascale_runtime",_xla_host_transfer_rendezvous="collective-permute.145_0",_xla_megascale_target="{{200000->100000},{200001->100001},{200002->100002},{200003->100003},{200004->100004},{200005->100005},{200006->100006},{200007->100007},{200008->100008},{200009->100009},{200010->100010},{200011->100011},{200012->100012},{200013->100013},{200014->100014},{200015->100015},{200016->100016},{200017->100017},{200018->100018},{200019->100019},{200020->100020},{200021->100021},{200022->100022},{200023->100023},{200024->100024},{200025->100025},{200026->100026},{200027->100027},{200028->100028},{200029->100029},{200030->100030},{200031->100031},{200032->100032},{200033->100033},{200034->100034},{200035->100035},{200036->100036},{200037->100037},{200038->100038},{200039->100039},{200040->100040},{200041->100041},{200042->100042},{200043->100043},{200044->100044},{200045->100045},{200046->100046},{200047->100047},{200048->100048},{200049->100049},{200050->100050},{200051->100051},{200052->100052},{200053->100053},{200054->100054},{200055->100055},{200056->100056},{200057->100057},{200058->100058},{200059->100059},{200060->100060},{200061->100061},{200062->100062},{200063->100063},{200064->100064},{200065->100065},{200066->100066},{200067->100067},{200068->100068},{200069->100069},{200070->100070},{200071->100071},{200072->100072},{200073->100073},{200074->100074},{200075->100075},{200076->100076},{200077->100077},{200078->100078},{200079->100079},{200080->100080},{200081->100081},{200082->100082},{200083->100083},{200084->100084},{200085->100085},{200086->100086},{200087->100087},{200088->100088},{200089->100089},{200090->100090},{200091->100091},{200092->100092},{200093->100093},{200094->100094},{200095->100095},{200096->100096},{200097->100097},{200098->100098},{200099->100099},{200100->100100},{200101->100101},{200102->100102},{200103->100103},{200104->100104},{200105->100105},{200106->100106},{200107->100107},{200108->100108},{200109->100109},{200110->100110},{200111->100111},{200112->100112},{200113->100113},{200114->100114},{200115->100115},{200116->100116},{200117->100117},{200118->100118},{200119->100119},{200120->100120},{200121->100121},{200122->100122},{200123->100123},{200124->100124},{200125->100125},{200126->100126},{200127->100127}}",_xla_megascale_transfer_type="ONE_TO_ONE"}, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[],"customized_send_recv_config":{"dcn_collective_permute_send":{"non_source_slice_ids":[0]}}} %recv = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, u32[], token[]) recv(token[] %after-all), channel_id=1247, is_host_transfer=true, frontend_attributes={_xla_host_transfer_handler_name="xla_megascale_runtime",_xla_host_transfer_rendezvous="collective-permute.145_0",_xla_megascale_target="{{200000->100000},{200001->100001},{200002->100002},{200003->100003},{200004->100004},{200005->100005},{200006->100006},{200007->100007},{200008->100008},{200009->100009},{200010->100010},{200011->100011},{200012->100012},{200013->100013},{200014->100014},{200015->100015},{200016->100016},{200017->100017},{200018->100018},{200019->100019},{200020->100020},{200021->100021},{200022->100022},{200023->100023},{200024->100024},{200025->100025},{200026->100026},{200027->100027},{200028->100028},{200029->100029},{200030->100030},{200031->100031},{200032->100032},{200033->100033},{200034->100034},{200035->100035},{200036->100036},{200037->100037},{200038->100038},{200039->100039},{200040->100040},{200041->100041},{200042->100042},{200043->100043},{200044->100044},{200045->100045},{200046->100046},{200047->100047},{200048->100048},{200049->100049},{200050->100050},{200051->100051},{200052->100052},{200053->100053},{200054->100054},{200055->100055},{200056->100056},{200057->100057},{200058->100058},{200059->100059},{200060->100060},{200061->100061},{200062->100062},{200063->100063},{200064->100064},{200065->100065},{200066->100066},{200067->100067},{200068->100068},{200069->100069},{200070->100070},{200071->100071},{200072->100072},{200073->100073},{200074->100074},{200075->100075},{200076->100076},{200077->100077},{200078->100078},{200079->100079},{200080->100080},{200081->100081},{200082->100082},{200083->100083},{200084->100084},{200085->100085},{200086->100086},{200087->100087},{200088->100088},{200089->100089},{200090->100090},{200091->100091},{200092->100092},{200093->100093},{200094->100094},{200095->100095},{200096->100096},{200097->100097},{200098->100098},{200099->100099},{200100->100100},{200101->100101},{200102->100102},{200103->100103},{200104->100104},{200105->100105},{200106->100106},{200107->100107},{200108->100108},{200109->100109},{200110->100110},{200111->100111},{200112->100112},{200113->100113},{200114->100114},{200115->100115},{200116->100116},{200117->100117},{200118->100118},{200119->100119},{200120->100120},{200121->100121},{200122->100122},{200123->100123},{200124->100124},{200125->100125},{200126->100126},{200127->100127}}",_xla_megascale_transfer_type="ONE_TO_ONE"}, control-predecessors={%send}, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[],"customized_send_recv_config":{"dcn_collective_permute_recv":{"non_target_slice_ids":[1]}}} %recv-done = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, token[]) recv-done((bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, u32[], token[]) %recv), channel_id=1247, is_host_transfer=true, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[],"customized_send_recv_config":{"dcn_collective_permute_recv":{"non_target_slice_ids":[1]}}} %get-tuple-element = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} get-tuple-element((bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, token[]) %recv-done), index=0 %send-done = token[] send-done((bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, u32[], token[]) %send), channel_id=1246, is_host_transfer=true, control-predecessors={%recv-done}, backend_config={"flag_configs":[],"scoped_memory_configs":[],"compute_type":"COMPUTE_TYPE_DEFAULT","device_type":"DEVICE_TYPE_INVALID","used_scoped_memory_configs":[],"customized_send_recv_config":{"dcn_collective_permute_send":{"non_source_slice_ids":[0]}}} %p2 = pred[] parameter(2) tuple = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, pred[]) tuple(%get-tuple-element, %p1, %p2) while = (bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)}, pred[]) while(tuple), condition=while_cond, body=while_body ROOT gte0 = bf16[1,1,4096,1344]{2,3,1,0:T(8,128)(2,1)} get-tuple-element(while), index=0 } )"; TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); auto sched_config = GetDefaultSchedConfig(); sched_config.collective_permute_overlap_limit = 2; sched_config.all_gather_overlap_limit = 2; EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config).ok()); EXPECT_TRUE(hlo_module->has_entry_computation()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(hlo_module->entry_computation()).instructions(); EXPECT_LT(GetIndex(new_instruction_sequence, "send-done"), GetIndex(new_instruction_sequence, "while")); } TEST_F(LatencyHidingSchedulerTest, AllGatherWithSelectiveOverlap) { absl::string_view hlo_string = R"( HloModule module, is_scheduled=true ENTRY %module { %constant.19 = u32[] constant(0) %replica_id = u32[]{:T(128)} replica-id() %convert = f32[]{:T(128)} convert(u32[]{:T(128)} %replica_id) %color_operand.1 = f32[8,256,256]{2,1,0:T(8,128)} broadcast( f32[]{:T(128)} %convert), dimensions={} %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %color_operand.1), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} p0 = f32[16,64,256]{2,1,0} parameter(0) p1 = f32[16,64,256]{2,1,0} parameter(1) p2 = f32[16,256,256]{2,1,0} parameter(2) p3 = f32[16,256,256]{2,1,0} parameter(3) c0 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c1 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb c2 = f32[16,256,256]{2,1,0} convolution(p0, p1), window={size=16 stride=15 lhs_dilate=16}, dim_labels=0fb_0io->0fb ROOT a2 = f32[16,256,256]{2,1,0} add(%ag-done, c0) } )"; class SelectiveOverlapAsyncTracker : public AsyncTracker { public: explicit SelectiveOverlapAsyncTracker(const SchedulerConfig& sched_config) : AsyncTracker(sched_config) {} ResourceHazardType GetResourceHazardType( int64_t resource_type) const override { if (resource_type == ResourceTypeToIndex(ResourceType::kAllGather)) { return ResourceHazardType::kSelective; } if (resource_type == AsyncTracker::GetFirstTargetDefinedResource()) { return ResourceHazardType::kNonextendable; } return AsyncTracker::GetResourceHazardType(resource_type); } ResourcesVector GetResourcesFromInstruction( const HloInstruction& hlo) const override { ResourcesVector result = AsyncTracker::GetResourcesFromInstruction(hlo); if (hlo.opcode() == HloOpcode::kAllGatherStart) { result.push_back({AsyncTracker::GetFirstTargetDefinedResource(), ResourceUsageType::kResourceRelease}); } return result; } absl::InlinedVector<int64_t, 1> GetReleasedNonextendableResourcesFromVector( const ResourcesVector& resources) const override { absl::InlinedVector<int64_t, 1> non_extendable_resources; for (const ResourcePair& resource : resources) { if (GetResourceHazardType(resource.first) == ResourceHazardType::kNonextendable) { non_extendable_resources.push_back({resource.first}); } } return non_extendable_resources; } void PostProcessScheduleGraph( HloScheduleGraph* schedule_graph, const LatencyEstimator* latency_estimator) const override { for (const HloInstruction* instr : schedule_graph->GetOriginalInstrList()) { if (instr->name() == "c2") { schedule_graph->GetNode(instr).SetValuableForSelectiveOverlap(false); } } } }; SchedulerConfig sched_config = GetDefaultSchedConfig(); sched_config.enable_selective_resources = true; std::unique_ptr<AsyncTracker> async_tracker = std::make_unique<SelectiveOverlapAsyncTracker>(sched_config); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, ParseHloText(hlo_string)); HloSchedule& module_schedule = hlo_module->schedule(); EXPECT_TRUE(hlo_module->has_entry_computation()); HloComputation* entry_computation = hlo_module->entry_computation(); std::vector<HloInstruction*> original_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); EXPECT_TRUE(RunScheduler(hlo_module.get(), sched_config, std::make_unique<ApproximateLatencyEstimator>(), std::move(async_tracker)) .ok()); std::vector<HloInstruction*> new_instruction_sequence = module_schedule.sequence(entry_computation).instructions(); if (VLOG_IS_ON(1)) { for (auto* new_i : new_instruction_sequence) { VLOG(1) << new_i->ToString(); } } int c0_index = GetIndex(new_instruction_sequence, "c0"); int c1_index = GetIndex(new_instruction_sequence, "c1"); int c2_index = GetIndex(new_instruction_sequence, "c2"); int ag_start_index = GetIndex(new_instruction_sequence, "ag-start"); int ag_done_index = GetIndex(new_instruction_sequence, "ag-done"); EXPECT_LT(c0_index, ag_start_index); EXPECT_LT(ag_start_index, c1_index); EXPECT_LT(c1_index, c2_index); EXPECT_LT(c2_index, ag_done_index); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/latency_hiding_scheduler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/latency_hiding_scheduler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
44da8ef5-e24f-4923-a163-f00321724747
cpp
google/arolla
reduce
arolla/expr/optimization/peephole_optimizations/reduce.cc
arolla/expr/optimization/peephole_optimizations/reduce_test.cc
#include "arolla/expr/optimization/peephole_optimizations/reduce.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/optimization/peephole_optimizer.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr { namespace { absl::Status AppendAdd4Optimizations(PeepholeOptimizationPack& optimizations) { ExprNodePtr a = Placeholder("a"); ExprNodePtr b = Placeholder("b"); ExprNodePtr c = Placeholder("c"); ExprNodePtr d = Placeholder("d"); auto Add = [](auto a, auto b) { return CallOpReference("math.add", {a, b}); }; ASSIGN_OR_RETURN(ExprNodePtr pattern1, Add(Add(a, b), Add(c, d))); ASSIGN_OR_RETURN(ExprNodePtr pattern2, Add(Add(Add(a, b), c), d)); ASSIGN_OR_RETURN(ExprNodePtr pattern3, Add(a, Add(b, Add(c, d)))); ASSIGN_OR_RETURN(ExprNodePtr replacement, CallOpReference("math._add4", {a, b, c, d})); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(pattern1, replacement)); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(pattern2, replacement)); ASSIGN_OR_RETURN( optimizations.emplace_back(), PeepholeOptimization::CreatePatternOptimization(pattern3, replacement)); return absl::OkStatus(); } } absl::StatusOr<PeepholeOptimizationPack> ReduceOptimizations() { PeepholeOptimizationPack optimizations; RETURN_IF_ERROR(AppendAdd4Optimizations(optimizations)); return optimizations; } }
#include "arolla/expr/optimization/peephole_optimizations/reduce.h" #include <cstddef> #include <cstdint> #include <memory> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status_matchers.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_visitor.h" #include "arolla/expr/optimization/peephole_optimizer.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/base_types.h" namespace arolla::expr { namespace { using ::absl_testing::IsOkAndHolds; using ::arolla::testing::EqualsExpr; class ReduceOptimizationsTest : public ::testing::Test { protected: void SetUp() override { ASSERT_OK_AND_ASSIGN(optimizer_, CreatePeepholeOptimizer({ReduceOptimizations})); } std::unique_ptr<PeepholeOptimizer> optimizer_; }; size_t CountNodes(const ExprNodePtr& expr) { size_t result = 0; return PostOrderTraverse( expr, [&](const ExprNodePtr& , absl::Span<const size_t* const> ) { return ++result; }); } TEST_F(ReduceOptimizationsTest, SingleSubstitution) { auto a = Leaf("l1"); auto b = Leaf("l2"); auto c = Leaf("l3"); auto d = Leaf("l4"); ASSERT_OK_AND_ASSIGN(auto ab, CallOp("math.add", {a, b})); ASSERT_OK_AND_ASSIGN(auto cd, CallOp("math.add", {c, d})); ASSERT_OK_AND_ASSIGN(auto abcd_balanced, CallOp("math.add", {ab, cd})); ASSERT_OK_AND_ASSIGN(auto abcd_linear, CallOp("math.add", {CallOp("math.add", {ab, c}), d})); ASSERT_OK_AND_ASSIGN(auto abcd_reversed, CallOp("math.add", {a, CallOp("math.add", {b, cd})})); ASSERT_OK_AND_ASSIGN(auto abcd_optimized, CallOp("math._add4", {a, b, c, d})); EXPECT_THAT(optimizer_->Apply(abcd_balanced), IsOkAndHolds(EqualsExpr(abcd_optimized))); EXPECT_THAT(optimizer_->Apply(abcd_linear), IsOkAndHolds(EqualsExpr(abcd_optimized))); EXPECT_THAT(optimizer_->Apply(abcd_reversed), IsOkAndHolds(EqualsExpr(abcd_optimized))); } TEST_F(ReduceOptimizationsTest, BalancedTree) { const int leaf_count = 128; std::vector<ExprNodePtr> nodes; nodes.reserve(leaf_count); for (int i = 0; i < leaf_count; ++i) { nodes.push_back(Leaf(absl::StrFormat("l%d", i))); } while (nodes.size() > 1) { for (int64_t i = 0; i < nodes.size() / 2; ++i) { nodes[i] = *CallOp("math.add", {nodes[i * 2], nodes[i * 2 + 1]}); } if (nodes.size() % 2 == 1) { nodes[nodes.size() / 2] = nodes.back(); } nodes.resize((nodes.size() + 1) / 2); } ExprNodePtr expr = nodes[0]; EXPECT_EQ(CountNodes(expr), leaf_count + 127); ASSERT_OK_AND_ASSIGN(auto res, optimizer_->Apply(expr)); EXPECT_EQ(CountNodes(res), leaf_count + 43); } TEST_F(ReduceOptimizationsTest, LinearTree) { const int leaf_count = 128; ExprNodePtr expr = Leaf("l0"); for (int i = 1; i < leaf_count; ++i) { expr = *CallOp("math.add", {expr, Leaf(absl::StrFormat("l%d", i))}); } EXPECT_EQ(CountNodes(expr), leaf_count + 127); ASSERT_OK_AND_ASSIGN(auto res, optimizer_->Apply(expr)); EXPECT_EQ(CountNodes(res), leaf_count + 43); } TEST_F(ReduceOptimizationsTest, ReversedLinearTree) { const int leaf_count = 128; ExprNodePtr expr = Leaf("l0"); for (int i = 1; i < leaf_count; ++i) { expr = *CallOp("math.add", {Leaf(absl::StrFormat("l%d", i)), expr}); } EXPECT_EQ(CountNodes(expr), leaf_count + 127); ASSERT_OK_AND_ASSIGN(auto res, optimizer_->Apply(expr)); EXPECT_EQ(CountNodes(res), leaf_count + 43); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/optimization/peephole_optimizations/reduce.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/optimization/peephole_optimizations/reduce_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
c00b722e-3972-4f34-b0cf-754b2294e5cd
cpp
tensorflow/tensorflow
shuffle_dataset_op
tensorflow/core/kernels/data/shuffle_dataset_op.cc
tensorflow/core/kernels/data/shuffle_dataset_op_test.cc
#include "tensorflow/core/kernels/data/shuffle_dataset_op.h" #include <cstdint> #include <deque> #include <memory> #include <numeric> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/data/random_seed_ops.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/random/philox_random.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/random/random_distributions.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/stringprintf.h" namespace tensorflow { namespace data { constexpr const char* const ShuffleDatasetOpBase::kInputDataset; constexpr const char* const ShuffleDatasetOpBase::kBufferSize; constexpr const char* const ShuffleDatasetOpBase::kSeed; constexpr const char* const ShuffleDatasetOpBase::kSeed2; constexpr const char* const ShuffleDatasetOpBase::kOutputTypes; constexpr const char* const ShuffleDatasetOpBase::kOutputShapes; constexpr const char* const ShuffleDatasetOpBase::kReshuffleEachIteration; constexpr const char* const ShuffleDatasetOp::kDatasetType; constexpr const char* const ShuffleAndRepeatDatasetOp::kDatasetType; constexpr const char* const ShuffleAndRepeatDatasetOp::kCount; const int64_t kLogIntervalMicros = 10 * 1000000; const int64_t kMaxEpochsInBuffer = 3; constexpr char kNumRandomSamples[] = "num_random_samples"; constexpr char kDataProduced[] = "data_produced"; constexpr char kEndOfInputSequence[] = "end_of_input_sequence"; constexpr char kEpoch[] = "epoch"; constexpr char kNumElements[] = "num_elements"; constexpr char kSlicesSize[] = "slices_size"; constexpr char kSlicesStart[] = "slices_start"; constexpr char kSlicesEnd[] = "slices_end"; constexpr char kSlicesReachedEndOfSequence[] = "slices_reached_end_of_sequence"; constexpr char kSeedGenerator[] = "SeedGenerator"; constexpr char kEpochNumRandomSamples[] = "epoch_num_random_samples"; constexpr char kShuffleDatasetV1[] = "ShuffleDataset"; constexpr char kShuffleDatasetV2[] = "ShuffleDatasetV2"; constexpr char kShuffleDatasetV3[] = "ShuffleDatasetV3"; constexpr char kShuffleAndRepeatDatasetV1[] = "ShuffleAndRepeatDataset"; constexpr char kShuffleAndRepeatDatasetV2[] = "ShuffleAndRepeatDatasetV2"; ShuffleDatasetOpBase::ShuffleDatasetOpBase(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} class ShuffleDatasetOpBase::ShuffleDatasetBase : public DatasetBase { public: ShuffleDatasetBase(OpKernelContext* ctx, const DatasetBase* input, int64_t buffer_size, std::shared_ptr<SeedGenerator> seed_generator, int64_t count) : DatasetBase(DatasetContext(ctx)), input_(input), buffer_size_(buffer_size), seed_generator_(std::move(seed_generator)), count_(count), traceme_metadata_( {{"buffer_size", strings::Printf("%lld", static_cast<long long>(buffer_size))}}) { input_->Ref(); } ~ShuffleDatasetBase() override { input_->Unref(); } virtual string op_type() const = 0; const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } int64_t CardinalityInternal(CardinalityOptions options) const override { if (count_ == -1 || input_->Cardinality(options) == kInfiniteCardinality) { return kInfiniteCardinality; } else if (input_->Cardinality(options) == kUnknownCardinality) { return kUnknownCardinality; } else { return input_->Cardinality(options) * count_; } } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); { mutex_lock l(mu_); if (shuffled_indices_.empty()) { InitializeRandomAccessIndices(); } } int64 shuffled_index; { tf_shared_lock l(mu_); shuffled_index = shuffled_indices_[index]; } TF_RETURN_IF_ERROR(input_->Get(ctx, shuffled_index, out_tensors)); return absl::OkStatus(); } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.set_args(buffer_size_, seed_generator_->seed(), seed_generator_->seed2(), count_); return name_utils::DatasetDebugString(op_type(), params); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>( Iterator::Params{this, name_utils::IteratorPrefix(op_type(), prefix)}, seed_generator_.get()); } void InitializeRandomAccessIndices() const TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { const int64 cardinality = Cardinality(); shuffled_indices_ = std::vector<std::int64_t>(cardinality); std::iota(shuffled_indices_.begin(), shuffled_indices_.end(), 0); int64_t shuffled_index = 0; random::PhiloxRandom parent_generator = random::PhiloxRandom(seed_generator_->seed(), seed_generator_->seed2()); random::SingleSampleAdapter<random::PhiloxRandom> generator = random::SingleSampleAdapter<random::PhiloxRandom>(&parent_generator); while (shuffled_index < cardinality) { int64_t offset = generator() % (cardinality - shuffled_index); std::swap(shuffled_indices_[shuffled_index + offset], shuffled_indices_[shuffled_index]); shuffled_index += 1; } } protected: class Iterator : public DatasetIterator<ShuffleDatasetBase> { public: explicit Iterator(const Params& params, SeedGenerator* seed_generator) : DatasetIterator<ShuffleDatasetBase>(params), seed_generator_(seed_generator), parent_generator_(seed_generator->seed(), seed_generator->seed2()), generator_(&parent_generator_) { if (params.dataset->buffer_size_ == kUnknownCardinality) { buffer_ = std::make_unique<std::vector<std::vector<Tensor>>>(); } else { buffer_ = std::make_unique<std::vector<std::vector<Tensor>>>( params.dataset->buffer_size_); } } bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); seed_generator_->GenerateSeeds(&seed_, &seed2_); ResetRngs(); if (ctx->symbolic_checkpoint()) { for (int64_t i = 0; i < buffer_->size(); ++i) { checkpoint_indices_.insert(i); } } return absl::OkStatus(); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(FillBuffer(ctx)); if (num_elements_ == 0) { DCHECK(input_impl_ == nullptr); *end_of_sequence = true; return absl::OkStatus(); } *end_of_sequence = false; ClearEmptySlices(); DCHECK(!slices_.empty()); int64_t offset = Random() % (slices_.front()->end - slices_.front()->start); int64_t index = (slices_.front()->start + offset) % buffer_->size(); *out_tensors = std::move(buffer_->at(index)); this->RecordBufferDequeue(ctx, *out_tensors); std::swap(buffer_->at(index), buffer_->at(slices_.front()->start % buffer_->size())); checkpoint_indices_.insert(index); checkpoint_indices_.insert(slices_.front()->start % buffer_->size()); slices_.front()->start++; num_elements_--; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), 1); } void ResetRngs() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { parent_generator_ = random::PhiloxRandom(seed_, seed2_); generator_ = random::SingleSampleAdapter<random::PhiloxRandom>(&parent_generator_); generator_.Skip(num_random_samples_); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kEpochNumRandomSamples, seed_generator_->num_random_samples())); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kNumRandomSamples, num_random_samples_)); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kSeed, seed_)); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kSeed2, seed2_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kEndOfInputSequence, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(this->SaveInput(ctx, writer, input_impl_)); } TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kEpoch, epoch_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kNumElements, num_elements_)); const std::string key_prefix = absl::StrCat(prefix(), kColon, "buffer"); if (ctx->symbolic_checkpoint()) { TF_RETURN_IF_ERROR(UpdateCheckpointElements( writer, key_prefix, *buffer_, checkpoint_indices_)); checkpoint_indices_.clear(); } else { TF_RETURN_IF_ERROR( WriteElementsToCheckpoint(writer, key_prefix, *buffer_)); } TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kSlicesSize, slices_.size())); for (size_t i = 0; i < slices_.size(); ++i) { TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), absl::StrJoin(std::make_tuple(kSlicesStart, i), "_"), slices_[i]->start)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), absl::StrJoin(std::make_tuple(kSlicesEnd, i), "_"), slices_[i]->end)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), absl::StrJoin(std::make_tuple(kSlicesReachedEndOfSequence, i), "_"), static_cast<int64_t>(slices_[i]->reached_end_of_sequence))); } if (data_produced_) { TF_RETURN_IF_ERROR( writer->WriteScalar(this->prefix(), kDataProduced, "")); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); int64_t num_random_samples; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kEpochNumRandomSamples, &num_random_samples)); seed_generator_->set_num_random_samples(num_random_samples); seed_generator_->Reset(); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kNumRandomSamples, &num_random_samples_)); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kSeed, &seed_)); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kSeed2, &seed2_)); ResetRngs(); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kEndOfInputSequence, &input_empty)); if (static_cast<bool>(!input_empty)) { TF_RETURN_IF_ERROR(this->dataset()->input_->MakeIterator( ctx, this, this->prefix(), &input_impl_)); TF_RETURN_IF_ERROR(this->RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } TF_RETURN_IF_ERROR(reader->ReadScalar(this->prefix(), kEpoch, &epoch_)); TF_RETURN_IF_ERROR( reader->ReadScalar(this->prefix(), kNumElements, &num_elements_)); size_t slices_size; { int64_t temp; TF_RETURN_IF_ERROR( reader->ReadScalar(this->prefix(), kSlicesSize, &temp)); slices_size = static_cast<size_t>(temp); } buffer_ = std::make_unique<std::vector<std::vector<Tensor>>>(); TF_RETURN_IF_ERROR(ReadElementsFromCheckpoint( ctx, reader, absl::StrCat(prefix(), kColon, "buffer"), buffer_.get())); if (ctx->symbolic_checkpoint()) { DCHECK(checkpoint_indices_.empty()); for (size_t i = 0; i < buffer_->size(); ++i) { checkpoint_indices_.insert(i); } } for (const auto& element : *buffer_) { RecordBufferEnqueue(ctx, element); } if (!IsShuffleAll()) { buffer_->resize(dataset()->buffer_size_); } slices_.clear(); for (size_t i = 0; i < slices_size; ++i) { int64_t start; TF_RETURN_IF_ERROR(reader->ReadScalar( this->prefix(), absl::StrJoin(std::make_tuple(kSlicesStart, i), "_"), &start)); int64_t end; TF_RETURN_IF_ERROR(reader->ReadScalar( this->prefix(), absl::StrJoin(std::make_tuple(kSlicesEnd, i), "_"), &end)); int64_t reached_end_of_sequence; TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), absl::StrJoin(std::make_tuple(kSlicesReachedEndOfSequence, i), "_"), &reached_end_of_sequence)); slices_.push_back(std::make_unique<Slice>( start, end, static_cast<bool>(reached_end_of_sequence))); } data_produced_ = reader->Contains(this->prefix(), kDataProduced); return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { return this->dataset()->traceme_metadata_; } private: struct Slice { Slice(int64_t start, int64_t end, bool reached_end_of_sequence) : start(start), end(end), reached_end_of_sequence(reached_end_of_sequence) {} int64_t start; int64_t end; bool reached_end_of_sequence = false; }; random::SingleSampleAdapter<random::PhiloxRandom>::ResultType Random() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { num_random_samples_++; auto out = generator_(); return out; } bool IsServingSliceComplete() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { for (auto& slice : slices_) { if (slice->start != slice->end) { return slice->reached_end_of_sequence; } } return false; } bool IsShuffleAll() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { return dataset()->buffer_size_ == kUnknownCardinality; } Status FillBuffer(IteratorContext* ctx) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t start_micros = EnvTime::NowMicros(); int64_t num_log_entries = 0; while (ShouldFillBuffer()) { if (EnvTime::NowMicros() > ((num_log_entries + 1) * kLogIntervalMicros) + start_micros) { num_log_entries++; LOG_EVERY_N_SEC(INFO, 10) << dataset()->metadata().name() << ": " << "Filling up shuffle buffer (this may take a while): " << num_elements_ << " of " << BufferSizeString(); } if (!input_impl_) { TF_RETURN_IF_ERROR(PrepareNextEpoch(ctx)); } std::vector<Tensor> input_element; bool end_of_input_sequence = false; TF_RETURN_IF_ERROR( input_impl_->GetNext(ctx, &input_element, &end_of_input_sequence)); if (end_of_input_sequence) { slices_.back()->reached_end_of_sequence = true; } if (!end_of_input_sequence) { AddToShuffleBuffer(ctx, std::move(input_element)); continue; } input_impl_.reset(); if (ctx->split_providers().empty() && !data_produced_ && this->dataset()->count_ == -1) { return absl::OkStatus(); } } if (num_log_entries > 0) { LOG(INFO) << "Shuffle buffer filled."; } return absl::OkStatus(); } bool ShouldFillBuffer() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (!input_impl_ && dataset()->count_ != -1 && epoch_ >= dataset()->count_) { return false; } if (slices_.size() > kMaxEpochsInBuffer && num_elements_ > 0) { return false; } if (IsShuffleAll() && (slices_.empty() || !IsServingSliceComplete())) { return true; } return num_elements_ < buffer_->size(); } Status PrepareNextEpoch(IteratorContext* ctx) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (epoch_ == 0) { slices_.push_back(std::make_unique<Slice>(0, 0, false)); } else { int64_t n = slices_.back()->end; slices_.push_back(std::make_unique<Slice>(n, n, false)); for (const auto& provider : ctx->split_providers()) { TF_RETURN_IF_ERROR(provider->Reset()); } } TF_RETURN_IF_ERROR(this->dataset()->input_->MakeIterator( ctx, this, this->prefix(), &input_impl_)); epoch_++; return absl::OkStatus(); } void AddToShuffleBuffer(IteratorContext* ctx, std::vector<Tensor>&& element) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { data_produced_ = true; if (num_elements_ == 0) { VLOG(1) << "Starting to fill up shuffle buffer of size: " << BufferSizeString(); } this->RecordBufferEnqueue(ctx, element); if (num_elements_ == buffer_->size()) { DCHECK(IsShuffleAll()); checkpoint_indices_.insert(buffer_->size()); buffer_->push_back(element); } else { size_t index = slices_.back()->end % buffer_->size(); checkpoint_indices_.insert(index); buffer_->at(index) = std::move(element); } num_elements_++; slices_.back()->end++; } void ClearEmptySlices() TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { while (slices_.front()->start == slices_.front()->end) { slices_.pop_front(); num_random_samples_ = 0; seed_generator_->GenerateSeeds(&seed_, &seed2_); ResetRngs(); } } std::string BufferSizeString() { return absl::StrCat(dataset()->buffer_size_); } mutex mu_; SeedGenerator* const seed_generator_ TF_GUARDED_BY(mu_); std::unique_ptr<std::vector<std::vector<Tensor>>> buffer_ TF_GUARDED_BY(mu_); absl::flat_hash_set<int64_t> checkpoint_indices_ TF_GUARDED_BY(mu_); std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_) = nullptr; int64_t epoch_ TF_GUARDED_BY(mu_) = 0; int64_t num_elements_ TF_GUARDED_BY(mu_) = 0; int64_t seed_ TF_GUARDED_BY(mu_) = 0; int64_t seed2_ TF_GUARDED_BY(mu_) = 0; std::deque<std::unique_ptr<Slice>> slices_ TF_GUARDED_BY(mu_); random::PhiloxRandom parent_generator_ TF_GUARDED_BY(mu_); random::SingleSampleAdapter<random::PhiloxRandom> generator_ TF_GUARDED_BY(mu_); int64_t num_random_samples_ TF_GUARDED_BY(mu_) = 0; bool data_produced_ TF_GUARDED_BY(mu_) = false; }; const DatasetBase* const input_; const int64_t buffer_size_; const std::shared_ptr<SeedGenerator> seed_generator_; const int64_t count_; const TraceMeMetadata traceme_metadata_; mutable mutex mu_; mutable std::vector<std::int64_t> shuffled_indices_ TF_GUARDED_BY(mu_); }; class ShuffleDatasetOp::Dataset : public ShuffleDatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, int64_t buffer_size, int64_t count, RandomSeeds&& seeds, SeedGeneratorManager* manager, ResourceHandle&& resource_handle) : ShuffleDatasetBase(ctx, input, buffer_size, manager->get(), count), manager_(manager), resource_handle_(std::move(resource_handle)), resource_mgr_(ctx->resource_manager()), seeds_(std::move(seeds)) {} ~Dataset() override { manager_->Unref(); Status s = resource_mgr_->Delete<SeedGeneratorManager>( resource_handle_.container(), resource_handle_.name()); if (!s.ok()) { LOG(WARNING) << "Failed to delete RNG resource: " << s.ToString(); } } string op_type() const override { return kDatasetType; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* buffer_size_node = nullptr; Node* seed_node = nullptr; Node* seed2_node = nullptr; AttrValue reshuffle_each_iteration; TF_RETURN_IF_ERROR(b->AddScalar(buffer_size_, &buffer_size_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed(), &seed_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed2(), &seed2_node)); b->BuildAttrValue(seed_generator_->reshuffle_each_iteration(), &reshuffle_each_iteration); TF_RETURN_IF_ERROR(b->AddDataset( this, {input_graph_node, buffer_size_node, seed_node, seed2_node}, {std::make_pair(kReshuffleEachIteration, reshuffle_each_iteration)}, output)); return absl::OkStatus(); } private: SeedGeneratorManager* const manager_; const ResourceHandle resource_handle_; ResourceMgr* const resource_mgr_; const RandomSeeds seeds_; }; class ShuffleDatasetOp::DatasetV2 : public ShuffleDatasetBase { public: DatasetV2(OpKernelContext* ctx, const DatasetBase* input, int64_t buffer_size, int64_t count, SeedGeneratorManager* manager, ResourceHandle&& resource_handle, bool owns_resource) : ShuffleDatasetBase(ctx, input, buffer_size, manager->get(), count), manager_(manager), owns_resource_(owns_resource), resource_handle_(std::move(resource_handle)), resource_mgr_(ctx->resource_manager()) {} ~DatasetV2() override { manager_->Unref(); if (owns_resource_) { Status s = resource_mgr_->Delete<SeedGeneratorManager>( resource_handle_.container(), resource_handle_.name()); if (!s.ok()) { LOG(WARNING) << "Failed to delete RNG resource: " << s.ToString(); } } } string op_type() const override { return kDatasetType; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* buffer_size_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(buffer_size_, &buffer_size_node)); Node* resource_handle_node = nullptr; Tensor handle(DT_RESOURCE, TensorShape({})); handle.scalar<ResourceHandle>()() = resource_handle_; TF_RETURN_IF_ERROR(b->AddTensor(handle, &resource_handle_node)); TF_RETURN_IF_ERROR(b->AddDataset( this, {input_graph_node, buffer_size_node, resource_handle_node}, {}, output)); return absl::OkStatus(); } private: SeedGeneratorManager* const manager_; const bool owns_resource_; const ResourceHandle resource_handle_; ResourceMgr* const resource_mgr_; }; class ShuffleDatasetOp::DatasetV3 : public ShuffleDatasetBase { public: DatasetV3(OpKernelContext* ctx, const DatasetBase* input, int64_t buffer_size, int64_t count, RandomSeeds&& seeds, SeedGeneratorManager* manager, ResourceHandle&& resource_handle, bool owns_resource) : ShuffleDatasetBase(ctx, input, buffer_size, manager->get(), count), manager_(manager), owns_resource_(owns_resource), resource_handle_(std::move(resource_handle)), resource_mgr_(ctx->resource_manager()), seeds_(std::move(seeds)) {} ~DatasetV3() override { manager_->Unref(); if (owns_resource_) { Status s = resource_mgr_->Delete<SeedGeneratorManager>( resource_handle_.container(), resource_handle_.name()); if (!s.ok()) { LOG(WARNING) << "Failed to delete RNG resource: " << s.ToString(); } } } string op_type() const override { return kDatasetType; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* buffer_size_node = nullptr; Node* seed_node = nullptr; Node* seed2_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(buffer_size_, &buffer_size_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed(), &seed_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed2(), &seed2_node)); Node* resource_handle_node = nullptr; Tensor handle(DT_RESOURCE, TensorShape({})); handle.scalar<ResourceHandle>()() = resource_handle_; TF_RETURN_IF_ERROR(b->AddTensor(handle, &resource_handle_node)); AttrValue reshuffle_each_iteration; b->BuildAttrValue(seed_generator_->reshuffle_each_iteration(), &reshuffle_each_iteration); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, buffer_size_node, seed_node, seed2_node, resource_handle_node}, {std::make_pair(kReshuffleEachIteration, reshuffle_each_iteration)}, output)); return absl::OkStatus(); } private: SeedGeneratorManager* const manager_; const bool owns_resource_; const ResourceHandle resource_handle_; ResourceMgr* const resource_mgr_; const RandomSeeds seeds_; }; ShuffleDatasetOp::ShuffleDatasetOp(OpKernelConstruction* ctx) : ShuffleDatasetOpBase(ctx) { auto& op_name = ctx->def().op(); if (op_name == kShuffleDatasetV3) { op_version_ = 3; } else if (op_name == kShuffleDatasetV2) { op_version_ = 2; } else if (op_name == kShuffleDatasetV1) { op_version_ = 1; } if (ctx->HasAttr(kReshuffleEachIteration)) { OP_REQUIRES_OK( ctx, ctx->GetAttr(kReshuffleEachIteration, &reshuffle_each_iteration_)); } } void ShuffleDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t buffer_size = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kBufferSize, &buffer_size)); OP_REQUIRES( ctx, buffer_size > 0 || buffer_size == kUnknownCardinality, errors::InvalidArgument( "buffer_size must be greater than zero or UNKNOWN_CARDINALITY")); int64_t count = 1; static std::atomic<int64_t> resource_id_counter(0); const string& container = ctx->resource_manager()->default_container(); auto name = strings::StrCat(ctx->op_kernel().name(), "/", kSeedGenerator, "_", resource_id_counter.fetch_add(1)); if (op_version_ == 3) { auto handle = HandleFromInput(ctx, 4); SeedGeneratorManager* manager = nullptr; Status s = ctx->resource_manager()->Lookup<SeedGeneratorManager>( handle.container(), handle.name(), &manager); int64_t seed; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed, &seed)); int64_t seed2; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed2, &seed2)); RandomSeeds seeds(seed, seed2); bool owns_resource = false; if (errors::IsNotFound(s)) { owns_resource = true; OP_REQUIRES_OK( ctx, ctx->resource_manager()->LookupOrCreate<SeedGeneratorManager>( container, name, &manager, [reshuffle = reshuffle_each_iteration_, &seeds](SeedGeneratorManager** manager) { if (reshuffle) { *manager = new SeedGeneratorManager(new RandomSeedGenerator(seeds)); } else { *manager = new SeedGeneratorManager(new FixedSeedGenerator(seeds)); } return absl::OkStatus(); })); handle = MakeResourceHandle<SeedGenerator>(ctx, container, name); } else { OP_REQUIRES_OK(ctx, s); } *output = new ShuffleDatasetOp::DatasetV3(ctx, input, buffer_size, count, std::move(seeds), manager, std::move(handle), owns_resource); } else if (op_version_ == 2) { auto handle = HandleFromInput(ctx, 2); SeedGeneratorManager* manager = nullptr; Status s = ctx->resource_manager()->Lookup<SeedGeneratorManager>( handle.container(), handle.name(), &manager); bool owns_resource = false; if (errors::IsNotFound(s)) { owns_resource = true; LOG(WARNING) << "Failed to find seed generator resource. Falling back to " "using a non-deterministically seeded generator and " "reshuffling each iteration."; RandomSeeds seeds(0, 0); OP_REQUIRES_OK( ctx, ctx->resource_manager()->LookupOrCreate<SeedGeneratorManager>( container, name, &manager, [&seeds](SeedGeneratorManager** manager) { *manager = new SeedGeneratorManager( new RandomSeedGenerator(seeds)); return absl::OkStatus(); })); handle = MakeResourceHandle<SeedGeneratorManager>(ctx, container, name); } else { OP_REQUIRES_OK(ctx, s); } *output = new ShuffleDatasetOp::DatasetV2(ctx, input, buffer_size, count, manager, std::move(handle), owns_resource); } else { if (op_version_ != 1) { LOG(WARNING) << "Unsupported version of shuffle dataset op: " << op_version_ << ". Defaulting to version 1."; } int64_t seed; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed, &seed)); int64_t seed2; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed2, &seed2)); RandomSeeds seeds(seed, seed2); SeedGeneratorManager* manager; OP_REQUIRES_OK( ctx, ctx->resource_manager()->LookupOrCreate<SeedGeneratorManager>( container, name, &manager, [reshuffle = reshuffle_each_iteration_, &seeds](SeedGeneratorManager** manager) { if (reshuffle) { *manager = new SeedGeneratorManager(new RandomSeedGenerator(seeds)); } else { *manager = new SeedGeneratorManager(new FixedSeedGenerator(seeds)); } return absl::OkStatus(); })); auto handle = MakeResourceHandle<SeedGeneratorManager>(ctx, container, name); *output = new ShuffleDatasetOp::Dataset(ctx, input, buffer_size, count, std::move(seeds), manager, std::move(handle)); } } class ShuffleAndRepeatDatasetOp::Dataset : public ShuffleDatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, int64_t buffer_size, RandomSeeds&& seeds, SeedGeneratorManager* manager, int64_t count, ResourceHandle&& resource_handle) : ShuffleDatasetBase(ctx, input, buffer_size, manager->get(), count), manager_(manager), resource_handle_(std::move(resource_handle)), resource_mgr_(ctx->resource_manager()), seeds_(std::move(seeds)) {} ~Dataset() override { manager_->Unref(); Status s = resource_mgr_->Delete<SeedGeneratorManager>( resource_handle_.container(), resource_handle_.name()); if (!s.ok()) { LOG(WARNING) << "Failed to delete RNG resource: " << s.ToString(); } } string op_type() const override { return kDatasetType; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* buffer_size = nullptr; Node* seed = nullptr; Node* seed2 = nullptr; Node* count = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(buffer_size_, &buffer_size)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed(), &seed)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed2(), &seed2)); TF_RETURN_IF_ERROR(b->AddScalar(count_, &count)); AttrValue reshuffle_each_iteration; b->BuildAttrValue(seed_generator_->reshuffle_each_iteration(), &reshuffle_each_iteration); TF_RETURN_IF_ERROR(b->AddDataset( this, {input_graph_node, buffer_size, seed, seed2, count}, {std::make_pair(kReshuffleEachIteration, reshuffle_each_iteration)}, output)); return absl::OkStatus(); } private: SeedGeneratorManager* const manager_; const ResourceHandle resource_handle_; ResourceMgr* const resource_mgr_; const RandomSeeds seeds_; }; class ShuffleAndRepeatDatasetOp::DatasetV2 : public ShuffleDatasetBase { public: DatasetV2(OpKernelContext* ctx, const DatasetBase* input, int64_t buffer_size, int64_t count, RandomSeeds&& seeds, SeedGeneratorManager* manager, ResourceHandle&& resource_handle, bool owns_resource) : ShuffleDatasetBase(ctx, input, buffer_size, manager->get(), count), manager_(manager), owns_resource_(owns_resource), resource_handle_(std::move(resource_handle)), resource_mgr_(ctx->resource_manager()), seeds_(std::move(seeds)) {} ~DatasetV2() override { manager_->Unref(); if (owns_resource_) { Status s = resource_mgr_->Delete<SeedGeneratorManager>( resource_handle_.container(), resource_handle_.name()); if (!s.ok()) { LOG(WARNING) << "Failed to delete RNG resource: " << s.ToString(); } } } string op_type() const override { return kDatasetType; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* buffer_size_node = nullptr; Node* seed_node = nullptr; Node* seed2_node = nullptr; Node* count_node = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(buffer_size_, &buffer_size_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed(), &seed_node)); TF_RETURN_IF_ERROR(b->AddScalar(seeds_.input_seed2(), &seed2_node)); TF_RETURN_IF_ERROR(b->AddScalar(count_, &count_node)); Node* resource_handle_node = nullptr; Tensor handle(DT_RESOURCE, TensorShape({})); handle.scalar<ResourceHandle>()() = resource_handle_; TF_RETURN_IF_ERROR(b->AddTensor(handle, &resource_handle_node)); AttrValue reshuffle_each_iteration; b->BuildAttrValue(seed_generator_->reshuffle_each_iteration(), &reshuffle_each_iteration); TF_RETURN_IF_ERROR( b->AddDataset(this, {input_graph_node, buffer_size_node, seed_node, seed2_node, count_node, resource_handle_node}, {std::make_pair(kReshuffleEachIteration, reshuffle_each_iteration)}, output)); return absl::OkStatus(); } private: SeedGeneratorManager* const manager_; const bool owns_resource_; const ResourceHandle resource_handle_; ResourceMgr* const resource_mgr_; const RandomSeeds seeds_; }; ShuffleAndRepeatDatasetOp::ShuffleAndRepeatDatasetOp(OpKernelConstruction* ctx) : ShuffleDatasetOpBase(ctx) { auto& op_name = ctx->def().op(); if (op_name == kShuffleAndRepeatDatasetV2) { op_version_ = 2; } else if (op_name == kShuffleAndRepeatDatasetV1) { op_version_ = 1; } if (ctx->HasAttr(kReshuffleEachIteration)) { OP_REQUIRES_OK( ctx, ctx->GetAttr(kReshuffleEachIteration, &reshuffle_each_iteration_)); } } void ShuffleAndRepeatDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t buffer_size = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kBufferSize, &buffer_size)); OP_REQUIRES( ctx, buffer_size > 0 || buffer_size == kUnknownCardinality, errors::InvalidArgument( "buffer_size must be greater than zero or UNKNOWN_CARDINALITY")); int64_t seed; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed, &seed)); int64_t seed2; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kSeed2, &seed2)); int64_t count; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kCount, &count)); OP_REQUIRES(ctx, count > 0 || count == -1, errors::InvalidArgument( "count must be greater than zero or equal to -1.")); RandomSeeds seeds(seed, seed2); static std::atomic<int64_t> resource_id_counter(0); const string& container = ctx->resource_manager()->default_container(); auto name = strings::StrCat(ctx->op_kernel().name(), "/", kSeedGenerator, "_", resource_id_counter.fetch_add(1)); if (op_version_ == 2) { auto handle = HandleFromInput(ctx, 5); SeedGeneratorManager* manager = nullptr; Status s = ctx->resource_manager()->Lookup<SeedGeneratorManager>( handle.container(), handle.name(), &manager); bool owns_resource = false; if (errors::IsNotFound(s)) { owns_resource = true; OP_REQUIRES_OK( ctx, ctx->resource_manager()->LookupOrCreate<SeedGeneratorManager>( container, name, &manager, [reshuffle = reshuffle_each_iteration_, &seeds](SeedGeneratorManager** manager) { if (reshuffle) { *manager = new SeedGeneratorManager(new RandomSeedGenerator(seeds)); } else { *manager = new SeedGeneratorManager(new FixedSeedGenerator(seeds)); } return absl::OkStatus(); })); handle = MakeResourceHandle<SeedGenerator>(ctx, container, name); } else { OP_REQUIRES_OK(ctx, s); } *output = new ShuffleAndRepeatDatasetOp::DatasetV2( ctx, input, buffer_size, count, std::move(seeds), manager, std::move(handle), owns_resource); } else { if (op_version_ != 1) { LOG(WARNING) << "Unsupported version of shuffle dataset op: " << op_version_ << ". Defaulting to version 1."; } SeedGeneratorManager* manager; OP_REQUIRES_OK( ctx, ctx->resource_manager()->LookupOrCreate<SeedGeneratorManager>( container, name, &manager, [reshuffle = reshuffle_each_iteration_, &seeds](SeedGeneratorManager** manager) { if (reshuffle) { *manager = new SeedGeneratorManager(new RandomSeedGenerator(seeds)); } else { *manager = new SeedGeneratorManager(new FixedSeedGenerator(seeds)); } return absl::OkStatus(); })); auto handle = MakeResourceHandle<SeedGeneratorManager>(ctx, container, name); *output = new Dataset(ctx, input, buffer_size, std::move(seeds), manager, count, std::move(handle)); } } namespace { REGISTER_KERNEL_BUILDER(Name("ShuffleDataset").Device(DEVICE_CPU), ShuffleDatasetOp); REGISTER_KERNEL_BUILDER(Name("ShuffleDatasetV2").Device(DEVICE_CPU), ShuffleDatasetOp); REGISTER_KERNEL_BUILDER(Name("ShuffleDatasetV3").Device(DEVICE_CPU), ShuffleDatasetOp); REGISTER_KERNEL_BUILDER(Name("ShuffleAndRepeatDataset").Device(DEVICE_CPU), ShuffleAndRepeatDatasetOp); REGISTER_KERNEL_BUILDER(Name("ShuffleAndRepeatDatasetV2").Device(DEVICE_CPU), ShuffleAndRepeatDatasetOp); } } }
#include "tensorflow/core/kernels/data/shuffle_dataset_op.h" #include <string> #include <utility> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" namespace tensorflow { namespace data { namespace { constexpr char kShuffleNodeName[] = "shuffle_dataset"; constexpr char kShuffleAndRepeatNodeName[] = "shuffle_and_repeat_dataset"; class ShuffleDatasetParams : public DatasetParams { public: template <typename T> ShuffleDatasetParams(T input_dataset_params, int64_t buffer_size, int64_t seed, int64_t seed2, int64_t count, bool reshuffle_each_iteration, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), buffer_size_(buffer_size), seed_(seed), seed2_(seed2), count_(count), reshuffle_each_iteration_(reshuffle_each_iteration) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { std::vector<Tensor> input_tensors = { CreateTensor<int64_t>(TensorShape({}), {buffer_size_}), CreateTensor<int64_t>(TensorShape({}), {seed_}), CreateTensor<int64_t>(TensorShape({}), {seed2_})}; if (count_ != 1) { input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {count_})); } return input_tensors; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back(ShuffleDatasetOpBase::kInputDataset); input_names->emplace_back(ShuffleDatasetOpBase::kBufferSize); input_names->emplace_back(ShuffleDatasetOpBase::kSeed); input_names->emplace_back(ShuffleDatasetOpBase::kSeed2); if (count_ != 1) { input_names->emplace_back(ShuffleAndRepeatDatasetOp::kCount); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back("output_types", output_dtypes_); attr_vector->emplace_back("output_shapes", output_shapes_); attr_vector->emplace_back("reshuffle_each_iteration", reshuffle_each_iteration_); attr_vector->emplace_back("metadata", ""); return absl::OkStatus(); } string dataset_type() const override { if (count_ != 1) { return ShuffleAndRepeatDatasetOp::kDatasetType; } return ShuffleDatasetOp::kDatasetType; } int64_t count() const { return count_; } private: int64_t buffer_size_; int64_t seed_; int64_t seed2_; int64_t count_; bool reshuffle_each_iteration_; }; class ShuffleDatasetOpTest : public DatasetOpsTestBase {}; ShuffleDatasetParams ShuffleDatasetParams1() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), 3, 1, 2, 1, false, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParams2() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), 10, 1, 2, 1, true, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParams3() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), 2, 1, 2, 1, true, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParams4() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), 10, 2, 2, 1, true, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParams5() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), 1, 1, 2, 1, true, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParams6() { return ShuffleDatasetParams(RangeDatasetParams(0, 0, 1), 10, 1, 2, 1, true, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParams7() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), 10, 1, 2, 2, false, {DT_INT64}, {PartialTensorShape({})}, kShuffleAndRepeatNodeName); } ShuffleDatasetParams ShuffleDatasetParams8() { return ShuffleDatasetParams(RangeDatasetParams(0, 3, 1), 10, 1, 2, -1, false, {DT_INT64}, {PartialTensorShape({})}, kShuffleAndRepeatNodeName); } ShuffleDatasetParams ShuffleDatasetParamsWithUnknownCardinality() { return ShuffleDatasetParams(RangeDatasetParams(0, 10, 1), -2, 1, 2, 1, true, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleDatasetParamsWithInvalidBufferSize() { return ShuffleDatasetParams(RangeDatasetParams(0, 0, 1), -1, 1, 2, 1, false, {DT_INT64}, {PartialTensorShape({})}, kShuffleNodeName); } ShuffleDatasetParams ShuffleAndRepeatDatasetParamsWithInvalidBufferSize() { return ShuffleDatasetParams(RangeDatasetParams(0, 0, 1), -1, 1, 2, 2, false, {DT_INT64}, {PartialTensorShape({})}, kShuffleAndRepeatNodeName); } ShuffleDatasetParams ShuffleAndRepeatDatasetParamsWithInvalidCount() { return ShuffleDatasetParams(RangeDatasetParams(0, 0, 1), 10, 1, 2, 0, false, {DT_INT64}, {PartialTensorShape({})}, kShuffleAndRepeatNodeName); } template <typename T> struct GetNextTestCase { T dataset_params; std::vector<Tensor> expected_shuffle_outputs; std::vector<Tensor> expected_reshuffle_outputs; }; std::vector<GetNextTestCase<ShuffleDatasetParams>> GetNextTestCases() { return { {ShuffleDatasetParams1(), CreateTensors<int64_t>( TensorShape({}), {{2}, {3}, {0}, {5}, {6}, {4}, {7}, {8}, {9}, {1}}), CreateTensors<int64_t>( TensorShape({}), {{2}, {3}, {0}, {5}, {6}, {4}, {7}, {8}, {9}, {1}})}, {ShuffleDatasetParams2(), CreateTensors<int64_t>( TensorShape({}), {{2}, {6}, {1}, {3}, {9}, {5}, {0}, {8}, {7}, {4}}), CreateTensors<int64_t>( TensorShape({}), {{1}, {6}, {0}, {5}, {2}, {7}, {4}, {3}, {9}, {8}})}, {ShuffleDatasetParams3(), CreateTensors<int64_t>( TensorShape({}), {{0}, {2}, {1}, {3}, {5}, {6}, {4}, {7}, {8}, {9}}), CreateTensors<int64_t>( TensorShape({}), {{1}, {0}, {2}, {3}, {4}, {5}, {6}, {7}, {9}, {8}})}, {ShuffleDatasetParams4(), CreateTensors<int64_t>( TensorShape({}), {{3}, {0}, {8}, {1}, {5}, {4}, {7}, {2}, {6}, {9}}), CreateTensors<int64_t>( TensorShape({}), {{4}, {6}, {9}, {0}, {1}, {8}, {2}, {7}, {3}, {5}})}, {ShuffleDatasetParams5(), CreateTensors<int64_t>( TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}), CreateTensors<int64_t>( TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}})}, {ShuffleDatasetParams6(), {}, {}}, {ShuffleDatasetParams7(), CreateTensors<int64_t>( TensorShape({}), {{9}, {0}, {8}, {6}, {1}, {3}, {7}, {2}, {4}, {5}, {9}, {0}, {8}, {6}, {1}, {3}, {7}, {2}, {4}, {5}}), CreateTensors<int64_t>( TensorShape({}), {{9}, {0}, {8}, {6}, {1}, {3}, {7}, {2}, {4}, {5}, {9}, {0}, {8}, {6}, {1}, {3}, {7}, {2}, {4}, {5}})}, {ShuffleDatasetParams8(), CreateTensors<int64_t>( TensorShape({}), {{2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}}), CreateTensors<int64_t>( TensorShape({}), {{2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}})}, {ShuffleDatasetParamsWithUnknownCardinality(), CreateTensors<int64_t>( TensorShape({}), {{2}, {6}, {1}, {3}, {9}, {5}, {0}, {8}, {7}, {4}}), CreateTensors<int64_t>( TensorShape({}), {{1}, {6}, {0}, {5}, {2}, {7}, {4}, {3}, {9}, {8}})}}; } class ParameterizedGetNextTest : public ShuffleDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<ShuffleDatasetParams>> {}; TEST_P(ParameterizedGetNextTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); bool end_of_sequence = false; std::vector<Tensor> shuffled_out_tensors; while (!end_of_sequence) { std::vector<Tensor> next; TF_EXPECT_OK( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence)); shuffled_out_tensors.insert(shuffled_out_tensors.end(), next.begin(), next.end()); if (test_case.dataset_params.count() == -1 && shuffled_out_tensors.size() == test_case.expected_shuffle_outputs.size()) { break; } } end_of_sequence = false; TF_ASSERT_OK(dataset_->MakeIterator( iterator_ctx_.get(), nullptr, test_case.dataset_params.iterator_prefix(), &iterator_)); std::vector<Tensor> reshuffled_out_tensors; while (!end_of_sequence) { std::vector<Tensor> next; TF_EXPECT_OK( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence)); reshuffled_out_tensors.insert(reshuffled_out_tensors.end(), next.begin(), next.end()); if (test_case.dataset_params.count() == -1 && reshuffled_out_tensors.size() == test_case.expected_shuffle_outputs.size()) { break; } } TF_EXPECT_OK(ExpectEqual(shuffled_out_tensors, test_case.expected_shuffle_outputs, true)); TF_EXPECT_OK(ExpectEqual(reshuffled_out_tensors, test_case.expected_reshuffle_outputs, true)); } INSTANTIATE_TEST_CASE_P(ShuffleDatasetOpTest, ParameterizedGetNextTest, ::testing::ValuesIn(GetNextTestCases())); std::vector<DatasetNodeNameTestCase<ShuffleDatasetParams>> DatasetNodeNameTestCases() { return {{ShuffleDatasetParams1(), kShuffleNodeName}, {ShuffleDatasetParams7(), kShuffleAndRepeatNodeName}}; } DATASET_NODE_NAME_TEST_P(ShuffleDatasetOpTest, ShuffleDatasetParams, DatasetNodeNameTestCases()) std::vector<DatasetTypeStringTestCase<ShuffleDatasetParams>> DatasetTypeStringTestCases() { return {{ShuffleDatasetParams1(), name_utils::OpName( ShuffleDatasetOp::kDatasetType)}, {ShuffleDatasetParams7(), name_utils::OpName(ShuffleAndRepeatDatasetOp::kDatasetType)}}; } DATASET_TYPE_STRING_TEST_P(ShuffleDatasetOpTest, ShuffleDatasetParams, DatasetTypeStringTestCases()) TEST_F(ShuffleDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = ShuffleDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } TEST_F(ShuffleDatasetOpTest, DatasetOutputShapes) { auto dataset_params = ShuffleDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes(dataset_params.output_shapes())); } std::vector<CardinalityTestCase<ShuffleDatasetParams>> CardinalityTestCases() { return {{ShuffleDatasetParams1(), 10}, {ShuffleDatasetParams2(), 10}, {ShuffleDatasetParams3(), 10}, {ShuffleDatasetParams4(), 10}, {ShuffleDatasetParams5(), 10}, {ShuffleDatasetParams6(), 0}, {ShuffleDatasetParams7(), 20}, {ShuffleDatasetParams8(), kInfiniteCardinality}, {ShuffleDatasetParamsWithUnknownCardinality(), 10}}; } DATASET_CARDINALITY_TEST_P(ShuffleDatasetOpTest, ShuffleDatasetParams, CardinalityTestCases()) TEST_F(ShuffleDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = ShuffleDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } TEST_F(ShuffleDatasetOpTest, IteratorOutputShapes) { auto dataset_params = ShuffleDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes(dataset_params.output_shapes())); } TEST_F(ShuffleDatasetOpTest, IteratorOutputPrefix) { auto dataset_params = ShuffleDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( ShuffleDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } template <typename T> struct IteratorSaveAndRestoreTestCase { T dataset_params; std::vector<int> breakpoints; std::vector<Tensor> expected_shuffle_outputs; }; std::vector<IteratorSaveAndRestoreTestCase<ShuffleDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{ShuffleDatasetParams1(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape({}), {{2}, {3}, {0}, {5}, {6}, {4}, {7}, {8}, {9}, {1}})}, {ShuffleDatasetParams2(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape({}), {{2}, {6}, {1}, {3}, {9}, {5}, {0}, {8}, {7}, {4}})}, {ShuffleDatasetParams3(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape({}), {{0}, {2}, {1}, {3}, {5}, {6}, {4}, {7}, {8}, {9}})}, {ShuffleDatasetParams4(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape({}), {{3}, {0}, {8}, {1}, {5}, {4}, {7}, {2}, {6}, {9}})}, {ShuffleDatasetParams5(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape({}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}})}, {ShuffleDatasetParams6(), {0, 4, 11}, {}}, {ShuffleDatasetParams7(), {0, 5, 22}, CreateTensors<int64_t>( TensorShape({}), {{9}, {0}, {8}, {6}, {1}, {3}, {7}, {2}, {4}, {5}, {9}, {0}, {8}, {6}, {1}, {3}, {7}, {2}, {4}, {5}})}, {ShuffleDatasetParams8(), {0, 5, 20}, CreateTensors<int64_t>( TensorShape({}), {{2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}, {2}, {0}, {1}})}, {ShuffleDatasetParamsWithUnknownCardinality(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape({}), {{2}, {6}, {1}, {3}, {9}, {5}, {0}, {8}, {7}, {4}})}}; } class ParameterizedIteratorSaveAndRestoreTest : public ShuffleDatasetOpTest, public ::testing::WithParamInterface< IteratorSaveAndRestoreTestCase<ShuffleDatasetParams>> {}; TEST_P(ParameterizedIteratorSaveAndRestoreTest, IteratorSaveAndRestore) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); std::unique_ptr<SerializationContext> serialization_ctx; TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; int cur_iteration = 0; const std::vector<int>& breakpoints = test_case.breakpoints; for (int breakpoint : breakpoints) { VariantTensorDataWriter writer; TF_EXPECT_OK(iterator_->Save(serialization_ctx.get(), &writer)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); TF_EXPECT_OK(RestoreIterator(iterator_ctx_.get(), &reader, test_case.dataset_params.iterator_prefix(), *dataset_, &iterator_)); while (cur_iteration <= breakpoint) { std::vector<Tensor> next; TF_EXPECT_OK( iterator_->GetNext(iterator_ctx_.get(), &next, &end_of_sequence)); out_tensors.insert(out_tensors.end(), next.begin(), next.end()); cur_iteration++; } } TF_EXPECT_OK(ExpectEqual(out_tensors, test_case.expected_shuffle_outputs, true)); } INSTANTIATE_TEST_CASE_P(ShuffleDatasetOpTest, ParameterizedIteratorSaveAndRestoreTest, ::testing::ValuesIn(IteratorSaveAndRestoreTestCases())); TEST_F(ShuffleDatasetOpTest, InvalidArguments) { std::vector<ShuffleDatasetParams> dataset_params_vec( {ShuffleDatasetParamsWithInvalidBufferSize(), ShuffleAndRepeatDatasetParamsWithInvalidBufferSize(), ShuffleAndRepeatDatasetParamsWithInvalidCount()}); for (const auto& dataset_params : dataset_params_vec) { EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/shuffle_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/shuffle_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7bc6ad5c-bb5f-48df-87f8-8becd1d89c17
cpp
tensorflow/tensorflow
per_image_standardization
tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.cc
tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.h" #include <cmath> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace per_image_standardization { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline void PerImageStandardization(dim_t batches, dim_t height, dim_t width, dim_t num_channels, const float* input_data, float* output_data) { const dim_t num_pixels_per_image = height * width * num_channels; const float inv_num_pixels_per_image = 1.0f / num_pixels_per_image; for (ind_t b = 0; b < batches; ++b) { const dim_t offset = b * num_pixels_per_image; const float* input_ptr = input_data + offset; float* output_ptr = output_data + offset; float mean = 0.0f; for (ind_t i = 0; i < num_pixels_per_image; ++i) { mean += input_ptr[i]; } mean *= inv_num_pixels_per_image; float variance = 0.0f; for (ind_t i = 0; i < num_pixels_per_image; ++i) { const float diff = input_ptr[i] - mean; variance += diff * diff * inv_num_pixels_per_image; output_ptr[i] = diff; } const float inv_adjusted_stddev = fmin(num_pixels_per_image, 1.0f / sqrt(variance)); for (ind_t i = 0; i < num_pixels_per_image; ++i) { output_ptr[i] *= inv_adjusted_stddev; } } } void ComputePerImageStandardization(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t img_num_channels = img->Dims()[3]; MutableDataRef* output = outputs[0]; output->Resize({img_num_batches, img_height, img_width, img_num_channels}); float* output_data = reinterpret_cast<float*>(output->Data()); PerImageStandardization(img_num_batches, img_height, img_width, img_num_channels, img_data, output_data); } } const Algo* Impl_PerImageStandardization() { static const Algo per_image_standardization = { &ComputePerImageStandardization, nullptr}; return &per_image_standardization; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace per_image_standardization { namespace { struct PerImageStandardizationTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; }; class PerImageStandardizationTest : public testing::TestWithParam<PerImageStandardizationTestParams> {}; TEST_P(PerImageStandardizationTest, FloatPixelType) { const PerImageStandardizationTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* per_image_standardization = Impl_PerImageStandardization(); per_image_standardization->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), img.Dims()); constexpr float kAbsError = 0.01f; float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( PerImageStandardizationTests, PerImageStandardizationTest, testing::ValuesIn({ PerImageStandardizationTestParams{ {1, 2, 2, 1}, {1, 2, 3, 4}, {-1.3416407, -0.4472136, 0.4472136, 1.3416407}}, PerImageStandardizationTestParams{ {2, 2, 2, 1}, {1, 2, 3, 4, 1, 2, 4, 8}, {-1.3416407, -0.4472136, 0.4472136, 1.3416407, -1.0257553, -0.65275335, 0.09325048, 1.5852581}}, PerImageStandardizationTestParams{ {2, 2, 2, 2}, {1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 2, 2, 3, 2, 4, 2}, {-0.8451542, -0.16903085, -0.8451542, 0.50709254, -0.8451542, 1.1832159, -0.8451542, 1.8593392, -1.5075567, -0.30151135, -0.30151135, -0.30151135, 0.904534, -0.30151135, 2.1105793, -0.30151135}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8a753d44-009b-4e57-92f1-ff59a6d25495
cpp
tensorflow/tensorflow
skip_dataset_op
tensorflow/core/kernels/data/skip_dataset_op.cc
tensorflow/core/kernels/data/skip_dataset_op_test.cc
#include "tensorflow/core/kernels/data/skip_dataset_op.h" #include <cstddef> #include <cstdint> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { constexpr const char* const SkipDatasetOp::kDatasetType; constexpr const char* const SkipDatasetOp::kInputDataset; constexpr const char* const SkipDatasetOp::kCount; constexpr const char* const SkipDatasetOp::kOutputTypes; constexpr const char* const SkipDatasetOp::kOutputShapes; constexpr char kEmptySkip[] = "EmptySkip"; constexpr char kFiniteSkip[] = "FiniteSkip"; constexpr char kCurIndex[] = "i"; constexpr char kInputImplEmpty[] = "input_impl_empty"; class SkipDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, int64_t count, const DatasetBase* input) : DatasetBase(DatasetContext(ctx)), count_(count), input_(input) { input_->Ref(); if (input_ != nullptr && count >= 0) { random_indexing_compatible_ = input_->RandomIndexingCompatible(); } else { random_indexing_compatible_ = absl::FailedPreconditionError( absl::StrCat("Global shuffling does not support empty dataset or " "skipping the entire dataset. Got skip(", count, ").")); } } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { if (count_ < 0) { return std::make_unique<EmptyIterator>(EmptyIterator::Params{ this, name_utils::IteratorPrefix(kEmptySkip, prefix)}); } else { return std::make_unique<FiniteIterator>(FiniteIterator::Params{ this, name_utils::IteratorPrefix(kFiniteSkip, prefix)}); } } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { int64_t n = input_->Cardinality(options); if (n == kInfiniteCardinality || n == kUnknownCardinality) { return n; } return count_ < 0 ? 0 : std::max(int64_t{0}, n - count_); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); return input_->Get(ctx, index + count_, out_tensors); } absl::Status RandomIndexingCompatible() const override { return random_indexing_compatible_; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* count = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(count_, &count)); TF_RETURN_IF_ERROR(b->AddDataset(this, {input_graph_node, count}, output)); return absl::OkStatus(); } private: class EmptyIterator : public DatasetIterator<Dataset> { public: explicit EmptyIterator(const Params& params) : DatasetIterator<Dataset>(params) {} bool SymbolicCheckpointCompatible() const override { return true; } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { *end_of_sequence = true; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), 1); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { return absl::OkStatus(); } }; class FiniteIterator : public DatasetIterator<Dataset> { public: explicit FiniteIterator(const Params& params) : DatasetIterator<Dataset>(params), i_(0) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { return dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { if (ctx->index_mapper() != nullptr) { return Get(ctx, out_tensors, end_of_sequence); } mutex_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } if (i_ < dataset()->count_) { int num_skipped; TF_RETURN_IF_ERROR(input_impl_->Skip(ctx, dataset()->count_ - i_, end_of_sequence, &num_skipped)); i_ += num_skipped; if (*end_of_sequence) { input_impl_.reset(); return absl::OkStatus(); } } TF_RETURN_IF_ERROR( input_impl_->GetNext(ctx, out_tensors, end_of_sequence)); if (*end_of_sequence) { input_impl_.reset(); } return absl::OkStatus(); } absl::Status Get(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) { mutex_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } IteratorContextWithIndexMapper ctx_with_index_mapper(ctx, this); TF_RETURN_IF_ERROR(input_impl_->GetNext(ctx_with_index_mapper.Get(), out_tensors, end_of_sequence)); ctx_with_index_mapper.MergeCheckpoint(); return absl::OkStatus(); } IndexMapperFn GetIndexMapper( IndexMapperFn parent_index_mapper) const override { int64_t skip_count = dataset()->count_; return [parent_index_mapper, skip_count](size_t element_position) -> absl::StatusOr<size_t> { TF_ASSIGN_OR_RETURN(size_t shuffled_element_position, parent_index_mapper(element_position)); return shuffled_element_position + skip_count; }; } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), 1); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kCurIndex, i_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { if (ctx->restored_element_count().has_value()) { mutex_lock l(mu_); return RestoreInput(ctx, reader, input_impl_); } mutex_lock l(mu_); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kCurIndex, &i_)); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (!static_cast<bool>(input_empty)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } return absl::OkStatus(); } private: mutex mu_; int64_t i_ TF_GUARDED_BY(mu_); std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); }; const int64_t count_; const DatasetBase* const input_; absl::Status random_indexing_compatible_; }; SkipDatasetOp::SkipDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void SkipDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t count; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kCount, &count)); *output = new Dataset(ctx, count, input); } namespace { REGISTER_KERNEL_BUILDER(Name("SkipDataset").Device(DEVICE_CPU), SkipDatasetOp); } } }
#include "tensorflow/core/kernels/data/skip_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "skip_dataset"; class SkipDatasetParams : public DatasetParams { public: template <typename T> SkipDatasetParams(T input_dataset_params, int64_t count, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), count_(count) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return {CreateTensor<int64_t>(TensorShape({}), {count_})}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back(SkipDatasetOp::kInputDataset); input_names->emplace_back(SkipDatasetOp::kCount); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back("output_types", output_dtypes_); attr_vector->emplace_back("output_shapes", output_shapes_); attr_vector->emplace_back("metadata", ""); return absl::OkStatus(); } string dataset_type() const override { return SkipDatasetOp::kDatasetType; } private: int64_t count_; }; class SkipDatasetOpTest : public DatasetOpsTestBase {}; SkipDatasetParams SkipDatasetParams1() { return SkipDatasetParams( RangeDatasetParams(0, 10, 1), 4, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } SkipDatasetParams SkipDatasetParams2() { return SkipDatasetParams( RangeDatasetParams(0, 10, 1), 25, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } SkipDatasetParams SkipDatasetParams3() { return SkipDatasetParams( RangeDatasetParams(0, 10, 1), 10, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } SkipDatasetParams SkipDatasetParams4() { return SkipDatasetParams( RangeDatasetParams(0, 10, 1), 0, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } SkipDatasetParams SkipDatasetParams5() { return SkipDatasetParams( RangeDatasetParams(0, 10, 1), -1, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } std::vector<GetNextTestCase<SkipDatasetParams>> GetNextTestCases() { return { {SkipDatasetParams1(), CreateTensors<int64_t>(TensorShape{}, {{4}, {5}, {6}, {7}, {8}, {9}})}, {SkipDatasetParams2(), {}}, {SkipDatasetParams3(), {}}, {SkipDatasetParams4(), CreateTensors<int64_t>( TensorShape{}, {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}})}, {SkipDatasetParams5(), {}}}; } ITERATOR_GET_NEXT_TEST_P(SkipDatasetOpTest, SkipDatasetParams, GetNextTestCases()) TEST_F(SkipDatasetOpTest, DatasetNodeName) { auto dataset_params = SkipDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(SkipDatasetOpTest, DatasetTypeString) { auto dataset_params = SkipDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK( CheckDatasetTypeString(name_utils::OpName(SkipDatasetOp::kDatasetType))); } TEST_F(SkipDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = SkipDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } TEST_F(SkipDatasetOpTest, DatasetOutputShapes) { auto dataset_params = SkipDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes({PartialTensorShape({})})); } std::vector<CardinalityTestCase<SkipDatasetParams>> CardinalityTestCases() { return {{SkipDatasetParams1(), 6}, {SkipDatasetParams2(), 0}, {SkipDatasetParams3(), 0}, {SkipDatasetParams4(), 10}, {SkipDatasetParams5(), 0}}; } DATASET_CARDINALITY_TEST_P(SkipDatasetOpTest, SkipDatasetParams, CardinalityTestCases()) TEST_F(SkipDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = SkipDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } TEST_F(SkipDatasetOpTest, IteratorOutputShapes) { auto dataset_params = SkipDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes({PartialTensorShape({})})); } std::vector<IteratorPrefixTestCase<SkipDatasetParams>> IteratorPrefixTestCases() { return {{SkipDatasetParams1(), name_utils::IteratorPrefix("FiniteSkip", SkipDatasetParams1().iterator_prefix())}, {SkipDatasetParams2(), name_utils::IteratorPrefix( "FiniteSkip", SkipDatasetParams2().iterator_prefix())}, {SkipDatasetParams3(), name_utils::IteratorPrefix( "FiniteSkip", SkipDatasetParams3().iterator_prefix())}, {SkipDatasetParams4(), name_utils::IteratorPrefix( "FiniteSkip", SkipDatasetParams4().iterator_prefix())}, {SkipDatasetParams5(), name_utils::IteratorPrefix( "EmptySkip", SkipDatasetParams5().iterator_prefix())}}; } ITERATOR_PREFIX_TEST_P(SkipDatasetOpTest, SkipDatasetParams, IteratorPrefixTestCases()) std::vector<IteratorSaveAndRestoreTestCase<SkipDatasetParams>> IteratorSaveAndRestoreTestCases() { return { {SkipDatasetParams1(), {0, 2, 7}, CreateTensors<int64_t>(TensorShape{}, {{4}, {5}, {6}, {7}, {8}, {9}})}, {SkipDatasetParams2(), {0, 2, 5}, {}}, {SkipDatasetParams3(), {0, 2, 5}, {}}, {SkipDatasetParams4(), {0, 2, 5, 11}, CreateTensors<int64_t>( TensorShape{}, {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}})}, {SkipDatasetParams5(), {0, 2, 5}, {}}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(SkipDatasetOpTest, SkipDatasetParams, IteratorSaveAndRestoreTestCases()) } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/skip_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/skip_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2856eed2-70da-4d70-ac4a-3065123d029d
cpp
tensorflow/tensorflow
permutation
tensorflow/compiler/mlir/quantization/stablehlo/cc/permutation.h
tensorflow/compiler/mlir/quantization/stablehlo/cc/permutation_test.cc
#ifndef TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_CC_PERMUTATION_H_ #define TENSORFLOW_COMPILER_MLIR_QUANTIZATION_STABLEHLO_CC_PERMUTATION_H_ #include <cstdint> #include <type_traits> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Support/LLVM.h" namespace mlir::quant { template <typename T, typename = std::enable_if_t<std::is_default_constructible_v<T>, void>> SmallVector<T> Permute(const ArrayRef<T> values, const ArrayRef<int64_t> permutation) { SmallVector<T> permuted_values(values.size(), T{}); for (auto [i, permutation_idx] : llvm::enumerate(permutation)) { permuted_values[i] = std::move(values[permutation_idx]); } return permuted_values; } } #endif
#include "tensorflow/compiler/mlir/quantization/stablehlo/cc/permutation.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/Support/LLVM.h" namespace mlir::quant { namespace { using testing::ElementsAre; using testing::IsEmpty; TEST(PermutationTest, PermuteEmptyArray) { const SmallVector<int> permutation_result = Permute<int>(SmallVector<int>{}, SmallVector<int64_t>{}); EXPECT_THAT(permutation_result, IsEmpty()); } TEST(PermutationTest, PermuteOneElement) { const SmallVector<int> single_element_array = {8}; const SmallVector<int64_t> permutation = {0}; const SmallVector<int> permutation_result = Permute<int>(single_element_array, permutation); EXPECT_THAT(permutation_result, ElementsAre(8)); } TEST(PermutationTest, PermuteFourElements) { const SmallVector<int> arr = {0, 3, 1, 2}; const SmallVector<int64_t> permutation = {0, 2, 3, 1}; const SmallVector<int> permutation_result = Permute<int>(arr, permutation); EXPECT_THAT(permutation_result, ElementsAre(0, 1, 2, 3)); } TEST(PermutationTest, PermuteFourStringElements) { const SmallVector<std::string> arr = {"a", "b", "c", "d"}; const SmallVector<int64_t> permutation = {0, 2, 3, 1}; const SmallVector<std::string> permutation_result = Permute<std::string>(arr, permutation); EXPECT_THAT(permutation_result, ElementsAre("a", "c", "d", "b")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/cc/permutation.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/stablehlo/cc/permutation_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e70903f9-fbb2-42e6-8fd2-9a94528cd959
cpp
google/cel-cpp
qualified_reference_resolver
eval/compiler/qualified_reference_resolver.cc
eval/compiler/qualified_reference_resolver_test.cc
#include "eval/compiler/qualified_reference_resolver.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "base/ast.h" #include "base/ast_internal/ast_impl.h" #include "base/ast_internal/expr.h" #include "base/builtins.h" #include "base/kind.h" #include "common/ast_rewrite.h" #include "eval/compiler/flat_expr_builder_extensions.h" #include "eval/compiler/resolver.h" #include "runtime/internal/issue_collector.h" #include "runtime/runtime_issue.h" namespace google::api::expr::runtime { namespace { using ::cel::RuntimeIssue; using ::cel::ast_internal::Expr; using ::cel::ast_internal::Reference; using ::cel::runtime_internal::IssueCollector; constexpr absl::string_view kOptionalOr = "or"; constexpr absl::string_view kOptionalOrValue = "orValue"; bool IsSpecialFunction(absl::string_view function_name) { return function_name == cel::builtin::kAnd || function_name == cel::builtin::kOr || function_name == cel::builtin::kIndex || function_name == cel::builtin::kTernary || function_name == kOptionalOr || function_name == kOptionalOrValue || function_name == "cel.@block"; } bool OverloadExists(const Resolver& resolver, absl::string_view name, const std::vector<cel::Kind>& arguments_matcher, bool receiver_style = false) { return !resolver.FindOverloads(name, receiver_style, arguments_matcher) .empty() || !resolver.FindLazyOverloads(name, receiver_style, arguments_matcher) .empty(); } absl::optional<std::string> BestOverloadMatch(const Resolver& resolver, absl::string_view base_name, int argument_count) { if (IsSpecialFunction(base_name)) { return std::string(base_name); } auto arguments_matcher = ArgumentsMatcher(argument_count); auto names = resolver.FullyQualifiedNames(base_name); for (auto name = names.begin(); name != names.end(); ++name) { if (OverloadExists(resolver, *name, arguments_matcher)) { if (base_name[0] == '.') { return std::string(base_name); } return *name; } } return absl::nullopt; } class ReferenceResolver : public cel::AstRewriterBase { public: ReferenceResolver( const absl::flat_hash_map<int64_t, Reference>& reference_map, const Resolver& resolver, IssueCollector& issue_collector) : reference_map_(reference_map), resolver_(resolver), issues_(issue_collector), progress_status_(absl::OkStatus()) {} bool PreVisitRewrite(Expr& expr) override { const Reference* reference = GetReferenceForId(expr.id()); if (reference != nullptr && reference->has_value()) { if (reference->value().has_int64_value()) { expr.mutable_const_expr().set_int64_value( reference->value().int64_value()); return true; } else { return false; } } if (reference != nullptr) { if (expr.has_ident_expr()) { return MaybeUpdateIdentNode(&expr, *reference); } else if (expr.has_select_expr()) { return MaybeUpdateSelectNode(&expr, *reference); } else { return false; } } return false; } bool PostVisitRewrite(Expr& expr) override { const Reference* reference = GetReferenceForId(expr.id()); if (expr.has_call_expr()) { return MaybeUpdateCallNode(&expr, reference); } return false; } const absl::Status& GetProgressStatus() const { return progress_status_; } private: bool MaybeUpdateCallNode(Expr* out, const Reference* reference) { auto& call_expr = out->mutable_call_expr(); const std::string& function = call_expr.function(); if (reference != nullptr && reference->overload_id().empty()) { UpdateStatus(issues_.AddIssue( RuntimeIssue::CreateWarning(absl::InvalidArgumentError( absl::StrCat("Reference map doesn't provide overloads for ", out->call_expr().function()))))); } bool receiver_style = call_expr.has_target(); int arg_num = call_expr.args().size(); if (receiver_style) { auto maybe_namespace = ToNamespace(call_expr.target()); if (maybe_namespace.has_value()) { std::string resolved_name = absl::StrCat(*maybe_namespace, ".", function); auto resolved_function = BestOverloadMatch(resolver_, resolved_name, arg_num); if (resolved_function.has_value()) { call_expr.set_function(*resolved_function); call_expr.set_target(nullptr); return true; } } } else { auto maybe_resolved_function = BestOverloadMatch(resolver_, function, arg_num); if (!maybe_resolved_function.has_value()) { UpdateStatus(issues_.AddIssue(RuntimeIssue::CreateWarning( absl::InvalidArgumentError(absl::StrCat( "No overload found in reference resolve step for ", function)), RuntimeIssue::ErrorCode::kNoMatchingOverload))); } else if (maybe_resolved_function.value() != function) { call_expr.set_function(maybe_resolved_function.value()); return true; } } if (call_expr.has_target() && !IsSpecialFunction(function) && !OverloadExists(resolver_, function, ArgumentsMatcher(arg_num + 1), true)) { UpdateStatus(issues_.AddIssue(RuntimeIssue::CreateWarning( absl::InvalidArgumentError(absl::StrCat( "No overload found in reference resolve step for ", function)), RuntimeIssue::ErrorCode::kNoMatchingOverload))); } return false; } bool MaybeUpdateSelectNode(Expr* out, const Reference& reference) { if (out->select_expr().test_only()) { UpdateStatus(issues_.AddIssue(RuntimeIssue::CreateWarning( absl::InvalidArgumentError("Reference map points to a presence " "test -- has(container.attr)")))); } else if (!reference.name().empty()) { out->mutable_ident_expr().set_name(reference.name()); rewritten_reference_.insert(out->id()); return true; } return false; } bool MaybeUpdateIdentNode(Expr* out, const Reference& reference) { if (!reference.name().empty() && reference.name() != out->ident_expr().name()) { out->mutable_ident_expr().set_name(reference.name()); rewritten_reference_.insert(out->id()); return true; } return false; } absl::optional<std::string> ToNamespace(const Expr& expr) { absl::optional<std::string> maybe_parent_namespace; if (rewritten_reference_.find(expr.id()) != rewritten_reference_.end()) { return absl::nullopt; } if (expr.has_ident_expr()) { return expr.ident_expr().name(); } else if (expr.has_select_expr()) { if (expr.select_expr().test_only()) { return absl::nullopt; } maybe_parent_namespace = ToNamespace(expr.select_expr().operand()); if (!maybe_parent_namespace.has_value()) { return absl::nullopt; } return absl::StrCat(*maybe_parent_namespace, ".", expr.select_expr().field()); } else { return absl::nullopt; } } const Reference* GetReferenceForId(int64_t expr_id) { auto iter = reference_map_.find(expr_id); if (iter == reference_map_.end()) { return nullptr; } if (expr_id == 0) { UpdateStatus(issues_.AddIssue( RuntimeIssue::CreateWarning(absl::InvalidArgumentError( "reference map entries for expression id 0 are not supported")))); return nullptr; } return &iter->second; } void UpdateStatus(absl::Status status) { if (progress_status_.ok() && !status.ok()) { progress_status_ = std::move(status); return; } status.IgnoreError(); } const absl::flat_hash_map<int64_t, Reference>& reference_map_; const Resolver& resolver_; IssueCollector& issues_; absl::Status progress_status_; absl::flat_hash_set<int64_t> rewritten_reference_; }; class ReferenceResolverExtension : public AstTransform { public: explicit ReferenceResolverExtension(ReferenceResolverOption opt) : opt_(opt) {} absl::Status UpdateAst(PlannerContext& context, cel::ast_internal::AstImpl& ast) const override { if (opt_ == ReferenceResolverOption::kCheckedOnly && ast.reference_map().empty()) { return absl::OkStatus(); } return ResolveReferences(context.resolver(), context.issue_collector(), ast) .status(); } private: ReferenceResolverOption opt_; }; } absl::StatusOr<bool> ResolveReferences(const Resolver& resolver, IssueCollector& issues, cel::ast_internal::AstImpl& ast) { ReferenceResolver ref_resolver(ast.reference_map(), resolver, issues); bool was_rewritten = cel::AstRewrite(ast.root_expr(), ref_resolver); if (!ref_resolver.GetProgressStatus().ok()) { return ref_resolver.GetProgressStatus(); } return was_rewritten; } std::unique_ptr<AstTransform> NewReferenceResolverExtension( ReferenceResolverOption option) { return std::make_unique<ReferenceResolverExtension>(option); } }
#include "eval/compiler/qualified_reference_resolver.h" #include <memory> #include <string> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/container/flat_hash_map.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "base/ast.h" #include "base/ast_internal/ast_impl.h" #include "base/ast_internal/expr.h" #include "base/builtins.h" #include "common/memory.h" #include "common/type_factory.h" #include "common/type_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/compiler/resolver.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_function.h" #include "eval/public/cel_function_registry.h" #include "extensions/protobuf/ast_converters.h" #include "internal/casts.h" #include "internal/testing.h" #include "runtime/internal/issue_collector.h" #include "runtime/runtime_issue.h" #include "runtime/type_registry.h" #include "google/protobuf/text_format.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::cel::Ast; using ::cel::RuntimeIssue; using ::cel::ast_internal::AstImpl; using ::cel::ast_internal::Expr; using ::cel::ast_internal::SourceInfo; using ::cel::extensions::internal::ConvertProtoExprToNative; using ::cel::runtime_internal::IssueCollector; using ::testing::Contains; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; constexpr char kExpr[] = R"( id: 1 call_expr { function: "_&&_" args { id: 2 select_expr { field: "var1" operand { id: 3 select_expr { field: "bar" operand { id: 4 ident_expr { name: "foo" } } } } } } args { id: 5 select_expr { field: "var2" operand { id: 6 select_expr { field: "foo" operand { id: 7 ident_expr { name: "bar" } } } } } } } )"; MATCHER_P(StatusCodeIs, x, "") { const absl::Status& status = arg; return status.code() == x; } std::unique_ptr<AstImpl> ParseTestProto(const std::string& pb) { google::api::expr::v1alpha1::Expr expr; EXPECT_TRUE(google::protobuf::TextFormat::ParseFromString(pb, &expr)); return absl::WrapUnique(cel::internal::down_cast<AstImpl*>( cel::extensions::CreateAstFromParsedExpr(expr).value().release())); } std::vector<absl::Status> ExtractIssuesStatus(const IssueCollector& issues) { std::vector<absl::Status> issues_status; for (const auto& issue : issues.issues()) { issues_status.push_back(issue.ToStatus()); } return issues_status; } TEST(ResolveReferences, Basic) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExpr); expr_ast->reference_map()[2].set_name("foo.bar.var1"); expr_ast->reference_map()[5].set_name("bar.foo.var2"); IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 1 call_expr { function: "_&&_" args { id: 2 ident_expr { name: "foo.bar.var1" } } args { id: 5 ident_expr { name: "bar.foo.var2" } } })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); } TEST(ResolveReferences, ReturnsFalseIfNoChanges) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExpr); IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); expr_ast->reference_map()[4].set_name("foo"); expr_ast->reference_map()[7].set_name("bar"); result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); } TEST(ResolveReferences, NamespacedIdent) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExpr); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[2].set_name("foo.bar.var1"); expr_ast->reference_map()[7].set_name("namespace_x.bar"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString( R"pb( id: 1 call_expr { function: "_&&_" args { id: 2 ident_expr { name: "foo.bar.var1" } } args { id: 5 select_expr { field: "var2" operand { id: 6 select_expr { field: "foo" operand { id: 7 ident_expr { name: "namespace_x.bar" } } } } } } })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); } TEST(ResolveReferences, WarningOnPresenceTest) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(R"pb( id: 1 select_expr { field: "var1" test_only: true operand { id: 2 select_expr { field: "bar" operand { id: 3 ident_expr { name: "foo" } } } } })pb"); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[1].set_name("foo.bar.var1"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT( ExtractIssuesStatus(issues), testing::ElementsAre(Eq(absl::Status( absl::StatusCode::kInvalidArgument, "Reference map points to a presence test -- has(container.attr)")))); } constexpr char kEnumExpr[] = R"( id: 1 call_expr { function: "_==_" args { id: 2 select_expr { field: "var1" operand { id: 3 select_expr { field: "bar" operand { id: 4 ident_expr { name: "foo" } } } } } } args { id: 5 ident_expr { name: "bar.foo.Enum.ENUM_VAL1" } } } )"; TEST(ResolveReferences, EnumConstReferenceUsed) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kEnumExpr); SourceInfo source_info; CelFunctionRegistry func_registry; ASSERT_OK(RegisterBuiltinFunctions(&func_registry)); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[2].set_name("foo.bar.var1"); expr_ast->reference_map()[5].set_name("bar.foo.Enum.ENUM_VAL1"); expr_ast->reference_map()[5].mutable_value().set_int64_value(9); IssueCollector issues(RuntimeIssue::Severity::kError); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 1 call_expr { function: "_==_" args { id: 2 ident_expr { name: "foo.bar.var1" } } args { id: 5 const_expr { int64_value: 9 } } })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); } TEST(ResolveReferences, EnumConstReferenceUsedSelect) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kEnumExpr); SourceInfo source_info; CelFunctionRegistry func_registry; ASSERT_OK(RegisterBuiltinFunctions(&func_registry)); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[2].set_name("foo.bar.var1"); expr_ast->reference_map()[2].mutable_value().set_int64_value(2); expr_ast->reference_map()[5].set_name("bar.foo.Enum.ENUM_VAL1"); expr_ast->reference_map()[5].mutable_value().set_int64_value(9); IssueCollector issues(RuntimeIssue::Severity::kError); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 1 call_expr { function: "_==_" args { id: 2 const_expr { int64_value: 2 } } args { id: 5 const_expr { int64_value: 9 } } })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); } TEST(ResolveReferences, ConstReferenceSkipped) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExpr); SourceInfo source_info; CelFunctionRegistry func_registry; ASSERT_OK(RegisterBuiltinFunctions(&func_registry)); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[2].set_name("foo.bar.var1"); expr_ast->reference_map()[2].mutable_value().set_bool_value(true); expr_ast->reference_map()[5].set_name("bar.foo.var2"); IssueCollector issues(RuntimeIssue::Severity::kError); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 1 call_expr { function: "_&&_" args { id: 2 select_expr { field: "var1" operand { id: 3 select_expr { field: "bar" operand { id: 4 ident_expr { name: "foo" } } } } } } args { id: 5 ident_expr { name: "bar.foo.var2" } } })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); } constexpr char kExtensionAndExpr[] = R"( id: 1 call_expr { function: "boolean_and" args { id: 2 const_expr { bool_value: true } } args { id: 3 const_expr { bool_value: false } } })"; TEST(ResolveReferences, FunctionReferenceBasic) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExtensionAndExpr); SourceInfo source_info; CelFunctionRegistry func_registry; ASSERT_OK(func_registry.RegisterLazyFunction( CelFunctionDescriptor("boolean_and", false, { CelValue::Type::kBool, CelValue::Type::kBool, }))); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); IssueCollector issues(RuntimeIssue::Severity::kError); expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); } TEST(ResolveReferences, FunctionReferenceMissingOverloadDetected) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExtensionAndExpr); SourceInfo source_info; CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); IssueCollector issues(RuntimeIssue::Severity::kError); expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT(ExtractIssuesStatus(issues), ElementsAre(StatusCodeIs(absl::StatusCode::kInvalidArgument))); } TEST(ResolveReferences, SpecialBuiltinsNotWarned) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(R"pb( id: 1 call_expr { function: "*" args { id: 2 const_expr { bool_value: true } } args { id: 3 const_expr { bool_value: false } } })pb"); SourceInfo source_info; std::vector<const char*> special_builtins{ cel::builtin::kAnd, cel::builtin::kOr, cel::builtin::kTernary, cel::builtin::kIndex}; for (const char* builtin_fn : special_builtins) { CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); IssueCollector issues(RuntimeIssue::Severity::kError); expr_ast->reference_map()[1].mutable_overload_id().push_back( absl::StrCat("builtin.", builtin_fn)); expr_ast->root_expr().mutable_call_expr().set_function(builtin_fn); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT(ExtractIssuesStatus(issues), IsEmpty()); } } TEST(ResolveReferences, FunctionReferenceMissingOverloadDetectedAndMissingReference) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExtensionAndExpr); SourceInfo source_info; CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); IssueCollector issues(RuntimeIssue::Severity::kError); expr_ast->reference_map()[1].set_name("udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT( ExtractIssuesStatus(issues), UnorderedElementsAre( Eq(absl::InvalidArgumentError( "No overload found in reference resolve step for boolean_and")), Eq(absl::InvalidArgumentError( "Reference map doesn't provide overloads for boolean_and")))); } TEST(ResolveReferences, EmulatesEagerFailing) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExtensionAndExpr); SourceInfo source_info; CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); IssueCollector issues(RuntimeIssue::Severity::kWarning); expr_ast->reference_map()[1].set_name("udf_boolean_and"); EXPECT_THAT( ResolveReferences(registry, issues, *expr_ast), StatusIs(absl::StatusCode::kInvalidArgument, "Reference map doesn't provide overloads for boolean_and")); } TEST(ResolveReferences, FunctionReferenceToWrongExprKind) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kExtensionAndExpr); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[2].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT(ExtractIssuesStatus(issues), ElementsAre(StatusCodeIs(absl::StatusCode::kInvalidArgument))); } constexpr char kReceiverCallExtensionAndExpr[] = R"( id: 1 call_expr { function: "boolean_and" target { id: 2 ident_expr { name: "ext" } } args { id: 3 const_expr { bool_value: false } } })"; TEST(ResolveReferences, FunctionReferenceWithTargetNoChange) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kReceiverCallExtensionAndExpr); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; ASSERT_OK(func_registry.RegisterLazyFunction(CelFunctionDescriptor( "boolean_and", true, {CelValue::Type::kBool, CelValue::Type::kBool}))); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT(ExtractIssuesStatus(issues), IsEmpty()); } TEST(ResolveReferences, FunctionReferenceWithTargetNoChangeMissingOverloadDetected) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kReceiverCallExtensionAndExpr); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); EXPECT_THAT(ExtractIssuesStatus(issues), ElementsAre(StatusCodeIs(absl::StatusCode::kInvalidArgument))); } TEST(ResolveReferences, FunctionReferenceWithTargetToNamespacedFunction) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kReceiverCallExtensionAndExpr); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; ASSERT_OK(func_registry.RegisterLazyFunction(CelFunctionDescriptor( "ext.boolean_and", false, {CelValue::Type::kBool}))); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 1 call_expr { function: "ext.boolean_and" args { id: 3 const_expr { bool_value: false } } } )pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); EXPECT_THAT(ExtractIssuesStatus(issues), IsEmpty()); } TEST(ResolveReferences, FunctionReferenceWithTargetToNamespacedFunctionInContainer) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kReceiverCallExtensionAndExpr); SourceInfo source_info; expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; ASSERT_OK(func_registry.RegisterLazyFunction(CelFunctionDescriptor( "com.google.ext.boolean_and", false, {CelValue::Type::kBool}))); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("com.google", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 1 call_expr { function: "com.google.ext.boolean_and" args { id: 3 const_expr { bool_value: false } } } )pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); EXPECT_THAT(ExtractIssuesStatus(issues), IsEmpty()); } constexpr char kReceiverCallHasExtensionAndExpr[] = R"( id: 1 call_expr { function: "boolean_and" target { id: 2 select_expr { test_only: true field: "option" operand { id: 3 ident_expr { name: "ext" } } } } args { id: 4 const_expr { bool_value: false } } })"; TEST(ResolveReferences, FunctionReferenceWithHasTargetNoChange) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kReceiverCallHasExtensionAndExpr); SourceInfo source_info; IssueCollector issues(RuntimeIssue::Severity::kError); CelFunctionRegistry func_registry; ASSERT_OK(func_registry.RegisterLazyFunction(CelFunctionDescriptor( "boolean_and", true, {CelValue::Type::kBool, CelValue::Type::kBool}))); ASSERT_OK(func_registry.RegisterLazyFunction(CelFunctionDescriptor( "ext.option.boolean_and", true, {CelValue::Type::kBool}))); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[1].mutable_overload_id().push_back( "udf_boolean_and"); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(kReceiverCallHasExtensionAndExpr, &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); EXPECT_THAT(ExtractIssuesStatus(issues), IsEmpty()); } constexpr char kComprehensionExpr[] = R"( id:17 comprehension_expr: { iter_var:"i" iter_range:{ id:1 list_expr:{ elements:{ id:2 const_expr:{int64_value:1} } elements:{ id:3 ident_expr:{name:"ENUM"} } elements:{ id:4 const_expr:{int64_value:3} } } } accu_var:"__result__" accu_init: { id:10 const_expr:{bool_value:false} } loop_condition:{ id:13 call_expr:{ function:"@not_strictly_false" args:{ id:12 call_expr:{ function:"!_" args:{ id:11 ident_expr:{name:"__result__"} } } } } } loop_step:{ id:15 call_expr: { function:"_||_" args:{ id:14 ident_expr: {name:"__result__"} } args:{ id:8 call_expr:{ function:"_==_" args:{ id:7 ident_expr:{name:"ENUM"} } args:{ id:9 ident_expr:{name:"i"} } } } } } result:{id:16 ident_expr:{name:"__result__"}} } )"; TEST(ResolveReferences, EnumConstReferenceUsedInComprehension) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(kComprehensionExpr); SourceInfo source_info; CelFunctionRegistry func_registry; ASSERT_OK(RegisterBuiltinFunctions(&func_registry)); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[3].set_name("ENUM"); expr_ast->reference_map()[3].mutable_value().set_int64_value(2); expr_ast->reference_map()[7].set_name("ENUM"); expr_ast->reference_map()[7].mutable_value().set_int64_value(2); IssueCollector issues(RuntimeIssue::Severity::kError); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(true)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString( R"pb( id: 17 comprehension_expr { iter_var: "i" iter_range { id: 1 list_expr { elements { id: 2 const_expr { int64_value: 1 } } elements { id: 3 const_expr { int64_value: 2 } } elements { id: 4 const_expr { int64_value: 3 } } } } accu_var: "__result__" accu_init { id: 10 const_expr { bool_value: false } } loop_condition { id: 13 call_expr { function: "@not_strictly_false" args { id: 12 call_expr { function: "!_" args { id: 11 ident_expr { name: "__result__" } } } } } } loop_step { id: 15 call_expr { function: "_||_" args { id: 14 ident_expr { name: "__result__" } } args { id: 8 call_expr { function: "_==_" args { id: 7 const_expr { int64_value: 2 } } args { id: 9 ident_expr { name: "i" } } } } } } result { id: 16 ident_expr { name: "__result__" } } })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); } TEST(ResolveReferences, ReferenceToId0Warns) { std::unique_ptr<AstImpl> expr_ast = ParseTestProto(R"pb( id: 0 select_expr { operand { id: 1 ident_expr { name: "pkg" } } field: "var" })pb"); SourceInfo source_info; CelFunctionRegistry func_registry; ASSERT_OK(RegisterBuiltinFunctions(&func_registry)); cel::TypeRegistry type_registry; cel::common_internal::LegacyValueManager value_factory( cel::MemoryManagerRef::ReferenceCounting(), type_registry.GetComposedTypeProvider()); Resolver registry("", func_registry.InternalGetRegistry(), type_registry, value_factory, type_registry.resolveable_enums()); expr_ast->reference_map()[0].set_name("pkg.var"); IssueCollector issues(RuntimeIssue::Severity::kError); auto result = ResolveReferences(registry, issues, *expr_ast); ASSERT_THAT(result, IsOkAndHolds(false)); google::api::expr::v1alpha1::Expr expected_expr; google::protobuf::TextFormat::ParseFromString(R"pb( id: 0 select_expr { operand { id: 1 ident_expr { name: "pkg" } } field: "var" })pb", &expected_expr); EXPECT_EQ(expr_ast->root_expr(), ConvertProtoExprToNative(expected_expr).value()); EXPECT_THAT( ExtractIssuesStatus(issues), Contains(StatusIs( absl::StatusCode::kInvalidArgument, "reference map entries for expression id 0 are not supported"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/compiler/qualified_reference_resolver.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/compiler/qualified_reference_resolver_test.cc
4552db5798fb0853b131b783d8875794334fae7f
bb168610-5f08-458f-9cab-96ab93874d84
cpp
tensorflow/tensorflow
call_options
third_party/xla/xla/tsl/distributed_runtime/call_options.cc
tensorflow/core/distributed_runtime/call_options_test.cc
#include "xla/tsl/distributed_runtime/call_options.h" #include <utility> #include "tsl/platform/mutex.h" namespace tsl { CallOptions::CallOptions() = default; void CallOptions::StartCancel() { mutex_lock l(mu_); if (cancel_func_ != nullptr) { cancel_func_(); } } void CallOptions::SetCancelCallback(CancelFunction cancel_func) { mutex_lock l(mu_); cancel_func_ = std::move(cancel_func); } void CallOptions::ClearCancelCallback() { mutex_lock l(mu_); cancel_func_ = nullptr; } int64_t CallOptions::GetTimeout() { mutex_lock l(mu_); return timeout_in_ms_; } void CallOptions::SetTimeout(int64_t ms) { mutex_lock l(mu_); timeout_in_ms_ = ms; } }
#include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(CallOptions, Cancel) { int num_calls = 0; CallOptions opts; opts.StartCancel(); EXPECT_EQ(num_calls, 0); opts.SetCancelCallback([&num_calls]() { num_calls++; }); EXPECT_EQ(num_calls, 0); opts.StartCancel(); EXPECT_EQ(num_calls, 1); opts.StartCancel(); EXPECT_EQ(num_calls, 2); opts.ClearCancelCallback(); EXPECT_EQ(num_calls, 2); opts.StartCancel(); EXPECT_EQ(num_calls, 2); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/distributed_runtime/call_options.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/distributed_runtime/call_options_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7a098cd4-54c3-4324-ad2c-669555b1b427
cpp
tensorflow/tensorflow
int32_fulltype
tensorflow/core/common_runtime/int32_fulltype.cc
tensorflow/core/common_runtime/int32_fulltype_test.cc
#include "tensorflow/core/common_runtime/int32_fulltype.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { Status Int32FulltypePass::Int32FullTypeForTensor(DataType dtype, FullTypeDef* tensor_t, bool set_only_int32, Node* node, int output_idx) { if (tensor_t->type_id() == TFT_TENSOR) { if (tensor_t->args_size() != 1) { if (node != nullptr) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Full type for node='", node->name(), "' (op='", node->op_def().name(), "') in '", debug_location_, "' has TFT_TENSOR output ", output_idx, " which has ", tensor_t->args_size(), " args instead of 1.\n got:\n", tensor_t->DebugString())); } else { return Status(absl::StatusCode::kInvalidArgument, absl::StrCat("TFT_TENSOR has ", tensor_t->args_size(), " args instead of 1.\n got:\n", tensor_t->DebugString())); } } if (tensor_t->args(0).type_id() == TFT_INT32) { tensor_t->set_type_id(TFT_SHAPE_TENSOR); } } else if ((tensor_t->type_id() == TFT_UNSET) && ((dtype == DT_INT32) || !set_only_int32)) { FullTypeDef data_t; map_dtype_to_tensor(dtype, data_t); tensor_t->set_type_id(TFT_SHAPE_TENSOR); (*tensor_t->add_args()) = data_t; } return absl::OkStatus(); } static bool is_host_memory_int32(MemoryType mtype, DataType dtype) { return (mtype == HOST_MEMORY) && (dtype == DT_INT32); } Status Int32FulltypePass::ProcessGraph(Graph* graph, bool ints_on_device) { for (Node* n : graph->op_nodes()) { auto output_types = n->output_types(); bool needs_annotation = false; for (const auto& output_type : output_types) { MemoryType mtype = ints_on_device ? MTypeFromDTypeIntsOnDevice(output_type) : MTypeFromDType(output_type); if (is_host_memory_int32(mtype, output_type)) { needs_annotation = true; } } if (!needs_annotation) { continue; } if (n->def().has_experimental_type()) { FullTypeDef* node_t = n->mutable_def()->mutable_experimental_type(); if (node_t->type_id() != TFT_PRODUCT) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Full type for node='", n->name(), "' (op='", n->op_def().name(), "') does not start with TFT_PRODUCT.\n got:\n", node_t->DebugString())); } if (node_t->args_size() != output_types.size()) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Full type for node='", n->name(), "' (op='", n->op_def().name(), "') has ", node_t->args_size(), " outputs but output_types has ", output_types.size(), " outputs.\n got:\n", node_t->DebugString())); } for (int i = 0; i < node_t->args_size(); ++i) { if (MTypeFromDType(output_types[i]) == HOST_MEMORY) { TF_RETURN_IF_ERROR( Int32FullTypeForTensor(output_types[i], node_t->mutable_args(i), true, n, i)); } } VLOG(2) << "Full type information in node '" << n->name() << "' (op='" << n->op_def().name() << "') modified to use TFT_SHAPE_TENSOR for int32.\n" << node_t->DebugString(); } else { FullTypeDef t; t.set_type_id(TFT_PRODUCT); for (const auto& output_type : output_types) { MemoryType mtype = ints_on_device ? MTypeFromDTypeIntsOnDevice(output_type) : MTypeFromDType(output_type); if (is_host_memory_int32(mtype, output_type)) { FullTypeDef data_t; map_dtype_to_tensor(output_type, data_t); FullTypeDef out_t; out_t.set_type_id(TFT_SHAPE_TENSOR); (*out_t.add_args()) = data_t; (*t.add_args()) = out_t; } else { t.add_args(); } } (*n->mutable_def()->mutable_experimental_type()) = t; VLOG(2) << "Full type information with TFT_SHAPE_TENSOR for int32 added " "to node '" << n->name() << "' (op='" << n->op_def().name() << "').\n" << t.DebugString(); } } return absl::OkStatus(); } }
#include "tensorflow/core/common_runtime/int32_fulltype.h" #include <string> #include <unordered_map> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/graph_def_builder_util.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace { REGISTER_OP("FloatInt32").Output("a: float").Output("b: int32"); REGISTER_OP("FloatInt32Int32FT") .Output("a: float") .Output("b: int32") .Output("c: int32"); REGISTER_OP("FloatWithoutInt32").Output("a: float"); REGISTER_OP("StringWithoutInt32").Output("a: string"); class Int32FulltypeTest : public ::testing::Test { protected: Int32FulltypeTest() {} Status BuildGraph(const GraphDefBuilder& builder, Graph* out_graph) { TF_RETURN_IF_ERROR(GraphDefBuilderToGraph(builder, out_graph)); RebuildNodeNameMap(*out_graph); return absl::OkStatus(); } void AddTensorFT(FullTypeDef& t, tensorflow::FullTypeId out_t_id, tensorflow::FullTypeId data_t_id) { FullTypeDef out_t; FullTypeDef data_t; if (out_t_id != TFT_UNSET) { data_t.set_type_id(data_t_id); out_t.set_type_id(out_t_id); (*out_t.add_args()) = data_t; } (*t.add_args()) = out_t; } Status Int32FulltypeAnnotate(Graph* graph, bool ints_on_device = false) { Int32FulltypePass int32_fulltype; return int32_fulltype.ProcessGraph(graph, ints_on_device); } Node* GetNodeByName(const Graph& graph, const string& name) { const auto search = nodes_by_name_.find(name); CHECK(search != nodes_by_name_.end()) << "Unknown node name: " << name; return graph.FindNodeId(search->second); } protected: std::unordered_map<string, int> nodes_by_name_; private: void RebuildNodeNameMap(const Graph& graph) { nodes_by_name_.clear(); for (Node* node : graph.nodes()) { nodes_by_name_[node->name()] = node->id(); } } }; TEST_F(Int32FulltypeTest, CreateFT) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("FloatInt32", b.opts().WithName("float_int32")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Int32FulltypeAnnotate(&g)); Node* node = GetNodeByName(g, "float_int32"); ASSERT_TRUE(node->def().has_experimental_type()); const FullTypeDef& ft = node->def().experimental_type(); ASSERT_EQ(ft.type_id(), TFT_PRODUCT); ASSERT_EQ(ft.args_size(), 2); ASSERT_EQ(ft.args(0).type_id(), TFT_UNSET); ASSERT_EQ(ft.args(1).type_id(), TFT_SHAPE_TENSOR); ASSERT_EQ(ft.args(1).args_size(), 1); ASSERT_EQ(ft.args(1).args(0).type_id(), TFT_INT32); } TEST_F(Int32FulltypeTest, ModifyFT) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* node = ops::SourceOp("FloatInt32Int32FT", b.opts().WithName("float_int32_int32")); node->mutable_def()->mutable_experimental_type()->set_type_id(TFT_PRODUCT); FullTypeDef& t = *node->mutable_def()->mutable_experimental_type(); AddTensorFT(t, TFT_TENSOR, TFT_FLOAT); AddTensorFT(t, TFT_TENSOR, TFT_INT32); AddTensorFT(t, TFT_SHAPE_TENSOR, TFT_INT32); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Int32FulltypeAnnotate(&g)); Node* node = GetNodeByName(g, "float_int32_int32"); ASSERT_TRUE(node->def().has_experimental_type()); const FullTypeDef& ft = node->def().experimental_type(); ASSERT_EQ(ft.type_id(), TFT_PRODUCT); ASSERT_EQ(ft.args_size(), 3); ASSERT_EQ(ft.args(0).type_id(), TFT_TENSOR); ASSERT_EQ(ft.args(0).args_size(), 1); ASSERT_EQ(ft.args(0).args(0).type_id(), TFT_FLOAT); ASSERT_EQ(ft.args(1).type_id(), TFT_SHAPE_TENSOR); ASSERT_EQ(ft.args(1).args_size(), 1); ASSERT_EQ(ft.args(1).args(0).type_id(), TFT_INT32); ASSERT_EQ(ft.args(2).type_id(), TFT_SHAPE_TENSOR); ASSERT_EQ(ft.args(2).args_size(), 1); ASSERT_EQ(ft.args(2).args(0).type_id(), TFT_INT32); } TEST_F(Int32FulltypeTest, ModifyUnsetFT) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* node = ops::SourceOp("FloatInt32Int32FT", b.opts().WithName("float_int32_int32")); node->mutable_def()->mutable_experimental_type()->set_type_id(TFT_PRODUCT); FullTypeDef& t = *node->mutable_def()->mutable_experimental_type(); AddTensorFT(t, TFT_UNSET, TFT_FLOAT); AddTensorFT(t, TFT_UNSET, TFT_INT32); AddTensorFT(t, TFT_UNSET, TFT_INT32); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Int32FulltypeAnnotate(&g)); Node* node = GetNodeByName(g, "float_int32_int32"); ASSERT_TRUE(node->def().has_experimental_type()); const FullTypeDef& ft = node->def().experimental_type(); ASSERT_EQ(ft.type_id(), TFT_PRODUCT); ASSERT_EQ(ft.args_size(), 3); ASSERT_EQ(ft.args(0).type_id(), TFT_UNSET); ASSERT_EQ(ft.args(0).args_size(), 0); ASSERT_EQ(ft.args(1).type_id(), TFT_SHAPE_TENSOR); ASSERT_EQ(ft.args(1).args_size(), 1); ASSERT_EQ(ft.args(1).args(0).type_id(), TFT_INT32); ASSERT_EQ(ft.args(2).type_id(), TFT_SHAPE_TENSOR); ASSERT_EQ(ft.args(2).args_size(), 1); ASSERT_EQ(ft.args(2).args(0).type_id(), TFT_INT32); } TEST_F(Int32FulltypeTest, NotCreateFTFloat) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("FloatWithoutInt32", b.opts().WithName("float_without_int32")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Int32FulltypeAnnotate(&g)); Node* node = GetNodeByName(g, "float_without_int32"); ASSERT_FALSE(node->def().has_experimental_type()); } TEST_F(Int32FulltypeTest, NotCreateFTString) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("StringWithoutInt32", b.opts().WithName("string_without_int32")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Int32FulltypeAnnotate(&g)); Node* node = GetNodeByName(g, "string_without_int32"); ASSERT_FALSE(node->def().has_experimental_type()); } TEST_F(Int32FulltypeTest, NotCreateFTIntsOnDevice) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); ops::SourceOp("FloatInt32", b.opts().WithName("float_int32")); TF_EXPECT_OK(BuildGraph(b, &g)); } TF_EXPECT_OK(Int32FulltypeAnnotate(&g, true)); Node* node = GetNodeByName(g, "float_int32"); ASSERT_FALSE(node->def().has_experimental_type()); } TEST_F(Int32FulltypeTest, BadTensorFT) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* node = ops::SourceOp("FloatInt32", b.opts().WithName("float_without_int32")); node->mutable_def()->mutable_experimental_type()->set_type_id(TFT_PRODUCT); FullTypeDef& t = *node->mutable_def()->mutable_experimental_type(); t.add_args()->set_type_id(TFT_UNSET); t.add_args()->set_type_id(TFT_TENSOR); TF_EXPECT_OK(BuildGraph(b, &g)); } const auto& status = Int32FulltypeAnnotate(&g); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("which has 0 args instead of 1.")); } TEST_F(Int32FulltypeTest, BadFTWithoutProduct) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* node = ops::SourceOp("FloatInt32", b.opts().WithName("float_without_int32")); node->mutable_def()->mutable_experimental_type()->set_type_id(TFT_FLOAT); TF_EXPECT_OK(BuildGraph(b, &g)); } const auto& status = Int32FulltypeAnnotate(&g); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), ::testing::HasSubstr("does not start with TFT_PRODUCT.")); } TEST_F(Int32FulltypeTest, BadProductFT) { Graph g(OpRegistry::Global()); { GraphDefBuilder b(GraphDefBuilder::kFailImmediately); Node* node = ops::SourceOp("FloatInt32", b.opts().WithName("float_without_int32")); node->mutable_def()->mutable_experimental_type()->set_type_id(TFT_PRODUCT); TF_EXPECT_OK(BuildGraph(b, &g)); } const auto& status = Int32FulltypeAnnotate(&g); ASSERT_FALSE(status.ok()); EXPECT_THAT( status.message(), ::testing::HasSubstr("has 0 outputs but output_types has 2 outputs.")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/int32_fulltype.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/int32_fulltype_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f3700489-9418-431d-a2bb-ea1b501e9fba
cpp
google/quiche
moqt_bitrate_adjuster
quiche/quic/moqt/moqt_bitrate_adjuster.cc
quiche/quic/moqt/moqt_bitrate_adjuster_test.cc
#include "quiche/quic/moqt/moqt_bitrate_adjuster.h" #include <algorithm> #include <cstdint> #include "quiche/quic/core/quic_bandwidth.h" #include "quiche/quic/core/quic_time.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/web_transport/web_transport.h" namespace moqt { namespace { using ::quic::QuicBandwidth; using ::quic::QuicTime; using ::quic::QuicTimeDelta; constexpr float kTargetBitrateMultiplier = 0.9f; constexpr float kMinTimeBetweenAdjustmentsInRtts = 40; constexpr QuicTimeDelta kMaxTimeBetweenAdjustments = QuicTimeDelta::FromSeconds(3); } void MoqtBitrateAdjuster::OnObjectAckReceived( uint64_t , uint64_t , QuicTimeDelta delta_from_deadline) { if (delta_from_deadline < QuicTimeDelta::Zero()) { AttemptAdjustingDown(); } } void MoqtBitrateAdjuster::AttemptAdjustingDown() { webtransport::SessionStats stats = session_->GetSessionStats(); QuicTimeDelta adjustment_delay = QuicTimeDelta(stats.smoothed_rtt * kMinTimeBetweenAdjustmentsInRtts); adjustment_delay = std::min(adjustment_delay, kMaxTimeBetweenAdjustments); QuicTime now = clock_->ApproximateNow(); if (now - last_adjustment_time_ < adjustment_delay) { return; } QuicBandwidth target_bandwidth = kTargetBitrateMultiplier * QuicBandwidth::FromBitsPerSecond(stats.estimated_send_rate_bps); QuicBandwidth current_bandwidth = adjustable_->GetCurrentBitrate(); if (current_bandwidth <= target_bandwidth) { return; } QUICHE_DLOG(INFO) << "Adjusting the bitrate from " << current_bandwidth << " to " << target_bandwidth; bool success = adjustable_->AdjustBitrate(target_bandwidth); if (success) { last_adjustment_time_ = now; } } void MoqtBitrateAdjuster::OnObjectAckSupportKnown(bool supported) { QUICHE_DLOG_IF(WARNING, !supported) << "OBJECT_ACK not supported; bitrate adjustments will not work."; } }
#include "quiche/quic/moqt/moqt_bitrate_adjuster.h" #include "quiche/quic/core/quic_bandwidth.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/web_transport/test_tools/mock_web_transport.h" #include "quiche/web_transport/web_transport.h" namespace moqt::test { namespace { using ::quic::QuicBandwidth; using ::quic::QuicTimeDelta; using ::testing::_; class MockBitrateAdjustable : public BitrateAdjustable { public: explicit MockBitrateAdjustable(QuicBandwidth initial_bitrate) : bitrate_(initial_bitrate) {} QuicBandwidth GetCurrentBitrate() const override { return bitrate_; } bool AdjustBitrate(QuicBandwidth bandwidth) override { bitrate_ = bandwidth; OnBitrateAdjusted(bandwidth); return true; } MOCK_METHOD(void, OnBitrateAdjusted, (QuicBandwidth new_bitrate), ()); private: QuicBandwidth bitrate_; }; constexpr QuicBandwidth kDefaultBitrate = QuicBandwidth::FromBitsPerSecond(2000); constexpr QuicTimeDelta kDefaultRtt = QuicTimeDelta::FromMilliseconds(20); class MoqtBitrateAdjusterTest : public quiche::test::QuicheTest { protected: MoqtBitrateAdjusterTest() : adjustable_(kDefaultBitrate), adjuster_(&clock_, &session_, &adjustable_) { stats_.min_rtt = stats_.smoothed_rtt = kDefaultRtt.ToAbsl(); stats_.estimated_send_rate_bps = (1.2 * kDefaultBitrate).ToBitsPerSecond(); ON_CALL(session_, GetSessionStats()).WillByDefault([this] { return stats_; }); } MockBitrateAdjustable adjustable_; webtransport::SessionStats stats_; quic::MockClock clock_; webtransport::test::MockSession session_; MoqtBitrateAdjuster adjuster_; }; TEST_F(MoqtBitrateAdjusterTest, SteadyState) { stats_.estimated_send_rate_bps = 1; EXPECT_CALL(adjustable_, OnBitrateAdjusted(_)).Times(0); for (int i = 0; i < 250; ++i) { clock_.AdvanceTime(kDefaultRtt); for (int j = 0; j < 10; ++j) { adjuster_.OnObjectAckReceived(i, j, kDefaultRtt * 2); } } } TEST_F(MoqtBitrateAdjusterTest, AdjustDownOnce) { stats_.estimated_send_rate_bps = (0.5 * kDefaultBitrate).ToBitsPerSecond(); EXPECT_CALL(adjustable_, OnBitrateAdjusted(_)).Times(0); adjuster_.OnObjectAckReceived(0, 0, QuicTimeDelta::FromMilliseconds(-1)); clock_.AdvanceTime(100 * kDefaultRtt); EXPECT_CALL(adjustable_, OnBitrateAdjusted(_)) .WillOnce([](QuicBandwidth new_bitrate) { EXPECT_LT(new_bitrate, kDefaultBitrate); }); adjuster_.OnObjectAckReceived(0, 1, QuicTimeDelta::FromMilliseconds(-1)); } TEST_F(MoqtBitrateAdjusterTest, AdjustDownTwice) { int adjusted_times = 0; EXPECT_CALL(adjustable_, OnBitrateAdjusted(_)).WillRepeatedly([&] { ++adjusted_times; }); clock_.AdvanceTime(100 * kDefaultRtt); stats_.estimated_send_rate_bps = (0.5 * kDefaultBitrate).ToBitsPerSecond(); adjuster_.OnObjectAckReceived(0, 0, QuicTimeDelta::FromMilliseconds(-1)); EXPECT_EQ(adjusted_times, 1); clock_.AdvanceTime(100 * kDefaultRtt); stats_.estimated_send_rate_bps = (0.25 * kDefaultBitrate).ToBitsPerSecond(); adjuster_.OnObjectAckReceived(0, 1, QuicTimeDelta::FromMilliseconds(-1)); EXPECT_EQ(adjusted_times, 2); } TEST_F(MoqtBitrateAdjusterTest, AdjustDownSecondTimeIgnoredDueToTimeLimit) { int adjusted_times = 0; EXPECT_CALL(adjustable_, OnBitrateAdjusted(_)).WillRepeatedly([&] { ++adjusted_times; }); clock_.AdvanceTime(100 * kDefaultRtt); stats_.estimated_send_rate_bps = (0.5 * kDefaultBitrate).ToBitsPerSecond(); adjuster_.OnObjectAckReceived(0, 0, QuicTimeDelta::FromMilliseconds(-1)); EXPECT_EQ(adjusted_times, 1); clock_.AdvanceTime(2 * kDefaultRtt); stats_.estimated_send_rate_bps = (0.25 * kDefaultBitrate).ToBitsPerSecond(); adjuster_.OnObjectAckReceived(0, 1, QuicTimeDelta::FromMilliseconds(-1)); EXPECT_EQ(adjusted_times, 1); } TEST_F(MoqtBitrateAdjusterTest, AdjustDownIgnoredDueToHighBandwidthMeasured) { EXPECT_CALL(adjustable_, OnBitrateAdjusted(_)).Times(0); clock_.AdvanceTime(100 * kDefaultRtt); stats_.estimated_send_rate_bps = (2.0 * kDefaultBitrate).ToBitsPerSecond(); adjuster_.OnObjectAckReceived(0, 0, QuicTimeDelta::FromMilliseconds(-1)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/moqt_bitrate_adjuster.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/moqt/moqt_bitrate_adjuster_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
573359dd-8239-415a-9913-bdd322cdacc7
cpp
tensorflow/tensorflow
telemetry
tensorflow/lite/delegates/telemetry.cc
tensorflow/lite/delegates/telemetry_test.cc
#include "tensorflow/lite/delegates/telemetry.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace delegates { TfLiteStatus ReportDelegateSettings(TfLiteContext* context, TfLiteDelegate* delegate, const TFLiteSettings& settings) { auto* profiler = reinterpret_cast<Profiler*>(context->profiler); const int64_t event_metadata1 = reinterpret_cast<int64_t>(delegate); const int64_t event_metadata2 = reinterpret_cast<int64_t>(&settings); TFLITE_ADD_RUNTIME_INSTRUMENTATION_EVENT(profiler, kDelegateSettingsTag, event_metadata1, event_metadata2); return kTfLiteOk; } TfLiteStatus ReportDelegateStatus(TfLiteContext* context, TfLiteDelegate* delegate, const DelegateStatus& status) { auto* profiler = reinterpret_cast<Profiler*>(context->profiler); TFLITE_ADD_RUNTIME_INSTRUMENTATION_EVENT(profiler, kDelegateStatusTag, status.full_status(), static_cast<int64_t>(kTfLiteOk)); return kTfLiteOk; } } }
#include "tensorflow/lite/delegates/telemetry.h" #include <cstdint> #include <string> #include <gtest/gtest.h> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/api/profiler.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/profiling/profile_buffer.h" namespace tflite { namespace delegates { namespace { constexpr int32_t kDummyCode = 2; constexpr bool kDummyGpuPrecisionLossAllowed = true; constexpr tflite::Delegate kDummyDelegate = tflite::Delegate_GPU; constexpr DelegateStatusSource kDummySource = DelegateStatusSource::TFLITE_NNAPI; TEST(TelemetryTest, StatusConversion) { DelegateStatus status(kDummySource, kDummyCode); int64_t serialized_int = status.full_status(); DelegateStatus deserialized_status(serialized_int); EXPECT_EQ(kDummyCode, deserialized_status.code()); EXPECT_EQ(kDummySource, deserialized_status.source()); EXPECT_EQ(serialized_int, deserialized_status.full_status()); } class DelegateProfiler : public Profiler { public: DelegateProfiler() {} ~DelegateProfiler() override = default; uint32_t BeginEvent(const char* tag, EventType event_type, int64_t event_metadata1, int64_t event_metadata2) override { int event_handle = -1; if (event_type == Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT && std::string(tag) == kDelegateSettingsTag) { event_buffer_.emplace_back(); event_handle = event_buffer_.size(); EXPECT_NE(event_metadata1, 0); auto* delegate = reinterpret_cast<TfLiteDelegate*>(event_metadata1); EXPECT_EQ(delegate->flags, kTfLiteDelegateFlagsNone); EXPECT_NE(event_metadata2, 0); auto* settings = reinterpret_cast<TFLiteSettings*>(event_metadata2); EXPECT_EQ(settings->delegate(), kDummyDelegate); EXPECT_EQ(settings->gpu_settings()->is_precision_loss_allowed(), kDummyGpuPrecisionLossAllowed); } else if (event_type == Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT && std::string(tag) == kDelegateStatusTag) { event_buffer_.emplace_back(); event_handle = event_buffer_.size(); EXPECT_EQ(event_metadata2, static_cast<int64_t>(kTfLiteOk)); DelegateStatus reported_status(event_metadata1); EXPECT_EQ(reported_status.source(), kDummySource); EXPECT_EQ(reported_status.code(), kDummyCode); } EXPECT_NE(-1, event_handle); return event_handle; } void EndEvent(uint32_t event_handle) override { EXPECT_EQ(event_handle, event_buffer_.size()); } int NumRecordedEvents() { return event_buffer_.size(); } private: std::vector<profiling::ProfileEvent> event_buffer_; }; TEST(TelemetryTest, DelegateStatusReport) { DelegateProfiler profiler; TfLiteDelegate delegate = TfLiteDelegateCreate(); TfLiteContext context; context.profiler = &profiler; DelegateStatus status(kDummySource, kDummyCode); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(profiler.NumRecordedEvents(), 2); } TEST(TelemetryTest, DelegateSettingsReport) { DelegateProfiler profiler; TfLiteDelegate delegate = TfLiteDelegateCreate(); TfLiteContext context; context.profiler = &profiler; flatbuffers::FlatBufferBuilder flatbuffer_builder; flatbuffers::Offset<tflite::GPUSettings> gpu_settings = tflite::CreateGPUSettings( flatbuffer_builder, kDummyGpuPrecisionLossAllowed); auto* tflite_settings_ptr = flatbuffers::GetTemporaryPointer( flatbuffer_builder, CreateTFLiteSettings(flatbuffer_builder, kDummyDelegate, 0, gpu_settings)); EXPECT_EQ(ReportDelegateSettings(&context, &delegate, *tflite_settings_ptr), kTfLiteOk); EXPECT_EQ(profiler.NumRecordedEvents(), 1); DelegateStatus status(kDummySource, kDummyCode); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(ReportDelegateStatus(&context, &delegate, status), kTfLiteOk); EXPECT_EQ(profiler.NumRecordedEvents(), 3); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/telemetry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/telemetry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1e2fd98c-981e-43d2-8f71-65c64b1a1825
cpp
google/quiche
mock_streams
quiche/common/test_tools/mock_streams.h
quiche/common/test_tools/mock_streams_test.cc
#ifndef QUICHE_COMMON_TEST_TOOLS_MOCK_STREAMS_H_ #define QUICHE_COMMON_TEST_TOOLS_MOCK_STREAMS_H_ #include <algorithm> #include <cstddef> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_stream.h" namespace quiche::test { class MockWriteStream : public quiche::WriteStream { public: MockWriteStream() { ON_CALL(*this, CanWrite()).WillByDefault(testing::Return(true)); ON_CALL(*this, Writev(testing::_, testing::_)) .WillByDefault([&](absl::Span<const absl::string_view> data, const StreamWriteOptions& options) { return AppendToData(data, options); }); } MOCK_METHOD(absl::Status, Writev, (absl::Span<const absl::string_view> data, const StreamWriteOptions& options), (override)); MOCK_METHOD(bool, CanWrite, (), (const, override)); absl::Status AppendToData(absl::Span<const absl::string_view> data, const StreamWriteOptions& options) { for (absl::string_view fragment : data) { data_.append(fragment.data(), fragment.size()); } ProcessOptions(options); return absl::OkStatus(); } void ProcessOptions(const StreamWriteOptions& options) { fin_written_ |= options.send_fin(); } std::string& data() { return data_; } bool fin_written() { return fin_written_; } private: std::string data_; bool fin_written_ = false; }; class ReadStreamFromString : public ReadStream { public: explicit ReadStreamFromString(std::string* data) : data_(data) {} ReadResult Read(absl::Span<char> buffer) override { size_t data_to_copy = std::min(buffer.size(), data_->size()); std::copy(data_->begin(), data_->begin() + data_to_copy, buffer.begin()); *data_ = data_->substr(data_to_copy); return ReadResult{data_to_copy, data_->empty() && fin_}; } ReadResult Read(std::string* output) override { size_t bytes = data_->size(); output->append(std::move(*data_)); data_->clear(); return ReadResult{bytes, fin_}; } size_t ReadableBytes() const override { return data_->size(); } virtual PeekResult PeekNextReadableRegion() const override { PeekResult result; result.peeked_data = *data_; result.fin_next = data_->empty() && fin_; result.all_data_received = fin_; return result; } bool SkipBytes(size_t bytes) override { *data_ = data_->substr(bytes); return data_->empty() && fin_; } void set_fin() { fin_ = true; } private: std::string* data_; bool fin_ = false; }; } #endif
#include "quiche/common/test_tools/mock_streams.h" #include <array> #include <string> #include "absl/types/span.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_stream.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quiche::test { namespace { using ::testing::ElementsAre; using ::testing::IsEmpty; TEST(MockWriteStreamTest, DefaultWrite) { MockWriteStream stream; QUICHE_EXPECT_OK(quiche::WriteIntoStream(stream, "test")); EXPECT_EQ(stream.data(), "test"); EXPECT_FALSE(stream.fin_written()); } TEST(ReadStreamFromStringTest, ReadIntoSpan) { std::string source = "abcdef"; std::array<char, 3> buffer; ReadStreamFromString stream(&source); EXPECT_EQ(stream.ReadableBytes(), 6); stream.Read(absl::MakeSpan(buffer)); EXPECT_THAT(buffer, ElementsAre('a', 'b', 'c')); EXPECT_EQ(stream.ReadableBytes(), 3); stream.Read(absl::MakeSpan(buffer)); EXPECT_THAT(buffer, ElementsAre('d', 'e', 'f')); EXPECT_EQ(stream.ReadableBytes(), 0); EXPECT_THAT(source, IsEmpty()); } TEST(ReadStreamFromStringTest, ReadIntoString) { std::string source = "abcdef"; std::string destination; ReadStreamFromString stream(&source); stream.Read(&destination); EXPECT_EQ(destination, "abcdef"); EXPECT_THAT(source, IsEmpty()); } TEST(ReadStreamFromStringTest, PeekAndSkip) { std::string source = "abcdef"; ReadStreamFromString stream(&source); EXPECT_EQ(stream.PeekNextReadableRegion().peeked_data, "abcdef"); stream.SkipBytes(2); EXPECT_EQ(stream.PeekNextReadableRegion().peeked_data, "cdef"); EXPECT_EQ(source, "cdef"); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/test_tools/mock_streams.h
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/test_tools/mock_streams_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
afc1e4f6-41e2-420b-8809-b2b778f8d91b
cpp
tensorflow/tensorflow
linalg_ops
tensorflow/core/ops/linalg_ops.cc
tensorflow/core/ops/linalg_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { Status MakeBatchSquareMatrix(InferenceContext* c, ShapeHandle input, ShapeHandle* out) { ShapeHandle s; TF_RETURN_IF_ERROR(c->WithRankAtLeast(input, 2, &s)); DimensionHandle d; TF_RETURN_IF_ERROR(c->Merge(c->Dim(s, -2), c->Dim(s, -1), &d)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(s, 0, -2, &batch_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(d, d), out)); return absl::OkStatus(); } Status BatchUnchangedSquareShapeFn(InferenceContext* c) { ShapeHandle out; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &out)); c->set_output(0, out); return absl::OkStatus(); } Status BandedTriangularSolveShapeFn(InferenceContext* c) { ShapeHandle lhs; ShapeHandle rhs; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &lhs)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); DimensionHandle num_bands = c->Dim(lhs, -2); DimensionHandle m = c->Dim(lhs, -1); if (c->ValueKnown(num_bands) && c->Value(num_bands) <= 0) { return errors::InvalidArgument("Number of bands must be positive, but is ", c->Value(num_bands)); } if (c->ValueKnown(num_bands) && c->ValueKnown(m) && c->Value(num_bands) > c->Value(m)) { return errors::InvalidArgument("Number of bands ", c->Value(num_bands), " cannot exceed the size of the matrix ", c->Value(m)); } ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; ShapeHandle output_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR(BroadcastBinaryOpOutputShapeFnHelper( c, lhs_batch_shape, rhs_batch_shape, true, &output_batch_shape)); TF_RETURN_IF_ERROR(c->Merge(m, c->Dim(rhs, -2), &m)); ShapeHandle out; TF_RETURN_IF_ERROR( c->Concatenate(output_batch_shape, c->Matrix(m, c->Dim(rhs, -1)), &out)); c->set_output(0, out); return absl::OkStatus(); } Status MatrixSolveShapeFn(InferenceContext* c, bool square) { ShapeHandle lhs; ShapeHandle rhs; if (square) { TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &lhs)); } else { TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &lhs)); } TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR( c->Merge(lhs_batch_shape, rhs_batch_shape, &lhs_batch_shape)); DimensionHandle m; TF_RETURN_IF_ERROR(c->Merge(c->Dim(lhs, -2), c->Dim(rhs, -2), &m)); DimensionHandle n = c->Dim(lhs, -1); if (square) { TF_RETURN_IF_ERROR(c->Merge(m, n, &n)); } ShapeHandle out; TF_RETURN_IF_ERROR(c->Concatenate(lhs_batch_shape, c->Vector(n), &out)); TF_RETURN_IF_ERROR(c->Concatenate(out, c->Vector(c->Dim(rhs, -1)), &out)); c->set_output(0, out); return absl::OkStatus(); } Status MatrixTriangularSolveShapeFn(InferenceContext* c) { ShapeHandle lhs; ShapeHandle rhs; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &lhs)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; ShapeHandle output_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR(BroadcastBinaryOpOutputShapeFnHelper( c, lhs_batch_shape, rhs_batch_shape, true, &output_batch_shape)); DimensionHandle m; TF_RETURN_IF_ERROR(c->Merge(c->Dim(lhs, -1), c->Dim(rhs, -2), &m)); ShapeHandle out; TF_RETURN_IF_ERROR( c->Concatenate(output_batch_shape, c->Matrix(m, c->Dim(rhs, -1)), &out)); c->set_output(0, out); return absl::OkStatus(); } Status SelfAdjointEigV2ShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &input)); DimensionHandle n; TF_RETURN_IF_ERROR(c->Merge(c->Dim(input, -2), c->Dim(input, -1), &n)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle e_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(n), &e_shape)); c->set_output(0, e_shape); bool compute_v; TF_RETURN_IF_ERROR(c->GetAttr("compute_v", &compute_v)); if (compute_v) { ShapeHandle v_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(n, n), &v_shape)); c->set_output(1, v_shape); } else { c->set_output(1, c->Vector(0ll)); } return absl::OkStatus(); } Status LuShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle n; TF_RETURN_IF_ERROR(c->Merge(c->Dim(input, -2), c->Dim(input, -1), &n)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle lu_shape; ShapeHandle p_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(n, n), &lu_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(n), &p_shape)); c->set_output(0, lu_shape); c->set_output(1, p_shape); return absl::OkStatus(); } Status QrShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle m = c->Dim(input, -2); DimensionHandle n = c->Dim(input, -1); DimensionHandle p; TF_RETURN_IF_ERROR(c->Min(m, n, &p)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle q_shape; ShapeHandle r_shape; bool full_matrices; TF_RETURN_IF_ERROR(c->GetAttr("full_matrices", &full_matrices)); if (full_matrices) { TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(m, m), &q_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(m, n), &r_shape)); } else { TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(m, p), &q_shape)); TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(p, n), &r_shape)); } c->set_output(0, q_shape); c->set_output(1, r_shape); return absl::OkStatus(); } Status SvdShapeFn(InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle m = c->Dim(input, -2); DimensionHandle n = c->Dim(input, -1); DimensionHandle p; TF_RETURN_IF_ERROR(c->Min(m, n, &p)); ShapeHandle batch_shape; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); ShapeHandle e_shape; TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(p), &e_shape)); c->set_output(0, e_shape); bool compute_uv; TF_RETURN_IF_ERROR(c->GetAttr("compute_uv", &compute_uv)); if (compute_uv) { ShapeHandle u_shape; ShapeHandle v_shape; bool full_matrices; TF_RETURN_IF_ERROR(c->GetAttr("full_matrices", &full_matrices)); if (full_matrices) { TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(m, m), &u_shape)); TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(n, n), &v_shape)); } else { TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(m, p), &u_shape)); TF_RETURN_IF_ERROR( c->Concatenate(batch_shape, c->Matrix(n, p), &v_shape)); } c->set_output(1, u_shape); c->set_output(2, v_shape); } else { c->set_output(1, c->Vector(0ll)); c->set_output(2, c->Vector(0ll)); } return absl::OkStatus(); } Status TridiagonalMatMulShapeFn(InferenceContext* c) { ShapeHandle superdiag; ShapeHandle maindiag; ShapeHandle subdiag; ShapeHandle rhs; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &superdiag)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &maindiag)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(2), 2, &subdiag)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(3), 2, &rhs)); ShapeHandle superdiag_batch_shape; ShapeHandle maindiag_batch_shape; ShapeHandle subdiag_batch_shape; ShapeHandle rhs_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(superdiag, 0, -2, &superdiag_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(maindiag, 0, -2, &maindiag_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(subdiag, 0, -2, &subdiag_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR(c->Merge(superdiag, maindiag, &superdiag)); TF_RETURN_IF_ERROR( c->Merge(maindiag_batch_shape, rhs_batch_shape, &rhs_batch_shape)); TF_RETURN_IF_ERROR( c->Merge(subdiag_batch_shape, rhs_batch_shape, &rhs_batch_shape)); TF_RETURN_IF_ERROR(c->Merge(superdiag, maindiag, &maindiag)); TF_RETURN_IF_ERROR(c->Merge(subdiag, maindiag, &maindiag)); DimensionHandle m_lhs = c->Dim(maindiag, -1); DimensionHandle m_rhs = c->Dim(rhs, -2); TF_RETURN_IF_ERROR(c->Merge(m_lhs, m_rhs, &m_lhs)); DimensionHandle unused; TF_RETURN_IF_ERROR(c->WithValue(c->Dim(maindiag, -2), 1, &unused)); c->set_output(0, rhs); return absl::OkStatus(); } Status TridiagonalSolveShapeFn(InferenceContext* c) { ShapeHandle lhs; ShapeHandle rhs; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &lhs)); TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(1), 2, &rhs)); ShapeHandle lhs_batch_shape; ShapeHandle rhs_batch_shape; TF_RETURN_IF_ERROR(c->Subshape(lhs, 0, -2, &lhs_batch_shape)); TF_RETURN_IF_ERROR(c->Subshape(rhs, 0, -2, &rhs_batch_shape)); TF_RETURN_IF_ERROR( c->Merge(lhs_batch_shape, rhs_batch_shape, &lhs_batch_shape)); DimensionHandle m_lhs = c->Dim(lhs, -1); DimensionHandle m_rhs = c->Dim(rhs, -2); TF_RETURN_IF_ERROR(c->Merge(m_lhs, m_rhs, &m_lhs)); TF_RETURN_IF_ERROR(c->WithValue(c->Dim(lhs, -2), 3, &m_lhs)); c->set_output(0, rhs); return absl::OkStatus(); } } REGISTER_OP("MatrixDeterminant") .Input("input: T") .Output("output: T") .Attr("T: {half, float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle unused; TF_RETURN_IF_ERROR( c->Merge(c->Dim(input, -1), c->Dim(input, -2), &unused)); ShapeHandle out; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &out)); c->set_output(0, out); return absl::OkStatus(); }); REGISTER_OP("LogMatrixDeterminant") .Input("input: T") .Output("sign: T") .Output("log_abs_determinant: T") .Attr("T: {half, float, double, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 2, &input)); DimensionHandle unused; TF_RETURN_IF_ERROR( c->Merge(c->Dim(input, -1), c->Dim(input, -2), &unused)); ShapeHandle s; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &s)); c->set_output(0, s); ShapeHandle out; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &out)); c->set_output(1, out); return absl::OkStatus(); }); REGISTER_OP("MatrixInverse") .Input("input: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("MatrixExponential") .Deprecated( 27, "Use Python implementation tf.linalg.matrix_exponential instead.") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("MatrixLogarithm") .Input("input: T") .Output("output: T") .Attr("T: {complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("Cholesky") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("CholeskyGrad") .Input("l: T") .Input("grad: T") .Output("output: T") .Attr("T: {half, float, double}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("SelfAdjointEig") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half}") .Deprecated(11, "Use SelfAdjointEigV2 instead.") .SetShapeFn([](InferenceContext* c) { ShapeHandle input; TF_RETURN_IF_ERROR(MakeBatchSquareMatrix(c, c->input(0), &input)); DimensionHandle d = c->Dim(input, -1); DimensionHandle d_plus_1; TF_RETURN_IF_ERROR(c->Add(d, 1, &d_plus_1)); ShapeHandle s; TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &s)); TF_RETURN_IF_ERROR(c->Concatenate(s, c->Matrix(d_plus_1, d), &s)); c->set_output(0, s); return absl::OkStatus(); }); REGISTER_OP("Eig") .Input("input: T") .Output("e: Tout") .Output("v: Tout") .Attr("compute_v: bool = True") .Attr("T: {float, double, complex64, complex128}") .Attr("Tout: {complex64, complex128}") .SetShapeFn(SelfAdjointEigV2ShapeFn); REGISTER_OP("SelfAdjointEigV2") .Input("input: T") .Output("e: T") .Output("v: T") .Attr("compute_v: bool = True") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(SelfAdjointEigV2ShapeFn); REGISTER_OP("Lu") .Input("input: T") .Output("lu: T") .Output("p: output_idx_type") .Attr("T: {double, float, half, complex64, complex128}") .Attr("output_idx_type: {int32, int64} = DT_INT32") .SetShapeFn(LuShapeFn); REGISTER_OP("MatrixSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { return MatrixSolveShapeFn(c, true ); }); REGISTER_OP("BandedTriangularSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("lower: bool = True") .Attr("adjoint: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { return BandedTriangularSolveShapeFn(c); }); REGISTER_OP("MatrixTriangularSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("lower: bool = True") .Attr("adjoint: bool = False") .Attr("T: {bfloat16, double, float, half, complex64, complex128}") .SetShapeFn([](InferenceContext* c) { return MatrixTriangularSolveShapeFn(c); }); REGISTER_OP("MatrixSolveLs") .Input("matrix: T") .Input("rhs: T") .Input("l2_regularizer: double") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .Attr("fast: bool = True") .SetShapeFn([](InferenceContext* c) { ShapeHandle l2_regularizer; TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 0, &l2_regularizer)); return MatrixSolveShapeFn(c, false ); }); REGISTER_OP("MatrixSquareRoot") .Input("input: T") .Output("output: T") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(BatchUnchangedSquareShapeFn); REGISTER_OP("Qr") .Input("input: T") .Output("q: T") .Output("r: T") .Attr("full_matrices: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(QrShapeFn); REGISTER_OP("Svd") .Input("input: T") .Output("s: T") .Output("u: T") .Output("v: T") .Attr("compute_uv: bool = True") .Attr("full_matrices: bool = False") .Attr("T: {double, float, half, complex64, complex128}") .SetShapeFn(SvdShapeFn); REGISTER_OP("TridiagonalMatMul") .Input("superdiag: T") .Input("maindiag: T") .Input("subdiag: T") .Input("rhs: T") .Output("output: T") .Attr("T: {double, float, complex64, complex128}") .SetShapeFn(TridiagonalMatMulShapeFn); REGISTER_OP("TridiagonalSolve") .Input("diagonals: T") .Input("rhs: T") .Output("output: T") .Attr("partial_pivoting: bool = True") .Attr("perturb_singular: bool = False") .Attr("T: {double, float, complex64, complex128}") .SetShapeFn(TridiagonalSolveShapeFn); REGISTER_OP("Einsum") .Input("inputs: N * T") .Output("output: T") .Attr("equation: string") .Attr("N: int >= 1") .Attr("T: type") .SetShapeFn(shape_inference::EinsumShape); REGISTER_OP("BatchSelfAdjointEig") .Input("input: T") .Output("output: T") .Attr("T: {double, float}") .Deprecated(11, "Use SelfAdjointEigV2 instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixDeterminant") .Input("input: T") .Output("output: T") .Attr("T: {float, double, complex64, complex128}") .Deprecated(13, "Use MatrixDeterminant instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixInverse") .Input("input: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float}") .Deprecated(13, "Use MatrixInverse instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchCholesky") .Input("input: T") .Output("output: T") .Attr("T: {double, float}") .Deprecated(13, "Use Cholesky instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchCholeskyGrad") .Input("l: T") .Input("grad: T") .Output("output: T") .Attr("T: {float, double}") .Deprecated(13, "Use CholeskyGrad instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchSelfAdjointEigV2") .Input("input: T") .Output("e: T") .Output("v: T") .Attr("compute_v: bool = True") .Attr("T: {double, float}") .Deprecated(13, "Use SelfAdjointEigV2 instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("adjoint: bool = False") .Attr("T: {double, float}") .Deprecated(13, "Use MatrixSolve instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixTriangularSolve") .Input("matrix: T") .Input("rhs: T") .Output("output: T") .Attr("lower: bool = True") .Attr("adjoint: bool = False") .Attr("T: {double, float}") .Deprecated(13, "Use MatrixTriangularSolve instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchMatrixSolveLs") .Input("matrix: T") .Input("rhs: T") .Input("l2_regularizer: double") .Output("output: T") .Attr("T: {double, float}") .Attr("fast: bool = True") .Deprecated(13, "Use MatrixSolveLs instead.") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("BatchSvd") .Input("input: T") .Output("s: T") .Output("u: T") .Output("v: T") .Attr("compute_uv: bool = True") .Attr("full_matrices: bool = False") .Attr("T: {double, float, complex64, complex128}") .Deprecated(13, "Use Svd instead.") .SetShapeFn(shape_inference::UnknownShape); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(LinalgOpsTest, MatrixDeterminant_ShapeFn) { ShapeInferenceTestOp op("MatrixDeterminant"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 2 and 1", op, "[1,?,3,4,1,2]"); INFER_OK(op, "[?,?]", "[]"); INFER_OK(op, "[1,?]", "[]"); INFER_OK(op, "[?,1]", "[]"); INFER_OK(op, "[1,?,3,4,?,?]", "[d0_0,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?,3,4,1,?]", "[d0_0,d0_1,d0_2,d0_3]"); INFER_OK(op, "[1,?,3,4,?,1]", "[d0_0,d0_1,d0_2,d0_3]"); } TEST(LinalgOpsTest, UnchangedSquare_ShapeFn) { for (const char* op_name : {"Cholesky", "CholeskyGrad", "MatrixInverse"}) { ShapeInferenceTestOp op(op_name); const string extra_shape = (op.name == "CholeskyGrad" ? ";?" : ""); INFER_OK(op, "?" + extra_shape, "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]" + extra_shape); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2]" + extra_shape); INFER_OK(op, "[?,?]" + extra_shape, "[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[1,?]" + extra_shape, "[d0_0,d0_0]"); INFER_OK(op, "[?,1]" + extra_shape, "[d0_1,d0_1]"); INFER_OK(op, "[5,?,7,?,?]" + extra_shape, "[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,1,?]" + extra_shape, "[d0_0,d0_1,d0_2,d0_3,d0_3]"); INFER_OK(op, "[5,?,7,?,1]" + extra_shape, "[d0_0,d0_1,d0_2,d0_4,d0_4]"); } } TEST(LinalgOpsTest, SelfAdjointEig_ShapeFn) { ShapeInferenceTestOp op("SelfAdjointEig"); INFER_OK(op, "?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2]"); INFER_OK(op, "[?,?]", "[?,d0_0|d0_1]"); INFER_OK(op, "[1,?]", "[2,d0_0]"); INFER_OK(op, "[?,1]", "[2,d0_1]"); INFER_OK(op, "[5,?,7,?,?]", "[d0_0,d0_1,d0_2,?,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,1,?]", "[d0_0,d0_1,d0_2,2,d0_3]"); INFER_OK(op, "[5,?,7,?,1]", "[d0_0,d0_1,d0_2,2,d0_4]"); } TEST(LinalgOpsTest, SelfAdjointEigV2_ShapeFn) { ShapeInferenceTestOp op("SelfAdjointEigV2"); auto set_compute_v = [&op](bool compute_v) { TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input({{"input", 0, DT_FLOAT}}) .Attr("compute_v", compute_v) .Finalize(&op.node_def)); TF_ASSERT_OK(NodeDefBuilder("test", "Pack") .Input({{"input", 0, DT_HALF}}) .Attr("compute_v", compute_v) .Finalize(&op.node_def)); }; set_compute_v(false); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[3,1,2]"); INFER_OK(op, "?", "?;[0]"); INFER_OK(op, "[?,?]", "[d0_0|d0_1];[0]"); INFER_OK(op, "[1,?]", "[d0_0|d0_1];[0]"); INFER_OK(op, "[?,1]", "[d0_0|d0_1];[0]"); INFER_OK(op, "[5,?,7,?,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[0]"); INFER_OK(op, "[5,?,7,1,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[0]"); INFER_OK(op, "[5,?,7,?,1]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[0]"); set_compute_v(true); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[?,?]", "[d0_0|d0_1];[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[1,?]", "[d0_0|d0_1];[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[?,1]", "[d0_0|d0_1];[d0_0|d0_1,d0_0|d0_1]"); INFER_OK(op, "[5,?,7,?,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,1,?]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); INFER_OK(op, "[5,?,7,?,1]", "[d0_0,d0_1,d0_2,d0_3|d0_4];[d0_0,d0_1,d0_2,d0_3|d0_4,d0_3|d0_4]"); } TEST(LinalgOpsTest, MatrixSolve_ShapeFn) { ShapeInferenceTestOp op("MatrixSolve"); INFER_OK(op, "?;?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];?"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[5,?,?];[6]"); INFER_ERROR("Shapes must be equal rank, but are 0 and 1", op, "[5,?];[6,?,?]"); INFER_OK(op, "[?,?];?", "[d0_0|d0_1,?]"); INFER_OK(op, "[?,?];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[?,?];[1,?]", "[d1_0,d1_1]"); INFER_OK(op, "[1,?];[1,?]", "[d0_0|d1_0,d1_1]"); INFER_OK(op, "[?,1];[1,?]", "[d0_1|d1_0,d1_1]"); INFER_OK(op, "[1,1];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[1,1];[1,?]", "[d0_0|d0_1|d1_0,d1_1]"); INFER_OK(op, "[10,?,?,?];[?,20,1,?]", "[d0_0,d1_1,d1_2,d1_3]"); INFER_OK(op, "[10,?,1,?];[?,20,1,?]", "[d0_0,d1_1,d0_2|d1_2,d1_3]"); INFER_OK(op, "[10,?,?,1];[?,20,1,?]", "[d0_0,d1_1,d0_3|d1_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,?,?]", "[d0_0,d1_1,d0_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,1,?]", "[d0_0,d1_1,d0_2|d0_3|d1_2,d1_3]"); } TEST(LinalgOpsTest, MatrixTriangularSolve_ShapeFn) { ShapeInferenceTestOp op("MatrixTriangularSolve"); INFER_OK(op, "?;?", "?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1];?"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,2];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[5,?,?];[6]"); INFER_OK(op, "[?,?];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[?,?];[1,?]", "[d1_0,d1_1]"); INFER_OK(op, "[1,?];[1,?]", "[d0_0|d1_0,d1_1]"); INFER_OK(op, "[?,1];[1,?]", "[d0_1|d1_0,d1_1]"); INFER_OK(op, "[1,1];[?,?]", "[d0_0,d1_1]"); INFER_OK(op, "[1,1];[1,?]", "[d0_0|d0_1|d1_0,d1_1]"); INFER_OK(op, "[10,?,?,?];[?,20,1,?]", "[d0_0,d1_1,d1_2,d1_3]"); INFER_OK(op, "[10,?,1,?];[?,20,1,?]", "[d0_0,d1_1,d0_2|d1_2,d1_3]"); INFER_OK(op, "[10,?,?,1];[?,20,1,?]", "[d0_0,d1_1,d0_3|d1_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,?,?]", "[d0_0,d1_1,d0_2,d1_3]"); INFER_OK(op, "[10,?,1,1];[?,20,1,?]", "[d0_0,d1_1,d0_2|d0_3|d1_2,d1_3]"); } TEST(LinalgOpsTest, MatrixSolveLs_ShapeFn) { ShapeInferenceTestOp op("MatrixSolveLs"); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "?;?;[]", "?"); INFER_OK(op, "[1,?];[1,?];?", "[d0_1,d1_1]"); INFER_OK(op, "[1,2];[1,3];?", "[d0_1,d1_1]"); INFER_ERROR("Dimensions must be equal, but are 5 and 6", op, "[5,?];[6,?];?"); INFER_OK(op, "[10,?,1,?];[?,20,1,?];?", "[d0_0,d1_1,d0_3,d1_3]"); INFER_OK(op, "[10,20,1,2];[10,20,1,3];?", "[d0_0|d1_0,d0_1|d1_1,d0_3,d1_3]"); INFER_ERROR("Dimensions must be equal, but are 5 and 6", op, "[10,?,5,?];[?,20,6,?];?"); INFER_ERROR("Dimension 0 in both shapes must be equal, but are 10 and 11", op, "[10,?,5,?];[11,?,5,?];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "?;[?];?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;?;[1]"); } TEST(LinalgOpsTest, Qr_ShapeFn) { ShapeInferenceTestOp op("Qr"); auto set_attrs = [&op](bool full_matrices) { TF_ASSERT_OK(NodeDefBuilder("test", "Qr") .Input({"input", 0, DT_FLOAT}) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); TF_ASSERT_OK(NodeDefBuilder("test", "Qr") .Input({"input", 0, DT_HALF}) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); }; set_attrs(false); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[4,?,?]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[4,2,?]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[4,?,2]", "[d0_0,d0_1,?];[d0_0,?,d0_2]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); set_attrs(true); INFER_OK(op, "?", "?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,?,?]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,?]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,?,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1,d0_1];[d0_0,d0_1,d0_2]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); } TEST(LinalgOpsTest, Svd_ShapeFn) { ShapeInferenceTestOp op("Svd"); auto set_attrs = [&op](bool compute_uv, bool full_matrices) { TF_ASSERT_OK(NodeDefBuilder("test", "Svd") .Input({"input", 0, DT_FLOAT}) .Attr("compute_uv", compute_uv) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); TF_ASSERT_OK(NodeDefBuilder("test", "Svd") .Input({"input", 0, DT_HALF}) .Attr("compute_uv", compute_uv) .Attr("full_matrices", full_matrices) .Finalize(&op.node_def)); }; set_attrs(false, false); INFER_OK(op, "?", "?;[0];[0]"); INFER_OK(op, "[?,?,?]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[4,?,?]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[4,2,?]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[4,?,2]", "[d0_0,?];[0];[0]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1];[0];[0]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1];[0];[0]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_2];[0];[0]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_2];[0];[0]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1];[0];[0]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1];[0];[0]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); set_attrs(true, false); INFER_OK(op, "?", "?;?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[4,?,?]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[4,2,?]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[4,?,2]", "[d0_0,?];[d0_0,d0_1,?];[d0_0,d0_2,?]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_2];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_1]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); set_attrs(true, true); INFER_OK(op, "?", "?;?;?"); INFER_OK(op, "[?,?,?]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,?,?]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,2,?]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,?,2]", "[d0_0,?];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,2,2]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,3,2]", "[d0_0,d0_2];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[?,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_OK(op, "[4,2,3]", "[d0_0,d0_1];[d0_0,d0_1,d0_1];[d0_0,d0_2,d0_2]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); } TEST(LinalgOpsTest, Lu_ShapeFn) { ShapeInferenceTestOp op("Lu"); INFER_OK(op, "?", "?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[1]"); INFER_ERROR("Dimensions must be equal, but are 1 and 2", op, "[1,?,3,4,1,2]"); INFER_OK(op, "[?,?]", "[d0_0,d0_0];[d0_0]"); INFER_OK(op, "[1,?]", "[d0_0,d0_0];[d0_0]"); INFER_OK(op, "[?,1]", "[d0_1,d0_1];[d0_1]"); INFER_OK(op, "[1,?,3,4,?,?]", "[d0_0,d0_1,d0_2,d0_3,d0_4,d0_4];[d0_0,d0_1,d0_2,d0_3,d0_4]"); INFER_OK(op, "[1,?,3,4,1,?]", "[d0_0,d0_1,d0_2,d0_3,d0_4,d0_4];[d0_0,d0_1,d0_2,d0_3,d0_4]"); INFER_OK(op, "[1,?,3,4,?,1]", "[d0_0,d0_1,d0_2,d0_3,d0_5,d0_5];[d0_0,d0_1,d0_2,d0_3,d0_5]"); } TEST(LinalgOpsTest, TridiagonalMatMul_ShapeFn) { ShapeInferenceTestOp op("TridiagonalMatMul"); INFER_OK(op, "?;?;?;?", "in3"); INFER_OK(op, "[1,5];[1,5];[1,5];[?,1]", "in3"); INFER_OK(op, "[1,5];[1,5];[1,5];[5,1]", "in3"); INFER_OK(op, "[?,1,?];[?,1,?];[?,1,?];[?,?,?]", "in3"); INFER_OK(op, "[?,1,5];[?,1,5];[?,1,5];[7,5,2]", "in3"); INFER_OK(op, "[7,1,5];[7,1,5];[7,1,5];[?,5,2]", "in3"); INFER_OK(op, "[7,1,5];[7,1,5];[7,1,5];[7,5,2]", "in3"); INFER_OK(op, "[7,?,1,5];[7,?,1,5];[7,?,1,5];[7,8,5,2]", "in3"); INFER_OK(op, "[7,8,1,5];[7,8,1,5];[7,8,1,5];[7,8,5,2]", "in3"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3];[3];[3];[5,1]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3,5];[3,5];[3,5];[5]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [6,4] and [6,8].", op, "[6,4,3,5];[6,4,3,5];[6,4,3,5];[6,8,5,2]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [?,4] and [6,8].", op, "[?,4,3,5];[?,4,3,5];[?,4,3,5];[6,8,5,2]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 5 and 6. " "Shapes are [1,5] and [1,6]", op, "[1,5];[1,6];[1,5];[6,2]"); INFER_ERROR("Dimension must be 1 but is 3", op, "[3,5];[3,5];[3,5];[5,2]"); } TEST(LinalgOpsTest, TridiagonalSolve_ShapeFn) { ShapeInferenceTestOp op("TridiagonalSolve"); INFER_OK(op, "?;?", "in1"); INFER_OK(op, "[3,5];[?,1]", "in1"); INFER_OK(op, "[?,5];[5,1]", "in1"); INFER_OK(op, "[?,5];[?,?]", "in1"); INFER_OK(op, "[?,?];[?,?]", "in1"); INFER_OK(op, "[3,5];[5,1]", "in1"); INFER_OK(op, "[3,5];[5,2]", "in1"); INFER_OK(op, "[?,?,?];[?,?,?]", "in1"); INFER_OK(op, "[?,3,5];[7,5,2]", "in1"); INFER_OK(op, "[7,3,5];[?,5,2]", "in1"); INFER_OK(op, "[7,?,5];[?,5,?]", "in1"); INFER_OK(op, "[7,3,5];[7,5,2]", "in1"); INFER_OK(op, "[7,?,3,5];[7,8,5,2]", "in1"); INFER_OK(op, "[7,8,3,5];[7,8,5,2]", "in1"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3];[5,1]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[3,5];[5]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [6,4] and [6,8].", op, "[6,4,3,5];[6,8,5,2]"); INFER_ERROR( "Dimension 1 in both shapes must be equal, but are 4 and 8. " "Shapes are [?,4] and [6,8].", op, "[?,4,3,5];[6,8,5,2]"); INFER_ERROR("Dimension must be 3 but is 4", op, "[4,5];[5,2]"); INFER_ERROR("Dimension must be 3 but is 4", op, "[6,4,5];[6,5,2]"); INFER_ERROR("Dimensions must be equal, but are 9 and 5", op, "[3,9];[5,2]"); INFER_ERROR("Dimensions must be equal, but are 9 and 5", op, "[6,3,9];[6,5,2]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/linalg_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/linalg_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
adeb99e1-0e4c-4bf7-a55d-129ccd6739eb
cpp
google/quiche
qpack_encoder_stream_sender
quiche/quic/core/qpack/qpack_encoder_stream_sender.cc
quiche/quic/core/qpack/qpack_encoder_stream_sender_test.cc
#include "quiche/quic/core/qpack/qpack_encoder_stream_sender.h" #include <cstddef> #include <limits> #include <string> #include "absl/strings/string_view.h" #include "quiche/quic/core/qpack/qpack_instructions.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { constexpr uint64_t kMaxBytesBufferedByStream = 64 * 1024; } QpackEncoderStreamSender::QpackEncoderStreamSender( HuffmanEncoding huffman_encoding) : delegate_(nullptr), instruction_encoder_(huffman_encoding) {} void QpackEncoderStreamSender::SendInsertWithNameReference( bool is_static, uint64_t name_index, absl::string_view value) { instruction_encoder_.Encode( QpackInstructionWithValues::InsertWithNameReference(is_static, name_index, value), &buffer_); } void QpackEncoderStreamSender::SendInsertWithoutNameReference( absl::string_view name, absl::string_view value) { instruction_encoder_.Encode( QpackInstructionWithValues::InsertWithoutNameReference(name, value), &buffer_); } void QpackEncoderStreamSender::SendDuplicate(uint64_t index) { instruction_encoder_.Encode(QpackInstructionWithValues::Duplicate(index), &buffer_); } void QpackEncoderStreamSender::SendSetDynamicTableCapacity(uint64_t capacity) { instruction_encoder_.Encode( QpackInstructionWithValues::SetDynamicTableCapacity(capacity), &buffer_); } bool QpackEncoderStreamSender::CanWrite() const { return delegate_ && delegate_->NumBytesBuffered() + buffer_.size() <= kMaxBytesBufferedByStream; } void QpackEncoderStreamSender::Flush() { if (buffer_.empty()) { return; } delegate_->WriteStreamData(buffer_); buffer_.clear(); } }
#include "quiche/quic/core/qpack/qpack_encoder_stream_sender.h" #include <string> #include "absl/strings/escaping.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/qpack/qpack_test_utils.h" using ::testing::Eq; using ::testing::StrictMock; namespace quic { namespace test { namespace { class QpackEncoderStreamSenderTest : public QuicTestWithParam<bool> { protected: QpackEncoderStreamSenderTest() : stream_(HuffmanEncoding()) { stream_.set_qpack_stream_sender_delegate(&delegate_); } ~QpackEncoderStreamSenderTest() override = default; bool DisableHuffmanEncoding() { return GetParam(); } HuffmanEncoding HuffmanEncoding() { return DisableHuffmanEncoding() ? HuffmanEncoding::kDisabled : HuffmanEncoding::kEnabled; } StrictMock<MockQpackStreamSenderDelegate> delegate_; QpackEncoderStreamSender stream_; }; INSTANTIATE_TEST_SUITE_P(DisableHuffmanEncoding, QpackEncoderStreamSenderTest, testing::Values(false, true)); TEST_P(QpackEncoderStreamSenderTest, InsertWithNameReference) { EXPECT_EQ(0u, stream_.BufferedByteCount()); std::string expected_encoded_data; ASSERT_TRUE(absl::HexStringToBytes("c500", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithNameReference(true, 5, ""); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); if (DisableHuffmanEncoding()) { ASSERT_TRUE(absl::HexStringToBytes("c203666f6f", &expected_encoded_data)); } else { ASSERT_TRUE(absl::HexStringToBytes("c28294e7", &expected_encoded_data)); } EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithNameReference(true, 2, "foo"); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); ASSERT_TRUE(absl::HexStringToBytes("bf4a03626172", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithNameReference(false, 137, "bar"); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); ASSERT_TRUE(absl::HexStringToBytes( "aa7f005a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithNameReference(false, 42, std::string(127, 'Z')); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); } TEST_P(QpackEncoderStreamSenderTest, InsertWithoutNameReference) { EXPECT_EQ(0u, stream_.BufferedByteCount()); std::string expected_encoded_data; ASSERT_TRUE(absl::HexStringToBytes("4000", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithoutNameReference("", ""); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); if (DisableHuffmanEncoding()) { ASSERT_TRUE( absl::HexStringToBytes("43666f6f03666f6f", &expected_encoded_data)); } else { ASSERT_TRUE(absl::HexStringToBytes("6294e78294e7", &expected_encoded_data)); } EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithoutNameReference("foo", "foo"); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); ASSERT_TRUE( absl::HexStringToBytes("4362617203626172", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithoutNameReference("bar", "bar"); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); ASSERT_TRUE(absl::HexStringToBytes( "5f005a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a7f" "005a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendInsertWithoutNameReference(std::string(31, 'Z'), std::string(127, 'Z')); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); } TEST_P(QpackEncoderStreamSenderTest, Duplicate) { EXPECT_EQ(0u, stream_.BufferedByteCount()); std::string expected_encoded_data; ASSERT_TRUE(absl::HexStringToBytes("11", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendDuplicate(17); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); ASSERT_TRUE(absl::HexStringToBytes("1fd503", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendDuplicate(500); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); } TEST_P(QpackEncoderStreamSenderTest, SetDynamicTableCapacity) { EXPECT_EQ(0u, stream_.BufferedByteCount()); std::string expected_encoded_data; ASSERT_TRUE(absl::HexStringToBytes("31", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendSetDynamicTableCapacity(17); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); EXPECT_EQ(0u, stream_.BufferedByteCount()); ASSERT_TRUE(absl::HexStringToBytes("3fd503", &expected_encoded_data)); EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); stream_.SendSetDynamicTableCapacity(500); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); EXPECT_EQ(0u, stream_.BufferedByteCount()); } TEST_P(QpackEncoderStreamSenderTest, Coalesce) { stream_.SendInsertWithNameReference(true, 5, ""); stream_.SendInsertWithNameReference(true, 2, "foo"); stream_.SendInsertWithoutNameReference("foo", "foo"); stream_.SendDuplicate(17); std::string expected_encoded_data; if (DisableHuffmanEncoding()) { ASSERT_TRUE(absl::HexStringToBytes( "c500" "c203666f6f" "43666f6f03666f6f" "11", &expected_encoded_data)); } else { ASSERT_TRUE(absl::HexStringToBytes( "c500" "c28294e7" "6294e78294e7" "11", &expected_encoded_data)); } EXPECT_CALL(delegate_, WriteStreamData(Eq(expected_encoded_data))); EXPECT_EQ(expected_encoded_data.size(), stream_.BufferedByteCount()); stream_.Flush(); EXPECT_EQ(0u, stream_.BufferedByteCount()); } TEST_P(QpackEncoderStreamSenderTest, FlushEmpty) { EXPECT_EQ(0u, stream_.BufferedByteCount()); stream_.Flush(); EXPECT_EQ(0u, stream_.BufferedByteCount()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_encoder_stream_sender.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_encoder_stream_sender_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
84ece1c4-f4db-4de8-b09b-7928502e72a1
cpp
google/arolla
string_slot_listener
arolla/io/string_slot_listener.cc
arolla/io/string_slot_listener_test.cc
#include "arolla/io/string_slot_listener.h" #include <memory> #include <string> #include <string_view> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/io/accessors_slot_listener.h" #include "arolla/io/slot_listener.h" #include "arolla/memory/optional_value.h" #include "arolla/util/bytes.h" namespace arolla { absl::StatusOr<std::unique_ptr<SlotListener<std::string>>> BytesSlotListener( absl::string_view side_output_name) { return CreateAccessorsSlotListener<std::string>( side_output_name, [](const OptionalValue<Bytes>& b, std::string* out) { *out = b.present ? b.value : ""; }); } absl::StatusOr<std::unique_ptr<SlotListener<std::vector<std::string>>>> BytesArraySlotListener(absl::string_view side_output_name) { return CreateAccessorsSlotListener<std::vector<std::string>>( side_output_name, [](const DenseArray<Bytes>& arr, std::vector<std::string>* out) { out->clear(); out->reserve(arr.size()); arr.ForEach([&](auto _, bool is_present, absl::string_view value) { out->push_back(is_present ? std::string(value) : ""); }); }); } }
#include "arolla/io/string_slot_listener.h" #include <optional> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/io/slot_listener.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/bytes.h" namespace arolla { namespace { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::IsEmpty; TEST(StringSlotListenerTest, BytesSlotListener) { ASSERT_OK_AND_ASSIGN(auto slot_listener, BytesSlotListener("debug_html")); EXPECT_THAT(slot_listener->GetQTypeOf("debug_html"), Eq(GetOptionalQType<Bytes>())); FrameLayout::Builder layout_builder; auto bytes_slot = layout_builder.AddSlot<OptionalValue<Bytes>>(); ASSERT_OK_AND_ASSIGN(BoundSlotListener<std::string> bound_slot_listener, slot_listener->Bind({ {"debug_html", TypedSlot::FromSlot(bytes_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); std::string side_output; ASSERT_OK(bound_slot_listener(alloc.frame(), &side_output)); EXPECT_THAT(side_output, Eq("")); alloc.frame().Set(bytes_slot, Bytes{"fifty seven"}); ASSERT_OK(bound_slot_listener(alloc.frame(), &side_output)); EXPECT_THAT(side_output, Eq("fifty seven")); } TEST(StringSlotListenerTest, BytesArraySlotListener) { ASSERT_OK_AND_ASSIGN(auto slot_listener, BytesArraySlotListener("debug_htmls")); EXPECT_THAT(slot_listener->GetQTypeOf("debug_htmls"), Eq(GetDenseArrayQType<Bytes>())); FrameLayout::Builder layout_builder; auto bytes_array_slot = layout_builder.AddSlot<DenseArray<Bytes>>(); ASSERT_OK_AND_ASSIGN( BoundSlotListener<std::vector<std::string>> bound_slot_listener, slot_listener->Bind({ {"debug_htmls", TypedSlot::FromSlot(bytes_array_slot)}, })); FrameLayout memory_layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&memory_layout); std::vector<std::string> side_output; ASSERT_OK(bound_slot_listener(alloc.frame(), &side_output)); EXPECT_THAT(side_output, IsEmpty()); alloc.frame().Set(bytes_array_slot, CreateDenseArray<Bytes>({Bytes("fifty"), Bytes(""), Bytes("seven"), std::nullopt})); ASSERT_OK(bound_slot_listener(alloc.frame(), &side_output)); EXPECT_THAT(side_output, ElementsAre("fifty", "", "seven", "")); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/string_slot_listener.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/string_slot_listener_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
ac970f59-4c27-4d55-8616-1699c02adfcc
cpp
google/tensorstore
transform_array_constraints
tensorstore/index_space/transform_array_constraints.h
tensorstore/index_space/transform_array_constraints_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_TRANSFORM_ARRAY_CONSTRAINTS_H_ #define TENSORSTORE_INDEX_SPACE_TRANSFORM_ARRAY_CONSTRAINTS_H_ #include "tensorstore/util/iterate.h" namespace tensorstore { enum class MustAllocateConstraint { may_allocate = 0, must_allocate = 1 }; constexpr MustAllocateConstraint may_allocate = MustAllocateConstraint::may_allocate; constexpr MustAllocateConstraint must_allocate = MustAllocateConstraint::must_allocate; class TransformArrayConstraints { public: constexpr TransformArrayConstraints( IterationConstraints iteration_constraint = {}, MustAllocateConstraint allocate_constraint = may_allocate) : value_(iteration_constraint.value() | (static_cast<int>(allocate_constraint) << IterationConstraints::kNumBits)) {} constexpr TransformArrayConstraints( LayoutOrderConstraint order_constraint, RepeatedElementsConstraint repeat_constraint = include_repeated_elements, MustAllocateConstraint allocate_constraint = may_allocate) : TransformArrayConstraints( IterationConstraints(order_constraint, repeat_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( UnspecifiedLayoutOrder order_constraint, RepeatedElementsConstraint repeat_constraint = include_repeated_elements, MustAllocateConstraint allocate_constraint = may_allocate) : TransformArrayConstraints( IterationConstraints(order_constraint, repeat_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( ContiguousLayoutOrder order_constraint, RepeatedElementsConstraint repeat_constraint = include_repeated_elements, MustAllocateConstraint allocate_constraint = may_allocate) : TransformArrayConstraints( IterationConstraints(order_constraint, repeat_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( LayoutOrderConstraint order_constraint, MustAllocateConstraint allocate_constraint) : TransformArrayConstraints(IterationConstraints(order_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( UnspecifiedLayoutOrder order_constraint, MustAllocateConstraint allocate_constraint) : TransformArrayConstraints(IterationConstraints(order_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( ContiguousLayoutOrder order_constraint, MustAllocateConstraint allocate_constraint) : TransformArrayConstraints(IterationConstraints(order_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( RepeatedElementsConstraint repeat_constraint, MustAllocateConstraint allocate_constraint = may_allocate) : TransformArrayConstraints(IterationConstraints(repeat_constraint), allocate_constraint) {} constexpr TransformArrayConstraints( MustAllocateConstraint allocate_constraint) : TransformArrayConstraints(IterationConstraints{}, allocate_constraint) { } explicit constexpr TransformArrayConstraints(int value) : value_(value) {} constexpr IterationConstraints iteration_constraints() const { return IterationConstraints(value() & ((1 << IterationConstraints::kNumBits) - 1)); } constexpr LayoutOrderConstraint order_constraint() const { return iteration_constraints().order_constraint(); } constexpr RepeatedElementsConstraint repeated_elements_constraint() const { return iteration_constraints().repeated_elements_constraint(); } constexpr MustAllocateConstraint allocate_constraint() const { return static_cast<MustAllocateConstraint>(value_ >> IterationConstraints::kNumBits); } constexpr int value() const { return value_; } constexpr static int kNumBits = IterationConstraints::kNumBits + 1; friend constexpr bool operator==(TransformArrayConstraints a, TransformArrayConstraints b) { return a.value() == b.value(); } friend constexpr bool operator!=(TransformArrayConstraints a, TransformArrayConstraints b) { return a.value() != b.value(); } private: int value_; }; } #endif
#include "tensorstore/index_space/transform_array_constraints.h" #include <gtest/gtest.h> namespace { using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::IterationConstraints; using ::tensorstore::TransformArrayConstraints; TEST(TransformArrayConstraintsTest, Basic) { EXPECT_TRUE( TransformArrayConstraints(ContiguousLayoutOrder::c).order_constraint()); EXPECT_EQ(IterationConstraints(ContiguousLayoutOrder::c, tensorstore::skip_repeated_elements), TransformArrayConstraints( IterationConstraints(ContiguousLayoutOrder::c, tensorstore::skip_repeated_elements)) .iteration_constraints()); EXPECT_FALSE(TransformArrayConstraints(tensorstore::unspecified_order) .order_constraint()); EXPECT_EQ(tensorstore::skip_repeated_elements, TransformArrayConstraints(tensorstore::skip_repeated_elements, tensorstore::may_allocate) .repeated_elements_constraint()); EXPECT_EQ(tensorstore::may_allocate, TransformArrayConstraints(tensorstore::skip_repeated_elements, tensorstore::may_allocate) .allocate_constraint()); EXPECT_EQ(tensorstore::must_allocate, TransformArrayConstraints(tensorstore::skip_repeated_elements, tensorstore::must_allocate) .allocate_constraint()); EXPECT_EQ( tensorstore::c_order, TransformArrayConstraints(tensorstore::c_order, tensorstore::may_allocate) .order_constraint() .order()); EXPECT_EQ(tensorstore::fortran_order, TransformArrayConstraints(tensorstore::fortran_order, tensorstore::may_allocate) .order_constraint() .order()); static_assert( 11 == TransformArrayConstraints(tensorstore::fortran_order, tensorstore::include_repeated_elements, tensorstore::must_allocate) .value(), ""); static_assert( 3 == TransformArrayConstraints(tensorstore::fortran_order, tensorstore::include_repeated_elements) .value(), ""); static_assert( 10 == TransformArrayConstraints(tensorstore::c_order, tensorstore::include_repeated_elements, tensorstore::must_allocate) .value(), ""); static_assert( 8 == TransformArrayConstraints(tensorstore::include_repeated_elements, tensorstore::must_allocate) .value(), ""); EXPECT_EQ(tensorstore::fortran_order, TransformArrayConstraints(tensorstore::fortran_order, tensorstore::include_repeated_elements, tensorstore::must_allocate) .order_constraint() .order()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_array_constraints.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_array_constraints_test.cc
4f887a6430414cd6088e1743555015b10f116d50
5680cdf5-915e-4052-877f-c155631c5ca6
cpp
tensorflow/tensorflow
device_description
third_party/xla/xla/stream_executor/device_description.cc
third_party/xla/xla/stream_executor/device_description_test.cc
#include "xla/stream_executor/device_description.h" #include <cstdint> #include <string> #include <variant> #include "xla/stream_executor/device_description.pb.h" #include "xla/stream_executor/launch_dim.h" #include "xla/tsl/lib/math/math_util.h" #include "tsl/platform/logging.h" namespace stream_executor { DeviceDescription::DeviceDescription(const GpuDeviceInfoProto &proto) : block_dim_limit_(BlockDim(proto.block_dim_limit_x(), proto.block_dim_limit_y(), proto.block_dim_limit_z())), threads_per_core_limit_(proto.threads_per_core_limit()), threads_per_block_limit_(proto.threads_per_block_limit()), threads_per_warp_(proto.threads_per_warp()), registers_per_core_limit_(proto.registers_per_core_limit()), registers_per_block_limit_(proto.registers_per_block_limit()), device_memory_size_(proto.device_memory_size()), l2_cache_size_(proto.l2_cache_size()), memory_bandwidth_(proto.memory_bandwidth()), shared_memory_per_core_(proto.shared_memory_per_core()), shared_memory_per_block_(proto.shared_memory_per_block()), shared_memory_per_block_optin_(proto.shared_memory_per_block_optin()), clock_rate_ghz_(proto.clock_rate_ghz()), gpu_compute_capability_( proto.has_cuda_compute_capability() ? GpuComputeCapability(stream_executor::CudaComputeCapability( proto.cuda_compute_capability())) : GpuComputeCapability(stream_executor::RocmComputeCapability( proto.rocm_compute_capability()))), core_count_(proto.core_count()), fpus_per_core_(proto.fpus_per_core()) {} GpuDeviceInfoProto DeviceDescription::ToGpuProto() const { stream_executor::GpuDeviceInfoProto proto; if (auto *ptr = std::get_if<stream_executor::CudaComputeCapability>( &gpu_compute_capability_)) *proto.mutable_cuda_compute_capability() = ptr->ToProto(); if (auto *ptr = std::get_if<stream_executor::RocmComputeCapability>( &gpu_compute_capability_)) *proto.mutable_rocm_compute_capability() = ptr->ToProto(); proto.set_threads_per_block_limit(threads_per_block_limit_); proto.set_threads_per_warp(threads_per_warp_); proto.set_shared_memory_per_block(shared_memory_per_block_); proto.set_shared_memory_per_block_optin(shared_memory_per_block_optin_); proto.set_shared_memory_per_core(shared_memory_per_core_); proto.set_threads_per_core_limit(threads_per_core_limit_); proto.set_core_count(core_count_); proto.set_fpus_per_core(fpus_per_core_); proto.set_block_dim_limit_x(block_dim_limit().x); proto.set_block_dim_limit_y(block_dim_limit().y); proto.set_block_dim_limit_z(block_dim_limit().z); proto.set_memory_bandwidth(memory_bandwidth_); proto.set_l2_cache_size(l2_cache_size_); proto.set_clock_rate_ghz(clock_rate_ghz_); proto.set_device_memory_size(device_memory_size_); proto.set_registers_per_core_limit(registers_per_core_limit_); proto.set_registers_per_block_limit(registers_per_block_limit_); return proto; } std::string DeviceDescription::ToString() const { return ToGpuProto().DebugString(); } const GpuComputeCapability &DeviceDescription::gpu_compute_capability() const { return gpu_compute_capability_; } CudaComputeCapability DeviceDescription::cuda_compute_capability() const { if (auto *ptr = std::get_if<CudaComputeCapability>(&gpu_compute_capability_)) { return *ptr; } return CudaComputeCapability{-1, -1}; } RocmComputeCapability DeviceDescription::rocm_compute_capability() const { if (auto *ptr = std::get_if<RocmComputeCapability>(&gpu_compute_capability_)) { return *ptr; } return RocmComputeCapability{}; } bool ThreadDimOk(const DeviceDescription &device_description, const ThreadDim &thread_dim) { const int64_t total_threads = thread_dim.x * thread_dim.y * thread_dim.z; const int64_t threads_per_block_limit = device_description.threads_per_block_limit(); if (total_threads > threads_per_block_limit) { VLOG(2) << "exceeded total-thread-per-block limit: " << total_threads << " vs limit " << threads_per_block_limit; return false; } const auto &limit = device_description.thread_dim_limit(); bool ok = thread_dim.x <= limit.x && thread_dim.y <= limit.y && thread_dim.z <= limit.z; if (!ok) { VLOG(2) << "thread dim " << thread_dim.ToString() << " exceeds limit constraints of " << limit.ToString(); } return ok; } void CalculateDimensionality(const DeviceDescription &device_description, int64_t element_count, int64_t *threads_per_block, int64_t *block_count) { *threads_per_block = device_description.threads_per_block_limit(); *block_count = tsl::MathUtil::CeilOfRatio(element_count, *threads_per_block); if (*block_count == 1) { CHECK_LE(element_count, *threads_per_block); *threads_per_block = element_count; } } }
#include "xla/stream_executor/device_description.h" #include "xla/stream_executor/semantic_version.h" #include "tsl/platform/test.h" namespace stream_executor { namespace { TEST(DeviceDescription, DefaultConstruction) { DeviceDescription desc; EXPECT_EQ(desc.device_address_bits(), -1); EXPECT_EQ(desc.device_memory_size(), -1); EXPECT_EQ(desc.clock_rate_ghz(), -1); EXPECT_EQ(desc.name(), "<undefined>"); EXPECT_EQ(desc.platform_version(), "<undefined>"); constexpr SemanticVersion kZeroVersion = {0, 0, 0}; EXPECT_EQ(desc.driver_version(), kZeroVersion); EXPECT_EQ(desc.runtime_version(), kZeroVersion); EXPECT_EQ(desc.pci_bus_id(), "<undefined>"); } TEST(CudaComputeCapability, GenerationNumericTest) { EXPECT_TRUE(CudaComputeCapability(7, 5).IsAtLeastVolta()); EXPECT_TRUE(CudaComputeCapability(8, 0).IsAtLeastAmpere()); EXPECT_TRUE(CudaComputeCapability(9, 0).IsAtLeastHopper()); EXPECT_TRUE(CudaComputeCapability(10, 0).IsAtLeastBlackwell()); } TEST(CudaComputeCapability, GenerationLiteralTest) { EXPECT_TRUE(CudaComputeCapability::Volta().IsAtLeast(7)); EXPECT_TRUE(CudaComputeCapability::Ampere().IsAtLeast(8)); EXPECT_TRUE(CudaComputeCapability::Hopper().IsAtLeast(9)); EXPECT_TRUE(CudaComputeCapability::Blackwell().IsAtLeast(10)); } TEST(CudaComputeCapability, ComparisonTest) { CudaComputeCapability lower{1, 0}; CudaComputeCapability slightly_higher{1, 1}; CudaComputeCapability higher{2, 0}; EXPECT_TRUE(lower == lower); EXPECT_FALSE(lower == slightly_higher); EXPECT_FALSE(lower == higher); EXPECT_TRUE(lower <= lower); EXPECT_TRUE(lower < slightly_higher); EXPECT_TRUE(lower <= slightly_higher); EXPECT_FALSE(lower < lower); EXPECT_FALSE(slightly_higher <= lower); EXPECT_FALSE(slightly_higher < lower); EXPECT_TRUE(slightly_higher >= slightly_higher); EXPECT_TRUE(slightly_higher > lower); EXPECT_TRUE(slightly_higher >= lower); EXPECT_FALSE(slightly_higher > slightly_higher); EXPECT_FALSE(lower > slightly_higher); EXPECT_FALSE(lower >= slightly_higher); EXPECT_TRUE(higher > slightly_higher); EXPECT_TRUE(higher >= slightly_higher); EXPECT_TRUE(higher >= higher); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/device_description.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/device_description_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3829685b-1880-4132-b56c-60ef31326b82
cpp
tensorflow/tensorflow
xla_gpu_ops
third_party/xla/xla/service/gpu/fusions/ir/xla_gpu_ops.cc
third_party/xla/xla/service/gpu/fusions/ir/xla_gpu_ops_test.cc
#include "xla/service/gpu/fusions/ir/xla_gpu_ops.h" #include <cstdint> #include <optional> #include <utility> #include <vector> #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/STLFunctionalExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/Support/Casting.h" #include "llvm/Support/LogicalResult.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/SymbolTable.h" #include "mlir/IR/TypeRange.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/Types.h" #include "mlir/IR/Value.h" #include "mlir/IR/ValueRange.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "xla/service/gpu/fusions/ir/xla_gpu_dialect.cc.inc" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/indexing_map_serialization.h" namespace xla { namespace gpu { namespace { using llvm::ArrayRef; using mlir::AffineExpr; using mlir::AffineMap; using mlir::Block; using mlir::DenseI64ArrayAttr; using mlir::failure; using mlir::getAffineConstantExpr; using mlir::getAffineDimExpr; using mlir::getAffineSymbolExpr; using mlir::Location; using mlir::LogicalResult; using mlir::MLIRContext; using mlir::OpAsmParser; using mlir::OpAsmPrinter; using mlir::OpBuilder; using mlir::OperationState; using mlir::ParseResult; using mlir::PatternRewriter; using mlir::RankedTensorType; using mlir::Region; using mlir::SmallVector; using mlir::success; using mlir::Type; using mlir::TypeRange; using mlir::Value; using mlir::ValueRange; namespace arith = mlir::arith; } LogicalResult PureCallOp::verifySymbolUses( mlir::SymbolTableCollection& symbolTable) { auto callee = getCalleeAttr(); auto function = symbolTable.lookupNearestSymbolFrom<mlir::func::FuncOp>(*this, callee); if (!function) { return emitError("'f' attribute refers to an undefined function: ") << callee; } int func_arg_count = function.getFunctionType().getNumInputs(); int arg_count = getOperands().size(); if (arg_count != func_arg_count) { return emitError() << "argument count mismatch: 'operands' has " << arg_count << " arguments, but '" << callee << "' expects " << func_arg_count; } return success(); } void AllocateSharedOp::getAsmResultNames( llvm::function_ref<void(mlir::Value, mlir::StringRef)> setNameFn) { setNameFn(getResult(), "shmem"); } void ApplyIndexingOp::build(OpBuilder& builder, OperationState& result, ValueRange dims, ValueRange symbols, const IndexingMap& indexing_map) { SmallVector<Value, 4> operands; operands.reserve(dims.size() + symbols.size()); operands.append(dims.begin(), dims.end()); operands.append(symbols.begin(), symbols.end()); build(builder, result, operands, indexing_map); } void ApplyIndexingOp::build(OpBuilder& builder, OperationState& result, ValueRange operands, const IndexingMap& indexing_map) { SmallVector<Type, 2> result_types(indexing_map.GetAffineMap().getNumResults(), builder.getIndexType()); IndexingMapAttr indexing_map_attr = IndexingMapAttr::get(builder.getContext(), indexing_map); build(builder, result, result_types, operands, indexing_map_attr); } void ApplyIndexingOp::build(OpBuilder& builder, OperationState& result, ValueRange operands, AffineMap affine_map, ArrayRef<IndexingMap::Variable> dim_vars, ArrayRef<IndexingMap::Variable> range_vars) { IndexingMap indexing_map(affine_map, dim_vars, range_vars, {}); build(builder, result, operands, indexing_map); } ParseResult parseOperands( OpAsmParser& parser, SmallVector<OpAsmParser::UnresolvedOperand, 4>* operands) { OpAsmParser::UnresolvedOperand operand; return parser.parseCommaSeparatedList( [&]() { return parser.parseOperand(operands->emplace_back()); }); } ParseResult ApplyIndexingOp::parse(OpAsmParser& parser, OperationState& result) { mlir::Builder& builder = parser.getBuilder(); auto index_type = builder.getIndexType(); IndexingMapAttr indexing_map_attr; if (parser.parseAttribute(indexing_map_attr, "indexing_map_attr", result.attributes)) { return failure(); } SmallVector<OpAsmParser::UnresolvedOperand, 4> operands; SmallVector<int64_t, 4> lower_bounds, upper_bounds; if (succeeded(parser.parseOptionalLParen())) { if (parseOperands(parser, &operands) || parser.parseRParen()) { return failure(); } } if (succeeded(parser.parseOptionalLSquare())) { if (parseOperands(parser, &operands) || parser.parseRSquare()) { return failure(); } } if (parser.resolveOperands(operands, index_type, result.operands) || parser.parseOptionalAttrDict(result.attributes)) { return failure(); } auto map = indexing_map_attr.getIndexingMap().GetAffineMap(); result.addTypes(SmallVector<Type, 2>(map.getNumResults(), index_type)); return success(); } void ApplyIndexingOp::print(OpAsmPrinter& p) { AffineMap affine_map = getIndexingMapAttr().getIndexingMap().GetAffineMap(); p << " " << getIndexingMapAttr(); auto operands = getOperands(); unsigned num_dimensions = affine_map.getNumDims(); if (num_dimensions > 0) { p << '('; auto dimension_operands = operands.slice(0, num_dimensions); llvm::interleaveComma(dimension_operands, p); p << ')'; } unsigned num_symbols = affine_map.getNumSymbols(); if (num_symbols > 0) { p << '['; auto symbol_operands = operands.slice(num_dimensions, num_symbols); llvm::interleaveComma(symbol_operands, p); p << ']'; } p.printOptionalAttrDict((*this)->getAttrs(), {"indexing_map_attr"}); } LogicalResult ApplyIndexingOp::verify() { auto affine_map = getIndexingMapAttr().getIndexingMap().GetAffineMap(); unsigned num_variables = affine_map.getNumDims() + affine_map.getNumSymbols(); if (getOperands().size() != num_variables) { return emitOpError( "operand count must match the number of dimensions and symbols in the " "affine map"); } if (!getIndexingMap().GetConstraints().empty()) { return emitOpError("apply indexing op cannot have any constraints"); } return success(); } IndexingMap ApplyIndexingOp::getIndexingMap() { return getIndexingMapAttr().getIndexingMap(); } namespace { struct IndexingMapWithAdditions { IndexingMap indexing_map; SmallVector<Value> added_dim_args; SmallVector<Value> added_sym_args; }; IndexingMapWithAdditions GetNewIndexingMapAfterFoldingSequence( IndexingMap indexing_map, SmallVector<std::pair<int, ApplyIndexingOp>, 2> apply_indexing_ops, mlir::DenseMap<Value, AffineExpr> operand_exprs, MLIRContext* ctx) { int num_dims = indexing_map.GetDimensionCount(); int num_syms = indexing_map.GetSymbolCount(); SmallVector<Value> added_dim_args; SmallVector<Value> added_sym_args; auto new_dim_vars = indexing_map.GetDimVars(); auto new_sym_vars = indexing_map.GetRangeVars(); mlir::DenseMap<AffineExpr, AffineExpr> replacements; for (auto& [operand_id, producer] : apply_indexing_ops) { auto producer_map = producer.getIndexingMap(); mlir::OpResult producer_result = producer->getOpResult(0); int producer_result_id = producer_result.getResultNumber(); int num_producer_dims = producer.getAffineMap().getNumDims(); SmallVector<AffineExpr> producer_dim_replacements; SmallVector<AffineExpr> producer_sym_replacements; for (auto& producer_operand : producer->getOpOperands()) { int producer_operand_number = producer_operand.getOperandNumber(); bool is_dim = producer_operand_number < num_producer_dims; auto& replacement_expr = operand_exprs[producer_operand.get()]; if (!replacement_expr) { if (is_dim) { int dim_num = producer_operand_number; replacement_expr = getAffineDimExpr(num_dims + added_dim_args.size(), ctx); added_dim_args.push_back(producer_operand.get()); new_dim_vars.push_back(producer_map.GetDimVars(dim_num)); } else { int sym_num = producer_operand_number - producer.getAffineMap().getNumDims(); replacement_expr = getAffineSymbolExpr(num_syms + added_sym_args.size(), ctx); added_sym_args.push_back(producer_operand.get()); new_sym_vars.push_back(producer_map.GetRangeVar(sym_num)); } } if (is_dim) { producer_dim_replacements.push_back(replacement_expr); } else { producer_sym_replacements.push_back(replacement_expr); } } replacements[operand_exprs[producer_result]] = producer.getAffineMap() .getResult(producer_result_id) .replaceDimsAndSymbols(producer_dim_replacements, producer_sym_replacements); } auto new_affine_map = indexing_map.GetAffineMap().replace( replacements, num_dims + added_dim_args.size(), num_syms + added_sym_args.size()); IndexingMap new_indexing_map(new_affine_map, new_dim_vars, new_sym_vars, {}); return {new_indexing_map, added_dim_args, added_sym_args}; } } namespace { struct SimplifyIndexingMap : public mlir::OpRewritePattern<ApplyIndexingOp> { using OpRewritePattern<ApplyIndexingOp>::OpRewritePattern; LogicalResult matchAndRewrite(ApplyIndexingOp indexing_op, PatternRewriter& rewriter) const override { IndexingMap indexing_map = indexing_op.getIndexingMap(); if (!indexing_map.Simplify()) { return rewriter.notifyMatchFailure(indexing_op, "IndexingMap is already simplified"); } rewriter.replaceOpWithNewOp<ApplyIndexingOp>( indexing_op, indexing_op.getOperands(), indexing_map); return success(); } }; struct RemoveUnusedVariables : public mlir::OpRewritePattern<ApplyIndexingOp> { using OpRewritePattern<ApplyIndexingOp>::OpRewritePattern; LogicalResult matchAndRewrite(ApplyIndexingOp indexing_op, PatternRewriter& rewriter) const override { IndexingMap indexing_map = indexing_op.getIndexingMap(); auto unused_symbols_bit_vector = indexing_map.RemoveUnusedVars(); if (unused_symbols_bit_vector.count() == 0) { return rewriter.notifyMatchFailure(indexing_op, "IndexingMap stayed unchanged"); } SmallVector<Value, 4> operands; operands.reserve(unused_symbols_bit_vector.count()); for (int i = 0; i < unused_symbols_bit_vector.size(); ++i) { if (!unused_symbols_bit_vector[i]) { operands.push_back(indexing_op.getOperand(i)); } } rewriter.replaceOpWithNewOp<ApplyIndexingOp>(indexing_op, operands, indexing_map); return success(); } }; struct MoveSymbolsToDims : public mlir::OpRewritePattern<ApplyIndexingOp> { using OpRewritePattern<ApplyIndexingOp>::OpRewritePattern; LogicalResult matchAndRewrite(ApplyIndexingOp indexing_op, PatternRewriter& rewriter) const override { IndexingMap indexing_map = indexing_op.getIndexingMap(); if (indexing_map.GetSymbolCount() == 0) { return rewriter.notifyMatchFailure(indexing_op, "No symbols found"); } rewriter.replaceOpWithNewOp<ApplyIndexingOp>( indexing_op, indexing_op->getOperands(), indexing_map.ConvertSymbolsToDimensions()); return success(); } }; struct FoldApplyIndexingSequence : public mlir::OpRewritePattern<ApplyIndexingOp> { using OpRewritePattern<ApplyIndexingOp>::OpRewritePattern; LogicalResult matchAndRewrite(ApplyIndexingOp indexing_op, PatternRewriter& rewriter) const override { auto indexing_map = indexing_op.getIndexingMap(); SmallVector<std::pair<int, ApplyIndexingOp>, 2> apply_indexing_ops; bool all_apply_indexing_operands_have_one_use = true; for (auto& operand : indexing_op->getOpOperands()) { if (auto producer = operand.get().getDefiningOp<ApplyIndexingOp>()) { apply_indexing_ops.push_back({operand.getOperandNumber(), producer}); all_apply_indexing_operands_have_one_use &= producer->hasOneUse(); } } if (apply_indexing_ops.empty()) { return rewriter.notifyMatchFailure(indexing_op, "No apply_indexing sequences found"); } auto indexing_map_with_no_unused_vars = indexing_map; if (indexing_map_with_no_unused_vars.RemoveUnusedVars().count() > 0) { indexing_map_with_no_unused_vars.RemoveUnusedVars(); return rewriter.notifyMatchFailure(indexing_op, "IndexingMap has unused variables"); } MLIRContext* ctx = indexing_op.getContext(); int num_dims = indexing_op.getAffineMap().getNumDims(); int num_syms = indexing_op.getAffineMap().getNumSymbols(); mlir::DenseMap<Value, AffineExpr> operand_exprs; for (auto& operand : indexing_op->getOpOperands()) { int operand_number = operand.getOperandNumber(); operand_exprs[operand.get()] = operand_number < num_dims ? getAffineDimExpr(operand_number, ctx) : getAffineSymbolExpr(operand_number - num_dims, ctx); } auto replacement = GetNewIndexingMapAfterFoldingSequence( indexing_map, apply_indexing_ops, operand_exprs, ctx); if (!all_apply_indexing_operands_have_one_use && !replacement.indexing_map.Simplify()) { return rewriter.notifyMatchFailure( indexing_op, "Folded indexing map was not simplified"); } int new_num_operands = indexing_op->getNumOperands() + replacement.added_dim_args.size() + replacement.added_sym_args.size(); SmallVector<Value> new_operands; new_operands.reserve(new_num_operands); auto begin = indexing_op.getOperands().begin(); new_operands.append(begin, begin + num_dims); new_operands.append(replacement.added_dim_args); new_operands.append(begin + num_dims, begin + num_dims + num_syms); new_operands.append(replacement.added_sym_args); rewriter.replaceOpWithNewOp<ApplyIndexingOp>(indexing_op, new_operands, replacement.indexing_map); return success(); } }; struct FoldApplyIndexingOperands : public mlir::OpRewritePattern<ApplyIndexingOp> { using OpRewritePattern<ApplyIndexingOp>::OpRewritePattern; LogicalResult matchAndRewrite(ApplyIndexingOp indexing_op, PatternRewriter& rewriter) const override { IndexingMap indexing_map = indexing_op.getIndexingMap(); AffineMap affine_map = indexing_map.GetAffineMap(); MLIRContext* ctx = affine_map.getContext(); unsigned num_operands = indexing_op->getNumOperands(); unsigned num_dims = affine_map.getNumDims(); unsigned num_symbols = affine_map.getNumSymbols(); SmallVector<std::optional<int64_t>> constant_values(num_operands, std::nullopt); int num_constants = 0; for (auto& operand : indexing_op->getOpOperands()) { if (auto constant = operand.get().getDefiningOp<arith::ConstantIndexOp>()) { constant_values[operand.getOperandNumber()] = constant.value(); ++num_constants; } } if (num_constants == 0) { return rewriter.notifyMatchFailure(indexing_op, "No constant operands found"); } SmallVector<AffineExpr, 2> dim_replacements, symbol_replacements; dim_replacements.reserve(num_dims); symbol_replacements.reserve(num_symbols); unsigned new_num_operands = indexing_op->getNumOperands() - num_constants; SmallVector<Value, 4> new_operands; new_operands.reserve(new_num_operands); SmallVector<IndexingMap::Variable, 2> new_dim_vars; new_dim_vars.reserve(num_dims); SmallVector<IndexingMap::Variable, 2> new_range_vars; new_range_vars.reserve(num_symbols); unsigned new_num_dims = 0; unsigned new_num_symbols = 0; for (auto [operand, constant_value] : llvm::zip(indexing_op->getOpOperands(), constant_values)) { unsigned operand_id = operand.getOperandNumber(); if (constant_value.has_value()) { if (operand_id < num_dims) { dim_replacements.push_back( getAffineConstantExpr(*constant_value, ctx)); } else { symbol_replacements.push_back( getAffineConstantExpr(*constant_value, ctx)); } } else { new_operands.push_back(operand.get()); if (operand_id < num_dims) { dim_replacements.push_back(getAffineDimExpr(new_num_dims++, ctx)); new_dim_vars.push_back(indexing_map.GetDimVars(operand_id)); } else { symbol_replacements.push_back( getAffineSymbolExpr(new_num_symbols++, ctx)); new_range_vars.push_back( indexing_map.GetRangeVar(operand_id - num_dims)); } } } rewriter.replaceOpWithNewOp<ApplyIndexingOp>( indexing_op, new_operands, affine_map.replaceDimsAndSymbols(dim_replacements, symbol_replacements, new_num_dims, new_num_symbols), new_dim_vars, new_range_vars); return success(); } }; struct FoldApplyIndexingResults : public mlir::OpRewritePattern<ApplyIndexingOp> { using OpRewritePattern<ApplyIndexingOp>::OpRewritePattern; LogicalResult matchAndRewrite(ApplyIndexingOp indexing_op, PatternRewriter& rewriter) const override { Location loc = indexing_op.getLoc(); IndexingMap indexing_map = indexing_op.getIndexingMap(); if (indexing_map.IsKnownEmpty()) { return rewriter.notifyMatchFailure(indexing_op, "Domain of the indexing map is empty"); } AffineMap* affine_map = &indexing_map.GetMutableAffineMap(); unsigned num_results = affine_map->getNumResults(); SmallVector<AffineExpr, 4> new_exprs; new_exprs.reserve(num_results); SmallVector<Value, 4> new_values; new_values.reserve(num_results); for (mlir::OpResult opresult : indexing_op->getOpResults()) { if (opresult.use_empty()) { new_values.push_back(rewriter.create<arith::ConstantIndexOp>(loc, 0)); continue; } unsigned id = opresult.getResultNumber(); AffineExpr result_expr = affine_map->getResult(id); if (auto const_expr = mlir::dyn_cast<mlir::AffineConstantExpr>(result_expr)) { new_values.push_back(rewriter.create<arith::ConstantIndexOp>( loc, const_expr.getValue())); continue; } if (auto dim_expr = mlir::dyn_cast<mlir::AffineDimExpr>(result_expr)) { new_values.push_back(indexing_op.getOperand(dim_expr.getPosition())); continue; } if (auto symbol_expr = mlir::dyn_cast<mlir::AffineSymbolExpr>(result_expr)) { new_values.push_back(indexing_op.getOperand( indexing_map.GetDimVarsCount() + symbol_expr.getPosition())); continue; } new_exprs.push_back(result_expr); new_values.push_back(Value{}); } if (new_exprs.size() == num_results) { return rewriter.notifyMatchFailure( indexing_op, "No constant or dim/symbol expression found"); } *affine_map = AffineMap::get(affine_map->getNumDims(), affine_map->getNumSymbols(), new_exprs, affine_map->getContext()); auto new_indexing_op = rewriter.create<ApplyIndexingOp>( loc, indexing_op.getOperands(), indexing_map); for (int new_result_id = 0, new_indexing_op_result_id = 0; new_result_id < new_values.size(); ++new_result_id) { auto& new_value = new_values[new_result_id]; if (new_value) continue; new_value = new_indexing_op.getResult(new_indexing_op_result_id++); } rewriter.replaceOp(indexing_op, new_values); return success(); } }; } void ApplyIndexingOp::getCanonicalizationPatterns( mlir::RewritePatternSet& results, MLIRContext* context) { results.add<FoldApplyIndexingOperands, FoldApplyIndexingResults, FoldApplyIndexingSequence, MoveSymbolsToDims, RemoveUnusedVariables, SimplifyIndexingMap>(context); } mlir::LogicalResult ApplyIndexingOp::fold( FoldAdaptor adaptor, llvm::SmallVectorImpl<mlir::OpFoldResult>& results) { auto map = getAffineMap(); for (auto expr : map.getResults()) { if (auto dim = mlir::dyn_cast<mlir::AffineDimExpr>(expr)) { results.push_back(getOperand(dim.getPosition())); } else if (auto sym = mlir::dyn_cast<mlir::AffineSymbolExpr>(expr)) { results.push_back(getOperand(map.getNumDims() + sym.getPosition())); } else { results.clear(); return failure(); } } return success(); } void AtomicRMWOp::getAsmResultNames( llvm::function_ref<void(mlir::Value, mlir::StringRef)> setNameFn) { setNameFn(getResult(), "atomic_rmw"); } void AtomicRMWOp::build(OpBuilder& builder, OperationState& result, Value tensor, ValueRange ivs) { OpBuilder::InsertionGuard g(builder); result.addOperands(tensor); result.addOperands(ivs); result.addTypes(tensor.getType()); auto tensor_type = llvm::cast<RankedTensorType>(tensor.getType()); Region* body = result.addRegion(); builder.createBlock(body); body->addArgument(tensor_type.getElementType(), tensor.getLoc()); } mlir::OpFoldResult AtomicRMWOp::fold(FoldAdaptor adaptor) { auto* body = getBody(); if (&body->front() == body->getTerminator() && body->front().getOperand(0) == body->getArgument(0)) { return getOperand(0); } return {}; } void PureCallOp::getAsmResultNames( llvm::function_ref<void(mlir::Value, mlir::StringRef)> setNameFn) { for (auto result : getResults()) { setNameFn(result, "pure_call"); } } void SyncThreadsOp::getAsmResultNames( llvm::function_ref<void(mlir::Value, mlir::StringRef)> setNameFn) { for (auto result : getResults()) { setNameFn(result, "synced_tensor"); } } void LoopOp::getAsmResultNames( llvm::function_ref<void(mlir::Value, mlir::StringRef)> setNameFn) { for (auto result : getResults()) { setNameFn(result, "xla_loop"); } } void LoopOp::getAsmBlockArgumentNames(mlir::Region& region, mlir::OpAsmSetValueNameFn setFn) { char iv_name = 'i'; for (auto iv : getInductionVars()) { setFn(iv, std::string{iv_name}); if (iv_name <= 'n') { ++iv_name; } } std::string map_result_name = "ra"; char map_result_char = 'a'; for (auto map_result : getIndexingMapResults()) { setFn(map_result, map_result_name); if (map_result_char <= 'z') { ++map_result_char; map_result_name[1] = map_result_char; } } for (auto iv : getRegionIterArgs()) { setFn(iv, "iter"); } } void LoopOp::build(OpBuilder& builder, OperationState& result, IndexingMapAttr indexing_map_attr, ValueRange dims, ValueRange inits, BodyBuilderFn bodyBuilder) { OpBuilder::InsertionGuard guard(builder); int64_t num_ivs = indexing_map_attr.getRangeVars().size(); int64_t num_indexing_map_results = indexing_map_attr.getIndexingMap().GetNumResults(); int64_t num_inits = inits.size(); result.addOperands(dims); result.addOperands(inits); result.addTypes(TypeRange(inits)); Block* body_block = builder.createBlock(result.addRegion()); for (int i = 0, e = num_ivs + num_indexing_map_results; i < e; ++i) { body_block->addArgument(builder.getIndexType(), result.location); } for (auto init_type : TypeRange(inits)) { body_block->addArguments(init_type, result.location); } mlir::OperationName opname(LoopOp::getOperationName(), builder.getContext()); result.addAttribute(LoopOp::getIndexingMapAttrAttrName(opname), indexing_map_attr); result.addAttribute( LoopOp::getOperandSegmentSizesAttrName(opname), builder.getDenseI32ArrayAttr({static_cast<int32_t>(dims.size()), static_cast<int32_t>(inits.size())})); if (bodyBuilder) { OpBuilder::InsertionGuard guard(builder); builder.setInsertionPointToStart(body_block); bodyBuilder( builder, result.location, body_block->getArguments().take_front(num_ivs), body_block->getArguments().drop_front(num_ivs).drop_back(num_inits), body_block->getArguments().take_back(num_inits)); } } void LoopOp::build(OpBuilder& builder, OperationState& result, const IndexingMap& indexing_map, ValueRange dims, ValueRange inits, BodyBuilderFn bodyBuilder) { build(builder, result, IndexingMapAttr::get(builder.getContext(), indexing_map), dims, inits, bodyBuilder); } ParseResult LoopOp::parse(OpAsmParser& parser, OperationState& result) { SmallVector<OpAsmParser::Argument, 4> region_args, ivs, map_results, iter_args; SmallVector<OpAsmParser::UnresolvedOperand, 4> dim_operands; auto* ctx = parser.getContext(); OpBuilder b(ctx); Type index_type = b.getIndexType(); if (parser.parseOperandList(dim_operands, OpAsmParser::Delimiter::Paren) || parser.resolveOperands(dim_operands, index_type, result.operands)) return failure(); if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Square)) return failure(); for (auto iv : ivs) { region_args.push_back(iv); region_args.back().type = index_type; } if (parser.parseArrow() || parser.parseArgumentList(map_results, OpAsmParser::Delimiter::Paren)) return failure(); for (auto map_result : map_results) { region_args.push_back(map_result); region_args.back().type = index_type; } IndexingMapAttr indexing_map_attr; if (parser.parseKeyword("in") || parser.parseAttribute(indexing_map_attr, "indexing_map_attr", result.attributes)) { return failure(); } SmallVector<OpAsmParser::UnresolvedOperand, 4> init_operands; if (parser.parseKeyword("iter_args") || parser.parseAssignmentList(iter_args, init_operands) || parser.parseArrowTypeList(result.types) || parser.resolveOperands(init_operands, result.types, parser.getNameLoc(), result.operands)) return failure(); for (auto [index, iter_arg] : llvm::enumerate(iter_args)) { region_args.push_back(iter_arg); region_args.back().type = result.types[index]; } if (region_args.size() != result.types.size() + ivs.size() + map_results.size()) { return parser.emitError( parser.getNameLoc(), "mismatch in number of induction variables + loop-carried values + " "number of indexing map results variables and the number of results"); } Region* body = result.addRegion(); if (parser.parseRegion(*body, region_args)) return failure(); LoopOp::ensureTerminator(*body, b, result.location); result.addAttribute( LoopOp::getOperandSegmentSizeAttr(), b.getDenseI32ArrayAttr({static_cast<int32_t>(dim_operands.size()), static_cast<int32_t>(iter_args.size())})); if (parser.parseOptionalAttrDict(result.attributes)) return failure(); return success(); } void LoopOp::print(OpAsmPrinter& p) { p << " (" << getDims() << ")[" << getInductionVars() << "] -> (" << getIndexingMapResults() << ") in " << getIndexingMapAttr() << " iter_args("; llvm::interleaveComma( llvm::zip(getRegionIterArgs(), getInits()), p, [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); p << ") -> (" << getInits().getTypes() << ") "; p.printRegion(getRegion(), false, true); p.printOptionalAttrDict((*this)->getAttrs(), { getIndexingMapAttrAttrName(), getOperandSegmentSizesAttrName(), }); } LogicalResult LoopOp::verify() { if (getInits().size() != getNumResults()) { return emitOpError("mismatch in number of loop-carried values and results"); } IndexingMap indexing_map = getIndexingMap(); if (indexing_map.GetRangeVarsCount() != getNumInductionVars()) { return emitOpError() << "mismatch in number of induction variables " << getNumInductionVars() << " and RangeVars in the indexing map " << ToString(indexing_map); } if (indexing_map.GetDimVarsCount() != getDims().size()) { return emitOpError() << "mismatch in number of dims operands " << getDims().size() << " and DimVars in the indexing map " << ToString(indexing_map); } for (auto [bb_arg, result_type, init] : llvm::zip(getRegionIterArgs(), getResultTypes(), getInits())) { if (bb_arg.getType() != result_type || init.getType() != result_type) { return emitOpError() << "block iter arg type = " << bb_arg.getType() << ", result type = " << result_type << " and init operand type = " << init.getType() << " should match"; } } return success(); } IndexingMap LoopOp::getIndexingMap() { return getIndexingMapAttr().getIndexingMap(); } namespace { struct SimplifyLoopOfApplyIndexing : public mlir::OpRewritePattern<LoopOp> { using OpRewritePattern<LoopOp>::OpRewritePattern; LogicalResult matchAndRewrite(LoopOp loop_op, PatternRewriter& rewriter) const override { auto loop_indexing_map = loop_op.getIndexingMap(); MLIRContext* ctx = loop_op.getContext(); int num_dims = loop_indexing_map.GetDimVarsCount(); SmallVector<std::pair<int, ApplyIndexingOp>, 2> apply_indexing_ops; bool all_apply_indexing_operands_have_one_use = true; for (auto& operand : loop_op->getOpOperands().take_front(num_dims)) { if (auto producer = operand.get().getDefiningOp<ApplyIndexingOp>()) { if (producer.getIndexingMap().GetSymbolCount() > 0) { continue; } apply_indexing_ops.push_back({operand.getOperandNumber(), producer}); all_apply_indexing_operands_have_one_use &= producer->hasOneUse(); } } if (apply_indexing_ops.empty()) { return rewriter.notifyMatchFailure( loop_op, "No loop(apply_indexing) patterns found. Note that producer " "apply_indexing should have already been simplified via " "MoveSymbolsToDims pattern."); } mlir::DenseMap<Value, AffineExpr> operand_exprs; for (auto& operand : loop_op->getOpOperands().take_front(num_dims)) { int operand_number = operand.getOperandNumber(); operand_exprs[operand.get()] = getAffineDimExpr(operand_number, ctx); } auto replacement = GetNewIndexingMapAfterFoldingSequence( loop_indexing_map, apply_indexing_ops, operand_exprs, ctx); if (!all_apply_indexing_operands_have_one_use && !replacement.indexing_map.Simplify()) { return rewriter.notifyMatchFailure( loop_op, "Folded indexing map of the loop op was not simplified"); } int new_num_dims = num_dims + replacement.added_dim_args.size(); SmallVector<Value> aggregate_dims; aggregate_dims.reserve(new_num_dims); auto begin = loop_op.getOperands().begin(); aggregate_dims.append(begin, begin + num_dims); aggregate_dims.append(replacement.added_dim_args); SmallVector<Value, 4> used_dims; used_dims.reserve(aggregate_dims.size()); auto used_dim_bit_vector = ~replacement.indexing_map.RemoveUnusedVars(); for (auto used_dim_idx : used_dim_bit_vector.set_bits()) { if (used_dim_idx < new_num_dims) { used_dims.push_back(aggregate_dims[used_dim_idx]); } } auto new_loop_op = rewriter.create<LoopOp>(loop_op.getLoc(), replacement.indexing_map, used_dims, loop_op.getInits()); Block* original_block = &loop_op.getRegion().front(); Block* new_block = &new_loop_op.getRegion().front(); rewriter.mergeBlocks(original_block, new_block, new_block->getArguments()); rewriter.replaceOp(loop_op, new_loop_op.getResults()); return success(); } }; } void LoopOp::getCanonicalizationPatterns(mlir::RewritePatternSet& results, MLIRContext* context) { results.add<SimplifyLoopOfApplyIndexing>(context); } VariableConstraints GetConstraintsForVariables(const IndexingMap& map) { VariableConstraints result; result.constraints_for_dims.resize(map.GetDimensionCount()); result.constraints_for_symbols.resize(map.GetSymbolCount()); for (const auto& constraint : map.GetConstraints()) { constraint.first.walk([&](mlir::AffineExpr leaf) { if (auto dim = mlir::dyn_cast<mlir::AffineDimExpr>(leaf)) { result.constraints_for_dims[dim.getPosition()].insert(constraint); } else if (auto sym = mlir::dyn_cast<mlir::AffineSymbolExpr>(leaf)) { result.constraints_for_symbols[sym.getPosition()].insert(constraint); } }); } return result; } LogicalResult MaterializeOp::verify() { IndexingMap map_in = getMap().getIndexingMap(); IndexingMap map_out = getResult().getType().getIndexingMapAttr().getIndexingMap(); if (getIndices().size() != map_in.GetDimVarsCount()) { return emitOpError() << "number of indices must match number of dimensions " "of indexing map"; } if (map_in.GetDimVarsCount() == 0 || map_out.GetDimVarsCount() == 0) { return emitOpError() << "must have thread_id dimension in both indexing maps"; } if (map_in.GetDimVars(0).bounds != map_out.GetDimVars(0).bounds) { return emitOpError() << "thread_id dimension must have the same bounds in " "both indexing maps"; } auto variable_constraints_in = GetConstraintsForVariables(map_in); auto variable_constraints_out = GetConstraintsForVariables(map_out); if (variable_constraints_in.constraints_for_dims[0] != variable_constraints_out.constraints_for_dims[0]) { return emitOpError() << "constraints of indexing maps must be equal for " << "the thread_id dimension"; } if (map_in.GetRangeVarsCount() != map_out.GetRangeVarsCount()) { return emitOpError() << "number of symbols in both indexing_maps must match"; } for (auto const& [range_in, range_out] : llvm::zip(map_in.GetRangeVars(), map_out.GetRangeVars())) { if (range_in.bounds != range_out.bounds) { return emitOpError() << "domain of symbols of indexing_maps must match"; } } if (variable_constraints_in.constraints_for_symbols != variable_constraints_out.constraints_for_symbols) { return emitOpError() << "constraints of indexing maps must be equal for all symbols"; } if (map_out.GetDimVarsCount() > 1) { for (auto expr : map_out.GetAffineMap().getResults()) { if (expr.isFunctionOfDim(1)) { return emitOpError() << "vector mapping indices must not depend on the " << "block ID"; } } } if (map_in.GetDimVarsCount() > 1 && map_out.GetDimVarsCount() > 1) { if (variable_constraints_in.constraints_for_dims[1] != variable_constraints_out.constraints_for_dims[1]) { return emitOpError() << "constraints of indexing maps must be equal for " << "the block_id dimension"; } } else if (map_in.GetDimVarsCount() > 1 && !variable_constraints_in.constraints_for_dims[1].empty()) { return emitOpError() << "constraints of indexing maps must be equal for " << "the block_id dimension"; } else if (map_out.GetDimVarsCount() > 1 && !variable_constraints_out.constraints_for_dims[1].empty()) { return emitOpError() << "constraints of indexing maps must be equal for " << "the block_id dimension"; } return success(); } LogicalResult InsertOp::verify() { if (!getMap().getIndexingMap().GetRangeVars().empty()) { return emitOpError() << "insert_op map must not have any symbols"; } int64_t vector_map_num_results = getSource().getType().getIndexingMapAttr().getNumResults(); if (vector_map_num_results != getMap().getIndexingMap().GetDimVars().size()) { return emitOpError() << "source map result count must equal insert_op's " "map's dimension count"; } return success(); } void ReindexOp::build(mlir::OpBuilder& builder, mlir::OperationState& result, mlir::Type type, mlir::Value operand, mlir::Value padding, const xla::gpu::IndexingMap& indexing_map) { IndexingMapAttr indexing_map_attr = IndexingMapAttr::get(builder.getContext(), indexing_map); build(builder, result, type, operand, padding, indexing_map_attr); } SmallVector<Type, 2> inferReductionResultTypes(TypeRange input_types, ArrayRef<int64_t> reduced_dims) { auto input_shape = mlir::cast<RankedTensorType>(input_types.front()).getShape(); auto num_reduced_dims = reduced_dims.size(); SmallVector<int64_t, 4> output_shape; output_shape.reserve(input_shape.size() - num_reduced_dims); int reduce_dim = 0; for (int64_t i = 0; i < input_shape.size(); ++i) { if (reduce_dim < num_reduced_dims && i == reduced_dims[reduce_dim]) { ++reduce_dim; continue; } output_shape.push_back(input_shape[i]); } SmallVector<Type, 2> result_types; result_types.reserve(input_types.size()); for (auto input_type : input_types) { result_types.push_back(RankedTensorType::get( output_shape, mlir::cast<RankedTensorType>(input_type).getElementType())); } return result_types; } SmallVector<Type, 2> inferReductionInitTypes(TypeRange input_types) { SmallVector<Type, 2> init_types; init_types.reserve(input_types.size()); for (auto input_type : input_types) { init_types.push_back( mlir::cast<RankedTensorType>(input_type).getElementType()); } return init_types; } LogicalResult ReduceOp::inferReturnTypes( MLIRContext* context, std::optional<Location> location, ValueRange operands, mlir::DictionaryAttr attributes, mlir::OpaqueProperties properties, mlir::RegionRange regions, mlir::SmallVectorImpl<Type>& inferredReturnTypes) { ReduceOp::Adaptor adaptor(operands, attributes, properties, regions); inferredReturnTypes.append(inferReductionResultTypes( TypeRange{adaptor.getInputs()}, adaptor.getDimensions())); return success(); } ParseResult ReduceOp::parse(OpAsmParser& parser, OperationState& result) { SmallVector<OpAsmParser::UnresolvedOperand, 4> inputs; SmallVector<OpAsmParser::UnresolvedOperand, 4> inits; SmallVector<int64_t, 2> dimensions; mlir::StringAttr combiner; SmallVector<Type, 2> input_types; SmallVector<Type, 2> result_types; if (parser.parseLParen() || parseOperands(parser, &inputs) || parser.parseRParen() || parser.parseKeyword("inits") || parser.parseLParen() || parseOperands(parser, &inits) || parser.parseRParen() || parser.parseKeyword("dimensions") || parser.parseEqual() || parser.parseCommaSeparatedList(OpAsmParser::Delimiter::Square, [&]() -> ParseResult { return parser.parseInteger( dimensions.emplace_back()); }) || parser.parseKeyword("combiner") || parser.parseEqual() || parser.parseSymbolName(combiner) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonTypeList(input_types) || parser.parseKeyword("to") || parser.parseTypeList(result_types)) { return failure(); } auto ctx = result.getContext(); mlir::OperationName opname(ReduceOp::getOperationName(), ctx); result.addAttribute(ReduceOp::getDimensionsAttrName(opname), DenseI64ArrayAttr::get(ctx, dimensions)); result.addAttribute(ReduceOp::getCombinerAttrName(opname), mlir::FlatSymbolRefAttr::get(ctx, combiner)); result.addTypes(result_types); auto init_types = inferReductionInitTypes(input_types); mlir::SMLoc loc = parser.getCurrentLocation(); if (parser.resolveOperands(inputs, input_types, loc, result.operands) || parser.resolveOperands(inits, init_types, loc, result.operands)) { return failure(); } return success(); } void ReduceOp::print(OpAsmPrinter& p) { p << '(' << getInputs() << ") inits(" << getInits() << ") dimensions=[" << getDimensions() << "] combiner=@" << getCombiner(); p.printOptionalAttrDict((*this)->getAttrs(), {getCombinerAttrName(), getDimensionsAttrName()}); p << " : " << TypeRange(getInputs()) << " to " << TypeRange(getResults()); } LogicalResult ReduceOp::verify() { auto inferred_init_types = inferReductionInitTypes(TypeRange(getInputs())); for (auto [inferred_init_type, init_type] : llvm::zip(inferred_init_types, TypeRange(getInits()))) { if (inferred_init_type != init_type) { return emitOpError() << "init type " << init_type << " does not match inferred type " << inferred_init_type; } } auto module = this->getOperation()->getParentOfType<mlir::ModuleOp>(); auto combiner = module.lookupSymbol<mlir::func::FuncOp>(getCombinerAttr()); if (!combiner) { return emitOpError() << "combiner `@" << getCombiner() << "` not found"; } SmallVector<Type, 2> combiner_operand_types; combiner_operand_types.reserve(getNumOperands()); combiner_operand_types.append(inferred_init_types); combiner_operand_types.append(inferred_init_types); auto expected_combiner_type = mlir::FunctionType::get( getContext(), combiner_operand_types, inferred_init_types); if (expected_combiner_type != combiner.getFunctionType()) { return emitOpError() << "provided combiner `@" << getCombiner() << " expected to have type " << expected_combiner_type << " but got " << combiner.getFunctionType(); } return success(); } ParseResult ShuffleReduceOp::parse(OpAsmParser& parser, OperationState& result) { SmallVector<OpAsmParser::UnresolvedOperand, 4> inputs; mlir::StringAttr combiner; int64_t max_distance; SmallVector<Type, 2> operand_types; mlir::SMLoc loc = parser.getCurrentLocation(); if (parser.parseLParen() || parseOperands(parser, &inputs) || parser.parseRParen() || parser.parseKeyword("to") || parser.parseInteger(max_distance) || parser.parseKeyword("combiner") || parser.parseEqual() || parser.parseSymbolName(combiner) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonTypeList(operand_types) || parser.resolveOperands(inputs, operand_types, loc, result.operands)) { return failure(); } auto ctx = result.getContext(); mlir::OperationName opname(ShuffleReduceOp::getOperationName(), ctx); result.addAttribute(ShuffleReduceOp::getCombinerAttrName(opname), mlir::FlatSymbolRefAttr::get(ctx, combiner)); result.addAttribute( ShuffleReduceOp::getMaxDistanceAttrName(opname), mlir::IntegerAttr::get(mlir::IntegerType::get(ctx, 64), max_distance)); result.addTypes(operand_types); return success(); } void ShuffleReduceOp::print(OpAsmPrinter& p) { p << '(' << getOperands() << ") to " << getMaxDistance() << " combiner=@" << getCombiner(); p.printOptionalAttrDict((*this)->getAttrs(), {getCombinerAttrName(), getMaxDistanceAttrName()}); p << " : " << TypeRange(getResultTypes()); } } } #define GET_OP_CLASSES #include "xla/service/gpu/fusions/ir/xla_gpu_ops.cc.inc"
#include "xla/service/gpu/fusions/ir/xla_gpu_ops.h" #include <gtest/gtest.h> #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/indexing_map_serialization.h" #include "xla/service/gpu/model/indexing_test_utils.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/test.h" namespace xla::gpu { namespace { using ::testing::IsEmpty; using ::testing::Pair; using ::testing::UnorderedElementsAre; class XLAGPUOpsTest : public HloTestBase { public: mlir::MLIRContext mlir_context_; }; TEST_F(XLAGPUOpsTest, GetConstraintsForVariables) { auto map = *ParseIndexingMap(R"( (d0, d1)[s0, s1] -> (d0 + s0, d1 + s1), domain: d0 in [0, 5], d1 in [0, 2], s0 in [0, 32], s1 in [0, 1024], d1 + s1 in [0, 4], d1 mod 32 in [0, 6], s0 + s1 in [0, 3], s0 mod 4 in [0, 1], s1 mod 4 in [0, 2] )", &mlir_context_); auto constraints_for_variables = GetConstraintsForVariables(map); EXPECT_THAT(constraints_for_variables.constraints_for_dims[0], UnorderedElementsAre()); EXPECT_THAT( constraints_for_variables.constraints_for_dims[1], UnorderedElementsAre( Pair(ParseAffineExpr("s1 + d1", &mlir_context_), Interval{0, 4}), Pair(ParseAffineExpr("d1 mod 32", &mlir_context_), Interval{0, 6}))); EXPECT_THAT( constraints_for_variables.constraints_for_symbols[0], UnorderedElementsAre( Pair(ParseAffineExpr("s0 mod 4", &mlir_context_), Interval{0, 1}), Pair(ParseAffineExpr("s0 + s1", &mlir_context_), Interval{0, 3}))); EXPECT_THAT( constraints_for_variables.constraints_for_symbols[1], UnorderedElementsAre( Pair(ParseAffineExpr("s1 mod 4", &mlir_context_), Interval{0, 2}), Pair(ParseAffineExpr("s0 + s1", &mlir_context_), Interval{0, 3}), Pair(ParseAffineExpr("s1 + d1", &mlir_context_), Interval{0, 4}))); } TEST_F(XLAGPUOpsTest, GetConstraintsForVariablesEmpty) { auto map = *ParseIndexingMap(R"( (d0, d1)[s0, s1] -> (d0 + s0, d1 + s1), domain: d0 in [0, 5], d1 in [0, 2], s0 in [0, 32], s1 in [0, 1024], )", &mlir_context_); auto constraints_for_variables = GetConstraintsForVariables(map); EXPECT_THAT(constraints_for_variables.constraints_for_dims, ElementsAre(IsEmpty(), IsEmpty())); EXPECT_THAT(constraints_for_variables.constraints_for_symbols, ElementsAre(IsEmpty(), IsEmpty())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/ir/xla_gpu_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/fusions/ir/xla_gpu_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4ea07cfb-2e0c-4af9-bde7-dfeec7e2fe36
cpp
tensorflow/tensorflow
convert_type
tensorflow/compiler/mlir/tensorflow/utils/convert_type.cc
tensorflow/compiler/mlir/tensorflow/utils/convert_type_test.cc
#include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include <limits> #include "absl/strings/str_cat.h" #include "llvm/Support/Casting.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Types.h" #include "mlir/Support/DebugStringHelper.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dynamic_shape_utils.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" namespace tensorflow { using mlir::Builder; using mlir::ShapedType; using mlir::Type; Status ConvertDataType(DataType dtype, Builder builder, Type* type) { switch (dtype) { case DT_HALF: *type = builder.getF16Type(); return absl::OkStatus(); case DT_FLOAT: *type = builder.getF32Type(); return absl::OkStatus(); case DT_DOUBLE: *type = builder.getF64Type(); return absl::OkStatus(); case DT_BOOL: *type = builder.getIntegerType(1); return absl::OkStatus(); case DT_INT8: *type = builder.getIntegerType(8); return absl::OkStatus(); case DT_INT16: *type = builder.getIntegerType(16); return absl::OkStatus(); case DT_INT32: *type = builder.getIntegerType(32); return absl::OkStatus(); case DT_INT64: *type = builder.getIntegerType(64); return absl::OkStatus(); case DT_UINT8: *type = builder.getIntegerType(8, false); return absl::OkStatus(); case DT_UINT16: *type = builder.getIntegerType(16, false); return absl::OkStatus(); case DT_UINT32: *type = builder.getIntegerType(32, false); return absl::OkStatus(); case DT_UINT64: *type = builder.getIntegerType(64, false); return absl::OkStatus(); case DT_BFLOAT16: *type = builder.getBF16Type(); return absl::OkStatus(); case DT_COMPLEX64: *type = mlir::ComplexType::get(builder.getF32Type()); return absl::OkStatus(); case DT_COMPLEX128: *type = mlir::ComplexType::get(builder.getF64Type()); return absl::OkStatus(); case tensorflow::DT_FLOAT8_E4M3FN: *type = builder.getFloat8E4M3FNType(); return absl::OkStatus(); case tensorflow::DT_FLOAT8_E5M2: *type = builder.getFloat8E5M2Type(); return absl::OkStatus(); case DT_INT4: *type = builder.getIntegerType(4, true); return absl::OkStatus(); case DT_UINT4: *type = builder.getIntegerType(4, false); return absl::OkStatus(); #define HANDLE_TF_TYPE(tftype, enumerant, name) \ case DT_##enumerant: \ *type = builder.getType<mlir::tf_type::tftype##Type>(); \ return OkStatus(); #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.def" default: return errors::Unimplemented(absl::StrCat( "Converting DataType '", DataTypeString(dtype), "' to MLIR Type")); } } Status ConvertScalarTypeToDataType(Type type, DataType* dtype) { if (type.isF16()) { *dtype = DT_HALF; return absl::OkStatus(); } else if (type.isF32()) { *dtype = DT_FLOAT; return absl::OkStatus(); } else if (type.isF64()) { *dtype = DT_DOUBLE; return absl::OkStatus(); } else if (type.isBF16()) { *dtype = DT_BFLOAT16; return absl::OkStatus(); } else if (type.isFloat8E4M3FN()) { *dtype = DT_FLOAT8_E4M3FN; return absl::OkStatus(); } else if (type.isFloat8E5M2()) { *dtype = DT_FLOAT8_E5M2; return absl::OkStatus(); } else if (auto itype = mlir::dyn_cast<mlir::IntegerType>(type)) { switch (itype.getWidth()) { case 1: *dtype = DT_BOOL; return absl::OkStatus(); case 4: *dtype = itype.isUnsigned() ? DT_UINT4 : DT_INT4; return absl::OkStatus(); case 8: *dtype = itype.isUnsigned() ? DT_UINT8 : DT_INT8; return absl::OkStatus(); case 16: *dtype = itype.isUnsigned() ? DT_UINT16 : DT_INT16; return absl::OkStatus(); case 32: *dtype = itype.isUnsigned() ? DT_UINT32 : DT_INT32; return absl::OkStatus(); case 64: *dtype = itype.isUnsigned() ? DT_UINT64 : DT_INT64; return absl::OkStatus(); default: return errors::Unimplemented( absl::StrCat("Converting ", debugString(type), " to DataType")); } } else if (auto complex_type = mlir::dyn_cast<mlir::ComplexType>(type)) { auto etype = complex_type.getElementType(); if (etype.isF32()) { *dtype = DT_COMPLEX64; return absl::OkStatus(); } else if (etype.isF64()) { *dtype = DT_COMPLEX128; return absl::OkStatus(); } return errors::Unimplemented( absl::StrCat("Converting ", debugString(type), " to DataType")); } #define HANDLE_TF_TYPE(tftype, enumerant, name) \ if (type.isa<mlir::tf_type::tftype##Type>()) { \ *dtype = DT_##enumerant; \ return OkStatus(); \ } #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.def" return errors::Unimplemented( absl::StrCat("Converting ", debugString(type), " to DataType")); } Status ConvertToDataType(Type type, DataType* dtype) { if (auto stype = mlir::dyn_cast<ShapedType>(type)) { TF_RETURN_IF_ERROR( ConvertScalarTypeToDataType(stype.getElementType(), dtype)); } else { TF_RETURN_IF_ERROR(ConvertScalarTypeToDataType(type, dtype)); } return absl::OkStatus(); } void ConvertToMlirShape(const TensorShape& input_shape, llvm::SmallVectorImpl<int64_t>* shape) { shape->reserve(input_shape.dims()); for (const auto& d : input_shape) { shape->push_back(d.size == kTFDynamicSize ? ShapedType::kDynamic : d.size); } } Status ConvertToMlirShape(const TensorShapeProto& input_shape, llvm::SmallVectorImpl<int64_t>* shape) { shape->reserve(input_shape.dim_size()); auto& dims = input_shape.dim(); for (auto& d : dims) { if (d.size() > std::numeric_limits<int64_t>::max()) { return errors::InvalidArgument("Shape element overflows"); } shape->push_back(d.size() == kTFDynamicSize ? ShapedType::kDynamic : d.size()); } return absl::OkStatus(); } absl::StatusOr<mlir::Type> ConvertToMlirTensorType( const TensorShapeProto& shape, DataType dtype, mlir::Builder* builder) { mlir::Type element_type; TF_RETURN_IF_ERROR(ConvertDataType(dtype, *builder, &element_type)); if (shape.unknown_rank()) { return mlir::UnrankedTensorType::get(element_type); } llvm::SmallVector<int64_t, 4> shape_dims; TF_RETURN_IF_ERROR(ConvertToMlirShape(shape, &shape_dims)); return GetTypeFromTFTensorShape(shape_dims, element_type); } }
#include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include <string> #include <vector> #include "llvm/Support/raw_ostream.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "xla/test.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" namespace tensorflow { namespace { std::string ConvertToMlirString(const std::vector<int64_t>& dims, bool unknown_rank, DataType dtype) { TensorShapeProto shape; shape.set_unknown_rank(unknown_rank); for (int64_t dim : dims) { shape.add_dim()->set_size(dim); } mlir::MLIRContext context; mlir::Builder b(&context); auto status_or = ConvertToMlirTensorType(shape, dtype, &b); std::string buf; llvm::raw_string_ostream os(buf); status_or.value().print(os); return os.str(); } TEST(MlirConvertType, ConvertToMlirTensorType) { EXPECT_EQ("tensor<4x8x16xi32>", ConvertToMlirString({4, 8, 16}, false, DataType::DT_INT32)); EXPECT_EQ("tensor<?x27x?xbf16>", ConvertToMlirString({-1, 27, -1}, false, DataType::DT_BFLOAT16)); EXPECT_EQ("tensor<*xf32>", ConvertToMlirString({}, true, DataType::DT_FLOAT)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/convert_type.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tensorflow/utils/convert_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
56ea50e1-e04c-4cea-bb42-857fa1568bc0
cpp
tensorflow/tensorflow
index
third_party/xla/xla/python/ifrt/index.cc
third_party/xla/xla/python/ifrt/index_test.cc
#include "xla/python/ifrt/index.h" #include <ostream> #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" namespace xla { namespace ifrt { std::string Index::DebugString() const { return absl::StrCat("[", absl::StrJoin(elements_, ","), "]"); } std::ostream& operator<<(std::ostream& os, const Index& index) { return os << index.DebugString(); } } }
#include "xla/python/ifrt/index.h" #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" namespace xla { namespace ifrt { namespace { using ::testing::ElementsAre; TEST(IndexTest, Construction) { EXPECT_THAT(Index({1, 2}).elements(), ElementsAre(1, 2)); EXPECT_THAT(Index::Zeros(2).elements(), ElementsAre(0, 0)); } TEST(IndexTest, Operations) { EXPECT_EQ(Index({1, 2}), Index({1, 2})); EXPECT_NE(Index({1, 2}), Index({1, 3})); Index a({11, 22}); Index b({2, 3}); EXPECT_EQ(a + b, Index({13, 25})); { Index c = a; EXPECT_EQ(c += b, Index({13, 25})); } EXPECT_EQ(a - b, Index({9, 19})); { Index c = a; EXPECT_EQ(c -= b, Index({9, 19})); } EXPECT_EQ(a * std::vector<int64_t>({1, 2}), Index({11, 44})); { Index c = a; EXPECT_EQ(c *= std::vector<int64_t>({1, 2}), Index({11, 44})); } } TEST(IndexTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ Index({}), Index({1}), Index({2}), Index({1, 2}), Index({1, 3}), Index({2, 1}), Index({1, 2, 3}), Index({1, 2, 4}), })); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/index_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
85256940-c06d-4a66-ad6c-9c9d871a9f1c
cpp
tensorflow/tensorflow
bidirectional_sequence_rnn
tensorflow/lite/kernels/bidirectional_sequence_rnn.cc
tensorflow/lite/kernels/bidirectional_sequence_rnn_test.cc
#include <algorithm> #include <cstddef> #include <cstdint> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/kernel_utils.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/op_macros.h" namespace tflite { namespace ops { namespace builtin { namespace bidirectional_sequence_rnn { namespace { struct OpData { int scratch_tensor_index; bool fw_compute_row_sums = false; bool bw_compute_row_sums = false; }; } constexpr int kInputTensor = 0; constexpr int kFwWeightsTensor = 1; constexpr int kFwRecurrentWeightsTensor = 2; constexpr int kFwBiasTensor = 3; constexpr int kFwHiddenStateTensor = 4; constexpr int kBwWeightsTensor = 5; constexpr int kBwRecurrentWeightsTensor = 6; constexpr int kBwBiasTensor = 7; constexpr int kBwHiddenStateTensor = 8; constexpr int kAuxInputTensor = 9; constexpr int kFwAuxWeightsTensor = 10; constexpr int kBwAuxWeightsTensor = 11; constexpr int kFwOutputTensor = 0; constexpr int kBwOutputTensor = 1; enum TemporaryTensor { kInputQuantized = 0, kFwHiddenStateQuantized = 1, kBwHiddenStateQuantized = 2, kScalingFactors = 3, kAccumScratch = 4, kZeroPoints = 5, kFwRowSums = 6, kBwRowSums = 7, kAuxInputQuantized = 8, kNumTemporaryTensors = 9 }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); context->AddTensors(context, kNumTemporaryTensors, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { const auto* params = reinterpret_cast<TfLiteBidirectionalSequenceRNNParams*>( node->builtin_data); TF_LITE_ENSURE_EQ(context, node->inputs->size, 12); TF_LITE_ENSURE_EQ(context, node->outputs->size, params->merge_outputs ? 1 : 2); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* fw_input_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwWeightsTensor, &fw_input_weights)); const TfLiteTensor* fw_recurrent_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwRecurrentWeightsTensor, &fw_recurrent_weights)); const TfLiteTensor* fw_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwBiasTensor, &fw_bias)); const TfLiteTensor* fw_hidden_state; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwHiddenStateTensor, &fw_hidden_state)); const TfLiteTensor* bw_input_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwWeightsTensor, &bw_input_weights)); const TfLiteTensor* bw_recurrent_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwRecurrentWeightsTensor, &bw_recurrent_weights)); const TfLiteTensor* bw_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwBiasTensor, &bw_bias)); const TfLiteTensor* bw_hidden_state; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwHiddenStateTensor, &bw_hidden_state)); const TfLiteTensor* aux_input = GetOptionalInputTensor(context, node, kAuxInputTensor); const TfLiteTensor* fw_aux_input_weights = GetOptionalInputTensor(context, node, kFwAuxWeightsTensor); const TfLiteTensor* bw_aux_input_weights = GetOptionalInputTensor(context, node, kBwAuxWeightsTensor); const bool aux_inputs_weights_or_none = ((fw_aux_input_weights != nullptr) && (bw_aux_input_weights != nullptr)) || ((fw_aux_input_weights == nullptr) && (bw_aux_input_weights == nullptr)); TF_LITE_ENSURE(context, aux_inputs_weights_or_none); const bool has_aux_input = (fw_aux_input_weights != nullptr); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, input->dims->size, 3); const bool time_major = params->time_major; const int batch_size = (time_major) ? input->dims->data[1] : input->dims->data[0]; const int max_time = (time_major) ? input->dims->data[0] : input->dims->data[1]; const int fw_num_units = fw_input_weights->dims->data[0]; const int bw_num_units = bw_input_weights->dims->data[0]; TF_LITE_ENSURE_EQ(context, input->dims->data[2], fw_input_weights->dims->data[1]); TF_LITE_ENSURE_EQ(context, input->dims->data[2], bw_input_weights->dims->data[1]); TF_LITE_ENSURE_EQ(context, fw_input_weights->dims->data[0], fw_bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, bw_input_weights->dims->data[0], bw_bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, fw_recurrent_weights->dims->data[0], fw_bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, bw_recurrent_weights->dims->data[1], bw_bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, NumDimensions(fw_hidden_state), 2); TF_LITE_ENSURE_EQ(context, fw_hidden_state->dims->data[0], batch_size); TF_LITE_ENSURE_EQ(context, fw_hidden_state->dims->data[1], fw_num_units); TF_LITE_ENSURE_EQ(context, NumDimensions(bw_hidden_state), 2); TF_LITE_ENSURE_EQ(context, bw_hidden_state->dims->data[0], batch_size); TF_LITE_ENSURE_EQ(context, bw_hidden_state->dims->data[1], bw_num_units); if (has_aux_input) { TF_LITE_ASSERT_EQ(aux_input->dims->data[0], input->dims->data[0]); TF_LITE_ASSERT_EQ(aux_input->dims->data[1], input->dims->data[1]); TF_LITE_ASSERT_EQ(fw_aux_input_weights->dims->data[0], fw_num_units); TF_LITE_ASSERT_EQ(bw_aux_input_weights->dims->data[0], bw_num_units); TF_LITE_ASSERT_EQ(aux_input->dims->data[2], fw_aux_input_weights->dims->data[1]); TF_LITE_ASSERT_EQ(aux_input->dims->data[2], bw_aux_input_weights->dims->data[1]); } if (IsHybridOp(input, fw_input_weights)) { OpData* op_data = reinterpret_cast<OpData*>(node->user_data); op_data->fw_compute_row_sums = true; op_data->bw_compute_row_sums = true; TfLiteIntArrayFree(node->temporaries); if (has_aux_input) { node->temporaries = TfLiteIntArrayCreate(kNumTemporaryTensors); } else { node->temporaries = TfLiteIntArrayCreate(kNumTemporaryTensors - 1); } node->temporaries->data[kInputQuantized] = op_data->scratch_tensor_index + kInputQuantized; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kInputQuantized, &input_quantized)); input_quantized->type = fw_input_weights->type; input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) { TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); } node->temporaries->data[kFwHiddenStateQuantized] = op_data->scratch_tensor_index + kFwHiddenStateQuantized; TfLiteTensor* fw_hidden_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kFwHiddenStateQuantized, &fw_hidden_state_quantized)); fw_hidden_state_quantized->type = fw_input_weights->type; fw_hidden_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(fw_hidden_state_quantized->dims, fw_hidden_state->dims)) { TfLiteIntArray* fw_hidden_state_quantized_size = TfLiteIntArrayCopy(fw_hidden_state->dims); TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, fw_hidden_state_quantized, fw_hidden_state_quantized_size)); } node->temporaries->data[kBwHiddenStateQuantized] = op_data->scratch_tensor_index + kBwHiddenStateQuantized; TfLiteTensor* bw_hidden_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kBwHiddenStateQuantized, &bw_hidden_state_quantized)); bw_hidden_state_quantized->type = fw_input_weights->type; bw_hidden_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(bw_hidden_state_quantized->dims, bw_hidden_state->dims)) { TfLiteIntArray* bw_hidden_state_quantized_size = TfLiteIntArrayCopy(bw_hidden_state->dims); TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, bw_hidden_state_quantized, bw_hidden_state_quantized_size)); } node->temporaries->data[kScalingFactors] = op_data->scratch_tensor_index + kScalingFactors; TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kScalingFactors, &scaling_factors)); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); scaling_factors_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } node->temporaries->data[kAccumScratch] = op_data->scratch_tensor_index + kAccumScratch; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kAccumScratch, &accum_scratch)); accum_scratch->type = kTfLiteInt32; accum_scratch->allocation_type = kTfLiteArenaRw; int accum_scratch_dims[2] = {std::max(fw_num_units, bw_num_units), batch_size}; if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2, accum_scratch_dims)) { TfLiteIntArray* accum_scratch_size = TfLiteIntArrayCreate(2); accum_scratch_size->data[0] = accum_scratch_dims[0]; accum_scratch_size->data[1] = accum_scratch_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, accum_scratch, accum_scratch_size)); } node->temporaries->data[kZeroPoints] = op_data->scratch_tensor_index + kZeroPoints; TfLiteTensor* zero_points; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kZeroPoints, &zero_points)); zero_points->type = kTfLiteInt32; zero_points->allocation_type = kTfLiteArenaRw; int zero_points_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(zero_points->dims, 1, zero_points_dims)) { TfLiteIntArray* zero_points_size = TfLiteIntArrayCreate(1); zero_points_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, zero_points, zero_points_size)); } const int num_row_sums = has_aux_input ? 3 : 2; node->temporaries->data[kFwRowSums] = op_data->scratch_tensor_index + kFwRowSums; TfLiteTensor* fw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kFwRowSums, &fw_row_sums)); fw_row_sums->type = kTfLiteInt32; fw_row_sums->name = "Lstm_fw_row_sums"; fw_row_sums->allocation_type = kTfLiteArenaRwPersistent; int fw_row_sums_dims[2] = {num_row_sums, fw_num_units}; if (!TfLiteIntArrayEqualsArray(fw_row_sums->dims, 2, fw_row_sums_dims)) { TfLiteIntArray* fw_row_sums_size = TfLiteIntArrayCreate(2); fw_row_sums_size->data[0] = fw_row_sums_dims[0]; fw_row_sums_size->data[1] = fw_row_sums_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, fw_row_sums, fw_row_sums_size)); } node->temporaries->data[kBwRowSums] = op_data->scratch_tensor_index + kBwRowSums; TfLiteTensor* bw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kBwRowSums, &bw_row_sums)); bw_row_sums->type = kTfLiteInt32; bw_row_sums->name = "Lstm_bw_row_sums"; bw_row_sums->allocation_type = kTfLiteArenaRwPersistent; int bw_row_sums_dims[2] = {num_row_sums, bw_num_units}; if (!TfLiteIntArrayEqualsArray(bw_row_sums->dims, 2, bw_row_sums_dims)) { TfLiteIntArray* bw_row_sums_size = TfLiteIntArrayCreate(2); bw_row_sums_size->data[0] = bw_row_sums_dims[0]; bw_row_sums_size->data[1] = bw_row_sums_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, bw_row_sums, bw_row_sums_size)); } if (has_aux_input) { node->temporaries->data[kAuxInputQuantized] = op_data->scratch_tensor_index + kAuxInputQuantized; TfLiteTensor* aux_input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kAuxInputQuantized, &aux_input_quantized)); aux_input_quantized->type = fw_input_weights->type; aux_input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(aux_input_quantized->dims, aux_input->dims)) { TfLiteIntArray* aux_input_quantized_size = TfLiteIntArrayCopy(aux_input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, aux_input_quantized, aux_input_quantized_size)); } } } TfLiteTensor* fw_output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFwOutputTensor, &fw_output)); TfLiteIntArray* fw_output_size_array = TfLiteIntArrayCreate(3); fw_output_size_array->data[0] = (time_major) ? max_time : batch_size; fw_output_size_array->data[1] = (time_major) ? batch_size : max_time; fw_output_size_array->data[2] = params->merge_outputs ? fw_num_units + bw_num_units : fw_num_units; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, fw_output, fw_output_size_array)); if (!params->merge_outputs) { TfLiteTensor* bw_output; TF_LITE_ENSURE_OK( context, GetOutputSafe(context, node, kBwOutputTensor, &bw_output)); TfLiteIntArray* bw_output_size_array = TfLiteIntArrayCreate(3); bw_output_size_array->data[0] = (time_major) ? max_time : batch_size; bw_output_size_array->data[1] = (time_major) ? batch_size : max_time; bw_output_size_array->data[2] = bw_num_units; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, bw_output, bw_output_size_array)); } return kTfLiteOk; } TfLiteStatus EvalFloat(const TfLiteTensor* input, const TfLiteTensor* bw_input, const TfLiteTensor* fw_input_weights, const TfLiteTensor* fw_recurrent_weights, const TfLiteTensor* fw_bias, const TfLiteTensor* bw_input_weights, const TfLiteTensor* bw_recurrent_weights, const TfLiteTensor* bw_bias, const TfLiteTensor* aux_input, const TfLiteTensor* fw_aux_input_weights, const TfLiteTensor* bw_aux_input_weights, const TfLiteBidirectionalSequenceRNNParams* params, TfLiteTensor* fw_hidden_state, TfLiteTensor* fw_output, TfLiteTensor* bw_hidden_state, TfLiteTensor* bw_output) { const bool time_major = params->time_major; const int batch_size = (time_major) ? input->dims->data[1] : input->dims->data[0]; const int max_time = (time_major) ? input->dims->data[0] : input->dims->data[1]; const int input_size = input->dims->data[2]; const int aux_input_size = (aux_input) ? aux_input->dims->data[2] : 0; const int fw_num_units = fw_input_weights->dims->data[0]; const float* fw_bias_ptr = GetTensorData<float>(fw_bias); const float* fw_input_weights_ptr = GetTensorData<float>(fw_input_weights); const float* fw_recurrent_weights_ptr = GetTensorData<float>(fw_recurrent_weights); const int bw_num_units = bw_input_weights->dims->data[0]; const float* bw_bias_ptr = GetTensorData<float>(bw_bias); const float* bw_input_weights_ptr = GetTensorData<float>(bw_input_weights); const float* bw_recurrent_weights_ptr = GetTensorData<float>(bw_recurrent_weights); const float* fw_aux_input_weights_ptr = (fw_aux_input_weights != nullptr) ? GetTensorData<float>(fw_aux_input_weights) : nullptr; const float* bw_aux_input_weights_ptr = (bw_aux_input_weights != nullptr) ? GetTensorData<float>(bw_aux_input_weights) : nullptr; const int fw_output_step = params->merge_outputs ? fw_num_units + bw_num_units : fw_num_units; const int bw_output_step = params->merge_outputs ? fw_num_units + bw_num_units : bw_num_units; if (time_major) { float* fw_hidden_state_ptr_batch = GetTensorData<float>(fw_hidden_state); for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + s * input_size * batch_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + s * input_size * batch_size : nullptr; float* output_ptr_batch = GetTensorData<float>(fw_output) + s * fw_output_step * batch_size; kernel_utils::RnnBatchStep( input_ptr_batch, fw_input_weights_ptr, aux_input_ptr_batch, fw_aux_input_weights_ptr, fw_recurrent_weights_ptr, fw_bias_ptr, input_size, aux_input_size, fw_num_units, batch_size, fw_output_step, params->activation, fw_hidden_state_ptr_batch, output_ptr_batch); } float* bw_hidden_state_ptr_batch = GetTensorData<float>(bw_hidden_state); for (int s = max_time - 1; s >= 0; s--) { const float* input_ptr_batch = GetTensorData<float>(bw_input) + s * input_size * batch_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + s * input_size * batch_size : nullptr; float* output_ptr_batch = (params->merge_outputs ? GetTensorData<float>(fw_output) + fw_num_units : GetTensorData<float>(bw_output)) + s * bw_output_step * batch_size; kernel_utils::RnnBatchStep( input_ptr_batch, bw_input_weights_ptr, aux_input_ptr_batch, bw_aux_input_weights_ptr, bw_recurrent_weights_ptr, bw_bias_ptr, input_size, aux_input_size, bw_num_units, batch_size, bw_output_step, params->activation, bw_hidden_state_ptr_batch, output_ptr_batch); } } else { for (int b = 0; b < batch_size; b++) { float* fw_hidden_state_ptr_batch = GetTensorData<float>(fw_hidden_state) + b * fw_num_units; float* fw_output_offset = GetTensorData<float>(fw_output) + b * fw_output_step * max_time; for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + b * input_size * max_time + s * input_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + b * aux_input_size * max_time + s * aux_input_size : nullptr; float* output_ptr_batch = fw_output_offset + s * fw_output_step; kernel_utils::RnnBatchStep( input_ptr_batch, fw_input_weights_ptr, aux_input_ptr_batch, fw_aux_input_weights_ptr, fw_recurrent_weights_ptr, fw_bias_ptr, input_size, aux_input_size, fw_num_units, 1, fw_output_step, params->activation, fw_hidden_state_ptr_batch, output_ptr_batch); } float* bw_hidden_state_ptr_batch = GetTensorData<float>(bw_hidden_state) + b * bw_num_units; float* bw_output_offset = params->merge_outputs ? GetTensorData<float>(fw_output) + b * bw_output_step * max_time + fw_num_units : GetTensorData<float>(bw_output) + b * bw_output_step * max_time; for (int s = max_time - 1; s >= 0; s--) { const float* input_ptr_batch = GetTensorData<float>(input) + b * input_size * max_time + s * input_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + b * aux_input_size * max_time + s * aux_input_size : nullptr; float* output_ptr_batch = bw_output_offset + s * bw_output_step; kernel_utils::RnnBatchStep( input_ptr_batch, bw_input_weights_ptr, aux_input_ptr_batch, bw_aux_input_weights_ptr, bw_recurrent_weights_ptr, bw_bias_ptr, input_size, aux_input_size, bw_num_units, 1, bw_output_step, params->activation, bw_hidden_state_ptr_batch, output_ptr_batch); } } } return kTfLiteOk; } TfLiteStatus EvalHybrid( const TfLiteTensor* input, const TfLiteTensor* bw_input, const TfLiteTensor* fw_input_weights, const TfLiteTensor* fw_recurrent_weights, const TfLiteTensor* fw_bias, const TfLiteTensor* bw_input_weights, const TfLiteTensor* bw_recurrent_weights, const TfLiteTensor* bw_bias, const TfLiteTensor* aux_input, const TfLiteTensor* aux_fw_input_weights, const TfLiteTensor* aux_bw_input_weights, const TfLiteBidirectionalSequenceRNNParams* params, TfLiteTensor* scaling_factors, TfLiteTensor* input_quantized, TfLiteTensor* aux_input_quantized, TfLiteTensor* fw_hidden_state_quantized, TfLiteTensor* fw_hidden_state, TfLiteTensor* fw_output, TfLiteTensor* bw_hidden_state_quantized, TfLiteTensor* bw_hidden_state, TfLiteTensor* bw_output, TfLiteTensor* zero_points, TfLiteTensor* accum_scratch, TfLiteTensor* fw_row_sums, TfLiteTensor* bw_row_sums, bool* fw_compute_row_sums, bool* bw_compute_row_sums) { const bool time_major = params->time_major; const int batch_size = (time_major) ? input->dims->data[1] : input->dims->data[0]; const int max_time = (time_major) ? input->dims->data[0] : input->dims->data[1]; const int input_size = input->dims->data[2]; const int aux_input_size = (aux_input) ? aux_input->dims->data[2] : 0; const int fw_num_units = fw_input_weights->dims->data[0]; const float* fw_bias_ptr = GetTensorData<float>(fw_bias); const int8_t* fw_input_weights_ptr = GetTensorData<int8_t>(fw_input_weights); float fw_input_weights_scale = fw_input_weights->params.scale; const int8_t* fw_recurrent_weights_ptr = GetTensorData<int8_t>(fw_recurrent_weights); float fw_recurrent_weights_scale = fw_recurrent_weights->params.scale; const int bw_num_units = bw_input_weights->dims->data[0]; const float* bw_bias_ptr = GetTensorData<float>(bw_bias); const int8_t* bw_input_weights_ptr = GetTensorData<int8_t>(bw_input_weights); float bw_input_weights_scale = bw_input_weights->params.scale; const int8_t* bw_recurrent_weights_ptr = GetTensorData<int8_t>(bw_recurrent_weights); float bw_recurrent_weights_scale = bw_recurrent_weights->params.scale; const int8_t* aux_fw_input_weights_ptr = nullptr; float aux_fw_input_weights_scale = 0.0f; const int8_t* aux_bw_input_weights_ptr = nullptr; float aux_bw_input_weights_scale = 0.0f; int8_t* aux_quantized_input_ptr = nullptr; if (aux_input_size > 0) { aux_fw_input_weights_ptr = GetTensorData<int8_t>(aux_fw_input_weights); aux_fw_input_weights_scale = aux_fw_input_weights->params.scale; aux_bw_input_weights_ptr = GetTensorData<int8_t>(aux_bw_input_weights); aux_bw_input_weights_scale = aux_bw_input_weights->params.scale; aux_quantized_input_ptr = GetTensorData<int8_t>(aux_input_quantized); } int8_t* quantized_input_ptr = GetTensorData<int8_t>(input_quantized); int8_t* fw_quantized_hidden_state_ptr = GetTensorData<int8_t>(fw_hidden_state_quantized); int8_t* bw_quantized_hidden_state_ptr = GetTensorData<int8_t>(bw_hidden_state_quantized); float* scaling_factors_ptr = GetTensorData<float>(scaling_factors); int32_t* accum_scratch_ptr = GetTensorData<int32_t>(accum_scratch); int32_t* zero_points_ptr = nullptr; int32_t* fw_row_sums_ptr = nullptr; int32_t* bw_row_sums_ptr = nullptr; if (params->asymmetric_quantize_inputs) { zero_points_ptr = GetTensorData<int32_t>(zero_points); fw_row_sums_ptr = GetTensorData<int32_t>(fw_row_sums); bw_row_sums_ptr = GetTensorData<int32_t>(bw_row_sums); } const int fw_output_step = params->merge_outputs ? fw_num_units + bw_num_units : fw_num_units; const int bw_output_step = params->merge_outputs ? fw_num_units + bw_num_units : bw_num_units; if (time_major) { for (int t = 0; t < max_time; t++) { float* fw_hidden_state_ptr_batch = GetTensorData<float>(fw_hidden_state); for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + s * input_size * batch_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + s * input_size * batch_size : nullptr; float* output_ptr_batch = GetTensorData<float>(fw_output) + s * fw_output_step * batch_size; kernel_utils::RnnBatchStep( input_ptr_batch, fw_input_weights_ptr, fw_input_weights_scale, aux_input_ptr_batch, aux_fw_input_weights_ptr, aux_fw_input_weights_scale, fw_recurrent_weights_ptr, fw_recurrent_weights_scale, fw_bias_ptr, input_size, aux_input_size, fw_num_units, batch_size, fw_output_step, params->activation, quantized_input_ptr, aux_quantized_input_ptr, fw_quantized_hidden_state_ptr, scaling_factors_ptr, fw_hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, fw_row_sums_ptr, fw_compute_row_sums); } float* bw_hidden_state_ptr_batch = GetTensorData<float>(bw_hidden_state); for (int s = max_time - 1; s >= 0; s--) { const float* input_ptr_batch = GetTensorData<float>(bw_input) + s * input_size * batch_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + s * input_size * batch_size : nullptr; float* output_ptr_batch = (params->merge_outputs ? GetTensorData<float>(fw_output) + fw_num_units : GetTensorData<float>(bw_output)) + s * bw_output_step * batch_size; kernel_utils::RnnBatchStep( input_ptr_batch, bw_input_weights_ptr, bw_input_weights_scale, aux_input_ptr_batch, aux_bw_input_weights_ptr, aux_bw_input_weights_scale, bw_recurrent_weights_ptr, bw_recurrent_weights_scale, bw_bias_ptr, input_size, aux_input_size, bw_num_units, batch_size, bw_output_step, params->activation, quantized_input_ptr, aux_quantized_input_ptr, bw_quantized_hidden_state_ptr, scaling_factors_ptr, bw_hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, bw_row_sums_ptr, bw_compute_row_sums); } } } else { for (int b = 0; b < batch_size; b++) { float* fw_hidden_state_ptr_batch = GetTensorData<float>(fw_hidden_state) + b * fw_num_units; float* fw_output_offset = GetTensorData<float>(fw_output) + b * fw_output_step * max_time; for (int s = 0; s < max_time; s++) { const float* input_ptr_batch = GetTensorData<float>(input) + b * input_size * max_time + s * input_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + b * input_size * max_time + s * input_size : nullptr; float* output_ptr_batch = fw_output_offset + s * fw_output_step; kernel_utils::RnnBatchStep( input_ptr_batch, fw_input_weights_ptr, fw_input_weights_scale, aux_input_ptr_batch, aux_fw_input_weights_ptr, aux_fw_input_weights_scale, fw_recurrent_weights_ptr, fw_recurrent_weights_scale, fw_bias_ptr, input_size, aux_input_size, fw_num_units, 1, fw_output_step, params->activation, quantized_input_ptr, aux_quantized_input_ptr, fw_quantized_hidden_state_ptr, scaling_factors_ptr, fw_hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, fw_row_sums_ptr, fw_compute_row_sums); } float* bw_hidden_state_ptr_batch = GetTensorData<float>(bw_hidden_state) + b * bw_num_units; float* bw_output_offset = params->merge_outputs ? GetTensorData<float>(fw_output) + b * bw_output_step * max_time + fw_num_units : GetTensorData<float>(bw_output) + b * bw_output_step * max_time; for (int s = max_time - 1; s >= 0; s--) { const float* input_ptr_batch = GetTensorData<float>(input) + b * input_size * max_time + s * input_size; const float* aux_input_ptr_batch = (aux_input != nullptr) ? GetTensorData<float>(aux_input) + b * input_size * max_time + s * input_size : nullptr; float* output_ptr_batch = bw_output_offset + s * bw_output_step; kernel_utils::RnnBatchStep( input_ptr_batch, bw_input_weights_ptr, bw_input_weights_scale, aux_input_ptr_batch, aux_bw_input_weights_ptr, aux_bw_input_weights_scale, bw_recurrent_weights_ptr, bw_recurrent_weights_scale, bw_bias_ptr, input_size, aux_input_size, bw_num_units, 1, bw_output_step, params->activation, quantized_input_ptr, aux_quantized_input_ptr, bw_quantized_hidden_state_ptr, scaling_factors_ptr, bw_hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, bw_row_sums_ptr, bw_compute_row_sums); } } } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const auto* params = reinterpret_cast<TfLiteBidirectionalSequenceRNNParams*>( node->builtin_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* fw_input_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwWeightsTensor, &fw_input_weights)); const TfLiteTensor* fw_recurrent_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwRecurrentWeightsTensor, &fw_recurrent_weights)); const TfLiteTensor* fw_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kFwBiasTensor, &fw_bias)); const TfLiteTensor* bw_input_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwWeightsTensor, &bw_input_weights)); const TfLiteTensor* bw_recurrent_weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwRecurrentWeightsTensor, &bw_recurrent_weights)); const TfLiteTensor* bw_bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBwBiasTensor, &bw_bias)); const TfLiteTensor* aux_input = GetOptionalInputTensor(context, node, kAuxInputTensor); const TfLiteTensor* fw_aux_input_weights = GetOptionalInputTensor(context, node, kFwAuxWeightsTensor); const TfLiteTensor* bw_aux_input_weights = GetOptionalInputTensor(context, node, kBwAuxWeightsTensor); TfLiteTensor* fw_hidden_state = GetVariableInput(context, node, kFwHiddenStateTensor); TFLITE_DCHECK(fw_hidden_state != nullptr); TfLiteTensor* bw_hidden_state = GetVariableInput(context, node, kBwHiddenStateTensor); TFLITE_DCHECK(bw_hidden_state != nullptr); TfLiteTensor* fw_output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kFwOutputTensor, &fw_output)); TfLiteTensor* bw_output = params->merge_outputs ? nullptr : GetOutput(context, node, kBwOutputTensor); const bool has_previous_bw_output = (aux_input != nullptr); const bool use_aux_input = (fw_aux_input_weights != nullptr); const bool non_stacking_mode = !use_aux_input && has_previous_bw_output; const TfLiteTensor* bw_input = non_stacking_mode ? aux_input : input; const TfLiteTensor* real_aux_input = non_stacking_mode ? nullptr : aux_input; switch (fw_input_weights->type) { case kTfLiteFloat32: return EvalFloat(input, bw_input, fw_input_weights, fw_recurrent_weights, fw_bias, bw_input_weights, bw_recurrent_weights, bw_bias, real_aux_input, fw_aux_input_weights, bw_aux_input_weights, params, fw_hidden_state, fw_output, bw_hidden_state, bw_output); case kTfLiteUInt8: case kTfLiteInt8: { TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kInputQuantized, &input_quantized)); TfLiteTensor* fw_hidden_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kFwHiddenStateQuantized, &fw_hidden_state_quantized)); TfLiteTensor* bw_hidden_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kBwHiddenStateQuantized, &bw_hidden_state_quantized)); TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kScalingFactors, &scaling_factors)); TfLiteTensor* zero_points; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kZeroPoints, &zero_points)); TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, kAccumScratch, &accum_scratch)); TfLiteTensor* fw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kFwRowSums, &fw_row_sums)); TfLiteTensor* bw_row_sums; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, kBwRowSums, &bw_row_sums)); TfLiteTensor* aux_input_quantized = use_aux_input ? GetTemporary(context, node, kAuxInputQuantized) : nullptr; auto* op_data = reinterpret_cast<OpData*>(node->user_data); return EvalHybrid( input, bw_input, fw_input_weights, fw_recurrent_weights, fw_bias, bw_input_weights, bw_recurrent_weights, bw_bias, real_aux_input, fw_aux_input_weights, bw_aux_input_weights, params, scaling_factors, input_quantized, aux_input_quantized, fw_hidden_state_quantized, fw_hidden_state, fw_output, bw_hidden_state_quantized, bw_hidden_state, bw_output, zero_points, accum_scratch, fw_row_sums, bw_row_sums, &op_data->fw_compute_row_sums, &op_data->bw_compute_row_sums); } default: TF_LITE_KERNEL_LOG(context, "Type not currently supported."); return kTfLiteError; } } } TfLiteRegistration* Register_BIDIRECTIONAL_SEQUENCE_RNN() { static TfLiteRegistration r = { bidirectional_sequence_rnn::Init, bidirectional_sequence_rnn::Free, bidirectional_sequence_rnn::Prepare, bidirectional_sequence_rnn::Eval}; return &r; } } } }
#include <algorithm> #include <functional> #include <initializer_list> #include <iterator> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { enum class AuxInputMode { kNoAuxInput, kCrossLinking, kNoCrossLinking, }; using ::testing::ElementsAreArray; static float rnn_input[] = { 0.23689353, 0.285385, 0.037029743, -0.19858193, -0.27569133, 0.43773448, 0.60379338, 0.35562468, -0.69424844, -0.93421471, -0.87287879, 0.37144363, -0.62476718, 0.23791671, 0.40060222, 0.1356622, -0.99774903, -0.98858172, -0.38952237, -0.47685933, 0.31073618, 0.71511042, -0.63767755, -0.31729108, 0.33468103, 0.75801885, 0.30660987, -0.37354088, 0.77002847, -0.62747043, -0.68572164, 0.0069220066, 0.65791464, 0.35130811, 0.80834007, -0.61777675, -0.21095741, 0.41213346, 0.73784804, 0.094794154, 0.47791874, 0.86496925, -0.53376222, 0.85315156, 0.10288584, 0.86684, -0.011186242, 0.10513687, 0.87825835, 0.59929144, 0.62827742, 0.18899453, 0.31440187, 0.99059987, 0.87170351, -0.35091716, 0.74861872, 0.17831337, 0.2755419, 0.51864719, 0.55084288, 0.58982027, -0.47443086, 0.20875752, -0.058871567, -0.66609079, 0.59098077, 0.73017097, 0.74604273, 0.32882881, -0.17503482, 0.22396147, 0.19379807, 0.29120302, 0.077113032, -0.70331609, 0.15804303, -0.93407321, 0.40182066, 0.036301374, 0.66521823, 0.0300982, -0.7747041, -0.02038002, 0.020698071, -0.90300065, 0.62870288, -0.23068321, 0.27531278, -0.095755219, -0.712036, -0.17384434, -0.50593495, -0.18646687, -0.96508682, 0.43519354, 0.14744234, 0.62589407, 0.1653645, -0.10651493, -0.045277178, 0.99032974, -0.88255352, -0.85147917, 0.28153265, 0.19455957, -0.55479527, -0.56042433, 0.26048636, 0.84702539, 0.47587705, -0.074295521, -0.12287641, 0.70117295, 0.90532446, 0.89782166, 0.79817224, 0.53402734, -0.33286154, 0.073485017, -0.56172788, -0.044897556, 0.89964068, -0.067662835, 0.76863563, 0.93455386, -0.6324693, -0.083922029}; static float rnn_golden_fw_output[] = { 0.496726, 0, 0.965996, 0, 0.0584254, 0, 0, 0.12315, 0, 0, 0.612266, 0.456601, 0, 0.52286, 1.16099, 0.0291232, 0, 0, 0.524901, 0, 0, 0, 0, 1.02116, 0, 1.35762, 0, 0.356909, 0.436415, 0.0355727, 0, 0, 0, 0, 0, 0.262335, 0, 0, 0, 1.33992, 0, 2.9739, 0, 0, 1.31914, 2.66147, 0, 0, 0.942568, 0, 0, 0, 0.025507, 0, 0, 0, 0.321429, 0.569141, 1.25274, 1.57719, 0.8158, 1.21805, 0.586239, 0.25427, 1.04436, 0, 0.630725, 0, 0.133801, 0.210693, 0.363026, 0, 0.533426, 0, 1.25926, 0.722707, 0, 1.22031, 1.30117, 0.495867, 0.222187, 0, 0.72725, 0, 0.767003, 0, 0, 0.147835, 0, 0, 0, 0.608758, 0.469394, 0.00720298, 0.927537, 0, 0.856974, 0.424257, 0, 0, 0.937329, 0, 0, 0, 0.476425, 0, 0.566017, 0.418462, 0.141911, 0.996214, 1.13063, 0, 0.967899, 0, 0, 0, 0.0831304, 0, 0, 1.00378, 0, 0, 0, 1.44818, 1.01768, 0.943891, 0.502745, 0, 0.940135, 0, 0, 0, 0, 0, 0, 2.13243, 0, 0.71208, 0.123918, 1.53907, 1.30225, 1.59644, 0.70222, 0, 0.804329, 0, 0.430576, 0, 0.505872, 0.509603, 0.343448, 0, 0.107756, 0.614544, 1.44549, 1.52311, 0.0454298, 0.300267, 0.562784, 0.395095, 0.228154, 0, 0.675323, 0, 1.70536, 0.766217, 0, 0, 0, 0.735363, 0.0759267, 1.91017, 0.941888, 0, 0, 0, 0, 0, 1.5909, 0, 0, 0, 0, 0.5755, 0, 0.184687, 0, 1.56296, 0.625285, 0, 0, 0, 0, 0, 0.0857888, 0, 0, 0, 0, 0.488383, 0.252786, 0, 0, 0, 1.02817, 1.85665, 0, 0, 0.00981836, 0, 1.06371, 0, 0, 0, 0, 0, 0, 0.290445, 0.316406, 0, 0.304161, 1.25079, 0.0707152, 0, 0.986264, 0.309201, 0, 0, 0, 0, 0, 1.64896, 0.346248, 0, 0.918175, 0.78884, 0.524981, 1.92076, 2.07013, 0.333244, 0.415153, 0.210318, 0, 0, 0, 0, 0, 2.02616, 0, 0.728256, 0.84183, 0.0907453, 0.628881, 3.58099, 1.49974, 0}; static float rnn_golden_bw_output[] = { 0.496726, 0, 1.00883, 0, 0.0584256, 0, 0, 0.236412, 0, 0, 0.612267, 0.487726, 0, 0.54883, 1.16099, 0.0291233, 0, 0, 0.428302, 0, 0, 0, 0, 1.13262, 0, 1.64415, 0, 0.311249, 0.570804, 0.259696, 0, 0, 0, 0, 0, 0.262334, 0, 0, 0, 1.23781, 0, 2.86532, 0, 0, 1.34389, 2.76409, 0, 0, 1.03969, 0, 0.00410865, 0, 0.0470295, 0, 0, 0, 0.371556, 0.27175, 1.36614, 1.63956, 0.683887, 1.06176, 0.719552, 0.301314, 0.971195, 0, 0.697143, 0, 0.215219, 0.210693, 0.363027, 0, 0.501283, 0, 1.13399, 0.623774, 0, 1.09851, 1.33313, 0.470441, 0.210965, 0, 0.664178, 0, 0.839686, 0, 0, 0.147834, 0, 0, 0, 0.58786, 0.490128, 0, 0.905806, 0, 0.932134, 0.424257, 0, 0, 0.860629, 0, 0, 0, 0.476425, 0, 0.566017, 0.513721, 0.207341, 1.09508, 1.08385, 0, 0.973787, 0, 0, 0, 0, 0, 0, 1.20698, 0, 0, 0, 1.56135, 1.12369, 0.99588, 0.459803, 0, 0.915854, 0, 0, 0, 0, 0, 0, 2.03206, 0, 0.773264, 0.267228, 1.55012, 1.202, 1.51611, 0.701202, 0, 0.725088, 0, 0.509069, 0, 0.671349, 0.581129, 0.343447, 0, 0.107755, 0.611838, 1.4331, 1.55871, 0.015242, 0.140624, 0.492562, 0.395095, 0.147722, 0, 0.784925, 0, 1.65477, 0.715257, 0, 0, 0, 0.685024, 0, 1.89505, 1.00037, 0, 0, 0, 0, 0, 1.52659, 0, 0, 0, 0, 0.618583, 0, 0.11115, 0, 1.37194, 0.630225, 0, 0, 0, 0, 0, 0.0322124, 0, 0, 0, 0, 0.430834, 0.252786, 0, 0, 0, 0.991297, 1.98451, 0, 0, 0.111511, 0, 1.05513, 0, 0, 0, 0, 0, 0, 0.290445, 0.412559, 0.0429958, 0.256564, 1.27858, 0.289948, 0, 1.01693, 0.327141, 0, 0, 0, 0, 0, 1.83508, 0.346248, 0, 0.961535, 0.790026, 0.552203, 2.13457, 2.19233, 0.333244, 0.316526, 0.179398, 0, 0, 0, 0, 0, 1.86126, 0, 0.728256, 0.750013, 0.011861, 0.576383, 3.38891, 1.29273, 0}; const std::initializer_list<float> weights = { 0.461459, 0.153381, 0.529743, -0.00371218, 0.676267, -0.211346, 0.317493, 0.969689, -0.343251, 0.186423, 0.398151, 0.152399, 0.448504, 0.317662, 0.523556, -0.323514, 0.480877, 0.333113, -0.757714, -0.674487, -0.643585, 0.217766, -0.0251462, 0.79512, -0.595574, -0.422444, 0.371572, -0.452178, -0.556069, -0.482188, -0.685456, -0.727851, 0.841829, 0.551535, -0.232336, 0.729158, -0.00294906, -0.69754, 0.766073, -0.178424, 0.369513, -0.423241, 0.548547, -0.0152023, -0.757482, -0.85491, 0.251331, -0.989183, 0.306261, -0.340716, 0.886103, -0.0726757, -0.723523, -0.784303, 0.0354295, 0.566564, -0.485469, -0.620498, 0.832546, 0.697884, -0.279115, 0.294415, -0.584313, 0.548772, 0.0648819, 0.968726, 0.723834, -0.0080452, -0.350386, -0.272803, 0.115121, -0.412644, -0.824713, -0.992843, -0.592904, -0.417893, 0.863791, -0.423461, -0.147601, -0.770664, -0.479006, 0.654782, 0.587314, -0.639158, 0.816969, -0.337228, 0.659878, 0.73107, 0.754768, -0.337042, 0.0960841, 0.368357, 0.244191, -0.817703, -0.211223, 0.442012, 0.37225, -0.623598, -0.405423, 0.455101, 0.673656, -0.145345, -0.511346, -0.901675, -0.81252, -0.127006, 0.809865, -0.721884, 0.636255, 0.868989, -0.347973, -0.10179, -0.777449, 0.917274, 0.819286, 0.206218, -0.00785118, 0.167141, 0.45872, 0.972934, -0.276798, 0.837861, 0.747958, -0.0151566, -0.330057, -0.469077, 0.277308, 0.415818}; static float endtoend_input[] = { 0.996808, 0.060710, 0.981855, 0.570017, 0.525164, 0.796859, 0.696547, 0.505925, 0.991844, 0.461208, 0.949371, 0.027624, 0.539236, 0.841854, 0.915222, 0.538569, 0.069375, 0.237905, 0.903700, 0.441703, 0.536196, 0.402724, 0.761635, 0.025063, 0.082592, 0.688245, 0.239310, 0.256931, 0.658900, 0.105695, 0.301983, 0.655708, 0.166405, 0.283837, 0.225725, 0.691569, 0.080696, 0.922272, 0.197494, 0.072540, 0.383481, 0.146865, 0.100163, 0.922717, 0.988720, 0.015386, 0.461286, 0.058095, 0.253290, 0.364986, 0.499797, 0.789487, 0.767709, 0.261433, 0.814549, 0.850302, 0.949678, 0.053859, 0.107233, 0.608577, 0.159554, 0.409215, 0.264285, 0.325960, 0.693053, 0.490011, 0.017529, 0.773749, 0.412283, 0.215023, 0.846288, 0.795764, 0.361889, 0.946452, 0.718481, 0.350608, 0.961837, 0.179767, 0.408703, 0.215128, 0.544753, 0.908500, 0.004614, 0.312462, 0.169933, 0.819163, 0.162764, 0.119611, 0.873022, 0.269997, 0.728188, 0.032576, 0.679212, 0.992474, 0.358536, 0.372265, 0.482484, 0.376065, 0.146014, 0.894767, 0.591088, 0.992302, 0.690531, 0.952977, 0.938754, 0.409012, 0.303585, 0.900591, 0.588780, 0.712287, 0.115719, 0.133533, 0.620788, 0.120334, 0.445995, 0.790720, 0.939497, 0.608759, 0.910331, 0.812519, 0.878756, 0.638519, 0.845096, 0.557968, 0.630993, 0.203632, 0.930233, 0.113477, 0.579697, 0.076247, 0.008244, 0.170785, 0.068549, 0.698776, 0.123761, 0.007303, 0.107788, 0.427346, 0.907894, 0.696568, 0.139633, 0.023613, 0.830100, 0.760421, 0.143947, 0.276096, 0.551141, 0.083444, 0.884855, 0.461472, 0.895963, 0.763611, 0.099992, 0.741059, 0.321579, 0.730984, 0.944691, 0.251812, 0.844461, 0.524388, 0.328059, 0.852706, 0.695172, 0.396607, 0.551482, 0.818934, 0.403910, 0.659270, 0.246280, 0.311804, 0.355838, 0.385913, 0.335418, 0.185938, 0.146334, 0.479364, 0.462034, 0.697475, 0.562808, 0.346888, 0.158948, 0.458771, 0.110499, 0.258939, 0.199830, 0.432078, 0.989924, 0.144521, 0.683890, 0.834385, 0.668908, 0.011949, 0.687091, 0.364081, 0.408556, 0.238572, 0.183015, 0.812466, 0.897842, 0.429294, 0.124271, 0.253680, 0.815207, 0.459688, 0.439618, 0.961541, 0.939053, 0.901651, 0.659016, 0.501861, 0.248539, 0.817964, 0.960632, 0.359038, 0.076903, 0.160462, 0.791117, 0.066826, 0.304983, 0.475007, 0.901211, 0.973891, 0.486955, 0.588302, 0.337972, 0.895512, 0.826874, 0.520987, 0.707978, 0.724716, 0.950281, 0.832249, 0.978396, 0.765488, 0.291937, 0.418014, 0.727029, 0.230990, 0.319665, 0.386045, 0.732850, 0.568204, 0.204009, 0.693482, 0.927242, 0.280912, 0.853944, 0.718359, 0.347738, 0.158927, 0.193366, 0.248950, 0.132818, 0.680321, 0.837252, 0.470790, 0.575833, 0.664126, 0.991777, 0.283811, 0.388843, 0.942058, 0.116060, 0.367239, 0.707546, 0.407997, 0.785253, 0.434575, 0.638986, 0.104917, 0.820620, 0.371837, 0.673121, 0.024629, 0.065319, 0.600363, 0.305541, 0.919263, 0.318722, 0.653279, 0.078190, 0.512088, 0.902229, 0.211009, 0.192409, 0.739480, 0.681799, 0.768242, 0.403607, 0.673576, 0.052052, 0.792450, 0.615634, 0.168112, 0.159689, 0.323180, 0.576109, 0.944941, 0.757755, 0.215095, 0.049858, 0.578375, 0.586932, 0.722979, 0.603003, 0.652251, 0.323343, 0.908544, 0.571514, 0.642065, 0.561823, 0.649704, 0.154153, 0.464051, 0.860713, 0.346562, 0.203532, 0.542512, 0.114804, 0.607139, 0.216088, 0.166856, 0.399588, 0.831722, 0.334968, 0.559277, 0.154902, 0.911077, 0.504218, 0.912656, 0.126172, 0.554076, 0.491031, 0.713104, 0.277055, 0.094034, 0.365355, 0.600398, 0.002578, 0.936869, 0.242463, 0.564401, 0.586574, 0.396616, 0.028452, 0.447287, 0.743178, 0.231984, 0.989799, 0.857982, 0.839122, 0.205887, 0.024838, 0.238711, 0.037608, 0.359806, 0.797987, 0.192510, 0.270883, 0.302205, 0.105166, 0.397055, 0.856281, 0.596197, 0.110160, 0.133336, 0.690231, 0.475515, 0.733734, 0.692809, 0.412384, 0.976196, 0.257209, 0.998958, 0.372812, 0.285661, 0.446245, 0.115990, 0.517645, 0.436044, 0.973972, 0.356767, 0.641930, 0.998810, 0.595478, 0.679539, 0.358617, 0.393465, 0.872049, 0.629500, 0.695670, 0.977215, 0.026555, 0.551951, 0.573412, 0.136715, 0.685287, 0.263643, 0.612229, 0.419020, 0.956451, 0.024613, 0.395216, 0.213661, 0.023572, 0.768029, 0.499322, 0.469816, 0.884019, 0.016967, 0.905860, 0.857991, 0.373734, 0.547791, 0.856802, 0.969211, 0.227330, 0.215418, 0.362676, 0.099378, 0.844918, 0.058346, 0.076594, 0.871473, 0.610297, 0.650006, 0.008188, 0.295583, 0.913648, 0.620417, 0.714603, 0.870100, 0.645031, 0.109820, 0.083760, 0.668602, 0.877849, 0.583082, 0.138419, 0.761868, 0.600049, 0.044279, 0.619859, 0.973783, 0.592069, 0.476661, 0.942994, 0.819399, 0.692079, 0.305670, 0.918778, 0.536997, 0.364016, 0.995371, 0.408470, 0.974313, 0.645377, 0.416658, 0.269896, 0.559025, 0.037075, 0.984499, 0.429125, 0.682105, 0.094319, 0.512885, 0.350707, 0.972168, 0.095967, 0.489126, 0.734035, 0.696016, 0.533405, 0.353894, 0.669799, 0.125474, 0.830555, 0.612793, 0.944873, 0.522634, 0.918463, 0.863651, 0.059631, 0.282479, 0.859022, 0.468101, 0.256791, 0.504398, 0.884758, 0.526687, 0.063423, 0.921833, 0.511186, 0.492548, 0.603939, 0.605505, 0.005433, 0.954646, 0.577673, 0.101400, 0.443772, 0.311708, 0.797417, 0.977176, 0.665602, 0.467216, 0.102650, 0.496157, 0.080009, 0.047524, 0.018791, 0.998471, 0.911174, 0.078422, 0.280950, 0.770196, 0.546523, 0.537741, 0.274594, 0.431281, 0.064428, 0.338017, 0.353115, 0.575615, 0.830565, 0.957053, 0.181120, 0.835998, 0.911699, 0.758793, 0.937398, 0.355471, 0.070501, 0.734815, 0.332647, 0.736103, 0.202031, 0.435297, 0.232261, 0.282039, 0.482821, 0.251052, 0.280511, 0.393995, 0.329474, 0.561460, 0.164191, 0.875997, 0.099202, 0.438785, 0.307278, 0.163630, 0.776802, 0.660393, 0.739244, 0.607367, 0.617446, 0.920364, 0.443365, 0.529145, 0.679157, 0.380763, 0.884616, 0.749658, 0.115578, 0.217263, 0.485761, 0.317609, 0.652560, 0.718021, 0.599648, 0.135381, 0.969073, 0.880159, 0.529376, 0.298547, 0.441619, 0.693567, 0.174544, 0.540821, 0.132351, 0.481822, 0.704450, 0.909153, 0.142215, 0.443695, 0.516520, 0.759661, 0.364059, 0.959885, 0.288806, 0.043216, 0.340648, 0.173422, 0.792874, 0.456226, 0.390685, 0.278634, 0.773834, 0.043245, 0.996656, 0.373483, 0.178625, 0.965729, 0.253641, 0.708001, 0.264276, 0.695260, 0.401568, 0.438820, 0.236081, 0.533919, 0.920642, 0.940531, 0.443072, 0.062857, 0.384226, 0.959592, 0.822518, 0.748285, 0.919477, 0.111325, 0.791501, 0.260124, 0.284747, 0.584375, 0.716350, 0.675431, 0.863009, 0.490184, 0.718676, 0.859665, 0.863666, 0.897301, 0.825393, 0.117308, 0.605302, 0.089669, 0.812568, 0.006870, 0.528489, 0.048649, 0.540788, 0.449131, 0.989180, 0.983860, 0.511988, 0.373407, 0.943452, 0.334506, 0.121692, 0.862929, 0.445831, 0.913193, 0.123053, 0.730578, 0.497568, 0.839402, 0.406009, 0.360577, 0.329586, 0.124685, 0.220241, 0.193253, 0.021986, 0.045634, 0.310560, 0.627288, 0.135303, 0.123128, 0.634158, 0.663792, 0.171777, 0.174946, 0.112923, 0.160958, 0.158806, 0.624911, 0.534364, 0.102259, 0.959418, 0.656056, 0.965187, 0.405249, 0.569249, 0.088240, 0.135827, 0.066817, 0.927642, 0.541836, 0.427393, 0.257229, 0.666520, 0.647634, 0.450481, 0.688506, 0.693269, 0.761042, 0.315794, 0.828572, 0.884170, 0.949952, 0.492364, 0.055947, 0.124898, 0.605288, 0.216905, 0.283705, 0.230199, 0.751269, 0.385963, 0.189616, 0.407326, 0.351151, 0.594865, 0.976575, 0.439391, 0.730692, 0.043392, 0.367033, 0.272527, 0.470785, 0.624261, 0.939048, 0.118419, 0.074743, 0.627554, 0.811688, 0.835784, 0.943348, 0.640260, 0.719954, 0.893300, 0.132625, 0.775901, 0.018199, 0.737913, 0.992806, 0.301903, 0.968111, 0.744076, 0.687867, 0.157728, 0.151401, 0.039017, 0.752593, 0.127976, 0.478408, 0.483284, 0.171368, 0.845441, 0.755811, 0.642153, 0.469702, 0.694859, 0.760572, 0.544445, 0.322413, 0.572260, 0.380229, 0.265761, 0.212521, 0.100183, 0.159062, 0.345146, 0.876084, 0.177261, 0.083058, 0.868891, 0.479164, 0.051169, 0.612966, 0.167030, 0.208897, 0.764367, 0.206048, 0.961490, 0.892343, 0.684456, 0.444774, 0.063711, 0.529896, 0.200585, 0.705863, 0.999598, 0.895444, 0.466435, 0.544043, 0.217857, 0.038696, 0.924272, 0.483618, 0.251217, 0.024455, 0.642680, 0.596362, 0.900539, 0.819941, 0.679420, 0.769430, 0.299105, 0.730590, 0.382396, 0.466135, 0.939487, 0.146763, 0.672183, 0.900977, 0.039106, 0.356638, 0.345750, 0.102817, 0.886535, 0.546336, 0.808681, 0.886133, 0.441780, 0.275116, 0.430176, 0.659637, 0.313812, 0.354448, 0.143255, 0.565028, 0.378903, 0.785935, 0.161391, 0.279443, 0.605876, 0.840811, 0.048873, 0.904980, 0.571401, 0.431269, 0.371115, 0.510887, 0.578032, 0.043298, 0.411864, 0.617138, 0.399936, 0.757614, 0.719955, 0.286471, 0.303950, 0.528636, 0.172604, 0.745730, 0.803752, 0.602780, 0.405367, 0.117564, 0.957228, 0.548622, 0.682592, 0.336131, 0.334557, 0.843983, 0.615574, 0.940433, 0.684794, 0.664447, 0.845413, 0.256194, 0.095715, 0.216529, 0.767082, 0.673747, 0.259827, 0.178946, 0.290885, 0.659763, 0.936560, 0.010840, 0.946234, 0.240510, 0.539476, 0.118838, 0.986240, 0.343228, 0.721618, 0.391606, 0.460792, 0.678846, 0.940228, 0.143384, 0.014977, 0.274785, 0.987367, 0.630551, 0.215218, 0.672161, 0.294998, 0.060631, 0.928355, 0.390713, 0.277160, 0.695436, 0.064460, 0.536987, 0.874382, 0.355345, 0.196751, 0.810942, 0.366185, 0.142985, 0.051452, 0.905661, 0.261823, 0.037691, 0.248889, 0.983441, 0.429297, 0.709681, 0.662286, 0.369525, 0.853066, 0.677263, 0.644310, 0.840433, 0.307814, 0.859528, 0.512593, 0.602812, 0.920160, 0.440948, 0.993525, 0.197320, 0.136384, 0.057984, 0.734307, 0.010766, 0.413329, 0.931058, 0.821707, 0.779514, 0.074043, 0.873159, 0.685175, 0.335865, 0.910850, 0.934065, 0.319306, 0.340147, 0.643746, 0.981592, 0.709673, 0.496812, 0.658856, 0.353983, 0.337245, 0.966670, 0.213511, 0.849838, 0.569482, 0.133671, 0.290786, 0.563007, 0.330991, 0.427170, 0.620991, 0.065299, 0.437936, 0.034320, 0.996356, 0.259643, 0.813834, 0.070399, 0.132802, 0.499009, 0.406265, 0.043652, 0.433074, 0.725570, 0.383800, 0.076820, 0.707163, 0.093473, 0.573632, 0.366018, 0.447456, 0.910877, 0.332688, 0.660967, 0.760714, 0.902170, 0.794638, 0.051500, 0.465177, 0.125630, 0.478670, 0.086168, 0.190928, 0.916605, 0.120488, 0.187285, 0.176248, 0.934322, 0.257684, 0.309050, 0.433331, 0.663949, 0.352703, 0.866405, 0.389519, 0.736502, 0.943226, 0.096682, 0.829975, 0.516858, 0.462700, 0.277430, 0.427734, 0.795388, 0.938398, 0.188449, 0.697558, 0.733036, 0.239948, 0.162735, 0.858666, 0.718618, 0.248903, 0.049594, 0.635223, 0.369391, 0.236879, 0.811472, 0.303713, 0.494563, 0.120522, 0.737044, 0.158511, 0.473225, 0.603450, 0.548030, 0.209727, 0.546675, 0.644712, 0.039702, 0.063533, 0.107412, 0.317132, 0.491267, 0.902800, 0.255530, 0.679716, 0.600359, 0.988566, 0.919664, 0.763094, 0.847232, 0.638283, 0.011997, 0.896825, 0.273506, 0.381388, 0.133704, 0.084978, 0.685101, 0.628267, 0.205500, 0.422145, 0.786778, 0.678725, 0.025595, 0.334808, 0.888452, 0.572271, 0.979520, 0.928154, 0.635804, 0.086932, 0.245286, 0.127071, 0.989732, 0.500816, 0.806787, 0.590091, 0.489382, 0.726451, 0.353185, 0.336614, 0.364734, 0.365182, 0.233439, 0.638240, 0.746570, 0.367143, 0.723218, 0.431671, 0.995410, 0.928718, 0.853816, 0.782188, 0.607442, 0.879411, 0.116995, 0.495894, 0.451682, 0.096515, 0.424048, 0.087485, 0.183447, 0.669334, 0.214556, 0.173179, 0.170151, 0.021343, 0.763269, 0.659533, 0.747794, 0.116454, 0.996147, 0.112528, 0.481635, 0.229586, 0.750768, 0.228205, 0.596730, 0.473985, 0.659876, 0.592139, 0.402703, 0.513692, 0.374327, 0.010145, 0.393103, 0.491322, 0.506039, 0.844785, 0.587837, 0.930088, 0.932270, 0.771284, 0.599422, 0.146826, 0.944463, 0.769573, 0.168169, 0.707732, 0.429106, 0.915964, 0.824186, 0.425253, 0.028492, 0.305821, 0.654839, 0.779259, 0.534026, 0.251569, 0.253245, 0.193901, 0.843708, 0.655947, 0.707593, 0.218035, 0.666093, 0.100696, 0.709357, 0.172132, 0.945481, 0.297195, 0.102220, 0.877751, 0.068479, 0.701642, 0.024577, 0.012941, 0.471215, 0.192747, 0.720673, 0.900321, 0.108710, 0.544859, 0.325574, 0.137202, 0.850679, 0.980413, 0.916462, 0.384705, 0.231982, 0.169706, 0.578607, 0.075690, 0.825654, 0.286200, 0.293725, 0.491746, 0.386896, 0.003083, 0.663878, 0.332377, 0.300278, 0.766098, 0.210128, 0.368756, 0.467740, 0.234705, 0.381697, 0.938955, 0.427451, 0.102370, 0.839275, 0.536162, 0.647229, 0.164849, 0.673364, 0.497908, 0.145262, 0.589825, 0.882613, 0.377244, 0.759532, 0.461220, 0.452934, 0.585185, 0.747420, 0.746660, 0.076932, 0.134316, 0.749743, 0.740810, 0.466692, 0.050020, 0.506908, 0.676820, 0.418776, 0.974648, 0.911525, 0.800474, 0.913602, 0.338976, 0.902844, 0.752878, 0.875138, 0.550072, 0.917727, 0.548502, 0.047981, 0.062989, 0.138327, 0.930594, 0.440233, 0.897859, 0.391814, 0.893168, 0.483044, 0.139234, 0.639828, 0.559975, 0.273549, 0.389570, 0.300785, 0.740242, 0.439590, 0.807693, 0.417062, 0.858367, 0.782341, 0.328586, 0.658840, 0.695943, 0.667562, 0.561684, 0.448821, 0.542700, 0.111756, 0.366548, 0.091202, 0.159737, 0.429537, 0.229529, 0.090331, 0.869770, 0.127388, 0.482145, 0.762938, 0.610432, 0.621379, 0.402765, 0.170407, 0.894928, 0.792336, 0.471192, 0.635170, 0.231926, 0.278886, 0.052232, 0.090293, 0.061226, 0.380818, 0.749133, 0.757170, 0.048380, 0.310817, 0.205990, 0.591080, 0.422573, 0.572538, 0.682282, 0.582310, 0.002075, 0.911812, 0.672641, 0.871845, 0.039199, 0.154786, 0.634783, 0.649631, 0.776165, 0.037548, 0.820038, 0.671093, 0.829884, 0.291231, 0.306263, 0.061810, 0.570116, 0.358495, 0.152103, 0.631343, 0.739313, 0.901236, 0.388512, 0.787693, 0.212053, 0.594503, 0.378773, 0.634626, 0.167040, 0.061056, 0.216937, 0.169115, 0.972867, 0.889578, 0.040960, 0.012067, 0.044364, 0.675743, 0.661698, 0.820529, 0.713291, 0.481736, 0.491623, 0.543175, 0.772966, 0.797886, 0.604985, 0.343083, 0.156380, 0.757088, 0.974425, 0.895693, 0.658324, 0.362938, 0.683386, 0.870376, 0.957440, 0.062159, 0.505002, 0.124481, 0.123215, 0.721939, 0.293596, 0.096082, 0.611517, 0.334556, 0.108149, 0.655881, 0.010299, 0.769846, 0.476411, 0.723590, 0.251582, 0.968033, 0.266765, 0.024548, 0.765919, 0.871750, 0.367631, 0.922299, 0.628838, 0.342056, 0.817992, 0.287162, 0.704994, 0.501378, 0.157538, 0.662434, 0.563537, 0.662541, 0.786915, 0.686752, 0.384480, 0.080511, 0.782834, 0.995997, 0.415067, 0.890983, 0.651878, 0.425365, 0.660829, 0.128289, 0.148956, 0.912411, 0.096322, 0.415721, 0.936959, 0.862241, 0.287471, 0.304590, 0.784540, 0.916309, 0.646646, 0.602533, 0.203471, 0.351640, 0.103911, 0.361009, 0.014074, 0.667448, 0.023550, 0.800989, 0.354200, 0.408030, 0.881500, 0.137034, 0.404026, 0.296566, 0.028017, 0.055904, 0.721932, 0.688846, 0.184193, 0.870887, 0.601257, 0.280515, 0.286608, 0.538216, 0.142755, 0.574079, 0.842806, 0.927296, 0.490388, 0.489452, 0.529828, 0.693859, 0.841092, 0.633739, 0.054869, 0.855167, 0.301187, 0.078419, 0.656156, 0.655388, 0.486448, 0.537656, 0.792422, 0.890475, 0.834222, 0.820439, 0.946379, 0.556153, 0.509285, 0.130571, 0.427041, 0.110542, 0.411086, 0.713648, 0.648758, 0.553842, 0.287727, 0.491563, 0.481137, 0.778116, 0.981015, 0.010966, 0.471975, 0.822107, 0.644705, 0.526844, 0.677274, 0.945892, 0.605263, 0.333430, 0.601280, 0.091711, 0.871086, 0.393702, 0.982186, 0.705307, 0.214141, 0.928564, 0.261461, 0.723426, 0.059136, 0.688501, 0.833968, 0.470222, 0.402150, 0.482725, 0.024063, 0.689877, 0.974289, 0.505201, 0.467993, 0.955304, 0.516166, 0.939968, 0.777411, 0.160871, 0.466812, 0.454685, 0.106763, 0.072075, 0.788115, 0.708043, 0.163786, 0.659201, 0.101744, 0.145971, 0.364508, 0.315885, 0.074536, 0.625969, 0.039311, 0.133672, 0.314471, 0.873279, 0.603893, 0.716620, 0.356004, 0.627957, 0.406498, 0.330292, 0.133157, 0.874490, 0.285596, 0.649324, 0.814458, 0.063007, 0.810195, 0.281270, 0.517693, 0.916958, 0.353345, 0.305808, 0.625000, 0.517131, 0.965009, 0.726745, 0.663102, 0.329518, 0.042630, 0.737638, 0.955487, 0.081940, 0.871310, 0.269957, 0.955219, 0.475203, 0.986578, 0.311223, 0.103160, 0.393075, 0.641515, 0.236317, 0.267566, 0.927112, 0.885641, 0.082024, 0.990119, 0.695835, 0.363295, 0.507812, 0.612793, 0.716640, 0.813620, 0.237793, 0.233770, 0.778629, 0.964538, 0.896872, 0.108147, 0.007167, 0.634510, 0.063633, 0.089108, 0.505820, 0.333591, 0.044327, 0.981023, 0.320168, 0.355550, 0.084182, 0.713244, 0.997065, 0.320499, 0.980810, 0.924177, 0.206140, 0.062834, 0.914296, 0.901975, 0.426129, 0.422107, 0.514768, 0.142768, 0.235727, 0.752561, 0.376539, 0.014356, 0.717099, 0.273411, 0.122502, 0.724266, 0.907921, 0.186136, 0.813374, 0.413741, 0.519726, 0.857701, 0.394764, 0.839895, 0.213251, 0.478946, 0.553139, 0.210317, 0.799446, 0.533948, 0.134493, 0.005586, 0.596782, 0.048789, 0.907561, 0.022911, 0.470896, 0.422329, 0.165679, 0.706623, 0.174890, 0.542218, 0.720979, 0.891989, 0.815629, 0.843481, 0.616255, 0.723551, 0.029617, 0.429630, 0.137292, 0.549343, 0.287331, 0.532056, 0.389238, 0.500583, 0.011002, 0.942377, 0.710899, 0.810448, 0.476326, 0.845392, 0.816033, 0.073108, 0.894181, 0.723594, 0.096019, 0.365077, 0.145923, 0.261699, 0.071700, 0.320813, 0.803917, 0.792679, 0.212802, 0.619546, 0.636160, 0.829057, 0.343096, 0.665777, 0.258687, 0.480388, 0.215121, 0.546018, 0.012444, 0.604359, 0.046601, 0.023446, 0.546736, 0.757500, 0.833893, 0.023062, 0.602892, 0.649927, 0.096170, 0.497074, 0.373521, 0.192189, 0.862151, 0.519444, 0.453887, 0.933851, 0.840257, 0.257804, 0.726531, 0.053058, 0.877350, 0.362691, 0.882115, 0.220446, 0.028468, 0.140802, 0.700834, 0.243589, 0.686821, 0.713278, 0.847948, 0.733421, 0.736723, 0.394684, 0.490921, 0.570617, 0.417746, 0.093813, 0.220543, 0.513916, 0.590887, 0.594064, 0.706105, 0.453038, 0.113508, 0.159992, 0.386889, 0.953765, 0.417796, 0.113420, 0.006823, 0.295146, 0.476111, 0.888938, 0.515592, 0.504579, 0.029741, 0.216426, 0.748168, 0.716561, 0.929703, 0.596117, 0.449982, 0.666427, 0.990801, 0.940903, 0.237043, 0.408547, 0.034717, 0.457587, 0.922463, 0.625603, 0.051651, 0.628568, 0.078641, 0.165159, 0.788560, 0.465530, 0.118923, 0.206356, 0.578950, 0.125746, 0.501502, 0.055060, 0.014685, 0.017094, 0.559640, 0.044425, 0.233519, 0.307808, 0.760986, 0.163223, 0.903925, 0.210969, 0.829650, 0.894726, 0.151872, 0.066693, 0.303273, 0.186589, 0.524279, 0.225736, 0.812192, 0.575930, 0.854304, 0.890833, 0.741089, 0.642864, 0.356363, 0.860012, 0.849220, 0.935313, 0.985758, 0.350722, 0.990373, 0.000443, 0.367815, 0.550013, 0.044868, 0.601335, 0.857820, 0.805855, 0.764557, 0.761745, 0.016823, 0.594207, 0.656471, 0.168696, 0.660900, 0.959744, 0.355284, 0.185179, 0.185480, 0.167477, 0.761110, 0.039784, 0.058310, 0.502199, 0.682648, 0.414673, 0.362211, 0.531868, 0.349985, 0.347969, 0.882589, 0.340358, 0.348412, 0.250404, 0.890371, 0.393280, 0.851739, 0.748191, 0.199135, 0.616297, 0.509936, 0.215958, 0.210504, 0.166407, 0.384654, 0.871404, 0.126151, 0.739938, 0.056583, 0.311631, 0.907415, 0.817693, 0.351415, 0.965724, 0.319891, 0.034062, 0.380397, 0.682102, 0.565930, 0.730382, 0.030072, 0.448519, 0.070741, 0.378484, 0.698924, 0.961112, 0.771764, 0.550663, 0.709303, 0.970899, 0.166959, 0.219239, 0.186857, 0.377463, 0.385647, 0.571511, 0.248867, 0.511798, 0.311449, 0.305450, 0.823429, 0.218864, 0.123142, 0.174844, 0.184588, 0.443034, 0.208906, 0.564986, 0.125136, 0.774836, 0.295368, 0.155207, 0.223355, 0.366109, 0.533691, 0.922279, 0.327221, 0.305455, 0.472942, 0.036524, 0.276354, 0.639901, 0.255763, 0.463211, 0.017364, 0.641410, 0.034722, 0.266231, 0.153207, 0.346171, 0.571680, 0.976636, 0.565036, 0.694822, 0.151480, 0.749624, 0.137856, 0.360386, 0.314610, 0.262992, 0.135222, 0.609978, 0.418200, 0.358578, 0.976087, 0.951891, 0.280856, 0.303307, 0.257346, 0.753798, 0.339831, 0.533700, 0.393699, 0.595594, 0.996911, 0.411063, 0.237003, 0.031634, 0.677294, 0.390211, 0.377805, 0.248974, 0.366847, 0.942841, 0.943796, 0.518327, 0.692465, 0.081653, 0.878713, 0.007074, 0.344645, 0.013936, 0.617052, 0.762845, 0.372513, 0.593138, 0.714736, 0.653370, 0.896446, 0.972082, 0.407168, 0.236276, 0.505782, 0.800867, 0.831870, 0.502693, 0.211930, 0.068873, 0.534327, 0.889224, 0.459084, 0.912132, 0.138197, 0.825931, 0.854972, 0.081994, 0.344259, 0.547437, 0.163646, 0.222972, 0.554511, 0.508291, 0.236908, 0.171563, 0.271135, 0.609421, 0.764701, 0.985871, 0.262790, 0.661147, 0.957953, 0.669958, 0.897423, 0.463734, 0.470825, 0.729293, 0.966427, 0.682755, 0.798166, 0.500754, 0.571978, 0.257251, 0.412886, 0.710176, 0.083182, 0.267858, 0.792169, 0.427441, 0.815295, 0.955815, 0.650413, 0.369805, 0.464106, 0.887320, 0.541368, 0.735242, 0.496741, 0.306069, 0.721113, 0.759531, 0.967216, 0.679065, 0.429489, 0.864639, 0.142799, 0.900314, 0.593932, 0.109227, 0.583069, 0.392098, 0.609981, 0.155047, 0.649349, 0.022867, 0.865222, 0.732531, 0.290725, 0.657392, 0.159972, 0.106019, 0.613207, 0.810384, 0.475824, 0.077313, 0.697704, 0.017192, 0.812555}; static float golden_endtoend_output[] = { -1.881211, -0.028385, -3.585066, 1.939770, -3.461155, 1.280415, -4.408978, 0.608663, -2.704937, 1.859742, -5.777429, 2.691839, -1.049012, 1.640870, -4.856245, 1.604236, 0.992707, 0.422858, -4.307465, 1.887332, -0.884831, -0.154277, -2.634801, 0.586827, -1.849960, 1.399608, -4.531559, 1.943591, 0.271676, -2.893054, -2.066826, 0.235467, -1.248263, -1.164534, -2.640174, -0.112878, -4.386484, 1.253024, -4.135623, 1.068984, -0.043579, -0.832957, -3.257258, -0.514396, -1.651174, 0.638630, -4.364372, 1.548441, -0.289455, 0.539845, -4.097627, 0.635001, -0.465071, -0.927701, -2.481498, 0.356616, -2.355012, 0.728806, -3.340283, 1.609038, -4.786268, -0.532272, -1.886150, 0.254797, 0.746620, -1.657134, -3.264265, 0.525551, -1.756837, 0.845446, -5.572190, 1.715797, -2.856942, 3.394245, -5.803662, 2.281806, -3.014739, 2.616136, -4.728482, 1.659984, -2.106307, 2.711709, -6.173832, 1.352869, -0.038035, 0.107619, -4.279774, 2.341930, -0.980413, -0.119538, -4.049717, 1.172128, -3.477744, 2.602274, -6.231380, 2.537300, -0.862214, 0.568722, -3.858362, 0.197867, -1.725885, 3.687312, -7.067363, 2.403544, -0.944963, 0.235639, -3.250094, 0.659117, -1.459576, 0.426128, -3.637207, 1.030386, -4.224351, 3.516220, -6.053367, 0.993473, -2.182416, -0.762625, -1.884405, -0.113736, -2.572602, 0.329290, -1.913233, 0.517418, -0.019757, 0.203176, -3.715881, 0.482136, -1.912823, 1.357907, -5.473043, 1.714658, -3.177160, 0.089285, -3.127669, 1.268076, 0.772498, -1.622712, -3.850314, 0.436124, -1.495983, 3.439982, -7.623405, 1.726721, -0.423979, 0.180201, -2.902406, 0.986457, -1.845638, 0.460903, -5.359343, -1.133931, -1.074456, 0.717304, -3.519856, 1.012126, -0.562301, 1.881967, -6.716627, 2.525036, 0.945480, 0.337081, -5.210562, 2.572035, -0.943370, 0.442026, -2.666313, 0.411296, 0.002787, -0.000735, -2.498933, 0.771719, -3.568153, 3.833721, -6.617026, 2.813922, -0.573970, 1.025208, -3.909923, 1.722648, -1.406849, 0.719783, -5.207438, 1.819442, -0.530895, -0.010887, -2.939614, 0.971225, -1.660297, 1.345243, -4.454571, 2.244876, -2.021213, 1.756090, -4.880947, 0.364597, -2.380270, 2.763117, -5.613013, 2.137534, 0.289101, -2.279400, -3.365582, 0.170028, -1.142254, -0.709604, -3.656223, 1.804870, -0.854690, 0.592102, -5.010415, 2.462687, -1.474710, 0.566002, -3.621819, -0.391946, -0.423524, -0.631428, -3.513310, 0.962825, -1.480262, 0.319791, -3.610137, 1.842339, -0.250073, 1.182022, -6.249267, 1.604172, 1.153759, -0.734054, -4.620415, -0.030858, 0.050911, 1.524406, -4.724010, 1.451846, -3.277104, 2.414182, -4.605285, 1.846092, -1.503047, -0.618200, -2.746546, -0.459332, -0.980326, -1.199977, -2.043865, -0.165793, -2.214698, 3.108281, -7.127830, -0.123065, 1.244948, -3.039923, -4.660061, -0.225957, -0.307210, -1.513205, -2.456005, 0.840048, -0.741445, 2.328635, -6.015267, 2.723240, -1.381171, -0.728878, -5.114925, -0.362034, -0.574923, 0.518080, -3.892457, 1.798948, 0.435119, -0.371696, -2.807571, 1.302864, -2.063052, 1.036388, -4.232038, 1.397059, -1.615668, -1.511019, -3.095508, 1.290955, -3.428723, 2.000287, -4.196487, 1.566983, 0.196957, 0.224343, -4.926359, -0.691975, -0.214941, 1.546821, -5.384868, 2.290820, -1.878865, 0.493692, -4.129823, 2.112036, 0.516558, -2.553077, -2.717338, 0.017146, -2.016057, 1.628995, -4.240602, 1.189533, -5.460220, 1.254738, -4.214903, 0.755659, -2.893235, 2.937762, -6.169453, 2.035456, -5.613212, -0.122254, -1.973646, -0.060619, -2.119598, 1.413512, -4.938738, 1.890244, 0.544169, -2.062413, -3.329637, -0.062515, -1.855805, -0.791297, -2.570353, 0.607615, 0.305812, 0.338930, -4.150270, 2.274937, 0.042653, 0.133825, -3.538155, 1.523639, -3.173690, -1.496599, -2.414655, 0.464687, -1.448998, -0.368907, -3.520129, 0.203382, -2.443626, 1.266233, -3.393848, 0.605911, -0.015353, 1.402006, -4.441003, 1.419281, 0.603587, 0.434146, -4.966566, 2.171872, -0.688264, -0.009981, -4.461103, 1.538354, -5.029816, -0.264424, -1.713510, -0.315258, -1.891606, 0.252074, -2.419428, 0.043970, -1.291143, 2.048704, -4.590105, 0.524734, -1.889576, 0.134836, -3.462745, 1.390663, -0.112773, 0.402735, -4.203784, 1.381043, -1.201634, -1.968277, -1.425637, -0.181725, -1.250742, -2.102041, -3.925464, -1.256797, -3.701354, -1.754610, -1.917231, -1.455910, -1.838006, 2.041781, -5.666212, 2.752957, -2.659553, 2.553637, -4.872212, 1.443437, -2.081846, 3.311263, -5.912457, 1.871049, 0.196148, -0.307044, -4.024967, 2.149149, 0.361809, 0.620415, -5.939984, 0.180672, -1.209180, -0.269122, -3.240285, 1.460315, -1.040803, 1.125700, -6.060366, 0.887767, -3.214111, 1.314368, -3.026808, 1.023640, -3.815175, 1.795642, -4.355603, 1.064454, -0.046472, 0.618463, -5.941646, 2.861891, -2.852155, -0.990457, -2.624445, 1.794494, -1.176747, -0.358159, -3.206776, 1.138721, -2.819523, -1.825522, -1.450902, -0.187312, -0.808727, 0.636872, -4.120567, 1.192623, 0.810731, -1.768519, -3.699450, 1.527116, -2.772720, 3.012835, -5.912736, 1.599365, -4.696381, 2.234591, -4.139552, 1.061768, -1.880089, 3.596274, -7.006379, 2.382152, -3.158115, 3.844430, -7.044156, 2.307596, -2.473970, 1.312644, -5.467269, 0.197154, -1.530040, 1.762275, -5.550757, 0.630276, -3.048947, 1.043777, -3.096658, 1.345893, -1.329494, 2.065748, -4.711032, 2.227600, -0.413321, -0.032428, -4.599650, 1.668734, -4.351490, -0.200022, -2.359903, 0.021997, 0.116028, 1.159718, -5.093972, -0.142951, -2.409895, 0.906133, -2.728812, 0.809932, -2.597363, 0.494130, -2.357861, 0.369825, -2.165235, 1.148522, -3.130562, 0.759034, 0.646335, -1.463660, -3.508299, 1.059679, -1.485465, 1.007319, -4.340716, 1.789864, -1.590654, 1.612324, -4.452007, 2.389805, -5.200148, -1.068398, -1.306923, -0.472408, -0.392165, -0.524996, -2.933478, 1.518430, -1.287781, 0.113422, -3.020525, 1.338359, -0.105982, 0.936014, -4.132197, 1.836807, -0.616589, -1.029716, -3.271347, 0.284889, -2.653359, 2.135829, -4.643613, 1.627981, 0.287733, -2.017263, -2.776574, 1.184792, 1.004161, -1.483019, -4.339290, -0.787322, 0.582420, 1.137839, -5.673941, -0.001862, -1.219142, 0.532561, -4.457245, 1.826807, -3.343291, 3.034610, -6.179855, 2.235917, -4.369989, 4.018128, -6.632714, 0.926585, -0.485469, 0.536073, -4.179557, 1.489637, -0.521762, 1.636089, -6.137912, 1.500867, -4.086009, 1.961372, -3.688977, 1.358220, -1.544034, 1.763837, -4.357567, 1.852201, -2.018725, 1.046264, -6.211127, 1.609419, -0.118441, 1.602284, -6.242423, 1.518578, -0.604078, 1.106613, -5.393445, 2.595629, 0.142712, -1.903953, -2.821177, 0.032758, -0.009152, 0.184628, -4.227636, 2.046843, -2.240138, 1.256176, -5.108516, -0.308447, -2.998571, 4.657396, -7.582112, 2.510951, -3.535784, 1.704560, -5.068484, 1.318466, -3.058265, 3.073172, -6.998089, 3.178849, -2.420286, 2.277806, -4.999528, 1.423890, -1.672914, 0.447460, -4.088940, 1.351087, -1.051546, -0.417955, -4.042147, 1.604102, -1.700931, 2.796663, -6.497579, 2.857974, -0.240828, 0.858001, -5.778933, 2.778508, -0.406211, 1.300766, -5.073671, 2.089362, -0.201673, 1.588396, -6.000150, 2.185055, -2.332125, 0.768216, -2.609184, 0.327277, -3.358943, -1.020736, -2.389984, 0.315512, -0.561905, 1.948740, -6.408485, 2.231985, -0.603652, 0.661829, -5.070386, -1.063058, -0.624796, 1.375772, -4.379606, 1.929358, -1.047263, 0.739100, -5.217857, 2.127625, -5.025338, 0.650344, -2.068460, 0.076936, -0.457505, -1.050984, -1.917765, 1.150908, 0.782625, 0.855595, -5.321719, 0.787209, -0.460232, 1.106736, -5.552326, 2.801043, -0.360217, -0.434432, -4.273378, 0.967556, -0.972652, 0.874811, -5.429918, -0.331039, 0.115477, 0.111883, -5.418786, 1.240546, -1.842794, 0.505880, -3.676064, -0.682369, 1.858984, -0.742566, -5.784060, 0.673239, -1.280398, 0.280842, -4.848077, 2.214860, -0.785100, -0.588488, -2.438206, 0.786651, -1.568752, 1.935400, -6.320256, 2.125338, -1.476457, -1.651941, -2.695734, 0.007338, -3.280860, 2.310385, -5.319578, 1.890123, -0.775723, 0.630606, -4.321582, 1.085521, -1.847371, 1.188521, -4.596577, 2.056443, -2.340172, -0.108501, -3.156392, 0.933279, -0.495331, 0.122405, -5.171133, 1.763245, -0.796913, 2.310487, -7.247197, 2.401678, -1.908860, 0.043798, -2.393796, 0.573806, -0.608531, 0.154710, -4.669001, 0.750680, 0.468380, 0.392591, -4.755001, 2.615217, -1.957774, 1.153513, -4.530099, 1.124362, -3.569415, 1.697154, -3.536335, 0.910758, -2.976264, 1.833129, -4.287203, -0.547050, -2.409768, 0.061585, -1.324116, 0.268497, -2.962222, -1.524245, -2.063413, 0.442058, -4.292337, 3.538863, -6.699603, 1.718664, -2.290363, 1.994596, -6.245037, -0.433084, -0.367059, 1.020297, -4.940721, 2.902264, -0.577056, -0.709887, -5.001413, -0.268316, -1.112048, -1.083307, -1.753492, 0.209973, 0.139540, 0.917602, -5.232745, 2.538467, -2.139234, -0.187388, -1.837249, -0.478582, -0.731653, -0.481550, -2.531261, 1.044770, 0.707750, 0.279971, -3.221119, 1.552074, -2.373144, 0.859518, -3.665156, 1.620278, -1.440871, -0.525581, -2.758271, 1.491873, -2.302013, 1.119935, -5.257080, 2.627170, -3.174739, 1.363282, -4.831639, 1.101076, -4.337008, 2.689639, -5.165915, 1.069201, -1.882078, -0.120370, -2.287967, 1.147619, -1.403616, 1.077150, -5.084296, 1.658236, -0.919642, 0.487423, -3.001075, 0.741268, 0.107300, 0.943556, -3.544311, 1.000239, -1.627171, 2.871253, -5.179172, 1.429893, -0.826040, 0.188670, -4.499894, 1.013447, -2.101299, 0.317516, -3.452141, -0.833776, -1.362144, 1.272437, -4.449355, 1.613591, -2.039873, 2.613175, -6.229640, 1.659790, -1.595520, -0.237462, -2.744997, 0.337841, 0.148981, -1.703771, -2.388023, 1.276469, 1.058508, -0.401642, -4.680769, 0.861881, -1.336381, 1.153080, -2.834378, 0.721075, 0.900115, 1.360511, -5.573611, 0.949182, -2.970844, 2.017563, -5.186108, -0.201038, -1.192824, 0.610142, -4.450919, -0.897114, -1.812093, 0.422310, -5.245487, 0.256549, 0.320275, -2.324150, -2.967040, -0.260536, -0.721467, 0.454148, -5.058031, 0.526370, -0.895656, 0.732240, -3.327363, 1.353953, -1.277912, -0.483171, -1.926713, 0.065044, -2.167506, -0.196606, -1.923437, 0.604962, -2.088319, 1.406834, -5.227296, 2.247351, -4.421744, 1.729791, -5.007922, 1.264769, -0.897019, 0.922902, -3.887108, 2.087432, -1.310226, -0.101938, -3.359082, -0.079662, -0.514988, -0.963179, -4.038209, 2.223278, -0.590083, -2.310458, -1.748338, 0.363406, -0.540731, -0.885913, -4.179595, 2.216781, -3.044339, -0.447100, -2.446098, 0.931101, -1.676190, 2.096175, -4.980755, 2.262151, -1.095047, 1.897516, -5.996138, 2.191038, 0.297128, -0.780974, -2.884299, 1.195408, -0.521065, -1.955837, -3.091064, -0.404183, -1.961519, 4.076096, -7.521851, 2.242064, -1.988043, 0.303300, -2.422585, 0.322230, -3.377634, 3.499955, -7.084434, 2.375587, -0.718851, 2.150076, -5.412241, 2.374280, -2.006088, 2.229828, -5.848188, 2.543077, -2.171042, 2.096026, -5.300007, 0.141405, -1.187745, 0.105340, -4.003816, 1.034281, -3.980804, 1.856709, -5.103042, 0.623737, -2.080307, 0.896140, -3.104050, 0.983158, -0.424898, -1.154270, -3.805728, 1.978917, -1.314387, 1.235096, -3.148906, 1.113173, 0.111713, 2.055213, -7.565283, 2.100342}; const std::initializer_list<float> biases = { 0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068, -0.23566568, -0.389184, 0.47481549, -0.4791103, 0.29931796, 0.10463274, 0.83918178, 0.37197268, 0.61957061, 0.3956964, -0.37609905}; const std::initializer_list<float> recurrent_weights = { 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1}; class BidirectionalRNNOpModel : public SingleOpModel { public: BidirectionalRNNOpModel(int batches, int sequence_len, int fw_units, int bw_units, int input_size, int aux_input_size, AuxInputMode aux_input_mode, bool time_major, bool merge_outputs, bool quantize_weights = false, bool asymmetric_quantize_weights = false) : batches_(batches), sequence_len_(sequence_len), fw_units_(fw_units), bw_units_(bw_units), input_size_(input_size), aux_input_size_(aux_input_size), quantize_weights_(quantize_weights) { const TensorType tensor_type = quantize_weights ? TensorType_UINT8 : TensorType_FLOAT32; input_ = AddInput(TensorType_FLOAT32); fw_weights_ = AddInput(tensor_type); fw_recurrent_weights_ = AddInput(tensor_type); fw_bias_ = AddInput(TensorType_FLOAT32); fw_hidden_state_ = AddVariableInput(TensorType_FLOAT32); bw_weights_ = AddInput(tensor_type); bw_recurrent_weights_ = AddInput(tensor_type); bw_bias_ = AddInput(TensorType_FLOAT32); bw_hidden_state_ = AddVariableInput(TensorType_FLOAT32); const auto input_shape = (time_major) ? std::vector<int>({sequence_len_, batches_, input_size_}) : std::vector<int>({batches_, sequence_len_, input_size_}); std::vector<int> aux_input_shape = {0}; std::vector<int> aux_fw_weights_shape = {0}; std::vector<int> aux_bw_weights_shape = {0}; if (aux_input_mode != AuxInputMode::kNoAuxInput) { aux_input_ = AddInput(TensorType_FLOAT32); aux_input_shape = (time_major) ? std::vector<int>({sequence_len_, batches_, aux_input_size_}) : std::vector<int>({batches_, sequence_len_, aux_input_size_}); } else { aux_input_ = AddNullInput(); } if (aux_input_mode == AuxInputMode::kCrossLinking) { aux_fw_weights_ = AddInput(tensor_type); aux_bw_weights_ = AddInput(tensor_type); aux_fw_weights_shape = {fw_units, aux_input_size_}; aux_bw_weights_shape = {bw_units, aux_input_size_}; } else { aux_fw_weights_ = AddNullInput(); aux_bw_weights_ = AddNullInput(); } fw_output_ = AddOutput(TensorType_FLOAT32); if (!merge_outputs) { bw_output_ = AddOutput(TensorType_FLOAT32); } SetBuiltinOp(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, BuiltinOptions_BidirectionalSequenceRNNOptions, CreateBidirectionalSequenceRNNOptions( builder_, time_major, ActivationFunctionType_RELU, merge_outputs, asymmetric_quantize_weights) .Union()); BuildInterpreter({ input_shape, {fw_units_, input_size_}, {fw_units_, fw_units_}, {fw_units_}, {batches_, fw_units_}, {bw_units_, input_size_}, {bw_units_, bw_units_}, {bw_units_}, {batches_, bw_units_}, aux_input_shape, aux_fw_weights_shape, aux_bw_weights_shape, }); } void SetFwBias(std::initializer_list<float> f) { PopulateTensor(fw_bias_, f); } void SetBwBias(std::initializer_list<float> f) { PopulateTensor(bw_bias_, f); } void SetFwWeights(const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(fw_weights_, f); } else { PopulateTensor(fw_weights_, f); } } void SetBwWeights(const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(bw_weights_, f); } else { PopulateTensor(bw_weights_, f); } } void SetFwRecurrentWeights(const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(fw_recurrent_weights_, f); } else { PopulateTensor(fw_recurrent_weights_, f); } } void SetBwRecurrentWeights(const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(bw_recurrent_weights_, f); } else { PopulateTensor(bw_recurrent_weights_, f); } } void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } void SetAuxInput(int offset, float* begin, float* end) { PopulateTensor(aux_input_, offset, begin, end); } void SetAuxFwWeights(const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(aux_fw_weights_, f); } else { PopulateTensor(aux_fw_weights_, f); } } void SetAuxBwWeights(const std::vector<float>& f) { if (quantize_weights_) { SymmetricQuantizeAndPopulate(aux_bw_weights_, f); } else { PopulateTensor(aux_bw_weights_, f); } } std::vector<float> GetFwOutput() { return ExtractVector<float>(fw_output_); } std::vector<float> GetBwOutput() { return ExtractVector<float>(bw_output_); } int input_size() { return input_size_; } int aux_input_size() { return aux_input_size_; } int num_fw_units() { return fw_units_; } int num_bw_units() { return bw_units_; } int num_batches() { return batches_; } int sequence_len() { return sequence_len_; } private: int input_; int fw_weights_; int fw_recurrent_weights_; int fw_bias_; int fw_hidden_state_; int fw_output_; int bw_weights_; int bw_recurrent_weights_; int bw_bias_; int bw_hidden_state_; int bw_output_; int aux_input_; int aux_fw_weights_; int aux_bw_weights_; int batches_; int sequence_len_; int fw_units_; int bw_units_; int input_size_; int aux_input_size_; bool quantize_weights_; }; class BidirectionalRNNOpTest : public ::testing::TestWithParam<::testing::tuple<bool, bool>> {}; INSTANTIATE_TEST_SUITE_P(QuantizationOrNot, BidirectionalRNNOpTest, ::testing::Combine( ::testing::Bool(), ::testing::Bool())); TEST_P(BidirectionalRNNOpTest, ClosedBoxTest) { auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 0, AuxInputMode::kNoAuxInput, false, false, quantize_weights, asymmetric_quantize_inputs); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_fw_start = rnn_golden_fw_output; float* golden_fw_end = golden_fw_start + rnn.num_fw_units() * rnn.sequence_len(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear( fw_expected, quantize_weights ? 1.42e-2 : 1e-5))); float* golden_bw_start = rnn_golden_bw_output; float* golden_bw_end = golden_bw_start + rnn.num_bw_units() * rnn.sequence_len(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear( bw_expected, quantize_weights ? 1.42e-2 : 1e-5))); } TEST_P(BidirectionalRNNOpTest, ClosedBoxTestTimeMajor) { auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 0, AuxInputMode::kNoAuxInput, true, false, quantize_weights, asymmetric_quantize_inputs); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> fw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_fw_start = rnn_golden_fw_output + i * rnn.num_fw_units(); float* golden_fw_end = golden_fw_start + rnn.num_fw_units(); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); } constexpr float kHybridTolerance = 3.57e-1; constexpr float kFloatTolerance = 1e-5; EXPECT_THAT( rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear( fw_expected, quantize_weights ? kHybridTolerance : kFloatTolerance))); } TEST_P(BidirectionalRNNOpTest, ClosedBoxTestMergeOutputs) { auto params = GetParam(); const bool quantize_weights = std::get<0>(params); const bool asymmetric_quantize_inputs = std::get<1>(params); BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 0, AuxInputMode::kNoAuxInput, false, true, quantize_weights, asymmetric_quantize_inputs); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> merged_expected; for (int bid = 0; bid < rnn.num_batches(); bid++) { for (int step = 0; step < rnn.sequence_len(); step++) { merged_expected.insert( merged_expected.end(), rnn_golden_fw_output + rnn.num_fw_units() * step, rnn_golden_fw_output + rnn.num_fw_units() * (step + 1)); merged_expected.insert( merged_expected.end(), rnn_golden_bw_output + rnn.num_bw_units() * step, rnn_golden_bw_output + rnn.num_bw_units() * (step + 1)); } } EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear( merged_expected, quantize_weights ? 1.42e-2 : 1e-5))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestTimeMajorMergeOutputs) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 0, AuxInputMode::kNoAuxInput, true, true); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> merged_expected; for (int step = 0; step < rnn.sequence_len(); step++) { for (int bid = 0; bid < rnn.num_batches(); bid++) { merged_expected.insert( merged_expected.end(), rnn_golden_fw_output + rnn.num_fw_units() * step, rnn_golden_fw_output + rnn.num_fw_units() * (step + 1)); merged_expected.insert( merged_expected.end(), rnn_golden_bw_output + rnn.num_bw_units() * step, rnn_golden_bw_output + rnn.num_bw_units() * (step + 1)); } } EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(merged_expected))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestReverseInputs) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 0, AuxInputMode::kNoAuxInput, false, false); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); const int reverse_idx = rnn.sequence_len() - i - 1; rnn.SetInput(reverse_idx * rnn.input_size(), batch_start, batch_end); rnn.SetInput((rnn.sequence_len() + reverse_idx) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> fw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_fw_start = rnn_golden_bw_output + i * rnn.num_fw_units(); float* golden_fw_end = golden_fw_start + rnn.num_fw_units(); fw_expected.insert(fw_expected.begin(), golden_fw_start, golden_fw_end); } fw_expected.insert(fw_expected.end(), fw_expected.begin(), fw_expected.end()); EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); std::vector<float> bw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_bw_start = rnn_golden_fw_output + i * rnn.num_bw_units(); float* golden_bw_end = golden_bw_start + rnn.num_bw_units(); bw_expected.insert(bw_expected.begin(), golden_bw_start, golden_bw_end); } bw_expected.insert(bw_expected.end(), bw_expected.begin(), bw_expected.end()); EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(BidirectionalRNNOpTest, EndToEndTest) { BidirectionalRNNOpModel rnn(1, 4, 16, 16, 8, 0, AuxInputMode::kNoAuxInput, false, false); const int output_size = 4; float dnn_weights[] = { -0.5782342, -0.052212059, 0.73036242, -0.81216097, -0.80088139, -0.23420811, -0.39647382, 0.31423986, 0.61819065, -0.73659575, -0.89698344, -0.8931554, -0.0845688, 0.5617367, 0.38415289, -0.11487955, -0.7617774, 0.17927337, 0.15726972, 0.059798479, 0.19009054, -0.27616632, -0.39142907, 0.77744663, -0.046830714, -0.6603595, 0.21945822, 0.051494241, 0.23785079, 0.19239247, -0.53268754, 0.65961659, -0.85981959, -0.80232513, 0.84745562, -0.66070104, -0.036533296, -0.54901814, 0.65353882, -0.41834265, -0.28561389, 0.75655544, -0.31149811, 0.62981737, 0.31829214, -0.92734522, -0.48506218, 0.55651462, 0.25192821, 0.67220747, -0.3836869, -0.55798125, -0.60395885, 0.22488403, -0.78053463, 0.3492105, 0.56452453, 0.4389236, -0.59929526, -0.19762468, -0.36868393, -0.13198286, -0.53800809, -0.22850353}; std::initializer_list<float> dnn_biases = {0.29177809, -0.98799044, 0.065919638, 0.68781924}; rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); const int output_sequence_size = output_size * rnn.sequence_len(); const int num_examples = 64; for (int k = 0; k < num_examples; k++) { float* batch_start = endtoend_input + k * input_sequence_size; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> fw_output = rnn.GetFwOutput(); std::vector<float> bw_output = rnn.GetBwOutput(); EXPECT_EQ(fw_output.size(), bw_output.size()); std::transform(fw_output.begin(), fw_output.end(), bw_output.begin(), fw_output.begin(), std::plus<float>()); std::vector<float> sequence_result; for (int s = 0; s < rnn.sequence_len(); s++) { const float* rnn_output = fw_output.data() + s * rnn.num_fw_units(); std::vector<float> results(dnn_biases); for (int i = 0; i < output_size; i++) { for (int j = 0; j < rnn.num_fw_units(); j++) { results[i] += *(rnn_output + j) * dnn_weights[output_size * j + i]; } } sequence_result.insert(sequence_result.end(), results.begin(), results.end()); } float* golden_start = golden_endtoend_output + k * output_sequence_size; float* golden_end = golden_start + output_sequence_size; std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(sequence_result, ElementsAreArray(ArrayFloatNear(expected))); } } TEST(BidirectionalRNNOpTest, ClosedBoxTestNoCrossLinkingRegularAndAuxInput) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 8, AuxInputMode::kNoCrossLinking, true, false); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetAuxInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); rnn.SetAuxInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> fw_expected; std::vector<float> bw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_fw_start = rnn_golden_fw_output + i * rnn.num_fw_units(); float* golden_fw_end = golden_fw_start + rnn.num_fw_units(); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); float* golden_bw_start = rnn_golden_bw_output + i * rnn.num_fw_units(); float* golden_bw_end = golden_bw_start + rnn.num_fw_units(); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); } EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestNoCrossLinkingRegularInputOnly) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 8, AuxInputMode::kNoCrossLinking, true, false); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); std::vector<float> bw_inputs(rnn.input_size(), 0); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetAuxInput(2 * i * rnn.input_size(), &bw_inputs[0], &bw_inputs[bw_inputs.size() - 1]); rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); rnn.SetAuxInput((2 * i + 1) * rnn.input_size(), &bw_inputs[0], &bw_inputs[bw_inputs.size() - 1]); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> fw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_fw_start = rnn_golden_fw_output + i * rnn.num_fw_units(); float* golden_fw_end = golden_fw_start + rnn.num_fw_units(); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); } EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestNoCrossLinkingAuxInputOnly) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 8, AuxInputMode::kNoCrossLinking, true, false); rnn.SetFwWeights(weights); rnn.SetBwWeights(weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); std::vector<float> fw_inputs(rnn.input_size(), 0); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetAuxInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput(2 * i * rnn.input_size(), &fw_inputs[0], &fw_inputs[fw_inputs.size() - 1]); rnn.SetAuxInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), &fw_inputs[0], &fw_inputs[fw_inputs.size() - 1]); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> bw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_bw_start = rnn_golden_bw_output + i * rnn.num_fw_units(); float* golden_bw_end = golden_bw_start + rnn.num_fw_units(); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); } EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestCrossLinkingAuxInputOnly) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 8, AuxInputMode::kCrossLinking, false, false); rnn.SetFwWeights(std::vector<float>(weights.size(), 0.0)); rnn.SetBwWeights(std::vector<float>(weights.size(), 0.0)); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); rnn.SetAuxFwWeights(weights); rnn.SetAuxBwWeights(weights); const int input_sequence_size = rnn.input_size() * rnn.sequence_len(); std::vector<float> zero_input(input_sequence_size, 0.f); float* batch_start = rnn_input; float* batch_end = batch_start + input_sequence_size; rnn.SetInput(0, zero_input.data(), zero_input.data() + zero_input.size()); rnn.SetAuxInput(0, batch_start, batch_end); rnn.SetInput(input_sequence_size, zero_input.data(), zero_input.data() + zero_input.size()); rnn.SetAuxInput(input_sequence_size, batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_fw_start = rnn_golden_fw_output; float* golden_fw_end = golden_fw_start + rnn.num_fw_units() * rnn.sequence_len(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); float* golden_bw_start = rnn_golden_bw_output; float* golden_bw_end = golden_bw_start + rnn.num_bw_units() * rnn.sequence_len(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestCrossLinkingAuxInputOnlyTimeMajor) { BidirectionalRNNOpModel rnn(2, 16, 16, 16, 8, 8, AuxInputMode::kCrossLinking, true, false); rnn.SetFwWeights(std::vector<float>(weights.size(), 0.0)); rnn.SetBwWeights(std::vector<float>(weights.size(), 0.0)); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); rnn.SetAuxFwWeights(weights); rnn.SetAuxBwWeights(weights); std::vector<float> zero_input(rnn.input_size(), 0.f); for (int i = 0; i < rnn.sequence_len(); i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(2 * i * rnn.input_size(), &zero_input.front(), &zero_input.back() + 1); rnn.SetAuxInput(2 * i * rnn.input_size(), batch_start, batch_end); rnn.SetInput((2 * i + 1) * rnn.input_size(), &zero_input.front(), &zero_input.back() + 1); rnn.SetAuxInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end); } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); std::vector<float> fw_expected; for (int i = 0; i < rnn.sequence_len(); i++) { float* golden_fw_start = rnn_golden_fw_output + i * rnn.num_fw_units(); float* golden_fw_end = golden_fw_start + rnn.num_fw_units(); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); } EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); } void run_closedbox_test_with_input_split(int input_size, int aux_input_size) { const int num_units = 16; BidirectionalRNNOpModel rnn(2, 16, num_units, num_units, input_size, aux_input_size, AuxInputMode::kCrossLinking, false, false); std::vector<float> reg_weights(num_units * rnn.input_size()); std::vector<float> aux_weights(num_units * rnn.aux_input_size()); int full_weights_size = weights.size(); int reg_weights_offset = 0; int aux_weights_offset = 0; int weights_offset = 0; while (weights_offset < full_weights_size) { std::copy(weights.begin() + weights_offset, weights.begin() + weights_offset + rnn.input_size(), reg_weights.begin() + reg_weights_offset); weights_offset += rnn.input_size(); reg_weights_offset += rnn.input_size(); std::copy(weights.begin() + weights_offset, weights.begin() + weights_offset + rnn.aux_input_size(), aux_weights.begin() + aux_weights_offset); weights_offset += rnn.aux_input_size(); aux_weights_offset += rnn.aux_input_size(); } rnn.SetFwWeights(reg_weights); rnn.SetBwWeights(reg_weights); rnn.SetFwBias(biases); rnn.SetBwBias(biases); rnn.SetFwRecurrentWeights(recurrent_weights); rnn.SetBwRecurrentWeights(recurrent_weights); rnn.SetAuxFwWeights(aux_weights); rnn.SetAuxBwWeights(aux_weights); int full_input_size = (rnn.input_size() + rnn.aux_input_size()) * rnn.sequence_len(); int reg_input_offset = 0; int aux_input_offset = 0; for (int batch = 0; batch < 2; ++batch) { int input_offset = 0; while (input_offset < full_input_size) { rnn.SetInput(reg_input_offset, rnn_input + input_offset, rnn_input + input_offset + rnn.input_size()); input_offset += rnn.input_size(); reg_input_offset += rnn.input_size(); rnn.SetAuxInput(aux_input_offset, rnn_input + input_offset, rnn_input + input_offset + rnn.aux_input_size()); input_offset += rnn.aux_input_size(); aux_input_offset += rnn.aux_input_size(); } } ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_fw_start = rnn_golden_fw_output; float* golden_fw_end = golden_fw_start + rnn.num_fw_units() * rnn.sequence_len(); std::vector<float> fw_expected; fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); fw_expected.insert(fw_expected.end(), golden_fw_start, golden_fw_end); EXPECT_THAT(rnn.GetFwOutput(), ElementsAreArray(ArrayFloatNear(fw_expected))); float* golden_bw_start = rnn_golden_bw_output; float* golden_bw_end = golden_bw_start + rnn.num_bw_units() * rnn.sequence_len(); std::vector<float> bw_expected; bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); bw_expected.insert(bw_expected.end(), golden_bw_start, golden_bw_end); EXPECT_THAT(rnn.GetBwOutput(), ElementsAreArray(ArrayFloatNear(bw_expected))); } TEST(BidirectionalRNNOpTest, ClosedBoxTestCrossLinkingRegularAndAuxInputEvenSplit) { run_closedbox_test_with_input_split(4, 4); } TEST(BidirectionalRNNOpTest, ClosedBoxTestCrossLinkingRegularAndAuxInputUnevenSplit) { run_closedbox_test_with_input_split(2, 6); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/bidirectional_sequence_rnn.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/bidirectional_sequence_rnn_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9d49cf0e-1088-4c54-b0ca-15e68adff234
cpp
google/arolla
raw_buffer_factory
arolla/memory/raw_buffer_factory.cc
arolla/memory/raw_buffer_factory_test.cc
#include "arolla/memory/raw_buffer_factory.h" #include <algorithm> #include <cstddef> #include <cstdlib> #include <cstring> #include <memory> #include <tuple> #include <utility> #include "absl/base/attributes.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/optimization.h" #include "absl/log/check.h" namespace arolla { namespace { void noop_free(void*) noexcept {} void AnnotateMemoryIsInitialized(void* data, size_t size) { ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(data, size); } } std::tuple<RawBufferPtr, void*> HeapBufferFactory::CreateRawBuffer( size_t nbytes) { if (ABSL_PREDICT_FALSE(nbytes == 0)) return {nullptr, nullptr}; void* data = malloc(nbytes); AnnotateMemoryIsInitialized(data, nbytes); return {std::shared_ptr<void>(data, free), data}; } std::tuple<RawBufferPtr, void*> HeapBufferFactory::ReallocRawBuffer( RawBufferPtr&& old_buffer, void* old_data, size_t old_size, size_t new_size) { if (new_size == 0) return {nullptr, nullptr}; if (old_size == 0) return CreateRawBuffer(new_size); DCHECK_EQ(old_buffer.use_count(), 1); void* new_data = realloc(old_data, new_size); if (new_size > old_size) { AnnotateMemoryIsInitialized(static_cast<char*>(new_data) + old_size, new_size - old_size); } *std::get_deleter<decltype(&free)>(old_buffer) = &noop_free; old_buffer.reset(new_data, free); return {std::move(old_buffer), new_data}; } std::tuple<RawBufferPtr, void*> ProtobufArenaBufferFactory::CreateRawBuffer( size_t nbytes) { char* data = arena_.CreateArray<char>(&arena_, nbytes); AnnotateMemoryIsInitialized(data, nbytes); return {nullptr, data}; } std::tuple<RawBufferPtr, void*> ProtobufArenaBufferFactory::ReallocRawBuffer( RawBufferPtr&& old_buffer, void* data, size_t old_size, size_t new_size) { if (old_size >= new_size) return {nullptr, data}; char* new_data = arena_.CreateArray<char>(&arena_, new_size); memcpy(new_data, data, std::min(old_size, new_size)); AnnotateMemoryIsInitialized(new_data + old_size, new_size - old_size); return {nullptr, new_data}; } std::tuple<RawBufferPtr, void*> UnsafeArenaBufferFactory::CreateRawBuffer( size_t nbytes) { auto last_alloc = reinterpret_cast<char*>(reinterpret_cast<size_t>(current_ + 7) & ~7ull); if (ABSL_PREDICT_FALSE(last_alloc + nbytes > end_)) { return {nullptr, SlowAlloc(nbytes)}; } current_ = last_alloc + nbytes; return {nullptr, last_alloc}; } std::tuple<RawBufferPtr, void*> UnsafeArenaBufferFactory::ReallocRawBuffer( RawBufferPtr&& old_buffer, void* data, size_t old_size, size_t new_size) { char* last_alloc = current_ - old_size; if ((data != last_alloc) || last_alloc + new_size > end_) { if (old_size >= new_size) return {nullptr, data}; if (data == last_alloc) current_ = last_alloc; void* new_data = SlowAlloc(new_size); memcpy(new_data, data, std::min(old_size, new_size)); AnnotateMemoryIsInitialized(data, old_size); return {nullptr, new_data}; } current_ = last_alloc + new_size; if (new_size < old_size) { AnnotateMemoryIsInitialized(current_, old_size - new_size); } return {nullptr, last_alloc}; } void UnsafeArenaBufferFactory::Reset() { if (page_id_ >= 0) { page_id_ = 0; current_ = reinterpret_cast<char*>(std::get<1>(pages_[0])); AnnotateMemoryIsInitialized(current_, page_size_); end_ = current_ + page_size_; } big_allocs_.clear(); } ABSL_ATTRIBUTE_NOINLINE void* UnsafeArenaBufferFactory::SlowAlloc( size_t nbytes) { if (ABSL_PREDICT_FALSE(nbytes > page_size_ || end_ - current_ >= page_size_ / 2)) { auto [holder, memory] = base_factory_.CreateRawBuffer(nbytes); AnnotateMemoryIsInitialized(memory, nbytes); big_allocs_.emplace_back(std::move(holder), memory); return memory; } NextPage(); auto last_alloc = current_; current_ += nbytes; return last_alloc; } void UnsafeArenaBufferFactory::NextPage() { ++page_id_; if (ABSL_PREDICT_FALSE(page_id_ == pages_.size())) { auto [holder, page] = base_factory_.CreateRawBuffer(page_size_); current_ = reinterpret_cast<char*>(page); pages_.emplace_back(std::move(holder), page); } else { current_ = reinterpret_cast<char*>(std::get<1>(pages_[page_id_])); } AnnotateMemoryIsInitialized(current_, page_size_); end_ = current_ + page_size_; } }
#include "arolla/memory/raw_buffer_factory.h" #include <cstddef> #include <cstdint> #include <cstring> #include <utility> #include <vector> #include "benchmark/benchmark.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "google/protobuf/arena.h" namespace arolla { namespace { using ::testing::AnyOf; using ::testing::Eq; using ::testing::Ge; using ::testing::Le; void VerifyCanReadUninitialized(const void* ptr, size_t size) { const char* char_ptr = static_cast<const char*>(ptr); for (size_t i = 0; i != size; ++i) { char c = *(char_ptr + i); benchmark::DoNotOptimize(c); } } TEST(HeapBufferFactory, CreateEmptyBuffer) { auto [buf, data] = GetHeapBufferFactory()->CreateRawBuffer(0); EXPECT_EQ(buf, nullptr); EXPECT_EQ(data, nullptr); } TEST(HeapBufferFactory, CreateRawBuffer) { const size_t size = 13; auto [buf, data] = GetHeapBufferFactory()->CreateRawBuffer(size); EXPECT_NE(buf, nullptr); VerifyCanReadUninitialized(data, size); EXPECT_EQ(reinterpret_cast<size_t>(data) & 7, 0); memset(data, 0, size); } TEST(HeapBufferFactory, ReallocRawBuffer) { size_t size = 13; RawBufferPtr buf; char* data; { auto res = GetHeapBufferFactory()->CreateRawBuffer(size); buf = std::get<0>(res); data = reinterpret_cast<char*>(std::get<1>(res)); VerifyCanReadUninitialized(data, size); } auto resize_fn = [&](size_t new_size) { auto res = GetHeapBufferFactory()->ReallocRawBuffer(std::move(buf), data, size, new_size); buf = std::get<0>(res); data = reinterpret_cast<char*>(std::get<1>(res)); size = new_size; }; data[0] = 5; resize_fn(4); EXPECT_EQ(data[0], 5); VerifyCanReadUninitialized(data + 1, size - 1); resize_fn(145); EXPECT_EQ(data[0], 5); VerifyCanReadUninitialized(data + 1, 144); } TEST(ProtobufArenaBufferFactory, CreateAndResize) { google::protobuf::Arena arena; ProtobufArenaBufferFactory buf_factory(arena); auto [buf1, data1] = buf_factory.CreateRawBuffer(2); VerifyCanReadUninitialized(data1, 2); char* d = reinterpret_cast<char*>(data1); d[0] = 'A'; d[1] = 'B'; auto [buf2, data2] = buf_factory.ReallocRawBuffer(std::move(buf1), data1, 2, 1); EXPECT_EQ(data1, data2); auto [buf3, data3] = buf_factory.ReallocRawBuffer(std::move(buf2), data2, 1, 3); EXPECT_NE(data2, data3); d = reinterpret_cast<char*>(data3); EXPECT_EQ(d[0], 'A'); VerifyCanReadUninitialized(d + 1, 2); } TEST(UnsafeArenaBufferFactory, CreateEmptyBuffer) { UnsafeArenaBufferFactory arena(25); auto [buf1, data1] = arena.CreateRawBuffer(0); auto [buf2, data2] = arena.CreateRawBuffer(0); auto [buf3, data3] = arena.CreateRawBuffer(1); VerifyCanReadUninitialized(data3, 1); auto [buf4, data4] = arena.CreateRawBuffer(0); auto [buf5, data5] = arena.CreateRawBuffer(0); EXPECT_EQ(data1, data2); EXPECT_NE(data3, nullptr); EXPECT_NE(data2, data4); EXPECT_NE(data3, data4); EXPECT_EQ(data4, data5); } TEST(UnsafeArenaBufferFactory, CreateRawBuffer) { std::vector<int64_t> sizes = {17, 1, 15, 1, 10}; std::vector<RawBufferPtr> bufs; std::vector<char*> ptrs; bufs.reserve(sizes.size()); ptrs.reserve(sizes.size()); UnsafeArenaBufferFactory arena1(25); google::protobuf::Arena proto_arena; ProtobufArenaBufferFactory proto_buf_factory(proto_arena); UnsafeArenaBufferFactory arena2(25, proto_buf_factory); for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) { UnsafeArenaBufferFactory& arena = *arena_ptr; for (size_t i = 0; i < sizes.size(); ++i) { auto [buf, data] = arena.CreateRawBuffer(sizes[i]); VerifyCanReadUninitialized(data, sizes[i]); EXPECT_EQ(reinterpret_cast<size_t>(data) & 7, 0); memset(data, i, sizes[i]); bufs.push_back(buf); ptrs.push_back(reinterpret_cast<char*>(data)); } EXPECT_EQ(ptrs[0] + 24, ptrs[1]); EXPECT_EQ(ptrs[2] + 16, ptrs[3]); for (size_t i = 0; i < sizes.size(); ++i) { for (int64_t j = 0; j < sizes[i]; ++j) { EXPECT_EQ(ptrs[i][j], i); } } } } TEST(UnsafeArenaBufferFactory, ReallocRawBuffer) { UnsafeArenaBufferFactory arena1(25); google::protobuf::Arena proto_arena; ProtobufArenaBufferFactory proto_buf_factory(proto_arena); UnsafeArenaBufferFactory arena2(25, proto_buf_factory); for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) { UnsafeArenaBufferFactory& arena = *arena_ptr; auto [buf1, data1] = arena.CreateRawBuffer(10); VerifyCanReadUninitialized(data1, 10); EXPECT_EQ(buf1, nullptr); reinterpret_cast<char*>(data1)[0] = 7; auto [buf2, data2] = arena.ReallocRawBuffer(std::move(buf1), data1, 10, 25); reinterpret_cast<char*>(data1)[24] = -1; EXPECT_EQ(reinterpret_cast<char*>(data2)[0], 7); EXPECT_EQ(data1, data2); auto [buf3, data3] = arena.ReallocRawBuffer(std::move(buf2), data2, 25, 26); VerifyCanReadUninitialized(data2, 25); EXPECT_NE(data1, data3); EXPECT_EQ(reinterpret_cast<char*>(data3)[0], 7); auto [buf4, data4] = arena.ReallocRawBuffer(std::move(buf3), data3, 26, 10); EXPECT_NE(data1, data4); EXPECT_EQ(reinterpret_cast<char*>(data4)[0], 7); auto [buf5, data5] = arena.CreateRawBuffer(20); VerifyCanReadUninitialized(data5, 20); auto [buf6, data6] = arena.ReallocRawBuffer(std::move(buf5), data5, 20, 15); VerifyCanReadUninitialized(static_cast<const char*>(data6) + 15, 5); EXPECT_EQ(data1, data5); EXPECT_EQ(data1, data6); auto [buf7, data7] = arena.CreateRawBuffer(8); VerifyCanReadUninitialized(data7, 8); EXPECT_EQ(reinterpret_cast<char*>(data1) + 16, reinterpret_cast<char*>(data7)); reinterpret_cast<char*>(data7)[0] = 3; auto [buf8, data8] = arena.ReallocRawBuffer(std::move(buf7), data7, 8, 20); EXPECT_EQ(reinterpret_cast<char*>(data8)[0], 3); auto [buf9, data9] = arena.CreateRawBuffer(1); VerifyCanReadUninitialized(data9, 1); EXPECT_EQ(reinterpret_cast<char*>(data8) + 24, reinterpret_cast<char*>(data9)); } } TEST(UnsafeArenaBufferFactory, BigAlloc) { UnsafeArenaBufferFactory arena1(32); google::protobuf::Arena proto_arena; ProtobufArenaBufferFactory proto_buf_factory(proto_arena); UnsafeArenaBufferFactory arena2(32, proto_buf_factory); for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) { UnsafeArenaBufferFactory& arena = *arena_ptr; auto [buf1, data1] = arena.CreateRawBuffer(16); VerifyCanReadUninitialized(data1, 16); auto [buf2, data2] = arena.CreateRawBuffer(64); VerifyCanReadUninitialized(data2, 64); auto [buf3, data3] = arena.CreateRawBuffer(16); VerifyCanReadUninitialized(data3, 16); EXPECT_THAT(reinterpret_cast<char*>(data3), Eq(reinterpret_cast<char*>(data1) + 16)); EXPECT_THAT(reinterpret_cast<char*>(data2) - reinterpret_cast<char*>(data1), AnyOf(Le(-64), Ge(32))); memset(data2, 0, 64); EXPECT_THAT(reinterpret_cast<int64_t*>(data2)[0], Eq(0)); } } TEST(UnsafeArenaBufferFactory, Reset) { UnsafeArenaBufferFactory arena1(32); google::protobuf::Arena proto_arena; ProtobufArenaBufferFactory proto_buf_factory(proto_arena); UnsafeArenaBufferFactory arena2(32, proto_buf_factory); for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) { UnsafeArenaBufferFactory& arena = *arena_ptr; arena.Reset(); auto [buf1, data1] = arena.CreateRawBuffer(16); VerifyCanReadUninitialized(data1, 16); auto [buf2, data2] = arena.CreateRawBuffer(16); VerifyCanReadUninitialized(data2, 16); auto [buf3, data3] = arena.CreateRawBuffer(16); VerifyCanReadUninitialized(data3, 16); std::memset(data1, 255, 16); std::memset(data2, 255, 16); std::memset(data3, 255, 16); arena.Reset(); auto [buf4, data4] = arena.CreateRawBuffer(8); VerifyCanReadUninitialized(data4, 16); auto [buf5, data5] = arena.CreateRawBuffer(16); VerifyCanReadUninitialized(data5, 16); auto [buf6, data6] = arena.CreateRawBuffer(24); VerifyCanReadUninitialized(data6, 16); EXPECT_EQ(data1, data4); EXPECT_EQ(reinterpret_cast<char*>(data2), reinterpret_cast<char*>(data5) + 8); EXPECT_EQ(data3, data6); } } TEST(UnsafeArenaBufferFactory, BaseFactory) { UnsafeArenaBufferFactory arena1(1024); auto [buf_before, ptr_before] = arena1.CreateRawBuffer(1); UnsafeArenaBufferFactory arena2(32, arena1); auto [buf_small, ptr_small] = arena2.CreateRawBuffer(8); auto [buf_big, ptr_big] = arena2.CreateRawBuffer(128); auto [buf_after, ptr_after] = arena1.CreateRawBuffer(1); EXPECT_LT(ptr_before, ptr_small); EXPECT_LT(ptr_before, ptr_big); EXPECT_GT(ptr_after, ptr_small); EXPECT_GT(ptr_after, ptr_big); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/memory/raw_buffer_factory.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/memory/raw_buffer_factory_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
7aae3b80-e7af-4d6f-83db-331cfbf07047
cpp
abseil/abseil-cpp
log_format
absl/log/internal/log_format.cc
absl/log/log_format_test.cc
#include "absl/log/internal/log_format.h" #include <string.h> #ifdef _MSC_VER #include <winsock2.h> #else #include <sys/time.h> #endif #include <cstddef> #include <cstdint> #include <limits> #include <string> #include <type_traits> #include "absl/base/config.h" #include "absl/base/log_severity.h" #include "absl/base/optimization.h" #include "absl/log/internal/append_truncated.h" #include "absl/log/internal/config.h" #include "absl/log/internal/globals.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/time/civil_time.h" #include "absl/time/time.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace log_internal { namespace { template <typename T> inline std::enable_if_t<!std::is_signed<T>::value> PutLeadingWhitespace(T tid, char*& p) { if (tid < 10) *p++ = ' '; if (tid < 100) *p++ = ' '; if (tid < 1000) *p++ = ' '; if (tid < 10000) *p++ = ' '; if (tid < 100000) *p++ = ' '; if (tid < 1000000) *p++ = ' '; } template <typename T> inline std::enable_if_t<std::is_signed<T>::value> PutLeadingWhitespace(T tid, char*& p) { if (tid >= 0 && tid < 10) *p++ = ' '; if (tid > -10 && tid < 100) *p++ = ' '; if (tid > -100 && tid < 1000) *p++ = ' '; if (tid > -1000 && tid < 10000) *p++ = ' '; if (tid > -10000 && tid < 100000) *p++ = ' '; if (tid > -100000 && tid < 1000000) *p++ = ' '; } size_t FormatBoundedFields(absl::LogSeverity severity, absl::Time timestamp, log_internal::Tid tid, absl::Span<char>& buf) { constexpr size_t kBoundedFieldsMaxLen = sizeof("SMMDD HH:MM:SS.NNNNNN ") + (1 + std::numeric_limits<log_internal::Tid>::digits10 + 1) - sizeof(""); if (ABSL_PREDICT_FALSE(buf.size() < kBoundedFieldsMaxLen)) { buf.remove_suffix(buf.size()); return 0; } const absl::TimeZone* tz = absl::log_internal::TimeZone(); if (ABSL_PREDICT_FALSE(tz == nullptr)) { auto tv = absl::ToTimeval(timestamp); int snprintf_result = absl::SNPrintF( buf.data(), buf.size(), "%c0000 00:00:%02d.%06d %7d ", absl::LogSeverityName(severity)[0], static_cast<int>(tv.tv_sec), static_cast<int>(tv.tv_usec), static_cast<int>(tid)); if (snprintf_result >= 0) { buf.remove_prefix(static_cast<size_t>(snprintf_result)); return static_cast<size_t>(snprintf_result); } return 0; } char* p = buf.data(); *p++ = absl::LogSeverityName(severity)[0]; const absl::TimeZone::CivilInfo ci = tz->At(timestamp); absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.month()), p); p += 2; absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.day()), p); p += 2; *p++ = ' '; absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.hour()), p); p += 2; *p++ = ':'; absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.minute()), p); p += 2; *p++ = ':'; absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.second()), p); p += 2; *p++ = '.'; const int64_t usecs = absl::ToInt64Microseconds(ci.subsecond); absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(usecs / 10000), p); p += 2; absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(usecs / 100 % 100), p); p += 2; absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(usecs % 100), p); p += 2; *p++ = ' '; PutLeadingWhitespace(tid, p); p = absl::numbers_internal::FastIntToBuffer(tid, p); *p++ = ' '; const size_t bytes_formatted = static_cast<size_t>(p - buf.data()); buf.remove_prefix(bytes_formatted); return bytes_formatted; } size_t FormatLineNumber(int line, absl::Span<char>& buf) { constexpr size_t kLineFieldMaxLen = sizeof(":] ") + (1 + std::numeric_limits<int>::digits10 + 1) - sizeof(""); if (ABSL_PREDICT_FALSE(buf.size() < kLineFieldMaxLen)) { buf.remove_suffix(buf.size()); return 0; } char* p = buf.data(); *p++ = ':'; p = absl::numbers_internal::FastIntToBuffer(line, p); *p++ = ']'; *p++ = ' '; const size_t bytes_formatted = static_cast<size_t>(p - buf.data()); buf.remove_prefix(bytes_formatted); return bytes_formatted; } } std::string FormatLogMessage(absl::LogSeverity severity, absl::CivilSecond civil_second, absl::Duration subsecond, log_internal::Tid tid, absl::string_view basename, int line, PrefixFormat format, absl::string_view message) { return absl::StrFormat( "%c%02d%02d %02d:%02d:%02d.%06d %7d %s:%d] %s%s", absl::LogSeverityName(severity)[0], civil_second.month(), civil_second.day(), civil_second.hour(), civil_second.minute(), civil_second.second(), absl::ToInt64Microseconds(subsecond), tid, basename, line, format == PrefixFormat::kRaw ? "RAW: " : "", message); } size_t FormatLogPrefix(absl::LogSeverity severity, absl::Time timestamp, log_internal::Tid tid, absl::string_view basename, int line, PrefixFormat format, absl::Span<char>& buf) { auto prefix_size = FormatBoundedFields(severity, timestamp, tid, buf); prefix_size += log_internal::AppendTruncated(basename, buf); prefix_size += FormatLineNumber(line, buf); if (format == PrefixFormat::kRaw) prefix_size += log_internal::AppendTruncated("RAW: ", buf); return prefix_size; } } ABSL_NAMESPACE_END }
#include <math.h> #include <iomanip> #include <ios> #include <limits> #include <ostream> #include <sstream> #include <string> #include <type_traits> #ifdef __ANDROID__ #include <android/api-level.h> #endif #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/log/check.h" #include "absl/log/internal/test_matchers.h" #include "absl/log/log.h" #include "absl/log/scoped_mock_log.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" namespace { using ::absl::log_internal::AsString; using ::absl::log_internal::MatchesOstream; using ::absl::log_internal::RawEncodedMessage; using ::absl::log_internal::TextMessage; using ::absl::log_internal::TextPrefix; using ::testing::AllOf; using ::testing::AnyOf; using ::testing::Each; using ::testing::EndsWith; using ::testing::Eq; using ::testing::Ge; using ::testing::IsEmpty; using ::testing::Le; using ::testing::SizeIs; using ::testing::Types; std::ostringstream ComparisonStream() { std::ostringstream str; str.setf(std::ios_base::showbase | std::ios_base::boolalpha | std::ios_base::internal); return str; } TEST(LogFormatTest, NoMessage) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int log_line = __LINE__ + 1; auto do_log = [] { LOG(INFO); }; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(ComparisonStream())), TextPrefix(AsString(EndsWith(absl::StrCat( " log_format_test.cc:", log_line, "] ")))), TextMessage(IsEmpty()), ENCODED_MESSAGE(HasValues(IsEmpty()))))); test_sink.StartCapturingLogs(); do_log(); } template <typename T> class CharLogFormatTest : public testing::Test {}; using CharTypes = Types<char, signed char, unsigned char>; TYPED_TEST_SUITE(CharLogFormatTest, CharTypes); TYPED_TEST(CharLogFormatTest, Printable) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = 'x'; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("x")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "x")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(CharLogFormatTest, Unprintable) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); constexpr auto value = static_cast<TypeParam>(0xeeu); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("\xee")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "\xee")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } template <typename T> class UnsignedIntLogFormatTest : public testing::Test {}; using UnsignedIntTypes = Types<unsigned short, unsigned int, unsigned long, unsigned long long>; TYPED_TEST_SUITE(UnsignedIntLogFormatTest, UnsignedIntTypes); TYPED_TEST(UnsignedIntLogFormatTest, Positive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = 224; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("224")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "224")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(UnsignedIntLogFormatTest, BitfieldPositive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const struct { TypeParam bits : 6; } value{42}; auto comparison_stream = ComparisonStream(); comparison_stream << value.bits; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("42")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "42")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value.bits; } template <typename T> class SignedIntLogFormatTest : public testing::Test {}; using SignedIntTypes = Types<signed short, signed int, signed long, signed long long>; TYPED_TEST_SUITE(SignedIntLogFormatTest, SignedIntTypes); TYPED_TEST(SignedIntLogFormatTest, Positive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = 224; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("224")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "224")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(SignedIntLogFormatTest, Negative) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = -112; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-112")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "-112")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(SignedIntLogFormatTest, BitfieldPositive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const struct { TypeParam bits : 6; } value{21}; auto comparison_stream = ComparisonStream(); comparison_stream << value.bits; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("21")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "21")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value.bits; } TYPED_TEST(SignedIntLogFormatTest, BitfieldNegative) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const struct { TypeParam bits : 6; } value{-21}; auto comparison_stream = ComparisonStream(); comparison_stream << value.bits; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-21")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "-21")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value.bits; } #if !defined(__GNUC__) || defined(__clang__) enum MyUnsignedEnum { MyUnsignedEnum_ZERO = 0, MyUnsignedEnum_FORTY_TWO = 42, MyUnsignedEnum_TWO_HUNDRED_TWENTY_FOUR = 224, }; enum MyUnsignedIntEnum : unsigned int { MyUnsignedIntEnum_ZERO = 0, MyUnsignedIntEnum_FORTY_TWO = 42, MyUnsignedIntEnum_TWO_HUNDRED_TWENTY_FOUR = 224, }; template <typename T> class UnsignedEnumLogFormatTest : public testing::Test {}; using UnsignedEnumTypes = std::conditional< std::is_signed<std::underlying_type<MyUnsignedEnum>::type>::value, Types<MyUnsignedIntEnum>, Types<MyUnsignedEnum, MyUnsignedIntEnum>>::type; TYPED_TEST_SUITE(UnsignedEnumLogFormatTest, UnsignedEnumTypes); TYPED_TEST(UnsignedEnumLogFormatTest, Positive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = static_cast<TypeParam>(224); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("224")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "224")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(UnsignedEnumLogFormatTest, BitfieldPositive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const struct { TypeParam bits : 6; } value{static_cast<TypeParam>(42)}; auto comparison_stream = ComparisonStream(); comparison_stream << value.bits; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("42")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "42")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value.bits; } enum MySignedEnum { MySignedEnum_NEGATIVE_ONE_HUNDRED_TWELVE = -112, MySignedEnum_NEGATIVE_TWENTY_ONE = -21, MySignedEnum_ZERO = 0, MySignedEnum_TWENTY_ONE = 21, MySignedEnum_TWO_HUNDRED_TWENTY_FOUR = 224, }; enum MySignedIntEnum : signed int { MySignedIntEnum_NEGATIVE_ONE_HUNDRED_TWELVE = -112, MySignedIntEnum_NEGATIVE_TWENTY_ONE = -21, MySignedIntEnum_ZERO = 0, MySignedIntEnum_TWENTY_ONE = 21, MySignedIntEnum_TWO_HUNDRED_TWENTY_FOUR = 224, }; template <typename T> class SignedEnumLogFormatTest : public testing::Test {}; using SignedEnumTypes = std::conditional< std::is_signed<std::underlying_type<MyUnsignedEnum>::type>::value, Types<MyUnsignedEnum, MySignedEnum, MySignedIntEnum>, Types<MySignedEnum, MySignedIntEnum>>::type; TYPED_TEST_SUITE(SignedEnumLogFormatTest, SignedEnumTypes); TYPED_TEST(SignedEnumLogFormatTest, Positive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = static_cast<TypeParam>(224); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("224")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "224")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(SignedEnumLogFormatTest, Negative) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = static_cast<TypeParam>(-112); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-112")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "-112")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(SignedEnumLogFormatTest, BitfieldPositive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const struct { TypeParam bits : 6; } value{static_cast<TypeParam>(21)}; auto comparison_stream = ComparisonStream(); comparison_stream << value.bits; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("21")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "21")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value.bits; } TYPED_TEST(SignedEnumLogFormatTest, BitfieldNegative) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const struct { TypeParam bits : 6; } value{static_cast<TypeParam>(-21)}; auto comparison_stream = ComparisonStream(); comparison_stream << value.bits; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-21")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "-21")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value.bits; } #endif TEST(FloatLogFormatTest, Positive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const float value = 6.02e23f; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("6.02e+23")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "6.02e+23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(FloatLogFormatTest, Negative) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const float value = -6.02e23f; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-6.02e+23")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "-6.02e+23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(FloatLogFormatTest, NegativeExponent) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const float value = 6.02e-23f; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("6.02e-23")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "6.02e-23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(DoubleLogFormatTest, Positive) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 6.02e23; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("6.02e+23")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "6.02e+23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(DoubleLogFormatTest, Negative) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = -6.02e23; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-6.02e+23")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "-6.02e+23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(DoubleLogFormatTest, NegativeExponent) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 6.02e-23; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("6.02e-23")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "6.02e-23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } template <typename T> class FloatingPointLogFormatTest : public testing::Test {}; using FloatingPointTypes = Types<float, double>; TYPED_TEST_SUITE(FloatingPointLogFormatTest, FloatingPointTypes); TYPED_TEST(FloatingPointLogFormatTest, Zero) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = 0.0; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("0")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "0")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(FloatingPointLogFormatTest, Integer) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = 1.0; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("1")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "1")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(FloatingPointLogFormatTest, Infinity) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = std::numeric_limits<TypeParam>::infinity(); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("inf"), Eq("Inf"))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "inf")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(FloatingPointLogFormatTest, NegativeInfinity) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = -std::numeric_limits<TypeParam>::infinity(); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("-inf"), Eq("-Inf"))), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "-inf")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(FloatingPointLogFormatTest, NaN) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = std::numeric_limits<TypeParam>::quiet_NaN(); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("nan"), Eq("NaN"))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "nan")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(FloatingPointLogFormatTest, NegativeNaN) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = std::copysign(std::numeric_limits<TypeParam>::quiet_NaN(), -1.0); auto comparison_stream = ComparisonStream(); comparison_stream << value; #ifdef __riscv EXPECT_CALL( test_sink, Send(AllOf( TextMessage(AnyOf(Eq("-nan"), Eq("nan"), Eq("NaN"), Eq("-nan(ind)"))), ENCODED_MESSAGE(HasValues( ElementsAre(AnyOf(EqualsProto(R"pb(str: "-nan")pb"), EqualsProto(R"pb(str: "nan")pb"), EqualsProto(R"pb(str: "-nan(ind)")pb")))))))); #else EXPECT_CALL( test_sink, Send(AllOf( TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("-nan"), Eq("nan"), Eq("NaN"), Eq("-nan(ind)"))), ENCODED_MESSAGE(HasValues( ElementsAre(AnyOf(EqualsProto(R"pb(str: "-nan")pb"), EqualsProto(R"pb(str: "nan")pb"), EqualsProto(R"pb(str: "-nan(ind)")pb")))))))); #endif test_sink.StartCapturingLogs(); LOG(INFO) << value; } template <typename T> class VoidPtrLogFormatTest : public testing::Test {}; using VoidPtrTypes = Types<void *, const void *>; TYPED_TEST_SUITE(VoidPtrLogFormatTest, VoidPtrTypes); TYPED_TEST(VoidPtrLogFormatTest, Null) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = nullptr; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("(nil)"), Eq("0"), Eq("0x0"), Eq("00000000"), Eq("0000000000000000")))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(VoidPtrLogFormatTest, NonNull) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = reinterpret_cast<TypeParam>(0xdeadbeefULL); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("0xdeadbeef"), Eq("DEADBEEF"), Eq("00000000DEADBEEF"))), ENCODED_MESSAGE(HasValues(ElementsAre( AnyOf(EqualsProto(R"pb(str: "0xdeadbeef")pb"), EqualsProto(R"pb(str: "00000000DEADBEEF")pb")))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } template <typename T> class VolatilePtrLogFormatTest : public testing::Test {}; using VolatilePtrTypes = Types<volatile void*, const volatile void*, volatile char*, const volatile char*, volatile signed char*, const volatile signed char*, volatile unsigned char*, const volatile unsigned char*>; TYPED_TEST_SUITE(VolatilePtrLogFormatTest, VolatilePtrTypes); TYPED_TEST(VolatilePtrLogFormatTest, Null) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = nullptr; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("false")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "false")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(VolatilePtrLogFormatTest, NonNull) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const TypeParam value = reinterpret_cast<TypeParam>(0xdeadbeefLL); auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("true")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "true")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } template <typename T> class CharPtrLogFormatTest : public testing::Test {}; using CharPtrTypes = Types<char, const char, signed char, const signed char, unsigned char, const unsigned char>; TYPED_TEST_SUITE(CharPtrLogFormatTest, CharPtrTypes); TYPED_TEST(CharPtrLogFormatTest, Null) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); TypeParam* const value = nullptr; EXPECT_CALL( test_sink, Send(AllOf( TextMessage(Eq("(null)")), ENCODED_MESSAGE( HasValues(ElementsAre(EqualsProto(R"pb(str: "(null)")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TYPED_TEST(CharPtrLogFormatTest, NonNull) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); TypeParam data[] = {'v', 'a', 'l', 'u', 'e', '\0'}; TypeParam* const value = data; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("value")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "value")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(BoolLogFormatTest, True) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const bool value = true; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("true")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "true")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(BoolLogFormatTest, False) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const bool value = false; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("false")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "false")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } TEST(LogFormatTest, StringLiteral) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); auto comparison_stream = ComparisonStream(); comparison_stream << "value"; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("value")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(literal: "value")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << "value"; } TEST(LogFormatTest, CharArray) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); char value[] = "value"; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("value")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "value")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } class CustomClass {}; std::ostream& operator<<(std::ostream& os, const CustomClass&) { return os << "CustomClass{}"; } TEST(LogFormatTest, Custom) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); CustomClass value; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("CustomClass{}")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "CustomClass{}")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } class CustomClassNonCopyable { public: CustomClassNonCopyable() = default; CustomClassNonCopyable(const CustomClassNonCopyable&) = delete; CustomClassNonCopyable& operator=(const CustomClassNonCopyable&) = delete; }; std::ostream& operator<<(std::ostream& os, const CustomClassNonCopyable&) { return os << "CustomClassNonCopyable{}"; } TEST(LogFormatTest, CustomNonCopyable) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); CustomClassNonCopyable value; auto comparison_stream = ComparisonStream(); comparison_stream << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("CustomClassNonCopyable{}")), ENCODED_MESSAGE(HasValues(ElementsAre(EqualsProto( R"pb(str: "CustomClassNonCopyable{}")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value; } struct Point { template <typename Sink> friend void AbslStringify(Sink& sink, const Point& p) { absl::Format(&sink, "(%d, %d)", p.x, p.y); } int x = 10; int y = 20; }; TEST(LogFormatTest, AbslStringifyExample) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); Point p; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(Eq("(10, 20)")), TextMessage(Eq(absl::StrCat(p))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "(10, 20)")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << p; } struct PointWithAbslStringifiyAndOstream { template <typename Sink> friend void AbslStringify(Sink& sink, const PointWithAbslStringifiyAndOstream& p) { absl::Format(&sink, "(%d, %d)", p.x, p.y); } int x = 10; int y = 20; }; ABSL_ATTRIBUTE_UNUSED std::ostream& operator<<( std::ostream& os, const PointWithAbslStringifiyAndOstream&) { return os << "Default to AbslStringify()"; } TEST(LogFormatTest, CustomWithAbslStringifyAndOstream) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); PointWithAbslStringifiyAndOstream p; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(Eq("(10, 20)")), TextMessage(Eq(absl::StrCat(p))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "(10, 20)")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << p; } struct PointStreamsNothing { template <typename Sink> friend void AbslStringify(Sink&, const PointStreamsNothing&) {} int x = 10; int y = 20; }; TEST(LogFormatTest, AbslStringifyStreamsNothing) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); PointStreamsNothing p; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(Eq("77")), TextMessage(Eq(absl::StrCat(p, 77))), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << p << 77; } struct PointMultipleAppend { template <typename Sink> friend void AbslStringify(Sink& sink, const PointMultipleAppend& p) { sink.Append("("); sink.Append(absl::StrCat(p.x, ", ", p.y, ")")); } int x = 10; int y = 20; }; TEST(LogFormatTest, AbslStringifyMultipleAppend) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); PointMultipleAppend p; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(Eq("(10, 20)")), TextMessage(Eq(absl::StrCat(p))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "(")pb"), EqualsProto(R"pb(str: "10, 20)")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << p; } TEST(ManipulatorLogFormatTest, BoolAlphaTrue) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const bool value = true; auto comparison_stream = ComparisonStream(); comparison_stream << std::noboolalpha << value << " " << std::boolalpha << value << " " << std::noboolalpha << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("1 true 1")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "1")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "true")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "1")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::noboolalpha << value << " " << std::boolalpha << value << " " << std::noboolalpha << value; } TEST(ManipulatorLogFormatTest, BoolAlphaFalse) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const bool value = false; auto comparison_stream = ComparisonStream(); comparison_stream << std::noboolalpha << value << " " << std::boolalpha << value << " " << std::noboolalpha << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("0 false 0")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "0")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "false")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "0")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::noboolalpha << value << " " << std::boolalpha << value << " " << std::noboolalpha << value; } TEST(ManipulatorLogFormatTest, ShowPoint) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 77.0; auto comparison_stream = ComparisonStream(); comparison_stream << std::noshowpoint << value << " " << std::showpoint << value << " " << std::noshowpoint << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77 77.0000 77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "77.0000")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::noshowpoint << value << " " << std::showpoint << value << " " << std::noshowpoint << value; } TEST(ManipulatorLogFormatTest, ShowPos) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 77; auto comparison_stream = ComparisonStream(); comparison_stream << std::noshowpos << value << " " << std::showpos << value << " " << std::noshowpos << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77 +77 77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "+77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::noshowpos << value << " " << std::showpos << value << " " << std::noshowpos << value; } TEST(ManipulatorLogFormatTest, UppercaseFloat) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 7.7e7; auto comparison_stream = ComparisonStream(); comparison_stream << std::nouppercase << value << " " << std::uppercase << value << " " << std::nouppercase << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("7.7e+07 7.7E+07 7.7e+07")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "7.7e+07")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "7.7E+07")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "7.7e+07")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::nouppercase << value << " " << std::uppercase << value << " " << std::nouppercase << value; } TEST(ManipulatorLogFormatTest, Hex) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 0x77; auto comparison_stream = ComparisonStream(); comparison_stream << std::hex << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("0x77")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "0x77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hex << value; } TEST(ManipulatorLogFormatTest, Oct) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 077; auto comparison_stream = ComparisonStream(); comparison_stream << std::oct << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("077")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "077")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::oct << value; } TEST(ManipulatorLogFormatTest, Dec) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 77; auto comparison_stream = ComparisonStream(); comparison_stream << std::hex << std::dec << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hex << std::dec << value; } TEST(ManipulatorLogFormatTest, ShowbaseHex) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 0x77; auto comparison_stream = ComparisonStream(); comparison_stream << std::hex << std::noshowbase << value << " " << std::showbase << value << " " << std::noshowbase << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77 0x77 77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "0x77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hex << std::noshowbase << value << " " << std::showbase << value << " " << std::noshowbase << value; } TEST(ManipulatorLogFormatTest, ShowbaseOct) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 077; auto comparison_stream = ComparisonStream(); comparison_stream << std::oct << std::noshowbase << value << " " << std::showbase << value << " " << std::noshowbase << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77 077 77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "077")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::oct << std::noshowbase << value << " " << std::showbase << value << " " << std::noshowbase << value; } TEST(ManipulatorLogFormatTest, UppercaseHex) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 0xbeef; auto comparison_stream = ComparisonStream(); comparison_stream << std::hex << std::nouppercase << value << " " << std::uppercase << value << " " << std::nouppercase << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("0xbeef 0XBEEF 0xbeef")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "0xbeef")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "0XBEEF")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "0xbeef")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hex << std::nouppercase << value << " " << std::uppercase << value << " " << std::nouppercase << value; } TEST(ManipulatorLogFormatTest, FixedFloat) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 7.7e7; auto comparison_stream = ComparisonStream(); comparison_stream << std::fixed << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77000000.000000")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "77000000.000000")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::fixed << value; } TEST(ManipulatorLogFormatTest, ScientificFloat) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 7.7e7; auto comparison_stream = ComparisonStream(); comparison_stream << std::scientific << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("7.700000e+07")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "7.700000e+07")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::scientific << value; } #if defined(__BIONIC__) && (!defined(__ANDROID_API__) || __ANDROID_API__ < 22) #elif defined(__GLIBCXX__) && __cplusplus < 201402L #else TEST(ManipulatorLogFormatTest, FixedAndScientificFloat) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 7.7e7; auto comparison_stream = ComparisonStream(); comparison_stream << std::setiosflags(std::ios_base::scientific | std::ios_base::fixed) << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("0x1.25bb50p+26"), Eq("0x1.25bb5p+26"), Eq("0x1.25bb500000000p+26"))), ENCODED_MESSAGE(HasValues(ElementsAre(AnyOf( EqualsProto(R"pb(str: "0x1.25bb5p+26")pb"), EqualsProto(R"pb(str: "0x1.25bb500000000p+26")pb")))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::setiosflags(std::ios_base::scientific | std::ios_base::fixed) << value; } #endif #if defined(__BIONIC__) && (!defined(__ANDROID_API__) || __ANDROID_API__ < 22) #elif defined(__GLIBCXX__) && __cplusplus < 201402L #else TEST(ManipulatorLogFormatTest, HexfloatFloat) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 7.7e7; auto comparison_stream = ComparisonStream(); comparison_stream << std::hexfloat << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(AnyOf(Eq("0x1.25bb50p+26"), Eq("0x1.25bb5p+26"), Eq("0x1.25bb500000000p+26"))), ENCODED_MESSAGE(HasValues(ElementsAre(AnyOf( EqualsProto(R"pb(str: "0x1.25bb5p+26")pb"), EqualsProto(R"pb(str: "0x1.25bb500000000p+26")pb")))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hexfloat << value; } #endif TEST(ManipulatorLogFormatTest, DefaultFloatFloat) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 7.7e7; auto comparison_stream = ComparisonStream(); comparison_stream << std::hexfloat << std::defaultfloat << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("7.7e+07")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "7.7e+07")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hexfloat << std::defaultfloat << value; } TEST(ManipulatorLogFormatTest, Ends) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); auto comparison_stream = ComparisonStream(); comparison_stream << std::ends; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq(absl::string_view("\0", 1))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "\0")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::ends; } TEST(ManipulatorLogFormatTest, Endl) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); auto comparison_stream = ComparisonStream(); comparison_stream << std::endl; EXPECT_CALL( test_sink, Send(AllOf( TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("\n")), ENCODED_MESSAGE(HasValues(ElementsAre(EqualsProto(R"pb(str: "\n")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::endl; } TEST(ManipulatorLogFormatTest, SetIosFlags) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 0x77; auto comparison_stream = ComparisonStream(); comparison_stream << std::resetiosflags(std::ios_base::basefield) << std::setiosflags(std::ios_base::hex) << value << " " << std::resetiosflags(std::ios_base::basefield) << std::setiosflags(std::ios_base::dec) << value; EXPECT_CALL( test_sink, Send(AllOf( TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("0x77 119")), ENCODED_MESSAGE( HasValues(ElementsAre(EqualsProto(R"pb(str: "0x77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "119")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::resetiosflags(std::ios_base::basefield) << std::setiosflags(std::ios_base::hex) << value << " " << std::resetiosflags(std::ios_base::basefield) << std::setiosflags(std::ios_base::dec) << value; } TEST(ManipulatorLogFormatTest, SetBase) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 0x77; auto comparison_stream = ComparisonStream(); comparison_stream << std::setbase(16) << value << " " << std::setbase(0) << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("0x77 119")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "0x77")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "119")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::setbase(16) << value << " " << std::setbase(0) << value; } TEST(ManipulatorLogFormatTest, SetPrecision) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 6.022140857e23; auto comparison_stream = ComparisonStream(); comparison_stream << std::setprecision(4) << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("6.022e+23")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "6.022e+23")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::setprecision(4) << value; } TEST(ManipulatorLogFormatTest, SetPrecisionOverflow) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const double value = 6.022140857e23; auto comparison_stream = ComparisonStream(); comparison_stream << std::setprecision(200) << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("602214085700000015187968")), ENCODED_MESSAGE(HasValues(ElementsAre(EqualsProto( R"pb(str: "602214085700000015187968")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::setprecision(200) << value; } TEST(ManipulatorLogFormatTest, SetW) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 77; auto comparison_stream = ComparisonStream(); comparison_stream << std::setw(8) << value; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq(" 77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: " 77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::setw(8) << value; } TEST(ManipulatorLogFormatTest, Left) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = -77; auto comparison_stream = ComparisonStream(); comparison_stream << std::left << std::setw(8) << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("-77 ")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "-77 ")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::left << std::setw(8) << value; } TEST(ManipulatorLogFormatTest, Right) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = -77; auto comparison_stream = ComparisonStream(); comparison_stream << std::right << std::setw(8) << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq(" -77")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: " -77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::right << std::setw(8) << value; } TEST(ManipulatorLogFormatTest, Internal) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = -77; auto comparison_stream = ComparisonStream(); comparison_stream << std::internal << std::setw(8) << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("- 77")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "- 77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::internal << std::setw(8) << value; } TEST(ManipulatorLogFormatTest, SetFill) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); const int value = 77; auto comparison_stream = ComparisonStream(); comparison_stream << std::setfill('0') << std::setw(8) << value; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("00000077")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "00000077")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::setfill('0') << std::setw(8) << value; } class FromCustomClass {}; std::ostream& operator<<(std::ostream& os, const FromCustomClass&) { return os << "FromCustomClass{}" << std::hex; } TEST(ManipulatorLogFormatTest, FromCustom) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); FromCustomClass value; auto comparison_stream = ComparisonStream(); comparison_stream << value << " " << 0x77; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("FromCustomClass{} 0x77")), ENCODED_MESSAGE(HasValues(ElementsAre( EqualsProto(R"pb(str: "FromCustomClass{}")pb"), EqualsProto(R"pb(literal: " ")pb"), EqualsProto(R"pb(str: "0x77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value << " " << 0x77; } class StreamsNothing {}; std::ostream& operator<<(std::ostream& os, const StreamsNothing&) { return os; } TEST(ManipulatorLogFormatTest, CustomClassStreamsNothing) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); StreamsNothing value; auto comparison_stream = ComparisonStream(); comparison_stream << value << 77; EXPECT_CALL(test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)), TextMessage(Eq("77")), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "77")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << value << 77; } struct PointPercentV { template <typename Sink> friend void AbslStringify(Sink& sink, const PointPercentV& p) { absl::Format(&sink, "(%v, %v)", p.x, p.y); } int x = 10; int y = 20; }; TEST(ManipulatorLogFormatTest, IOManipsDoNotAffectAbslStringify) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); PointPercentV p; EXPECT_CALL( test_sink, Send(AllOf(TextMessage(Eq("(10, 20)")), TextMessage(Eq(absl::StrCat(p))), ENCODED_MESSAGE(HasValues( ElementsAre(EqualsProto(R"pb(str: "(10, 20)")pb"))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::hex << p; } TEST(StructuredLoggingOverflowTest, TruncatesStrings) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL( test_sink, Send(AllOf( TextMessage(AllOf( SizeIs(AllOf(Ge(absl::log_internal::kLogMessageBufferSize - 256), Le(absl::log_internal::kLogMessageBufferSize))), Each(Eq('x')))), ENCODED_MESSAGE(HasOneStrThat(AllOf( SizeIs(AllOf(Ge(absl::log_internal::kLogMessageBufferSize - 256), Le(absl::log_internal::kLogMessageBufferSize))), Each(Eq('x')))))))); test_sink.StartCapturingLogs(); LOG(INFO) << std::string(2 * absl::log_internal::kLogMessageBufferSize, 'x'); } struct StringLike { absl::string_view data; }; std::ostream& operator<<(std::ostream& os, StringLike str) { return os << str.data; } TEST(StructuredLoggingOverflowTest, TruncatesInsertionOperators) { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL( test_sink, Send(AllOf( TextMessage(AllOf( SizeIs(AllOf(Ge(absl::log_internal::kLogMessageBufferSize - 256), Le(absl::log_internal::kLogMessageBufferSize))), Each(Eq('x')))), ENCODED_MESSAGE(HasOneStrThat(AllOf( SizeIs(AllOf(Ge(absl::log_internal::kLogMessageBufferSize - 256), Le(absl::log_internal::kLogMessageBufferSize))), Each(Eq('x')))))))); test_sink.StartCapturingLogs(); LOG(INFO) << StringLike{ std::string(2 * absl::log_internal::kLogMessageBufferSize, 'x')}; } size_t MaxLogFieldLengthNoPrefix() { class StringLengthExtractorSink : public absl::LogSink { public: void Send(const absl::LogEntry& entry) override { CHECK(!size_.has_value()); CHECK_EQ(entry.text_message().find_first_not_of('x'), absl::string_view::npos); size_.emplace(entry.text_message().size()); } size_t size() const { CHECK(size_.has_value()); return *size_; } private: absl::optional<size_t> size_; } extractor_sink; LOG(INFO).NoPrefix().ToSinkOnly(&extractor_sink) << std::string(2 * absl::log_internal::kLogMessageBufferSize, 'x'); return extractor_sink.size(); } TEST(StructuredLoggingOverflowTest, TruncatesStringsCleanly) { const size_t longest_fit = MaxLogFieldLengthNoPrefix(); { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit, 'x') << "y"; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 1), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 1, 'x') << "y"; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 2), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 2, 'x') << "y"; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 3), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 3, 'x') << "y"; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrAndOneLiteralThat( AllOf(SizeIs(longest_fit - 4), Each(Eq('x'))), IsEmpty())), RawEncodedMessage(Not(AsString(EndsWith("x"))))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 4, 'x') << "y"; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL( test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrAndOneLiteralThat( AllOf(SizeIs(longest_fit - 5), Each(Eq('x'))), Eq("y"))), RawEncodedMessage(AsString(EndsWith("y")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 5, 'x') << "y"; } } TEST(StructuredLoggingOverflowTest, TruncatesInsertionOperatorsCleanly) { const size_t longest_fit = MaxLogFieldLengthNoPrefix(); { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit, 'x') << StringLike{"y"}; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 1), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 1, 'x') << StringLike{"y"}; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 2), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 2, 'x') << StringLike{"y"}; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 3), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 3, 'x') << StringLike{"y"}; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL(test_sink, Send(AllOf(ENCODED_MESSAGE(HasOneStrThat( AllOf(SizeIs(longest_fit - 4), Each(Eq('x'))))), RawEncodedMessage(AsString(EndsWith("x")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 4, 'x') << StringLike{"y"}; } { absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected); EXPECT_CALL( test_sink, Send(AllOf(ENCODED_MESSAGE(HasTwoStrsThat( AllOf(SizeIs(longest_fit - 5), Each(Eq('x'))), Eq("y"))), RawEncodedMessage(AsString(EndsWith("y")))))); test_sink.StartCapturingLogs(); LOG(INFO).NoPrefix() << std::string(longest_fit - 5, 'x') << StringLike{"y"}; } } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/log/internal/log_format.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/log/log_format_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
81f8af8a-489b-4b14-9049-bb797e3be1da
cpp
google/tensorstore
aws_credentials_resource
tensorstore/kvstore/s3/aws_credentials_resource.cc
tensorstore/kvstore/s3/aws_credentials_resource_test.cc
#include "tensorstore/kvstore/s3/aws_credentials_resource.h" #include <stddef.h> #include <cassert> #include <memory> #include <optional> #include <type_traits> #include <utility> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/credentials/default_credential_provider.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace jb = tensorstore::internal_json_binding; namespace tensorstore { namespace internal_kvstore_s3 { using Spec = ::tensorstore::internal_kvstore_s3::AwsCredentialsResource::Spec; using Resource = ::tensorstore::internal_kvstore_s3::AwsCredentialsResource::Resource; const internal::ContextResourceRegistration<AwsCredentialsResource> aws_credentials_registration; Result<Resource> AwsCredentialsResource::Create( const Spec& spec, internal::ContextResourceCreationContext context) const { if (spec.anonymous) { return Resource{spec, nullptr}; } auto result = GetAwsCredentialProvider( spec.filename, spec.profile, spec.metadata_endpoint, internal_http::GetDefaultHttpTransport()); if (!result.ok() && absl::IsNotFound(result.status())) { return Resource{spec, nullptr}; } TENSORSTORE_RETURN_IF_ERROR(result); return Resource{spec, *std::move(result)}; } Result<std::optional<AwsCredentials>> AwsCredentialsResource::Resource::GetCredentials() { if (!credential_provider_) return std::nullopt; auto credential_result_ = credential_provider_->GetCredentials(); if (!credential_result_.ok() && absl::IsNotFound(credential_result_.status())) { return std::nullopt; } return credential_result_; } namespace { static constexpr auto kAnonymousBinder = jb::Object(jb::Member( "anonymous", jb::Projection<&Spec::anonymous>( jb::Validate([](const auto& options, bool* x) { if (*x != true) { return absl::InvalidArgumentError( "\"anonymous\" must be true or not present in " "\"aws_credentials\""); } return absl::OkStatus(); })))); static constexpr auto kParameterBinder = jb::Object( jb::OptionalMember("profile", jb::Projection<&Spec::profile>()), jb::OptionalMember("filename", jb::Projection<&Spec::filename>()), jb::OptionalMember("metadata_endpoint", jb::Projection<&Spec::metadata_endpoint>())); } absl::Status AwsCredentialsResource::FromJsonImpl( const JsonSerializationOptions& options, Spec* spec, ::nlohmann::json* j) { if (auto* j_obj = j->template get_ptr<::nlohmann::json::object_t*>(); j_obj && j_obj->find("anonymous") != j_obj->end()) { return kAnonymousBinder(std::true_type{}, options, spec, j); } return kParameterBinder(std::true_type{}, options, spec, j); } absl::Status AwsCredentialsResource::ToJsonImpl( const JsonSerializationOptions& options, const Spec* spec, ::nlohmann::json* j) { if (spec->anonymous) { return kAnonymousBinder(std::false_type{}, options, spec, j); } return kParameterBinder(std::false_type{}, options, spec, j); } } }
#include "tensorstore/kvstore/s3/aws_credentials_resource.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json_fwd.hpp> #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::Context; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_kvstore_s3::AwsCredentialsResource; namespace { TEST(AwsCredentialsResourceTest, InvalidDirectSpec) { EXPECT_THAT(Context::Resource<AwsCredentialsResource>::FromJson(nullptr), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected non-null value, but received: null")); EXPECT_THAT(Context::Resource<AwsCredentialsResource>::FromJson(3), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected object, but received: 3")); EXPECT_THAT( Context::Resource<AwsCredentialsResource>::FromJson("anonymous"), MatchesStatus( absl::StatusCode::kInvalidArgument, "Invalid reference to \"aws_credentials\" resource: \"anonymous\"")); } TEST(AwsCredentialsResourceTest, Default) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson("aws_credentials")); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, false); } TEST(AwsCredentialsResourceTest, ExplicitDefault) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson( ::nlohmann::json::object_t())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, false); } TEST(AwsCredentialsResourceTest, ValidSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson( {{"profile", "my_profile"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, "my_profile"); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, false); } TEST(AwsCredentialsResourceTest, ValidAnonymousSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson( {{"anonymous", true}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, true); EXPECT_THAT(resource->GetCredentials(), tensorstore::IsOkAndHolds(::testing::Eq(std::nullopt))); } TEST(AwsCredentialsResourceTest, InvalidSpecs) { EXPECT_THAT(Context::Resource<AwsCredentialsResource>::FromJson({ {"anonymous", true}, {"profile", "xyz"}, }), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/aws_credentials_resource.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/aws_credentials_resource_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8e76a92d-b3d4-4a7b-a177-4658f864cc89
cpp
tensorflow/tensorflow
model_builder_helper
tensorflow/lite/delegates/gpu/common/model_builder_helper.cc
tensorflow/lite/delegates/gpu/common/model_builder_helper_test.cc
#include "tensorflow/lite/delegates/gpu/common/model_builder_helper.h" #include <stddef.h> #include <cstdint> #include <cstring> #include <limits> #include <string> #include <vector> #include "fp16.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/lite/context_util.h" #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/model.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace gpu { namespace { absl::Status NewPassthroughNode(GraphFloat32* graph, Node* node, const Value* output, Node** passthru_node) { *passthru_node = graph->NewNode(); RETURN_IF_ERROR(graph->SetProducer((*passthru_node)->id, output->id)); Value* copy_output = graph->NewValue(); RETURN_IF_ERROR(graph->SetProducer(node->id, copy_output->id)); RETURN_IF_ERROR(graph->AddConsumer((*passthru_node)->id, copy_output->id)); copy_output->tensor = output->tensor; copy_output->tensor.ref = -1; return absl::OkStatus(); } } absl::Status GetNodeAndRegistration(TfLiteContext* context, int node_id, TfLiteNode** tflite_node, TfLiteRegistration** registration) { if (context->GetNodeAndRegistration(context, node_id, tflite_node, registration) != kTfLiteOk) { return absl::InvalidArgumentError(absl::StrCat( "Couldn't get node and registration info for op: ", node_id)); } return absl::OkStatus(); } DataType ToDataType(TfLiteType type) { switch (type) { case kTfLiteFloat32: return DataType::FLOAT32; case kTfLiteInt32: return DataType::INT32; case kTfLiteInt64: return DataType::INT64; case kTfLiteInt8: return DataType::INT8; case kTfLiteUInt8: return DataType::UINT8; case kTfLiteBool: return DataType::BOOL; default: return DataType::UNKNOWN; } } absl::Status ExtractTensorShape(const TfLiteTensor& tflite_tensor, BHWC* bhwc) { const TfLiteIntArray* dims = tflite_tensor.dims; switch (dims->size) { case 1: *bhwc = BHWC(dims->data[0], 1, 1, 1); return absl::OkStatus(); case 2: *bhwc = BHWC(dims->data[0], 1, 1, dims->data[1]); return absl::OkStatus(); case 3: *bhwc = BHWC(dims->data[0], 1, dims->data[1], dims->data[2]); return absl::OkStatus(); case 4: *bhwc = BHWC(dims->data[0], dims->data[1], dims->data[2], dims->data[3]); return absl::OkStatus(); default: return absl::InvalidArgumentError(absl::StrCat( "Tensor \"", tflite_tensor.name ? tflite_tensor.name : "nullptr", "\" has bad input dims size: ", dims->size, ".")); } } absl::Status ExtractAxisFromIndex(const TfLiteTensor& tflite_tensor, int index, Axis* axis) { const TfLiteIntArray* dims = tflite_tensor.dims; if (index < 0) { index = dims->size + index; } if (index < 0 || index >= dims->size) { return absl::OutOfRangeError("Index for axis out of range"); } std::vector<Axis> index_to_axis; switch (dims->size) { case 1: index_to_axis = {Axis::BATCH}; break; case 2: index_to_axis = {Axis::BATCH, Axis::CHANNELS}; break; case 3: index_to_axis = {Axis::BATCH, Axis::WIDTH, Axis::CHANNELS}; break; case 4: index_to_axis = {Axis::BATCH, Axis::HEIGHT, Axis::WIDTH, Axis::CHANNELS}; break; default: return absl::UnavailableError("Unknown layout."); } *axis = index_to_axis[index]; return absl::OkStatus(); } absl::Status ConvertTfLiteTensorToTensorRef(const TfLiteTensor& tflite_tensor, TensorRef<BHWC>* tensor_ref) { tensor_ref->type = ToDataType(tflite_tensor.type); return ExtractTensorShape(tflite_tensor, &tensor_ref->shape); } absl::Status PopulateQuantParams(const TfLiteTensor& tensor, QuantizationParams* quant_params) { const TfLiteQuantization& quant = tensor.quantization; if (quant.type != TfLiteQuantizationType::kTfLiteAffineQuantization) { return absl::InvalidArgumentError( absl::StrCat("Tensor not quantized: ", std::string(tensor.name))); } const TfLiteAffineQuantization* params = static_cast<const TfLiteAffineQuantization*>(quant.params); if (params->scale->size > 1) { return absl::InvalidArgumentError( absl::StrCat("Non-constant per-channel quantized tensor: ", std::string(tensor.name))); } const float scale = params->scale->data[0]; const float zero_point = static_cast<float>(params->zero_point->data[0]); float qmin_value = 0; float qmax_value = 0; if (tensor.type == kTfLiteUInt8) { qmin_value = static_cast<float>(std::numeric_limits<uint8_t>::min()); qmax_value = static_cast<float>(std::numeric_limits<uint8_t>::max()); } else if (tensor.type == kTfLiteInt8) { qmin_value = static_cast<float>(std::numeric_limits<int8_t>::min()); qmax_value = static_cast<float>(std::numeric_limits<int8_t>::max()); } else { return absl::InvalidArgumentError(absl::StrCat( "Type invalid for quantized tensor: ", std::string(tensor.name))); } quant_params->min = scale * (static_cast<float>(qmin_value) - zero_point); quant_params->max = scale * (static_cast<float>(qmax_value) - zero_point); quant_params->scale = scale; return absl::OkStatus(); } int GetNumberOfRuntimeInputsForNode(const TfLiteContext* context, const TfLiteNode* tflite_node) { int number_of_runtime_inputs = 0; for (int i = 0; i < NumInputs(tflite_node); i++) { const TfLiteTensor* tensor = GetOptionalInputTensor(context, tflite_node, i); if (tensor != nullptr && !IsConstantTensor(tensor)) { number_of_runtime_inputs++; } } return number_of_runtime_inputs; } int GetNumberOfConstInputsForNode(const TfLiteContext* context, const TfLiteNode* tflite_node) { return NumInputs(tflite_node) - GetNumberOfRuntimeInputsForNode(context, tflite_node); } absl::Status CheckInputsOutputs(const TfLiteContext* context, const TfLiteNode* tflite_node, int runtime_inputs, int outputs) { const int runtime_inputs_from_model = GetNumberOfRuntimeInputsForNode(context, tflite_node); if (runtime_inputs_from_model != runtime_inputs) { return absl::InternalError(absl::StrCat( "Expected ", runtime_inputs, " runtime input tensor(s), but node has ", runtime_inputs_from_model, " runtime input(s).")); } const int outputs_from_model = NumOutputs(tflite_node); if (outputs_from_model != outputs) { return absl::InternalError(absl::StrCat("Expected ", outputs, " output tensor(s), but node has ", outputs_from_model, " output(s).")); } return absl::OkStatus(); } absl::Status CheckInputsConstsOutputs(const TfLiteContext* context, const TfLiteNode* tflite_node, int runtime_inputs, int const_inputs, int outputs) { const int const_inputs_from_model = GetNumberOfConstInputsForNode(context, tflite_node); if (const_inputs_from_model != const_inputs) { return absl::InternalError(absl::StrCat( "Expected ", const_inputs, " const input tensor(s), but node has ", const_inputs_from_model, " const input(s).")); } return CheckInputsOutputs(context, tflite_node, runtime_inputs, outputs); } void ConvertFloat16ToFloat32(size_t num_elements, const uint16_t* src, float* dst) { for (size_t i = 0; i < num_elements; i++) { *dst++ = fp16_ieee_to_fp32_value(*src++); } } template <> absl::Status CreateVectorCopyData<float>(const TfLiteTensor& src, float* dst) { switch (src.type) { case kTfLiteFloat32: std::memcpy(dst, src.data.f, src.bytes); return absl::OkStatus(); case kTfLiteFloat16: ConvertFloat16ToFloat32(NumElements(&src), reinterpret_cast<uint16_t const*>(src.data.f16), dst); return absl::OkStatus(); case kTfLiteInt8: DequantizeConstantTensor(src, src.data.int8, dst); return absl::OkStatus(); case kTfLiteUInt8: DequantizeConstantTensor(src, src.data.uint8, dst); return absl::OkStatus(); case kTfLiteInt32: DequantizeConstantTensor(src, src.data.i32, dst); return absl::OkStatus(); default: return absl::InvalidArgumentError( "Unsupported data type for float32 tensor"); } } std::string GetDimensionString(const TfLiteIntArray* dimensions) { return absl::StrJoin(TfLiteIntArrayView(dimensions), "x"); } absl::Status SetAllDimensions(const TfLiteIntArray* dimensions, Scalar* shape) { if (dimensions->size < 0) { return absl::InvalidArgumentError("Invalid Scalar dimensions"); } for (int i = 0; i < dimensions->size; ++i) { if (dimensions->data[i] != 1) { return absl::InvalidArgumentError(absl::StrCat( GetDimensionString(dimensions), " cannot be reduced to scalar.")); } } shape->v = 1; return absl::OkStatus(); } absl::Status CheckIfLinearConvertible(const TfLiteIntArray* dimensions) { if (dimensions->size <= 0) { return absl::InvalidArgumentError("Dimension is empty."); } for (int i = 0; i < dimensions->size - 1; ++i) { if (dimensions->data[i] != 1) { return absl::InvalidArgumentError(absl::StrCat( GetDimensionString(dimensions), " cannot be reduced to linear.")); } } return absl::OkStatus(); } absl::Status SetAllDimensions(const TfLiteIntArray* dimensions, Linear* shape) { RETURN_IF_ERROR(CheckIfLinearConvertible(dimensions)); shape->v = dimensions->data[dimensions->size - 1]; return absl::OkStatus(); } absl::Status SetAllDimensions(const TfLiteIntArray* dimensions, HWC* shape) { if (dimensions->size == 3) { shape->h = dimensions->data[0]; shape->w = dimensions->data[1]; shape->c = dimensions->data[2]; return absl::OkStatus(); } if (dimensions->size == 4) { if (dimensions->data[0] != 1) { return absl::UnimplementedError("Batch size is not equal to 1."); } shape->h = dimensions->data[1]; shape->w = dimensions->data[2]; shape->c = dimensions->data[3]; return absl::OkStatus(); } return absl::InvalidArgumentError( absl::StrCat("Expected a 3D tensor of shape HxWxC or a 4D tensor of " "shape 1xHxWxC but got ", GetDimensionString(dimensions))); } absl::Status SetAllDimensions(const TfLiteIntArray* dimensions, HW* shape) { if (dimensions->size != 2) { return absl::InvalidArgumentError( absl::StrCat("Expected a 2D tensor of shape HxW but got ", GetDimensionString(dimensions))); } shape->h = dimensions->data[0]; shape->w = dimensions->data[1]; return absl::OkStatus(); } absl::Status SetAllDimensions(const TfLiteIntArray* dimensions, OHWI* shape) { if (dimensions->size != 4) { return absl::InvalidArgumentError( absl::StrCat("Expected a 4D tensor of shape OxHxWxI but got ", GetDimensionString(dimensions))); } shape->o = dimensions->data[0]; shape->h = dimensions->data[1]; shape->w = dimensions->data[2]; shape->i = dimensions->data[3]; return absl::OkStatus(); } absl::Status SetAllDimensions(const TfLiteIntArray* dimensions, BHWC* shape) { if (dimensions->size != 4) { return absl::InvalidArgumentError( absl::StrCat("Expected a 4D tensor of shape BxHxWxC but got ", GetDimensionString(dimensions))); } shape->b = dimensions->data[0]; shape->h = dimensions->data[1]; shape->w = dimensions->data[2]; shape->c = dimensions->data[3]; return absl::OkStatus(); } absl::Status MaybeFuseActivation(TfLiteFusedActivation fused_activation, GraphFloat32* graph, Node* node) { const auto outputs = graph->FindOutputs(node->id); if (outputs.size() != 1) { return absl::InternalError("Number of outputs != 1"); } switch (fused_activation) { case kTfLiteActNone: return absl::OkStatus(); case kTfLiteActRelu: case kTfLiteActReluN1To1: case kTfLiteActRelu6: { ReLUAttributes attr; attr.activation_max = fused_activation == kTfLiteActRelu ? 0.0f : (fused_activation == kTfLiteActReluN1To1 ? 1.0f : 6.0f); attr.activation_min = fused_activation == kTfLiteActReluN1To1 ? -1.0f : 0.0f; Node* activation_node; RETURN_IF_ERROR( NewPassthroughNode(graph, node, outputs[0], &activation_node)); activation_node->operation.type = ToString(OperationType::RELU); activation_node->operation.attributes = attr; return absl::OkStatus(); } case kTfLiteActTanh: { Node* activation_node; RETURN_IF_ERROR( NewPassthroughNode(graph, node, outputs[0], &activation_node)); activation_node->operation.type = ToString(OperationType::TANH); return absl::OkStatus(); } case kTfLiteActSigmoid: { Node* activation_node; RETURN_IF_ERROR( NewPassthroughNode(graph, node, outputs[0], &activation_node)); activation_node->operation.type = ToString(OperationType::SIGMOID); return absl::OkStatus(); } break; default: return absl::NotFoundError( absl::StrCat("Unsupported fused activation: ", fused_activation)); } } } }
#include "tensorflow/lite/delegates/gpu/common/model_builder_helper.h" #include <cstdint> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace gpu { namespace { using ::testing::ElementsAre; TEST(ModelBuilderHelperTest, CreateVectorCopyDataDifferentSize) { TfLiteTensor tflite_tensor; tflite_tensor.type = kTfLiteInt32; int32_t src_data[4] = {1, 2, 3, 4}; tflite_tensor.data.i32 = src_data; tflite_tensor.dims = TfLiteIntArrayCreate(1); tflite_tensor.dims->data[0] = sizeof(src_data) / sizeof(src_data[0]); tflite_tensor.bytes = sizeof(src_data); int16_t dst[4]; ASSERT_OK(CreateVectorCopyData(tflite_tensor, dst)); EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4)); TfLiteIntArrayFree(tflite_tensor.dims); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/model_builder_helper.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/common/model_builder_helper_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9d6eea50-7e9c-414d-8036-f4cbf5f26b7e
cpp
tensorflow/tensorflow
inline_partitionedcall
tensorflow/tools/graph_transforms/inline_partitionedcall.cc
tensorflow/tools/graph_transforms/inline_partitionedcall_test.cc
#include <string> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { constexpr char kPartitionedCallOpName[] = "PartitionedCall"; constexpr char kFunctionAttrName[] = "f"; namespace { absl::optional<FunctionDef> GetFunctionByNameFromLibrary( const GraphDef& graph, absl::string_view function_name) { for (const auto& fct : graph.library().function()) { if (fct.signature().name() == function_name) { return fct; } } return {}; } std::string NormalizeNodeDefInput(const std::string& input_name) { std::vector<std::string> name_parts = absl::StrSplit(input_name, absl::ByChar(':')); if (name_parts.size() > 2) { return absl::StrCat(name_parts[0], ":", name_parts.back()); } return input_name; } } Status InlinePartitionedCall(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { output_graph_def->Clear(); absl::flat_hash_map<std::string, std::string> remap_input; for (const NodeDef& node : input_graph_def.node()) { if (node.op() == kPartitionedCallOpName) { if (node.attr().count(kFunctionAttrName) == 0) { return Status( absl::StatusCode::kNotFound, "Node " + node.name() + " has no attribute: " + kFunctionAttrName); } if (!node.attr().at(kFunctionAttrName).has_func()) { return Status(absl::StatusCode::kNotFound, "Cannot figure out function name"); } const std::string function_name = node.attr().at(kFunctionAttrName).func().name(); absl::optional<FunctionDef> function = GetFunctionByNameFromLibrary(input_graph_def, function_name); if (!function.has_value()) { return Status(absl::StatusCode::kNotFound, "function " + function_name + " Not found"); } const std::string prefix = node.name(); const int kOutputArgumentCount = function->signature().output_arg().size(); for (int k = 0; k < kOutputArgumentCount; ++k) { const std::string function_arg_output_name = function->ret().at(function->signature().output_arg()[k].name()); remap_input.insert_or_assign( CanonicalInputName(absl::StrCat(node.name(), ":", k)), absl::StrCat(prefix, "/", NormalizeNodeDefInput(function_arg_output_name))); } const int kInputArgumentCount = function->signature().input_arg().size(); if (node.input().size() != kInputArgumentCount) { return Status(absl::StatusCode::kInvalidArgument, "Called function " + function_name + " has invalid input signature."); } absl::flat_hash_map<std::string, std::string> input_argument_map; for (int k = 0; k < kInputArgumentCount; ++k) { const std::string canonical_name = CanonicalInputName(function->signature().input_arg()[k].name()); input_argument_map.insert_or_assign(canonical_name, node.input()[k]); } for (const NodeDef& function_node : function->node_def()) { NodeDef* new_node = output_graph_def->mutable_node()->Add(); *new_node = function_node; new_node->set_name(absl::StrCat(prefix, "/", function_node.name())); absl::c_transform( *new_node->mutable_input(), new_node->mutable_input()->begin(), [prefix, input_argument_map](const std::string& input_name) { const std::string canonical_input_name = CanonicalInputName(input_name); if (input_argument_map.find(canonical_input_name) != input_argument_map.end()) { return input_argument_map.at(canonical_input_name); } return absl::StrCat(prefix, "/", NormalizeNodeDefInput(input_name)); }); } } else { NodeDef* new_node = output_graph_def->mutable_node()->Add(); *new_node = node; } } for (NodeDef& node : *output_graph_def->mutable_node()) { absl::c_transform( *node.mutable_input(), node.mutable_input()->begin(), [remap_input](const std::string& input_name) { const std::string canonical_input_name = CanonicalInputName(input_name); if (remap_input.find(canonical_input_name) != remap_input.end()) { return remap_input.at(canonical_input_name); } return input_name; }); } return OkStatus(); } REGISTER_GRAPH_TRANSFORM("inline_partitionedcall", InlinePartitionedCall); } }
#include <algorithm> #include <string> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { constexpr char kGraphDefWithPartitionedCall[] = "node {\n" " name: \"y\"\n" " op: \"Placeholder\"\n" "}\n" "node {\n" " name: \"sub/y\"\n" " op: \"Const\"\n" "}\n" "node {\n" " name: \"PartitionedCall\"\n" " op: \"PartitionedCall\"\n" " input: \"y\"\n" " input: \"sub/y\"\n" " attr {\n" " key: \"f\"\n" " value {\n" " func {\n" " name: \"__inference_simple_add_14\"\n" " }\n" " }\n" " }\n" "}\n" "node {\n" " name: \"add/y\"\n" " op: \"Const\"\n" "}\n" "node {\n" " name: \"add\"\n" " op: \"AddV2\"\n" " input: \"PartitionedCall\"\n" " input: \"add/y\"\n" "}\n" "node {\n" " name: \"Identity\"\n" " op: \"Identity\"\n" " input: \"add\"\n" "}\n" "library {\n" " function {\n" " signature {\n" " name: \"__inference_simple_add_14\"\n" " input_arg {\n" " name: \"x\"\n" " type: DT_FLOAT\n" " }\n" " input_arg {\n" " name: \"y\"\n" " type: DT_FLOAT\n" " }\n" " output_arg {\n" " name: \"identity\"\n" " type: DT_FLOAT\n" " }\n" " }\n" " node_def {\n" " name: \"mul\"\n" " op: \"Mul\"\n" " input: \"x\"\n" " input: \"y\"\n" " }\n" " node_def {\n" " name: \"add/y\"\n" " op: \"Const\"\n" " }\n" " node_def {\n" " name: \"add\"\n" " op: \"AddV2\"\n" " input: \"mul:z:0\"\n" " input: \"add/y:output:0\"\n" " }\n" " node_def {\n" " name: \"Identity\"\n" " op: \"Identity\"\n" " input: \"add:z:0\"\n" " }\n" " ret {\n" " key: \"identity\"\n" " value: \"Identity:output:0\"\n" " }\n" " }\n" "}\n"; Status InlinePartitionedCall(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); TEST(InlinePartitionedCallTest, Inlining) { GraphDef in_graph; EXPECT_TRUE(::tensorflow::protobuf::TextFormat::ParseFromString( kGraphDefWithPartitionedCall, &in_graph)); GraphDef result; TransformFuncContext context; context.input_names = {"y"}; context.output_names = {"Identity"}; TF_ASSERT_OK(InlinePartitionedCall(in_graph, context, &result)); EXPECT_TRUE(std::none_of( result.node().cbegin(), result.node().cend(), [](const NodeDef& node) { return node.op() == "PartitionedCall"; })); EXPECT_EQ(9, result.node().size()); TF_EXPECT_OK(IsGraphValid(result)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/inline_partitionedcall.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/inline_partitionedcall_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5411c9c4-0335-4de2-af86-ce114032e1cb
cpp
google/cel-cpp
value_testing
common/value_testing.cc
common/value_testing_test.cc
#include "common/value_testing.h" #include <cstdint> #include <ostream> #include <string> #include <utility> #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "common/casting.h" #include "common/value.h" #include "common/value_kind.h" #include "internal/testing.h" namespace cel { void PrintTo(const Value& value, std::ostream* os) { *os << value << "\n"; } namespace test { namespace { using ::testing::Matcher; template <typename Type> constexpr ValueKind ToValueKind() { if constexpr (std::is_same_v<Type, BoolValue>) { return ValueKind::kBool; } else if constexpr (std::is_same_v<Type, IntValue>) { return ValueKind::kInt; } else if constexpr (std::is_same_v<Type, UintValue>) { return ValueKind::kUint; } else if constexpr (std::is_same_v<Type, DoubleValue>) { return ValueKind::kDouble; } else if constexpr (std::is_same_v<Type, StringValue>) { return ValueKind::kString; } else if constexpr (std::is_same_v<Type, BytesValue>) { return ValueKind::kBytes; } else if constexpr (std::is_same_v<Type, DurationValue>) { return ValueKind::kDuration; } else if constexpr (std::is_same_v<Type, TimestampValue>) { return ValueKind::kTimestamp; } else if constexpr (std::is_same_v<Type, ErrorValue>) { return ValueKind::kError; } else if constexpr (std::is_same_v<Type, MapValue>) { return ValueKind::kMap; } else if constexpr (std::is_same_v<Type, ListValue>) { return ValueKind::kList; } else if constexpr (std::is_same_v<Type, StructValue>) { return ValueKind::kStruct; } else if constexpr (std::is_same_v<Type, OpaqueValue>) { return ValueKind::kOpaque; } else { return ValueKind::kError; } } template <typename Type, typename NativeType> class SimpleTypeMatcherImpl : public testing::MatcherInterface<const Value&> { public: using MatcherType = Matcher<NativeType>; explicit SimpleTypeMatcherImpl(MatcherType&& matcher) : matcher_(std::forward<MatcherType>(matcher)) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { return InstanceOf<Type>(v) && matcher_.MatchAndExplain(Cast<Type>(v).NativeValue(), listener); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("kind is ", ValueKindToString(ToValueKind<Type>()), " and "); matcher_.DescribeTo(os); } private: MatcherType matcher_; }; template <typename Type> class StringTypeMatcherImpl : public testing::MatcherInterface<const Value&> { public: using MatcherType = Matcher<std::string>; explicit StringTypeMatcherImpl(MatcherType matcher) : matcher_((std::move(matcher))) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { return InstanceOf<Type>(v) && matcher_.Matches(Cast<Type>(v).ToString()); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("kind is ", ValueKindToString(ToValueKind<Type>()), " and "); matcher_.DescribeTo(os); } private: MatcherType matcher_; }; template <typename Type> class AbstractTypeMatcherImpl : public testing::MatcherInterface<const Value&> { public: using MatcherType = Matcher<Type>; explicit AbstractTypeMatcherImpl(MatcherType&& matcher) : matcher_(std::forward<MatcherType>(matcher)) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { return v.Is<Type>() && matcher_.Matches(v.template Get<Type>()); } void DescribeTo(std::ostream* os) const override { *os << absl::StrCat("kind is ", ValueKindToString(ToValueKind<Type>()), " and "); matcher_.DescribeTo(os); } private: MatcherType matcher_; }; class OptionalValueMatcherImpl : public testing::MatcherInterface<const Value&> { public: explicit OptionalValueMatcherImpl(ValueMatcher matcher) : matcher_(std::move(matcher)) {} bool MatchAndExplain(const Value& v, testing::MatchResultListener* listener) const override { if (!InstanceOf<OptionalValue>(v)) { *listener << "wanted OptionalValue, got " << ValueKindToString(v.kind()); return false; } const auto& optional_value = Cast<OptionalValue>(v); if (!optional_value->HasValue()) { *listener << "OptionalValue is not engaged"; return false; } return matcher_.MatchAndExplain(optional_value->Value(), listener); } void DescribeTo(std::ostream* os) const override { *os << "is OptionalValue that is engaged with value whose "; matcher_.DescribeTo(os); } private: ValueMatcher matcher_; }; MATCHER(OptionalValueIsEmptyImpl, "is empty OptionalValue") { const Value& v = arg; if (!InstanceOf<OptionalValue>(v)) { *result_listener << "wanted OptionalValue, got " << ValueKindToString(v.kind()); return false; } const auto& optional_value = Cast<OptionalValue>(v); *result_listener << (optional_value.HasValue() ? "is not empty" : "is empty"); return !optional_value->HasValue(); } } ValueMatcher BoolValueIs(Matcher<bool> m) { return ValueMatcher(new SimpleTypeMatcherImpl<BoolValue, bool>(std::move(m))); } ValueMatcher IntValueIs(Matcher<int64_t> m) { return ValueMatcher( new SimpleTypeMatcherImpl<IntValue, int64_t>(std::move(m))); } ValueMatcher UintValueIs(Matcher<uint64_t> m) { return ValueMatcher( new SimpleTypeMatcherImpl<UintValue, uint64_t>(std::move(m))); } ValueMatcher DoubleValueIs(Matcher<double> m) { return ValueMatcher( new SimpleTypeMatcherImpl<DoubleValue, double>(std::move(m))); } ValueMatcher TimestampValueIs(Matcher<absl::Time> m) { return ValueMatcher( new SimpleTypeMatcherImpl<TimestampValue, absl::Time>(std::move(m))); } ValueMatcher DurationValueIs(Matcher<absl::Duration> m) { return ValueMatcher( new SimpleTypeMatcherImpl<DurationValue, absl::Duration>(std::move(m))); } ValueMatcher ErrorValueIs(Matcher<absl::Status> m) { return ValueMatcher( new SimpleTypeMatcherImpl<ErrorValue, absl::Status>(std::move(m))); } ValueMatcher StringValueIs(Matcher<std::string> m) { return ValueMatcher(new StringTypeMatcherImpl<StringValue>(std::move(m))); } ValueMatcher BytesValueIs(Matcher<std::string> m) { return ValueMatcher(new StringTypeMatcherImpl<BytesValue>(std::move(m))); } ValueMatcher MapValueIs(Matcher<MapValue> m) { return ValueMatcher(new AbstractTypeMatcherImpl<MapValue>(std::move(m))); } ValueMatcher ListValueIs(Matcher<ListValue> m) { return ValueMatcher(new AbstractTypeMatcherImpl<ListValue>(std::move(m))); } ValueMatcher StructValueIs(Matcher<StructValue> m) { return ValueMatcher(new AbstractTypeMatcherImpl<StructValue>(std::move(m))); } ValueMatcher OptionalValueIs(ValueMatcher m) { return ValueMatcher(new OptionalValueMatcherImpl(std::move(m))); } ValueMatcher OptionalValueIsEmpty() { return OptionalValueIsEmptyImpl(); } } }
#include "common/value_testing.h" #include <utility> #include "gtest/gtest-spi.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "common/memory.h" #include "common/value.h" #include "internal/testing.h" namespace cel::test { namespace { using ::absl_testing::StatusIs; using ::testing::_; using ::testing::ElementsAre; using ::testing::Truly; using ::testing::UnorderedElementsAre; TEST(BoolValueIs, Match) { EXPECT_THAT(BoolValue(true), BoolValueIs(true)); } TEST(BoolValueIs, NoMatch) { EXPECT_THAT(BoolValue(false), Not(BoolValueIs(true))); EXPECT_THAT(IntValue(2), Not(BoolValueIs(true))); } TEST(BoolValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), BoolValueIs(true)); }(), "kind is bool and is equal to true"); } TEST(IntValueIs, Match) { EXPECT_THAT(IntValue(42), IntValueIs(42)); } TEST(IntValueIs, NoMatch) { EXPECT_THAT(IntValue(-42), Not(IntValueIs(42))); EXPECT_THAT(UintValue(2), Not(IntValueIs(42))); } TEST(IntValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(UintValue(42), IntValueIs(42)); }(), "kind is int and is equal to 42"); } TEST(UintValueIs, Match) { EXPECT_THAT(UintValue(42), UintValueIs(42)); } TEST(UintValueIs, NoMatch) { EXPECT_THAT(UintValue(41), Not(UintValueIs(42))); EXPECT_THAT(IntValue(2), Not(UintValueIs(42))); } TEST(UintValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), UintValueIs(42)); }(), "kind is uint and is equal to 42"); } TEST(DoubleValueIs, Match) { EXPECT_THAT(DoubleValue(1.2), DoubleValueIs(1.2)); } TEST(DoubleValueIs, NoMatch) { EXPECT_THAT(DoubleValue(41), Not(DoubleValueIs(1.2))); EXPECT_THAT(IntValue(2), Not(DoubleValueIs(1.2))); } TEST(DoubleValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), DoubleValueIs(1.2)); }(), "kind is double and is equal to 1.2"); } TEST(DurationValueIs, Match) { EXPECT_THAT(DurationValue(absl::Minutes(2)), DurationValueIs(absl::Minutes(2))); } TEST(DurationValueIs, NoMatch) { EXPECT_THAT(DurationValue(absl::Minutes(5)), Not(DurationValueIs(absl::Minutes(2)))); EXPECT_THAT(IntValue(2), Not(DurationValueIs(absl::Minutes(2)))); } TEST(DurationValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), DurationValueIs(absl::Minutes(2))); }(), "kind is duration and is equal to 2m"); } TEST(TimestampValueIs, Match) { EXPECT_THAT(TimestampValue(absl::UnixEpoch() + absl::Minutes(2)), TimestampValueIs(absl::UnixEpoch() + absl::Minutes(2))); } TEST(TimestampValueIs, NoMatch) { EXPECT_THAT(TimestampValue(absl::UnixEpoch()), Not(TimestampValueIs(absl::UnixEpoch() + absl::Minutes(2)))); EXPECT_THAT(IntValue(2), Not(TimestampValueIs(absl::UnixEpoch() + absl::Minutes(2)))); } TEST(TimestampValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), TimestampValueIs(absl::UnixEpoch() + absl::Minutes(2))); }(), "kind is timestamp and is equal to 19"); } TEST(StringValueIs, Match) { EXPECT_THAT(StringValue("hello!"), StringValueIs("hello!")); } TEST(StringValueIs, NoMatch) { EXPECT_THAT(StringValue("hello!"), Not(StringValueIs("goodbye!"))); EXPECT_THAT(IntValue(2), Not(StringValueIs("goodbye!"))); } TEST(StringValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), StringValueIs("hello!")); }(), "kind is string and is equal to \"hello!\""); } TEST(BytesValueIs, Match) { EXPECT_THAT(BytesValue("hello!"), BytesValueIs("hello!")); } TEST(BytesValueIs, NoMatch) { EXPECT_THAT(BytesValue("hello!"), Not(BytesValueIs("goodbye!"))); EXPECT_THAT(IntValue(2), Not(BytesValueIs("goodbye!"))); } TEST(BytesValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), BytesValueIs("hello!")); }(), "kind is bytes and is equal to \"hello!\""); } TEST(ErrorValueIs, Match) { EXPECT_THAT(ErrorValue(absl::InternalError("test")), ErrorValueIs(StatusIs(absl::StatusCode::kInternal, "test"))); } TEST(ErrorValueIs, NoMatch) { EXPECT_THAT(ErrorValue(absl::UnknownError("test")), Not(ErrorValueIs(StatusIs(absl::StatusCode::kInternal, "test")))); EXPECT_THAT(IntValue(2), Not(ErrorValueIs(_))); } TEST(ErrorValueIs, NonMatchMessage) { EXPECT_NONFATAL_FAILURE( []() { EXPECT_THAT(IntValue(42), ErrorValueIs(StatusIs( absl::StatusCode::kInternal, "test"))); }(), "kind is *error* and"); } using ValueMatcherTest = common_internal::ThreadCompatibleValueTest<>; TEST_P(ValueMatcherTest, OptionalValueIsMatch) { EXPECT_THAT( OptionalValue::Of(value_manager().GetMemoryManager(), IntValue(42)), OptionalValueIs(IntValueIs(42))); } TEST_P(ValueMatcherTest, OptionalValueIsHeldValueDifferent) { EXPECT_NONFATAL_FAILURE( [&]() { EXPECT_THAT(OptionalValue::Of(value_manager().GetMemoryManager(), IntValue(-42)), OptionalValueIs(IntValueIs(42))); }(), "is OptionalValue that is engaged with value whose kind is int and is " "equal to 42"); } TEST_P(ValueMatcherTest, OptionalValueIsNotEngaged) { EXPECT_NONFATAL_FAILURE( [&]() { EXPECT_THAT(OptionalValue::None(), OptionalValueIs(IntValueIs(42))); }(), "is not engaged"); } TEST_P(ValueMatcherTest, OptionalValueIsNotAnOptional) { EXPECT_NONFATAL_FAILURE( [&]() { EXPECT_THAT(IntValue(42), OptionalValueIs(IntValueIs(42))); }(), "wanted OptionalValue, got int"); } TEST_P(ValueMatcherTest, OptionalValueIsEmptyMatch) { EXPECT_THAT(OptionalValue::None(), OptionalValueIsEmpty()); } TEST_P(ValueMatcherTest, OptionalValueIsEmptyNotEmpty) { EXPECT_NONFATAL_FAILURE( [&]() { EXPECT_THAT( OptionalValue::Of(value_manager().GetMemoryManager(), IntValue(42)), OptionalValueIsEmpty()); }(), "is not empty"); } TEST_P(ValueMatcherTest, OptionalValueIsEmptyNotOptional) { EXPECT_NONFATAL_FAILURE( [&]() { EXPECT_THAT(IntValue(42), OptionalValueIsEmpty()); }(), "wanted OptionalValue, got int"); } TEST_P(ValueMatcherTest, ListMatcherBasic) { ASSERT_OK_AND_ASSIGN(auto builder, value_manager().NewListValueBuilder( value_manager().GetDynListType())); ASSERT_OK(builder->Add(IntValue(42))); Value list_value = std::move(*builder).Build(); EXPECT_THAT(list_value, ListValueIs(Truly([](const ListValue& v) { auto size = v.Size(); return size.ok() && *size == 1; }))); } TEST_P(ValueMatcherTest, ListMatcherMatchesElements) { ASSERT_OK_AND_ASSIGN(auto builder, value_manager().NewListValueBuilder( value_manager().GetDynListType())); ASSERT_OK(builder->Add(IntValue(42))); ASSERT_OK(builder->Add(IntValue(1337))); ASSERT_OK(builder->Add(IntValue(42))); ASSERT_OK(builder->Add(IntValue(100))); EXPECT_THAT( std::move(*builder).Build(), ListValueIs(ListValueElements( &value_manager(), ElementsAre(IntValueIs(42), IntValueIs(1337), IntValueIs(42), IntValueIs(100))))); } TEST_P(ValueMatcherTest, MapMatcherBasic) { ASSERT_OK_AND_ASSIGN(auto builder, value_manager().NewMapValueBuilder( value_manager().GetDynDynMapType())); ASSERT_OK(builder->Put(IntValue(42), IntValue(42))); Value map_value = std::move(*builder).Build(); EXPECT_THAT(map_value, MapValueIs(Truly([](const MapValue& v) { auto size = v.Size(); return size.ok() && *size == 1; }))); } TEST_P(ValueMatcherTest, MapMatcherMatchesElements) { ASSERT_OK_AND_ASSIGN(auto builder, value_manager().NewMapValueBuilder( value_manager().GetDynDynMapType())); ASSERT_OK(builder->Put(IntValue(42), StringValue("answer"))); ASSERT_OK(builder->Put(IntValue(1337), StringValue("leet"))); EXPECT_THAT(std::move(*builder).Build(), MapValueIs(MapValueElements( &value_manager(), UnorderedElementsAre( Pair(IntValueIs(42), StringValueIs("answer")), Pair(IntValueIs(1337), StringValueIs("leet")))))); } INSTANTIATE_TEST_SUITE_P( MemoryManagerStrategy, ValueMatcherTest, testing::Values(cel::MemoryManagement::kPooling, cel::MemoryManagement::kReferenceCounting)); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/value_testing.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/value_testing_test.cc
4552db5798fb0853b131b783d8875794334fae7f
26f2d42c-ee60-46c1-bd75-a32f45db3a9b
cpp
tensorflow/tensorflow
hlo_proto_to_graph_view
tensorflow/core/profiler/convert/hlo_proto_to_graph_view.cc
tensorflow/core/profiler/convert/hlo_proto_to_graph_view_test.cc
#include "tensorflow/core/profiler/convert/hlo_proto_to_graph_view.h" #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_opcode.h" #ifdef PLATFORM_GOOGLE #include "third_party/json/src/json.hpp" #include "tensorflow/compiler/mlir/lite/experimental/google/tooling/google/direct_hlo_to_json_graph_convert.h" #endif #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/tool_options.h" #include "tensorflow/core/profiler/utils/hlo_module_utils.h" #include "tensorflow/core/profiler/utils/hlo_proto_to_module.h" namespace tensorflow { namespace profiler { namespace { using ::tensorflow::StatusOr; using ::tensorflow::errors::InvalidArgument; using ::xla::HloComputation; using ::xla::HloInstruction; using ::xla::HloModule; using ::xla::HloPrintOptions; using ::xla::HloProto; using ::xla::HloRenderOptions; using ::xla::RenderedGraphFormat; constexpr char kCenterNodeKey[] = "centerNode"; void CleanUpHloModuleForGraphviz(HloModule* hlo_module) { for (HloComputation* computation : hlo_module->computations()) { for (HloInstruction* inst : computation->instructions()) { if (inst->opcode() == xla::HloOpcode::kInfeed) { inst->set_infeed_config(""); } else if (inst->opcode() == xla::HloOpcode::kOutfeed) { inst->set_outfeed_config(""); } } } } std::string GetLayerId(absl::string_view namespace_name) { return absl::StrCat(namespace_name, "___group___"); } #ifdef PLATFORM_GOOGLE void AddCenterNodeMetadata(nlohmann::json& graph_json, std::string id, absl::string_view name, absl::string_view opcode) { nlohmann::json centerGroupNodeAttributes; centerGroupNodeAttributes["name"] = name; centerGroupNodeAttributes["id"] = id; if (!opcode.empty()) { centerGroupNodeAttributes["opcode"] = opcode; } graph_json[0]["subgraphs"][0]["groupNodeAttributes"][kCenterNodeKey] = centerGroupNodeAttributes; } #endif void AddGraphMetadata(std::string& graph_json_str, const HloInstruction& instr) { #ifdef PLATFORM_GOOGLE nlohmann::json graph_json = nlohmann::json::parse(graph_json_str); auto id = instr.opcode() == xla::HloOpcode::kFusion ? GetLayerId(absl::StrCat(instr.parent()->name(), "/", instr.name())) : absl::StrCat(instr.unique_id()); AddCenterNodeMetadata(graph_json, id, instr.name(), HloOpcodeString(instr.opcode())); graph_json_str = graph_json.dump(); #endif } void AddGraphMetadata(std::string& graph_json_str, const HloComputation& comp) { #ifdef PLATFORM_GOOGLE nlohmann::json graph_json = nlohmann::json::parse(graph_json_str); AddCenterNodeMetadata(graph_json, GetLayerId(comp.name()), comp.name(), ""); graph_json_str = graph_json.dump(); #endif } absl::StatusOr<std::string> PlotMe(std::unique_ptr<HloModule> module, const std::string& node_name, int graph_width) { if (node_name.empty()) { return InvalidArgument("node_name should not be empty"); } const HloInstruction* instr = FindInstruction(*module, node_name); const HloComputation* comp = FindComputation(*module, node_name); if (!instr && !comp) { return InvalidArgument( absl::StrCat("Couldn't find HloInstruction or HloComputation named ", node_name, ".")); } absl::StatusOr<std::string> graph_handle; std::string graph_json_str; #ifdef PLATFORM_GOOGLE if (comp) { graph_handle = tooling::visualization_client::HloGraphAdapter(*comp); } else { graph_handle = tooling::visualization_client::HloGraphAdapter(*instr, graph_width); } #endif if (graph_handle.ok()) { VLOG(1) << graph_handle.value(); graph_json_str = graph_handle.value(); if (comp) { AddGraphMetadata(graph_json_str, *comp); } else { AddGraphMetadata(graph_json_str, *instr); } return graph_json_str; } else { LOG(ERROR) << "Unable to render graph: " << graph_handle.status(); } return graph_handle; } absl::StatusOr<std::string> Plot(std::unique_ptr<HloModule> module, const std::string& node_name, int graph_width, const HloRenderOptions& render_options, const RenderedGraphFormat& format) { if (node_name.empty()) { return InvalidArgument("node_name should not be empty"); } const HloInstruction* instr = FindInstruction(*module, node_name); const HloComputation* comp = FindComputation(*module, node_name); if (!instr && !comp) { return InvalidArgument( absl::StrCat("Couldn't find HloInstruction or HloComputation named ", node_name, ".")); } absl::StatusOr<std::string> graph_handle; CleanUpHloModuleForGraphviz(module.get()); if (comp) { graph_handle = RenderGraphView(*comp, "", comp->parent()->config().debug_options(), format, render_options); } else { graph_handle = RenderGraphNeighborhoodAround(*instr, graph_width, format, render_options); } if (graph_handle.ok()) { VLOG(1) << graph_handle.value(); } else { LOG(ERROR) << "Unable to render graph: " << graph_handle.status(); } return graph_handle; } static constexpr char kGraphTypeName[] = "graph"; static constexpr char kShortTxtTypeName[] = "short_txt"; static constexpr char kLongTxtTypeName[] = "long_txt"; static constexpr char kDefaultFormatString[] = "url"; static constexpr int kDefaultWidth = 3; static constexpr int kDefaultShowMetadata = 0; static constexpr int kDefaultMergeFusion = 0; } absl::StatusOr<std::string> GetNodeStyles() { std::vector<xla::HloOpcode> async_op_codes = {xla::HloOpcode::kAsyncStart, xla::HloOpcode::kAsyncUpdate, xla::HloOpcode::kAsyncDone}; std::vector<xla::HloOpcode> brown_op_codes = { xla::HloOpcode::kAllGather, xla::HloOpcode::kAllGatherStart, xla::HloOpcode::kAllGatherDone, xla::HloOpcode::kAllReduce, xla::HloOpcode::kReduceScatter, xla::HloOpcode::kAllReduceStart, xla::HloOpcode::kAllReduceDone, xla::HloOpcode::kAllToAll, xla::HloOpcode::kCollectiveBroadcast, xla::HloOpcode::kCollectivePermute, xla::HloOpcode::kCollectivePermuteStart, xla::HloOpcode::kCollectivePermuteDone, xla::HloOpcode::kInfeed, xla::HloOpcode::kOutfeed, xla::HloOpcode::kPartitionId, xla::HloOpcode::kRecv, xla::HloOpcode::kRecvDone, xla::HloOpcode::kSend, xla::HloOpcode::kSendDone, xla::HloOpcode::kReplicaId}; std::vector<xla::HloOpcode> dark_blue_op_codes = { xla::HloOpcode::kConvolution, xla::HloOpcode::kDot, xla::HloOpcode::kFft, xla::HloOpcode::kTriangularSolve, xla::HloOpcode::kCholesky}; std::vector<xla::HloOpcode> dark_green_op_codes = { xla::HloOpcode::kCall, xla::HloOpcode::kConditional, xla::HloOpcode::kCustomCall, xla::HloOpcode::kWhile}; std::vector<xla::HloOpcode> gray_op_codes = { xla::HloOpcode::kDomain, xla::HloOpcode::kFusion, xla::HloOpcode::kMap, xla::HloOpcode::kGetDimensionSize, xla::HloOpcode::kSetDimensionSize}; std::vector<xla::HloOpcode> green_op_codes = { xla::HloOpcode::kConcatenate, xla::HloOpcode::kDynamicSlice, xla::HloOpcode::kReshape, xla::HloOpcode::kDynamicReshape, xla::HloOpcode::kReverse, xla::HloOpcode::kTranspose, xla::HloOpcode::kCopy, xla::HloOpcode::kCopyStart, xla::HloOpcode::kCopyDone}; std::vector<xla::HloOpcode> orange_op_codes = {xla::HloOpcode::kParameter}; std::vector<xla::HloOpcode> purple_op_codes = { xla::HloOpcode::kBatchNormGrad, xla::HloOpcode::kBatchNormInference, xla::HloOpcode::kBatchNormTraining, xla::HloOpcode::kReduce, xla::HloOpcode::kReduceWindow, xla::HloOpcode::kScatter, xla::HloOpcode::kSelectAndScatter, xla::HloOpcode::kGather}; std::vector<xla::HloOpcode> yellow_op_codes = { xla::HloOpcode::kBroadcast, xla::HloOpcode::kDynamicUpdateSlice}; auto OpCodesToNames = [&](std::vector<xla::HloOpcode> op_codes) -> std::string { std::string op_names = ""; for (const auto& op_code : op_codes) { if (!op_names.empty()) { op_names += ","; } op_names += std::string(xla::HloOpcodeString(op_code)); } return op_names; }; return absl::StrReplaceAll( R"json({ "kBlue": "$asyncOpNames", "kBrown": "$brownOpNames", "kDarkBlue": "$darkBlueOpNames", "kDarkGreen": "$darkGreenOpNames", "kGray": "$grayOpNames", "kGreen": "$greenOpNames", "kOrange": "$orangeOpNames", "kPurple": "$purpleOpNames", "kYellow": "$yellowOpNames" })json", { {"$asyncOpNames", OpCodesToNames(async_op_codes)}, {"$brownOpNames", OpCodesToNames(brown_op_codes)}, {"$darkBlueOpNames", OpCodesToNames(dark_blue_op_codes)}, {"$darkGreenOpNames", OpCodesToNames(dark_green_op_codes)}, {"$grayOpNames", OpCodesToNames(gray_op_codes)}, {"$greenOpNames", OpCodesToNames(green_op_codes)}, {"$orangeOpNames", OpCodesToNames(orange_op_codes)}, {"$purpleOpNames", OpCodesToNames(purple_op_codes)}, {"$yellowOpNames", OpCodesToNames(yellow_op_codes)}, }); } absl::StatusOr<GraphViewerParams> ParseGraphViewerParams( const ToolOptions& options) { GraphViewerParams params; std::optional<std::string> type = GetParam<std::string>(options, "type"); if (!type.has_value()) { return errors::InvalidArgument("Graph viewer must provide a type option."); } if (type == kGraphTypeName) { params.type = type.value(); if (std::optional<std::string> node_name = GetParam<std::string>(options, "node_name")) { params.node_name = node_name.value(); } params.graph_width = GetParamWithDefault<int>(options, "graph_width", kDefaultWidth); params.render_options.show_backend_config = GetParamWithDefault<int>( options, "show_metadata", kDefaultShowMetadata); params.render_options.show_fusion_subcomputations = !GetParamWithDefault<int>(options, "merge_fusion", kDefaultMergeFusion); params.format = GetRenderFormat(GetParamWithDefault<std::string>( options, "format", kDefaultFormatString)); return params; } if (type == kShortTxtTypeName || type == kLongTxtTypeName) { params.type = type.value(); params.verbose = (type == kLongTxtTypeName); params.show_metadata = GetParamWithDefault(options, "show_metadata", kDefaultShowMetadata); return params; } return errors::InvalidArgument("Unknown graph viewer type option: ", type.value()); } xla::RenderedGraphFormat GetRenderFormat(const std::string& format_string) { if (format_string == "html") { return xla::RenderedGraphFormat::kHtml; } else if (format_string == "dot") { return xla::RenderedGraphFormat::kDot; } else if (format_string == "url") { return xla::RenderedGraphFormat::kUrl; } else { LOG(ERROR) << "Invalid graph format argument: " << format_string << ", fallback to default url"; return xla::RenderedGraphFormat::kUrl; } } absl::StatusOr<std::string> ConvertHloProtoToGraph( const HloProto& hlo_proto, const std::string& node_name, int graph_width, const HloRenderOptions& render_options, const RenderedGraphFormat& format) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); return Plot(std::move(hlo_module), node_name, graph_width, render_options, format); } absl::StatusOr<std::string> ConvertHloProtoToMeGraph( const HloProto& hlo_proto, const std::string& node_name, int graph_width) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); return PlotMe(std::move(hlo_module), node_name, graph_width); } absl::StatusOr<std::string> ConvertHloProtoToStringView( const HloProto& hlo_proto, bool verbose, bool metadata) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); HloPrintOptions options; if (!verbose) { options = HloPrintOptions::ShortParsable(); } options.set_print_large_constants(verbose); options.set_print_metadata(metadata); return hlo_module->ToString(options); } std::function<absl::StatusOr<std::string>(absl::string_view)>* url_renderer = nullptr; absl::Status CheckPrecondition(xla::RenderedGraphFormat format) { if (format == xla::RenderedGraphFormat::kUrl && url_renderer == nullptr) { return absl::FailedPreconditionError( "Can't render as URL; no URL renderer was registered."); } return absl::OkStatus(); } absl::StatusOr<std::string> RenderGraphView( const xla::HloComputation& computation, absl::string_view label, const xla::DebugOptions& debug_options, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options) { auto precheck_status = CheckPrecondition(format); if (!precheck_status.ok()) { return precheck_status; } auto rendered_dot = xla::RenderGraph(computation, label, debug_options, RenderedGraphFormat::kDot, hlo_render_options); if (!rendered_dot.ok()) { return rendered_dot.status(); } return WrapDotInFormat(rendered_dot.value(), format); } absl::StatusOr<std::string> RenderGraphNeighborhoodAround( const xla::HloInstruction& node, int radius, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options, const absl::flat_hash_set<const xla::HloInstruction*>& boundary) { auto precheck_status = CheckPrecondition(format); if (!precheck_status.ok()) { return precheck_status; } auto rendered_dot = xla::RenderNeighborhoodAround( node, radius, RenderedGraphFormat::kDot, hlo_render_options, boundary); if (!rendered_dot.ok()) { return rendered_dot.status(); } return WrapDotInFormat(rendered_dot.value(), format); } absl::StatusOr<std::string> WrapDotInFormat(std::string dot, xla::RenderedGraphFormat format) { switch (format) { case xla::RenderedGraphFormat::kUrl: if (url_renderer == nullptr) { return absl::InternalError("url_renderer is null"); } return (*url_renderer)(dot); case xla::RenderedGraphFormat::kHtml: return WrapDotInHtml(dot); case xla::RenderedGraphFormat::kDot: return std::string(dot); } } std::string WrapDotInHtml(std::string dot) { return absl::StrReplaceAll(R"html( <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <style type="text/css"> body { height: 100vh; margin: 0; } #graph-container {height:95vh;width:100%;padding:10px;display:block;} #graph-container svg { height: 100% !important; width: 100% !important;} .node, .cluster {cursor:pointer;} .cluster:hover, .node:hover {outline: solid 3px black;} </style> </head> <body> <script src="https: integrity="sha384-LigJPbR3TOfU/Xbb+PjiN1dGJYPweLk7kiGnaMgmxnUmKWaCFKbb5tH6iLlyVhPZ" crossorigin="anonymous"></script> <script src="https: <div id="graph-container"></div> <script> const cssregex = new RegExp('stylesheet=<([^]*)\n>\n', 'gm'); const hpccWasm = window["@hpcc-js/wasm"]; const data = `$DOT`; const results = cssregex.exec(data); let dot_data = data; let css_data = ''; if (results !== null) { css_data = results[1].replace(/\s*data:.*\s*,/,''); css_data = unescape(css_data); dot_data = data.replace(cssregex, ''); } var render_start = performance.now() function add_controls(svg) { var htmlblob = new Blob([document.documentElement.innerHTML], {type: 'text/html'}); var savehtml = document.createElement('a'); savehtml.setAttribute('href', URL.createObjectURL(htmlblob)); savehtml.setAttribute('download', 'graph.html'); savehtml.innerHTML = " [Save HTML+SVG] "; document.body.append(savehtml); var svgblob = new Blob([svg.outerHTML], {type: 'image/svg'}); var savesvg = document.createElement('a'); savesvg.setAttribute('href', URL.createObjectURL(svgblob)); savesvg.setAttribute('download', 'graph.svg'); savesvg.innerHTML = " [Save SVG] "; document.body.append(savesvg); var dotblob = new Blob([data], {type: 'text/dot'}); var savedot = document.createElement('a'); savedot.setAttribute('href', URL.createObjectURL(dotblob)); savedot.setAttribute('download', 'graph.dot'); savedot.innerHTML = " [Save DOT] "; document.body.append(savedot); var render_end = performance.now(); var render_note = document.createElement('div') render_note.innerHTML = 'Rendering took ' + (render_end - render_start).toFixed(2) + "ms." document.body.append(render_note); } const render_callback = svg => { const container = document.getElementById('graph-container') container.innerHTML = `${svg}<style>${css_data}</style>`; const panZoom = svgPanZoom(container.children[0], { zoomEnabled: true, controlIconsEnabled: true, maxZoom: 200, minZoom: 0, }); add_controls(svg); }; hpccWasm.graphviz.layout(dot_data, "svg", "dot").then(render_callback); </script> </body> </html> )html", { {"$DOT", dot}, }); } void RegisterGraphvizURLRenderer( std::function<absl::StatusOr<std::string>(absl::string_view)> renderer) { if (url_renderer != nullptr) { LOG(WARNING) << "Multiple calls to RegisterGraphToURLRenderer. Last call " "wins, but because order of initialization in C++ is " "nondeterministic, this may not be what you want."; } delete url_renderer; url_renderer = new std::function<absl::StatusOr<std::string>(absl::string_view)>( std::move(renderer)); } } }
#include "tensorflow/core/profiler/convert/hlo_proto_to_graph_view.h" #include <string> #include <variant> #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/convert/tool_options.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace profiler { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; TEST(GraphViewerParamsTest, GraphType) { ToolOptions options1; options1["type"] = "graph"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "graph"); EXPECT_EQ(params1.node_name, ""); EXPECT_EQ(params1.graph_width, 3); EXPECT_EQ(params1.render_options.show_backend_config, false); EXPECT_EQ(params1.render_options.show_fusion_subcomputations, true); EXPECT_EQ(params1.format, xla::RenderedGraphFormat::kUrl); ToolOptions options2; options2["type"] = "graph"; options2["node_name"] = "fusion.111"; options2["graph_width"] = 10; options2["show_metadata"] = 1; options2["merge_fusion"] = 1; options2["format"] = "html"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "graph"); EXPECT_EQ(params2.node_name, "fusion.111"); EXPECT_EQ(params2.graph_width, 10); EXPECT_EQ(params2.render_options.show_backend_config, true); EXPECT_EQ(params2.render_options.show_fusion_subcomputations, false); EXPECT_EQ(params2.format, xla::RenderedGraphFormat::kHtml); } TEST(GraphViewerParamsTest, ShortTxtType) { ToolOptions options1; options1["type"] = "short_txt"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "short_txt"); EXPECT_EQ(params1.verbose, false); EXPECT_EQ(params1.show_metadata, false); ToolOptions options2; options2["type"] = "short_txt"; options2["show_metadata"] = 1; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "short_txt"); EXPECT_EQ(params2.verbose, false); EXPECT_EQ(params2.show_metadata, true); } TEST(GraphViewerParamsTest, LongTxtType) { ToolOptions options1; options1["type"] = "long_txt"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "long_txt"); EXPECT_EQ(params1.verbose, true); EXPECT_EQ(params1.show_metadata, false); ToolOptions options2; options2["type"] = "long_txt"; options2["show_metadata"] = 1; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "long_txt"); EXPECT_EQ(params2.verbose, true); EXPECT_EQ(params2.show_metadata, true); } TEST(GraphViewerParamsTest, OtherTypes) { ToolOptions options1; EXPECT_THAT(ParseGraphViewerParams(options1), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Graph viewer must provide a type option"))); ToolOptions options2; options2["type"] = "abcd"; EXPECT_THAT(ParseGraphViewerParams(options2), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Unknown graph viewer type option: abcd"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/hlo_proto_to_graph_view.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/hlo_proto_to_graph_view_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ddfcea69-3e8f-447d-969f-24dcf59ba273
cpp
tensorflow/tensorflow
input_split_metadata
tensorflow/core/kernels/batching_util/input_split_metadata.cc
tensorflow/core/kernels/batching_util/input_split_metadata_test.cc
#include "tensorflow/core/kernels/batching_util/input_split_metadata.h" #include <algorithm> #include "absl/container/fixed_array.h" #include "absl/strings/str_join.h" namespace tensorflow { namespace serving { namespace internal { namespace { int compute_task_size_from_open_batch(int input_task_size, int open_batch_remaining_slot, int batch_size_limit) { return (open_batch_remaining_slot > 0) ? (input_task_size + batch_size_limit - open_batch_remaining_slot) : input_task_size; } int compute_head_task_size(int input_task_size, int open_batch_remaining_slot, int batch_size_limit) { if (open_batch_remaining_slot == 0) { return std::min(input_task_size, batch_size_limit); } return std::min(open_batch_remaining_slot, input_task_size); } int compute_tail_task_size(int task_size_from_open_batch, int input_task_size, int open_batch_remaining_slot, int batch_size_limit) { int tail_task_size; if (input_task_size <= open_batch_remaining_slot) { tail_task_size = input_task_size; } else { tail_task_size = task_size_from_open_batch % batch_size_limit; if (tail_task_size == 0) { tail_task_size = batch_size_limit; } } return tail_task_size; } int compute_num_batches(int task_size_from_open_batch, int batch_size_limit) { return (task_size_from_open_batch + batch_size_limit - 1) / batch_size_limit; } } InputSplitMetadata::InputSplitMetadata(int input_task_size, int open_batch_remaining_slot, int batch_size_limit) : task_sizes_(generate_task_sizes( input_task_size, open_batch_remaining_slot, batch_size_limit)) {} const absl::FixedArray<int>& InputSplitMetadata::task_sizes() const { return task_sizes_; } std::string InputSplitMetadata::DebugString() const { return absl::StrJoin(task_sizes_, ", "); } absl::FixedArray<int> InputSplitMetadata::generate_task_sizes( int input_task_size, int open_batch_remaining_slot, int batch_size_limit) const { const int task_size_from_open_batch = compute_task_size_from_open_batch( input_task_size, open_batch_remaining_slot, batch_size_limit); const int num_batches = compute_num_batches(task_size_from_open_batch, batch_size_limit); absl::FixedArray<int> task_sizes(num_batches, batch_size_limit); task_sizes.front() = compute_head_task_size( input_task_size, open_batch_remaining_slot, batch_size_limit); task_sizes.back() = compute_tail_task_size(task_size_from_open_batch, input_task_size, open_batch_remaining_slot, batch_size_limit); return task_sizes; } } } }
#include "tensorflow/core/kernels/batching_util/input_split_metadata.h" #include "absl/strings/str_join.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace internal { namespace { TEST(InputSplitUtilTest, Basic) { for (const auto& batch_task_param : {std::tuple<int , int , int , int , int , int , int >{5, 1, 1, 5, 4, 1, 1}, {10, 3, 4, 3, 2, 3, 3}, {20, 5, 6, 4, 3, 5, 3}, {30, 0, 11, 3, 3, 11, 8}, {5, 6, 8, 1, 0, 5, 5}}) { const int input_size = std::get<0>(batch_task_param); const int open_batch_remaining_slot = std::get<1>(batch_task_param); const int batch_size_limit = std::get<2>(batch_task_param); const int expected_num_batches = std::get<3>(batch_task_param); const int expected_head_batch_task_size = std::get<5>(batch_task_param); const int expected_tail_batch_task_size = std::get<6>(batch_task_param); ASSERT_LE(open_batch_remaining_slot, batch_size_limit); InputSplitMetadata input_split_metadata( input_size, open_batch_remaining_slot, batch_size_limit); EXPECT_EQ(input_split_metadata.task_sizes().size(), expected_num_batches); absl::FixedArray<int> expected_task_sizes(expected_num_batches); for (int i = 0; i < expected_num_batches; i++) { if (i == 0) { expected_task_sizes[i] = expected_head_batch_task_size; } else if (i == expected_num_batches - 1) { expected_task_sizes[i] = expected_tail_batch_task_size; } else { expected_task_sizes[i] = batch_size_limit; } } EXPECT_THAT(input_split_metadata.task_sizes(), ::testing::ElementsAreArray(expected_task_sizes)); EXPECT_EQ(input_split_metadata.DebugString(), absl::StrJoin(expected_task_sizes, ", ")); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/input_split_metadata.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/input_split_metadata_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
afae6ffd-8b55-4046-b9af-01091e4ddae9
cpp
google/tensorstore
compressor
tensorstore/driver/n5/compressor.cc
tensorstore/driver/zarr/compressor_test.cc
#include "tensorstore/driver/n5/compressor.h" #include <utility> #include "absl/base/no_destructor.h" #include "tensorstore/driver/n5/compressor_registry.h" #include "tensorstore/internal/compression/json_specified_compressor.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_registry.h" namespace tensorstore { namespace internal_n5 { using CompressorRegistry = internal::JsonSpecifiedCompressor::Registry; CompressorRegistry& GetCompressorRegistry() { static absl::NoDestructor<CompressorRegistry> registry; return *registry; } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(Compressor, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { namespace jb = tensorstore::internal_json_binding; auto& registry = GetCompressorRegistry(); return jb::Object( jb::Member("type", jb::MapValue(registry.KeyBinder(), std::make_pair(Compressor{}, "raw"))), registry.RegisteredObjectBinder())(is_loading, options, obj, j); }) } }
#include "tensorstore/driver/zarr/compressor.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr::Compressor; TEST(ParseCompressorTest, Null) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto compressor, Compressor::FromJson(nullptr)); EXPECT_EQ(nullptr, ::nlohmann::json(compressor)); } TEST(ParseCompressorTest, ZlibSuccess) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto compressor, Compressor::FromJson({{"id", "zlib"}, {"level", 5}})); EXPECT_EQ((::nlohmann::json{{"id", "zlib"}, {"level", 5}}), ::nlohmann::json(compressor)); } TEST(ParseCompressorTest, ZlibFailure) { EXPECT_THAT( Compressor::FromJson(::nlohmann::json{{"id", "zlib"}, {"level", "a"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); } TEST(ParseCompressorTest, UnsupportedId) { EXPECT_THAT( Compressor::FromJson(::nlohmann::json{{"id", "invalid"}, {"level", "a"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"id\": " "\"invalid\" is not registered")); } TEST(ParseCompressorTest, InvalidId) { EXPECT_THAT(Compressor::FromJson(::nlohmann::json{{"id", 5}, {"level", "a"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"id\": " "Expected string, but received: 5")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/n5/compressor.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/driver/zarr/compressor_test.cc
4f887a6430414cd6088e1743555015b10f116d50
93a4e78f-e7b6-439c-a9ab-8ad84529ba55
cpp
tensorflow/tensorflow
batch_stats
tensorflow/core/kernels/batching_util/batch_stats.h
tensorflow/core/kernels/batching_util/batch_stats_test.cc
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BATCH_STATS_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_BATCH_STATS_H_ #include <atomic> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <vector> #include "absl/container/node_hash_map.h" #include "absl/time/time.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/types.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow::serving { constexpr int64_t kNumBatchThreadsUnknown = -1; constexpr int64_t kBatchTimeoutMicrosUnknown = -1; class CostTracker { public: void Register(absl::Duration cost) { DCHECK_GT(cost, absl::ZeroDuration()); mutex_lock l(mu_); sample_count_++; sample_sum_ += cost; }; std::optional<absl::Duration> mean() const { int64_t count; absl::Duration sum; { mutex_lock l(mu_); count = sample_count_; sum = sample_sum_; } if (count == 0) return std::nullopt; return sum / count; }; private: mutable mutex mu_; int64_t sample_count_ TF_GUARDED_BY(mu_) = 0; absl::Duration sample_sum_ TF_GUARDED_BY(mu_); }; class BatchSizeStats { public: CostTracker& tpu_cost() { return tpu_cost_; }; private: CostTracker tpu_cost_; }; class ModelBatchStats { public: BatchSizeStats& batch_size(int32 batch_size) { mutex_lock l(mu_); return batch_size_stats_by_batch_size_[batch_size]; } void RegisterProcessedSize(int64_t size) { cumulative_processed_size_.fetch_add(size, std::memory_order_relaxed); } int64_t cumulative_processed_size() const { return cumulative_processed_size_.load(std::memory_order_relaxed); } std::vector<int32> BatchSizes() const { std::vector<int32> result; mutex_lock l(mu_); result.reserve(batch_size_stats_by_batch_size_.size()); for (const auto& [key, value] : batch_size_stats_by_batch_size_) { result.push_back(key); } return result; } void SetNumBatchThreads(int64_t num_batch_threads) { num_batch_threads_.store(num_batch_threads, std::memory_order_relaxed); } int64_t num_batch_threads() const { return num_batch_threads_.load(std::memory_order_relaxed); } void SetBatchTimeoutMicros(int64_t batch_timeout_micros) { batch_timeout_micros_.store(batch_timeout_micros, std::memory_order_relaxed); } int64_t batch_timeout_micros() const { return batch_timeout_micros_.load(std::memory_order_relaxed); } private: mutable mutex mu_; absl::node_hash_map<int32, BatchSizeStats> batch_size_stats_by_batch_size_ TF_GUARDED_BY(mu_); std::atomic<int64_t> cumulative_processed_size_ = 0; std::atomic<int64_t> num_batch_threads_ = kNumBatchThreadsUnknown; std::atomic<int64_t> batch_timeout_micros_ = kBatchTimeoutMicrosUnknown; }; class BatchStatsRegistry { public: ModelBatchStats& model(const std::string& model_name, const std::string& op_name) { std::tuple key(model_name, op_name); mutex_lock l(mu_); return model_batch_stats_by_model_and_op_names_[key]; } std::vector<std::tuple<std::string, std::string>> ModelAndOpNames() const { std::vector<std::tuple<std::string, std::string>> result; mutex_lock l(mu_); result.reserve(model_batch_stats_by_model_and_op_names_.size()); for (const auto& [key, value] : model_batch_stats_by_model_and_op_names_) { result.push_back(key); } return result; } private: mutable mutex mu_; absl::node_hash_map<std::tuple<std::string, std::string>, ModelBatchStats> model_batch_stats_by_model_and_op_names_ TF_GUARDED_BY(mu_); }; inline BatchStatsRegistry& GlobalBatchStatsRegistry() { static BatchStatsRegistry* instance = new BatchStatsRegistry(); return *instance; } } #endif
#include "tensorflow/core/kernels/batching_util/batch_stats.h" #include <tuple> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorflow/core/platform/test.h" namespace tensorflow::serving { namespace { using ::testing::UnorderedElementsAre; TEST(BatchStatsTest, GlobalBatchStatsRegistryAlwaysReturnsTheSameInstance) { ASSERT_EQ(&GlobalBatchStatsRegistry(), &GlobalBatchStatsRegistry()); } TEST(BatchStatsTest, BasicOperation) { BatchStatsRegistry stats; stats.model( "m", "o") .batch_size(1) .tpu_cost() .Register(absl::Hours(5)); ASSERT_EQ(stats.model( "m", "o") .batch_size(1) .tpu_cost() .mean(), absl::Hours(5)); } TEST(BatchStatsTest, ModelBatchStatsAreUniqueForEachModel) { BatchStatsRegistry stats; ASSERT_NE(&stats.model( "m", "o"), &stats.model( "m", "o2")); } TEST(BatchStatsTest, BatchSizeStatsAreUniqueForEachBatchSize) { ModelBatchStats stats; ASSERT_NE(&stats.batch_size(1), &stats.batch_size(2)); } TEST(BatchStatsTest, CostTrackerStartsWithNoMean) { CostTracker tracker; ASSERT_FALSE(tracker.mean().has_value()); } TEST(BatchStatsTest, CostTrackerMeanIsCorrect) { CostTracker tracker; tracker.Register(absl::Hours(5)); tracker.Register(absl::Hours(7)); ASSERT_EQ(*tracker.mean(), absl::Hours(6)); } TEST(BatchStatsTest, ProcessedSizeIsCorrect) { ModelBatchStats stats; stats.RegisterProcessedSize(5); stats.RegisterProcessedSize(7); ASSERT_EQ(stats.cumulative_processed_size(), 12); } TEST(BatchStatsTest, ModelOpNamesAreCorrect) { BatchStatsRegistry stats; stats.model( "m", "o") .batch_size(1) .tpu_cost() .Register(absl::Hours(5)); stats.model( "m2", "o") .batch_size(1) .tpu_cost() .Register(absl::Hours(7)); stats.model( "m", "o") .batch_size(2) .tpu_cost() .Register(absl::Hours(4)); stats.model( "m", "o2") .batch_size(1) .tpu_cost() .Register(absl::Hours(1)); ASSERT_THAT(stats.ModelAndOpNames(), UnorderedElementsAre( std::tuple( "m", "o"), std::tuple( "m", "o2"), std::tuple( "m2", "o"))); } TEST(BatchStatsTest, BatchSizesAreCorrect) { ModelBatchStats stats; stats.batch_size(1).tpu_cost().Register(absl::Hours(5)); stats.batch_size(4).tpu_cost().Register(absl::Hours(7)); stats.batch_size(1).tpu_cost().Register(absl::Hours(4)); stats.batch_size(2).tpu_cost().Register(absl::Hours(1)); ASSERT_THAT(stats.BatchSizes(), UnorderedElementsAre(1, 2, 4)); } TEST(BatchStatsTest, BatchTimeoutIsCorrect) { ModelBatchStats stats; ASSERT_EQ(stats.batch_timeout_micros(), -1); stats.SetBatchTimeoutMicros(100); ASSERT_EQ(stats.batch_timeout_micros(), 100); } TEST(BatchStatsTest, NumBatchThreadsIsCorrect) { ModelBatchStats stats; ASSERT_EQ(stats.num_batch_threads(), -1); stats.SetNumBatchThreads(16); ASSERT_EQ(stats.num_batch_threads(), 16); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/batch_stats.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/batching_util/batch_stats_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
52944e6e-66f7-4103-9d2a-a920c7a49650
cpp
tensorflow/tensorflow
verify_tfxla_legalization
tensorflow/compiler/mlir/tf2xla/transforms/verify_tfxla_legalization.cc
tensorflow/compiler/mlir/tf2xla/transforms/verify_tfxla_legalization_test.cc
#include <map> #include <memory> #include <string> #include <utility> #include <vector> #include "mlir/IR/BuiltinOps.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Visitors.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/xla_legalize_targets.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "tensorflow/core/lib/monitoring/counter.h" #include "tensorflow/core/platform/errors.h" namespace mlir { namespace mhlo { namespace { #define GEN_PASS_DEF_VERIFYTFXLALEGALIZATION #include "tensorflow/compiler/mlir/tf2xla/transforms/xla_legalize_tf_passes.h.inc" auto* mlir_failed_legalization_op_count = tensorflow::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/" "mlir_second_phase_failed_legalization_op_count", "Counts which op fails to legalize", "op_name"); auto* mlir_non_static_op_count = tensorflow::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/" "mlir_second_phase_non_static_op_count", "Counts which ops do not have static results", "op_name"); auto* mlir_non_static_op_skip_count = tensorflow::monitoring::Counter<1>::New( "/tensorflow/core/tf2xla/" "mlir_second_phase_non_static_op_skip_count", "Counts skipped ops which do not have static results", "op_name"); static const char* kMustBeConstantError = "must have compile-time constant inputs and outputs.\n\n" "XLA compilation requires that operator arguments that represent shapes or " "dimensions be evaluated to concrete values at compile time. This error " "means that a shape or dimension argument could not be evaluated at " "compile time, usually because the value of the argument depends on a " "parameter to the computation, on a variable, or on a stateful operation " "such as a random number generator."; static const DenseSet<mlir::TypeID>* operations_to_skip = new DenseSet<mlir::TypeID>{mlir::TypeID::get<mhlo::EinsumOp>()}; class VerifyTFXLALegalization : public impl::VerifyTFXLALegalizationBase<VerifyTFXLALegalization> { public: explicit VerifyTFXLALegalization(bool legalize_chlo) { legalize_chlo_ = legalize_chlo; } void runOnOperation() override; }; static void IncrementCounterFor(tensorflow::monitoring::Counter<1>* counter, Operation* op) { counter->GetCell(op->getName().getStringRef().str())->IncrementBy(1); } bool HasBounds(RankedTensorType type) { auto encoding = mlir::dyn_cast_or_null<mlir::mhlo::TypeExtensionsAttr>( type.getEncoding()); return (encoding && !encoding.getBounds().empty()); } bool HasStaticShapeOrBounded(Value val) { auto type = val.getType(); if (mlir::isa<UnrankedTensorType>(type)) { return false; } if (mlir::isa<RankedTensorType>(type)) { auto ranked_tensor = mlir::dyn_cast<RankedTensorType>(type); if (ranked_tensor.hasStaticShape()) { return true; } return HasBounds(ranked_tensor); } return true; } bool EmitMustBeConstantError(Operation* op) { if (operations_to_skip->contains(op->getRegisteredInfo()->getTypeID())) { IncrementCounterFor(mlir_non_static_op_skip_count, op); return true; } emitError(op->getLoc()) << absl::StrCat( "Node `", op->getName().getStringRef().str(), "` ", kMustBeConstantError); return false; } bool IsStaticOperation(Operation* op) { for (auto o : op->getResults()) { if (!HasStaticShapeOrBounded(o)) { return EmitMustBeConstantError(op); } } return true; } bool IsMhloAndStatic(Operation* op) { if (!llvm::isa<mlir::mhlo::MhloDialect>(op->getDialect())) { return true; } return IsStaticOperation(op); } bool IsDefaultConversionLegal( Operation* op, const ConversionTarget& default_conversion_target) { if (!default_conversion_target.isLegal(op)) { emitError(op->getLoc()) << "Could not legalize op: " << op->getName(); return false; } return true; } void VerifyTFXLALegalization::runOnOperation() { Operation* func_op = getOperation(); ConversionTarget default_conversion_target = GetDefaultLegalConversionTargets(getContext(), legalize_chlo_); bool has_invalid_ops = false; func_op->walk([&](Operation* op) { if (!IsMhloAndStatic(op)) { has_invalid_ops = true; IncrementCounterFor(mlir_non_static_op_count, op); return WalkResult::interrupt(); } if (!IsDefaultConversionLegal(op, default_conversion_target)) { has_invalid_ops = true; IncrementCounterFor(mlir_failed_legalization_op_count, op); } return WalkResult::advance(); }); if (has_invalid_ops) signalPassFailure(); } } std::unique_ptr<mlir::OperationPass<mlir::func::FuncOp>> CreateVerifyTFXLALegalizationPass(bool legalize_chlo) { return std::make_unique<VerifyTFXLALegalization>(legalize_chlo); } } }
#include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/utils/serialize_mlir_module_utils.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/test_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using ::mlir::MLIRContext; using ::mlir::ModuleOp; using ::mlir::OwningOpRef; using ::mlir::mhlo::test::GetMlirModuleFromString; using ::tensorflow::monitoring::testing::CellReader; static constexpr char kFailedLegalizationStreamz[] = "/tensorflow/core/tf2xla/mlir_second_phase_failed_legalization_op_count"; static constexpr char kNonStaticOpStreamz[] = "/tensorflow/core/tf2xla/mlir_second_phase_non_static_op_count"; static constexpr char kNonStaticOpSkipStreamz[] = "/tensorflow/core/tf2xla/mlir_second_phase_non_static_op_skip_count"; class VerifyTfxlaLegalizationTest : public ::testing::Test { protected: void CreateModule(const char* module_string) { TF_ASSERT_OK_AND_ASSIGN(module_, GetMlirModuleFromString(module_string, &context_)); pm_ = std::make_unique<mlir::PassManager>(&context_); pm_->addNestedPass<mlir::func::FuncOp>( mlir::mhlo::CreateVerifyTFXLALegalizationPass(false)); } mlir::LogicalResult Run() { return pm_->run(module_.get()); } private: MLIRContext context_; OwningOpRef<ModuleOp> module_; std::unique_ptr<mlir::PassManager> pm_; }; TEST_F(VerifyTfxlaLegalizationTest, RecordsStreamzFailedVerification) { static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.BadValue"() {value = dense<1000> : tensor<1xi32>} : () -> tensor<1xi32> func.return %0 : tensor<1xi32> } })"; CellReader<int64_t> error(kFailedLegalizationStreamz); CreateModule(kMlirModuleStr); auto result = Run(); EXPECT_TRUE(result.failed()); EXPECT_EQ(error.Delta("tf.BadValue"), 1); } TEST_F(VerifyTfxlaLegalizationTest, ErrorsNonStaticInputs) { static constexpr char kNonStaticFailure[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1504 : i32}} { func.func @main() -> tensor<?xi32> attributes {tf.entry_function = {control_outputs = "", inputs = "i,j", outputs = "identity_RetVal"}} { %0 = mhlo.constant dense<1.000000e+00> : tensor<f64> %1 = mhlo.convert %0 : (tensor<f64>) -> tensor<i64> %2 = mhlo.reshape %1 : (tensor<i64>) -> tensor<1xi64> %3 = "mhlo.dynamic_iota"(%2) {iota_dimension = 0 : i64} : (tensor<1xi64>) -> tensor<?xi32> %4 = mhlo.multiply %3, %3 : tensor<?xi32> return %4 : tensor<?xi32> } })"; CellReader<int64_t> legal_error(kFailedLegalizationStreamz); CellReader<int64_t> static_error(kNonStaticOpStreamz); CreateModule(kNonStaticFailure); auto result = Run(); EXPECT_TRUE(result.failed()); EXPECT_EQ(legal_error.Delta("mhlo.dynamic_iota"), 0); EXPECT_EQ(static_error.Delta("mhlo.dynamic_iota"), 1); } TEST_F(VerifyTfxlaLegalizationTest, SkipsSpecificNonStaticInputs) { static constexpr char kNonStaticFailure[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1504 : i32}} { func.func @main(%a : tensor<5x14x1xf32>, %b : tensor<1x14x32xf32>) -> tensor<?x?x?xf32> attributes {tf.entry_function = {control_outputs = "", inputs = "i,j", outputs = "identity_RetVal"}} { %c = "mhlo.einsum"(%a, %b) {einsum_config = "bji,bjk->bik"} : (tensor<5x14x1xf32>, tensor<1x14x32xf32>) -> tensor<?x?x?xf32> return %c : tensor<?x?x?xf32> } })"; CellReader<int64_t> static_error(kNonStaticOpStreamz); CellReader<int64_t> skipped(kNonStaticOpSkipStreamz); CreateModule(kNonStaticFailure); auto result = Run(); EXPECT_TRUE(result.succeeded()); EXPECT_EQ(static_error.Delta("mhlo.einsum"), 0); EXPECT_EQ(skipped.Delta("mhlo.einsum"), 1); } TEST_F(VerifyTfxlaLegalizationTest, SkipsNonStaticInputsWithBounds) { static constexpr char kNonStaticWithBoundsSuccess[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 1504 : i32}} { func.func @main() -> tensor<?xi32, #mhlo.type_extensions<bounds = [4]>> attributes {tf.entry_function = {control_outputs = "", inputs = "i,j", outputs = "identity_RetVal"}} { %0 = mhlo.constant dense<1.000000e+00> : tensor<f64> %1 = mhlo.convert %0 : (tensor<f64>) -> tensor<i64> %2 = mhlo.reshape %1 : (tensor<i64>) -> tensor<1xi64> %3 = "mhlo.dynamic_iota"(%2) {iota_dimension = 0 : i64} : (tensor<1xi64>) -> tensor<?xi32, #mhlo.type_extensions<bounds = [4]>> %4 = mhlo.multiply %3, %3 : tensor<?xi32, #mhlo.type_extensions<bounds = [4]>> return %4 : tensor<?xi32, #mhlo.type_extensions<bounds = [4]>> } })"; CellReader<int64_t> legal_error(kFailedLegalizationStreamz); CellReader<int64_t> static_error(kNonStaticOpStreamz); CreateModule(kNonStaticWithBoundsSuccess); auto result = Run(); EXPECT_TRUE(result.succeeded()); EXPECT_EQ(legal_error.Delta("mhlo.multiply"), 0); EXPECT_EQ(static_error.Delta("mhlo.multiply"), 0); } TEST_F(VerifyTfxlaLegalizationTest, RecordsMultipleFailures) { static constexpr char kMultipleFailures[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.BadValue"() {value = dense<1000> : tensor<1xi32>} : () -> tensor<1xi32> %1 = "tf.AlsoBad"() {value = dense<10> : tensor<1xi32>} : () -> tensor<1xi32> func.return %0 : tensor<1xi32> } })"; CellReader<int64_t> error(kFailedLegalizationStreamz); CreateModule(kMultipleFailures); auto result = Run(); EXPECT_TRUE(result.failed()); EXPECT_EQ(error.Delta("tf.BadValue"), 1); EXPECT_EQ(error.Delta("tf.AlsoBad"), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/transforms/verify_tfxla_legalization.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/transforms/verify_tfxla_legalization_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ae38afae-cea4-480b-bc81-c353972f7926
cpp
tensorflow/tensorflow
reduction_utils
third_party/xla/xla/service/gpu/reduction_utils.cc
third_party/xla/xla/service/gpu/reduction_utils_test.cc
#include "xla/service/gpu/reduction_utils.h" #include <algorithm> #include <array> #include <atomic> #include <cstdint> #include <ostream> #include "absl/algorithm/container.h" #include "absl/base/const_init.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/hlo_module_config.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/semantic_version.h" #include "xla/util.h" #include "tsl/platform/logging.h" #ifdef GOOGLE_CUDA #include "xla/service/gpu/gpu_asm_opts_util.h" #include "xla/stream_executor/cuda/cuda_asm_compiler.h" #endif namespace xla { namespace gpu { namespace { Vector3 PartitionShapeByMiddleDimensions( const Shape& shape, absl::Span<const int64_t> dims_middle) { CHECK(LayoutUtil::AreDimensionsConsecutive(shape.layout(), dims_middle)); Vector3 values = {1, 1, 1}; enum Segment { kMajor = 0, kMiddle = 1, kMinor = 2 }; Segment cur_segment = kMinor; for (int64_t cur_dim : LayoutUtil::MinorToMajor(shape)) { if (cur_segment != kMajor) { bool cur_dim_in_middle = absl::c_linear_search(dims_middle, cur_dim); if (cur_segment == kMinor) { if (cur_dim_in_middle) { cur_segment = kMiddle; } } else if (cur_segment == kMiddle) { if (!cur_dim_in_middle) { cur_segment = kMajor; } } } values[cur_segment] *= shape.dimensions(cur_dim); } return values; } } int64_t MinThreadsXRowReduction(const HloModuleConfig& hlo_module_config) { #ifdef GOOGLE_CUDA static absl::Mutex mutex(absl::kConstInit); static std::atomic<bool*> use_reduced_thread_count_atomic = nullptr; bool* use_reduced_thread_count = use_reduced_thread_count_atomic.load(std::memory_order_acquire); if (use_reduced_thread_count == nullptr) { absl::MutexLock lock(&mutex); use_reduced_thread_count = use_reduced_thread_count_atomic.load(std::memory_order_relaxed); if (use_reduced_thread_count == nullptr) { auto ptxas_config = PtxOptsFromDebugOptions(hlo_module_config.debug_options()); auto ptxas_version_tuple = se::GetAsmCompilerVersion(ptxas_config.preferred_cuda_dir); use_reduced_thread_count = new bool(false); if (!ptxas_version_tuple.ok() || ptxas_version_tuple.value() < stream_executor::SemanticVersion{12, 2, 0}) { *use_reduced_thread_count = true; } use_reduced_thread_count_atomic.store(use_reduced_thread_count, std::memory_order_release); } } if (*use_reduced_thread_count) { return 512; } #endif return 1024; } Vector3 GetReductionTiling(const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { int64_t tile_z = std::min(reduction_dimensions.dimensions[0], BatchedReductionRaceFreeBound()); return {tile_z, 1, 16}; } return {1, 128, 1}; } int64_t ReductionDimensionRaceFreeBound( const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions) { Vector3 reduction_tiling = GetReductionTiling(reduction_dimensions); if (reduction_dimensions.is_row_reduction) { return MinThreadsXRowReduction(hlo_module_config) * reduction_tiling[2]; } return WarpSize() * reduction_tiling[1]; } bool IsUnnestedReductionFasterThanElemental( const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { return (reduction_dimensions.dimensions[2] >= WarpSize()) || ((WarpSize() % reduction_dimensions.dimensions[2]) == 0); } int64_t major_size = reduction_dimensions.dimensions[1]; int64_t minor_size = reduction_dimensions.dimensions[2]; bool prefer_elemental_emitter = (major_size < WarpSize()) || (major_size < 2 * WarpSize() && minor_size < WarpSize()) || (major_size < 4 * WarpSize() && minor_size < 8) || (major_size < 8 * WarpSize() && minor_size < 3); return !prefer_elemental_emitter; } bool IsReductionFromOrToContiguousDimensions(const HloInstruction& reduce) { if (reduce.opcode() != HloOpcode::kReduce) { return false; } const Shape& operand_shape = reduce.operand(0)->shape(); absl::Span<const int64_t> dims_to_reduce = reduce.dimensions(); DimensionVector dims_to_keep; for (int64_t dim = 0; dim < operand_shape.dimensions().size(); ++dim) { if (!absl::c_linear_search(dims_to_reduce, dim)) { dims_to_keep.push_back(dim); } } return (LayoutUtil::AreDimensionsConsecutive(operand_shape.layout(), dims_to_keep) || LayoutUtil::AreDimensionsConsecutive(operand_shape.layout(), dims_to_reduce)) && IsUnnestedReductionFasterThanElemental( GetReductionKindAndContiguousComponents(reduce)); } bool ReductionIsRaceFree(const HloModuleConfig& hlo_module_config, const ReductionDimensions& reduction_dimensions) { if (reduction_dimensions.is_row_reduction) { return reduction_dimensions.dimensions[2] <= ReductionDimensionRaceFreeBound(hlo_module_config, reduction_dimensions) && reduction_dimensions.dimensions[0] <= BatchedReductionRaceFreeBound(); } return reduction_dimensions.dimensions[1] <= ReductionDimensionRaceFreeBound(hlo_module_config, reduction_dimensions); } std::ostream& operator<<(std::ostream& os, const ReductionDimensions& reduction_dimensions) { bool is_row_reduction = reduction_dimensions.is_row_reduction; os << (is_row_reduction ? "row " : "column ") << "reduction [" << absl::StrJoin(reduction_dimensions.dimensions, ",") << "] -> [" << reduction_dimensions.dimensions[0] << ", " << reduction_dimensions .dimensions[is_row_reduction ? ReductionDimensions::kRowKeptDimension : ReductionDimensions::kColMinorKeptDimension] << "]"; return os; } ReductionDimensions GetReductionKindAndContiguousComponents( const HloInstruction& reduce) { Shape input_shape = reduce.operand(0)->shape(); absl::Span<const int64_t> dims_to_reduce = reduce.dimensions(); DimensionVector dims_to_keep; for (int64_t dim = 0; dim < input_shape.rank(); ++dim) { if (!absl::c_linear_search(dims_to_reduce, dim)) { dims_to_keep.push_back(dim); } } if (dims_to_keep.empty()) { return {true, {1, 1, ShapeUtil::ElementsIn(input_shape)}}; } if (LayoutUtil::AreDimensionsConsecutive(input_shape.layout(), dims_to_keep)) { Vector3 shape_partition = PartitionShapeByMiddleDimensions(input_shape, dims_to_keep); if (shape_partition[1] == 1) { return {true, {1, 1, shape_partition[0] * shape_partition[2]}}; } if (shape_partition[2] == 1) { return {false, {1, shape_partition[0], shape_partition[1]}}; } return {true, shape_partition}; } Vector3 shape_partition = PartitionShapeByMiddleDimensions(input_shape, dims_to_reduce); if (shape_partition[2] == 1) { return {true, {1, shape_partition[0], shape_partition[1]}}; } return {false, shape_partition}; } bool IsRealReductionHero(const HloInstruction& root, const HloInstruction& hero) { if (!IsReductionFromOrToContiguousDimensions(hero)) { return false; } return &root == &hero || ReductionIsRaceFree(hero.GetModule()->config(), GetReductionKindAndContiguousComponents(hero)); } bool AreReductionsMultiOutputFusionCompatible( const HloInstruction* reduce_hero, const HloInstruction* first_reduce) { return GetReductionKindAndContiguousComponents(*reduce_hero) == GetReductionKindAndContiguousComponents(*first_reduce); } } }
#include "xla/service/gpu/reduction_utils.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/hlo_parser.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ReductionUtilsTest = HloTestBase; const char kModulePrefix[] = R"( HloModule test_module scalar_add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) })"; TEST_F(ReductionUtilsTest, ReductionsAreMultioutputFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,64]{1,0} parameter(0) neg = f32[32,64]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_TRUE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsWithSameCanonicalizedDimsAreMultioutputFusionCompatible) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,64]{1,0} parameter(0) bitcast = f32[32,8,8]{2,1,0} bitcast(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(bitcast, constant), dimensions={1,2}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_TRUE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentOperandShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={0}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) p_1 = f32[64,32]{1,0} parameter(1) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_1), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentOutputShapes) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,64]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={1}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[64,32]{1,0} parameter(0) neg = f32[64,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[64]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,64]{1,0} parameter(0) p_1 = f32[64,32]{1,0} parameter(1) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[64]{0} fusion(p_1), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[64]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST_F(ReductionUtilsTest, ReductionsAreNotMultioutputFusionCompatible_DifferentReduceDimensions) { auto module = ParseAndReturnVerifiedModule(absl::StrCat(kModulePrefix, R"( fused_sibling1 { p_0 = f32[32,32]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(p_0, constant), dimensions={0}, to_apply=scalar_add } fused_sibling2 { p_0 = f32[32,32]{1,0} parameter(0) neg = f32[32,32]{1,0} negate(p_0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(neg, constant), dimensions={1}, to_apply=scalar_add } ENTRY entry { p_0 = f32[32,32]{1,0} parameter(0) fusion1 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling1 fusion2 = f32[32]{0} fusion(p_0), kind=kInput, calls=fused_sibling2 ROOT root = (f32[32]{0}, f32[32]{0}) tuple(fusion1, fusion2) })")) .value(); const HloInstruction* root = module->entry_computation()->root_instruction(); const HloInstruction* fusion1 = root->operand(0); const HloInstruction* fusion2 = root->operand(1); EXPECT_FALSE(AreReductionsMultiOutputFusionCompatible( fusion1->fused_expression_root(), fusion2->fused_expression_root())); } TEST(ReductionDimensionsTest, GetOutputShape) { ReductionDimensions row_reduction{true, {1, 2, 3}}; ReductionDimensions col_reduction{false, {1, 2, 3}}; EXPECT_THAT(row_reduction.GetOutputShape(), ElementsAre(2)); EXPECT_THAT(col_reduction.GetOutputShape(), ElementsAre(1, 3)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/reduction_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/reduction_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3358f23b-4b78-4872-945b-0d8d3aa38831
cpp
google/quiche
quiche_data_reader
quiche/common/quiche_data_reader.cc
quiche/common/quiche_data_reader_test.cc
#include "quiche/common/quiche_data_reader.h" #include <algorithm> #include <cstring> #include <string> #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_endian.h" namespace quiche { QuicheDataReader::QuicheDataReader(absl::string_view data) : QuicheDataReader(data.data(), data.length(), quiche::NETWORK_BYTE_ORDER) { } QuicheDataReader::QuicheDataReader(const char* data, const size_t len) : QuicheDataReader(data, len, quiche::NETWORK_BYTE_ORDER) {} QuicheDataReader::QuicheDataReader(const char* data, const size_t len, quiche::Endianness endianness) : data_(data), len_(len), pos_(0), endianness_(endianness) {} bool QuicheDataReader::ReadUInt8(uint8_t* result) { return ReadBytes(result, sizeof(*result)); } bool QuicheDataReader::ReadUInt16(uint16_t* result) { if (!ReadBytes(result, sizeof(*result))) { return false; } if (endianness_ == quiche::NETWORK_BYTE_ORDER) { *result = quiche::QuicheEndian::NetToHost16(*result); } return true; } bool QuicheDataReader::ReadUInt24(uint32_t* result) { if (endianness_ != quiche::NETWORK_BYTE_ORDER) { QUICHE_BUG(QuicheDataReader_ReadUInt24_NotImplemented); return false; } *result = 0; if (!ReadBytes(reinterpret_cast<char*>(result) + 1, 3u)) { return false; } *result = quiche::QuicheEndian::NetToHost32(*result); return true; } bool QuicheDataReader::ReadUInt32(uint32_t* result) { if (!ReadBytes(result, sizeof(*result))) { return false; } if (endianness_ == quiche::NETWORK_BYTE_ORDER) { *result = quiche::QuicheEndian::NetToHost32(*result); } return true; } bool QuicheDataReader::ReadUInt64(uint64_t* result) { if (!ReadBytes(result, sizeof(*result))) { return false; } if (endianness_ == quiche::NETWORK_BYTE_ORDER) { *result = quiche::QuicheEndian::NetToHost64(*result); } return true; } bool QuicheDataReader::ReadBytesToUInt64(size_t num_bytes, uint64_t* result) { *result = 0u; if (num_bytes > sizeof(*result)) { return false; } if (endianness_ == quiche::HOST_BYTE_ORDER) { return ReadBytes(result, num_bytes); } if (!ReadBytes(reinterpret_cast<char*>(result) + sizeof(*result) - num_bytes, num_bytes)) { return false; } *result = quiche::QuicheEndian::NetToHost64(*result); return true; } bool QuicheDataReader::ReadStringPiece16(absl::string_view* result) { uint16_t result_len; if (!ReadUInt16(&result_len)) { return false; } return ReadStringPiece(result, result_len); } bool QuicheDataReader::ReadStringPiece8(absl::string_view* result) { uint8_t result_len; if (!ReadUInt8(&result_len)) { return false; } return ReadStringPiece(result, result_len); } bool QuicheDataReader::ReadStringPiece(absl::string_view* result, size_t size) { if (!CanRead(size)) { OnFailure(); return false; } *result = absl::string_view(data_ + pos_, size); pos_ += size; return true; } absl::string_view QuicheDataReader::ReadAtMost(size_t size) { size_t actual_size = std::min(size, BytesRemaining()); absl::string_view result = absl::string_view(data_ + pos_, actual_size); AdvancePos(actual_size); return result; } bool QuicheDataReader::ReadTag(uint32_t* tag) { return ReadBytes(tag, sizeof(*tag)); } bool QuicheDataReader::ReadDecimal64(size_t num_digits, uint64_t* result) { absl::string_view digits; if (!ReadStringPiece(&digits, num_digits)) { return false; } return absl::SimpleAtoi(digits, result); } QuicheVariableLengthIntegerLength QuicheDataReader::PeekVarInt62Length() { QUICHE_DCHECK_EQ(endianness(), NETWORK_BYTE_ORDER); const unsigned char* next = reinterpret_cast<const unsigned char*>(data() + pos()); if (BytesRemaining() == 0) { return VARIABLE_LENGTH_INTEGER_LENGTH_0; } return static_cast<QuicheVariableLengthIntegerLength>( 1 << ((*next & 0b11000000) >> 6)); } bool QuicheDataReader::ReadVarInt62(uint64_t* result) { QUICHE_DCHECK_EQ(endianness(), quiche::NETWORK_BYTE_ORDER); size_t remaining = BytesRemaining(); const unsigned char* next = reinterpret_cast<const unsigned char*>(data() + pos()); if (remaining != 0) { switch (*next & 0xc0) { case 0xc0: if (remaining >= 8) { *result = (static_cast<uint64_t>((*(next)) & 0x3f) << 56) + (static_cast<uint64_t>(*(next + 1)) << 48) + (static_cast<uint64_t>(*(next + 2)) << 40) + (static_cast<uint64_t>(*(next + 3)) << 32) + (static_cast<uint64_t>(*(next + 4)) << 24) + (static_cast<uint64_t>(*(next + 5)) << 16) + (static_cast<uint64_t>(*(next + 6)) << 8) + (static_cast<uint64_t>(*(next + 7)) << 0); AdvancePos(8); return true; } return false; case 0x80: if (remaining >= 4) { *result = (((*(next)) & 0x3f) << 24) + (((*(next + 1)) << 16)) + (((*(next + 2)) << 8)) + (((*(next + 3)) << 0)); AdvancePos(4); return true; } return false; case 0x40: if (remaining >= 2) { *result = (((*(next)) & 0x3f) << 8) + (*(next + 1)); AdvancePos(2); return true; } return false; case 0x00: *result = (*next) & 0x3f; AdvancePos(1); return true; } } return false; } bool QuicheDataReader::ReadStringPieceVarInt62(absl::string_view* result) { uint64_t result_length; if (!ReadVarInt62(&result_length)) { return false; } return ReadStringPiece(result, result_length); } bool QuicheDataReader::ReadStringVarInt62(std::string& result) { absl::string_view result_view; bool success = ReadStringPieceVarInt62(&result_view); result = std::string(result_view); return success; } absl::string_view QuicheDataReader::ReadRemainingPayload() { absl::string_view payload = PeekRemainingPayload(); pos_ = len_; return payload; } absl::string_view QuicheDataReader::PeekRemainingPayload() const { return absl::string_view(data_ + pos_, len_ - pos_); } absl::string_view QuicheDataReader::FullPayload() const { return absl::string_view(data_, len_); } absl::string_view QuicheDataReader::PreviouslyReadPayload() const { return absl::string_view(data_, pos_); } bool QuicheDataReader::ReadBytes(void* result, size_t size) { if (!CanRead(size)) { OnFailure(); return false; } memcpy(result, data_ + pos_, size); pos_ += size; return true; } bool QuicheDataReader::Seek(size_t size) { if (!CanRead(size)) { OnFailure(); return false; } pos_ += size; return true; } bool QuicheDataReader::IsDoneReading() const { return len_ == pos_; } size_t QuicheDataReader::BytesRemaining() const { if (pos_ > len_) { QUICHE_BUG(quiche_reader_pos_out_of_bound) << "QUIC reader pos out of bound: " << pos_ << ", len: " << len_; return 0; } return len_ - pos_; } bool QuicheDataReader::TruncateRemaining(size_t truncation_length) { if (truncation_length > BytesRemaining()) { return false; } len_ = pos_ + truncation_length; return true; } bool QuicheDataReader::CanRead(size_t bytes) const { return bytes <= (len_ - pos_); } void QuicheDataReader::OnFailure() { pos_ = len_; } uint8_t QuicheDataReader::PeekByte() const { if (pos_ >= len_) { QUICHE_LOG(FATAL) << "Reading is done, cannot peek next byte. Tried to read pos = " << pos_ << " buffer length = " << len_; return 0; } return data_[pos_]; } std::string QuicheDataReader::DebugString() const { return absl::StrCat(" { length: ", len_, ", position: ", pos_, " }"); } #undef ENDPOINT }
#include "quiche/common/quiche_data_reader.h" #include <cstdint> #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_endian.h" namespace quiche { TEST(QuicheDataReaderTest, ReadUInt16) { const uint16_t kData[] = { QuicheEndian::HostToNet16(1), QuicheEndian::HostToNet16(1 << 15), }; QuicheDataReader reader(reinterpret_cast<const char*>(kData), sizeof(kData)); EXPECT_FALSE(reader.IsDoneReading()); uint16_t uint16_val; EXPECT_TRUE(reader.ReadUInt16(&uint16_val)); EXPECT_FALSE(reader.IsDoneReading()); EXPECT_EQ(1, uint16_val); EXPECT_TRUE(reader.ReadUInt16(&uint16_val)); EXPECT_TRUE(reader.IsDoneReading()); EXPECT_EQ(1 << 15, uint16_val); } TEST(QuicheDataReaderTest, ReadUInt32) { const uint32_t kData[] = { QuicheEndian::HostToNet32(1), QuicheEndian::HostToNet32(0x80000000), }; QuicheDataReader reader(reinterpret_cast<const char*>(kData), ABSL_ARRAYSIZE(kData) * sizeof(uint32_t)); EXPECT_FALSE(reader.IsDoneReading()); uint32_t uint32_val; EXPECT_TRUE(reader.ReadUInt32(&uint32_val)); EXPECT_FALSE(reader.IsDoneReading()); EXPECT_EQ(1u, uint32_val); EXPECT_TRUE(reader.ReadUInt32(&uint32_val)); EXPECT_TRUE(reader.IsDoneReading()); EXPECT_EQ(1u << 31, uint32_val); } TEST(QuicheDataReaderTest, ReadStringPiece16) { const char kData[] = { 0x00, 0x02, 0x48, 0x69, 0x00, 0x10, 0x54, 0x65, 0x73, 0x74, 0x69, 0x6e, 0x67, 0x2c, 0x20, 0x31, 0x2c, 0x20, 0x32, 0x2c, 0x20, 0x33, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); absl::string_view stringpiece_val; EXPECT_TRUE(reader.ReadStringPiece16(&stringpiece_val)); EXPECT_FALSE(reader.IsDoneReading()); EXPECT_EQ(0, stringpiece_val.compare("Hi")); EXPECT_TRUE(reader.ReadStringPiece16(&stringpiece_val)); EXPECT_TRUE(reader.IsDoneReading()); EXPECT_EQ(0, stringpiece_val.compare("Testing, 1, 2, 3")); } TEST(QuicheDataReaderTest, ReadUInt16WithBufferTooSmall) { const char kData[] = { 0x00, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); uint16_t uint16_val; EXPECT_FALSE(reader.ReadUInt16(&uint16_val)); } TEST(QuicheDataReaderTest, ReadUInt32WithBufferTooSmall) { const char kData[] = { 0x00, 0x00, 0x00, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); uint32_t uint32_val; EXPECT_FALSE(reader.ReadUInt32(&uint32_val)); uint16_t uint16_val; EXPECT_FALSE(reader.ReadUInt16(&uint16_val)); } TEST(QuicheDataReaderTest, ReadStringPiece16WithBufferTooSmall) { const char kData[] = { 0x00, 0x03, 0x48, 0x69, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); absl::string_view stringpiece_val; EXPECT_FALSE(reader.ReadStringPiece16(&stringpiece_val)); uint16_t uint16_val; EXPECT_FALSE(reader.ReadUInt16(&uint16_val)); } TEST(QuicheDataReaderTest, ReadStringPiece16WithBufferWayTooSmall) { const char kData[] = { 0x00, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); absl::string_view stringpiece_val; EXPECT_FALSE(reader.ReadStringPiece16(&stringpiece_val)); uint16_t uint16_val; EXPECT_FALSE(reader.ReadUInt16(&uint16_val)); } TEST(QuicheDataReaderTest, ReadBytes) { const char kData[] = { 0x66, 0x6f, 0x6f, 0x48, 0x69, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); char dest1[3] = {}; EXPECT_TRUE(reader.ReadBytes(&dest1, ABSL_ARRAYSIZE(dest1))); EXPECT_FALSE(reader.IsDoneReading()); EXPECT_EQ("foo", absl::string_view(dest1, ABSL_ARRAYSIZE(dest1))); char dest2[2] = {}; EXPECT_TRUE(reader.ReadBytes(&dest2, ABSL_ARRAYSIZE(dest2))); EXPECT_TRUE(reader.IsDoneReading()); EXPECT_EQ("Hi", absl::string_view(dest2, ABSL_ARRAYSIZE(dest2))); } TEST(QuicheDataReaderTest, ReadBytesWithBufferTooSmall) { const char kData[] = { 0x01, }; QuicheDataReader reader(kData, ABSL_ARRAYSIZE(kData)); EXPECT_FALSE(reader.IsDoneReading()); char dest[ABSL_ARRAYSIZE(kData) + 2] = {}; EXPECT_FALSE(reader.ReadBytes(&dest, ABSL_ARRAYSIZE(kData) + 1)); EXPECT_STREQ("", dest); } TEST(QuicheDataReaderTest, ReadAtMost) { constexpr absl::string_view kData = "foobar"; QuicheDataReader reader(kData); EXPECT_EQ(reader.ReadAtMost(0), ""); EXPECT_EQ(reader.ReadAtMost(3), "foo"); EXPECT_EQ(reader.ReadAtMost(6), "bar"); EXPECT_EQ(reader.ReadAtMost(1000), ""); } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_data_reader.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/quiche_data_reader_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
47921c4c-501b-4155-a145-ae15dcab82ac
cpp
google/cel-cpp
message_type_name
internal/message_type_name.h
internal/message_type_name_test.cc
#ifndef THIRD_PARTY_CEL_CPP_INTERNAL_MESSAGE_TYPE_NAME_H_ #define THIRD_PARTY_CEL_CPP_INTERNAL_MESSAGE_TYPE_NAME_H_ #include <string> #include <type_traits> #include "absl/base/no_destructor.h" #include "absl/strings/string_view.h" #include "google/protobuf/message.h" #include "google/protobuf/message_lite.h" namespace cel::internal { template <typename T> std::enable_if_t< std::conjunction_v<std::is_base_of<google::protobuf::MessageLite, T>, std::negation<std::is_base_of<google::protobuf::Message, T>>>, absl::string_view> MessageTypeNameFor() { static_assert(!std::is_const_v<T>, "T must not be const qualified"); static_assert(!std::is_volatile_v<T>, "T must not be volatile qualified"); static_assert(!std::is_reference_v<T>, "T must not be a reference"); static const absl::NoDestructor<std::string> kTypeName(T().GetTypeName()); return *kTypeName; } template <typename T> std::enable_if_t<std::is_base_of_v<google::protobuf::Message, T>, absl::string_view> MessageTypeNameFor() { static_assert(!std::is_const_v<T>, "T must not be const qualified"); static_assert(!std::is_volatile_v<T>, "T must not be volatile qualified"); static_assert(!std::is_reference_v<T>, "T must not be a reference"); return T::descriptor()->full_name(); } } #endif
#include "internal/message_type_name.h" #include "google/protobuf/any.pb.h" #include "internal/testing.h" namespace cel::internal { namespace { TEST(MessageTypeNameFor, Generated) { EXPECT_EQ(MessageTypeNameFor<google::protobuf::Any>(), "google.protobuf.Any"); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/message_type_name.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/message_type_name_test.cc
4552db5798fb0853b131b783d8875794334fae7f
50dc4182-df60-4ae7-a9a7-df5628cbc0a3
cpp
google/tensorstore
sync_flow_sender
tensorstore/util/execution/sync_flow_sender.h
tensorstore/util/execution/sync_flow_sender_test.cc
#ifndef TENSORSTORE_UTIL_EXECUTION_SYNC_FLOW_SENDER_H_ #define TENSORSTORE_UTIL_EXECUTION_SYNC_FLOW_SENDER_H_ #include <utility> #include "absl/synchronization/mutex.h" #include "tensorstore/util/execution/execution.h" namespace tensorstore { template <typename Receiver> struct SyncFlowReceiver { SyncFlowReceiver() = default; SyncFlowReceiver(Receiver receiver) : receiver(std::move(receiver)) {} SyncFlowReceiver(SyncFlowReceiver&& other) : receiver(std::move(other.receiver)) {} SyncFlowReceiver& operator=(SyncFlowReceiver&& other) { receiver = std::move(other.receiver); return *this; } template <typename CancelReceiver> friend void set_starting(SyncFlowReceiver& self, CancelReceiver cancel) { execution::set_starting(self.receiver, std::move(cancel)); } template <typename... V> friend void set_value(SyncFlowReceiver& self, V... v) { absl::MutexLock lock(&self.mutex); execution::set_value(self.receiver, std::move(v)...); } friend void set_done(SyncFlowReceiver& self) { execution::set_done(self.receiver); } template <typename E> friend void set_error(SyncFlowReceiver& self, E e) { execution::set_error(self.receiver, std::move(e)); } friend void set_stopping(SyncFlowReceiver& self) { execution::set_stopping(self.receiver); } Receiver receiver; absl::Mutex mutex; }; template <typename Sender> struct SyncFlowSender { Sender sender; template <typename Receiver> friend void submit(SyncFlowSender& self, Receiver receiver) { execution::submit(self.sender, SyncFlowReceiver<Receiver>{std::move(receiver)}); } }; template <typename Sender> SyncFlowSender<Sender> MakeSyncFlowSender(Sender sender) { return {std::move(sender)}; } } #endif
#include "tensorstore/util/execution/sync_flow_sender.h" #include <stddef.h> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/thread/thread.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" namespace { struct ConcurrentSender { size_t num_threads; bool error; template <typename Receiver> void submit(Receiver receiver) { tensorstore::execution::set_starting(receiver, [] {}); std::vector<tensorstore::internal::Thread> threads; for (size_t i = 0; i < num_threads; ++i) { threads.emplace_back(tensorstore::internal::Thread( {"sender"}, [i, &receiver] { tensorstore::execution::set_value(receiver, i); })); } for (auto& thread : threads) thread.Join(); if (error) { tensorstore::execution::set_error(receiver, 3); } else { tensorstore::execution::set_done(receiver); } tensorstore::execution::set_stopping(receiver); } }; TEST(SyncFlowSender, Values) { std::vector<std::string> log; const size_t num_threads = 10; tensorstore::execution::submit( tensorstore::MakeSyncFlowSender( ConcurrentSender{num_threads, false}), tensorstore::LoggingReceiver{&log}); ASSERT_EQ(num_threads + 3, log.size()); EXPECT_EQ("set_starting", log[0]); EXPECT_EQ("set_done", log[log.size() - 2]); EXPECT_EQ("set_stopping", log[log.size() - 1]); EXPECT_THAT( log, ::testing::UnorderedElementsAre( "set_starting", "set_value: 0", "set_value: 1", "set_value: 2", "set_value: 3", "set_value: 4", "set_value: 5", "set_value: 6", "set_value: 7", "set_value: 8", "set_value: 9", "set_done", "set_stopping")); } TEST(SyncFlowSender, Error) { std::vector<std::string> log; const size_t num_threads = 10; tensorstore::execution::submit( tensorstore::MakeSyncFlowSender( ConcurrentSender{num_threads, true}), tensorstore::LoggingReceiver{&log}); ASSERT_EQ(num_threads + 3, log.size()); EXPECT_EQ("set_starting", log[0]); EXPECT_EQ("set_error: 3", log[log.size() - 2]); EXPECT_EQ("set_stopping", log[log.size() - 1]); EXPECT_THAT( log, ::testing::UnorderedElementsAre( "set_starting", "set_value: 0", "set_value: 1", "set_value: 2", "set_value: 3", "set_value: 4", "set_value: 5", "set_value: 6", "set_value: 7", "set_value: 8", "set_value: 9", "set_error: 3", "set_stopping")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/execution/sync_flow_sender.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/execution/sync_flow_sender_test.cc
4f887a6430414cd6088e1743555015b10f116d50
1e8ed1a7-a21b-45fb-94a1-dd7bf937e305
cpp
tensorflow/tensorflow
node_builder
tensorflow/core/graph/node_builder.cc
tensorflow/core/graph/node_builder_test.cc
#include "tensorflow/core/graph/node_builder.h" #include <unordered_map> #include <vector> #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { NodeBuilder::NodeOut::NodeOut(Node* n, int32_t i) : node(n), error(false), name(node != nullptr ? node->name() : (error = true, "")), index(i), dt(SafeGetOutput(node, i, &error)) {} NodeBuilder::NodeOut::NodeOut(OutputTensor t) : NodeOut(t.node, t.index) {} NodeBuilder::NodeOut::NodeOut(StringPiece n, int32_t i, DataType t) : node(nullptr), error(false), name(n), index(i), dt(t) {} NodeBuilder::NodeOut::NodeOut() : node(nullptr), error(true), index(0), dt(DT_FLOAT) {} NodeBuilder::NodeBuilder(StringPiece name, StringPiece op_name, const OpRegistryInterface* op_registry, const NodeDebugInfo* debug) : def_builder_(name, op_name, op_registry, debug) {} NodeBuilder::NodeBuilder(StringPiece name, const OpDef* op_def) : def_builder_(name, op_def) {} NodeBuilder::NodeBuilder(const NodeDefBuilder& def_builder) : def_builder_(def_builder) {} NodeBuilder& NodeBuilder::Input(Node* src_node, int src_index) { inputs_.emplace_back(src_node, src_index); DataType dt; if (GetOutputType(src_node, src_index, &dt)) { def_builder_.Input(src_node->name(), src_index, dt); } return *this; } NodeBuilder& NodeBuilder::Input(NodeOut src) { if (src.error) { AddIndexError(src.node, src.index); } else { inputs_.emplace_back(src.node, src.index); def_builder_.Input(src.name, src.index, src.dt); } return *this; } NodeBuilder& NodeBuilder::Input(absl::Span<const NodeOut> src_list) { std::vector<NodeDefBuilder::NodeOut> srcs; srcs.reserve(src_list.size()); for (const auto& node_out : src_list) { if (node_out.error) { AddIndexError(node_out.node, node_out.index); } else { srcs.emplace_back(node_out.name, node_out.index, node_out.dt); inputs_.emplace_back(node_out.node, node_out.index); } } def_builder_.Input(absl::Span<const NodeDefBuilder::NodeOut>(srcs)); return *this; } NodeBuilder& NodeBuilder::ControlInput(Node* src_node) { control_inputs_.emplace_back(src_node); def_builder_.ControlInput(src_node->name()); return *this; } NodeBuilder& NodeBuilder::ControlInputs(absl::Span<Node* const> src_nodes) { control_inputs_.insert(control_inputs_.end(), src_nodes.begin(), src_nodes.end()); for (const Node* src_node : src_nodes) { def_builder_.ControlInput(src_node->name()); } return *this; } NodeBuilder& NodeBuilder::Device(StringPiece device_spec) { def_builder_.Device(device_spec); return *this; } NodeBuilder& NodeBuilder::AssignedDevice(StringPiece device) { assigned_device_ = string(device); return *this; } NodeBuilder& NodeBuilder::XlaCluster(StringPiece xla_cluster) { def_builder_.Attr("_XlaCluster", xla_cluster); return *this; } absl::StatusOr<Node*> NodeBuilder::Finalize(Graph* graph, bool consume) { Node* out; TF_RETURN_IF_ERROR(Finalize(graph, &out, consume)); return out; } Status NodeBuilder::Finalize(Graph* graph, Node** created_node, bool consume) { if (created_node != nullptr) { *created_node = nullptr; } if (!errors_.empty()) { return errors::InvalidArgument(absl::StrJoin(errors_, "\n")); } NodeDef node_def; TF_RETURN_IF_ERROR(def_builder_.Finalize(&node_def, consume)); TF_RETURN_IF_ERROR(ValidateNodeDef(node_def, def_builder_.op_def())); TF_RETURN_IF_ERROR( CheckOpDeprecation(def_builder_.op_def(), graph->versions().producer())); TF_ASSIGN_OR_RETURN(Node * node, graph->AddNode(std::move(node_def))); node->set_assigned_device_name(assigned_device_); for (size_t i = 0; i < inputs_.size(); ++i) { if (inputs_[i].node != nullptr) { graph->AddEdge(inputs_[i].node, inputs_[i].index, node, i); } } for (Node* control_input : control_inputs_) { graph->AddControlEdge(control_input, node); } if (created_node != nullptr) *created_node = node; return absl::OkStatus(); } void NodeBuilder::AddIndexError(const Node* node, int i) { if (node == nullptr) { errors_.emplace_back( strings::StrCat("Attempt to add nullptr Node to node with type ", def_builder_.op_def().name())); } else { errors_.emplace_back(strings::StrCat( "Attempt to add output ", i, " of ", node->name(), " not in range [0, ", node->num_outputs(), ") to node with type ", def_builder_.op_def().name(), ". Node: ", FormatNodeForError(*node))); } } bool NodeBuilder::GetOutputType(const Node* node, int i, DataType* dt) { bool error; *dt = SafeGetOutput(node, i, &error); if (error) AddIndexError(node, i); return !error; } }
#include "tensorflow/core/graph/node_builder.h" #include <string> #include "tensorflow/core/framework/full_type.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { REGISTER_OP("Source").Output("o: out_types").Attr("out_types: list(type)"); REGISTER_OP("Sink").Input("i: T").Attr("T: type"); TEST(NodeBuilderTest, Simple) { Graph graph(OpRegistry::Global()); Node* source_node; TF_EXPECT_OK(NodeBuilder("source_op", "Source") .Attr("out_types", {DT_INT32, DT_STRING}) .Finalize(&graph, &source_node)); ASSERT_TRUE(source_node != nullptr); TF_EXPECT_OK(NodeBuilder("sink1", "Sink") .Input(source_node) .Finalize(&graph, nullptr)); TF_EXPECT_OK(NodeBuilder("sink2", "Sink") .Input(source_node, 1) .Finalize(&graph, nullptr)); EXPECT_FALSE(NodeBuilder("sink3", "Sink") .Input(source_node, 2) .Finalize(&graph, nullptr) .ok()); EXPECT_FALSE(NodeBuilder("sink4", "Sink") .Input(source_node, -1) .Finalize(&graph, nullptr) .ok()); EXPECT_FALSE(NodeBuilder("sink5", "Sink") .Input({source_node, -1}) .Finalize(&graph, nullptr) .ok()); EXPECT_FALSE(NodeBuilder("sink6", "Sink") .Input(nullptr) .Finalize(&graph, nullptr) .ok()); EXPECT_FALSE(NodeBuilder("sink7", "Sink") .Input(NodeBuilder::NodeOut(nullptr, 0)) .Finalize(&graph, nullptr) .ok()); } REGISTER_OP("FullTypeOpBasicType") .Output("o1: out_type") .Attr("out_type: type") .SetTypeConstructor([](OpDef* op_def) { FullTypeDef* tdef = op_def->mutable_output_arg(0)->mutable_experimental_full_type(); tdef->set_type_id(TFT_ARRAY); FullTypeDef* arg = tdef->add_args(); arg->set_type_id(TFT_VAR); arg->set_s("out_type"); return absl::OkStatus(); }); TEST(NodeBuilderTest, TypeConstructorBasicType) { Graph graph(OpRegistry::Global()); Node* node; TF_EXPECT_OK(NodeBuilder("op", "FullTypeOpBasicType") .Attr("out_type", DT_FLOAT) .Finalize(&graph, &node)); ASSERT_TRUE(node->def().has_experimental_type()); const FullTypeDef& ft = node->def().experimental_type(); ASSERT_EQ(ft.type_id(), TFT_PRODUCT); ASSERT_EQ(ft.args_size(), 1); auto ot = ft.args(0); ASSERT_EQ(ot.type_id(), TFT_ARRAY); ASSERT_EQ(ot.args(0).type_id(), TFT_FLOAT); ASSERT_EQ(ot.args(0).args().size(), 0); } REGISTER_OP("FullTypeOpListType") .Output("o1: out_types") .Attr("out_types: list(type)") .SetTypeConstructor([](OpDef* op_def) { FullTypeDef* tdef = op_def->mutable_output_arg(0)->mutable_experimental_full_type(); tdef->set_type_id(TFT_ARRAY); FullTypeDef* arg = tdef->add_args(); arg->set_type_id(TFT_VAR); arg->set_s("out_types"); return absl::OkStatus(); }); TEST(NodeBuilderTest, TypeConstructorListType) { Graph graph(OpRegistry::Global()); Node* node; ASSERT_FALSE(NodeBuilder("op", "FullTypeOpListType") .Attr("out_types", {DT_FLOAT, DT_INT32}) .Finalize(&graph, &node) .ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/node_builder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/graph/node_builder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
798ba46e-3eac-4fcd-aa56-8b804c33f805
cpp
tensorflow/tensorflow
parallel_batch
tensorflow/core/grappler/optimizers/data/parallel_batch.cc
tensorflow/core/grappler/optimizers/data/parallel_batch_test.cc
#include "tensorflow/core/grappler/optimizers/data/parallel_batch.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" namespace tensorflow { namespace grappler { Status ParallelBatch::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { *output = item.graph; MutableGraphView graph(output); for (NodeDef& node : *output->mutable_node()) { if (node.op() == "BatchDatasetV2" || node.op() == "PaddedBatchDatasetV2") { (*node.mutable_attr())["parallel_copy"].set_b(true); stats->num_changes++; } } return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(ParallelBatch, "parallel_batch"); } }
#include "tensorflow/core/grappler/optimizers/data/parallel_batch.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { TEST(ParallelBatch, BatchDataset) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 5}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), NDef("batch", "BatchDatasetV2", {"range", "batch_size", "drop_remainder"}, {})}); ParallelBatch optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("batch", output)); int index = graph_utils::FindGraphNodeWithName("batch", output); EXPECT_TRUE(output.node(index).attr().at("parallel_copy").b()); } TEST(ParallelBatch, PaddedBatchDataset) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), NDef("batch_size", "Const", {}, {{"value", 5}, {"dtype", DT_INT32}}), NDef("drop_remainder", "Const", {}, {{"value", false}, {"dtype", DT_BOOL}}), NDef("batch", "PaddedBatchDatasetV2", {"range", "batch_size", "drop_remainder"}, {})}); ParallelBatch optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsGraphNodeWithName("batch", output)); int index = graph_utils::FindGraphNodeWithName("batch", output); EXPECT_TRUE(output.node(index).attr().at("parallel_copy").b()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/parallel_batch.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/optimizers/data/parallel_batch_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fed78beb-029c-47b3-aad3-c4c29d5b52fc
cpp
tensorflow/tensorflow
sort_thunk
third_party/xla/xla/backends/cpu/runtime/sort_thunk.cc
third_party/xla/xla/backends/cpu/runtime/sort_thunk_test.cc
#include "xla/backends/cpu/runtime/sort_thunk.h" #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <cstring> #include <functional> #include <iterator> #include <memory> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/layout_util.h" #include "xla/primitive_util.h" #include "xla/runtime/buffer_use.h" #include "xla/service/buffer_assignment.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace xla::cpu { static absl::Status VerifySortInputs(absl::Span<const SortThunk::Input> inputs, int64_t dimension) { if (inputs.empty()) { return Internal("Inputs must not be empty"); } auto equal = Shape::Equal().IgnoreElementType(); const Shape& shape = inputs[0].shape; for (const SortThunk::Input& input : inputs) { if (!equal(shape, input.shape)) { return Internal("Inputs must have the same shape"); } } int64_t sort_dimension = dimension >= 0 ? dimension : shape.rank() + dimension; if (shape.rank() <= sort_dimension) { return Internal( "Shape of dimensions [%s] can't be sorted along dimension %d", absl::StrJoin(shape.dimensions(), ","), dimension); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<SortThunk>> SortThunk::Create( Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, LessThan less_than) { TF_RETURN_IF_ERROR(VerifySortInputs(inputs, dimension)); return absl::WrapUnique(new SortThunk(std::move(info), inputs, dimension, is_stable, std::move(less_than))); } absl::StatusOr<std::unique_ptr<SortThunk>> SortThunk::Create( Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, std::string comparator_name) { TF_RETURN_IF_ERROR(VerifySortInputs(inputs, dimension)); return absl::WrapUnique(new SortThunk(std::move(info), inputs, dimension, is_stable, std::move(comparator_name))); } SortThunk::SortThunk(Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, LessThan less_than) : Thunk(Kind::kSort, std::move(info)), inputs_(inputs.begin(), inputs.end()), dimension_(dimension), is_stable_(is_stable), less_than_(std::move(less_than)), less_than_ptr_(&*less_than_) {} SortThunk::SortThunk(Info info, absl::Span<const Input> inputs, int64_t dimension, bool is_stable, std::string comparator_name) : Thunk(Kind::kSort, std::move(info)), inputs_(inputs.begin(), inputs.end()), dimension_(dimension), is_stable_(is_stable), comparator_name_(std::move(comparator_name)), less_than_ptr_(nullptr) {} namespace { static constexpr size_t kMaxElementSize = 16; template <size_t n> struct Ref; struct DRef; template <size_t n> struct Value { Value(const Ref<n>& ref); const void* compared_value(size_t i) const { return value[i].data(); } using ValueStorage = std::array<std::byte, kMaxElementSize>; alignas(alignof(std::max_align_t)) std::array<ValueStorage, n> value; std::array<uint8_t, n> value_sizes; }; struct DValue { DValue(const DRef& ref); const void* compared_value(size_t i) const { return value[i].data(); } using ValueStorage = std::array<std::byte, kMaxElementSize>; std::vector<ValueStorage> value; std::vector<uint8_t> value_sizes; size_t n; }; template <size_t n> struct Ref { Ref(std::array<std::byte*, n> ptr, std::array<uint8_t, n> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes) {} Ref& operator=(const Value<n>& value); Ref& operator=(const Ref<n>& other); const void* compared_value(size_t i) const { return ptr[i]; } std::array<std::byte*, n> ptr; std::array<uint8_t, n> ptr_sizes; }; struct DRef { DRef(std::vector<std::byte*> ptr, std::vector<uint8_t> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes), n(ptr.size()) {} DRef& operator=(const DValue& value); DRef& operator=(const DRef& other); const void* compared_value(size_t i) const { return ptr[i]; } std::vector<std::byte*> ptr; std::vector<uint8_t> ptr_sizes; const size_t n; }; template <size_t n> Value<n>::Value(const Ref<n>& ref) : value_sizes(ref.ptr_sizes) { for (size_t i = 0; i < n; ++i) { std::memcpy(value[i].data(), ref.ptr[i], ref.ptr_sizes[i]); } } DValue::DValue(const DRef& ref) : value_sizes(ref.ptr_sizes), n(ref.ptr.size()) { value.reserve(n); for (size_t i = 0; i < n; ++i) { value.emplace_back(); std::memcpy(value[i].data(), ref.ptr[i], ref.ptr_sizes[i]); } } template <size_t n> Ref<n>& Ref<n>::operator=(const Value<n>& value) { DCHECK(ptr_sizes == value.value_sizes); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], value.value[i].data(), value.value_sizes[i]); } return *this; } DRef& DRef::operator=(const DValue& value) { DCHECK(ptr_sizes == value.value_sizes); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], value.value[i].data(), value.value_sizes[i]); } return *this; } template <size_t n> Ref<n>& Ref<n>::operator=(const Ref<n>& other) { DCHECK(ptr_sizes == other.ptr_sizes); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], other.ptr[i], other.ptr_sizes[i]); } return *this; } DRef& DRef::operator=(const DRef& other) { DCHECK(ptr_sizes == other.ptr_sizes); const size_t n = other.ptr.size(); for (size_t i = 0; i < n; ++i) { std::memcpy(ptr[i], other.ptr[i], other.ptr_sizes[i]); } return *this; } template <size_t n> void swap(const Ref<n>& lhs, const Ref<n>& rhs) { for (size_t i = 0; i < n; ++i) { std::array<std::byte, kMaxElementSize> tmp; std::memcpy(tmp.data(), lhs.ptr[i], lhs.ptr_sizes[i]); std::memcpy(lhs.ptr[i], rhs.ptr[i], rhs.ptr_sizes[i]); std::memcpy(rhs.ptr[i], tmp.data(), lhs.ptr_sizes[i]); } } void swap(const DRef& lhs, const DRef& rhs) { DCHECK(lhs.ptr_sizes == rhs.ptr_sizes); const size_t n = lhs.ptr.size(); for (size_t i = 0; i < n; ++i) { std::array<std::byte, kMaxElementSize> tmp; std::memcpy(tmp.data(), lhs.ptr[i], lhs.ptr_sizes[i]); std::memcpy(lhs.ptr[i], rhs.ptr[i], rhs.ptr_sizes[i]); std::memcpy(rhs.ptr[i], tmp.data(), lhs.ptr_sizes[i]); } } template <size_t n> struct Ptr { using difference_type = std::ptrdiff_t; Ptr() = default; Ptr(std::array<std::byte*, n> ptr, std::array<uint8_t, n> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes) {} Ref<n> operator*() const { return Ref<n>{ptr, ptr_sizes}; } Ptr& operator+=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] += diff * ptr_sizes[i]; return *this; } Ptr& operator-=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] -= diff * ptr_sizes[i]; return *this; } Ptr operator+(difference_type diff) const { std::array<std::byte*, n> upd; for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] + diff * ptr_sizes[i]; return Ptr{upd, ptr_sizes}; } Ptr operator-(difference_type diff) const { std::array<std::byte*, n> upd; for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] - diff * ptr_sizes[i]; return Ptr{upd, ptr_sizes}; } difference_type operator-(const Ptr& rhs) const { DCHECK(ptr_sizes == rhs.ptr_sizes); return (ptr[0] - rhs.ptr[0]) / ptr_sizes[0]; } bool operator==(const Ptr& rhs) const { return ptr[0] == rhs.ptr[0]; } bool operator!=(const Ptr& rhs) const { return ptr[0] != rhs.ptr[0]; } bool operator>(const Ptr& rhs) const { return ptr[0] > rhs.ptr[0]; } bool operator<(const Ptr& rhs) const { return ptr[0] < rhs.ptr[0]; } bool operator>=(const Ptr& rhs) const { return ptr[0] >= rhs.ptr[0]; } bool operator<=(const Ptr& rhs) const { return ptr[0] <= rhs.ptr[0]; } std::array<std::byte*, n> ptr; std::array<uint8_t, n> ptr_sizes; }; struct DPtr { using difference_type = std::ptrdiff_t; DPtr() = default; DPtr(std::vector<std::byte*> ptr, std::vector<uint8_t> ptr_sizes) : ptr(ptr), ptr_sizes(ptr_sizes), n(ptr.size()) {} DRef operator*() const { return DRef{ptr, ptr_sizes}; } DPtr& operator+=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] += diff * ptr_sizes[i]; return *this; } DPtr& operator-=(difference_type diff) { for (size_t i = 0; i < n; ++i) ptr[i] -= diff * ptr_sizes[i]; return *this; } DPtr operator+(difference_type diff) const { std::vector<std::byte*> upd(n); for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] + diff * ptr_sizes[i]; return DPtr{upd, ptr_sizes}; } DPtr operator-(difference_type diff) const { std::vector<std::byte*> upd(n); for (size_t i = 0; i < n; ++i) upd[i] = ptr[i] - diff * ptr_sizes[i]; return DPtr{upd, ptr_sizes}; } difference_type operator-(const DPtr& rhs) const { DCHECK(ptr_sizes == rhs.ptr_sizes); return (ptr[0] - rhs.ptr[0]) / ptr_sizes[0]; } bool operator==(const DPtr& rhs) const { return ptr[0] == rhs.ptr[0]; } bool operator!=(const DPtr& rhs) const { return ptr[0] != rhs.ptr[0]; } bool operator>(const DPtr& rhs) const { return ptr[0] > rhs.ptr[0]; } bool operator<(const DPtr& rhs) const { return ptr[0] < rhs.ptr[0]; } bool operator>=(const DPtr& rhs) const { return ptr[0] >= rhs.ptr[0]; } bool operator<=(const DPtr& rhs) const { return ptr[0] <= rhs.ptr[0]; } std::vector<std::byte*> ptr; std::vector<uint8_t> ptr_sizes; size_t n; }; template <class Value, class Ref, class Ptr> class SortIterator { public: using iterator_category = std::random_access_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = Value; using reference = Ref; using pointer = Ptr; SortIterator() = default; SortIterator(pointer ptr, difference_type stride) : ptr_(ptr), stride_(stride) {} SortIterator(const SortIterator& other) = default; SortIterator& operator=(const SortIterator& other) = default; SortIterator(SortIterator&& other) = default; SortIterator& operator=(SortIterator&& other) = default; reference operator*() const { return *ptr_; } difference_type operator-(const SortIterator& rhs) const { return (ptr_ - rhs.ptr_) / stride_; } SortIterator& operator+=(difference_type diff) { ptr_ += diff * stride_; return *this; } SortIterator& operator-=(difference_type diff) { ptr_ -= diff * stride_; return *this; } SortIterator& operator++() { ptr_ += stride_; return *this; } SortIterator& operator--() { ptr_ -= stride_; return *this; } SortIterator operator+(difference_type diff) const { return SortIterator(ptr_ + diff * stride_, stride_); } SortIterator operator-(difference_type diff) const { return SortIterator(ptr_ - diff * stride_, stride_); } bool operator==(const SortIterator& rhs) const { return ptr_ == rhs.ptr_; } bool operator!=(const SortIterator& rhs) const { return ptr_ != rhs.ptr_; } bool operator>(const SortIterator& rhs) const { return ptr_ > rhs.ptr_; } bool operator<(const SortIterator& rhs) const { return ptr_ < rhs.ptr_; } bool operator>=(const SortIterator& rhs) const { return ptr_ >= rhs.ptr_; } bool operator<=(const SortIterator& rhs) const { return ptr_ <= rhs.ptr_; } private: pointer ptr_; difference_type stride_ = 1; }; struct SortDims { int64_t outer_dim_size; int64_t sort_dim_size; int64_t inner_dim_size; int64_t num_iterations; }; } static SortDims GetSortDims(const Shape& shape, int64_t dimension) { int64_t sort_dimension = dimension >= 0 ? dimension : shape.rank() + dimension; Shape physical_shape = ShapeUtil::MakeShapeWithDescendingLayoutAndSamePhysicalLayout(shape); auto logical_to_physical = LayoutUtil::MakeLogicalToPhysical(shape.layout()); sort_dimension = logical_to_physical[sort_dimension]; auto product = [](absl::Span<const int64_t> dims) { return absl::c_accumulate(dims, int64_t{1}, std::multiplies<>()); }; absl::Span<const int64_t> dimensions = physical_shape.dimensions(); int64_t outer_dim_size = product(dimensions.subspan(0, sort_dimension)); int64_t sort_dim_size = dimensions[sort_dimension]; int64_t inner_dim_size = product(dimensions.subspan(sort_dimension + 1)); int64_t num_iterations = outer_dim_size * inner_dim_size; return SortDims{outer_dim_size, sort_dim_size, inner_dim_size, num_iterations}; } template <size_t n> static void SortInplace(const SortDims& sort_dims, int64_t offset, absl::Span<se::DeviceMemoryBase> data, absl::Span<const Shape> shapes, bool is_stable, SortThunk::LessThan* less_than) { std::array<std::byte*, n> ptr; std::array<uint8_t, n> ptr_sizes; for (size_t i = 0; i < n; ++i) { std::byte* base = reinterpret_cast<std::byte*>(data[i].opaque()); ptr_sizes[i] = primitive_util::ByteWidth(shapes[i].element_type()); ptr[i] = base + offset * ptr_sizes[i]; } auto compare = [&](const auto& a, const auto& b) { std::array<const void*, 2 * n> data; for (size_t i = 0, j = 0; i < n; i += 1, j += 2) { data[j] = a.compared_value(i); data[j + 1] = b.compared_value(i); } return (*less_than)(data.data()); }; SortIterator<Value<n>, Ref<n>, Ptr<n>> begin( Ptr<n>(ptr, ptr_sizes), sort_dims.inner_dim_size); if (is_stable) { std::stable_sort(begin, begin + sort_dims.sort_dim_size, compare); } else { std::sort(begin, begin + sort_dims.sort_dim_size, compare); } } static void DSortInplace(const SortDims& sort_dims, int64_t offset, absl::Span<se::DeviceMemoryBase> data, absl::Span<const Shape> shapes, bool is_stable, SortThunk::LessThan* less_than, size_t n) { std::vector<std::byte*> ptr(n); std::vector<uint8_t> ptr_sizes(n); for (size_t i = 0; i < n; ++i) { std::byte* base = reinterpret_cast<std::byte*>(data[i].opaque()); ptr_sizes[i] = primitive_util::ByteWidth(shapes[i].element_type()); ptr[i] = base + offset * ptr_sizes[i]; } auto compare = [&](const auto& a, const auto& b) { std::vector<const void*> data(2 * n); for (size_t i = 0, j = 0; i < n; i += 1, j += 2) { data[j] = a.compared_value(i); data[j + 1] = b.compared_value(i); } return (*less_than)(data.data()); }; SortIterator<DValue, DRef, DPtr> begin(DPtr(ptr, ptr_sizes), sort_dims.inner_dim_size); if (is_stable) { std::stable_sort(begin, begin + sort_dims.sort_dim_size, compare); } else { std::sort(begin, begin + sort_dims.sort_dim_size, compare); } } static absl::Status SortInplace(absl::Span<se::DeviceMemoryBase> data, absl::Span<const Shape> shapes, int64_t dimension, bool is_stable, SortThunk::LessThan* less_than) { SortDims sort_dims = GetSortDims(shapes[0], dimension); for (int64_t i = 0; i < sort_dims.num_iterations; ++i) { int64_t inner_idx = i % sort_dims.inner_dim_size; int64_t offset = inner_idx + (i - inner_idx) * sort_dims.sort_dim_size; auto sort = [&](auto num_inputs) { SortInplace<decltype(num_inputs)::value>(sort_dims, offset, data, shapes, is_stable, less_than); }; auto dsort = [&](size_t num_inputs) { DSortInplace(sort_dims, offset, data, shapes, is_stable, less_than, num_inputs); }; switch (data.size()) { case 1: sort(std::integral_constant<size_t, 1>{}); break; case 2: sort(std::integral_constant<size_t, 2>{}); break; case 3: sort(std::integral_constant<size_t, 3>{}); break; case 4: sort(std::integral_constant<size_t, 4>{}); break; case 5: sort(std::integral_constant<size_t, 5>{}); break; case 6: sort(std::integral_constant<size_t, 6>{}); break; case 7: sort(std::integral_constant<size_t, 7>{}); break; case 8: sort(std::integral_constant<size_t, 8>{}); break; case 9: sort(std::integral_constant<size_t, 9>{}); break; case 10: sort(std::integral_constant<size_t, 10>{}); break; case 11: sort(std::integral_constant<size_t, 11>{}); break; case 12: sort(std::integral_constant<size_t, 12>{}); break; case 13: sort(std::integral_constant<size_t, 13>{}); break; case 14: sort(std::integral_constant<size_t, 14>{}); break; case 15: sort(std::integral_constant<size_t, 15>{}); break; case 16: sort(std::integral_constant<size_t, 16>{}); break; case 17: sort(std::integral_constant<size_t, 17>{}); break; case 18: sort(std::integral_constant<size_t, 18>{}); break; case 19: sort(std::integral_constant<size_t, 19>{}); break; case 20: sort(std::integral_constant<size_t, 20>{}); break; case 21: sort(std::integral_constant<size_t, 21>{}); break; case 22: sort(std::integral_constant<size_t, 22>{}); break; case 23: sort(std::integral_constant<size_t, 23>{}); break; case 24: sort(std::integral_constant<size_t, 24>{}); break; case 25: sort(std::integral_constant<size_t, 25>{}); break; default: dsort(data.size()); break; } } return absl::OkStatus(); } tsl::AsyncValueRef<SortThunk::ExecuteEvent> SortThunk::Execute( const ExecuteParams& params) { tsl::profiler::TraceMe trace([&] { return TraceMeEncode(); }); VLOG(3) << absl::StreamFormat( "Sort %d inputs along dimension %d (is_stable=%v)", inputs_.size(), dimension_, is_stable_); absl::InlinedVector<se::DeviceMemoryBase, 8> data; data.reserve(inputs_.size()); absl::InlinedVector<Shape, 8> shapes; shapes.reserve(inputs_.size()); for (const Input& input : inputs_) { size_t idx = data.size(); TF_ASSIGN_OR_RETURN( data.emplace_back(), params.buffer_allocations->GetDeviceAddress(input.slice)); shapes.push_back(input.shape); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(data.back().opaque(), data.back().size()); VLOG(3) << absl::StreamFormat(" sort input #%d: %s in slice %s (%p)", idx, input.shape.ToString(true), input.slice.ToString(), data.back().opaque()); } LessThan* less_than = less_than_ptr_.load(); if (ABSL_PREDICT_FALSE(less_than == nullptr)) { TF_ASSIGN_OR_RETURN( FunctionRegistry::Comparator comparator, params.function_registry->FindComparator(comparator_name_)); absl::MutexLock lock(&mutex_); less_than_ = [comparator](const void** data) { bool result; comparator(&result, nullptr, data, nullptr, nullptr, nullptr); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&result, sizeof(result)); return result; }; less_than_ptr_.store(less_than = &*less_than_); } TF_RETURN_IF_ERROR(SortInplace(absl::MakeSpan(data), shapes, dimension_, is_stable_, less_than)); return OkExecuteEvent(); } SortThunk::BufferUses SortThunk::buffer_uses() const { BufferUses buffer_uses; buffer_uses.reserve(inputs_.size()); for (const Input& input : inputs_) { buffer_uses.emplace_back(BufferUse::Write(input.slice)); } return buffer_uses; } }
#include "xla/backends/cpu/runtime/sort_thunk.h" #include <array> #include <cstddef> #include <cstdint> #include <numeric> #include <string_view> #include <vector> #include "absl/status/statusor.h" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla::cpu { namespace { class SortThunkTest : public testing::TestWithParam<bool> {}; static bool LessThan(const void** data) { auto* lhs = reinterpret_cast<const float*>(data[0]); auto* rhs = reinterpret_cast<const float*>(data[1]); return *lhs < *rhs; } class LessThanComparator : public Thunk::FunctionRegistry { public: static void LessThanWrapper(bool* result, const void*, const void** data, const void*, const void*, const void*) { *result = LessThan(data); } absl::StatusOr<Comparator> FindComparator(std::string_view name) final { DCHECK_EQ(name, "less_than"); return LessThanWrapper; } }; TEST_P(SortThunkTest, Sort1D) { bool is_stable = GetParam(); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {2.0, 4.0, 1.0, 3.0}; std::vector<int32_t> indices = {0, 1, 2, 3}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc0(0, size_in_bytes, 0); BufferAllocation alloc1(1, size_in_bytes, 0); BufferAllocation::Slice slice0(&alloc0, 0, size_in_bytes); BufferAllocation::Slice slice1(&alloc1, 0, size_in_bytes); Shape data_shape = ShapeUtil::MakeShape(F32, {4}); Shape indices_shape = ShapeUtil::MakeShape(S32, {4}); TF_ASSERT_OK_AND_ASSIGN( auto thunk, SortThunk::Create( {"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 0, is_stable, LessThan)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::vector<float> expected_data = {1.0, 2.0, 3.0, 4.0}; std::vector<int32_t> expected_indices = {2, 0, 3, 1}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } TEST_P(SortThunkTest, DynamicSort1D) { bool is_stable = GetParam(); constexpr int num_of_empty_slices = 33; constexpr int total_num_of_slices = num_of_empty_slices + 2; constexpr int data_size = 31; constexpr float starting_value = 5.0f; std::array<float, data_size> data{ 17.0f, 16.0f, 5.0f, 10.0f, 30.0f, 8.0f, 9.0f, 21.0f, 14.0f, 32.0f, 29.0f, 28.0f, 19.0f, 12.0f, 25.0f, 22.0f, 18.0f, 35.0f, 34.0f, 23.0f, 7.0f, 13.0f, 26.0f, 33.0f, 15.0f, 24.0f, 20.0f, 31.0f, 6.0f, 27.0f, 11.0f}; std::array<int32_t, data_size> indices; std::iota(indices.begin(), indices.end(), 0); std::array<uint32_t, data_size * num_of_empty_slices> empty; const size_t data_size_in_bytes = data.size() * sizeof(float); const size_t ind_size_in_bytes = indices.size() * sizeof(int32_t); const size_t empty_size_in_bytes = empty.size() * sizeof(uint32_t); const BufferAllocation alloc0(0, data_size_in_bytes, 0); const BufferAllocation alloc1(1, ind_size_in_bytes, 0); const BufferAllocation rest(2, empty_size_in_bytes, 0); const BufferAllocation::Slice slice0(&alloc0, 0, data_size_in_bytes); const BufferAllocation::Slice slice1(&alloc1, 0, ind_size_in_bytes); const Shape data_shape = ShapeUtil::MakeShape(F32, {data_size}); const Shape indices_shape = ShapeUtil::MakeShape(S32, {data_size}); const Shape rest_shape = ShapeUtil::MakeShape(U32, {data_size}); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back(se::DeviceMemoryBase(data.data(), data_size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), ind_size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(empty.data(), empty_size_in_bytes)); BufferAllocations allocations(buffers); std::array<SortThunk::Input, total_num_of_slices> inputs{ {{slice0, data_shape}, {slice1, indices_shape}}}; for (int i = 0; i < num_of_empty_slices; ++i) { constexpr size_t empty_slice_in_bytes = data_size * sizeof(uint32_t); inputs[i + 2].slice = BufferAllocation::Slice( &rest, i * empty_slice_in_bytes, empty_slice_in_bytes); inputs[i + 2].shape = rest_shape; } TF_ASSERT_OK_AND_ASSIGN( auto thunk, SortThunk::Create({"sort"}, inputs, 0, is_stable, LessThan)); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); std::array<float, data_size> expected_data; std::iota(expected_data.begin(), expected_data.end(), starting_value); const std::array<int32_t, data_size> expected_indices{ 2, 28, 20, 5, 6, 3, 30, 13, 21, 8, 24, 1, 0, 16, 12, 26, 7, 15, 19, 25, 14, 22, 29, 11, 10, 4, 27, 9, 23, 18, 17}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } TEST_P(SortThunkTest, Sort2D) { bool is_stable = GetParam(); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {2.0, 4.0, 1.0, 3.0}; std::vector<int32_t> indices = {0, 1, 2, 3}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc0(0, size_in_bytes, 0); BufferAllocation alloc1(1, size_in_bytes, 0); BufferAllocation::Slice slice0(&alloc0, 0, size_in_bytes); BufferAllocation::Slice slice1(&alloc1, 0, size_in_bytes); Shape data_shape = ShapeUtil::MakeShape(F32, {2, 2}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2, 2}); TF_ASSERT_OK_AND_ASSIGN( auto sort_dim0, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 0, is_stable, "less_than")); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; LessThanComparator less_than_comparator; params.function_registry = &less_than_comparator; auto execute_event0 = sort_dim0->Execute(params); tsl::BlockUntilReady(execute_event0); ASSERT_FALSE(execute_event0.IsError()); std::vector<float> expected_data = {1.0, 3.0, 2.0, 4.0}; std::vector<int32_t> expected_indices = {2, 3, 0, 1}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); data = {4.0, 3.0, 2.0, 1.0}; indices = {0, 1, 2, 3}; TF_ASSERT_OK_AND_ASSIGN( auto sort_dim1, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 1, false, "less_than")); auto execute_event1 = sort_dim1->Execute(params); tsl::BlockUntilReady(execute_event1); ASSERT_FALSE(execute_event1.IsError()); expected_data = {3.0, 4.0, 1.0, 2.0}; expected_indices = {1, 0, 3, 2}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } TEST_P(SortThunkTest, Sort2DWithLayout) { bool is_stable = GetParam(); std::vector<MaybeOwningDeviceMemory> buffers; std::vector<float> data = {4.0, 3.0, 2.0, 1.0}; std::vector<int32_t> indices = {0, 1, 2, 3}; size_t size_in_bytes = data.size() * sizeof(float); buffers.emplace_back(se::DeviceMemoryBase(data.data(), size_in_bytes)); buffers.emplace_back(se::DeviceMemoryBase(indices.data(), size_in_bytes)); BufferAllocations allocations(buffers); BufferAllocation alloc0(0, size_in_bytes, 0); BufferAllocation alloc1(1, size_in_bytes, 0); BufferAllocation::Slice slice0(&alloc0, 0, size_in_bytes); BufferAllocation::Slice slice1(&alloc1, 0, size_in_bytes); Shape data_shape = ShapeUtil::MakeShape(F32, {2, 2}); *data_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); Shape indices_shape = ShapeUtil::MakeShape(S32, {2, 2}); *indices_shape.mutable_layout() = LayoutUtil::MakeLayout({0, 1}); TF_ASSERT_OK_AND_ASSIGN( auto sort_dim0, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 0, is_stable, "less_than")); Thunk::ExecuteParams params; params.buffer_allocations = &allocations; LessThanComparator less_than_comparator; params.function_registry = &less_than_comparator; auto execute_event0 = sort_dim0->Execute(params); tsl::BlockUntilReady(execute_event0); ASSERT_FALSE(execute_event0.IsError()); std::vector<float> expected_data = {3.0, 4.0, 1.0, 2.0}; std::vector<int32_t> expected_indices = {1, 0, 3, 2}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); data = {2.0, 4.0, 1.0, 3.0}; indices = {0, 1, 2, 3}; TF_ASSERT_OK_AND_ASSIGN( auto sort_dim1, SortThunk::Create({"sort"}, {{slice0, data_shape}, {slice1, indices_shape}}, 1, false, "less_than")); auto execute_event1 = sort_dim1->Execute(params); tsl::BlockUntilReady(execute_event1); ASSERT_FALSE(execute_event1.IsError()); expected_data = {1.0, 3.0, 2.0, 4.0}; expected_indices = {2, 3, 0, 1}; EXPECT_EQ(data, expected_data); EXPECT_EQ(indices, expected_indices); } void BM_DynamicSort1D(::testing::benchmark::State& state, bool is_stable) { const int total_num_of_slices = state.range(0); const int num_of_empty_slices = total_num_of_slices - 2; constexpr int data_size = 31; const std::array<float, data_size> data{ 17.0f, 16.0f, 5.0f, 10.0f, 30.0f, 8.0f, 9.0f, 21.0f, 14.0f, 32.0f, 29.0f, 28.0f, 19.0f, 12.0f, 25.0f, 22.0f, 18.0f, 35.0f, 34.0f, 23.0f, 7.0f, 13.0f, 26.0f, 33.0f, 15.0f, 24.0f, 20.0f, 31.0f, 6.0f, 27.0f, 11.0f}; std::array<int32_t, data_size> indices; std::iota(indices.begin(), indices.end(), 0); std::vector<uint32_t> empty(data_size * num_of_empty_slices); const size_t data_size_in_bytes = data.size() * sizeof(float); const size_t ind_size_in_bytes = indices.size() * sizeof(int32_t); const size_t empty_size_in_bytes = empty.size() * sizeof(uint32_t); const BufferAllocation alloc0(0, data_size_in_bytes, 0); const BufferAllocation alloc1(1, ind_size_in_bytes, 0); const BufferAllocation rest(2, empty_size_in_bytes, 0); const BufferAllocation::Slice slice0(&alloc0, 0, data_size_in_bytes); const BufferAllocation::Slice slice1(&alloc1, 0, ind_size_in_bytes); const Shape data_shape = ShapeUtil::MakeShape(F32, {data_size}); const Shape indices_shape = ShapeUtil::MakeShape(S32, {data_size}); const Shape rest_shape = ShapeUtil::MakeShape(U32, {data_size}); for (auto s : state) { state.PauseTiming(); auto data_clone(data); auto indices_clone(indices); std::vector<MaybeOwningDeviceMemory> buffers; buffers.emplace_back( se::DeviceMemoryBase(data_clone.data(), data_size_in_bytes)); buffers.emplace_back( se::DeviceMemoryBase(indices_clone.data(), ind_size_in_bytes)); buffers.emplace_back( se::DeviceMemoryBase(empty.data(), empty_size_in_bytes)); BufferAllocations allocations(buffers); std::vector<SortThunk::Input> inputs(total_num_of_slices); inputs[0] = {slice0, data_shape}; inputs[1] = {slice1, indices_shape}; for (int i = 0; i < num_of_empty_slices; ++i) { constexpr size_t empty_slice_in_bytes = data_size * sizeof(uint32_t); inputs[i + 2].slice = BufferAllocation::Slice( &rest, i * empty_slice_in_bytes, empty_slice_in_bytes); inputs[i + 2].shape = rest_shape; } Thunk::ExecuteParams params; params.buffer_allocations = &allocations; state.ResumeTiming(); TF_ASSERT_OK_AND_ASSIGN( auto thunk, SortThunk::Create({"sort"}, inputs, 0, is_stable, LessThan)); auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()); } } void BM_StableDynamicSort1D(::testing::benchmark::State& state) { BM_DynamicSort1D(state, true); } void BM_UnstableDynamicSort1D(::testing::benchmark::State& state) { BM_DynamicSort1D(state, false); } BENCHMARK(BM_StableDynamicSort1D) ->MeasureProcessCPUTime() ->Arg(35) ->Arg(50) ->Arg(100); BENCHMARK(BM_UnstableDynamicSort1D) ->MeasureProcessCPUTime() ->Arg(35) ->Arg(50) ->Arg(100); INSTANTIATE_TEST_SUITE_P(SortThunk, SortThunkTest, testing::Bool(), testing::PrintToStringParamName()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/sort_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/sort_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
734ac35f-845b-4102-a28f-233a8b460dc1
cpp
tensorflow/tensorflow
convolution_thunk
third_party/xla/xla/service/gpu/runtime/convolution_thunk.cc
third_party/xla/xla/backends/cpu/runtime/convolution_thunk_test.cc
#include "xla/service/gpu/runtime/convolution_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #if TENSORFLOW_USE_ROCM #include "xla/service/gpu/stream_executor_util.h" #endif #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { ConvolutionThunk::ConvolutionThunk( ThunkInfo thunk_info, GpuConvConfig config, std::vector<BufferAllocation::Slice> operand_slices, std::vector<BufferAllocation::Slice> result_slices, BufferAllocation::Slice scratch_slice) : Thunk(Kind::kConvolution, thunk_info), operand_buffers_(std::move(operand_slices)), result_buffers_(std::move(result_slices)), scratch_buffer_(scratch_slice), config_(std::move(config)) {} GenericConvRunner& ConvolutionThunk::GetOrCreateRunner( const stream_executor::Stream* stream, bool* runner_created) { absl::MutexLock lock(&mu_); auto it = runner_cache_.find(stream); *runner_created = (it == runner_cache_.end()); if (*runner_created) { it = runner_cache_ .insert({stream, std::make_unique<GenericConvRunner>(config_)}) .first; } return *it->second; } absl::Status ConvolutionThunk::ExecuteOnStream(const ExecuteParams& params) { const auto& buffer_allocations = *params.buffer_allocations; std::vector<se::DeviceMemoryBase> operand_se_buffers, result_se_buffers; operand_se_buffers.reserve(operand_buffers_.size()); for (BufferAllocation::Slice buffer : operand_buffers_) { operand_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } result_se_buffers.reserve(result_buffers_.size()); for (BufferAllocation::Slice buffer : result_buffers_) { result_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } se::DeviceMemoryBase scratch = buffer_allocations.GetDeviceAddress(scratch_buffer_); bool runner_created = false; RunConvOptions opts; opts.runner_cache = &GetOrCreateRunner(params.stream, &runner_created); #if TENSORFLOW_USE_ROCM if (runner_created) { TF_ASSIGN_OR_RETURN( GpuConvParams conv_params, GetGpuConvParams(config_, operand_se_buffers, result_se_buffers)); TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config_.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType input_type, GetDNNDataTypeFromPrimitiveType(config_.input_type)); TF_ASSIGN_OR_RETURN(se::dnn::DataType output_type, GetDNNDataTypeFromPrimitiveType(config_.output_type)); TF_ASSIGN_OR_RETURN(auto dnn, se::dnn::internal::GetDnnFromStream(params.stream)); se::OwningScratchAllocator<> scratch_allocator( buffer_allocations.device_ordinal(), buffer_allocations.memory_allocator()); std::vector<se::dnn::ProfileResult> profile_results; dnn->GetMIOpenConvolveAlgorithms( kind, input_type, output_type, params.stream, config_.input_descriptor, conv_params.input_buf, config_.filter_descriptor, conv_params.filter_buf, config_.output_descriptor, conv_params.output_buf, config_.conv_desc, &scratch_allocator, &profile_results); } #endif TF_RETURN_IF_ERROR(RunGpuConv(config_, absl::MakeSpan(operand_se_buffers), absl::MakeSpan(result_se_buffers), scratch, params.stream, opts)); if (!params.stream->ok()) { return Internal("ConvolutionThunk::ExecuteOnStream failed."); } return absl::OkStatus(); } ConvolutionReorderThunk::ConvolutionReorderThunk( ThunkInfo thunk_info, absl::Span<int64_t> filter_nchw, absl::InlinedVector<BufferAllocation::Slice, 2> operand_slices, absl::InlinedVector<BufferAllocation::Slice, 2> result_slices) : Thunk(Kind::kConvolutionReorder, thunk_info), filter_descriptor_(CreateFilterDescriptor(filter_nchw)), operand_buffers_(operand_slices), result_buffers_(result_slices) {} absl::Status ConvolutionReorderThunk::ExecuteOnStream( const ExecuteParams& params) { bool has_bias = operand_buffers_.size() > 1; CHECK_EQ(operand_buffers_.size(), result_buffers_.size()); const auto& buffer_allocations = *params.buffer_allocations; auto filter_input = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(operand_buffers_[0])); auto filter_output = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(result_buffers_[0])); auto bias_input = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(operand_buffers_[1]))) : std::nullopt; auto bias_output = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(result_buffers_[1]))) : std::nullopt; auto dnn = params.stream->parent()->AsDnn(); if (dnn == nullptr) { return absl::InternalError("No DNN for stream."); } return dnn->CudnnReorderConvolutionFilterAndBias( params.stream, filter_descriptor_, filter_input, &filter_output, std::move(bias_input), std::move(bias_output)); } se::dnn::FilterDescriptor ConvolutionReorderThunk::CreateFilterDescriptor( absl::Span<int64_t> filter_nchw) { CHECK_EQ(filter_nchw.size(), 4); se::dnn::FilterDescriptor filter_desc(2); filter_desc.set_layout(se::dnn::FilterLayout::kOutputInputYX32); filter_desc.set_output_feature_map_count(filter_nchw[0]); filter_desc.set_input_feature_map_count(filter_nchw[1]); filter_desc.set_input_filter_height(filter_nchw[2]); filter_desc.set_input_filter_width(filter_nchw[3]); return filter_desc; } } }
#include "xla/backends/cpu/runtime/convolution_thunk.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "Eigen/Core" #include "xla/backends/cpu/runtime/buffer_allocations.h" #include "xla/backends/cpu/runtime/thunk.h" #include "xla/primitive_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { struct ConvolutionDimensions { explicit ConvolutionDimensions(int convolution_rank = 2) : convolution_rank(convolution_rank) {} int convolution_rank = 2; int batch_size = 1; int input_size = 3; int input_channels = 5; int kernel_size = 3; int output_channels = 3; int output_size = input_size - kernel_size + 1; }; template <typename T> class ConvolutionThunkTypedTest : public ::testing::Test {}; using CorrectTypes = ::testing::Types<float, Eigen::half>; TYPED_TEST_SUITE(ConvolutionThunkTypedTest, CorrectTypes); std::vector<int64_t> MakeInputDims( ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> input_dims = {dims.batch_size}; for (int i = 0; i < dims.convolution_rank; ++i) { input_dims.push_back(dims.input_size); } input_dims.push_back(dims.input_channels); return input_dims; } std::vector<int64_t> MakeKernelDims( ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> kernel_dims = {}; for (int i = 0; i < dims.convolution_rank; ++i) { kernel_dims.push_back(dims.kernel_size); } kernel_dims.push_back(dims.input_channels); kernel_dims.push_back(dims.output_channels); return kernel_dims; } std::vector<int64_t> MakeOutputDims( ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> output_dims = {dims.batch_size}; for (int i = 0; i < dims.convolution_rank; ++i) { output_dims.push_back(dims.output_size); } output_dims.push_back(dims.output_channels); return output_dims; } template <typename ElementType> std::vector<ElementType> MakeDataVector(const std::vector<int64_t>& dims) { auto size = absl::c_accumulate(dims, 1, std::multiplies<int>()); return std::vector<ElementType>(size, ElementType(0.0)); } template <typename ElementType> std::vector<MaybeOwningDeviceMemory> MakeBuffers( const std::vector<ElementType>& input, const std::vector<ElementType>& kernel, const std::vector<ElementType>& output) { std::vector<MaybeOwningDeviceMemory> buffers; size_t input_size_in_bytes = input.size() * sizeof(ElementType); buffers.emplace_back(se::DeviceMemoryBase(input.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(kernel.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(output.data(), output_size_in_bytes)); return buffers; } ConvolutionThunk::Options MakeConvolutionOptions() { ConvolutionThunk::Options options; options.multi_threaded = false; options.use_acl = false; return options; } ConvolutionDimensionNumbers MakeConvolutionDimensionNumbers( int convolution_rank) { ConvolutionDimensionNumbers dnums; int dim = 0; dnums.set_input_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_input_spatial_dimensions(dim++); } dnums.set_input_feature_dimension(dim++); dim = 0; for (int i = 0; i < convolution_rank; ++i) { dnums.add_kernel_spatial_dimensions(dim++); } dnums.set_kernel_input_feature_dimension(dim++); dnums.set_kernel_output_feature_dimension(dim++); dim = 0; dnums.set_output_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_output_spatial_dimensions(dim++); } dnums.set_output_feature_dimension(dim++); return dnums; } Window MakeWindow(int convolution_rank) { Window window; for (int i = 0; i < convolution_rank; ++i) { WindowDimension* window_dim = window.add_dimensions(); window_dim->set_stride(1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_dilation(1); window_dim->set_base_dilation(1); } return window; } template <typename ElementType> class ConvolutionThunkBuilder { public: void SetOptions(ConvolutionThunk::Options options) { options_ = std::move(options); } auto Build(ConvolutionDimensions dims = ConvolutionDimensions()) { auto input_dims = MakeInputDims(dims); auto kernel_dims = MakeKernelDims(dims); auto output_dims = MakeOutputDims(dims); return Build(input_dims, kernel_dims, output_dims); } auto Build(const std::vector<int64_t>& input_dims, const std::vector<int64_t>& kernel_dims, const std::vector<int64_t>& output_dims) { int convolution_rank = input_dims.size() - 2; input_ = MakeDataVector<ElementType>(input_dims); kernel_ = MakeDataVector<ElementType>(kernel_dims); output_ = MakeDataVector<ElementType>(output_dims); size_t input_size_in_bytes = input_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(input_.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(kernel_.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(output_.data(), output_size_in_bytes)); allocations_ = std::make_unique<BufferAllocations>(buffers_); input_alloc_ = std::make_unique<BufferAllocation>(0, input_size_in_bytes, 0); kernel_alloc_ = std::make_unique<BufferAllocation>(1, kernel_size_in_bytes, 0); output_alloc_ = std::make_unique<BufferAllocation>(2, output_size_in_bytes, 0); BufferAllocation::Slice input_slice(input_alloc_.get(), 0, input_size_in_bytes); BufferAllocation::Slice kernel_slice(kernel_alloc_.get(), 0, kernel_size_in_bytes); BufferAllocation::Slice output_slice(output_alloc_.get(), 0, output_size_in_bytes); auto primitive_type = primitive_util::NativeToPrimitiveType<ElementType>(); Shape input_shape = ShapeUtil::MakeShape(primitive_type, input_dims); Shape kernel_shape = ShapeUtil::MakeShape(primitive_type, kernel_dims); Shape output_shape = ShapeUtil::MakeShape(primitive_type, output_dims); auto dnums = MakeConvolutionDimensionNumbers(convolution_rank); auto window = MakeWindow(convolution_rank); return ConvolutionThunk::Create( {"convolution"}, options_, std::move(input_slice), input_shape, std::move(kernel_slice), kernel_shape, std::move(output_slice), output_shape, dnums, window, 1); } auto GetExecutionParams() { return Thunk::ExecuteParams{nullptr, allocations_.get()}; } private: std::vector<ElementType> input_; std::vector<ElementType> kernel_; std::vector<ElementType> output_; std::vector<MaybeOwningDeviceMemory> buffers_; ConvolutionThunk::Options options_ = MakeConvolutionOptions(); std::unique_ptr<BufferAllocations> allocations_; std::unique_ptr<BufferAllocation> input_alloc_; std::unique_ptr<BufferAllocation> kernel_alloc_; std::unique_ptr<BufferAllocation> output_alloc_; }; template <typename ElementType> void SuccessfulConvolution(int convolution_rank) { ConvolutionThunkBuilder<ElementType> builder; TF_ASSERT_OK_AND_ASSIGN( auto thunk, builder.Build(ConvolutionDimensions(convolution_rank))); Thunk::ExecuteParams params = builder.GetExecutionParams(); auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()) << execute_event.GetError(); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution1D) { SuccessfulConvolution<TypeParam>(1); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution2D) { SuccessfulConvolution<TypeParam>(2); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution3D) { SuccessfulConvolution<TypeParam>(3); } TEST(ConvolutionThunkTest, CreationErrorOnUnsupportedType) { ConvolutionThunkBuilder<int> builder; auto status_or_thunk = builder.Build(); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Unsupported element type (S32)")); } TEST(ConvolutionThunkTest, CreationErrorOnTooHighConvolutionRank) { ConvolutionThunkBuilder<float> builder; auto status_or_thunk = builder.Build(ConvolutionDimensions(4)); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Incorrect convolution rank (4)")); } TEST(ConvolutionThunkTest, CreationErrorOnTooLowConvolutionRank) { ConvolutionThunkBuilder<float> builder; auto status_or_thunk = builder.Build(ConvolutionDimensions(0)); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Incorrect convolution rank (0)")); } TEST(ConvolutionThunkTest, CreationErrorOnMismatchedKernelBufferRank) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims_2d(2); auto input_dims = MakeInputDims(dims_2d); auto output_dims = MakeOutputDims(dims_2d); ConvolutionDimensions dims_3d(3); auto kernel_dims = MakeKernelDims(dims_3d); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Buffer ranks mismatch. Input rank (4) vs " "kernel rank (5) vs output rank (4)")); } TEST(ConvolutionThunkTest, CreationErrorOnMismatchedOutputBufferRank) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims_2d(2); auto input_dims = MakeInputDims(dims_2d); auto kernel_dims = MakeKernelDims(dims_2d); ConvolutionDimensions dims_3d(3); auto output_dims = MakeOutputDims(dims_3d); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Buffer ranks mismatch. Input rank (4) vs " "kernel rank (4) vs output rank (5)")); } TEST(ConvolutionThunkTest, CreationErrorOnBatchSizeMismatch) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims; dims.batch_size = 1; auto input_dims = MakeInputDims(dims); auto kernel_dims = MakeKernelDims(dims); dims.batch_size = 2; auto output_dims = MakeOutputDims(dims); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr( "Batch sizes mismatch. Input batch (1) vs output batch (2)")); } TEST(ConvolutionThunkTest, CreationErrorOnOutputChannelsMismatch) { ConvolutionThunkBuilder<float> builder; ConvolutionDimensions dims; dims.output_channels = 3; auto input_dims = MakeInputDims(dims); auto kernel_dims = MakeKernelDims(dims); dims.output_channels = 4; auto output_dims = MakeOutputDims(dims); auto status_or_thunk = builder.Build(input_dims, kernel_dims, output_dims); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT( status_or_thunk.status().message(), ::testing::HasSubstr("Output channels mismatch. Kernel filters count (3) " "should be the same as output channels count (4)")); } TEST(ConvolutionThunkTest, ExecutionErrorOnMissingThreadPoolInMultiThreadedMode) { ConvolutionThunkBuilder<float> builder; auto options = MakeConvolutionOptions(); options.multi_threaded = true; builder.SetOptions(options); TF_ASSERT_OK_AND_ASSIGN(auto thunk, builder.Build(ConvolutionDimensions())); Thunk::ExecuteParams params = builder.GetExecutionParams(); params.intra_op_threadpool = nullptr; auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_TRUE(execute_event.IsError()); auto status = execute_event.GetError(); EXPECT_EQ(absl::StatusCode::kInternal, status.code()); EXPECT_EQ( "Intra-op threadpool must be provided for ConvolutionThunk in " "multi-threaded mode.", status.message()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/convolution_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/backends/cpu/runtime/convolution_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e59aac71-cf2e-45a8-bde2-70dce5b93419
cpp
google/quiche
chacha20_poly1305_tls_decrypter
quiche/quic/core/crypto/chacha20_poly1305_tls_decrypter.cc
quiche/quic/core/crypto/chacha20_poly1305_tls_decrypter_test.cc
#include "quiche/quic/core/crypto/chacha20_poly1305_tls_decrypter.h" #include "openssl/aead.h" #include "openssl/tls1.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" namespace quic { namespace { const size_t kKeySize = 32; const size_t kNonceSize = 12; } ChaCha20Poly1305TlsDecrypter::ChaCha20Poly1305TlsDecrypter() : ChaChaBaseDecrypter(EVP_aead_chacha20_poly1305, kKeySize, kAuthTagSize, kNonceSize, true) { static_assert(kKeySize <= kMaxKeySize, "key size too big"); static_assert(kNonceSize <= kMaxNonceSize, "nonce size too big"); } ChaCha20Poly1305TlsDecrypter::~ChaCha20Poly1305TlsDecrypter() {} uint32_t ChaCha20Poly1305TlsDecrypter::cipher_id() const { return TLS1_CK_CHACHA20_POLY1305_SHA256; } QuicPacketCount ChaCha20Poly1305TlsDecrypter::GetIntegrityLimit() const { static_assert(kMaxIncomingPacketSize < 16384, "This key limit requires limits on decryption payload sizes"); return 68719476736U; } }
#include "quiche/quic/core/crypto/chacha20_poly1305_tls_decrypter.h" #include <memory> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace { struct TestVector { const char* key; const char* iv; const char* fixed; const char* aad; const char* ct; const char* pt; }; const TestVector test_vectors[] = { {"808182838485868788898a8b8c8d8e8f" "909192939495969798999a9b9c9d9e9f", "4041424344454647", "07000000", "50515253c0c1c2c3c4c5c6c7", "d31a8d34648e60db7b86afbc53ef7ec2" "a4aded51296e08fea9e2b5a736ee62d6" "3dbea45e8ca9671282fafb69da92728b" "1a71de0a9e060b2905d6a5b67ecd3b36" "92ddbd7f2d778b8c9803aee328091b58" "fab324e4fad675945585808b4831d7bc" "3ff4def08e4b7a9de576d26586cec64b" "6116" "1ae10b594f09e26a7e902ecbd0600691", "4c616469657320616e642047656e746c" "656d656e206f662074686520636c6173" "73206f66202739393a20496620492063" "6f756c64206f6666657220796f75206f" "6e6c79206f6e652074697020666f7220" "746865206675747572652c2073756e73" "637265656e20776f756c642062652069" "742e"}, {"808182838485868788898a8b8c8d8e8f" "909192939495969798999a9b9c9d9e9f", "4041424344454647", "07000000", "50515253c0c1c2c3c4c5c6c7", "d31a8d34648e60db7b86afbc53ef7ec2" "a4aded51296e08fea9e2b5a736ee62d6" "3dbea45e8ca9671282fafb69da92728b" "1a71de0a9e060b2905d6a5b67ecd3b36" "92ddbd7f2d778b8c9803aee328091b58" "fab324e4fad675945585808b4831d7bc" "3ff4def08e4b7a9de576d26586cec64b" "6116" "1ae10b594f09e26a7e902eccd0600691", nullptr}, {"808182838485868788898a8b8c8d8e8f" "909192939495969798999a9b9c9d9e9f", "4041424344454647", "07000000", "60515253c0c1c2c3c4c5c6c7", "d31a8d34648e60db7b86afbc53ef7ec2" "a4aded51296e08fea9e2b5a736ee62d6" "3dbea45e8ca9671282fafb69da92728b" "1a71de0a9e060b2905d6a5b67ecd3b36" "92ddbd7f2d778b8c9803aee328091b58" "fab324e4fad675945585808b4831d7bc" "3ff4def08e4b7a9de576d26586cec64b" "6116" "1ae10b594f09e26a7e902ecbd0600691", nullptr}, {nullptr, nullptr, nullptr, nullptr, nullptr, nullptr}}; } namespace quic { namespace test { QuicData* DecryptWithNonce(ChaCha20Poly1305TlsDecrypter* decrypter, absl::string_view nonce, absl::string_view associated_data, absl::string_view ciphertext) { decrypter->SetIV(nonce); std::unique_ptr<char[]> output(new char[ciphertext.length()]); size_t output_length = 0; const bool success = decrypter->DecryptPacket(0, associated_data, ciphertext, output.get(), &output_length, ciphertext.length()); if (!success) { return nullptr; } return new QuicData(output.release(), output_length, true); } class ChaCha20Poly1305TlsDecrypterTest : public QuicTest {}; TEST_F(ChaCha20Poly1305TlsDecrypterTest, Decrypt) { for (size_t i = 0; test_vectors[i].key != nullptr; i++) { bool has_pt = test_vectors[i].pt; std::string key; std::string iv; std::string fixed; std::string aad; std::string ct; std::string pt; ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].key, &key)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].iv, &iv)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].fixed, &fixed)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].aad, &aad)); ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].ct, &ct)); if (has_pt) { ASSERT_TRUE(absl::HexStringToBytes(test_vectors[i].pt, &pt)); } ChaCha20Poly1305TlsDecrypter decrypter; ASSERT_TRUE(decrypter.SetKey(key)); std::unique_ptr<QuicData> decrypted(DecryptWithNonce( &decrypter, fixed + iv, absl::string_view(aad.length() ? aad.data() : nullptr, aad.length()), ct)); if (!decrypted) { EXPECT_FALSE(has_pt); continue; } EXPECT_TRUE(has_pt); EXPECT_EQ(16u, ct.size() - decrypted->length()); ASSERT_EQ(pt.length(), decrypted->length()); quiche::test::CompareCharArraysWithHexError( "plaintext", decrypted->data(), pt.length(), pt.data(), pt.length()); } } TEST_F(ChaCha20Poly1305TlsDecrypterTest, GenerateHeaderProtectionMask) { ChaCha20Poly1305TlsDecrypter decrypter; std::string key; std::string sample; std::string expected_mask; ASSERT_TRUE(absl::HexStringToBytes( "6a067f432787bd6034dd3f08f07fc9703a27e58c70e2d88d948b7f6489923cc7", &key)); ASSERT_TRUE( absl::HexStringToBytes("1210d91cceb45c716b023f492c29e612", &sample)); ASSERT_TRUE(absl::HexStringToBytes("1cc2cd98dc", &expected_mask)); QuicDataReader sample_reader(sample.data(), sample.size()); ASSERT_TRUE(decrypter.SetHeaderProtectionKey(key)); std::string mask = decrypter.GenerateHeaderProtectionMask(&sample_reader); quiche::test::CompareCharArraysWithHexError( "header protection mask", mask.data(), mask.size(), expected_mask.data(), expected_mask.size()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/chacha20_poly1305_tls_decrypter.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/crypto/chacha20_poly1305_tls_decrypter_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
6fed1475-0ff7-47b4-b9ac-9fe5bccb633b
cpp
tensorflow/tensorflow
iterator_ops
tensorflow/core/kernels/data/iterator_ops.cc
tensorflow/core/kernels/data/iterator_ops_test.cc
#include "tensorflow/core/kernels/data/iterator_ops.h" #include <cstdint> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/time/time.h" #include "tensorflow/core/activity_watcher/activity.h" #include "tensorflow/core/activity_watcher/activity_utils.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/finalization_utils.h" #include "tensorflow/core/data/metric_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/data/tf_data_memory_logger.h" #include "tensorflow/core/data/tfdataz_metrics.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/model.h" #include "tensorflow/core/framework/model.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/framework/variant_tensor_data.h" #include "tensorflow/core/kernels/data/optional_ops.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/refcount.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/resource.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace data { namespace { const char kAnonymousIterator[] = "AnonymousIterator"; const char kAnonymousIteratorV2[] = "AnonymousIteratorV2"; const char kAnonymousIteratorV3[] = "AnonymousIteratorV3"; const char kIteratorVariantTypeName[] = "tensorflow::Iterator"; const char kOutputShapes[] = "output_shapes"; const char kOutputTypes[] = "output_types"; bool SymbolicCheckpointEnabled(const Options& options) { return options.optional_symbolic_checkpoint_case() == Options::kSymbolicCheckpoint && options.symbolic_checkpoint(); } } constexpr const char* const SerializeIteratorOp::kExternalStatePolicy; IteratorResource::IteratorResource( Env* env, const DataTypeVector& output_dtypes, const std::vector<PartialTensorShape>& output_shapes, std::unique_ptr<DeviceMgr> device_mgr, std::unique_ptr<FunctionLibraryDefinition> flib_def, std::unique_ptr<ProcessFunctionLibraryRuntime> pflr, FunctionLibraryRuntime* flr) : metrics_collector_(flr->device()->device_type(), *env), unbounded_thread_pool_(env, "tf_data_iterator_resource"), env_(*env), device_mgr_(std::move(device_mgr)), iterator_state_(std::make_shared<State>(std::move(flib_def), std::move(pflr), flr, nullptr)), output_dtypes_(output_dtypes), output_shapes_(output_shapes) { VLOG(2) << "creating iterator resource"; } IteratorResource::~IteratorResource() { TfDatazMetricsRegistry::Deregister(tf_dataz_metrics_collector_); VLOG(2) << "destroying iterator resource"; } Status IteratorResource::GetNext(OpKernelContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) { std::shared_ptr<State> captured_state; { tf_shared_lock l(mu_); captured_state = iterator_state_; } auto iterator = captured_state->iterator(); if (!iterator) { return errors::FailedPrecondition( "GetNext() failed because the iterator has not been initialized. " "Ensure that you have run the initializer operation for this iterator " "before getting the next element."); } auto* dataset = captured_state->dataset(); IteratorContext::Params params(ctx); params.cancellation_manager = captured_state->cancellation_manager(); params.flr = captured_state->flr(); params.function_handle_cache = captured_state->function_handle_cache(); params.resource_mgr = captured_state->resource_mgr(); params.symbolic_checkpoint = SymbolicCheckpointEnabled(dataset->options()); params.thread_factory = unbounded_thread_pool_.get_thread_factory(); params.thread_pool = &unbounded_thread_pool_; params.id_registry = captured_state->id_registry(); params.warm_start = dataset->options().warm_start(); params.model = captured_state->model(); std::function<void()> deregister_fn; TF_RETURN_IF_ERROR(RegisterCancellationCallback( ctx->cancellation_manager(), [cm = params.cancellation_manager]() { cm->StartCancel(); }, &deregister_fn)); auto cleanup = gtl::MakeCleanup(std::move(deregister_fn)); IteratorContext iter_ctx(std::move(params)); const absl::Time start_time = metrics_collector_.RecordStart(); auto status = iterator->GetNext(&iter_ctx, out_tensors, end_of_sequence); metrics_collector_.RecordStop(start_time, *out_tensors); const int64_t get_next_latency_micros = env_.NowMicros() - absl::ToUnixMicros(start_time); tf_dataz_metrics_collector_->RecordGetNextLatency(get_next_latency_micros); captured_state->MergeCheckpoint(iter_ctx.checkpoint()); return status; } absl::Status IteratorResource::GetModelProto(std::string& model_proto) { std::shared_ptr<State> captured_state; { tf_shared_lock l(mu_); captured_state = iterator_state_; } auto iterator = captured_state->iterator(); if (!iterator) { return absl::FailedPreconditionError( "GetModelProto() failed because the iterator has not been initialized. " "Ensure that you have run the initializer operation for this iterator " "before getting the next element."); } model::ModelProto proto; if (auto model = captured_state->model(); model) { TF_RETURN_IF_ERROR(model->ToProto(&proto)); } else { return absl::NotFoundError( "Cannot find this iterator's analytical model. Did you disable " "autotune for the dataset used to create this iterator? See more " "information at " "https: "AutotuneOptions ."); } model_proto = proto.SerializeAsString(); return absl::OkStatus(); } Status IteratorResource::Save(OpKernelContext* ctx, ExternalStatePolicy external_state_policy, IteratorStateWriter* writer) { std::shared_ptr<State> captured_state; { tf_shared_lock l(mu_); captured_state = iterator_state_; } auto iterator = captured_state->iterator(); if (!iterator) { return errors::FailedPrecondition( "Save() failed because the iterator has not been initialized. Ensure " "that you have run the initializer operation for this iterator before " "saving it."); } auto* dataset = captured_state->dataset(); if (SymbolicCheckpointEnabled(dataset->options())) { const auto& checkpoint = captured_state->checkpoint(); if (!checkpoint.GetStatus().ok()) { LOG(WARNING) << "Symbolic checkpointing failed: " << checkpoint.GetStatus(); return checkpoint.GetStatus(); } LOG(INFO) << "Saving symbolic checkpoint"; TF_RETURN_IF_ERROR(checkpoint.Save(writer)); return absl::OkStatus(); } SerializationContext::Params params(ctx); params.external_state_policy = external_state_policy; params.symbolic_checkpoint = SymbolicCheckpointEnabled(dataset->options()); SerializationContext serialization_ctx(params); return iterator->Save(&serialization_ctx, writer); } Status IteratorResource::Restore(OpKernelContext* ctx, IteratorStateReader* reader) { const DatasetBase* dataset; std::shared_ptr<State> new_state; const DatasetBase* input_dataset; { tf_shared_lock l(mu_); auto iterator = iterator_state_->iterator(); if (!iterator) { return errors::FailedPrecondition( "Restore() failed because the iterator has not been initialized. " "Ensure that you have run the initializer operation for this " "iterator before restoring it."); } dataset = iterator->dataset(); dataset->Ref(); new_state = std::make_shared<State>(iterator_state_->flib_def(), iterator_state_->pflr(), iterator_state_->flr(), nullptr); input_dataset = iterator_state_->dataset(); iterator_state_->cancellation_manager()->StartCancel(); } core::ScopedUnref scoped_unref(dataset); IteratorContext::Params params(ctx); params.cancellation_manager = new_state->cancellation_manager(); params.flr = new_state->flr(); params.function_handle_cache = new_state->function_handle_cache(); params.resource_mgr = new_state->resource_mgr(); params.symbolic_checkpoint = SymbolicCheckpointEnabled(input_dataset->options()); params.thread_factory = unbounded_thread_pool_.get_thread_factory(); params.thread_pool = &unbounded_thread_pool_; params.id_registry = new_state->id_registry(); params.warm_start = dataset->options().warm_start(); std::function<void()> deregister_fn; TF_RETURN_IF_ERROR(RegisterCancellationCallback( ctx->cancellation_manager(), [cm = params.cancellation_manager]() { cm->StartCancel(); }, &deregister_fn)); auto cleanup = gtl::MakeCleanup(std::move(deregister_fn)); IteratorContext iter_ctx(IteratorContext(std::move(params))); std::unique_ptr<IteratorBase> iterator_base; TF_RETURN_IF_ERROR(dataset->MakeIteratorFromCheckpoint( &iter_ctx, "Iterator", reader, &iterator_base)); new_state->DowncastAndSetIteratorAndDataset(std::move(iterator_base), input_dataset); new_state->MergeCheckpoint(iter_ctx.checkpoint()); mutex_lock l(mu_); std::swap(iterator_state_, new_state); return absl::OkStatus(); } Status IteratorResource::SetIteratorFromDataset(OpKernelContext* ctx, const DatasetBase* dataset) { std::shared_ptr<State> new_state; { tf_shared_lock l(mu_); new_state = std::make_shared<State>(iterator_state_->flib_def(), iterator_state_->pflr(), iterator_state_->flr(), nullptr); } IteratorContext::Params params(ctx); params.cancellation_manager = new_state->cancellation_manager(); params.flr = new_state->flr(); params.function_handle_cache = new_state->function_handle_cache(); params.resource_mgr = new_state->resource_mgr(); params.symbolic_checkpoint = SymbolicCheckpointEnabled(dataset->options()); params.thread_factory = unbounded_thread_pool_.get_thread_factory(); params.thread_pool = &unbounded_thread_pool_; params.id_registry = new_state->id_registry(); params.warm_start = dataset->options().warm_start(); std::function<void()> deregister_fn; TF_RETURN_IF_ERROR(RegisterCancellationCallback( ctx->cancellation_manager(), [cm = params.cancellation_manager]() { cm->StartCancel(); }, &deregister_fn)); auto cleanup = gtl::MakeCleanup(std::move(deregister_fn)); IteratorContext iter_ctx(IteratorContext(std::move(params))); std::unique_ptr<IteratorBase> iterator; if (ctx->function_library()->device()->device_type() == DEVICE_CPU) { DatasetBase* finalized_dataset; TF_ASSIGN_OR_RETURN(finalized_dataset, GetFinalizedDataset(ctx, dataset)); TF_RETURN_IF_ERROR(finalized_dataset->MakeIterator(&iter_ctx, nullptr, "Iterator", &iterator)); } else { TF_RETURN_IF_ERROR(dataset->MakeIterator(&iter_ctx, nullptr, "Iterator", &iterator)); } TF_RETURN_IF_ERROR( VerifyTypesMatch(output_dtypes_, iterator->output_dtypes())); TF_RETURN_IF_ERROR( VerifyShapesCompatible(output_shapes_, iterator->output_shapes())); new_state->DowncastAndSetIteratorAndDataset(std::move(iterator), dataset); new_state->SetModel(iter_ctx.model()); new_state->MergeCheckpoint(iter_ctx.checkpoint()); mutex_lock l(mu_); std::swap(iterator_state_, new_state); tf_dataz_metrics_collector_ = std::make_shared<TfDatazMetricsCollector>( env_, iterator_state_->iterator(), iterator_state_->model()); EnsureIteratorMemoryLoggerStarted(); TfDatazMetricsRegistry::Register(tf_dataz_metrics_collector_); return absl::OkStatus(); } void IteratorResource::State::DowncastAndSetIteratorAndDataset( std::unique_ptr<IteratorBase> it, const DatasetBase* dataset) { iterator_.reset(static_cast<DatasetBaseIterator*>(it.release())); if (dataset) { dataset->Ref(); dataset_.reset(const_cast<DatasetBase*>(dataset)); } } void IteratorResource::State::MergeCheckpoint(MemoryCheckpoint* other) { if (SymbolicCheckpointEnabled(dataset_->options())) { checkpoint_.Merge(other); } } void IteratorResource::State::SetModel(std::shared_ptr<model::Model> model) { model_ = model; } namespace { class IteratorVariantSerializer { public: IteratorVariantSerializer() = default; Status InitializeFromIterator(OpKernelContext* ctx, ExternalStatePolicy external_state_policy, IteratorResource* iterator_resource) { VariantTensorDataWriter writer; TF_RETURN_IF_ERROR( iterator_resource->Save(ctx, external_state_policy, &writer)); std::vector<std::unique_ptr<VariantTensorData>> data; writer.ReleaseData(&data); variants_.clear(); variants_.reserve(data.size()); for (auto& it : data) { IteratorStateVariant v; TF_RETURN_IF_ERROR(v.InitializeFromVariantData(std::move(it))); variants_.push_back(v); } num_tensors_ = variants_.size(); can_serialize_ = true; return absl::OkStatus(); } Status InitFromTensor(const Tensor* serialized_t) { int64_t num_tensors = serialized_t->dim_size(0); auto serialized_vec = serialized_t->vec<Variant>(); std::vector<const VariantTensorData*> data; data.reserve(num_tensors); for (int i = 0; i < num_tensors; ++i) { auto* w = serialized_vec(i).get<IteratorStateVariant>(); if (!w) { return errors::Internal( "Cannot initialize an iterator from tensor ", serialized_vec(i).DebugString(), ". Expected a variant tensor of type IteratorStateVariant"); } data.push_back(w->GetData()); } reader_ = std::make_unique<VariantTensorDataReader>(data); num_tensors_ = data.size(); return absl::OkStatus(); } int64_t NumTensors() { return num_tensors_; } Status Serialize(Tensor* serialized) { if (!can_serialize_) { return errors::InvalidArgument( "Please call InitializeFromIterator before calling Serialize."); } int64_t size = variants_.size(); for (int64_t i = 0; i < size; ++i) { if (variants_[i].GetData() == nullptr) { return errors::Internal( "Cannot serialize an empty IteratorStateVariant"); } serialized->vec<Variant>()(i) = variants_[i]; } return absl::OkStatus(); } IteratorStateReader* GetReader() { return reader_.get(); } private: bool can_serialize_ = false; int64_t num_tensors_; std::vector<IteratorStateVariant> variants_; std::unique_ptr<IteratorStateReader> reader_; }; } IteratorHandleOp::IteratorHandleOp(OpKernelConstruction* ctx) : OpKernel(ctx), graph_def_version_(ctx->graph_def_version()) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_dtypes_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("shared_name", &name_)); } IteratorHandleOp::~IteratorHandleOp() { if (resource_ != nullptr) { resource_->Unref(); if (cinfo_.resource_is_private_to_kernel()) { if (!cinfo_.resource_manager() ->template Delete<IteratorResource>(cinfo_.container(), cinfo_.name()) .ok()) { } } } } void IteratorHandleOp::Compute(OpKernelContext* context) TF_LOCKS_EXCLUDED(mu_) { { mutex_lock l(mu_); if (resource_ == nullptr) { FunctionLibraryRuntime* flr; std::unique_ptr<DeviceMgr> device_mgr(nullptr); std::unique_ptr<FunctionLibraryDefinition> flib_def(nullptr); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr(nullptr); if (!name_.empty()) { flr = CreatePrivateFLR(context, &device_mgr, &flib_def, &pflr); } else { OP_REQUIRES_OK(context, context->function_library()->Clone( &flib_def, &pflr, &flr, true)); } ResourceMgr* mgr = context->resource_manager(); OP_REQUIRES_OK(context, cinfo_.Init(mgr, def())); IteratorResource* resource; OP_REQUIRES_OK( context, mgr->LookupOrCreate<IteratorResource>( cinfo_.container(), cinfo_.name(), &resource, [context, flr, &device_mgr, &flib_def, &pflr, this](IteratorResource** ret) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { *ret = new IteratorResource( context->env(), output_dtypes_, output_shapes_, std::move(device_mgr), std::move(flib_def), std::move(pflr), flr); return absl::OkStatus(); })); Status s = VerifyResource(resource); if (TF_PREDICT_FALSE(!s.ok())) { resource->Unref(); context->SetStatus(s); return; } resource_ = resource; } } OP_REQUIRES_OK(context, MakeResourceHandleToOutput( context, 0, cinfo_.container(), cinfo_.name(), TypeIndex::Make<IteratorResource>())); } Status IteratorHandleOp::VerifyResource(IteratorResource* resource) { TF_RETURN_IF_ERROR( VerifyTypesMatch(output_dtypes_, resource->output_dtypes())); TF_RETURN_IF_ERROR( VerifyShapesCompatible(output_shapes_, resource->output_shapes())); return absl::OkStatus(); } FunctionLibraryRuntime* IteratorHandleOp::CreatePrivateFLR( OpKernelContext* ctx, std::unique_ptr<DeviceMgr>* device_mgr, std::unique_ptr<FunctionLibraryDefinition>* flib_def, std::unique_ptr<ProcessFunctionLibraryRuntime>* pflr) { *device_mgr = std::make_unique<StaticDeviceMgr>(RenamedDevice::NewRenamedDevice( ctx->device()->name(), down_cast<Device*>(ctx->device()), false , false )); *flib_def = std::make_unique<FunctionLibraryDefinition>( *ctx->function_library()->GetFunctionLibraryDefinition()); const auto* config = ctx->function_library()->config_proto(); *pflr = std::make_unique<ProcessFunctionLibraryRuntime>( device_mgr->get(), ctx->env(), config, graph_def_version_, flib_def->get(), config->graph_options().optimizer_options()); return (*pflr)->GetFLR(ctx->device()->name()); } AnonymousIteratorHandleOp::AnonymousIteratorHandleOp( OpKernelConstruction* context) : AnonymousResourceOp<IteratorResource>( context, context->def().op() == kAnonymousIteratorV2 || context->def().op() == kAnonymousIteratorV3, context->def().op() == kAnonymousIteratorV2), graph_def_version_(context->graph_def_version()) { OP_REQUIRES_OK(context, context->GetAttr(kOutputTypes, &output_dtypes_)); OP_REQUIRES_OK(context, context->GetAttr(kOutputShapes, &output_shapes_)); } string AnonymousIteratorHandleOp::name() { return kAnonymousIterator; } Status AnonymousIteratorHandleOp::CreateResource( OpKernelContext* ctx, std::unique_ptr<FunctionLibraryDefinition> flib_def, std::unique_ptr<ProcessFunctionLibraryRuntime> pflr, FunctionLibraryRuntime* lib, IteratorResource** resource) { std::unique_ptr<DeviceMgr> device_mgr(nullptr); *resource = new IteratorResource(ctx->env(), output_dtypes_, output_shapes_, std::move(device_mgr), std::move(flib_def), std::move(pflr), lib); return absl::OkStatus(); } HybridAsyncOpKernel::HybridAsyncOpKernel(OpKernelConstruction* ctx, const char* background_worker_name) : AsyncOpKernel(ctx), background_worker_(ctx->env(), background_worker_name) {} void HybridAsyncOpKernel::ComputeAsync(OpKernelContext* ctx, DoneCallback done) { background_worker_.Schedule([this, ctx, done = std::move(done)]() { ctx->SetStatus(DoCompute(ctx)); done(); }); } void HybridAsyncOpKernel::Compute(OpKernelContext* ctx) { ctx->SetStatus(DoCompute(ctx)); } Status MakeIteratorOp::DoCompute(OpKernelContext* ctx) { tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(ctx->input(0), &dataset)); IteratorResource* iterator_resource; TF_RETURN_IF_ERROR( LookupResource(ctx, HandleFromInput(ctx, 1), &iterator_resource)); core::ScopedUnref unref_iterator(iterator_resource); return iterator_resource->SetIteratorFromDataset(ctx, dataset); } Status DeleteIteratorOp::DoCompute(OpKernelContext* ctx) { tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); const ResourceHandle& handle = ctx->input(0).flat<ResourceHandle>()(0); return DeleteResource(ctx, handle); } namespace { class ToSingleElementOp : public AsyncOpKernel { public: explicit ToSingleElementOp(OpKernelConstruction* ctx) : AsyncOpKernel(ctx), metrics_collector_(ctx->device()->attributes().device_type(), *ctx->env()), unbounded_threadpool_(ctx->env(), "tf_data_to_single_element") { OP_REQUIRES_OK(ctx, ctx->GetAttr("output_types", &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr("output_shapes", &output_shapes_)); } void ComputeAsync(OpKernelContext* ctx, DoneCallback done) override { unbounded_threadpool_.Schedule([this, ctx, done = std::move(done)]() { ctx->SetStatus(DoCompute(ctx)); done(); }); } void Compute(OpKernelContext* ctx) override { ctx->SetStatus(DoCompute(ctx)); } private: Status DoCompute(OpKernelContext* ctx) { tsl::profiler::TraceMe traceme( [&] { return tsl::profiler::TraceMeEncode("ToSingleElementOp::DoCompute", {{"id", ctx->step_id()}}); }, profiler::kInfo); tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); metrics::RecordTFDataFetchOp("ToSingleElementOp"); DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(ctx->input(0), &dataset)); IteratorContext::Params params(ctx); ResourceMgr resource_mgr; params.resource_mgr = &resource_mgr; CancellationManager cancellation_manager(ctx->cancellation_manager()); params.cancellation_manager = &cancellation_manager; IteratorContext iter_ctx(std::move(params)); std::unique_ptr<IteratorBase> iterator; TF_RETURN_IF_ERROR(dataset->MakeIterator( &iter_ctx, nullptr, "SingleElementIterator", &iterator)); std::vector<Tensor> components; components.reserve(dataset->output_dtypes().size()); bool end_of_sequence = false; const absl::Time start_time = metrics_collector_.RecordStart(); TF_RETURN_IF_ERROR( iterator->GetNext(&iter_ctx, &components, &end_of_sequence)); metrics_collector_.RecordStop(start_time, components); if (end_of_sequence) { return errors::InvalidArgument("Dataset was empty."); } TF_RETURN_IF_ERROR(VerifyTypesMatch(output_types_, components)); TF_RETURN_IF_ERROR(VerifyShapesCompatible(output_shapes_, components)); for (int i = 0; i < components.size(); ++i) { ctx->set_output(i, components[i]); } components.clear(); TF_RETURN_IF_ERROR( iterator->GetNext(&iter_ctx, &components, &end_of_sequence)); if (!end_of_sequence) { return errors::InvalidArgument("Dataset had more than one element."); } return absl::OkStatus(); } IteratorMetricsCollector metrics_collector_; UnboundedThreadPool unbounded_threadpool_; DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; }; class OneShotIteratorOp : public AsyncOpKernel { public: explicit OneShotIteratorOp(OpKernelConstruction* ctx) : AsyncOpKernel(ctx), background_worker_(ctx->env(), "tf_data_one_shot_iterator"), graph_def_version_(ctx->graph_def_version()) { string shared_name; OP_REQUIRES_OK(ctx, ctx->GetAttr("shared_name", &shared_name)); OP_REQUIRES(ctx, shared_name.empty(), errors::InvalidArgument("OneShotIteratorOp does not currently " "support the 'shared_name' attr.")); OP_REQUIRES_OK(ctx, ctx->GetAttr("dataset_factory", &dataset_factory_func_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_dtypes_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } ~OneShotIteratorOp() override { if (iterator_resource_ != nullptr) { iterator_resource_->Unref(); if (!cinfo_.resource_manager() ->Delete<IteratorResource>(cinfo_.container(), cinfo_.name()) .ok()) { } } } void ComputeAsync(OpKernelContext* ctx, DoneCallback done) override { tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); { mutex_lock l(mu_); if (iterator_resource_ == nullptr && initialization_status_.ok()) { if (!initialization_started_) { background_worker_.Schedule([this, ctx, done]() { Init(ctx, done); }); initialization_started_ = true; } else { done_callbacks_.emplace_back(ctx, std::move(done)); } return; } } ProduceOutput(ctx, done); } private: void Init(OpKernelContext* ctx, const DoneCallback& done) { IteratorResource* iterator = nullptr; ContainerInfo cinfo; Status s = TryInit(ctx, &iterator, &cinfo); std::vector<std::pair<OpKernelContext*, DoneCallback>> callbacks_to_run; { mutex_lock l(mu_); if (s.ok()) { iterator_resource_ = iterator; cinfo_ = cinfo; } initialization_status_ = s; std::swap(done_callbacks_, callbacks_to_run); } for (auto&& ctx_done : callbacks_to_run) { ProduceOutput(ctx_done.first, ctx_done.second); } ProduceOutput(ctx, done); } Status TryInit(OpKernelContext* ctx, IteratorResource** iterator, ContainerInfo* cinfo) { TF_RETURN_IF_ERROR(cinfo->Init(ctx->resource_manager(), def())); FunctionLibraryRuntime* flr; std::unique_ptr<FunctionLibraryDefinition> flib_def(nullptr); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr(nullptr); TF_RETURN_IF_ERROR( ctx->function_library()->Clone(&flib_def, &pflr, &flr, true)); TF_RETURN_IF_ERROR( ctx->resource_manager()->LookupOrCreate<IteratorResource>( cinfo->container(), cinfo->name(), iterator, [ctx, flr, this, &flib_def, &pflr](IteratorResource** ret) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { *ret = new IteratorResource( ctx->env(), output_dtypes_, output_shapes_, nullptr, std::move(flib_def), std::move(pflr), flr); return absl::OkStatus(); })); core::ScopedUnref unref_iterator(*iterator); TF_RETURN_IF_ERROR( VerifyTypesMatch(output_dtypes_, (*iterator)->output_dtypes())); TF_RETURN_IF_ERROR( VerifyShapesCompatible(output_shapes_, (*iterator)->output_shapes())); FunctionLibraryRuntime::Handle f_handle; TF_RETURN_IF_ERROR(ctx->function_library()->Instantiate( dataset_factory_func_.name(), AttrSlice(&dataset_factory_func_.attr()), &f_handle)); FunctionLibraryRuntime::Options opts; opts.cancellation_manager = ctx->cancellation_manager(); ScopedStepContainer step_container(opts.step_id, [ctx](const string& name) { ctx->resource_manager()->Cleanup(name).IgnoreError(); }); opts.step_container = &step_container; opts.runner = ctx->runner(); opts.run_all_kernels_inline = ctx->run_all_kernels_inline(); std::vector<Tensor> return_values; TF_RETURN_IF_ERROR(ctx->function_library()->RunSync( std::move(opts), f_handle, {}, &return_values)); if (return_values.size() != 1 || return_values[0].dtype() != DT_VARIANT || !TensorShapeUtils::IsScalar(return_values[0].shape())) { return errors::InvalidArgument( "The `dataset_factory` function must return " "a single scalar of dtype DT_VARIANT."); } DatasetBase* dataset; TF_RETURN_IF_ERROR(GetDatasetFromVariantTensor(return_values[0], &dataset)); TF_RETURN_IF_ERROR((*iterator)->SetIteratorFromDataset(ctx, dataset)); (*iterator)->Ref(); return absl::OkStatus(); } void ProduceOutput(OpKernelContext* ctx, const DoneCallback& done) { Tensor* handle; OP_REQUIRES_OK_ASYNC(ctx, ctx->allocate_output(0, TensorShape({}), &handle), done); Status s; { mutex_lock l(mu_); s = initialization_status_; if (s.ok()) { handle->scalar<ResourceHandle>()() = MakeResourceHandle<IteratorResource>(ctx, cinfo_.container(), cinfo_.name()); } } OP_REQUIRES_OK_ASYNC(ctx, s, done); done(); } NameAttrList dataset_factory_func_; DataTypeVector output_dtypes_; std::vector<PartialTensorShape> output_shapes_; BackgroundWorker background_worker_; mutex mu_; ContainerInfo cinfo_ TF_GUARDED_BY(mu_); IteratorResource* iterator_resource_ TF_GUARDED_BY(mu_) = nullptr; bool initialization_started_ TF_GUARDED_BY(mu_) = false; Status initialization_status_ TF_GUARDED_BY(mu_); std::vector<std::pair<OpKernelContext*, DoneCallback>> done_callbacks_ TF_GUARDED_BY(mu_); const int graph_def_version_; }; } AsyncOpKernel* IteratorGetNextOp::AsAsync() { return type_string() == "IteratorGetNextSync" ? nullptr : this; } void RecordElementSize(const std::vector<Tensor> element, tsl::profiler::TraceMe* traceme) { traceme->AppendMetadata([&]() { int64_t element_size = 0; for (const auto& component : element) { element_size += component.TotalBytes(); } return tsl::profiler::TraceMeEncode({{"element_size", element_size}}); }); } Status IteratorGetNextOp::DoCompute(OpKernelContext* ctx) { VLOG(3) << "IteratorGetNextOp enter. iter_id=" << ctx->frame_iter().iter_id; auto cleanup = gtl::MakeCleanup([ctx] { VLOG(3) << "IteratorGetNextOp exit. iter_id=" << ctx->frame_iter().iter_id; }); activity_watcher::ActivityScope activity_scope([ctx = ctx]() { return activity_watcher::ActivityFromContext( ctx, "IteratorGetNextOp::DoCompute", activity_watcher::ActivityCategory::kDatasetOp); }); tsl::profiler::TraceMe traceme( [&] { return tsl::profiler::TraceMeEncode( "IteratorGetNextOp::DoCompute", {{"id", ctx->step_id()}, {"iter_num", ctx->frame_iter().iter_id}}); }, profiler::kInfo); tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); metrics::RecordTFDataFetchOp("IteratorGetNextOp"); IteratorResource* iterator; TF_RETURN_IF_ERROR(LookupResource(ctx, HandleFromInput(ctx, 0), &iterator)); core::ScopedUnref unref_iterator(iterator); std::vector<Tensor> components; bool end_of_sequence = false; TF_RETURN_IF_ERROR(iterator->GetNext(ctx, &components, &end_of_sequence)); if (end_of_sequence) { return errors::OutOfRange("End of sequence"); } TF_RETURN_IF_ERROR(VerifyTypesMatch(output_types_, components)); TF_RETURN_IF_ERROR(VerifyShapesCompatible(output_shapes_, components)); RecordElementSize(components, &traceme); for (int i = 0; i < components.size(); ++i) { ctx->set_output(i, components[i]); } return absl::OkStatus(); } Status IteratorGetModelProtoOp::DoCompute(OpKernelContext* ctx) { IteratorResource* iterator = nullptr; TF_RETURN_IF_ERROR(LookupResource(ctx, HandleFromInput(ctx, 0), &iterator)); core::ScopedUnref unref_iterator(iterator); std::string model_proto; TF_RETURN_IF_ERROR(iterator->GetModelProto(model_proto)); Tensor* model_proto_result; TF_RETURN_IF_ERROR( ctx->allocate_output(0, TensorShape({}), &model_proto_result)); model_proto_result->scalar<tstring>()() = model_proto; return absl::OkStatus(); } Status IteratorGetNextAsOptionalOp::DoCompute(OpKernelContext* ctx) { VLOG(3) << "IteratorGetNextAsOptionalOp enter. iter_id=" << ctx->frame_iter().iter_id; auto cleanup = gtl::MakeCleanup([ctx] { VLOG(3) << "IteratorGetNextAsOptionalOp exit. iter_id=" << ctx->frame_iter().iter_id; }); activity_watcher::ActivityScope activity_scope([ctx = ctx]() { return activity_watcher::ActivityFromContext( ctx, "IteratorGetNextAsOptionalOp::DoCompute", activity_watcher::ActivityCategory::kDatasetOp); }); tsl::profiler::TraceMe traceme( [&] { return tsl::profiler::TraceMeEncode( "IteratorGetNextAsOptionalOp::DoCompute", {{"id", ctx->step_id()}, {"iter_num", ctx->frame_iter().iter_id}}); }, profiler::kInfo); tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); metrics::RecordTFDataFetchOp("IteratorGetNextAsOptionalOp"); IteratorResource* iterator; TF_RETURN_IF_ERROR(LookupResource(ctx, HandleFromInput(ctx, 0), &iterator)); core::ScopedUnref unref_iterator(iterator); std::vector<Tensor> components; bool end_of_sequence = false; TF_RETURN_IF_ERROR(iterator->GetNext(ctx, &components, &end_of_sequence)); if (end_of_sequence) { return WriteOptionalNoneToOutput(ctx, 0); } else { RecordElementSize(components, &traceme); for (int i = 0; i < components.size(); ++i) { if (components[i].dtype() != output_types_[i]) { return errors::InvalidArgument( "The given optional does not match the expected type for " "component ", i, ". Expected: ", DataTypeString(output_types_[i]), ". Actual: ", DataTypeString(components[i].dtype()), "."); } if (!output_shapes_[i].IsCompatibleWith(components[i].shape())) { return errors::InvalidArgument( "The given optional does not match the expected shape " "for component ", i, ". Expected: ", output_shapes_[i].DebugString(), ". Actual: ", components[i].shape().DebugString(), "."); } } return WriteOptionalWithValueToOutput(ctx, 0, std::move(components)); } } void IteratorToStringHandleOp::Compute(OpKernelContext* ctx) { const Tensor& resource_handle_t = ctx->input(0); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(resource_handle_t.shape()), errors::InvalidArgument("resource_handle must be a scalar")); IteratorResource* iterator_resource; OP_REQUIRES_OK( ctx, LookupResource(ctx, HandleFromInput(ctx, 0), &iterator_resource)); iterator_resource->Unref(); Tensor* string_handle_t; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &string_handle_t)); string_handle_t->scalar<tstring>()() = resource_handle_t.scalar<ResourceHandle>()().SerializeAsString(); } IteratorFromStringHandleOp::IteratorFromStringHandleOp( OpKernelConstruction* ctx) : OpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_dtypes_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); OP_REQUIRES( ctx, output_dtypes_.empty() || output_shapes_.empty() || output_dtypes_.size() == output_shapes_.size(), errors::InvalidArgument("If both 'output_types' and 'output_shapes' " "are set, they must have the same length.")); } void IteratorFromStringHandleOp::Compute(OpKernelContext* ctx) { const Tensor& string_handle_t = ctx->input(0); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(string_handle_t.shape()), errors::InvalidArgument("string_handle must be a scalar")); ResourceHandle resource_handle; OP_REQUIRES( ctx, resource_handle.ParseFromString(string_handle_t.scalar<tstring>()()), errors::InvalidArgument( "Could not parse string_handle as a valid ResourceHandle")); OP_REQUIRES( ctx, resource_handle.device() == ctx->device()->attributes().name(), errors::InvalidArgument("Attempted create an iterator on device \"", ctx->device()->attributes().name(), "\" from handle defined on device \"", resource_handle.device(), "\"")); IteratorResource* iterator_resource; OP_REQUIRES_OK(ctx, LookupResource(ctx, resource_handle, &iterator_resource)); core::ScopedUnref unref_iterator(iterator_resource); if (!output_dtypes_.empty()) { OP_REQUIRES_OK(ctx, VerifyTypesMatch(output_dtypes_, iterator_resource->output_dtypes())); } if (!output_shapes_.empty()) { OP_REQUIRES_OK(ctx, VerifyShapesCompatible(output_shapes_, iterator_resource->output_shapes())); } Tensor* resource_handle_t; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &resource_handle_t)); resource_handle_t->scalar<ResourceHandle>()() = resource_handle; } SerializeIteratorOp::SerializeIteratorOp(OpKernelConstruction* ctx) : OpKernel(ctx) { if (ctx->HasAttr(kExternalStatePolicy)) { int64_t external_state_policy; OP_REQUIRES_OK(ctx, ctx->GetAttr(kExternalStatePolicy, &external_state_policy)); external_state_policy_ = ExternalStatePolicy(external_state_policy); } } void SerializeIteratorOp::Compute(OpKernelContext* ctx) { tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); const Tensor& resource_handle_t = ctx->input(0); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(resource_handle_t.shape()), errors::InvalidArgument("resource_handle must be a scalar")); IteratorResource* iterator_resource; OP_REQUIRES_OK( ctx, LookupResource(ctx, HandleFromInput(ctx, 0), &iterator_resource)); core::ScopedUnref unref_iterator(iterator_resource); IteratorVariantSerializer serializer; OP_REQUIRES_OK(ctx, serializer.InitializeFromIterator( ctx, external_state_policy_, iterator_resource)); Tensor* serialized_t; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({serializer.NumTensors()}), &serialized_t)); OP_REQUIRES_OK(ctx, serializer.Serialize(serialized_t)); } void DeserializeIteratorOp::Compute(OpKernelContext* ctx) { tensorflow::ResourceTagger tag(kTFDataResourceTag, ctx->op_kernel().type_string()); IteratorResource* iterator_resource; OP_REQUIRES_OK( ctx, LookupResource(ctx, HandleFromInput(ctx, 0), &iterator_resource)); core::ScopedUnref unref_iterator(iterator_resource); const Tensor* serialized_t; OP_REQUIRES_OK(ctx, ctx->input("serialized", &serialized_t)); IteratorVariantSerializer serializer; OP_REQUIRES_OK(ctx, serializer.InitFromTensor(serialized_t)); Status s = iterator_resource->Restore(ctx, serializer.GetReader()); if (!s.ok()) { OP_REQUIRES_OK( ctx, errors::CreateWithUpdatedMessage( s, absl::StrCat( "Failed to restore dataset iterator from checkpoint: ", s.message(), ". Make sure the dataset definition has not changed between " "the process that saved the checkpoint and the process that " "is restoring it."))); } } namespace { REGISTER_KERNEL_BUILDER(Name("Iterator").Device(DEVICE_CPU), IteratorHandleOp); REGISTER_KERNEL_BUILDER(Name("IteratorV2").Device(DEVICE_CPU).Priority(2), IteratorHandleOp); REGISTER_KERNEL_BUILDER(Name("IteratorV2").Device(DEVICE_GPU).Priority(1), IteratorHandleOp); REGISTER_KERNEL_BUILDER(Name("MakeIterator").Device(DEVICE_CPU).Priority(2), MakeIteratorOp); REGISTER_KERNEL_BUILDER( Name("MakeIterator").Device(DEVICE_GPU).Priority(1).HostMemory("dataset"), MakeIteratorOp); REGISTER_KERNEL_BUILDER(Name("DeleteIterator").Device(DEVICE_CPU).Priority(2), DeleteIteratorOp); REGISTER_KERNEL_BUILDER(Name("DeleteIterator").Device(DEVICE_GPU).Priority(1), DeleteIteratorOp); REGISTER_KERNEL_BUILDER( Name("AnonymousIterator").Device(DEVICE_CPU).Priority(2), AnonymousIteratorHandleOp); REGISTER_KERNEL_BUILDER( Name("AnonymousIterator").Device(DEVICE_GPU).Priority(1), AnonymousIteratorHandleOp); REGISTER_KERNEL_BUILDER( Name("AnonymousIteratorV2").Device(DEVICE_CPU).Priority(2), AnonymousIteratorHandleOp); REGISTER_KERNEL_BUILDER( Name("AnonymousIteratorV2").Device(DEVICE_GPU).Priority(1), AnonymousIteratorHandleOp); REGISTER_KERNEL_BUILDER( Name("AnonymousIteratorV3").Device(DEVICE_CPU).Priority(2), AnonymousIteratorHandleOp); REGISTER_KERNEL_BUILDER( Name("AnonymousIteratorV3").Device(DEVICE_GPU).Priority(1), AnonymousIteratorHandleOp); REGISTER_KERNEL_BUILDER(Name("DatasetToSingleElement").Device(DEVICE_CPU), ToSingleElementOp); REGISTER_KERNEL_BUILDER(Name("OneShotIterator").Device(DEVICE_CPU), OneShotIteratorOp); REGISTER_KERNEL_BUILDER(Name("IteratorGetNext").Device(DEVICE_CPU).Priority(2), IteratorGetNextOp); REGISTER_KERNEL_BUILDER(Name("IteratorGetNext").Device(DEVICE_GPU).Priority(1), IteratorGetNextOp); REGISTER_KERNEL_BUILDER( Name("IteratorGetNextSync").Device(DEVICE_CPU).Priority(2), IteratorGetNextOp); REGISTER_KERNEL_BUILDER( Name("IteratorGetNextSync").Device(DEVICE_GPU).Priority(1), IteratorGetNextOp); REGISTER_KERNEL_BUILDER( Name("IteratorGetNextAsOptional").Device(DEVICE_CPU).Priority(2), IteratorGetNextAsOptionalOp); REGISTER_KERNEL_BUILDER( Name("IteratorGetNextAsOptional").Device(DEVICE_GPU).Priority(1), IteratorGetNextAsOptionalOp); REGISTER_KERNEL_BUILDER( Name("IteratorToStringHandle").Device(DEVICE_CPU).Priority(2), IteratorToStringHandleOp); REGISTER_KERNEL_BUILDER(Name("IteratorToStringHandle") .Device(DEVICE_GPU) .HostMemory("string_handle") .Priority(1), IteratorToStringHandleOp); REGISTER_KERNEL_BUILDER(Name("IteratorFromStringHandle").Device(DEVICE_CPU), IteratorFromStringHandleOp); REGISTER_KERNEL_BUILDER( Name("IteratorFromStringHandleV2").Device(DEVICE_CPU).Priority(2), IteratorFromStringHandleOp); REGISTER_KERNEL_BUILDER(Name("IteratorFromStringHandleV2") .Device(DEVICE_GPU) .HostMemory("string_handle") .Priority(1), IteratorFromStringHandleOp); REGISTER_KERNEL_BUILDER(Name("SerializeIterator").Device(DEVICE_CPU), SerializeIteratorOp); REGISTER_KERNEL_BUILDER(Name("DeserializeIterator").Device(DEVICE_CPU), DeserializeIteratorOp); REGISTER_KERNEL_BUILDER(Name("IteratorGetModelProto").Device(DEVICE_CPU), IteratorGetModelProtoOp); } } }
#include "tensorflow/core/kernels/data/iterator_ops.h" #include <cstdint> #include <utility> #include <vector> #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/lib/monitoring/test_utils.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace data { namespace { using ::tensorflow::monitoring::testing::CellReader; using ::tensorflow::monitoring::testing::Histogram; class IteratorOpsTest : public DatasetOpsTestBase { public: absl::StatusOr<core::RefCountPtr<IteratorResource>> GetIteratorResource() { FunctionLibraryRuntime* flr = nullptr; std::unique_ptr<DeviceMgr> device_mgr; std::unique_ptr<FunctionLibraryDefinition> flib_def; std::unique_ptr<ProcessFunctionLibraryRuntime> plfr; TF_RETURN_IF_ERROR(dataset_ctx_->function_library()->Clone( &flib_def, &plfr, &flr, true)); core::RefCountPtr<IteratorResource> iter_resource( new IteratorResource(dataset_ctx_->env(), dataset_->output_dtypes(), dataset_->output_shapes(), std::move(device_mgr), std::move(flib_def), std::move(plfr), flr)); TF_RETURN_IF_ERROR( iter_resource->SetIteratorFromDataset(dataset_ctx_.get(), dataset_)); return iter_resource; } absl::StatusOr<std::vector<std::vector<Tensor>>> GetIteratorOutput( IteratorResource& iterator) { std::vector<std::vector<Tensor>> output; for (bool end_of_sequence = false; !end_of_sequence;) { std::vector<Tensor> tensors; TF_RETURN_IF_ERROR( iterator.GetNext(dataset_ctx_.get(), &tensors, &end_of_sequence)); if (end_of_sequence) { break; } output.push_back(std::move(tensors)); } return output; } }; TEST_F(IteratorOpsTest, CollectMetrics) { CellReader<Histogram> latency("/tensorflow/data/getnext_duration"); CellReader<Histogram> iterator_gap("/tensorflow/data/iterator_gap"); CellReader<int64_t> throughput("/tensorflow/data/bytes_fetched"); CellReader<int64_t> iterator_lifetime("/tensorflow/data/iterator_lifetime"); CellReader<int64_t> iterator_busy("/tensorflow/data/iterator_busy"); EXPECT_FLOAT_EQ(latency.Delta().num(), 0.0); EXPECT_FLOAT_EQ(iterator_gap.Delta().num(), 0.0); EXPECT_EQ(throughput.Delta(), 0.0); EXPECT_EQ(iterator_lifetime.Delta(), 0.0); EXPECT_EQ(iterator_busy.Delta(), 0.0); RangeDatasetParams dataset_params = RangeDatasetParams(0, 10, 3); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK_AND_ASSIGN(core::RefCountPtr<IteratorResource> iter_resource, GetIteratorResource()); TF_ASSERT_OK_AND_ASSIGN(std::vector<std::vector<Tensor>> output, GetIteratorOutput(*iter_resource)); EXPECT_EQ(output.size(), 4); Histogram latency_histogram = latency.Delta(); EXPECT_FLOAT_EQ(latency_histogram.num(), 5.0); EXPECT_GT(latency_histogram.sum(), 0.0); Histogram iterator_gap_histogram = iterator_gap.Delta(); EXPECT_FLOAT_EQ(iterator_gap_histogram.num(), 5.0); EXPECT_GT(iterator_gap_histogram.sum(), 0.0); EXPECT_GT(throughput.Delta(), 0); EXPECT_GT(iterator_lifetime.Delta(), 0); EXPECT_GT(iterator_busy.Delta(), 0.0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/iterator_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/iterator_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b1d8c80a-0c7a-41ea-a5ca-6806d5cb43e9
cpp
tensorflow/tensorflow
stablehlo_add
tensorflow/lite/kernels/stablehlo_add.cc
tensorflow/lite/kernels/stablehlo_add_test.cc
#include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/stablehlo_elementwise.h" namespace tflite::ops::builtin { TfLiteRegistration* Register_STABLEHLO_ADD() { static TfLiteRegistration r = {nullptr, nullptr, ElementwisePrepare, ElementwiseEval<ComputationType::kAdd>}; return &r; } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAre; class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_STABLEHLO_ADD, BuiltinOptions_NONE, 0); SetBypassDefaultDelegates(); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } int input1() { return input1_; } int input2() { return input2_; } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } protected: int input1_; int input2_; int output_; }; TEST(StablehloElementwise, AddWorks) { AddOpModel model({TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {}}); model.PopulateTensor<float>(model.input1(), {-2.0, 0.2, 0.7, 0.8}); model.PopulateTensor<float>(model.input2(), {0.1, 0.2, 0.3, 0.5}); ASSERT_EQ(model.Invoke(), kTfLiteOk); EXPECT_THAT(model.GetOutput(), ElementsAre(-1.9, 0.4, 1.0, 1.3)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/stablehlo_add.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/stablehlo_add_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
add2a9f3-d5e8-40f7-9af8-1c492ad3a6c9
cpp
google/arolla
dispatch_operator
arolla/expr/operator_loader/dispatch_operator.cc
arolla/expr/operator_loader/dispatch_operator_test.cc
#include "arolla/expr/operator_loader/dispatch_operator.h" #include <cstddef> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/operator_loader/generic_operator_overload_condition.h" #include "arolla/expr/qtype_utils.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/tuple_qtype.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { using ::arolla::expr::ExprAttributes; using ::arolla::expr::ExprNode; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::GetPlaceholderKeys; using ::arolla::expr::ValidateDepsCount; absl::StatusOr<ExprOperatorPtr> DispatchOperator::Make( absl::string_view name, expr::ExprOperatorSignature signature, std::vector<Overload> overloads, expr::ExprNodePtr dispatch_readiness_condition) { RETURN_IF_ERROR(ValidateSignature(signature)); for (const auto& overload : overloads) { const auto& placeholder_keys = GetPlaceholderKeys(overload.condition); if (!placeholder_keys.empty()) { return absl::InvalidArgumentError( "placeholders are not supported " "in dispatch operator overload conditions"); } } for (const auto& param : signature.parameters) { if (param.default_value.has_value()) { return absl::InvalidArgumentError( "signatures with the default values are not supported " "in dispatch operator; " "got signature: " + GetExprOperatorSignatureSpec(signature)); } } std::vector<ExprNodePtr> overload_conditions; overload_conditions.reserve(overloads.size() + 1); for (const auto& overload : overloads) { overload_conditions.push_back(overload.condition); } overload_conditions.push_back(dispatch_readiness_condition); ASSIGN_OR_RETURN(auto overloads_condition_fn, MakeGenericOperatorOverloadConditionFn(overload_conditions)); FingerprintHasher hasher("::arolla::operator_loader::DispatchOperator"); hasher.Combine(name, signature, dispatch_readiness_condition->fingerprint(), overloads.size()); for (const auto& overload : overloads) { hasher.Combine(overload.name, overload.op->fingerprint(), overload.condition->fingerprint()); } return std::make_shared<DispatchOperator>( PrivateConstructorTag{}, name, std::move(signature), std::move(overloads), std::move(overloads_condition_fn), std::move(dispatch_readiness_condition), std::move(hasher).Finish()); } DispatchOperator::DispatchOperator( PrivateConstructorTag, absl::string_view name, expr::ExprOperatorSignature signature, std::vector<Overload> overloads, GenericOperatorOverloadConditionFn overloads_condition_fn, expr::ExprNodePtr dispatch_readiness_condition, Fingerprint fingerprint) : ExprOperatorWithFixedSignature(name, signature, "", fingerprint), overloads_(std::move(overloads)), overloads_condition_fn_(std::move(overloads_condition_fn)), dispatch_readiness_condition_(std::move(dispatch_readiness_condition)) {} absl::StatusOr<expr::ExprAttributes> DispatchOperator::InferAttributes( absl::Span<const expr::ExprAttributes> inputs) const { ASSIGN_OR_RETURN(const auto* overload, LookupImpl(inputs)); if (overload == nullptr) { return ExprAttributes{}; } ASSIGN_OR_RETURN(expr::ExprAttributes attr, overload->op->InferAttributes(inputs), _ << "in " << absl::Utf8SafeCHexEscape(overload->name) << " overload of DispatchOperator"); return attr; } absl::StatusOr<expr::ExprNodePtr> DispatchOperator::ToLowerLevel( const expr::ExprNodePtr& node) const { ASSIGN_OR_RETURN(const auto* overload, LookupImpl(GetExprAttrs(node->node_deps()))); if (overload == nullptr) { return node; } auto expr = ExprNode::UnsafeMakeOperatorNode(ExprOperatorPtr(overload->op), std::vector(node->node_deps()), ExprAttributes(node->attr())); ASSIGN_OR_RETURN(expr::ExprNodePtr lowered, expr->op()->ToLowerLevel(expr), _ << "in " << absl::Utf8SafeCHexEscape(overload->name) << " overload of DispatchOperator"); return lowered; } absl::StatusOr<absl::Nullable<const DispatchOperator::Overload*>> DispatchOperator::LookupImpl(absl::Span<const ExprAttributes> inputs) const { RETURN_IF_ERROR(ValidateDepsCount(signature(), inputs.size(), absl::StatusCode::kInvalidArgument)); auto input_qtypes = GetAttrQTypes(inputs); for (auto& input_qtype : input_qtypes) { if (input_qtype == nullptr) { input_qtype = GetNothingQType(); } } ASSIGN_OR_RETURN(auto is_condition_passed, overloads_condition_fn_(MakeTupleQType(input_qtypes))); if (is_condition_passed.size() != overloads_.size() + 1) { return absl::InternalError("the state of DispatchOperator is invalid"); } bool ready_to_dispatch = is_condition_passed.back(); if (!ready_to_dispatch) { if (HasAllAttrQTypes(inputs)) { return absl::FailedPreconditionError( absl::StrFormat("the operator is broken for argument types %s", FormatTypeVector(input_qtypes))); } return nullptr; } std::vector<size_t> matching_ids; for (size_t i = 0; i < overloads_.size(); ++i) { if (is_condition_passed[i]) { matching_ids.push_back(i); } } if (matching_ids.size() > 1) { return absl::FailedPreconditionError(absl::StrFormat( "constraints of the multiple overloads (%s) passed for argument " "types %s", absl::StrJoin(matching_ids, ", ", [&](std::string* out, size_t id) { absl::StrAppend( out, absl::Utf8SafeCHexEscape(overloads_[id].name)); }), FormatTypeVector(input_qtypes))); } if (matching_ids.empty()) { return absl::InvalidArgumentError( absl::StrFormat("no suitable overload for argument types %s", FormatTypeVector(input_qtypes))); } return &overloads_[matching_ids[0]]; } ReprToken DispatchOperator::GenReprToken() const { return {absl::StrFormat( "<DispatchOperator: name='%s', signature='%s', cases=['%s']>", absl::Utf8SafeCHexEscape(display_name()), GetExprOperatorSignatureSpec(signature()), absl::StrJoin( overloads_, "', '", [](std::string* out, const auto& overload) { absl::StrAppend(out, absl::Utf8SafeCHexEscape(overload.name)); }))}; } absl::string_view DispatchOperator::py_qvalue_specialization_key() const { return "::arolla::operator_loader::DispatchOperator"; } }
#include "arolla/expr/operator_loader/dispatch_operator.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_attributes.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/lambda_expr_operator.h" #include "arolla/expr/operator_loader/qtype_constraint.h" #include "arolla/expr/operator_loader/restricted_lambda_operator.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/bytes.h" #include "arolla/util/testing/repr_token_eq.h" #include "arolla/util/status_macros_backport.h" namespace arolla::operator_loader { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::GetNothingQType; using ::arolla::expr::CallOp; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::LambdaOperator; using ::arolla::expr::Leaf; using ::arolla::expr::Literal; using ::arolla::expr::Placeholder; using ::arolla::testing::EqualsAttr; using ::arolla::testing::EqualsExpr; using ::arolla::testing::ReprTokenEq; using ::arolla::testing::WithQTypeAnnotation; using ::testing::HasSubstr; using Attr = ::arolla::expr::ExprAttributes; class DispatchOperatorTest : public ::testing::Test { protected: static absl::StatusOr<expr::ExprNodePtr> arg_first() { return CallOp("core.get_nth", {Leaf("input_tuple_qtype"), Literal(0)}); } static absl::StatusOr<expr::ExprNodePtr> arg_second() { return CallOp("core.get_nth", {Leaf("input_tuple_qtype"), Literal(1)}); } static absl::StatusOr<expr::ExprNodePtr> arg_first_qtype() { return CallOp("qtype.get_field_qtype", {Leaf("input_tuple_qtype"), Literal(0)}); } static absl::StatusOr<expr::ExprNodePtr> args_from_second_qtype() { return CallOp("qtype.slice_tuple_qtype", {Leaf("input_tuple_qtype"), Literal(1), Literal(-1)}); } static absl::StatusOr<std::shared_ptr<const LambdaOperator>> MakeBaseBinaryOp() { return expr::MakeLambdaOperator( "with_name", ExprOperatorSignature{{"x"}, {"name"}}, SuppressUnusedWarning("name", Placeholder("x")), "doc-string-for-lambda"); } static absl::StatusOr<QTypeConstraint> MakeBaseBinaryQTypeConstraint() { ASSIGN_OR_RETURN(auto predicate_expr, CallOp("core.equal", {Placeholder("name"), Literal(GetQType<Bytes>())})); return QTypeConstraint{predicate_expr, "expected name to be bytes, got {name}"}; } static absl::StatusOr<std::shared_ptr<const RestrictedLambdaOperator>> MakeBinaryOp() { ASSIGN_OR_RETURN(auto lambda_op, MakeBaseBinaryOp()); ASSIGN_OR_RETURN(auto qtype_constraint, MakeBaseBinaryQTypeConstraint()); ASSIGN_OR_RETURN(auto restricted_lambda_op, RestrictedLambdaOperator::Make( std::move(lambda_op), {std::move(qtype_constraint)})); return std::dynamic_pointer_cast<const RestrictedLambdaOperator>( restricted_lambda_op); } static absl::StatusOr<std::shared_ptr<const LambdaOperator>> MakeBaseUnaryOp() { return expr::MakeLambdaOperator("noop", ExprOperatorSignature{{"x"}}, Placeholder("x"), "doc-string-for-unary-case"); } static absl::StatusOr<QTypeConstraint> MakeBaseUnaryQTypeConstraint() { ASSIGN_OR_RETURN(auto predicate_expr, CallOp("qtype.is_numeric_qtype", {Placeholder("x")})); return QTypeConstraint{predicate_expr, "expected x to be numeric, got {x}"}; } static absl::StatusOr<std::shared_ptr<const RestrictedLambdaOperator>> MakeUnaryOp() { ASSIGN_OR_RETURN(auto lambda_op, MakeBaseUnaryOp()); ASSIGN_OR_RETURN(auto qtype_constraint, MakeBaseUnaryQTypeConstraint()); ASSIGN_OR_RETURN(auto restricted_lambda_op, RestrictedLambdaOperator::Make( std::move(lambda_op), {std::move(qtype_constraint)})); return std::dynamic_pointer_cast<const RestrictedLambdaOperator>( restricted_lambda_op); } static absl::StatusOr<expr::ExprNodePtr> MakeUnaryCondition() { auto one_argument = CallOp("core.equal", {CallOp("qtype.get_field_count", {args_from_second_qtype()}), Literal(0)}); auto is_numeric = CallOp("qtype.is_scalar_qtype", {arg_first_qtype()}); return CallOp("core.presence_and", {one_argument, is_numeric}); } static absl::StatusOr<expr::ExprNodePtr> MakeDispatchReadinessCondition( const std::vector<int64_t> ids) { auto expr = CallOp("core.not_equal", {Leaf("input_tuple_qtype"), Literal(GetNothingQType())}); for (auto id : ids) { auto additional_expr = CallOp( "core.not_equal", {CallOp("qtype.get_field_qtype", {Leaf("input_tuple_qtype"), Literal(id)}), Literal(GetNothingQType())}); expr = CallOp("core.presence_and", {expr, additional_expr}); } return expr; } static absl::StatusOr<std::shared_ptr<const DispatchOperator>> MakeOp() { ASSIGN_OR_RETURN(auto binary_op, MakeBinaryOp()); ASSIGN_OR_RETURN(auto unary_op, MakeUnaryOp()); ASSIGN_OR_RETURN(auto unary_condition, MakeUnaryCondition()); ASSIGN_OR_RETURN(auto not_unary_condition, CallOp("core.presence_not", {unary_condition})); ASSIGN_OR_RETURN(auto readiness_condition, MakeDispatchReadinessCondition({0})); ASSIGN_OR_RETURN( auto dispatch_op, DispatchOperator::Make("op.name", expr::ExprOperatorSignature{ {"x"}, {.name = "args", .kind = ExprOperatorSignature::Parameter:: Kind::kVariadicPositional}}, {{.name = "unary\tcase", .op = std::move(unary_op), .condition = std::move(unary_condition)}, {.name = "default", .op = std::move(binary_op), .condition = std::move(not_unary_condition)}}, readiness_condition)); return std::dynamic_pointer_cast<const DispatchOperator>(dispatch_op); } static absl::StatusOr<std::shared_ptr<const DispatchOperator>> MakeOpNoDefault() { ASSIGN_OR_RETURN(auto no_op, MakeBaseUnaryOp()); ASSIGN_OR_RETURN(auto unary_op, MakeUnaryOp()); ASSIGN_OR_RETURN(auto unary_condition, MakeUnaryCondition()); ASSIGN_OR_RETURN(auto readiness_condition, MakeDispatchReadinessCondition({0})); ASSIGN_OR_RETURN( auto dispatch_op, DispatchOperator::Make("op.name", expr::ExprOperatorSignature{ {"x"}, {.name = "args", .kind = ExprOperatorSignature::Parameter:: Kind::kVariadicPositional}}, {{.name = "unary\tcase", .op = std::move(unary_op), .condition = std::move(unary_condition)}}, readiness_condition)); return std::dynamic_pointer_cast<const DispatchOperator>(dispatch_op); } static absl::StatusOr<std::shared_ptr<const DispatchOperator>> MakeDuplicatedOp() { ASSIGN_OR_RETURN(auto binary_op, MakeBinaryOp()); ASSIGN_OR_RETURN(auto unary_op_a, MakeUnaryOp()); ASSIGN_OR_RETURN(auto unary_op_b, MakeUnaryOp()); ASSIGN_OR_RETURN(auto unary_condition_a, MakeUnaryCondition()); ASSIGN_OR_RETURN(auto unary_condition_b, MakeUnaryCondition()); ASSIGN_OR_RETURN(auto not_unary_condition, CallOp("core.presence_not", {unary_condition_a})); ASSIGN_OR_RETURN(auto readiness_condition, MakeDispatchReadinessCondition({0})); ASSIGN_OR_RETURN( auto dispatch_op, DispatchOperator::Make("op.name", expr::ExprOperatorSignature{ {"x"}, {.name = "args", .kind = ExprOperatorSignature::Parameter:: Kind::kVariadicPositional}}, {{.name = "unary_case_a", .op = std::move(unary_op_a), .condition = std::move(unary_condition_a)}, {.name = "unary_case_b", .op = std::move(unary_op_b), .condition = std::move(unary_condition_b)}, {.name = "binary_case", .op = std::move(binary_op), .condition = std::move(not_unary_condition)}}, readiness_condition)); return std::dynamic_pointer_cast<const DispatchOperator>(dispatch_op); } }; } TEST_F(DispatchOperatorTest, PublicProperties) { ASSERT_OK_AND_ASSIGN(auto op, MakeOp()); EXPECT_EQ(op->display_name(), "op.name"); EXPECT_EQ(op->doc(), ""); } TEST_F(DispatchOperatorTest, InferAttributes) { ASSERT_OK_AND_ASSIGN(auto op, MakeOp()); EXPECT_THAT(op->InferAttributes({Attr{}}), IsOkAndHolds(EqualsAttr(nullptr))); EXPECT_THAT(op->InferAttributes({Attr{}, Attr{}}), IsOkAndHolds(EqualsAttr(nullptr))); EXPECT_THAT(op->InferAttributes({Attr{}, Attr{}, Attr{}}), IsOkAndHolds(EqualsAttr(nullptr))); EXPECT_THAT(op->InferAttributes({Attr(GetQType<int>()), Attr{}, Attr{}}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an " "operator node: expected 2 but got 3; in default " "overload of DispatchOperator")); EXPECT_THAT(op->InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an " "operator node: expected 1 but got 0")); EXPECT_THAT(op->InferAttributes({Attr(GetQType<Bytes>())}), StatusIs(absl::StatusCode::kInvalidArgument, "expected x to be numeric, got BYTES; in unary\\tcase " "overload of DispatchOperator")); EXPECT_THAT(op->InferAttributes({Attr(GetQType<int>())}), IsOkAndHolds(EqualsAttr(GetQType<int>()))); EXPECT_THAT(op->InferAttributes({Attr(GetQType<int>()), Attr{}}), IsOkAndHolds(EqualsAttr(nullptr))); EXPECT_THAT( op->InferAttributes({Attr(GetQType<int>()), Attr(GetQType<Bytes>())}), IsOkAndHolds(EqualsAttr(GetQType<int>()))); } TEST_F(DispatchOperatorTest, InferAttributesNoDefault) { ASSERT_OK_AND_ASSIGN(auto op, MakeOpNoDefault()); EXPECT_THAT(op->InferAttributes({Attr{}}), IsOkAndHolds(EqualsAttr(nullptr))); EXPECT_THAT(op->InferAttributes({Attr{}, Attr{}}), IsOkAndHolds(EqualsAttr(nullptr))); EXPECT_THAT( op->InferAttributes({Attr(GetQType<int>()), Attr{}}), StatusIs(absl::StatusCode::kInvalidArgument, "no suitable overload for argument types (INT32,NOTHING)")); EXPECT_THAT(op->InferAttributes({}), StatusIs(absl::StatusCode::kInvalidArgument, "incorrect number of dependencies passed to an " "operator node: expected 1 but got 0")); EXPECT_THAT(op->InferAttributes({Attr(GetQType<Bytes>())}), StatusIs(absl::StatusCode::kInvalidArgument, "expected x to be numeric, got BYTES; in unary\\tcase " "overload of DispatchOperator")); EXPECT_THAT(op->InferAttributes({Attr(GetQType<int>())}), IsOkAndHolds(EqualsAttr(GetQType<int>()))); } TEST_F(DispatchOperatorTest, SignatureWithDefaultValues) { ASSERT_OK_AND_ASSIGN(auto binary_op, MakeBinaryOp()); ASSERT_OK_AND_ASSIGN(auto unary_op, MakeUnaryOp()); ASSERT_OK_AND_ASSIGN(auto readiness_condition, MakeDispatchReadinessCondition({})); ASSERT_OK_AND_ASSIGN(auto predicate_expr_xx, CallOp("core.equal", {arg_first(), arg_first()})); EXPECT_THAT( DispatchOperator::Make("op", expr::ExprOperatorSignature{ {.name = "x", .default_value = TypedValue::FromValue(false), .kind = ExprOperatorSignature::Parameter:: Kind::kPositionalOrKeyword}}, {{.name = "foo", .op = std::move(binary_op), .condition = std::move(predicate_expr_xx)}}, readiness_condition), StatusIs(absl::StatusCode::kInvalidArgument, "signatures with the default values are not supported in " "dispatch operator; got signature: x=")); } TEST_F(DispatchOperatorTest, ToLowerLevel) { auto leaf = Leaf("leaf"); ASSERT_OK_AND_ASSIGN(auto leaf_with_qtype, WithQTypeAnnotation(Leaf("leaf"), GetQType<float>())); ASSERT_OK_AND_ASSIGN(auto leaf_with_nothing_qtype, WithQTypeAnnotation(Leaf("leaf"), GetNothingQType())); auto name_literal = Literal(Bytes("name")); auto name_placeholder = Placeholder("name"); { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf})); ASSERT_OK_AND_ASSIGN(auto noop_leaf, CallOp(MakeUnaryOp(), {leaf})); EXPECT_EQ(expr->qtype(), nullptr); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(expr))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf, name_placeholder})); ASSERT_OK_AND_ASSIGN(auto binary_op, CallOp(MakeBinaryOp(), {leaf, name_placeholder})); EXPECT_EQ(expr->qtype(), nullptr); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(expr))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf, name_literal})); ASSERT_OK_AND_ASSIGN(auto binary_op, CallOp(MakeBinaryOp(), {leaf, name_literal})); EXPECT_EQ(expr->qtype(), nullptr); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(expr))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf_with_qtype})); EXPECT_EQ(expr->qtype(), GetQType<float>()); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(leaf_with_qtype))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf_with_qtype, name_placeholder})); ASSERT_OK_AND_ASSIGN( auto binary_op, CallOp(MakeBinaryOp(), {leaf_with_qtype, name_placeholder})); EXPECT_EQ(expr->qtype(), nullptr); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(binary_op))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf_with_qtype, name_literal})); EXPECT_EQ(expr->qtype(), GetQType<float>()); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(leaf_with_qtype))); } { ASSERT_OK_AND_ASSIGN( auto expr, CallOp(MakeDuplicatedOp(), {leaf_with_qtype, name_literal})); EXPECT_EQ(expr->qtype(), GetQType<float>()); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(leaf_with_qtype))); } { EXPECT_THAT( CallOp(MakeDuplicatedOp(), {leaf_with_qtype}), StatusIs( absl::StatusCode::kFailedPrecondition, HasSubstr("constraints of the multiple overloads (unary_case_a, " "unary_case_b) passed for argument types (FLOAT32)"))); } { EXPECT_THAT(CallOp(MakeOp(), {}), StatusIs(absl::StatusCode::kInvalidArgument, "missing 1 required argument: 'x'; while binding " "operator 'op.name'")); } { EXPECT_THAT( CallOp(MakeOp(), {leaf_with_nothing_qtype}), StatusIs( absl::StatusCode::kFailedPrecondition, HasSubstr("the operator is broken for argument types (NOTHING)"))); } { ASSERT_OK_AND_ASSIGN(auto expr, CallOp(MakeOp(), {leaf_with_nothing_qtype, leaf})); ASSERT_OK_AND_ASSIGN(auto binary_op, CallOp(MakeBinaryOp(), {leaf, name_literal})); EXPECT_EQ(expr->qtype(), nullptr); EXPECT_THAT(ToLowest(expr), IsOkAndHolds(EqualsExpr(expr))); } { EXPECT_THAT(CallOp(MakeOp(), {leaf_with_nothing_qtype, leaf_with_qtype}), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("the operator is broken for argument types " "(NOTHING,FLOAT32)"))); } } TEST_F(DispatchOperatorTest, Repr) { ASSERT_OK_AND_ASSIGN(auto op, MakeOp()); EXPECT_THAT(op->GenReprToken(), ReprTokenEq("<DispatchOperator: name='op.name', signature='x, " "*args', cases=['unary\\tcase', 'default']>")); } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/dispatch_operator.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operator_loader/dispatch_operator_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
8a82f1ac-bf7f-4b52-9cb6-b9539c798c42
cpp
google/tensorstore
block_queue
tensorstore/internal/container/block_queue.h
tensorstore/internal/container/block_queue_test.cc
#ifndef TENSORSTORE_INTERNAL_THREAD_BLOCK_QUEUE_H_ #define TENSORSTORE_INTERNAL_THREAD_BLOCK_QUEUE_H_ #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <memory> #include <utility> #include "absl/base/attributes.h" #include "absl/log/absl_check.h" #include "tensorstore/internal/container/item_traits.h" namespace tensorstore { namespace internal_container { template <typename T, size_t kMin = 1024, size_t kMax = 1024, typename Allocator = std::allocator<T>> class BlockQueue; template <typename T, typename Allocator> class SQBlock { private: using BlockAllocator = typename std::allocator_traits<Allocator>::template rebind_alloc<SQBlock>; using ByteAllocator = typename std::allocator_traits<Allocator>::template rebind_alloc<char>; constexpr static ptrdiff_t start_offset() { struct X { SQBlock array; T item[1]; }; return offsetof(X, item); } constexpr static size_t start_items() { return (start_offset() + sizeof(T) - 1) / sizeof(T); } struct private_t { private: friend class SQBlock; private_t() = default; }; public: static SQBlock* New(int64_t c, Allocator* alloc) { size_t allocation_bytes = (c <= start_items() + 2) ? (start_offset() + 2 * sizeof(T)) : (c -= start_items(), ((c + start_items()) * sizeof(T))); ByteAllocator byte_alloc(*alloc); void* mem = std::allocator_traits<ByteAllocator>::allocate( byte_alloc, allocation_bytes); auto* as_array = static_cast<SQBlock*>(mem); BlockAllocator array_alloc(*alloc); std::allocator_traits<BlockAllocator>::construct(array_alloc, as_array, private_t{}, c); return as_array; } static void Delete(SQBlock* ptr, Allocator* alloc) { const size_t allocation_bytes = (ptr->capacity() == 2) ? (start_offset() + 2 * sizeof(T)) : (start_items() + ptr->capacity()) * sizeof(T); BlockAllocator block_alloc(*alloc); std::allocator_traits<BlockAllocator>::destroy(block_alloc, ptr); void* mem = ptr; ByteAllocator byte_alloc(*alloc); std::allocator_traits<ByteAllocator>::deallocate( byte_alloc, static_cast<char*>(mem), allocation_bytes); } SQBlock(private_t, size_t c) : end_(begin() + c), next_(nullptr) {} SQBlock* next() const { return next_; } void set_next(SQBlock* b) { next_ = b; } T* begin() { return reinterpret_cast<T*>(reinterpret_cast<char*>(this) + start_offset()); } T* end() { return end_; } size_t capacity() { return end() - begin(); } private: T* end_; SQBlock* next_; }; template <typename T, size_t kMin, size_t kMax, typename Allocator> class BlockQueue { using Block = SQBlock<T, Allocator>; using TransferTraits = ItemTraits<T>; static constexpr bool kDestroyIsTrivial = TransferTraits::template destroy_is_trivial<Allocator>(); static_assert(kMin > 0); static_assert(kMin <= kMax); struct Cursor { Cursor(Block* b) : block(b), ptr(b->begin()), end(b->end()) {} Cursor() : block(nullptr), ptr(nullptr), end(nullptr) {} Block* block; T* ptr; T* end; }; public: BlockQueue() : BlockQueue(Allocator()) {} explicit BlockQueue(Allocator alloc) : allocator_(std::move(alloc)), head_(), tail_(), size_(0) {} ~BlockQueue() { Block* b = head_.block; while (b) { Block* next = b->next(); ClearBlock(b); Block::Delete(b, &allocator_); b = next; } } BlockQueue(const BlockQueue&) = delete; BlockQueue& operator=(const BlockQueue&) = delete; size_t size() const { return size_; } bool empty() const { return !size(); } T& front() { ABSL_CHECK(!empty()); return *head_.ptr; } const T& front() const { ABSL_CHECK(!empty()); return *head_.ptr; } T& back() { ABSL_CHECK(!empty()); return *((tail_.ptr) - 1); } const T& back() const { ABSL_CHECK(!empty()); return *((tail_.ptr) - 1); } void push_back(const T& val) { emplace_back(val); } void push_back(T&& val) { emplace_back(std::move(val)); } template <typename... A> T& emplace_back(A&&... args) { auto* storage = emplace_back_raw(); TransferTraits::construct(&allocator_, storage, std::forward<A>(args)...); return *storage; } void pop_front() { ABSL_CHECK(!empty()); ABSL_CHECK(head_.block); TransferTraits::destroy(&allocator_, head_.ptr); ++head_.ptr; --size_; if (empty()) { ABSL_CHECK_EQ(head_.block, tail_.block); head_.ptr = tail_.ptr = head_.block->begin(); return; } if (head_.ptr == head_.end) { Block* n = head_.block->next(); Block::Delete(head_.block, &allocator_); head_ = Cursor(n); } } void clear() { Block* b = head_.block; if (!b) { ABSL_CHECK(empty()); return; } while (b) { Block* next = b->next(); ClearBlock(b); if (head_.block != b) { Block::Delete(b, &allocator_); } b = next; } b = head_.block; b->set_next(nullptr); head_ = tail_ = Cursor(b); size_ = 0; } private: T* emplace_back_raw() { if (tail_.ptr == tail_.end) { size_t capacity = kMin; if (tail_.block) { capacity = 2 * tail_.block->capacity(); if (capacity > kMax) capacity = kMax; } auto* b = Block::New(capacity, &allocator_); if (!head_.block) { ABSL_CHECK(tail_.block == nullptr); head_ = Cursor(b); } else { ABSL_CHECK(head_.block != nullptr); tail_.block->set_next(b); } tail_ = Cursor(b); } ++size_; return tail_.ptr++; } void ClearBlock(Block* b) { auto* begin = b == head_.block ? head_.ptr : b->begin(); auto* end = b == tail_.block ? tail_.ptr : b->end(); if constexpr (!kDestroyIsTrivial) { for (; begin != end; ++begin) { TransferTraits::destroy(&allocator_, begin); } } } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Allocator allocator_; Cursor head_; Cursor tail_; size_t size_; }; } } #endif
#include "tensorstore/internal/container/block_queue.h" #include <stdint.h> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::internal_container::BlockQueue; TEST(BlockQueue, Basic) { BlockQueue<int64_t> q; EXPECT_TRUE(q.empty()); EXPECT_THAT(q.size(), 0); q.push_back(10); EXPECT_FALSE(q.empty()); EXPECT_EQ(q.front(), 10); EXPECT_EQ(q.back(), 10); q.pop_front(); EXPECT_TRUE(q.empty()); q.clear(); EXPECT_TRUE(q.empty()); } TEST(BlockQueue, PushPop) { BlockQueue<int64_t> q; for (int i = 0; i < 4096; i++) { q.push_back(i); if (i & 0x08) { q.pop_front(); } } EXPECT_FALSE(q.empty()); q.clear(); EXPECT_TRUE(q.empty()); } class OnlyConstructibleByAllocator { explicit OnlyConstructibleByAllocator(int i) : i_(i) {} public: OnlyConstructibleByAllocator(const OnlyConstructibleByAllocator &other) : i_(other.i_) {} OnlyConstructibleByAllocator &operator=( const OnlyConstructibleByAllocator &other) { i_ = other.i_; return *this; } int Get() const { return i_; } bool operator==(int i) const { return i_ == i; } private: template <typename T> friend class OnlyConstructibleAllocator; int i_; }; template <typename T = OnlyConstructibleByAllocator> class OnlyConstructibleAllocator : public std::allocator<T> { public: OnlyConstructibleAllocator() = default; template <class U> explicit OnlyConstructibleAllocator(const OnlyConstructibleAllocator<U> &) {} void construct(OnlyConstructibleByAllocator *p, int i) { new (p) OnlyConstructibleByAllocator(i); } template <class U> struct rebind { using other = OnlyConstructibleAllocator<U>; }; }; TEST(BlockQueue, OnlyConstructibleByAllocator) { BlockQueue<OnlyConstructibleByAllocator, 1024, 1024, OnlyConstructibleAllocator<>> q; EXPECT_TRUE(q.empty()); EXPECT_THAT(q.size(), 0); q.emplace_back(10); EXPECT_FALSE(q.empty()); EXPECT_EQ(q.front().Get(), 10); EXPECT_EQ(q.back().Get(), 10); q.pop_front(); EXPECT_TRUE(q.empty()); q.clear(); EXPECT_TRUE(q.empty()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/container/block_queue.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/container/block_queue_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b716890b-3e9c-405c-930e-85296b06a003
cpp
google/leveldb
skiplist
db/skiplist.h
db/skiplist_test.cc
#ifndef STORAGE_LEVELDB_DB_SKIPLIST_H_ #define STORAGE_LEVELDB_DB_SKIPLIST_H_ #include <atomic> #include <cassert> #include <cstdlib> #include "util/arena.h" #include "util/random.h" namespace leveldb { template <typename Key, class Comparator> class SkipList { private: struct Node; public: explicit SkipList(Comparator cmp, Arena* arena); SkipList(const SkipList&) = delete; SkipList& operator=(const SkipList&) = delete; void Insert(const Key& key); bool Contains(const Key& key) const; class Iterator { public: explicit Iterator(const SkipList* list); bool Valid() const; const Key& key() const; void Next(); void Prev(); void Seek(const Key& target); void SeekToFirst(); void SeekToLast(); private: const SkipList* list_; Node* node_; }; private: enum { kMaxHeight = 12 }; inline int GetMaxHeight() const { return max_height_.load(std::memory_order_relaxed); } Node* NewNode(const Key& key, int height); int RandomHeight(); bool Equal(const Key& a, const Key& b) const { return (compare_(a, b) == 0); } bool KeyIsAfterNode(const Key& key, Node* n) const; Node* FindGreaterOrEqual(const Key& key, Node** prev) const; Node* FindLessThan(const Key& key) const; Node* FindLast() const; Comparator const compare_; Arena* const arena_; Node* const head_; std::atomic<int> max_height_; Random rnd_; }; template <typename Key, class Comparator> struct SkipList<Key, Comparator>::Node { explicit Node(const Key& k) : key(k) {} Key const key; Node* Next(int n) { assert(n >= 0); return next_[n].load(std::memory_order_acquire); } void SetNext(int n, Node* x) { assert(n >= 0); next_[n].store(x, std::memory_order_release); } Node* NoBarrier_Next(int n) { assert(n >= 0); return next_[n].load(std::memory_order_relaxed); } void NoBarrier_SetNext(int n, Node* x) { assert(n >= 0); next_[n].store(x, std::memory_order_relaxed); } private: std::atomic<Node*> next_[1]; }; template <typename Key, class Comparator> typename SkipList<Key, Comparator>::Node* SkipList<Key, Comparator>::NewNode( const Key& key, int height) { char* const node_memory = arena_->AllocateAligned( sizeof(Node) + sizeof(std::atomic<Node*>) * (height - 1)); return new (node_memory) Node(key); } template <typename Key, class Comparator> inline SkipList<Key, Comparator>::Iterator::Iterator(const SkipList* list) { list_ = list; node_ = nullptr; } template <typename Key, class Comparator> inline bool SkipList<Key, Comparator>::Iterator::Valid() const { return node_ != nullptr; } template <typename Key, class Comparator> inline const Key& SkipList<Key, Comparator>::Iterator::key() const { assert(Valid()); return node_->key; } template <typename Key, class Comparator> inline void SkipList<Key, Comparator>::Iterator::Next() { assert(Valid()); node_ = node_->Next(0); } template <typename Key, class Comparator> inline void SkipList<Key, Comparator>::Iterator::Prev() { assert(Valid()); node_ = list_->FindLessThan(node_->key); if (node_ == list_->head_) { node_ = nullptr; } } template <typename Key, class Comparator> inline void SkipList<Key, Comparator>::Iterator::Seek(const Key& target) { node_ = list_->FindGreaterOrEqual(target, nullptr); } template <typename Key, class Comparator> inline void SkipList<Key, Comparator>::Iterator::SeekToFirst() { node_ = list_->head_->Next(0); } template <typename Key, class Comparator> inline void SkipList<Key, Comparator>::Iterator::SeekToLast() { node_ = list_->FindLast(); if (node_ == list_->head_) { node_ = nullptr; } } template <typename Key, class Comparator> int SkipList<Key, Comparator>::RandomHeight() { static const unsigned int kBranching = 4; int height = 1; while (height < kMaxHeight && rnd_.OneIn(kBranching)) { height++; } assert(height > 0); assert(height <= kMaxHeight); return height; } template <typename Key, class Comparator> bool SkipList<Key, Comparator>::KeyIsAfterNode(const Key& key, Node* n) const { return (n != nullptr) && (compare_(n->key, key) < 0); } template <typename Key, class Comparator> typename SkipList<Key, Comparator>::Node* SkipList<Key, Comparator>::FindGreaterOrEqual(const Key& key, Node** prev) const { Node* x = head_; int level = GetMaxHeight() - 1; while (true) { Node* next = x->Next(level); if (KeyIsAfterNode(key, next)) { x = next; } else { if (prev != nullptr) prev[level] = x; if (level == 0) { return next; } else { level--; } } } } template <typename Key, class Comparator> typename SkipList<Key, Comparator>::Node* SkipList<Key, Comparator>::FindLessThan(const Key& key) const { Node* x = head_; int level = GetMaxHeight() - 1; while (true) { assert(x == head_ || compare_(x->key, key) < 0); Node* next = x->Next(level); if (next == nullptr || compare_(next->key, key) >= 0) { if (level == 0) { return x; } else { level--; } } else { x = next; } } } template <typename Key, class Comparator> typename SkipList<Key, Comparator>::Node* SkipList<Key, Comparator>::FindLast() const { Node* x = head_; int level = GetMaxHeight() - 1; while (true) { Node* next = x->Next(level); if (next == nullptr) { if (level == 0) { return x; } else { level--; } } else { x = next; } } } template <typename Key, class Comparator> SkipList<Key, Comparator>::SkipList(Comparator cmp, Arena* arena) : compare_(cmp), arena_(arena), head_(NewNode(0 , kMaxHeight)), max_height_(1), rnd_(0xdeadbeef) { for (int i = 0; i < kMaxHeight; i++) { head_->SetNext(i, nullptr); } } template <typename Key, class Comparator> void SkipList<Key, Comparator>::Insert(const Key& key) { Node* prev[kMaxHeight]; Node* x = FindGreaterOrEqual(key, prev); assert(x == nullptr || !Equal(key, x->key)); int height = RandomHeight(); if (height > GetMaxHeight()) { for (int i = GetMaxHeight(); i < height; i++) { prev[i] = head_; } max_height_.store(height, std::memory_order_relaxed); } x = NewNode(key, height); for (int i = 0; i < height; i++) { x->NoBarrier_SetNext(i, prev[i]->NoBarrier_Next(i)); prev[i]->SetNext(i, x); } } template <typename Key, class Comparator> bool SkipList<Key, Comparator>::Contains(const Key& key) const { Node* x = FindGreaterOrEqual(key, nullptr); if (x != nullptr && Equal(key, x->key)) { return true; } else { return false; } } } #endif
#include "db/skiplist.h" #include <atomic> #include <set> #include "gtest/gtest.h" #include "leveldb/env.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/arena.h" #include "util/hash.h" #include "util/random.h" #include "util/testutil.h" namespace leveldb { typedef uint64_t Key; struct Comparator { int operator()(const Key& a, const Key& b) const { if (a < b) { return -1; } else if (a > b) { return +1; } else { return 0; } } }; TEST(SkipTest, Empty) { Arena arena; Comparator cmp; SkipList<Key, Comparator> list(cmp, &arena); ASSERT_TRUE(!list.Contains(10)); SkipList<Key, Comparator>::Iterator iter(&list); ASSERT_TRUE(!iter.Valid()); iter.SeekToFirst(); ASSERT_TRUE(!iter.Valid()); iter.Seek(100); ASSERT_TRUE(!iter.Valid()); iter.SeekToLast(); ASSERT_TRUE(!iter.Valid()); } TEST(SkipTest, InsertAndLookup) { const int N = 2000; const int R = 5000; Random rnd(1000); std::set<Key> keys; Arena arena; Comparator cmp; SkipList<Key, Comparator> list(cmp, &arena); for (int i = 0; i < N; i++) { Key key = rnd.Next() % R; if (keys.insert(key).second) { list.Insert(key); } } for (int i = 0; i < R; i++) { if (list.Contains(i)) { ASSERT_EQ(keys.count(i), 1); } else { ASSERT_EQ(keys.count(i), 0); } } { SkipList<Key, Comparator>::Iterator iter(&list); ASSERT_TRUE(!iter.Valid()); iter.Seek(0); ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*(keys.begin()), iter.key()); iter.SeekToFirst(); ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*(keys.begin()), iter.key()); iter.SeekToLast(); ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*(keys.rbegin()), iter.key()); } for (int i = 0; i < R; i++) { SkipList<Key, Comparator>::Iterator iter(&list); iter.Seek(i); std::set<Key>::iterator model_iter = keys.lower_bound(i); for (int j = 0; j < 3; j++) { if (model_iter == keys.end()) { ASSERT_TRUE(!iter.Valid()); break; } else { ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*model_iter, iter.key()); ++model_iter; iter.Next(); } } } { SkipList<Key, Comparator>::Iterator iter(&list); iter.SeekToLast(); for (std::set<Key>::reverse_iterator model_iter = keys.rbegin(); model_iter != keys.rend(); ++model_iter) { ASSERT_TRUE(iter.Valid()); ASSERT_EQ(*model_iter, iter.key()); iter.Prev(); } ASSERT_TRUE(!iter.Valid()); } } class ConcurrentTest { private: static constexpr uint32_t K = 4; static uint64_t key(Key key) { return (key >> 40); } static uint64_t gen(Key key) { return (key >> 8) & 0xffffffffu; } static uint64_t hash(Key key) { return key & 0xff; } static uint64_t HashNumbers(uint64_t k, uint64_t g) { uint64_t data[2] = {k, g}; return Hash(reinterpret_cast<char*>(data), sizeof(data), 0); } static Key MakeKey(uint64_t k, uint64_t g) { static_assert(sizeof(Key) == sizeof(uint64_t), ""); assert(k <= K); assert(g <= 0xffffffffu); return ((k << 40) | (g << 8) | (HashNumbers(k, g) & 0xff)); } static bool IsValidKey(Key k) { return hash(k) == (HashNumbers(key(k), gen(k)) & 0xff); } static Key RandomTarget(Random* rnd) { switch (rnd->Next() % 10) { case 0: return MakeKey(0, 0); case 1: return MakeKey(K, 0); default: return MakeKey(rnd->Next() % K, 0); } } struct State { std::atomic<int> generation[K]; void Set(int k, int v) { generation[k].store(v, std::memory_order_release); } int Get(int k) { return generation[k].load(std::memory_order_acquire); } State() { for (int k = 0; k < K; k++) { Set(k, 0); } } }; State current_; Arena arena_; SkipList<Key, Comparator> list_; public: ConcurrentTest() : list_(Comparator(), &arena_) {} void WriteStep(Random* rnd) { const uint32_t k = rnd->Next() % K; const intptr_t g = current_.Get(k) + 1; const Key key = MakeKey(k, g); list_.Insert(key); current_.Set(k, g); } void ReadStep(Random* rnd) { State initial_state; for (int k = 0; k < K; k++) { initial_state.Set(k, current_.Get(k)); } Key pos = RandomTarget(rnd); SkipList<Key, Comparator>::Iterator iter(&list_); iter.Seek(pos); while (true) { Key current; if (!iter.Valid()) { current = MakeKey(K, 0); } else { current = iter.key(); ASSERT_TRUE(IsValidKey(current)) << current; } ASSERT_LE(pos, current) << "should not go backwards"; while (pos < current) { ASSERT_LT(key(pos), K) << pos; ASSERT_TRUE((gen(pos) == 0) || (gen(pos) > static_cast<Key>(initial_state.Get(key(pos))))) << "key: " << key(pos) << "; gen: " << gen(pos) << "; initgen: " << initial_state.Get(key(pos)); if (key(pos) < key(current)) { pos = MakeKey(key(pos) + 1, 0); } else { pos = MakeKey(key(pos), gen(pos) + 1); } } if (!iter.Valid()) { break; } if (rnd->Next() % 2) { iter.Next(); pos = MakeKey(key(pos), gen(pos) + 1); } else { Key new_target = RandomTarget(rnd); if (new_target > pos) { pos = new_target; iter.Seek(new_target); } } } } }; constexpr uint32_t ConcurrentTest::K; TEST(SkipTest, ConcurrentWithoutThreads) { ConcurrentTest test; Random rnd(test::RandomSeed()); for (int i = 0; i < 10000; i++) { test.ReadStep(&rnd); test.WriteStep(&rnd); } } class TestState { public: ConcurrentTest t_; int seed_; std::atomic<bool> quit_flag_; enum ReaderState { STARTING, RUNNING, DONE }; explicit TestState(int s) : seed_(s), quit_flag_(false), state_(STARTING), state_cv_(&mu_) {} void Wait(ReaderState s) LOCKS_EXCLUDED(mu_) { mu_.Lock(); while (state_ != s) { state_cv_.Wait(); } mu_.Unlock(); } void Change(ReaderState s) LOCKS_EXCLUDED(mu_) { mu_.Lock(); state_ = s; state_cv_.Signal(); mu_.Unlock(); } private: port::Mutex mu_; ReaderState state_ GUARDED_BY(mu_); port::CondVar state_cv_ GUARDED_BY(mu_); }; static void ConcurrentReader(void* arg) { TestState* state = reinterpret_cast<TestState*>(arg); Random rnd(state->seed_); int64_t reads = 0; state->Change(TestState::RUNNING); while (!state->quit_flag_.load(std::memory_order_acquire)) { state->t_.ReadStep(&rnd); ++reads; } state->Change(TestState::DONE); } static void RunConcurrent(int run) { const int seed = test::RandomSeed() + (run * 100); Random rnd(seed); const int N = 1000; const int kSize = 1000; for (int i = 0; i < N; i++) { if ((i % 100) == 0) { std::fprintf(stderr, "Run %d of %d\n", i, N); } TestState state(seed + 1); Env::Default()->Schedule(ConcurrentReader, &state); state.Wait(TestState::RUNNING); for (int i = 0; i < kSize; i++) { state.t_.WriteStep(&rnd); } state.quit_flag_.store(true, std::memory_order_release); state.Wait(TestState::DONE); } } TEST(SkipTest, Concurrent1) { RunConcurrent(1); } TEST(SkipTest, Concurrent2) { RunConcurrent(2); } TEST(SkipTest, Concurrent3) { RunConcurrent(3); } TEST(SkipTest, Concurrent4) { RunConcurrent(4); } TEST(SkipTest, Concurrent5) { RunConcurrent(5); } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/db/skiplist.h
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/db/skiplist_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
19ac5ec1-6718-4849-b3c2-d2aff780b06c
cpp
google/tensorstore
translate_op
tensorstore/index_space/internal/translate_op.cc
tensorstore/index_space/translate_op_test.cc
#include "tensorstore/index_space/internal/translate_op.h" #include <algorithm> #include "absl/status/status.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status TranslateOutputOffsetsUsingInputOffsets( TransformRep* transform, const Index* input_offsets) { const DimensionIndex output_rank = transform->output_rank; const DimensionIndex input_rank = transform->input_rank; span<OutputIndexMap> maps = transform->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; switch (map.method()) { case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); const Index offset_change = input_offsets[input_dim]; Index new_offset; if (internal::MulOverflow(offset_change, map.stride(), &new_offset) || internal::SubOverflow(map.offset(), new_offset, &map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing output offset for dimension ", output_dim, ".")); } break; } case OutputIndexMethod::array: { auto& index_array_data = map.index_array_data(); index_array_data.element_pointer = AddByteOffset( std::move(index_array_data.element_pointer), -IndexInnerProduct(input_rank, index_array_data.byte_strides, input_offsets)); break; } case OutputIndexMethod::constant: break; } } return absl::OkStatus(); } } Result<IndexTransform<>> ApplyTranslate(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView offsets, TranslateOpKind kind, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(offsets, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); const auto input_domain = rep->input_domain(input_rank); Index input_offsets[kMaxRank]; std::fill_n(&input_offsets[0], input_rank, static_cast<Index>(0)); for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex input_dim = (*dimensions)[i]; Index offset = offsets[i]; if (offset == kImplicit) continue; const IndexInterval old_interval = input_domain[input_dim]; IndexInterval new_interval; switch (kind) { case TranslateOpKind::kTranslateTo: { TENSORSTORE_ASSIGN_OR_RETURN(new_interval, ShiftIntervalTo(old_interval, offset)); offset = new_interval.inclusive_min() - old_interval.inclusive_min(); break; } case TranslateOpKind::kTranslateBackwardBy: { offset = -offset; } [[fallthrough]]; case TranslateOpKind::kTranslateBy: { TENSORSTORE_ASSIGN_OR_RETURN(new_interval, ShiftInterval(old_interval, offset)); break; } } input_domain[input_dim] = new_interval; input_offsets[input_dim] = offset; } TENSORSTORE_RETURN_IF_ERROR( TranslateOutputOffsetsUsingInputOffsets(rep.get(), &input_offsets[0])); internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(TranslateByTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({11, 2, 23}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, -10, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -20, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {12, 3, 23}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").TranslateBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateBackwardByTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({-9, 2, -17}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 10, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 20, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {-8, 3, -17}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateBackwardBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").TranslateBackwardBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateToTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({10, 2, 20}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, -9, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -17, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {11, 3, 20}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateTo({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims(0, 2).TranslateTo({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateByTest, OneDimensionalConstant) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_constant(0, 2) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_constant(0, 2) .Finalize() .value(), {{{4}, {9}}}); } TEST(TranslateByTest, OneDimensionalSingleInputDimension) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2 - 3 * 5, 3, 0) .Finalize() .value(), {{{4}, {9}}}); } TEST(TranslateByTest, OneDimensionalSingleInputDimensionImplicit) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateBy(kImplicit), {0}, IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), {{{4}, {4}}}); } TEST(TranslateByTest, OneDimensionalIndexArray) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_index_array(0, 2, 3, MakeArray<Index>({6, 7, 8, 9, 10})) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_index_array(0, 2, 3, MakeArray<Index>({6, 7, 8, 9, 10})) .Finalize() .value(), {{{1}, {6}}}); } TEST(TranslateByTest, AllDimsUniform) { TestDimExpression( IndexTransformBuilder<3, 5>() .input_origin({-kInfIndex, 5, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 10}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 5, 0) .output_constant(2, 3) .output_single_input_dimension(3, 4, 7, 1) .output_single_input_dimension(4, 5, 8, 2) .Finalize() .value(), AllDims().TranslateBy(5), {0, 1, 2}, IndexTransformBuilder<3, 3>() .input_origin({-kInfIndex, 10, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 15}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, -5, 1, 1) .output_single_input_dimension(2, -5, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 5>() .input_origin({-kInfIndex, 10, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 15}) .output_single_input_dimension(0, 1 - 4 * 5, 4, 0) .output_single_input_dimension(1, 2 - 5 * 5, 5, 0) .output_constant(2, 3) .output_single_input_dimension(3, 4 - 7 * 5, 7, 1) .output_single_input_dimension(4, 5 - 8 * 5, 8, 2) .Finalize() .value(), {{{4, 5, 6}, {4 + 5, 5 + 5, 6 + 5}}}); } TEST(TranslateByTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().TranslateBy(span<const Index>({1, 2})), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) does not match number of " "indices \\(2\\)"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMinFiniteIndex}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateBy(-kInfIndex), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMinFiniteIndex}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateBy(-1), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMaxFiniteIndex - 1}) .input_shape({2}) .Finalize() .value(), AllDims().TranslateBy(1), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::min(), 1, 0) .Finalize() .value(), AllDims().TranslateBy(1), absl::StatusCode::kInvalidArgument, "Integer overflow computing output offset .*"); } TEST(TranslateByTest, DimSubsetUniform) { TestDimExpression(IndexTransformBuilder<3, 2>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 2) .Finalize() .value(), Dims(0, 2).TranslateBy(5), {0, 2}, IndexTransformBuilder<3, 3>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 5}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -5, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 5}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2 - 2 * 5, 2, 2) .Finalize() .value(), {{{4, 5, 6}, {4 + 5, 5, 6 + 5}}}); } TEST(TranslateByTest, DimSubsetNonUniform) { TestDimExpression(IndexTransformBuilder<3, 2>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 2) .Finalize() .value(), Dims(0, 2).TranslateBy({5, 6}), {0, 2}, IndexTransformBuilder<3, 3>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 6}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -6, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 6}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2 - 2 * 6, 2, 2) .Finalize() .value(), {{{3, 4, 5}, {3 + 5, 4, 5 + 6}}}); } TEST(TranslateToTest, OneDimensionalConstant) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_constant(0, 2) .Finalize() .value(), AllDims().TranslateTo(8), {0}, IndexTransformBuilder<1, 1>() .input_origin({8}) .input_shape({10}) .output_single_input_dimension(0, -3, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({8}) .input_shape({10}) .output_constant(0, 2) .Finalize() .value(), {{{7}, {10}}}); } TEST(TranslateToTest, OneDimensionalSingleInputDimension) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateTo(5), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, -1, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 2 - 3, 3, 0) .Finalize() .value(), {{{6}, {7}}}); } TEST(TranslateToTest, OneDimensionalSingleInputDimensionImplicit) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateTo(kImplicit), {0}, IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), {{{6}, {6}}}); } TEST(TranslateToTest, TwoDimensionalSingleInputDimensionOneImplicit) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({4, 5}) .input_shape({10, 11}) .output_single_input_dimension(0, 2, 3, 0) .output_single_input_dimension(1, 4, 5, 1) .Finalize() .value(), AllDims().TranslateTo({kImplicit, 10}), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({4, 10}) .input_shape({10, 11}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, -5, 1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({4, 10}) .input_shape({10, 11}) .output_single_input_dimension(0, 2, 3, 0) .output_single_input_dimension(1, -25 + 4, 5, 1) .Finalize() .value(), {{{6, 7}, {6, 12}}}); } TEST(TranslateToTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().TranslateTo(1), absl::StatusCode::kInvalidArgument, "Interval \\(-inf, \\+inf\\) is not bounded below"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateTo(std::numeric_limits<Index>::max()), absl::StatusCode::kOutOfRange, "Origin [0-9]+ is outside valid range .*"); } TEST(TranslateToTest, IndexDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder<3>().origin({1, 2, 3}).shape({6, 7, 8}).Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto translated_domain, IndexDomainBuilder<3>().origin({4, 5, 6}).shape({6, 7, 8}).Finalize()); EXPECT_THAT(domain | AllDims().TranslateTo({4, 5, 6}), ::testing::Optional(translated_domain)); } TEST(TranslateToTest, IndexDomainOverflow) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .input_shape({10}) .output_single_input_dimension(0, kMaxFiniteIndex, kMaxFiniteIndex, 0) .Finalize()); auto domain = transform.domain(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto translated_domain, IndexDomainBuilder(1).origin({-5}).shape({10}).Finalize()); EXPECT_THAT(transform | AllDims().TranslateTo({-5}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(domain | AllDims().TranslateTo({-5}), ::testing::Optional(translated_domain)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/translate_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/translate_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
95f724dc-8304-472f-bfdf-85d4e1c4bdcf
cpp
tensorflow/tensorflow
hlo_cse
third_party/xla/xla/service/hlo_cse.cc
third_party/xla/xla/service/hlo_cse_test.cc
#include "xla/service/hlo_cse.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/service/hlo_domain_map.h" #include "xla/shape_util.h" #include "tsl/platform/errors.h" namespace xla { namespace { template <bool kIsLayoutSensitive> struct ConstantKey { template <typename H> friend H AbslHashValue(H h, const ConstantKey& key) { h = H::combine(std::move(h), key.domain); return Literal::Hash<H, kIsLayoutSensitive, 64>( std::move(h), key.hlo->literal()); } friend bool operator==(const ConstantKey& lhs, const ConstantKey& rhs) { return lhs.domain == rhs.domain && (kIsLayoutSensitive ? Shape::Equal() : Shape::Equal().IgnoreLayout())( lhs.hlo->shape(), rhs.hlo->shape()) && lhs.hlo->literal().Equal(rhs.hlo->literal(), kIsLayoutSensitive); } HloConstantInstruction* hlo; int64_t domain; }; template <bool kIsLayoutSensitive> absl::StatusOr<bool> CombineConstants(HloComputation* computation, bool only_scalars) { std::unique_ptr<HloDomainMap> domain_map; if (absl::c_any_of(computation->instructions(), [&](const HloInstruction* instr) { return instr->opcode() == HloOpcode::kDomain; })) { TF_ASSIGN_OR_RETURN(domain_map, HloDomainMap::Create(computation, "")); } absl::flat_hash_set<ConstantKey<kIsLayoutSensitive>> constants; int64_t combined = 0; auto inst_it = computation->instructions().begin(); while (inst_it != computation->instructions().end()) { HloInstruction* instruction = *inst_it; ++inst_it; if (only_scalars && !ShapeUtil::IsScalar(instruction->shape())) { continue; } HloInstruction* match = nullptr; if (auto* constant_inst = DynCast<HloConstantInstruction>(instruction)) { auto insert_result = constants.insert(ConstantKey<kIsLayoutSensitive>{ constant_inst, (domain_map != nullptr ? domain_map->GetDomainId(instruction) : 0)}); if (!insert_result.second) { match = insert_result.first->hlo; } } if (match != nullptr) { TF_CHECK_OK(instruction->ReplaceAllUsesWith(match)); TF_CHECK_OK(computation->RemoveInstruction(instruction)); ++combined; } } VLOG(4) << "Combined " << combined << " constants and iotas in " << computation->name() << " computation"; return combined > 0; } struct CseKey { template <typename H> friend H AbslHashValue(H h, const CseKey& key) { auto instruction = key.hlo; h = H::combine(std::move(h), instruction->opcode(), instruction->shape().dimensions()); auto window_hash = [](H h, const Window& window) { const auto& window_dims = window.dimensions(); for (const auto& window_dim : window_dims) { h = H::combine(std::move(h), window_dim.size(), window_dim.stride(), window_dim.padding_low(), window_dim.padding_high(), window_dim.window_dilation(), window_dim.base_dilation(), window_dim.window_reversal()); } return H::combine(std::move(h), window_dims.size()); }; if (HloOpcodeIsBinaryCommutative(instruction->opcode())) { CHECK_EQ(instruction->operand_count(), 2); auto id0 = instruction->operand(0)->unique_id(); if (instruction->operand(0)->opcode() == HloOpcode::kIota) { id0 = 0; } auto id1 = instruction->operand(1)->unique_id(); if (instruction->operand(1)->opcode() == HloOpcode::kIota) { id1 = 0; } if (id0 > id1) { std::swap(id0, id1); } h = H::combine(std::move(h), id0, id1); } else { for (auto operand : instruction->operands()) { if (operand->opcode() == HloOpcode::kIota) { continue; } h = H::combine(std::move(h), operand->unique_id()); } } for (auto c : instruction->called_computations()) { h = H::combine(std::move(h), c->root_instruction()->opcode()); } switch (instruction->opcode()) { case HloOpcode::kSlice: return H::combine(std::move(h), instruction->slice_starts(), instruction->slice_strides()); case HloOpcode::kPad: { const auto& padding_dims = instruction->padding_config().dimensions(); for (const auto& padding_dim : padding_dims) { h = H::combine(std::move(h), padding_dim.edge_padding_low(), padding_dim.edge_padding_high(), padding_dim.interior_padding()); } h = H::combine(std::move(h), padding_dims.size()); return std::move(h); } case HloOpcode::kDot: { const auto& dot_dimension_numbers = instruction->dot_dimension_numbers(); h = H::combine( std::move(h), absl::MakeSpan(dot_dimension_numbers.lhs_contracting_dimensions()), absl::MakeSpan(dot_dimension_numbers.rhs_contracting_dimensions()), absl::MakeSpan(dot_dimension_numbers.lhs_batch_dimensions()), absl::MakeSpan(dot_dimension_numbers.rhs_batch_dimensions())); return std::move(h); } case HloOpcode::kConvolution: { const auto& conv_dimension_numbers = instruction->convolution_dimension_numbers(); h = H::combine( std::move(h), conv_dimension_numbers.input_batch_dimension(), conv_dimension_numbers.input_feature_dimension(), absl::MakeSpan(conv_dimension_numbers.input_spatial_dimensions()), conv_dimension_numbers.kernel_input_feature_dimension(), conv_dimension_numbers.kernel_output_feature_dimension(), absl::MakeSpan(conv_dimension_numbers.kernel_spatial_dimensions()), conv_dimension_numbers.output_batch_dimension(), conv_dimension_numbers.output_feature_dimension(), absl::MakeSpan(conv_dimension_numbers.output_spatial_dimensions())); return window_hash(std::move(h), instruction->window()); } case HloOpcode::kReduceWindow: return window_hash(std::move(h), instruction->window()); case HloOpcode::kConcatenate: case HloOpcode::kBroadcast: case HloOpcode::kTranspose: case HloOpcode::kReduce: return H::combine(std::move(h), instruction->dimensions()); case HloOpcode::kGetTupleElement: return H::combine(std::move(h), instruction->tuple_index()); case HloOpcode::kCompare: return H::combine( std::move(h), Cast<HloCompareInstruction>(instruction)->direction()); default: return std::move(h); } } HloInstruction* hlo; }; } absl::StatusOr<bool> HloCSE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; const auto eq_instructions = [&](const HloInstruction* a, const HloInstruction* b) { if (a == b) { return true; } if (a->opcode() != b->opcode() || a->opcode() != HloOpcode::kIota) { return false; } return a->dimensions(0) == b->dimensions(0) && (is_layout_sensitive_ ? ShapeUtil::Equal(a->shape(), b->shape()) : ShapeUtil::Compatible(a->shape(), b->shape())); }; const auto eq_computations = [](const HloComputation* lhs, const HloComputation* rhs) { return *lhs == *rhs; }; auto cse_equal = [&](const CseKey& lhs, const CseKey& rhs) { return lhs.hlo->IdenticalIgnoringCommutativeOperandOrder( *rhs.hlo, eq_instructions, eq_computations, is_layout_sensitive_, true); }; for (auto* computation : module->computations(execution_threads)) { if (only_fusion_computations_ && !computation->IsFusionComputation()) { continue; } TF_ASSIGN_OR_RETURN( bool combined, is_layout_sensitive_ ? CombineConstants<true>(computation, only_scalars_) : CombineConstants<false>(computation, only_scalars_)); changed |= combined; absl::flat_hash_set<CseKey, absl::Hash<CseKey>, decltype(cse_equal)> representatives(computation->instruction_count() + 1, absl::Hash<CseKey>{}, cse_equal); for (auto instruction : computation->MakeInstructionPostOrder()) { if (instruction->operand_count() == 0 && instruction->opcode() != HloOpcode::kPartitionId && instruction->opcode() != HloOpcode::kReplicaId) { continue; } if (instruction->HasSideEffect()) { continue; } if (only_scalars_ && !ShapeUtil::IsScalar(instruction->shape())) { continue; } auto pair = representatives.insert(CseKey{instruction}); if (!pair.second) { HloInstruction* equivalent_instruction = pair.first->hlo; TF_RETURN_IF_ERROR( instruction->ReplaceAllUsesWith(equivalent_instruction)); TF_RETURN_IF_ERROR(computation->RemoveInstructionAndUnusedOperands( instruction, std::nullopt, ignore_control_dependencies_)); VLOG(4) << "Replaced " << instruction->name() << " with " << equivalent_instruction->name(); changed = true; continue; } for (int64_t i = 0; i < instruction->operand_count(); ++i) { HloInstruction* a = instruction->mutable_operand(i); if (a->opcode() != HloOpcode::kIota) { continue; } for (int64_t j = i + 1; j < instruction->operand_count(); ++j) { HloInstruction* b = instruction->mutable_operand(j); if (a == b || !eq_instructions(a, b)) { continue; } TF_RETURN_IF_ERROR(instruction->ReplaceOperandWith(j, a)); changed = true; if (b->IsDead()) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(b)); } } } } if (auto fusion = computation->FusionInstruction()) { if (fusion->IsMultiOutputFusion()) { absl::flat_hash_map<const HloInstruction*, int64_t> root_to_unique_index; int64_t root_index = 0; HloInstruction* root = computation->root_instruction(); for (const HloInstruction* hlo : root->operands()) { if (root_to_unique_index.find(hlo) == root_to_unique_index.end()) { root_to_unique_index[hlo] = root_to_unique_index[hlo] = root_index; } ++root_index; } if (root_to_unique_index.size() < root->operand_count()) { for (HloInstruction* user : fusion->users()) { if (user->opcode() == HloOpcode::kGetTupleElement) { const HloInstruction* fusion_root = root->operand(user->tuple_index()); user->set_tuple_index(root_to_unique_index[fusion_root]); } } } } } } return changed; } }
#include "xla/service/hlo_cse.h" #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include "absl/algorithm/container.h" #include "absl/strings/substitute.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; namespace m = xla::match; class HloCseTest : public HloTestBase { protected: HloCseTest() {} }; TEST_F(HloCseTest, CombineTwoConstants) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f))); builder.AddInstruction(HloInstruction::CreateBinary( constant1->shape(), HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, computation->instruction_count()); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(2, computation->instruction_count()); HloInstruction* constant = *computation->instructions().begin(); EXPECT_EQ(42.0f, constant->literal().Get<float>({})); auto result = ExecuteAndTransfer(module->Clone(), {}); auto expected = LiteralUtil::CreateR0<float>(84.0); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(1e-4))); } TEST_F(HloCseTest, CombineTwoConstantsDifferentLayouts) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}}, LayoutUtil::MakeLayout({0, 1})))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}}, LayoutUtil::MakeLayout({1, 0})))); auto add = builder.AddInstruction(HloInstruction::CreateBinary( constant1->shape(), HloOpcode::kAdd, constant1, constant2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(3, computation->instruction_count()); EXPECT_THAT(add, op::Add(constant1, constant2)); HloCSE cse(true); EXPECT_FALSE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); EXPECT_THAT(add, op::Add(constant1, constant2)); auto result = ExecuteAndTransfer(module->Clone(), {}); auto expected = LiteralUtil::CreateR2<float>({{2.0, 4.0}, {6.0, 8.0}}); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(1e-4))); } TEST_F(HloCseTest, ConstantsSameValueDifferentType) { auto builder = HloComputation::Builder(TestName()); std::vector<HloInstruction*> constants; constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<uint32_t>(42)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(42)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<uint64_t>(42.0)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int64_t>(42.0)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<double>(42.0)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f)))); constants.push_back(builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0f)))); const Shape shape_r0 = ShapeUtil::MakeShape(F32, {}); for (int64_t i = 0; i < constants.size(); ++i) { constants[i] = builder.AddInstruction( HloInstruction::CreateConvert(shape_r0, constants[i])); } HloInstruction* root = builder.AddInstruction(HloInstruction::CreateBinary( shape_r0, HloOpcode::kAdd, constants[0], constants[1])); for (int64_t i = 2; i < constants.size(); ++i) { root = builder.AddInstruction(HloInstruction::CreateBinary( shape_r0, HloOpcode::kAdd, root, constants[i])); } auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(20, computation->instruction_count()); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(18, computation->instruction_count()); } TEST_F(HloCseTest, NonscalarConstants) { auto builder = HloComputation::Builder(TestName()); auto common_constant1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto common_constant2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto uncommon_constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{2.0, 4.0}, {6.0, 8.0}}))); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple( {common_constant1, common_constant2, uncommon_constant})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(common_constant1, common_constant2, uncommon_constant)); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); auto first_operand = tuple->operand(0); EXPECT_THAT(first_operand, ::testing::AnyOf(common_constant1, common_constant2)); EXPECT_THAT(tuple, op::Tuple(first_operand, first_operand, uncommon_constant)); } TEST_F(HloCseTest, IdenticalInstructions) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto exp3 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({exp1, exp2, exp3})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(5, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2, exp3)); HloCSE cse(true); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); auto first_operand = tuple->operand(0); EXPECT_THAT(first_operand, ::testing::AnyOf(exp1, exp2, exp3)); EXPECT_THAT(tuple, op::Tuple(first_operand, first_operand, first_operand)); } TEST_F(HloCseTest, WhileLoopsIdenticalConditionsAndBodiesSameInput) { const char* const hlo_string = R"( HloModule WhileLoopsIdenticalConditionsAndBodiesSameInput %body (param: (f32[], f32[])) -> (f32[], f32[]) { %param = (f32[], f32[]) parameter(0) %gte0 = get-tuple-element(%param), index=0 %gte1 = get-tuple-element(%param), index=1 %add = add(%gte0, %gte1) ROOT %tuple = tuple(%gte0, %add) } %condition { %param.1 = (f32[], f32[]) parameter(0) ROOT %constant = pred[] constant(false) } %condition.1 { %param.2 = (f32[], f32[]) parameter(0) ROOT %constant.1 = pred[] constant(false) } ENTRY %WhileLoopsIdenticalConditionsAndBodiesSameInput { %c0 = f32[] constant(1) %c1 = f32[] constant(2) %t = tuple(c0, c1) %while = while(%t), condition=%condition, body=%body %while.1 = while(%t), condition=%condition.1, body=%body ROOT r = tuple(while, while.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); auto computation = m->entry_computation(); EXPECT_EQ(6, computation->instruction_count()); HloCSE cse(true); EXPECT_TRUE(cse.Run(m.get()).value()); EXPECT_EQ(5, computation->instruction_count()); } TEST_F(HloCseTest, WhileLoopsIdenticalConditionsSameInputAndDifferentBodies) { const char* const hlo_string = R"( HloModule WhileLoopsIdenticalConditionsSameInputAndDifferentBodies %body { %param = (f32[], f32[]) parameter(0) %get-tuple-element = get-tuple-element(%param), index=0 %get-tuple-element.1 = get-tuple-element(%param), index=1 %add = add(%get-tuple-element, %get-tuple-element.1) ROOT %tuple = tuple(%get-tuple-element, %add) } %body2 { %param.1 = (f32[], f32[]) parameter(0) %get-tuple-element.2 = get-tuple-element(%param.1), index=0 %get-tuple-element.3 = get-tuple-element(%param.1), index=1 %sub = subtract(%get-tuple-element.2, %get-tuple-element.3) ROOT %tuple.2 = tuple(%get-tuple-element.2, %sub) } %condition (param.2: (f32[], f32[])) -> pred[] { %param.2 = (f32[], f32[]) parameter(0) ROOT %constant = pred[] constant(false) } %condition.1 (param.3: (f32[], f32[])) -> pred[] { %param.3 = (f32[], f32[]) parameter(0) ROOT %constant.1 = pred[] constant(false) } ENTRY %WhileLoopsIdenticalConditionsSameInputAndDifferentBodies { %constant.2 = f32[] constant(1) %constant.3 = f32[] constant(2) %tuple.1 = tuple(f32[] %constant.2, f32[] %constant.3) %while = while(%tuple.1), condition=%condition, body=%body ROOT %while.1 = while(%tuple.1), condition=%condition.1, body=%body2 })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); auto computation = m->entry_computation(); EXPECT_EQ(5, computation->instruction_count()); HloCSE cse(true); EXPECT_FALSE(cse.Run(m.get()).value()); EXPECT_EQ(5, computation->instruction_count()); } TEST_F(HloCseTest, WhileLoopsIdenticalBodiesAndInputDifferentConditions) { const char* const hlo_string = R"( HloModule WhileLoopsIdenticalBodiesAndInputDifferentConditions %body { %param = (f32[], f32[]) parameter(0) %get-tuple-element = get-tuple-element(%param), index=0 %get-tuple-element.1 = get-tuple-element((f32[], f32[]) %param), index=1 %add = add(%get-tuple-element, %get-tuple-element.1) ROOT %tuple = tuple(%get-tuple-element, %add) } %condition { %param.1 = (f32[], f32[]) parameter(0) ROOT %constant = pred[] constant(false) } %condition.1 { %param.2 = (f32[], f32[]) parameter(0) ROOT %constant.1 = pred[] constant(true) } ENTRY %WhileLoopsIdenticalBodiesAndInputDifferentConditions { %constant.2 = f32[] constant(1) %constant.3 = f32[] constant(2) %tuple.1 = tuple(%constant.2, %constant.3) %while = while(%tuple.1), condition=%condition, body=%body ROOT %while.1 = while(%tuple.1), condition=%condition.1, body=%body })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); auto computation = m->entry_computation(); EXPECT_EQ(5, computation->instruction_count()); HloCSE cse(true); EXPECT_FALSE(cse.Run(m.get()).value()); EXPECT_EQ(5, computation->instruction_count()); } TEST_F(HloCseTest, IdenticalInstructionsDifferentLayoutsSensitive) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp1->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({0, 1}); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp2->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({1, 0}); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({exp1, exp2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2)); HloCSE cse(true); EXPECT_FALSE(cse.Run(module.get()).value()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2)); } TEST_F(HloCseTest, IdenticalInstructionsDifferentLayoutsInsensitive) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}))); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp1->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({0, 1}); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); *exp2->mutable_shape()->mutable_layout() = LayoutUtil::MakeLayout({1, 0}); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({exp1, exp2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(4, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(exp1, exp2)); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(3, computation->instruction_count()); auto first_operand = tuple->operand(0); EXPECT_THAT(first_operand, ::testing::AnyOf(exp1, exp2)); EXPECT_THAT(tuple, op::Tuple(first_operand, first_operand)); } TEST_F(HloCseTest, FusionInternalCSE) { auto module = CreateNewVerifiedModule(); auto builder = HloComputation::Builder(TestName()); const Shape shape_r0 = ShapeUtil::MakeShape(F32, {}); auto param0 = builder.AddInstruction( HloInstruction::CreateParameter(0, shape_r0, "p0")); auto param1 = builder.AddInstruction( HloInstruction::CreateParameter(1, shape_r0, "p1")); auto add1 = builder.AddInstruction( HloInstruction::CreateBinary(shape_r0, HloOpcode::kAdd, param0, param1)); auto add2 = builder.AddInstruction( HloInstruction::CreateBinary(shape_r0, HloOpcode::kAdd, param0, param1)); auto mul = builder.AddInstruction( HloInstruction::CreateBinary(shape_r0, HloOpcode::kMultiply, add1, add2)); auto computation = module->AddEntryComputation(builder.Build()); auto fused_computation = computation ->CreateFusionInstruction({mul, add1, add2}, HloInstruction::FusionKind::kLoop) ->fused_instructions_computation(); EXPECT_EQ(5, fused_computation->instruction_count()); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(4, fused_computation->instruction_count()); auto root = fused_computation->root_instruction(); EXPECT_THAT(root, op::Multiply(root->operand(0), root->operand(0))); } TEST_F(HloCseTest, IdenticalExpressions) { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(42.0))); auto negate1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); auto exp1 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto add1 = builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, negate1, exp1)); auto negate2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kNegate, constant)); auto exp2 = builder.AddInstruction(HloInstruction::CreateUnary( constant->shape(), HloOpcode::kExp, constant)); auto add2 = builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, negate2, exp2)); auto tuple = builder.AddInstruction(HloInstruction::CreateTuple({add1, add2})); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); EXPECT_EQ(8, computation->instruction_count()); EXPECT_THAT(tuple, op::Tuple(op::Add(negate1, exp1), op::Add(negate2, exp2))); HloCSE cse(false); EXPECT_TRUE(cse.Run(module.get()).value()); EXPECT_EQ(5, computation->instruction_count()); auto operand = tuple->operand(0); EXPECT_THAT(tuple, op::Tuple(operand, operand)); EXPECT_THAT(operand, op::Add(op::Negate(), op::Exp())); } TEST_F(HloCseTest, DoNotCombineRng) { auto builder = HloComputation::Builder(TestName()); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto rng1 = builder.AddInstruction(HloInstruction::CreateRng( ShapeUtil::MakeShape(F32, {}), RandomDistribution::RNG_UNIFORM, {constant1, constant2})); auto rng2 = builder.AddInstruction(HloInstruction::CreateRng( ShapeUtil::MakeShape(F32, {}), RandomDistribution::RNG_UNIFORM, {constant1, constant2})); builder.AddInstruction(HloInstruction::CreateBinary( constant1->shape(), HloOpcode::kAdd, rng1, rng2)); auto module = CreateNewVerifiedModule(); auto computation = module->AddEntryComputation(builder.Build()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Add(rng1, rng2)); uint32_t count_before = computation->instruction_count(); HloCSE cse(false); EXPECT_FALSE(cse.Run(module.get()).value()); uint32_t count_after = computation->instruction_count(); EXPECT_EQ(count_before, count_after); root = computation->root_instruction(); EXPECT_THAT(root, op::Add(rng1, rng2)); } TEST_F(HloCseTest, DoNotCombineOpsWithDifferentShardings) { const char* const hlo_string = R"( HloModule module ENTRY %entry { constant.68 = s32[1]{0} constant({0}) custom-call.82 = s32[1]{0} custom-call(constant.68), custom_call_target="Sharding", sharding={replicated} custom-call.1343 = s32[1]{0} custom-call(constant.68), custom_call_target="Sharding", sharding={manual} custom-call.1344 = s32[8]{0} custom-call(custom-call.1343), custom_call_target="SPMDShardToFullShape", sharding={devices=[8]0,1,2,3,4,5,6,7} ROOT tuple = (s32[1]{0}, s32[8]{0}) tuple(custom-call.82, custom-call.1344) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); EXPECT_FALSE(cse.Run(m.get()).value()); } TEST_F(HloCseTest, DoNotCombineCallsToImpureFunctions) { auto module = CreateNewVerifiedModule(); HloComputation* rng_function = nullptr; { Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto builder = HloComputation::Builder(TestName() + "_rng_fun"); auto constant1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.0f))); auto constant2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(1.0f))); auto rng = builder.AddInstruction(HloInstruction::CreateRng( scalar_shape, RandomDistribution::RNG_UNIFORM, {constant1, constant2})); auto param = builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "param")); builder.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, rng, param)); rng_function = module->AddEmbeddedComputation(builder.Build()); } HloComputation* computation = nullptr; { auto builder = HloComputation::Builder(TestName()); auto constant = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>({5.0f}))); auto rng1 = builder.AddInstruction( HloInstruction::CreateMap(constant->shape(), {constant}, rng_function)); auto rng2 = builder.AddInstruction( HloInstruction::CreateMap(constant->shape(), {constant}, rng_function)); builder.AddInstruction(HloInstruction::CreateBinary( constant->shape(), HloOpcode::kAdd, rng1, rng2)); computation = module->AddEntryComputation(builder.Build()); } EXPECT_EQ(4, computation->instruction_count()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Add(op::Map(), op::Map())); VLOG(3) << "before: " << module->ToString(); HloCSE cse(false); EXPECT_FALSE(cse.Run(module.get()).value()); VLOG(3) << "after: " << module->ToString(); EXPECT_EQ(4, computation->instruction_count()); root = computation->root_instruction(); EXPECT_THAT(root, op::Add(op::Map(op::Constant()), op::Map(op::Constant()))); } TEST_F(HloCseTest, CompareComputations) { const char* const hlo_string = R"( HloModule m add_computation { add_lhs = f32[] parameter(0) add_rhs = f32[] parameter(1) ROOT add_root = add(add_lhs, add_rhs) } add_computation2 { add_lhs2 = f32[] parameter(0) add_rhs2 = f32[] parameter(1) ROOT add_root2 = add(add_lhs2, add_rhs2) } ENTRY entry { p = f32[10]{0} parameter(0) c = f32[] constant(0) r1 = reduce(p, c), dimensions={0}, to_apply=add_computation r2 = reduce(p, c), dimensions={0}, to_apply=add_computation2 ROOT f2 = tuple(r1, r2) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); EXPECT_TRUE(cse.Run(m.get()).value()); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_EQ(root->operand(0), root->operand(1)); } TEST_F(HloCseTest, Domain) { const char* const hlo_string = R"( HloModule module ENTRY %entry { %param = f32[] parameter(0), sharding={maximal device=0} %domain.0 = f32[] domain(%param), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} %domain.1 = f32[] domain(%param), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=1}} %domain.2 = f32[] domain(%param), domain={kind="sharding", entry={maximal device=0}, exit={maximal device=2}} %negate.0 = f32[] negate(%domain.0) %negate.1 = f32[] negate(%domain.1) %negate.2 = f32[] negate(%domain.2) %domain.3 = f32[] domain(%negate.0), domain={kind="sharding", entry={maximal device=1}, exit={maximal device=0}} %domain.4 = f32[] domain(%negate.1), domain={kind="sharding", entry={maximal device=1}, exit={maximal device=0}} %domain.5 = f32[] domain(%negate.2), domain={kind="sharding", entry={maximal device=2}, exit={maximal device=0}} %add = f32[] add(%domain.3, %domain.4) ROOT %sub = f32[] subtract(%add, %domain.5) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); EXPECT_TRUE(cse.Run(m.get()).value()); const HloInstruction* sub = m->entry_computation()->root_instruction(); const HloInstruction* add = sub->operand(0); EXPECT_EQ(add->operand(0), add->operand(1)); EXPECT_NE(add->operand(0), sub->operand(1)); EXPECT_NE(add->operand(1), sub->operand(1)); } TEST_F(HloCseTest, Iota) { const char* const hlo_string = R"( HloModule m ENTRY entry { i1 = s64[16,16] iota(), iota_dimension=0 i2 = s64[16,16] iota(), iota_dimension=0 i3 = s64[17,16] iota(), iota_dimension=0 i4 = s64[16,16] iota(), iota_dimension=1 ROOT root = (s64[16,16], s64[16,16], s64[17,16], s64[16,16]) tuple(i1, i2, i3, i4) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); EXPECT_TRUE(changed); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_EQ(root->operand(0), root->operand(1)); EXPECT_NE(root->operand(0), root->operand(2)); EXPECT_NE(root->operand(0), root->operand(3)); } TEST_F(HloCseTest, OptimizationBarrier) { const char* const hlo_string = R"( HloModule m ENTRY entry { %param.0 = f32[] parameter(0) %param.1 = f32[] parameter(1) %add.0 = f32[] add(%param.0, %param.1) %cse_tmp.0 = (f32[], f32[], f32[]) tuple(%param.0, %param.1, %add.0) %cse_tmp.1 = (f32[], f32[], f32[]) opt-barrier(%cse_tmp.0) %param.0.1 = f32[] get-tuple-element(%cse_tmp.1), index=0 %param.1.1 = f32[] get-tuple-element(%cse_tmp.1), index=1 %add.0.1 = f32[] get-tuple-element(%cse_tmp.1), index=2 %add.1 = f32[] add(%param.0.1, %param.1.1) ROOT %add.2 = f32[] add(%add.1, %add.0.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); EXPECT_FALSE(changed); } TEST_F(HloCseTest, OnlyScalar) { const char* const hlo_string = R"( HloModule m ENTRY entry { %const1 = f32[] constant(1) %const2 = f32[] constant(1) %const3 = f32[2] constant({1,2}) %const4 = f32[2] constant({1,2}) %add.0 = f32[] add(%const1, %const2) %add.1 = f32[2] add(%const3, %const4) ROOT out = (f32[], f32[2]) tuple(%add.0, %add.1) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false, false, false, true); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); EXPECT_TRUE(changed); EXPECT_EQ(absl::c_count_if(m->entry_computation()->instructions(), [](const HloInstruction* instruction) { return instruction->IsConstant(); }), 3); } class HloCseCustomCallTest : public HloCseTest, public ::testing::WithParamInterface<std::tuple< std::string , std::string , bool >> {}; TEST_P(HloCseCustomCallTest, DoIt) { std::string op1 = std::get<0>(GetParam()); std::string op2 = std::get<1>(GetParam()); bool should_cse = std::get<2>(GetParam()); const char* const hlo_string_tmpl = R"( HloModule m ENTRY entry { p0 = f32[1,1,1] parameter(0) op0 = $0 op1 = $0 op2 = $1 ROOT root = tuple(op0, op1, op2) } )"; std::string hlo_string = absl::Substitute(hlo_string_tmpl, op1, op2); SCOPED_TRACE(absl::StrCat("Module before CSE:\n", hlo_string)); TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); SCOPED_TRACE(absl::StrCat("Module after CSE:\n", m->ToString())); EXPECT_EQ(changed, true); HloInstruction* root = m->entry_computation()->root_instruction(); EXPECT_EQ(root->operand(0), root->operand(1)) << "Identical ops should be CSE'ed"; if (should_cse) { EXPECT_EQ(root->operand(0), root->operand(2)) << "Ops should be CSE'ed"; } else { EXPECT_NE(root->operand(0), root->operand(2)) << "Ops should not be CSE'ed"; } } static std::vector< std::tuple<std::string , std::string , bool >> CustomCallTests() { auto build = [](absl::string_view args1, absl::string_view args2) { absl::string_view prefix = "f32[] custom-call(p0), custom_call_target=\"foo\", "; return std::make_tuple(absl::StrCat(prefix, args1), absl::StrCat(prefix, args2), false); }; return { { "f32[] custom-call(p0), custom_call_target=\"foo\"", "f32[] custom-call(p0), custom_call_target=\"foo\", " "metadata={op_name=\"bar\"}", true, }, { "f32[] custom-call(p0), custom_call_target=\"foo\"", "f32[] custom-call(p0, p0), custom_call_target=\"foo\"", false, }, { "f32[1] custom-call(p0), custom_call_target=\"foo\"", "f32[2] custom-call(p0), custom_call_target=\"foo\"", false, }, { "f32[] custom-call(p0), custom_call_target=\"foo\"", "f32[] custom-call(p0), custom_call_target=\"bar\"", false, }, build("window={size=1}", "window={size=2}"), build("dim_labels=b0f_0oi->b0f", "dim_labels=b0f_0oi->bf0"), build("backend_config=\"foo\"", "backend_config=\"bar\""), build("literal=s32[] 0", "literal=s32[] 1"), build("literal=s32[] 0", "literal=f32[] 0"), build("operand_precision={high,default}", "operand_precision={high, high}"), build("api_version=API_VERSION_STATUS_RETURNING", "api_version=API_VERSION_ORIGINAL"), build("feature_group_count=0", "feature_group_count=1"), }; } INSTANTIATE_TEST_SUITE_P(HloCseCustomCallTestSuite, HloCseCustomCallTest, ::testing::ValuesIn(CustomCallTests())); TEST_F(HloCseTest, CustomCallCalledComputations) { const char* const hlo_string = R"( HloModule m comp { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT maximum = f32[] maximum(lhs, rhs) } ENTRY entry { p0 = f32[] parameter(0) op0 = f32[] custom-call(p0), custom_call_target="foo", called_computations={comp} op1 = f32[] custom-call(p0), custom_call_target="foo", called_computations={comp, comp} ROOT root = tuple(op0, op1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); SCOPED_TRACE(absl::StrCat("Module after CSE:\n", m->ToString())); EXPECT_EQ(changed, false); } TEST_F(HloCseTest, CustomCallSideEffects) { const char* const hlo_string = R"( HloModule m ENTRY entry { p0 = f32[] parameter(0) op0 = f32[] custom-call(p0), custom_call_target="foo", custom_call_has_side_effect=true op1 = f32[] custom-call(p0), custom_call_target="foo", custom_call_has_side_effect=true ROOT root = tuple(op0, op1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); SCOPED_TRACE(absl::StrCat("Module after CSE:\n", m->ToString())); EXPECT_EQ(changed, false); } TEST_F(HloCseTest, IgnoreControlDependencies) { const char* const hlo_string = R"( HloModule m %add { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT x = f32[] add(p0, p1) } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ar0 = f32[] all-reduce(p0), replica_groups={}, to_apply=%add ar1 = f32[] all-reduce(p1), replica_groups={}, to_apply=%add, control-predecessors={ar0} ar2 = f32[] all-reduce(p0), replica_groups={}, to_apply=%add, control-predecessors={ar1} ROOT root = tuple(ar0, ar1, ar2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false, false, true); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); SCOPED_TRACE(absl::StrCat("Module after CSE:\n", m->ToString())); EXPECT_EQ(changed, true); } TEST_F(HloCseTest, MultiOutputFusion) { const char* const hlo_string = R"( HloModule m f { p0 = f32[] parameter(0) p1 = f32[] parameter(1) add.0 = f32[] add(p0, p1) add.1 = f32[] add(p0, p1) ROOT res = (f32[], f32[]) tuple(add.0, add.1) } ENTRY entry { p0 = f32[] parameter(0) p1 = f32[] parameter(1) fusion = (f32[], f32[]) fusion(p0, p1), kind=kLoop, calls=f gte0 = f32[] get-tuple-element(fusion), index=0 gte1 = f32[] get-tuple-element(fusion), index=1 ROOT res = (f32[], f32[]) tuple(gte0, gte1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(hlo_string)); HloCSE cse(false); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunHloPass(&cse, m.get())); SCOPED_TRACE(absl::StrCat("Module after CSE:\n", m->ToString())); EXPECT_EQ(changed, true); HloInstruction* root = m->entry_computation()->root_instruction(); HloInstruction* add0; HloInstruction* add1; HloInstruction* gte0; HloInstruction* gte1; ASSERT_THAT(root, GmockMatch(m::Tuple(m::GetTupleElement(&gte0), m::GetTupleElement(&gte1)))); EXPECT_EQ(gte0, gte1); EXPECT_EQ(gte0->tuple_index(), 0); const HloInstruction* fusion = gte0->operand(0); ASSERT_THAT( fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Add(&add0, m::Parameter(0), m::Parameter(1)), m::Add(&add1, m::Parameter(0), m::Parameter(1))))); EXPECT_EQ(add0, add1); } class HloCseCommutativeOpTest : public HloCseTest, public ::testing::WithParamInterface<std::string > {}; TEST_P(HloCseCommutativeOpTest, DoIt) { std::string op = GetParam(); const char* kModuleStr = R"( HloModule m ENTRY test { p0 = s32[10] parameter(0) p1 = s32[10] parameter(1) op1 = s32[10] $0(p0, p1) op2 = s32[10] $0(p1, p0) ROOT t = tuple(op1, op2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( absl::Substitute(kModuleStr, op))); ASSERT_TRUE(HloCSE(false).Run(module.get()).value()); SCOPED_TRACE(module->ToString()); const HloInstruction* op0; const HloInstruction* op1; ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Op(&op0), m::Op(&op1)))); EXPECT_EQ(op0, op1); } INSTANTIATE_TEST_SUITE_P(AlgebraicSimplifierCanonicalizeCommutativeTestSuite, HloCseCommutativeOpTest, ::testing::Values("add", "multiply", "and", "or", "xor", "minimum", "maximum")); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_cse.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_cse_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c351440d-fff6-4367-a193-998c9dc9bbaf
cpp
tensorflow/tensorflow
control_flow_ops
tensorflow/core/ops/control_flow_ops.cc
tensorflow/core/ops/control_flow_ops_test.cc
#include <vector> #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::InferenceContext; using shape_inference::ShapeHandle; namespace { Status SwitchShape(InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); ShapeHandle out = c->input(0); c->set_output(0, out); c->set_output(1, out); auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data != nullptr) { c->set_output_handle_shapes_and_types(0, *handle_data); c->set_output_handle_shapes_and_types(1, *handle_data); } return absl::OkStatus(); } Status SwitchNShape(InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 0, &unused)); ShapeHandle out = c->input(0); int num_outs; TF_RETURN_IF_ERROR(c->GetAttr("num_outs", &num_outs)); for (int i = 0; i < num_outs; i++) { c->set_output(i, out); } auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data != nullptr) { for (int i = 0; i < num_outs; i++) { c->set_output_handle_shapes_and_types(i, *handle_data); } } return absl::OkStatus(); } } REGISTER_OP("Switch") .Input("data: T") .Input("pred: bool") .Output("output_false: T") .Output("output_true: T") .Attr("T: type") .SetForwardTypeFn(full_type::ReplicateInput(0, 2)) .SetShapeFn(SwitchShape); REGISTER_OP("RefSwitch") .Input("data: Ref(T)") .Input("pred: bool") .Output("output_false: Ref(T)") .Output("output_true: Ref(T)") .Attr("T: type") .SetAllowsUninitializedInput() .SetShapeFn(SwitchShape); REGISTER_OP("_SwitchN") .Input("data: T") .Input("output_index: int32") .Output("outputs: num_outs * T") .Attr("num_outs: int >= 1") .Attr("T: type") .SetShapeFn(SwitchNShape); REGISTER_OP("RefSelect") .Input("index: int32") .Input("inputs: Ref(N * T)") .Output("output: Ref(T)") .Attr("T: type") .Attr("N: int >= 1") .SetShapeFn([](InferenceContext* c) { ShapeHandle unused; TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 0, &unused)); ShapeHandle first_input = c->input(1); if (!c->FullyDefined(first_input)) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); } for (int i = 2; i < c->num_inputs(); ++i) { ShapeHandle input = c->input(i); if (!c->FullyDefined(input) || !c->Merge(first_input, input, &unused).ok()) { c->set_output(0, c->UnknownShape()); return absl::OkStatus(); } } c->set_output(0, first_input); return absl::OkStatus(); }); namespace { Status MergeShape(InferenceContext* c) { ShapeHandle out = c->input(0); if (!c->RankKnown(out)) { out = c->UnknownShape(); } else { int32_t rank = c->Rank(out); for (int i = 1; i < c->num_inputs(); ++i) { ShapeHandle input = c->input(i); if (!c->RankKnown(input) || c->Rank(input) != rank) { out = c->UnknownShape(); break; } for (int d = 0; d < rank; ++d) { if (c->Value(c->Dim(input, d)) != c->Value(c->Dim(out, d))) { TF_RETURN_IF_ERROR(c->ReplaceDim(out, d, c->UnknownDim(), &out)); } } } } c->set_output(0, out); c->set_output(1, c->Scalar()); return absl::OkStatus(); } TypeInferenceFn MergeTypeFn() { std::vector<TypeInferenceFn> func_list{full_type::Merge(), full_type::Tensor(TFT_INT32)}; return full_type::Tuple(func_list); } } REGISTER_OP("Merge") .Input("inputs: N * T") .Output("output: T") .Output("value_index: int32") .Attr("T: type") .Attr("N: int >= 1") .SetForwardTypeFn(MergeTypeFn()) .SetShapeFn(MergeShape); REGISTER_OP("RefMerge") .Input("inputs: Ref(N * T)") .Output("output: Ref(T)") .Output("value_index: int32") .Attr("T: type") .Attr("N: int >= 1") .SetShapeFn(MergeShape); REGISTER_OP("Enter") .Input("data: T") .Output("output: T") .Attr("T: type") .Attr("frame_name: string") .Attr("is_constant: bool = false") .Attr("parallel_iterations: int = 10") .SetForwardTypeFn(full_type::ReplicateInput()) .SetShapeFn([](InferenceContext* c) { c->set_output(0, c->UnknownShape()); auto* handle_data = c->input_handle_shapes_and_types(0); if (handle_data != nullptr) { c->set_output_handle_shapes_and_types(0, *handle_data); } bool is_constant; TF_RETURN_IF_ERROR(c->GetAttr("is_constant", &is_constant)); if (is_constant) { c->set_output(0, c->input(0)); } return absl::OkStatus(); }); REGISTER_OP("RefEnter") .Input("data: Ref(T)") .Output("output: Ref(T)") .Attr("T: type") .Attr("frame_name: string") .Attr("is_constant: bool = false") .Attr("parallel_iterations: int = 10") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Exit") .Input("data: T") .Output("output: T") .Attr("T: type") .SetForwardTypeFn(full_type::ReplicateInput()) .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("RefExit") .Input("data: Ref(T)") .Output("output: Ref(T)") .Attr("T: type") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("NextIteration") .Input("data: T") .Output("output: T") .Attr("T: type") .SetForwardTypeFn(full_type::ReplicateInput()) .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("RefNextIteration") .Input("data: Ref(T)") .Output("output: Ref(T)") .Attr("T: type") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("LoopCond") .Input("input: bool") .Output("output: bool") .SetShapeFn([](InferenceContext* c) { return shape_inference::UnchangedShapeWithRank(c, 0); }); REGISTER_OP("ControlTrigger").SetShapeFn(shape_inference::NoOutputs); REGISTER_OP("Abort") .Attr("error_msg: string = ''") .Attr("exit_without_error: bool = false") .SetShapeFn(shape_inference::NoOutputs); }
#include <memory> #include "tensorflow/core/common_runtime/type_inference.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(ControlFlowOpsTest, Merge_ShapeFn) { ShapeInferenceTestOp op("Merge"); int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 0, DT_FLOAT); TF_ASSERT_OK(NodeDefBuilder("test", "Merge") .Input(src_list) .Attr("N", n) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "?;[]"); INFER_OK(op, "[2,1];?;[2,1]", "?;[]"); INFER_OK(op, "[2,1];[2,1];?", "?;[]"); INFER_OK(op, "[2,1];[2,1];[3,1,2]", "?;[]"); INFER_OK(op, "[2,1];[2,1];[3,1]", "[?,d0_1];[]"); INFER_OK(op, "[2,1];[2,2];[3,1]", "[?,?];[]"); INFER_OK(op, "[2,1];[2,1];[2,1]", "in0;[]"); } TEST(ControlFlowOpsTest, SwitchN_ShapeFn) { ShapeInferenceTestOp op("_SwitchN"); int n = 5; TF_ASSERT_OK(NodeDefBuilder("test", "_SwitchN") .Input({"d", 0, DT_FLOAT}) .Input({"bi", 0, DT_INT32}) .Attr("num_outs", n) .Finalize(&op.node_def)); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;[2]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;[1]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "?;[?]"); INFER_OK(op, "?;?", "in0;in0;in0;in0;in0"); INFER_OK(op, "[2,?];?", "in0;in0;in0;in0;in0"); INFER_OK(op, "[2,?];[]", "in0;in0;in0;in0;in0"); INFER_OK(op, "[2,3];[]", "in0;in0;in0;in0;in0"); } TEST(ControlFlowOpsTest, RefSelect_ShapeFn) { ShapeInferenceTestOp op("RefSelect"); int n = 3; std::vector<NodeDefBuilder::NodeOut> src_list; src_list.reserve(n); for (int i = 0; i < n; ++i) src_list.emplace_back("a", 1, DT_FLOAT_REF); TF_ASSERT_OK(NodeDefBuilder("test", "RefSelect") .Input("index", 0, DT_INT32) .Input(src_list) .Attr("N", n) .Finalize(&op.node_def)); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[2];?;?;?"); INFER_OK(op, "?;?;?;?", "?"); INFER_OK(op, "[];?;?;?", "?"); INFER_OK(op, "[];[1,2,3];?;?", "?"); INFER_OK(op, "[];[1,2,3];[1,2,?];[1,2,3]", "?"); INFER_OK(op, "[];[1,2,3];[1,2];[1,2,3]", "?"); INFER_OK(op, "[];[1,2,3];[1,2,4];[1,2,3]", "?"); INFER_OK(op, "[];[1,2,3];[1,2,3];[1,2,3]", "in1"); } static Status type_inference(Graph& graph) { GraphOptimizationPassOptions opt_options; std::unique_ptr<Graph> graph_ptr(new Graph(OpRegistry::Global())); graph_ptr->Copy(graph); opt_options.graph = &graph_ptr; opt_options.flib_def = graph.mutable_flib_def(); TypeInferencePass pass; return pass.Run(opt_options); } REGISTER_OP("ControlFlowOpsTest>ConstTypeCtor") .Output("output: dtype") .Attr("value: tensor") .Attr("dtype: type") .SetTypeConstructor(full_type::Unary(TFT_TENSOR, "dtype")) .SetShapeFn(shape_inference::UnknownShape); TEST(ControlFlowOpsTest, Merge_TypeInfrnc) { Graph graph(OpRegistry::Global()); Node* input_tensor_op1; TensorProto tensor_proto1; TF_EXPECT_OK( NodeBuilder("input_tensor_op1", "ControlFlowOpsTest>ConstTypeCtor") .Attr("value", tensor_proto1) .Attr("dtype", DT_FLOAT) .Finalize(&graph, &input_tensor_op1)); Node* input_tensor_op2; TensorProto tensor_proto2; TF_EXPECT_OK( NodeBuilder("input_tensor_op2", "ControlFlowOpsTest>ConstTypeCtor") .Attr("value", tensor_proto2) .Attr("dtype", DT_FLOAT) .Finalize(&graph, &input_tensor_op2)); Node* shape_op; TF_EXPECT_OK(NodeBuilder("merge_op", "Merge") .Input({input_tensor_op1, input_tensor_op2}) .Attr("T", DT_FLOAT) .Finalize(&graph, &shape_op)); TF_EXPECT_OK(type_inference(graph)); FullTypeDef expected_shape_op_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_FLOAT } } args { type_id: TFT_TENSOR args { type_id: TFT_INT32 } })pb", &expected_shape_op_t)); EXPECT_TRUE(full_type::IsEqual(shape_op->def().experimental_type(), expected_shape_op_t)) << "fulltype is\n" << shape_op->def().experimental_type().DebugString() << "\nexpected\n" << expected_shape_op_t.DebugString(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/control_flow_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/control_flow_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
26620278-c5dd-4003-a0f9-3124c44bf565
cpp
tensorflow/tensorflow
list_stack
tensorflow/lite/kernels/variants/list_kernels/list_stack.cc
tensorflow/lite/kernels/variants/list_kernels/list_stack_test.cc
#include <cstring> #include <utility> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/variants/list_ops_util.h" #include "tensorflow/lite/kernels/variants/tensor_array.h" namespace tflite { namespace variants { namespace ops { namespace { constexpr int kListInput = 0; constexpr int kShapeInput = 1; constexpr int kTensorOutput = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kListInput, &list_input)); TF_LITE_ENSURE_TYPES_EQ(context, list_input->type, kTfLiteVariant); const TfLiteTensor* shape_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kShapeInput, &shape_input)); TF_LITE_ENSURE_TYPES_EQ(context, shape_input->type, kTfLiteInt32); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kTensorOutput, &output)); SetTensorToDynamic(output); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* list_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kListInput, &list_input)); TF_LITE_ENSURE_EQ(context, list_input->allocation_type, kTfLiteVariantObject); TensorArray* arr = static_cast<TensorArray*>( static_cast<VariantData*>(list_input->data.data)); const TfLiteTensor* shape_input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kShapeInput, &shape_input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kTensorOutput, &output)); TF_LITE_ENSURE_TYPES_EQ(context, output->type, arr->ElementType()); IntArrayUniquePtr cur_shape_suffix; TF_LITE_ENSURE_OK(context, GetShapeIfAllEqual(*arr, cur_shape_suffix)); cur_shape_suffix = MergeShapesOrNull( MergeShapesOrNull(TensorAsShape(*shape_input), BuildTfLiteArray(*arr->ElementShape())), std::move(cur_shape_suffix)); TF_LITE_ENSURE_MSG( context, cur_shape_suffix != nullptr && IsShapeFullyDefined(*cur_shape_suffix), "Shapes from input, list and elements are not compatible " "or do not resolve to fully defined shape."); IntArrayUniquePtr final_output_shape; const bool suffix_is_not_scalar = !(cur_shape_suffix->size == 0 || (cur_shape_suffix->size == 1 && cur_shape_suffix->data[0] == 1)); if (suffix_is_not_scalar) { final_output_shape = BuildTfLiteArray(cur_shape_suffix->size + 1); memcpy(final_output_shape->data + 1, cur_shape_suffix->data, cur_shape_suffix->size * sizeof(int)); final_output_shape->data[0] = arr->NumElements(); } else { final_output_shape = BuildTfLiteArray({arr->NumElements()}); } context->ResizeTensor(context, output, final_output_shape.release()); const auto num_elements = static_cast<int>(NumElements(output)); if (num_elements == 0) { TfLiteTensorDataFree(output); return kTfLiteOk; } const int element_num_elements = num_elements / output->dims->data[0]; const size_t bytes_per_element = element_num_elements * TfLiteTypeGetSize(output->type); char* raw_data_offset = output->data.raw; for (int i = 0; i < arr->NumElements(); ++i) { if (arr->At(i) == nullptr) { memset(raw_data_offset, 0, bytes_per_element); } else { memcpy(raw_data_offset, arr->At(i)->data.data, bytes_per_element); } raw_data_offset = raw_data_offset + bytes_per_element; } return kTfLiteOk; } } TfLiteRegistration* Register_LIST_STACK() { static TfLiteRegistration r = {nullptr, nullptr, Prepare, Eval}; return &r; } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_kernels/test_util.h" #include "tensorflow/lite/kernels/variants/list_ops_lib.h" #include "tensorflow/lite/schema/schema_generated.h" using ::testing::ElementsAreArray; using ::tflite::variants::ops::Register_LIST_STACK; namespace tflite { namespace { class ListStackModel : public ListOpModel { public: explicit ListStackModel(TensorData output_data) { tensor_id_ = AddOutput(output_data); list_id_ = AddInput({TensorType_VARIANT, {}}); shape_id_ = AddInput({TensorType_INT32, {1}}); SetCustomOp("ListStack", {}, Register_LIST_STACK); BuildInterpreter({{}, {1}}); } ListStackModel(TensorData output_data, TensorData shape_input_data) { tensor_id_ = AddOutput(output_data); list_id_ = AddInput({TensorType_VARIANT, {}}); shape_id_ = AddInput(shape_input_data); SetCustomOp("ListStack", {}, Register_LIST_STACK); BuildInterpreter({{}, shape_input_data.shape}); } const TfLiteTensor* GetOutputTensor(int tensor_id) { return interpreter_->tensor(tensor_id); } int tensor_id_; int shape_id_; int list_id_; }; TEST(ListStackTest, MismatchedListShapeInputShape_Fails) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {1}, 2, kTfLiteInt32); m.PopulateTensor(m.shape_id_, {3}); ASSERT_EQ(m.Invoke(), kTfLiteError); } TEST(ListStackTest, MismatchedShapeOfElementsAndInput_Fails) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {}, 4, kTfLiteInt32); m.PopulateTensor(m.shape_id_, {2}); m.ListSetItem(m.list_id_, 0, {1}, kTfLiteInt32, std::vector<int>{0}.data()); m.ListSetItem(m.list_id_, 1, {1}, kTfLiteInt32, std::vector<int>{1}.data()); ASSERT_EQ(m.Invoke(), kTfLiteError); } TEST(ListStackTest, ElementsNotSameShape_Fails) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor(m.shape_id_, {2}); m.ListSetItem(m.list_id_, 0, {2}, kTfLiteInt32, std::vector<int>{2, 2}.data()); m.ListSetItem(m.list_id_, 1, {1}, kTfLiteInt32, std::vector<int>{3}.data()); ASSERT_EQ(m.Invoke(), kTfLiteError); } TEST(ListStackTest, NoElementsNoShape_Fails) { ListStackModel m({TensorType_INT32, {4}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {-1}); EXPECT_EQ(m.Invoke(), kTfLiteError); } TEST(ListStackTest, ListElementTypeNotEqualOutputType_Fails) { ListStackModel m({TensorType_INT32, {4}}); m.PopulateListTensor(m.list_id_, {}, 0, kTfLiteInt64); m.PopulateTensor<int>(m.shape_id_, {-1}); EXPECT_EQ(m.Invoke(), kTfLiteError); } TEST(ListStackTest, ScalarElementShape_FullList_Returns1D) { ListStackModel m({TensorType_INT32, {2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor(m.shape_id_, {1}); m.ListSetItem(m.list_id_, 0, {1}, kTfLiteInt32, std::vector<int>{2}.data()); m.ListSetItem(m.list_id_, 1, {1}, kTfLiteInt32, std::vector<int>{3}.data()); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2})); ASSERT_THAT(output->type, kTfLiteInt32); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 2), ElementsAreArray({2, 3})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, ScalarElementShape_PartialFilledList_Returns1DWithZeroed) { ListStackModel m({TensorType_INT32, {2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor(m.shape_id_, {1}); m.ListSetItem(m.list_id_, 0, {1}, kTfLiteInt32, std::vector<int>{2}.data()); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2})); ASSERT_THAT(output->type, kTfLiteInt32); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 2), ElementsAreArray({2, 0})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, ScalarElementShape_EmptyList_Returns1DAllZeroed) { ListStackModel m({TensorType_INT32, {2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor(m.shape_id_, {1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2})); ASSERT_THAT(output->type, kTfLiteInt32); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 2), ElementsAreArray({0, 0})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, VectorElementShape_FilledList_Returns2D) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2}); m.ListSetItem(m.list_id_, 0, {2}, kTfLiteInt32, std::vector<int>{2, 2}.data()); m.ListSetItem(m.list_id_, 1, {2}, kTfLiteInt32, std::vector<int>{3, 3}.data()); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2, 2})); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 4), ElementsAreArray({2, 2, 3, 3})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, VectorElementShape_PartialFilledList_Returns2DWithZeroed) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2}); m.ListSetItem(m.list_id_, 0, {2}, kTfLiteInt32, std::vector<int>{2, 2}.data()); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2, 2})); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 4), ElementsAreArray({2, 2, 0, 0})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, VectorElementShape_EmptyList_Returns2DAllZeroed) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2, 2})); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 4), ElementsAreArray({0, 0, 0, 0})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, NoShapeArguments_ZeroSizeList_InfersShapeFromElements) { ListStackModel m({TensorType_INT32, {2, 2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {-1}); m.ListSetItem(m.list_id_, 0, {2}, kTfLiteInt32, std::vector<int>{2, 2}.data()); EXPECT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2, 2})); EXPECT_THAT(std::vector<int>(output->data.i32, output->data.i32 + 4), ElementsAreArray({2, 2, 0, 0})); EXPECT_EQ(output->allocation_type, kTfLiteDynamic); } TEST(ListStackTest, ListFirstDimZero_ReturnsEmptyTensor) { ListStackModel m({TensorType_INT32, {0, 2}}); m.PopulateListTensor(m.list_id_, {}, 0, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); EXPECT_THAT(output, DimsAre({0, 2})); } TEST(ListStackTest, MismatchedOutput_ReturnsResizedOutput1D) { ListStackModel m({TensorType_INT32, {2}}); m.PopulateListTensor(m.list_id_, {}, 4, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); EXPECT_THAT(output, DimsAre({4})); } TEST(ListStackTest, MismatchedOutput_ReturnsResizedOutput2D) { ListStackModel m({TensorType_INT32, std::vector<int>{}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); EXPECT_THAT(output, DimsAre({2, 2})); } TEST(ListStackTest, Trailing0DimInElementShape1D_NonZeroLen_Returns2DNoData) { ListStackModel m({TensorType_INT32, std::vector<int>{}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2, 0})); EXPECT_EQ(output->bytes, 0); } TEST(ListStackTest, Trailing0DimInElementShape2D_NonZeroLen_Returns3DNoData) { ListStackModel m({TensorType_INT32, {}}, {TensorType_INT32, {2}}); m.PopulateListTensor(m.list_id_, {}, 2, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({2, 2, 0})); EXPECT_EQ(output->bytes, 0); } TEST(ListStackTest, Trailing0DimInElementShape1D_ZeroLen_Returns2DNoData) { ListStackModel m({TensorType_INT32, {}}, {TensorType_INT32, {1}}); m.PopulateListTensor(m.list_id_, {}, 0, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({0, 0})); EXPECT_EQ(output->bytes, 0); } TEST(ListStackTest, Trailing0DimInElementShape2D_ZeroLen_Returns3DNoData) { ListStackModel m({TensorType_INT32, {}}, {TensorType_INT32, {2}}); m.PopulateListTensor(m.list_id_, {}, 0, kTfLiteInt32); m.PopulateTensor<int>(m.shape_id_, {2, 0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); const TfLiteTensor* output = m.GetOutputTensor(m.tensor_id_); ASSERT_THAT(output, DimsAre({0, 2, 0})); EXPECT_EQ(output->bytes, 0); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_stack.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/variants/list_kernels/list_stack_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea