lca_index
int64 0
223
| idx
stringlengths 7
11
| line_type
stringclasses 6
values | ground_truth
stringlengths 2
35
| completions
sequencelengths 3
1.16k
| prefix
stringlengths 298
32.8k
| postfix
stringlengths 0
28.6k
| repo
stringclasses 34
values |
---|---|---|---|---|---|---|---|
202 | 202-124-28 | inproject | arg | [
"add",
"arg",
"clean",
"flag",
"FLAGS",
"furl",
"normalize",
"params",
"schema",
"settings",
"unquote",
"urlencode",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls. | (request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-126-20 | inproject | encode | [
"capitalize",
"casefold",
"center",
"count",
"encode",
"endswith",
"expandtabs",
"find",
"format",
"format_map",
"index",
"isalnum",
"isalpha",
"isascii",
"isdecimal",
"isdigit",
"isidentifier",
"islower",
"isnumeric",
"isprintable",
"isspace",
"istitle",
"isupper",
"join",
"ljust",
"lower",
"lstrip",
"maketrans",
"partition",
"removeprefix",
"removesuffix",
"replace",
"rfind",
"rindex",
"rjust",
"rpartition",
"rsplit",
"rstrip",
"split",
"splitlines",
"startswith",
"strip",
"swapcase",
"title",
"translate",
"upper",
"zfill",
"__add__",
"__annotations__",
"__class__",
"__contains__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__ge__",
"__getattribute__",
"__getitem__",
"__getnewargs__",
"__gt__",
"__hash__",
"__init__",
"__init_subclass__",
"__iter__",
"__le__",
"__len__",
"__lt__",
"__mod__",
"__module__",
"__mul__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__rmul__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part. | ()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-126-53 | inproject | split | [
"capitalize",
"casefold",
"center",
"count",
"encode",
"endswith",
"expandtabs",
"find",
"format",
"format_map",
"index",
"isalnum",
"isalpha",
"isascii",
"isdecimal",
"isdigit",
"isidentifier",
"islower",
"isnumeric",
"isprintable",
"isspace",
"istitle",
"isupper",
"join",
"ljust",
"lower",
"lstrip",
"maketrans",
"partition",
"removeprefix",
"removesuffix",
"replace",
"rfind",
"rindex",
"rjust",
"rpartition",
"rsplit",
"rstrip",
"split",
"splitlines",
"startswith",
"strip",
"swapcase",
"title",
"translate",
"upper",
"zfill",
"__add__",
"__annotations__",
"__class__",
"__contains__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__ge__",
"__getattribute__",
"__getitem__",
"__getnewargs__",
"__gt__",
"__hash__",
"__init__",
"__init_subclass__",
"__iter__",
"__le__",
"__len__",
"__lt__",
"__mod__",
"__module__",
"__mul__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__rmul__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug. | ("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-129-22 | inproject | text | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils. | .decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-129-27 | inproject | decode | [
"decode",
"encode",
"fingerprint",
"hashlib",
"normalize",
"re",
"slugify",
"unquote",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text. | (slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-135-20 | inproject | urls | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils. | .arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-135-25 | inproject | arg | [
"add",
"arg",
"clean",
"flag",
"FLAGS",
"furl",
"normalize",
"params",
"schema",
"settings",
"unquote",
"urlencode",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls. | (request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-137-36 | inproject | Template | [
"Font",
"font",
"Overlay",
"overlay",
"Template",
"template",
"Text",
"text",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models. | .create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-137-45 | inproject | create | [
"build_custom_url",
"build_example_url",
"build_path",
"build_self_url",
"check",
"clean",
"create",
"delete",
"directory",
"example",
"get_image",
"id",
"image",
"jsonify",
"matches",
"mro",
"name",
"overlay",
"source",
"styles",
"text",
"valid",
"_embed",
"_update_example",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__lt__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template. | (url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-138-28 | inproject | image | [
"build_custom_url",
"build_example_url",
"build_path",
"build_self_url",
"check",
"clean",
"create",
"delete",
"directory",
"example",
"get_image",
"id",
"image",
"jsonify",
"matches",
"name",
"overlay",
"source",
"styles",
"text",
"valid",
"_embed",
"_update_example",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__lt__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template. | .exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-138-34 | inproject | exists | [
"absolute",
"anchor",
"as_posix",
"as_uri",
"attrname",
"chmod",
"cwd",
"drive",
"exists",
"expanduser",
"func",
"glob",
"group",
"hardlink_to",
"home",
"is_absolute",
"is_block_device",
"is_char_device",
"is_dir",
"is_fifo",
"is_file",
"is_mount",
"is_relative_to",
"is_reserved",
"is_socket",
"is_symlink",
"iterdir",
"joinpath",
"lchmod",
"link_to",
"lock",
"lstat",
"match",
"mkdir",
"name",
"open",
"owner",
"parent",
"parents",
"parts",
"read_bytes",
"read_text",
"readlink",
"relative_to",
"rename",
"replace",
"resolve",
"rglob",
"rmdir",
"root",
"samefile",
"stat",
"stem",
"suffix",
"suffixes",
"symlink_to",
"touch",
"unlink",
"with_name",
"with_stem",
"with_suffix",
"write_bytes",
"write_text",
"_accessor",
"_cached_cparts",
"_cparts",
"_format_parsed_parts",
"_from_parsed_parts",
"_from_parts",
"_hash",
"_make_child",
"_make_child_relpath",
"_parse_args",
"_pparts",
"_str",
"__annotations__",
"__bytes__",
"__class__",
"__class_getitem__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__enter__",
"__eq__",
"__exit__",
"__format__",
"__fspath__",
"__ge__",
"__get__",
"__getattribute__",
"__gt__",
"__hash__",
"__init__",
"__init_subclass__",
"__le__",
"__lt__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__rtruediv__",
"__set_name__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__truediv__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image. | ():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-139-23 | inproject | error | [
"addFilter",
"addHandler",
"callHandlers",
"critical",
"debug",
"disabled",
"error",
"exception",
"fatal",
"filter",
"filters",
"findCaller",
"getChild",
"getEffectiveLevel",
"handle",
"handlers",
"hasHandlers",
"info",
"isEnabledFor",
"level",
"log",
"makeRecord",
"name",
"parent",
"propagate",
"removeFilter",
"removeHandler",
"setLevel",
"warn",
"warning",
"_cache",
"_log",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger. | (f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-141-35 | inproject | PLACEHOLDER | [
"ALLOWED_EXTENSIONS",
"ALLOWED_WATERMARKS",
"BASE_URL",
"BUGSNAG_API_KEY",
"DEBUG",
"DEFAULT_EXTENSION",
"DEFAULT_FONT",
"DEFAULT_SIZE",
"DEFAULT_STYLE",
"DEFAULT_WATERMARK",
"DEPLOYED",
"DISABLED_WATERMARK",
"IMAGES_DIRECTORY",
"MAXIMUM_FRAMES",
"MAXIMUM_PIXELS",
"MINIMUM_FONT_SIZE",
"os",
"Path",
"PLACEHOLDER",
"PLACEHOLDER_SUFFIX",
"PORT",
"PREVIEW_SIZE",
"PREVIEW_TEXT",
"RELEASE_STAGE",
"REMOTE_TRACKING_ERRORS",
"REMOTE_TRACKING_ERRORS_LIMIT",
"REMOTE_TRACKING_URL",
"ROOT",
"SCHEME",
"SERVER_NAME",
"SUFFIX",
"TEST_IMAGES",
"TEST_IMAGES_DIRECTORY",
"TRACK_REQUESTS",
"WATERMARK_HEIGHT",
"WORKERS",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings. | :
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-144-26 | inproject | urls | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils. | .arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-144-31 | inproject | arg | [
"add",
"arg",
"clean",
"flag",
"FLAGS",
"furl",
"normalize",
"params",
"schema",
"settings",
"unquote",
"urlencode",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls. | (request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-144-58 | inproject | DEFAULT_STYLE | [
"ALLOWED_EXTENSIONS",
"ALLOWED_WATERMARKS",
"BASE_URL",
"BUGSNAG_API_KEY",
"DEBUG",
"DEFAULT_EXTENSION",
"DEFAULT_FONT",
"DEFAULT_SIZE",
"DEFAULT_STYLE",
"DEFAULT_WATERMARK",
"DEPLOYED",
"DISABLED_WATERMARK",
"IMAGES_DIRECTORY",
"MAXIMUM_FRAMES",
"MAXIMUM_PIXELS",
"MINIMUM_FONT_SIZE",
"os",
"Path",
"PLACEHOLDER",
"PLACEHOLDER_SUFFIX",
"PORT",
"PREVIEW_SIZE",
"PREVIEW_TEXT",
"RELEASE_STAGE",
"REMOTE_TRACKING_ERRORS",
"REMOTE_TRACKING_ERRORS_LIMIT",
"REMOTE_TRACKING_URL",
"ROOT",
"SCHEME",
"SERVER_NAME",
"SUFFIX",
"TEST_IMAGES",
"TEST_IMAGES_DIRECTORY",
"TRACK_REQUESTS",
"WATERMARK_HEIGHT",
"WORKERS",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings. | , "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-147-34 | inproject | check | [
"build_custom_url",
"build_example_url",
"build_path",
"build_self_url",
"check",
"clean",
"create",
"delete",
"directory",
"example",
"get_image",
"id",
"image",
"jsonify",
"matches",
"name",
"overlay",
"source",
"styles",
"text",
"valid",
"_embed",
"_update_example",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__lt__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template. | (style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-155-30 | inproject | Template | [
"Font",
"font",
"Overlay",
"overlay",
"Template",
"template",
"Text",
"text",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models. | .objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-156-29 | random | DEFAULT_STYLE | [
"ALLOWED_EXTENSIONS",
"ALLOWED_WATERMARKS",
"BASE_URL",
"BUGSNAG_API_KEY",
"DEBUG",
"DEFAULT_EXTENSION",
"DEFAULT_FONT",
"DEFAULT_SIZE",
"DEFAULT_STYLE",
"DEFAULT_WATERMARK",
"DEPLOYED",
"DISABLED_WATERMARK",
"IMAGES_DIRECTORY",
"MAXIMUM_FRAMES",
"MAXIMUM_PIXELS",
"MINIMUM_FONT_SIZE",
"os",
"Path",
"PLACEHOLDER",
"PLACEHOLDER_SUFFIX",
"PORT",
"PREVIEW_SIZE",
"PREVIEW_TEXT",
"RELEASE_STAGE",
"REMOTE_TRACKING_ERRORS",
"REMOTE_TRACKING_ERRORS_LIMIT",
"REMOTE_TRACKING_URL",
"ROOT",
"SCHEME",
"SERVER_NAME",
"SUFFIX",
"TEST_IMAGES",
"TEST_IMAGES_DIRECTORY",
"TRACK_REQUESTS",
"WATERMARK_HEIGHT",
"WORKERS",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings. |
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-167-22 | inproject | urls | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils. | .arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-167-27 | inproject | arg | [
"add",
"arg",
"clean",
"flag",
"FLAGS",
"furl",
"normalize",
"params",
"schema",
"settings",
"unquote",
"urlencode",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls. | (request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-167-54 | inproject | DEFAULT_STYLE | [
"ALLOWED_EXTENSIONS",
"ALLOWED_WATERMARKS",
"BASE_URL",
"BUGSNAG_API_KEY",
"DEBUG",
"DEFAULT_EXTENSION",
"DEFAULT_FONT",
"DEFAULT_SIZE",
"DEFAULT_STYLE",
"DEFAULT_WATERMARK",
"DEPLOYED",
"DISABLED_WATERMARK",
"IMAGES_DIRECTORY",
"MAXIMUM_FRAMES",
"MAXIMUM_PIXELS",
"MINIMUM_FONT_SIZE",
"os",
"Path",
"PLACEHOLDER",
"PLACEHOLDER_SUFFIX",
"PORT",
"PREVIEW_SIZE",
"PREVIEW_TEXT",
"RELEASE_STAGE",
"REMOTE_TRACKING_ERRORS",
"REMOTE_TRACKING_ERRORS_LIMIT",
"REMOTE_TRACKING_URL",
"ROOT",
"SCHEME",
"SERVER_NAME",
"SUFFIX",
"TEST_IMAGES",
"TEST_IMAGES_DIRECTORY",
"TRACK_REQUESTS",
"WATERMARK_HEIGHT",
"WORKERS",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings. | , "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-169-21 | inproject | urls | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils. | .schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-169-26 | inproject | schema | [
"add",
"arg",
"clean",
"flag",
"FLAGS",
"furl",
"normalize",
"params",
"schema",
"settings",
"unquote",
"urlencode",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls. | (style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-178-22 | inproject | urls | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils. | .arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-178-27 | inproject | arg | [
"add",
"arg",
"clean",
"flag",
"FLAGS",
"furl",
"normalize",
"params",
"schema",
"settings",
"unquote",
"urlencode",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls. | (request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-183-19 | inproject | Font | [
"Font",
"font",
"Overlay",
"overlay",
"Template",
"template",
"Text",
"text",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models. | .objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-183-24 | inproject | objects | [
"alias",
"data",
"filename",
"id",
"mro",
"objects",
"path",
"_",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font. | .get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-183-32 | inproject | get | [
"all",
"get",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects. | (font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-199-25 | inproject | to_thread | [
"AbstractChildWatcher",
"AbstractEventLoop",
"AbstractEventLoopPolicy",
"AbstractServer",
"ALL_COMPLETED",
"all_tasks",
"as_completed",
"base_events",
"base_futures",
"base_subprocess",
"base_tasks",
"BaseChildWatcher",
"BaseDefaultEventLoopPolicy",
"BaseEventLoop",
"BaseProtocol",
"BaseTransport",
"BoundedSemaphore",
"BufferedProtocol",
"CancelledError",
"compat",
"Condition",
"CONNECT_PIPE_INIT_DELAY",
"CONNECT_PIPE_MAX_DELAY",
"constants",
"coroutine",
"coroutines",
"create_subprocess_exec",
"create_subprocess_shell",
"create_task",
"current_task",
"DatagramProtocol",
"DatagramTransport",
"DefaultEventLoopPolicy",
"DEVNULL",
"ensure_future",
"ERROR_CONNECTION_ABORTED",
"ERROR_CONNECTION_REFUSED",
"Event",
"events",
"exceptions",
"FastChildWatcher",
"FIRST_COMPLETED",
"FIRST_EXCEPTION",
"FlowControlMixin",
"format_helpers",
"Future",
"futures",
"gather",
"get_child_watcher",
"get_event_loop",
"get_event_loop_policy",
"get_running_loop",
"Handle",
"IncompleteReadError",
"INFINITE",
"InvalidStateError",
"IocpProactor",
"iscoroutine",
"iscoroutinefunction",
"isfuture",
"LifoQueue",
"LimitOverrunError",
"Lock",
"locks",
"log",
"mixins",
"MultiLoopChildWatcher",
"new_event_loop",
"NULL",
"open_connection",
"open_unix_connection",
"PIPE",
"PipeServer",
"PriorityQueue",
"proactor_events",
"ProactorEventLoop",
"Process",
"Protocol",
"protocols",
"Queue",
"QueueEmpty",
"QueueFull",
"queues",
"ReadTransport",
"run",
"run_coroutine_threadsafe",
"runners",
"SafeChildWatcher",
"selector_events",
"SelectorEventLoop",
"Semaphore",
"SendfileNotAvailableError",
"Server",
"set_child_watcher",
"set_event_loop",
"set_event_loop_policy",
"shield",
"sleep",
"sslproto",
"staggered",
"start_server",
"start_unix_server",
"STDOUT",
"StreamReader",
"StreamReaderProtocol",
"streams",
"StreamWriter",
"subprocess",
"SubprocessProtocol",
"SubprocessStreamProtocol",
"SubprocessTransport",
"sys",
"Task",
"tasks",
"ThreadedChildWatcher",
"threads",
"TimeoutError",
"TimerHandle",
"to_thread",
"Transport",
"transports",
"trsock",
"unix_events",
"wait",
"wait_for",
"windows_events",
"windows_utils",
"WindowsProactorEventLoopPolicy",
"WindowsSelectorEventLoopPolicy",
"wrap_future",
"WriteTransport",
"__all__",
"__doc__",
"__file__",
"__main__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio. | (
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-200-14 | inproject | images | [
"html",
"http",
"images",
"meta",
"text",
"urls",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils. | .save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-200-21 | inproject | save | [
"add_blurred_background",
"add_counter",
"add_watermark",
"annotations",
"Dimensions",
"embed",
"EXCEPTIONS",
"fit_image",
"Font",
"get_font",
"get_image_element",
"get_image_elements",
"get_stroke_width",
"get_text_offset",
"get_text_size",
"get_text_size_minus_font_offset",
"Image",
"ImageDraw",
"ImageFilter",
"ImageFont",
"ImageOps",
"ImageSequence",
"io",
"Iterator",
"load",
"logger",
"Offset",
"Path",
"Point",
"preview",
"render_animation",
"render_image",
"resize_image",
"save",
"settings",
"split_2",
"split_3",
"Template",
"Text",
"UnidentifiedImageError",
"wrap",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images. | ,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response.file(path, status)
| jacebrowning__memegen |
202 | 202-210-26 | inproject | file | [
"BaseHTTPResponse",
"convenience",
"empty",
"file",
"file_stream",
"html",
"HTTPResponse",
"json",
"json_dumps",
"JSONResponse",
"raw",
"redirect",
"ResponseStream",
"text",
"types",
"validate_file",
"__all__",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import asyncio
from contextlib import suppress
from sanic import exceptions, response
from sanic.log import logger
from .. import models, settings, utils
async def generate_url(
request, template_id: str = "", *, template_id_required: bool = False
):
if request.form:
payload = dict(request.form)
for key in list(payload.keys()):
if "lines" not in key and "style" not in key:
payload[key] = payload.pop(key)[0]
else:
try:
payload = request.json or {}
except exceptions.InvalidUsage:
payload = {}
with suppress(KeyError):
payload["style"] = payload.pop("style[]")
with suppress(KeyError):
payload["text_lines"] = payload.pop("text_lines[]")
if template_id_required:
try:
template_id = payload["template_id"]
except KeyError:
return response.json({"error": '"template_id" is required'}, status=400)
else:
template_id = utils.text.slugify(template_id)
style: str = utils.urls.arg(payload, "", "style", "overlay", "alt")
if isinstance(style, list):
style = ",".join([(s.strip() or "default") for s in style])
while style.endswith(",default"):
style = style.removesuffix(",default")
text_lines = utils.urls.arg(payload, [], "text_lines")
font = utils.urls.arg(payload, "", "font")
background = utils.urls.arg(payload, "", "background", "image_url")
extension = utils.urls.arg(payload, "", "extension")
if style == "animated":
extension = "gif"
style = ""
status = 201
if template_id:
template: models.Template = models.Template.objects.get_or_create(template_id)
url = template.build_custom_url(
request,
text_lines,
style=style,
font=font,
extension=extension,
)
if not template.valid:
status = 404
template.delete()
else:
template = models.Template("_custom")
url = template.build_custom_url(
request,
text_lines,
background=background,
style=style,
font=font,
extension=extension,
)
url, _updated = await utils.meta.tokenize(request, url)
if payload.get("redirect", False):
return response.redirect(utils.urls.add(url, status="201"))
return response.json({"url": url}, status=status)
async def preview_image(request, id: str, lines: list[str], style: str):
error = ""
id = utils.urls.clean(id)
if utils.urls.schema(id):
template = await models.Template.create(id)
if not template.image.exists():
logger.error(f"Unable to download image URL: {id}")
template = models.Template.objects.get("_error")
error = "Invalid Background"
else:
template = models.Template.objects.get_or_none(id)
if not template:
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
error = "Unknown Template"
if not any(line.strip() for line in lines):
lines = template.example
if not utils.urls.schema(style):
style = style.strip().lower()
if not await template.check(style):
error = "Invalid Overlay"
data, content_type = await asyncio.to_thread(
utils.images.preview, template, lines, style=style, watermark=error.upper()
)
return response.raw(data, content_type=content_type)
async def render_image(
request,
id: str,
slug: str = "",
watermark: str = "",
extension: str = settings.DEFAULT_EXTENSION,
):
lines = utils.text.decode(slug)
asyncio.create_task(utils.meta.track(request, lines))
status = int(utils.urls.arg(request.args, "200", "status"))
if any(len(part.encode()) > 200 for part in slug.split("/")):
logger.error(f"Slug too long: {slug}")
slug = slug[:50] + "..."
lines = utils.text.decode(slug)
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 414
elif id == "custom":
url = utils.urls.arg(request.args, None, "background", "alt")
if url:
template = await models.Template.create(url)
if not template.image.exists():
logger.error(f"Unable to download image URL: {url}")
template = models.Template.objects.get("_error")
if url != settings.PLACEHOLDER:
status = 415
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style")
if not utils.urls.schema(style):
style = style.lower()
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
else:
logger.error("No image URL specified for custom template")
template = models.Template.objects.get("_error")
style = settings.DEFAULT_STYLE
status = 422
else:
template = models.Template.objects.get_or_none(id)
if not template or not template.image.exists():
logger.error(f"No such template: {id}")
template = models.Template.objects.get("_error")
if id != settings.PLACEHOLDER:
status = 404
style = utils.urls.arg(request.args, settings.DEFAULT_STYLE, "style", "alt")
if not await template.check(style):
if utils.urls.schema(style):
status = 415
elif style != settings.PLACEHOLDER:
status = 422
if extension not in settings.ALLOWED_EXTENSIONS:
extension = settings.DEFAULT_EXTENSION
status = 422
font_name = utils.urls.arg(request.args, "", "font")
if font_name == settings.PLACEHOLDER:
font_name = ""
else:
try:
models.Font.objects.get(font_name)
except ValueError:
font_name = ""
status = 422
try:
size = int(request.args.get("width", 0)), int(request.args.get("height", 0))
if 0 < size[0] < 10 or 0 < size[1] < 10:
raise ValueError(f"dimensions are too small: {size}")
except ValueError as e:
logger.error(f"Invalid size: {e}")
size = 0, 0
status = 422
frames = int(request.args.get("frames", 0))
path = await asyncio.to_thread(
utils.images.save,
template,
lines,
watermark,
font_name=font_name,
extension=extension,
style=style,
size=size,
maximum_frames=frames,
)
return await response. | (path, status)
| jacebrowning__memegen |
215 | 215-25-24 | commited | load | [
"add_constructor",
"add_implicit_resolver",
"add_multi_constructor",
"add_multi_representer",
"add_path_resolver",
"add_representer",
"AliasEvent",
"AliasToken",
"AnchorToken",
"BaseDumper",
"BaseLoader",
"BlockEndToken",
"BlockEntryToken",
"BlockMappingStartToken",
"BlockSequenceStartToken",
"CBaseDumper",
"CBaseLoader",
"CDangerDumper",
"CDangerLoader",
"CDumper",
"CEmitter",
"CLoader",
"CollectionEndEvent",
"CollectionNode",
"CollectionStartEvent",
"compose",
"compose_all",
"composer",
"constructor",
"CParser",
"CSafeDumper",
"CSafeLoader",
"cyaml",
"DirectiveToken",
"DocumentEndEvent",
"DocumentEndToken",
"DocumentStartEvent",
"DocumentStartToken",
"dump",
"dump_all",
"Dumper",
"dumper",
"emit",
"emitter",
"error",
"Event",
"events",
"FlowEntryToken",
"FlowMappingEndToken",
"FlowMappingStartToken",
"FlowSequenceEndToken",
"FlowSequenceStartToken",
"full_load",
"full_load_all",
"FullLoader",
"io",
"KeyToken",
"load",
"load_all",
"Loader",
"loader",
"MappingEndEvent",
"MappingNode",
"MappingStartEvent",
"Mark",
"MarkedYAMLError",
"Node",
"NodeEvent",
"nodes",
"parse",
"parser",
"reader",
"representer",
"resolver",
"safe_dump",
"safe_dump_all",
"safe_load",
"safe_load_all",
"SafeDumper",
"SafeLoader",
"ScalarEvent",
"ScalarNode",
"ScalarToken",
"scan",
"scanner",
"SequenceEndEvent",
"SequenceNode",
"SequenceStartEvent",
"serialize",
"serialize_all",
"serializer",
"StreamEndEvent",
"StreamEndToken",
"StreamStartEvent",
"StreamStartToken",
"TagToken",
"Token",
"tokens",
"unsafe_load",
"unsafe_load_all",
"ValueToken",
"warnings",
"YAMLError",
"YAMLObject",
"YAMLObjectMetaclass",
"_yaml",
"__doc__",
"__file__",
"__name__",
"__package__",
"__version__",
"__with_libyaml__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml. | (f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-25-48 | commited | FullLoader | [
"add_constructor",
"add_implicit_resolver",
"add_multi_constructor",
"add_multi_representer",
"add_path_resolver",
"add_representer",
"AliasEvent",
"AliasToken",
"AnchorToken",
"BaseDumper",
"BaseLoader",
"BlockEndToken",
"BlockEntryToken",
"BlockMappingStartToken",
"BlockSequenceStartToken",
"CBaseDumper",
"CBaseLoader",
"CDangerDumper",
"CDangerLoader",
"CDumper",
"CEmitter",
"CLoader",
"CollectionEndEvent",
"CollectionNode",
"CollectionStartEvent",
"compose",
"compose_all",
"composer",
"constructor",
"CParser",
"CSafeDumper",
"CSafeLoader",
"cyaml",
"DirectiveToken",
"DocumentEndEvent",
"DocumentEndToken",
"DocumentStartEvent",
"DocumentStartToken",
"dump",
"dump_all",
"Dumper",
"dumper",
"emit",
"emitter",
"error",
"Event",
"events",
"FlowEntryToken",
"FlowMappingEndToken",
"FlowMappingStartToken",
"FlowSequenceEndToken",
"FlowSequenceStartToken",
"full_load",
"full_load_all",
"FullLoader",
"io",
"KeyToken",
"load",
"load_all",
"Loader",
"loader",
"MappingEndEvent",
"MappingNode",
"MappingStartEvent",
"Mark",
"MarkedYAMLError",
"Node",
"NodeEvent",
"nodes",
"parse",
"parser",
"reader",
"representer",
"resolver",
"safe_dump",
"safe_dump_all",
"safe_load",
"safe_load_all",
"SafeDumper",
"SafeLoader",
"ScalarEvent",
"ScalarNode",
"ScalarToken",
"scan",
"scanner",
"SequenceEndEvent",
"SequenceNode",
"SequenceStartEvent",
"serialize",
"serialize_all",
"serializer",
"StreamEndEvent",
"StreamEndToken",
"StreamStartEvent",
"StreamStartToken",
"TagToken",
"Token",
"tokens",
"unsafe_load",
"unsafe_load_all",
"ValueToken",
"warnings",
"YAMLError",
"YAMLObject",
"YAMLObjectMetaclass",
"_yaml",
"__doc__",
"__file__",
"__name__",
"__package__",
"__version__",
"__with_libyaml__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml. | )
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-45-24 | random | finditer | [
"A",
"ASCII",
"compile",
"copyreg",
"DEBUG",
"DOTALL",
"enum",
"error",
"escape",
"findall",
"finditer",
"fullmatch",
"functools",
"I",
"IGNORECASE",
"L",
"LOCALE",
"M",
"Match",
"match",
"MULTILINE",
"Pattern",
"purge",
"RegexFlag",
"S",
"Scanner",
"search",
"split",
"sre_compile",
"sre_parse",
"sub",
"subn",
"T",
"TEMPLATE",
"template",
"U",
"UNICODE",
"VERBOSE",
"X",
"_cache",
"_compile",
"_compile_repl",
"_expand",
"_locale",
"_MAXCACHE",
"_pickle",
"_special_chars_map",
"_subx",
"__all__",
"__doc__",
"__file__",
"__name__",
"__package__",
"__version__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re. | (
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-79-29 | infile | _write_str_index | [
"generate",
"mro",
"_write_dict_index",
"_write_index_file",
"_write_str_index",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex. | (file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-81-29 | infile | _write_dict_index | [
"generate",
"mro",
"_write_dict_index",
"_write_index_file",
"_write_str_index",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex. | (file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-140-29 | infile | _write_index_file | [
"generate",
"mro",
"_write_dict_index",
"_write_index_file",
"_write_str_index",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex. | (file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-142-29 | infile | generate | [
"generate",
"mro",
"_write_dict_index",
"_write_index_file",
"_write_str_index",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex. | (nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-145-29 | infile | generate | [
"generate",
"mro",
"_write_dict_index",
"_write_index_file",
"_write_str_index",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex. | (nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-186-26 | commited | load | [
"load",
"mro",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig. | ()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-194-17 | infile | generate | [
"generate",
"mro",
"_write_dict_index",
"_write_index_file",
"_write_str_index",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex. | (nav_item=config["nav"])
Reference.generate("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-196-14 | infile | generate | [
"generate",
"mro",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference. | ("reference")
Index.generate(
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
215 | 215-198-10 | infile | generate | [
"generate",
"mro",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | """Generate the code reference pages and navigation."""
# pylint: disable=too-few-public-methods
from pathlib import Path
from typing import Union, List
import re
import yaml
import mkdocs_gen_files # type: ignore
class MkdocsConfig:
"""A class for working with mkdocs configuration."""
@staticmethod
def load() -> dict:
"""
A method for loading mkdocs configuration.
Returns:
A dictionary that contains the mkdocs configuration.
"""
with open(Path(__file__).parent / "mkdocs.yml", "rt", encoding="utf8") as f_yml:
return yaml.load(f_yml, Loader=yaml.FullLoader)
class Index:
"""A class for creating index file from README."""
@staticmethod
def generate(readme: Path, site: str, ipynbs: List[str]) -> None:
"""
A method for generating the index file.
Args:
readme: README.md path.
site: Site url.
ipynbs: List of html links that are ipynb files.
"""
with open(readme, "rt", encoding="utf8") as f_readme:
content = f_readme.read()
for match in re.finditer(
rf"\[([^]]*)\]\(({site}/)([^]]*)(.html)([^]]*)?\)",
content,
):
if match[0] in ipynbs:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.ipynb{match[5]})"
)
else:
content = content.replace(
match[0], f"[{match[1]}]({match[3]}.md{match[5]})"
)
content = content.replace(f"{site}/", "")
with mkdocs_gen_files.open("index.md", "w") as f_index:
f_index.write(content)
class SectionIndex:
"""A class for creating section index files."""
@staticmethod
def _write_index_file(file: str, toc: list) -> None:
"""
A method for writing table of contents into a section index file.
Args:
file: The section index file.
toc: Items of the table of contents.
"""
for item in toc:
if isinstance(item, str):
SectionIndex._write_str_index(file, item)
elif isinstance(item, dict):
SectionIndex._write_dict_index(file, item)
else:
raise NotImplementedError(f"{item}")
@staticmethod
def _write_str_index(file: str, item: str) -> None:
"""
A method for writing an str toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
parts = item.split("/")
part = parts[-1].replace(".md", "").capitalize()
link = Path(item).relative_to(Path(file).parent)
f_index.write(f"* [{part}]({link})\n")
@staticmethod
def _write_dict_index(file: str, item: dict) -> None:
"""
A method for writing a dict toc item into a section index file.
Args:
file: The section index file.
item: Item of the table of contents.
"""
with mkdocs_gen_files.open(file, "a") as f_index:
for key in item:
if isinstance(item[key], str):
link = Path(item[key]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
if item[key] and isinstance(item[key], list):
if isinstance(item[key][0], str):
if item[key][0].endswith("index.md"):
link = Path(item[key][0]).relative_to(Path(file).parent)
f_index.write(f"* [{key}]({link})\n")
continue
raise NotImplementedError(f"{item}")
@staticmethod
def generate(nav_item: Union[list, dict, str]) -> None:
"""
A method for creating section indices for the navigation.
Args:
nav_item: Part of the navigation.
"""
if isinstance(nav_item, list):
if (
nav_item
and isinstance(nav_item[0], str)
and nav_item[0].endswith("index.md")
):
SectionIndex._write_index_file(file=nav_item[0], toc=nav_item[1:])
for item in nav_item:
SectionIndex.generate(nav_item=item)
elif isinstance(nav_item, dict):
for key in nav_item:
SectionIndex.generate(nav_item=nav_item[key])
class Reference:
"""A class for creating code reference."""
@staticmethod
def generate(folder: str) -> None:
"""
A method for generate code reference.
Args:
folder: Reference destination folder.
"""
for path in sorted(Path("src").rglob("*.py")):
module_path = path.relative_to("src").with_suffix("")
doc_path = path.relative_to("src").with_suffix(".md")
full_doc_path = Path(folder, doc_path)
parts = tuple(module_path.parts)
if parts[-1] == "__init__":
parts = parts[:-1]
doc_path = doc_path.with_name("index.md")
full_doc_path = full_doc_path.with_name("index.md")
elif parts[-1] == "__main__":
continue
with mkdocs_gen_files.open(full_doc_path, "w") as f_md:
item = ".".join(parts)
f_md.write(f"::: {item}")
def main() -> None:
"""
The main method.
It prepares files for the documentation site.
"""
config = MkdocsConfig.load()
site_url = config["site_url"]
if site_url.endswith("/"):
site_url = site_url[:-1]
index_ipynbs: List[str] = []
SectionIndex.generate(nav_item=config["nav"])
Reference.generate("reference")
Index. | (
readme=Path(__file__).parent / ".." / ".." / "README.md",
site=site_url,
ipynbs=index_ipynbs,
)
main()
| vizzuhq__ipyvizzu |
216 | 216-10-30 | inproject | module_name | [
"module_name",
"mro",
"overwrite_imports",
"__annotations__",
"__base__",
"__bases__",
"__basicsize__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dictoffset__",
"__dir__",
"__doc__",
"__eq__",
"__flags__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__instancecheck__",
"__itemsize__",
"__module__",
"__mro__",
"__name__",
"__ne__",
"__new__",
"__prepare__",
"__qualname__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasscheck__",
"__subclasses__",
"__text_signature__",
"__weakrefoffset__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError. | ("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-15-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data. | (None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-22-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_if_pandas_not_installed",
"test_add_df_with_df",
"test_add_df_with_df_and_max_rows",
"test_add_df_with_df_and_with_include_index",
"test_add_df_with_df_contains_na",
"test_add_df_with_empty_df",
"test_add_df_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self. | .add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-22-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data. | (pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-22-28 | inproject | DataFrame | [
"annotations",
"api",
"array",
"arrays",
"ArrowDtype",
"bdate_range",
"BooleanDtype",
"Categorical",
"CategoricalDtype",
"CategoricalIndex",
"compat",
"concat",
"conftest",
"core",
"crosstab",
"cut",
"DataFrame",
"date_range",
"DateOffset",
"DatetimeIndex",
"DatetimeTZDtype",
"describe_option",
"errors",
"eval",
"ExcelFile",
"ExcelWriter",
"factorize",
"Flags",
"Float32Dtype",
"Float64Dtype",
"from_dummies",
"get_dummies",
"get_option",
"Grouper",
"HDFStore",
"Index",
"IndexSlice",
"infer_freq",
"Int16Dtype",
"Int32Dtype",
"Int64Dtype",
"Int8Dtype",
"Interval",
"interval_range",
"IntervalDtype",
"IntervalIndex",
"io",
"isna",
"isnull",
"json_normalize",
"lreshape",
"melt",
"merge",
"merge_asof",
"merge_ordered",
"MultiIndex",
"NA",
"NamedAgg",
"NaT",
"notna",
"notnull",
"offsets",
"option_context",
"options",
"pandas",
"Period",
"period_range",
"PeriodDtype",
"PeriodIndex",
"pivot",
"pivot_table",
"plotting",
"qcut",
"RangeIndex",
"read_clipboard",
"read_csv",
"read_excel",
"read_feather",
"read_fwf",
"read_gbq",
"read_hdf",
"read_html",
"read_json",
"read_orc",
"read_parquet",
"read_pickle",
"read_sas",
"read_spss",
"read_sql",
"read_sql_query",
"read_sql_table",
"read_stata",
"read_table",
"read_xml",
"reset_option",
"Series",
"set_eng_float_format",
"set_option",
"show_versions",
"SparseDtype",
"StringDtype",
"test",
"testing",
"tests",
"Timedelta",
"timedelta_range",
"TimedeltaIndex",
"Timestamp",
"to_datetime",
"to_numeric",
"to_pickle",
"to_timedelta",
"tseries",
"UInt16Dtype",
"UInt32Dtype",
"UInt64Dtype",
"UInt8Dtype",
"unique",
"util",
"value_counts",
"wide_to_long",
"_built_with_meson",
"_config",
"_e",
"_err",
"_is_numpy_dev",
"_libs",
"_module",
"_testing",
"_typing",
"_version",
"_version_meson",
"__all__",
"__doc__",
"__docformat__",
"__file__",
"__git_version__",
"__name__",
"__package__",
"__version__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd. | ())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-30-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_if_pandas_not_installed",
"test_add_df_with_df",
"test_add_df_with_df_and_max_rows",
"test_add_df_with_df_and_with_include_index",
"test_add_df_with_df_contains_na",
"test_add_df_with_empty_df",
"test_add_df_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self. | .add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-30-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data. | (df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-46-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_if_pandas_not_installed",
"test_add_df_with_df",
"test_add_df_with_df_and_max_rows",
"test_add_df_with_df_and_with_include_index",
"test_add_df_with_df_contains_na",
"test_add_df_with_empty_df",
"test_add_df_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self. | .add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-46-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data. | (df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-54-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_if_pandas_not_installed",
"test_add_df_with_df",
"test_add_df_with_df_and_max_rows",
"test_add_df_with_df_and_with_include_index",
"test_add_df_with_df_contains_na",
"test_add_df_with_empty_df",
"test_add_df_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self. | .add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-54-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data. | (df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-55-13 | random | assertEqual | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_if_pandas_not_installed",
"test_add_df_with_df",
"test_add_df_with_df_and_max_rows",
"test_add_df_with_df_and_with_include_index",
"test_add_df_with_df_contains_na",
"test_add_df_with_empty_df",
"test_add_df_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self. | (
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-63-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_df",
"test_add_data_frame_with_df_contains_na",
"test_add_data_frame_with_empty_df",
"test_add_data_frame_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self. | .add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-63-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data. | (None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-70-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_df",
"test_add_data_frame_with_df_contains_na",
"test_add_data_frame_with_empty_df",
"test_add_data_frame_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self. | .add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-70-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data. | (pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-70-36 | inproject | DataFrame | [
"annotations",
"api",
"array",
"arrays",
"ArrowDtype",
"bdate_range",
"BooleanDtype",
"Categorical",
"CategoricalDtype",
"CategoricalIndex",
"compat",
"concat",
"conftest",
"core",
"crosstab",
"cut",
"DataFrame",
"date_range",
"DateOffset",
"DatetimeIndex",
"DatetimeTZDtype",
"describe_option",
"errors",
"eval",
"ExcelFile",
"ExcelWriter",
"factorize",
"Flags",
"Float32Dtype",
"Float64Dtype",
"from_dummies",
"get_dummies",
"get_option",
"Grouper",
"HDFStore",
"Index",
"IndexSlice",
"infer_freq",
"Int16Dtype",
"Int32Dtype",
"Int64Dtype",
"Int8Dtype",
"Interval",
"interval_range",
"IntervalDtype",
"IntervalIndex",
"io",
"isna",
"isnull",
"json_normalize",
"lreshape",
"melt",
"merge",
"merge_asof",
"merge_ordered",
"MultiIndex",
"NA",
"NamedAgg",
"NaT",
"notna",
"notnull",
"offsets",
"option_context",
"options",
"pandas",
"Period",
"period_range",
"PeriodDtype",
"PeriodIndex",
"pivot",
"pivot_table",
"plotting",
"qcut",
"RangeIndex",
"read_clipboard",
"read_csv",
"read_excel",
"read_feather",
"read_fwf",
"read_gbq",
"read_hdf",
"read_html",
"read_json",
"read_orc",
"read_parquet",
"read_pickle",
"read_sas",
"read_spss",
"read_sql",
"read_sql_query",
"read_sql_table",
"read_stata",
"read_table",
"read_xml",
"reset_option",
"Series",
"set_eng_float_format",
"set_option",
"show_versions",
"SparseDtype",
"StringDtype",
"test",
"testing",
"tests",
"Timedelta",
"timedelta_range",
"TimedeltaIndex",
"Timestamp",
"to_datetime",
"to_numeric",
"to_pickle",
"to_timedelta",
"tseries",
"UInt16Dtype",
"UInt32Dtype",
"UInt64Dtype",
"UInt8Dtype",
"unique",
"util",
"value_counts",
"wide_to_long",
"_built_with_meson",
"_config",
"_e",
"_err",
"_is_numpy_dev",
"_libs",
"_module",
"_testing",
"_typing",
"_version",
"_version_meson",
"__all__",
"__doc__",
"__docformat__",
"__file__",
"__git_version__",
"__name__",
"__package__",
"__version__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd. | ())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-86-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_df",
"test_add_data_frame_with_df_contains_na",
"test_add_data_frame_with_empty_df",
"test_add_data_frame_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self. | .add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-86-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data. | (df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-95-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self. | .add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-95-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data. | (pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-95-28 | inproject | Series | [
"annotations",
"api",
"array",
"arrays",
"ArrowDtype",
"bdate_range",
"BooleanDtype",
"Categorical",
"CategoricalDtype",
"CategoricalIndex",
"compat",
"concat",
"conftest",
"core",
"crosstab",
"cut",
"DataFrame",
"date_range",
"DateOffset",
"DatetimeIndex",
"DatetimeTZDtype",
"describe_option",
"errors",
"eval",
"ExcelFile",
"ExcelWriter",
"factorize",
"Flags",
"Float32Dtype",
"Float64Dtype",
"from_dummies",
"get_dummies",
"get_option",
"Grouper",
"HDFStore",
"Index",
"IndexSlice",
"infer_freq",
"Int16Dtype",
"Int32Dtype",
"Int64Dtype",
"Int8Dtype",
"Interval",
"interval_range",
"IntervalDtype",
"IntervalIndex",
"io",
"isna",
"isnull",
"json_normalize",
"lreshape",
"melt",
"merge",
"merge_asof",
"merge_ordered",
"MultiIndex",
"NA",
"NamedAgg",
"NaT",
"notna",
"notnull",
"offsets",
"option_context",
"options",
"pandas",
"Period",
"period_range",
"PeriodDtype",
"PeriodIndex",
"pivot",
"pivot_table",
"plotting",
"qcut",
"RangeIndex",
"read_clipboard",
"read_csv",
"read_excel",
"read_feather",
"read_fwf",
"read_gbq",
"read_hdf",
"read_html",
"read_json",
"read_orc",
"read_parquet",
"read_pickle",
"read_sas",
"read_spss",
"read_sql",
"read_sql_query",
"read_sql_table",
"read_stata",
"read_table",
"read_xml",
"reset_option",
"Series",
"set_eng_float_format",
"set_option",
"show_versions",
"SparseDtype",
"StringDtype",
"test",
"testing",
"tests",
"Timedelta",
"timedelta_range",
"TimedeltaIndex",
"Timestamp",
"to_datetime",
"to_numeric",
"to_pickle",
"to_timedelta",
"tseries",
"UInt16Dtype",
"UInt32Dtype",
"UInt64Dtype",
"UInt8Dtype",
"unique",
"util",
"value_counts",
"wide_to_long",
"_built_with_meson",
"_config",
"_e",
"_err",
"_is_numpy_dev",
"_libs",
"_module",
"_testing",
"_typing",
"_version",
"_version_meson",
"__all__",
"__doc__",
"__docformat__",
"__file__",
"__git_version__",
"__name__",
"__package__",
"__version__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd. | ())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-102-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self. | .add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-102-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data. | (self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-102-30 | inproject | in_pd_series_dimension | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self. | )
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-103-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self. | .add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-103-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data. | (self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-103-30 | inproject | in_pd_series_measure | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self. | )
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-110-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self. | .add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-110-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data. | (self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-110-30 | inproject | in_pd_series_dimension_with_nan | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self. | )
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-111-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self. | .add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-111-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data. | (self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-111-30 | inproject | in_pd_series_measure_with_nan | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self. | )
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-118-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_with_empty_series",
"test_add_df_with_series",
"test_add_df_with_series_and_with_include_index",
"test_add_df_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self. | .add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-118-18 | inproject | add_df | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data. | (
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-134-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self. | .add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-134-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data. | (pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-134-36 | inproject | Series | [
"annotations",
"api",
"array",
"arrays",
"ArrowDtype",
"bdate_range",
"BooleanDtype",
"Categorical",
"CategoricalDtype",
"CategoricalIndex",
"compat",
"concat",
"conftest",
"core",
"crosstab",
"cut",
"DataFrame",
"date_range",
"DateOffset",
"DatetimeIndex",
"DatetimeTZDtype",
"describe_option",
"errors",
"eval",
"ExcelFile",
"ExcelWriter",
"factorize",
"Flags",
"Float32Dtype",
"Float64Dtype",
"from_dummies",
"get_dummies",
"get_option",
"Grouper",
"HDFStore",
"Index",
"IndexSlice",
"infer_freq",
"Int16Dtype",
"Int32Dtype",
"Int64Dtype",
"Int8Dtype",
"Interval",
"interval_range",
"IntervalDtype",
"IntervalIndex",
"io",
"isna",
"isnull",
"json_normalize",
"lreshape",
"melt",
"merge",
"merge_asof",
"merge_ordered",
"MultiIndex",
"NA",
"NamedAgg",
"NaT",
"notna",
"notnull",
"offsets",
"option_context",
"options",
"pandas",
"Period",
"period_range",
"PeriodDtype",
"PeriodIndex",
"pivot",
"pivot_table",
"plotting",
"qcut",
"RangeIndex",
"read_clipboard",
"read_csv",
"read_excel",
"read_feather",
"read_fwf",
"read_gbq",
"read_hdf",
"read_html",
"read_json",
"read_orc",
"read_parquet",
"read_pickle",
"read_sas",
"read_spss",
"read_sql",
"read_sql_query",
"read_sql_table",
"read_stata",
"read_table",
"read_xml",
"reset_option",
"Series",
"set_eng_float_format",
"set_option",
"show_versions",
"SparseDtype",
"StringDtype",
"test",
"testing",
"tests",
"Timedelta",
"timedelta_range",
"TimedeltaIndex",
"Timestamp",
"to_datetime",
"to_numeric",
"to_pickle",
"to_timedelta",
"tseries",
"UInt16Dtype",
"UInt32Dtype",
"UInt64Dtype",
"UInt8Dtype",
"unique",
"util",
"value_counts",
"wide_to_long",
"_built_with_meson",
"_config",
"_e",
"_err",
"_is_numpy_dev",
"_libs",
"_module",
"_testing",
"_typing",
"_version",
"_version_meson",
"__all__",
"__doc__",
"__docformat__",
"__file__",
"__git_version__",
"__name__",
"__package__",
"__version__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd. | ())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-141-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self. | .add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-141-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data. | (self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-141-38 | inproject | in_pd_series_dimension | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self. | )
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-142-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self. | .add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-142-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data. | (self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-142-38 | inproject | in_pd_series_measure | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self. | )
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-149-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self. | .add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-149-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data. | (self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-149-38 | inproject | in_pd_series_dimension_with_nan | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self. | )
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-150-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self. | .add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-150-18 | inproject | add_data_frame | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data. | (self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-150-38 | inproject | in_pd_series_measure_with_nan | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_with_empty_series",
"test_add_data_frame_with_series",
"test_add_data_frame_with_series_contains_na",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self. | )
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-159-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_index_with_df",
"test_add_df_index_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self. | .add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-159-18 | inproject | add_df_index | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data. | (None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-167-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_index_with_df",
"test_add_df_index_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self. | .add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-167-18 | inproject | add_df_index | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data. | (df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |