lca_index
int64 0
223
| idx
stringlengths 7
11
| line_type
stringclasses 6
values | ground_truth
stringlengths 2
35
| completions
sequencelengths 3
1.16k
| prefix
stringlengths 298
32.8k
| postfix
stringlengths 0
28.6k
| repo
stringclasses 34
values |
---|---|---|---|---|---|---|---|
216 | 216-169-17 | random | ref_pd_df_by_series_only_index | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_index_with_df",
"test_add_df_index_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self. | ,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-176-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_index_with_df",
"test_add_data_frame_index_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self. | .add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-176-18 | inproject | add_data_frame_index | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data. | (None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-184-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_index_with_df",
"test_add_data_frame_index_with_none",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self. | .add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-184-18 | inproject | add_data_frame_index | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data. | (df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-193-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_index_with_series",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self. | .add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-193-18 | inproject | add_df_index | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data. | (
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-194-17 | random | in_pd_series_dimension_with_index | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_index_with_series",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self. | ,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-203-17 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_df_index_with_series",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self. | .build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-203-22 | inproject | build | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data. | (),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data.add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-209-13 | inproject | data | [
"addClassCleanup",
"addCleanup",
"addTypeEqualityFunc",
"assert_",
"assertAlmostEqual",
"assertAlmostEquals",
"assertCountEqual",
"assertDictContainsSubset",
"assertDictEqual",
"assertEqual",
"assertEquals",
"assertFalse",
"assertGreater",
"assertGreaterEqual",
"assertIn",
"assertIs",
"assertIsInstance",
"assertIsNone",
"assertIsNot",
"assertIsNotNone",
"assertLess",
"assertLessEqual",
"assertListEqual",
"assertLogs",
"assertMultiLineEqual",
"assertNotAlmostEqual",
"assertNotAlmostEquals",
"assertNotEqual",
"assertNotEquals",
"assertNotIn",
"assertNotIsInstance",
"assertNotRegex",
"assertNotRegexpMatches",
"assertRaises",
"assertRaisesRegex",
"assertRaisesRegexp",
"assertRegex",
"assertRegexpMatches",
"assertSequenceEqual",
"assertSetEqual",
"assertTrue",
"assertTupleEqual",
"assertWarns",
"assertWarnsRegex",
"asset_dir",
"countTestCases",
"data",
"debug",
"defaultTestResult",
"doClassCleanups",
"doCleanups",
"fail",
"failIf",
"failIfAlmostEqual",
"failIfEqual",
"failUnless",
"failUnlessAlmostEqual",
"failUnlessEqual",
"failUnlessRaises",
"failureException",
"id",
"in_pd_df_by_series",
"in_pd_df_by_series_with_duplicated_popularity",
"in_pd_df_by_series_with_index",
"in_pd_df_by_series_with_nan",
"in_pd_series_dimension",
"in_pd_series_dimension_with_index",
"in_pd_series_dimension_with_nan",
"in_pd_series_measure",
"in_pd_series_measure_with_index",
"in_pd_series_measure_with_nan",
"longMessage",
"maxDiff",
"ref_pd_df_by_series",
"ref_pd_df_by_series_max_rows",
"ref_pd_df_by_series_only_index",
"ref_pd_df_by_series_with_duplicated_popularity",
"ref_pd_df_by_series_with_index",
"ref_pd_df_by_series_with_nan",
"ref_pd_series",
"ref_pd_series_only_index",
"ref_pd_series_with_index",
"ref_pd_series_with_nan",
"run",
"set_up_pd_df",
"set_up_pd_series",
"setUp",
"setUpClass",
"shortDescription",
"skipTest",
"subTest",
"tearDown",
"tearDownClass",
"test_add_data_frame_index_with_series",
"_addSkip",
"_formatMessage",
"_getAssertEqualityFunc",
"_testMethodDoc",
"_testMethodName",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self. | .add_data_frame_index(
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
216 | 216-209-18 | inproject | add_data_frame_index | [
"add_data_frame",
"add_data_frame_index",
"add_df",
"add_df_index",
"add_dimension",
"add_measure",
"add_np_array",
"add_record",
"add_records",
"add_series",
"add_series_list",
"add_spark_df",
"build",
"clear",
"copy",
"dump",
"filter",
"from_json",
"fromkeys",
"get",
"items",
"keys",
"pop",
"popitem",
"set_filter",
"setdefault",
"update",
"values",
"_add_named_value",
"_add_value",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__"
] | # pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring
import pandas as pd
from tests.test_data import DataWithAssets
from tests.utils.import_error import RaiseImportError
class TestDf(DataWithAssets):
def test_add_df_if_pandas_not_installed(self) -> None:
with RaiseImportError.module_name("pandas"):
with self.assertRaises(ImportError):
self.data.add_df(pd.DataFrame())
def test_add_df_with_none(self) -> None:
self.data.add_df(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_empty_df(self) -> None:
self.data.add_df(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_df_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_df(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
def test_add_df_with_df_and_with_include_index(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df(df, include_index="Index")
self.assertEqual(
self.ref_pd_df_by_series_with_index,
self.data.build(),
)
def test_add_df_with_df_and_max_rows(self) -> None:
df = self.in_pd_df_by_series
self.data.add_df(df, max_rows=2)
self.assertEqual(
self.ref_pd_df_by_series_max_rows,
self.data.build(),
)
class TestDataFrame(DataWithAssets):
def test_add_data_frame_with_none(self) -> None:
self.data.add_data_frame(None)
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_empty_df(self) -> None:
self.data.add_data_frame(pd.DataFrame())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_df(self) -> None:
df = self.in_pd_df_by_series_with_duplicated_popularity
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_duplicated_popularity,
self.data.build(),
)
def test_add_data_frame_with_df_contains_na(self) -> None:
df = self.in_pd_df_by_series_with_nan
self.data.add_data_frame(df)
self.assertEqual(
self.ref_pd_df_by_series_with_nan,
self.data.build(),
)
class TestDfWithSeries(DataWithAssets):
def test_add_df_with_empty_series(self) -> None:
self.data.add_df(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_with_series(self) -> None:
self.data.add_df(self.in_pd_series_dimension)
self.data.add_df(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_df_with_series_contains_na(self) -> None:
self.data.add_df(self.in_pd_series_dimension_with_nan)
self.data.add_df(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
def test_add_df_with_series_and_with_include_index(self) -> None:
self.data.add_df(
self.in_pd_series_dimension_with_index,
include_index="DimensionIndex",
)
self.data.add_df(
self.in_pd_series_measure_with_index,
include_index="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_with_index,
self.data.build(),
)
class TestDataFrameWithSeries(DataWithAssets):
def test_add_data_frame_with_empty_series(self) -> None:
self.data.add_data_frame(pd.Series())
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_with_series(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension)
self.data.add_data_frame(self.in_pd_series_measure)
self.assertEqual(
self.ref_pd_series,
self.data.build(),
)
def test_add_data_frame_with_series_contains_na(self) -> None:
self.data.add_data_frame(self.in_pd_series_dimension_with_nan)
self.data.add_data_frame(self.in_pd_series_measure_with_nan)
self.assertEqual(
self.ref_pd_series_with_nan,
self.data.build(),
)
class TestDfIndex(DataWithAssets):
def test_add_df_index_with_none(self) -> None:
self.data.add_df_index(None, column_name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_df_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_df_index(df, column_name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDataFrameIndex(DataWithAssets):
def test_add_data_frame_index_with_none(self) -> None:
self.data.add_data_frame_index(None, name="Index")
self.assertEqual(
{"data": {}},
self.data.build(),
)
def test_add_data_frame_index_with_df(self) -> None:
df = self.in_pd_df_by_series_with_index
self.data.add_data_frame_index(df, name="Index")
self.assertEqual(
self.ref_pd_df_by_series_only_index,
self.data.build(),
)
class TestDfIndexWithSeries(DataWithAssets):
def test_add_df_index_with_series(self) -> None:
self.data.add_df_index(
self.in_pd_series_dimension_with_index,
column_name="DimensionIndex",
)
self.data.add_df_index(
self.in_pd_series_measure_with_index,
column_name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
class TestDataFrameIndexWithSeries(DataWithAssets):
def test_add_data_frame_index_with_series(self) -> None:
self.data. | (
self.in_pd_series_dimension_with_index,
name="DimensionIndex",
)
self.data.add_data_frame_index(
self.in_pd_series_measure_with_index,
name="MeasureIndex",
)
self.assertEqual(
self.ref_pd_series_only_index,
self.data.build(),
)
| vizzuhq__ipyvizzu |
222 | 222-32-13 | random | errno | [
"args",
"errno",
"filename",
"filename2",
"strerror",
"with_traceback",
"__annotations__",
"__cause__",
"__class__",
"__context__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__suppress_context__",
"__traceback__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e. | != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-32-28 | random | ENOENT | [
"E2BIG",
"EACCES",
"EADDRINUSE",
"EADDRNOTAVAIL",
"EADV",
"EAFNOSUPPORT",
"EAGAIN",
"EALREADY",
"EBADE",
"EBADF",
"EBADFD",
"EBADMSG",
"EBADR",
"EBADRQC",
"EBADSLT",
"EBFONT",
"EBUSY",
"ECANCELED",
"ECHILD",
"ECHRNG",
"ECOMM",
"ECONNABORTED",
"ECONNREFUSED",
"ECONNRESET",
"EDEADLCK",
"EDEADLOCK",
"EDESTADDRREQ",
"EDOM",
"EDOTDOT",
"EDQUOT",
"EEXIST",
"EFAULT",
"EFBIG",
"EHOSTDOWN",
"EHOSTUNREACH",
"EIDRM",
"EILSEQ",
"EINPROGRESS",
"EINTR",
"EINVAL",
"EIO",
"EISCONN",
"EISDIR",
"EISNAM",
"EKEYEXPIRED",
"EKEYREJECTED",
"EKEYREVOKED",
"EL2HLT",
"EL2NSYNC",
"EL3HLT",
"EL3RST",
"ELIBACC",
"ELIBBAD",
"ELIBEXEC",
"ELIBMAX",
"ELIBSCN",
"ELNRNG",
"ELOOP",
"EMEDIUMTYPE",
"EMFILE",
"EMLINK",
"EMSGSIZE",
"EMULTIHOP",
"ENAMETOOLONG",
"ENAVAIL",
"ENETDOWN",
"ENETRESET",
"ENETUNREACH",
"ENFILE",
"ENOANO",
"ENOBUFS",
"ENOCSI",
"ENODATA",
"ENODEV",
"ENOENT",
"ENOEXEC",
"ENOKEY",
"ENOLCK",
"ENOLINK",
"ENOMEDIUM",
"ENOMEM",
"ENOMSG",
"ENONET",
"ENOPKG",
"ENOPROTOOPT",
"ENOSPC",
"ENOSR",
"ENOSTR",
"ENOSYS",
"ENOTBLK",
"ENOTCONN",
"ENOTDIR",
"ENOTEMPTY",
"ENOTNAM",
"ENOTRECOVERABLE",
"ENOTSOCK",
"ENOTSUP",
"ENOTTY",
"ENOTUNIQ",
"ENXIO",
"EOPNOTSUPP",
"EOVERFLOW",
"EOWNERDEAD",
"EPERM",
"EPFNOSUPPORT",
"EPIPE",
"EPROTO",
"EPROTONOSUPPORT",
"EPROTOTYPE",
"ERANGE",
"EREMCHG",
"EREMOTE",
"EREMOTEIO",
"ERESTART",
"ERFKILL",
"EROFS",
"errorcode",
"ESHUTDOWN",
"ESOCKTNOSUPPORT",
"ESPIPE",
"ESRCH",
"ESRMNT",
"ESTALE",
"ESTRPIPE",
"ETIME",
"ETIMEDOUT",
"ETOOMANYREFS",
"ETXTBSY",
"EUCLEAN",
"EUNATCH",
"EUSERS",
"EWOULDBLOCK",
"EXDEV",
"EXFULL",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno. | :
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-55-9 | inproject | close | [
"buffer",
"close",
"closed",
"closefd",
"detach",
"encoding",
"errors",
"fileno",
"flush",
"isatty",
"line_buffering",
"mode",
"name",
"newlines",
"peek",
"raw",
"read",
"read1",
"readable",
"readall",
"readinto",
"readinto1",
"readline",
"readlines",
"reconfigure",
"seek",
"seekable",
"tell",
"truncate",
"writable",
"write",
"write_through",
"writelines",
"_blksize",
"_checkClosed",
"_checkReadable",
"_checkSeekable",
"_checkWritable",
"_CHUNK_SIZE",
"_dealloc_warn",
"_finalizing",
"_is_protocol",
"__annotations__",
"__class__",
"__class_getitem__",
"__del__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__enter__",
"__eq__",
"__exit__",
"__format__",
"__ge__",
"__getattribute__",
"__gt__",
"__hash__",
"__init__",
"__init_subclass__",
"__iter__",
"__le__",
"__lt__",
"__module__",
"__ne__",
"__new__",
"__next__",
"__parameters__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasshook__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file. | ()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-90-10 | commited | environ | [
"abc",
"abort",
"access",
"add_dll_directory",
"altsep",
"chdir",
"chflags",
"chmod",
"chown",
"chroot",
"CLD_CONTINUED",
"CLD_DUMPED",
"CLD_EXITED",
"CLD_TRAPPED",
"close",
"closerange",
"confstr",
"confstr_names",
"cpu_count",
"ctermid",
"curdir",
"defpath",
"device_encoding",
"devnull",
"DirEntry",
"dup",
"dup2",
"environ",
"environb",
"error",
"EX_CANTCREAT",
"EX_CONFIG",
"EX_DATAERR",
"EX_IOERR",
"EX_NOHOST",
"EX_NOINPUT",
"EX_NOPERM",
"EX_NOTFOUND",
"EX_NOUSER",
"EX_OK",
"EX_OSERR",
"EX_OSFILE",
"EX_PROTOCOL",
"EX_SOFTWARE",
"EX_TEMPFAIL",
"EX_UNAVAILABLE",
"EX_USAGE",
"execl",
"execle",
"execlp",
"execlpe",
"execv",
"execve",
"execvp",
"execvpe",
"extsep",
"F_LOCK",
"F_OK",
"F_TEST",
"F_TLOCK",
"F_ULOCK",
"fchdir",
"fchmod",
"fchown",
"fdatasync",
"fdopen",
"fork",
"forkpty",
"fpathconf",
"fsdecode",
"fsencode",
"fspath",
"fstat",
"fstatvfs",
"fsync",
"ftruncate",
"fwalk",
"GenericAlias",
"get_blocking",
"get_exec_path",
"get_inheritable",
"get_terminal_size",
"getcwd",
"getcwdb",
"getegid",
"getenv",
"getenvb",
"geteuid",
"getgid",
"getgrouplist",
"getgroups",
"getloadavg",
"getlogin",
"getpgid",
"getpgrp",
"getpid",
"getppid",
"getpriority",
"getrandom",
"getresgid",
"getresuid",
"getsid",
"getuid",
"getxattr",
"GRND_NONBLOCK",
"GRND_RANDOM",
"initgroups",
"isatty",
"kill",
"killpg",
"lchflags",
"lchmod",
"lchown",
"linesep",
"link",
"listdir",
"listxattr",
"lockf",
"lseek",
"lstat",
"major",
"makedev",
"makedirs",
"Mapping",
"memfd_create",
"MFD_ALLOW_SEALING",
"MFD_CLOEXEC",
"MFD_HUGE_16GB",
"MFD_HUGE_16MB",
"MFD_HUGE_1GB",
"MFD_HUGE_1MB",
"MFD_HUGE_256MB",
"MFD_HUGE_2GB",
"MFD_HUGE_2MB",
"MFD_HUGE_32MB",
"MFD_HUGE_512KB",
"MFD_HUGE_512MB",
"MFD_HUGE_64KB",
"MFD_HUGE_8MB",
"MFD_HUGE_MASK",
"MFD_HUGE_SHIFT",
"MFD_HUGETLB",
"minor",
"mkdir",
"mkfifo",
"mknod",
"MutableMapping",
"name",
"NGROUPS_MAX",
"nice",
"O_ACCMODE",
"O_APPEND",
"O_ASYNC",
"O_BINARY",
"O_CLOEXEC",
"O_CREAT",
"O_DIRECT",
"O_DIRECTORY",
"O_DSYNC",
"O_EXCL",
"O_EXLOCK",
"O_LARGEFILE",
"O_NDELAY",
"O_NOATIME",
"O_NOCTTY",
"O_NOFOLLOW",
"O_NOINHERIT",
"O_NONBLOCK",
"O_PATH",
"O_RANDOM",
"O_RDONLY",
"O_RDWR",
"O_RSYNC",
"O_SEQUENTIAL",
"O_SHLOCK",
"O_SHORT_LIVED",
"O_SYNC",
"O_TEMPORARY",
"O_TEXT",
"O_TMPFILE",
"O_TRUNC",
"O_WRONLY",
"open",
"openpty",
"P_ALL",
"P_DETACH",
"P_NOWAIT",
"P_NOWAITO",
"P_OVERLAY",
"P_PGID",
"P_PID",
"P_WAIT",
"pardir",
"path",
"pathconf",
"pathconf_names",
"PathLike",
"pathsep",
"pipe",
"pipe2",
"plock",
"popen",
"POSIX_FADV_DONTNEED",
"POSIX_FADV_NOREUSE",
"POSIX_FADV_NORMAL",
"POSIX_FADV_RANDOM",
"POSIX_FADV_SEQUENTIAL",
"POSIX_FADV_WILLNEED",
"posix_fadvise",
"posix_fallocate",
"pread",
"PRIO_PGRP",
"PRIO_PROCESS",
"PRIO_USER",
"putenv",
"pwrite",
"R_OK",
"read",
"readlink",
"readv",
"register_at_fork",
"remove",
"removedirs",
"removexattr",
"rename",
"renames",
"replace",
"rmdir",
"RTLD_DEEPBIND",
"RTLD_GLOBAL",
"RTLD_LAZY",
"RTLD_LOCAL",
"RTLD_NODELETE",
"RTLD_NOLOAD",
"RTLD_NOW",
"scandir",
"SCHED_BATCH",
"SCHED_FIFO",
"sched_get_priority_max",
"sched_get_priority_min",
"sched_getaffinity",
"sched_getparam",
"sched_getscheduler",
"SCHED_IDLE",
"SCHED_OTHER",
"sched_param",
"SCHED_RESET_ON_FORK",
"SCHED_RR",
"sched_rr_get_interval",
"sched_setaffinity",
"sched_setparam",
"sched_setscheduler",
"SCHED_SPORADIC",
"sched_yield",
"SEEK_CUR",
"SEEK_DATA",
"SEEK_END",
"SEEK_HOLE",
"SEEK_SET",
"sendfile",
"sep",
"set_blocking",
"set_inheritable",
"setegid",
"seteuid",
"setgid",
"setgroups",
"setpgid",
"setpgrp",
"setpriority",
"setregid",
"setresgid",
"setresuid",
"setreuid",
"setsid",
"setuid",
"setxattr",
"SF_MNOWAIT",
"SF_NODISKIO",
"SF_SYNC",
"spawnl",
"spawnle",
"spawnlp",
"spawnlpe",
"spawnv",
"spawnve",
"spawnvp",
"spawnvpe",
"st",
"ST_APPEND",
"ST_MANDLOCK",
"ST_NOATIME",
"ST_NODEV",
"ST_NODIRATIME",
"ST_NOEXEC",
"ST_NOSUID",
"ST_RDONLY",
"ST_RELATIME",
"ST_SYNCHRONOUS",
"ST_WRITE",
"startfile",
"stat",
"stat_result",
"statvfs",
"statvfs_result",
"strerror",
"supports_bytes_environ",
"supports_dir_fd",
"supports_effective_ids",
"supports_fd",
"supports_follow_symlinks",
"symlink",
"sync",
"sys",
"sysconf",
"sysconf_names",
"system",
"tcgetpgrp",
"tcsetpgrp",
"terminal_size",
"times",
"times_result",
"TMP_MAX",
"truncate",
"ttyname",
"umask",
"uname",
"uname_result",
"unlink",
"unsetenv",
"urandom",
"utime",
"W_OK",
"wait",
"wait3",
"wait4",
"waitid",
"waitid_result",
"waitpid",
"walk",
"WCONTINUED",
"WCOREDUMP",
"WEXITED",
"WEXITSTATUS",
"WIFCONTINUED",
"WIFEXITED",
"WIFSIGNALED",
"WIFSTOPPED",
"WNOHANG",
"WNOWAIT",
"write",
"writev",
"WSTOPPED",
"WSTOPSIG",
"WTERMSIG",
"WUNTRACED",
"X_OK",
"XATTR_CREATE",
"XATTR_REPLACE",
"XATTR_SIZE_MAX",
"_AddedDllDirectory",
"_check_methods",
"_Environ",
"_execvpe",
"_exists",
"_exit",
"_fspath",
"_fwalk",
"_get_exports_list",
"_spawnvef",
"_walk",
"_wrap_close",
"__all__",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os. | .get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-90-18 | commited | get | [
"clear",
"copy",
"decodekey",
"decodevalue",
"encodekey",
"encodevalue",
"get",
"items",
"keys",
"pop",
"popitem",
"setdefault",
"update",
"values",
"_data",
"__abc_tpflags__",
"__annotations__",
"__class__",
"__class_getitem__",
"__contains__",
"__delattr__",
"__delitem__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__getitem__",
"__hash__",
"__init__",
"__init_subclass__",
"__ior__",
"__iter__",
"__len__",
"__module__",
"__ne__",
"__new__",
"__or__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__reversed__",
"__ror__",
"__setattr__",
"__setitem__",
"__sizeof__",
"__slots__",
"__str__",
"__subclasshook__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ. | ("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-116-20 | common | platform | [
"get",
"label",
"name",
"platform",
"sequence",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self. | .execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-116-42 | common | sequence | [
"get",
"label",
"name",
"platform",
"sequence",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self. | )
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-408-13 | inproject | qc_pulse | [
"label",
"name",
"qc_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.q | duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-409-13 | common | ro_pulse | [
"label",
"name",
"qc_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.r | start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-418-13 | inproject | qcm | [
"label",
"name",
"qcm",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.q | = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-421-13 | inproject | qcm | [
"label",
"name",
"qcm",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.q | gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-443-13 | inproject | base_duration | [
"base_duration",
"initial_value",
"label",
"name",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.b | = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-463-13 | common | qc2_pulse | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.q | start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-463-36 | common | pi_pulse_length | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.p | // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-464-13 | common | ro_pulse | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.r | start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-464-35 | common | pi_pulse_length | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.p | + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-479-13 | common | ro_pulse | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.r | start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-479-39 | common | pi_pulse_length | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.p | /2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-494-13 | common | qc2_pulse | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"qc3_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.q | start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-494-36 | common | pi_pulse_length | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"qc3_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.p | /2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-495-13 | common | qc3_pulse | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"qc3_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.q | start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-495-41 | common | pi_pulse_length | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"qc3_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.p | //2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-496-13 | common | ro_pulse | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"qc3_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.r | start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-496-39 | common | pi_pulse_length | [
"initial_value",
"label",
"name",
"pi_pulse_length",
"qc2_pulse",
"qc3_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.p | + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-505-13 | inproject | qrm | [
"label",
"name",
"qrm",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.q | = qrm
def set(self,value):
self.qrm.gain = value / 100 | qiboteam__qibolab |
222 | 222-508-13 | inproject | qrm | [
"label",
"name",
"qrm",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
import matplotlib.pyplot as plt
import yaml
# TODO: Have a look in the documentation of ``MeasurementControl``
from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
# TODO: Check why this set_datadir is needed
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
def backup_config_file():
import os
import shutil
import errno
from datetime import datetime
original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
now = datetime.now()
now = now.strftime("%d%m%Y%H%M%S")
destination_file_name = "tiiq_" + now + ".yml"
target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name))
try:
print("Copying file: " + original)
print("Destination file" + target)
shutil.copyfile(original, target)
print("Platform settings backup done")
except IOError as e:
# ENOENT(2): file does not exist, raised also on missing dest parent dir
if e.errno != errno.ENOENT:
raise
# try creating parent directories
os.makedirs(os.path.dirname(target))
shutil.copy(original, target)
def get_config_parameter(dictID, dictID1, key):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path) as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
return settings[dictID][key]
else:
return settings[dictID][dictID1][key]
def save_config_parameter(dictID, dictID1, key, value):
import os
calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml'))
with open(calibration_path, "r") as file:
settings = yaml.safe_load(file)
file.close()
if (not dictID1):
settings[dictID][key] = value
print("Saved value: " + str(settings[dictID][key]))
else:
settings[dictID][dictID1][key] = value
print("Saved value: " + str(settings[dictID][dictID1][key]))
with open(calibration_path, "w") as file:
settings = yaml.dump(settings, file, sort_keys=False, indent=4)
file.close()
def plot(smooth_dataset, dataset, label, type):
if (type == 0): #cavity plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
if (type == 1): #qubit spec, rabi, ramsey, t1 plots
fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61))
ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0')
ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1')
ax.title.set_text(label)
ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2')
plt.savefig(pathlib.Path("data") / f"{label}.pdf")
return
def create_measurement_control(name):
import os
if os.environ.get("ENABLE_PLOTMON", True):
mc = MeasurementControl(f'MC {name}')
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt
plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}')
plotmon.tuids_max_num(3)
mc.instr_plotmon(plotmon.name)
from quantify_core.visualization.instrument_monitor import InstrumentMonitor
insmon = InstrumentMonitor(f"Instruments Monitor {name}")
mc.instrument_monitor(insmon.name)
return mc, plotmon, insmon
else:
mc = MeasurementControl(f'MC {name}')
return mc, None, None
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence)
def variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step):
#[. . . . . .][...................]0[...................][. . . . . .]
#[-------- lowres_width ---------][-- highres_width --] [-- highres_width --][-------- lowres_width ---------]
#>. .< lowres_step
# >..< highres_step
# ^ centre value = 0
scanrange = np.concatenate(
( np.arange(-lowres_width,-highres_width,lowres_step),
np.arange(-highres_width,highres_width,highres_step),
np.arange(highres_width,lowres_width,lowres_step)
)
)
return scanrange
def run_resonator_spectroscopy(platform, mc, sequence, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
#Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:25]) * 1e6
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_punchout(platform, mc, sequence, ro_pulse, precision_width, precision_step):
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
scanrange = scanrange + platform.LO_qrm.get_frequency()
mc.settables([Settable(platform.LO_qrm.device.frequency), Settable(QRPulseGainParameter(platform.qrm))])
setpoints_gain = np.arange(10, 100, 10)
mc.setpoints_grid([scanrange, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Punchout", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
#FIXME: Code Lorentzian fitting for cavity spec and punchout
resonator_freq = dataset['x0'].values[dataset['y0'].argmax().values]+ro_pulse.frequency
print(f"\nResonator Frequency = {resonator_freq}")
print(f"\nResonator LO Frequency = {resonator_freq - ro_pulse.frequency}")
return resonator_freq, smooth_dataset, dataset
def run_qubit_spectroscopy(platform, mc, resonator_freq, sequence, qc_pulse, ro_pulse,
fast_start, fast_end, fast_step,
precision_start, precision_end, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.software_averages = 1
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=platform.software_averages)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq - qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(1, 400, 1))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = platform.software_averages)
platform.stop()
return dataset, platform.qcm.gain
def run_rabi_pulse_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
#qubit pulse duration=200
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 3
mc.settables(Settable(QCPulseGainParameter(platform.qcm)))
mc.setpoints(np.arange(0, 100, 10))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Gain', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_rabi_pulse_length_and_gain(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseGainParameter(platform.qcm))])
setpoints_length = np.arange(1, 400, 10)
setpoints_gain = np.arange(0, 20, 1)
mc.setpoints_grid([setpoints_length, setpoints_gain])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_rabi_pulse_length_and_amplitude(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.software_averages = 1
mc.settables([Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)),
Settable(QCPulseAmplitudeParameter(qc_pulse))])
setpoints_length = np.arange(1, 1000, 2)
setpoints_amplitude = np.arange(0, 100, 2)
mc.setpoints_grid([setpoints_length, setpoints_amplitude])
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length and Gain', soft_avg = platform.software_averages)
# Analyse data to look for the smallest qc_pulse length that renders off-resonance amplitude, determine corresponding pi_pulse gain
# platform.pi_pulse_length =
# platform.pi_pulse_gain =
platform.stop()
return dataset
def run_t1(platform, mc,resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, delay_before_readout_start,
delay_before_readout_end, delay_before_readout_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_ramsey(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_duration, start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(RamseyWaitParameter(ro_pulse, qc2_pulse, pi_pulse_duration)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Ramsey', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_spin_echo(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(Settable(SpinEchoWaitParameter(ro_pulse, qc2_pulse, pi_pulse_length)))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo', soft_avg = platform.software_averages)
platform.stop()
return dataset
# Spin Echo 3 Pulses: RX(pi/2) - wait t(rotates z) - RX(pi) - wait t(rotates z) - RX(pi/2) - readout
def run_spin_echo_3pulses(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, qc2_pulse, qc3_pulse, ro_pulse,
pi_pulse_gain, pi_pulse_length, pi_pulse_amplitude,
start_start, start_end, start_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
platform.qcm.gain = pi_pulse_gain
mc.settables(SpinEcho3PWaitParameter(ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length))
mc.setpoints(np.arange(start_start, start_end, start_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Spin Echo 3 Pulses', soft_avg = platform.software_averages)
platform.stop()
return dataset
def run_shifted_resonator_spectroscopy(platform, mc, resonator_freq, qubit_freq, sequence, qc_pulse, ro_pulse,
lowres_width, lowres_step, highres_width, highres_step,
precision_width, precision_step):
platform.LO_qrm.set_frequency(resonator_freq - ro_pulse.frequency)
platform.LO_qcm.set_frequency(qubit_freq + qc_pulse.frequency)
# Fast Sweep
platform.software_averages = 1
scanrange = variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Fast", soft_avg=platform.software_averages)
platform.stop()
shifted_LO_frequency = dataset['x0'].values[dataset['y0'].argmax().values]
# Precision Sweep
platform.software_averages = 1
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + shifted_LO_frequency)
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Resonator Spectroscopy Shifted Precision", soft_avg=platform.software_averages)
platform.stop()
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
shifted_frequency = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
shifted_max_ro_voltage = smooth_dataset.max() * 1e6
print('\n')
print(f"\nResonator Frequency = {shifted_frequency}")
print(f"Maximum Voltage Measured = {shifted_max_ro_voltage} μV")
return shifted_frequency, shifted_max_ro_voltage, smooth_dataset, dataset
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class QCPulseGainParameter():
label = 'Qubit Control Gain'
unit = '%'
name = 'qc_pulse_gain'
def __init__(self, qcm):
self.qcm = qcm
def set(self,value):
self.qcm.gain = value / 100
class QCPulseAmplitudeParameter():
label = 'Qubit Control Pulse Amplitude'
unit = '%'
name = 'qc_pulse_amplitude'
def __init__(self, qc_pulse):
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.amplitude = value / 100
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class RamseyWaitParameter():
label = 'Time'
unit = 'ns'
name = 'ramsey_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length // 2 + value
self.ro_pulse.start = self.pi_pulse_length + value + 4
class SpinEchoWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.pi_pulse_length = pi_pulse_length
def set(self, value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.ro_pulse.start = 3 * self.pi_pulse_length//2 + 2 * value + 4
class SpinEcho3PWaitParameter():
label = 'Time'
unit = 'ns'
name = 'spin_echo_wait'
initial_value = 0
def __init__(self, ro_pulse, qc2_pulse, qc3_pulse, pi_pulse_length):
self.ro_pulse = ro_pulse
self.qc2_pulse = qc2_pulse
self.qc3_pulse = qc3_pulse
self.pi_pulse_length = pi_pulse_length
def set(self,value):
self.qc2_pulse.start = self.pi_pulse_length//2 + value
self.qc3_pulse.start = (3 * self.pi_pulse_length)//2 + 2 * value
self.ro_pulse.start = 2 * self.pi_pulse_length + 2 * value + 4
class QRPulseGainParameter():
label = 'Qubit Readout Gain'
unit = '%'
name = 'ro_pulse_gain'
def __init__(self, qrm):
self.qrm = qrm
def set(self,value):
self.q | gain = value / 100 | qiboteam__qibolab |
223 | 223-26-13 | inproject | mc | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self. | , self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-26-22 | inproject | pl | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self. | , self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-26-31 | inproject | ins | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self. | = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-26-43 | inproject | create_measurement_control | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils. | ('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-46-17 | inproject | add | [
"add",
"add_measurement",
"add_u3",
"phase",
"pulses",
"qcm_pulses",
"qrm_pulses",
"time",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence. | (qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-61-26 | inproject | variable_resolution_scanrange | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils. | (lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-87-28 | inproject | lorentzian_fit | [
"BaseAnalysis",
"curve_fit",
"data_post",
"exp",
"lmfit",
"lorentzian_fit",
"np",
"os",
"pathlib",
"plt",
"rabi",
"rabi_fit",
"ramsey",
"ramsey_fit",
"resonator_peak",
"set_datadir",
"t1_fit",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting. | ("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-96-18 | random | mc | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self. |
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-145-14 | inproject | plot | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils. | (smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-147-28 | inproject | lorentzian_fit | [
"BaseAnalysis",
"curve_fit",
"data_post",
"exp",
"lmfit",
"lorentzian_fit",
"np",
"os",
"pathlib",
"plt",
"rabi",
"rabi_fit",
"ramsey",
"ramsey_fit",
"resonator_peak",
"set_datadir",
"t1_fit",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting. | ("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-168-18 | infile | load_settings | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self. | ()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-186-96 | inproject | rabi_fit | [
"BaseAnalysis",
"curve_fit",
"data_post",
"exp",
"lmfit",
"lorentzian_fit",
"np",
"os",
"pathlib",
"plt",
"rabi",
"rabi_fit",
"ramsey",
"ramsey_fit",
"resonator_peak",
"set_datadir",
"t1_fit",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting. | (dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-188-14 | inproject | plot | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils. | (smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-217-17 | inproject | add | [
"add",
"add_measurement",
"add_u3",
"phase",
"pulses",
"qcm_pulses",
"qrm_pulses",
"time",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence. | (qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-239-37 | inproject | t1_fit | [
"BaseAnalysis",
"curve_fit",
"data_post",
"exp",
"lmfit",
"lorentzian_fit",
"np",
"os",
"pathlib",
"plt",
"rabi",
"rabi_fit",
"ramsey",
"ramsey_fit",
"resonator_peak",
"set_datadir",
"t1_fit",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting. | (dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-240-14 | inproject | plot | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils. | (smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-267-21 | inproject | add | [
"add",
"add_measurement",
"add_u3",
"phase",
"pulses",
"qcm_pulses",
"qrm_pulses",
"time",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence. | (qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-272-21 | inproject | add | [
"add",
"add_measurement",
"add_u3",
"phase",
"pulses",
"qcm_pulses",
"qrm_pulses",
"time",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence. | (ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-304-14 | inproject | backup_config_file | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils. | (platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-307-88 | infile | run_resonator_spectroscopy | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self. | ()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-319-67 | infile | run_qubit_spectroscopy | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self. | ()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-328-121 | inproject | run_rabi_pulse_length | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self. | ()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-330-20 | non_informative | get_config_parameter | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils. | ("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-339-80 | infile | callibrate_qubit_states | [
"auto_calibrate_plaform",
"callibrate_qubit_states",
"ins",
"load_settings",
"mc",
"pl",
"platform",
"run_qubit_spectroscopy",
"run_rabi_pulse_length",
"run_resonator_spectroscopy",
"run_t1",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self. | ()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-347-14 | inproject | plot_qubit_states | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils. | (all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-353-46 | inproject | classify | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils. | (point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-357-46 | inproject | classify | [
"backup_config_file",
"classify",
"create_measurement_control",
"get_config_parameter",
"MeasurementControl",
"np",
"pathlib",
"plot",
"plot_qubit_states",
"plt",
"save_config_parameter",
"variable_resolution_scanrange",
"yaml",
"__doc__",
"__file__",
"__name__",
"__package__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils. | (point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-375-13 | common | ro_pulse | [
"label",
"name",
"qc_pulse",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self. | .start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-375-22 | common | start | [
"amplitude",
"channel",
"compile",
"duration",
"frequency",
"offset_i",
"offset_q",
"phase",
"qubit",
"serial",
"shape",
"start",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse. | = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-385-13 | inproject | base_duration | [
"base_duration",
"initial_value",
"label",
"name",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self. | = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-385-38 | inproject | duration | [
"amplitude",
"channel",
"compile",
"duration",
"frequency",
"offset_i",
"offset_q",
"phase",
"qubit",
"serial",
"shape",
"start",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse. |
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-391-13 | common | ro_pulse | [
"base_duration",
"initial_value",
"label",
"name",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self. | .start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-391-22 | common | start | [
"amplitude",
"channel",
"compile",
"duration",
"frequency",
"offset_i",
"offset_q",
"phase",
"qubit",
"serial",
"shape",
"start",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse. | = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-391-35 | common | base_duration | [
"base_duration",
"initial_value",
"label",
"name",
"ro_pulse",
"set",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self. | + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self.sequence) | qiboteam__qibolab |
223 | 223-404-20 | common | platform | [
"get",
"label",
"name",
"platform",
"sequence",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self. | .execute(self.sequence) | qiboteam__qibolab |
223 | 223-404-29 | common | execute | [
"connect",
"data_folder",
"delay_before_readout",
"delay_between_pulses",
"disconnect",
"execute",
"fetch_instrument",
"fetch_qubit",
"fetch_qubit_pi_pulse",
"fetch_qubit_readout_pulse",
"hardware_avg",
"is_connected",
"last_qcm_pulses",
"last_qrm_pulses",
"LO_qcm",
"LO_qrm",
"max_readout_voltage",
"min_readout_voltage",
"name",
"pi_pulse_amplitude",
"pi_pulse_duration",
"pi_pulse_frequency",
"pi_pulse_gain",
"qcm",
"qrm",
"qubit_frequency",
"qubits",
"readout_pulse",
"reload_settings",
"repetition_duration",
"resonator_frequency",
"run_calibration",
"runcard",
"sampling_rate",
"settings",
"setup",
"software_averages",
"start",
"start_experiment",
"stop",
"_adc",
"_check_connected",
"_instruments",
"_last_sequence",
"_lo",
"_LO_qcm",
"_LO_qrm",
"_qcm",
"_qrm",
"_settings",
"__annotations__",
"__call__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform. | (self.sequence) | qiboteam__qibolab |
223 | 223-404-42 | common | sequence | [
"get",
"label",
"name",
"platform",
"sequence",
"unit",
"__annotations__",
"__class__",
"__delattr__",
"__dict__",
"__dir__",
"__doc__",
"__eq__",
"__format__",
"__getattribute__",
"__hash__",
"__init__",
"__init_subclass__",
"__module__",
"__ne__",
"__new__",
"__reduce__",
"__reduce_ex__",
"__repr__",
"__setattr__",
"__sizeof__",
"__slots__",
"__str__"
] | import pathlib
import numpy as np
#import matplotlib.pyplot as plt
import utils
import yaml
import fitting
from qibolab import Platform
# TODO: Have a look in the documentation of ``MeasurementControl``
#from quantify_core.measurement import MeasurementControl
from quantify_core.measurement.control import Gettable, Settable
from quantify_core.data.handling import set_datadir
from scipy.signal import savgol_filter
from qibolab.pulses import Pulse, ReadoutPulse
from qibolab.circuit import PulseSequence
from qibolab.pulse_shapes import Rectangular, Gaussian
# TODO: Check why this set_datadir is needed
#set_datadir(pathlib.Path("data") / "quantify")
set_datadir(pathlib.Path(__file__).parent / "data" / "quantify")
class Calibration():
def __init__(self, platform: Platform):
self.platform = platform
self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration')
def load_settings(self):
# Load diagnostics settings
with open("calibration.yml", "r") as file:
return yaml.safe_load(file)
def run_resonator_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['resonator_spectroscopy']
lowres_width = ds['lowres_width']
lowres_step = ds['lowres_step']
highres_width = ds['highres_width']
highres_step = ds['highres_step']
precision_width = ds['precision_width']
precision_step = ds['precision_step']
#Fast Sweep
scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1)
platform.stop()
platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values])
avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6
# Precision Sweep
scanrange = np.arange(-precision_width, precision_width, precision_step)
mc.settables(platform.LO_qrm.device.frequency)
mc.setpoints(scanrange + platform.LO_qrm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
platform.LO_qcm.off()
dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2)
# resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency
max_ro_voltage = smooth_dataset.max() * 1e6
f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy")
resonator_freq = (f0*1e9 + ro_pulse.frequency)
print(f"\nResonator Frequency = {resonator_freq}")
return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset
def run_qubit_spectroscopy(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['qubit_spectroscopy']
fast_start = ds['fast_start']
fast_end = ds['fast_end']
fast_step = ds['fast_step']
precision_start = ds['precision_start']
precision_end = ds['precision_end']
precision_step = ds['precision_step']
# Fast Sweep
fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1)
platform.stop()
# Precision Sweep
platform.software_averages = 1
precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step)
mc.settables(platform.LO_qcm.device.frequency)
mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency())
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages)
platform.stop()
# Fitting
smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2)
qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency
min_ro_voltage = smooth_dataset.min() * 1e6
print(f"\nQubit Frequency = {qubit_freq}")
utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1)
print("Qubit freq ontained from MC results: ", qubit_freq)
f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy")
qubit_freq = (f0*1e9 - qc_pulse.frequency)
print("Qubit freq ontained from fitting: ", qubit_freq)
return qubit_freq, min_ro_voltage, smooth_dataset, dataset
def run_rabi_pulse_length(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1])
qc_pulse_settings = ps['qc_spectroscopy_pulse']
qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['rabi_pulse_length']
pulse_duration_start = ds['pulse_duration_start']
pulse_duration_end = ds['pulse_duration_end']
pulse_duration_step = ds['pulse_duration_step']
mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse)))
mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages)
platform.stop()
# Fitting
pi_pulse_amplitude = qc_pulse.amplitude
smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset)
pi_pulse_gain = platform.qcm.gain
utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1)
print(f"\nPi pulse duration = {pi_pulse_duration}")
print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct.
print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi.
print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}")
print(f"\nT1 = {t1}")
return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1
# T1: RX(pi) - wait t(rotates z) - readout
def run_t1(self):
platform = self.platform
platform.reload_settings()
mc = self.mc
ps = platform.settings['settings']
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
sequence = PulseSequence()
sequence.add(qc_pi_pulse)
sequence.add(ro_pulse)
ds = self.load_settings()
self.pl.tuids_max_num(ds['max_num_plots'])
software_averages = ds['software_averages']
ds = ds['t1']
delay_before_readout_start = ds['delay_before_readout_start']
delay_before_readout_end = ds['delay_before_readout_end']
delay_before_readout_step = ds['delay_before_readout_step']
mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse)))
mc.setpoints(np.arange(delay_before_readout_start,
delay_before_readout_end,
delay_before_readout_step))
mc.gettables(Gettable(ROController(platform, sequence)))
platform.start()
dataset = mc.run('T1', soft_avg = software_averages)
platform.stop()
# Fitting
smooth_dataset, t1 = fitting.t1_fit(dataset)
utils.plot(smooth_dataset, dataset, "t1", 1)
print(f'\nT1 = {t1}')
return t1, smooth_dataset, dataset
def callibrate_qubit_states(self):
platform = self.platform
platform.reload_settings()
ps = platform.settings['settings']
niter=10
nshots=1
#create exc and gnd pulses
start = 0
frequency = ps['pi_pulse_frequency']
amplitude = ps['pi_pulse_amplitude']
duration = ps['pi_pulse_duration']
phase = 0
shape = eval(ps['pi_pulse_shape'])
qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape)
ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1])
ro_pulse_settings = ps['readout_pulse']
ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape)
exc_sequence = PulseSequence()
exc_sequence.add(qc_pi_pulse)
gnd_sequence.add(ro_pulse)
gnd_sequence = PulseSequence()
#ro_pulse.start=0
gnd_sequence.add(ro_pulse)
platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency)
platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency)
platform.start()
#Exectue niter single gnd shots
platform.LO_qcm.off()
all_gnd_states = []
for i in range(niter):
qubit_state = platform.execute(gnd_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_gnd_states.add(point)
#Exectue niter single exc shots
platform.LO_qcm.on()
all_exc_states = []
for i in range(niter):
qubit_state = platform.execute(exc_sequence, nshots)
#Compose complex point from i, q obtained from execution
point = complex(qubit_state[2], qubit_state[3])
all_exc_states.add(point)
platform.stop()
return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states)
def auto_calibrate_plaform(self):
platform = self.platform
#backup latest platform runcard
utils.backup_config_file(platform)
#run and save cavity spectroscopy calibration
resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy()
print(utils.get_config_parameter("settings", "", "resonator_freq"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage"))
print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage"))
print(utils.get_config_parameter("LO_QRM_settings", "", "frequency"))
# utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage))
# utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage))
# utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000))
#run and save qubit spectroscopy calibration
qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy()
print(utils.get_config_parameter("settings", "", "qubit_freq"))
print(utils.get_config_parameter("LO_QCM_settings", "", "frequency"))
print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage"))
# utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq))
# utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000))
# utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage))
# #run Rabi and save Pi pulse params from calibration
dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length()
print(utils.get_config_parameter("settings", "", "pi_pulse_duration"))
print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude"))
print(utils.get_config_parameter("settings", "", "pi_pulse_gain"))
print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage"))
# utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration))
# utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude))
# utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain))
# utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage))
# #run calibration_qubit_states
all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states()
# #TODO: save in runcard mean_gnd_states and mean_exc_states
print(all_gnd_states)
print(mean_gnd_states)
print(all_exc_states)
print(mean_exc_states)
# #TODO: Remove plot qubit states results when tested
utils.plot_qubit_states(all_gnd_states, all_exc_states)
#TODO: Remove 0 and 1 classification from auto calibration when tested
#Classify all points into 0 and 1
classified_gnd_results = []
for point in all_gnd_states:
classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
classified_exc_results = []
for point in all_exc_states:
classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states))
print(classified_gnd_results)
print(classified_exc_results)
# help classes
class QCPulseLengthParameter():
label = 'Qubit Control Pulse Length'
unit = 'ns'
name = 'qc_pulse_length'
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.qc_pulse = qc_pulse
def set(self, value):
self.qc_pulse.duration = value
self.ro_pulse.start = value + 4
class T1WaitParameter():
label = 'Time'
unit = 'ns'
name = 't1_wait'
initial_value = 0
def __init__(self, ro_pulse, qc_pulse):
self.ro_pulse = ro_pulse
self.base_duration = qc_pulse.duration
def set(self, value):
# TODO: implement following condition
#must be >= 4ns <= 65535
#platform.delay_before_readout = value
self.ro_pulse.start = self.base_duration + 4 + value
class ROController():
# Quantify Gettable Interface Implementation
label = ['Amplitude', 'Phase','I','Q']
unit = ['V', 'Radians','V','V']
name = ['A', 'Phi','I','Q']
def __init__(self, platform, sequence):
self.platform = platform
self.sequence = sequence
def get(self):
return self.platform.execute(self. | ) | qiboteam__qibolab |