Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
parquet
Languages:
English
Size:
10K - 100K
Tags:
rf100
License:
dataset_info: | |
features: | |
- name: image_id | |
dtype: int64 | |
- name: image | |
dtype: image | |
- name: width | |
dtype: int32 | |
- name: height | |
dtype: int32 | |
- name: objects | |
sequence: | |
- name: id | |
dtype: int64 | |
- name: area | |
dtype: int64 | |
- name: bbox | |
sequence: float32 | |
length: 4 | |
- name: category | |
dtype: | |
class_label: | |
names: | |
'0': fish | |
'1': aair | |
'2': boal | |
'3': chapila | |
'4': deshi puti | |
'5': foli | |
'6': ilish | |
'7': kal baush | |
'8': katla | |
'9': koi | |
'10': magur | |
'11': mrigel | |
'12': pabda | |
'13': pangas | |
'14': puti | |
'15': rui | |
'16': shol | |
'17': taki | |
'18': tara baim | |
'19': telapiya | |
annotations_creators: | |
- crowdsourced | |
language_creators: | |
- found | |
language: | |
- en | |
license: | |
- cc | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- original | |
task_categories: | |
- object-detection | |
task_ids: [] | |
pretty_name: fish-market-ggjso | |
tags: | |
- rf100 | |
# Dataset Card for fish-market-ggjso | |
** The original COCO dataset is stored at `dataset.tar.gz`** | |
## Dataset Description | |
- **Homepage:** https://universe.roboflow.com/object-detection/fish-market-ggjso | |
- **Point of Contact:** francesco.zuppichini@gmail.com | |
### Dataset Summary | |
fish-market-ggjso | |
### Supported Tasks and Leaderboards | |
- `object-detection`: The dataset can be used to train a model for Object Detection. | |
### Languages | |
English | |
## Dataset Structure | |
### Data Instances | |
A data point comprises an image and its object annotations. | |
``` | |
{ | |
'image_id': 15, | |
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, | |
'width': 964043, | |
'height': 640, | |
'objects': { | |
'id': [114, 115, 116, 117], | |
'area': [3796, 1596, 152768, 81002], | |
'bbox': [ | |
[302.0, 109.0, 73.0, 52.0], | |
[810.0, 100.0, 57.0, 28.0], | |
[160.0, 31.0, 248.0, 616.0], | |
[741.0, 68.0, 202.0, 401.0] | |
], | |
'category': [4, 4, 0, 0] | |
} | |
} | |
``` | |
### Data Fields | |
- `image`: the image id | |
- `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` | |
- `width`: the image width | |
- `height`: the image height | |
- `objects`: a dictionary containing bounding box metadata for the objects present on the image | |
- `id`: the annotation id | |
- `area`: the area of the bounding box | |
- `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) | |
- `category`: the object's category. | |
#### Who are the annotators? | |
Annotators are Roboflow users | |
## Additional Information | |
### Licensing Information | |
See original homepage https://universe.roboflow.com/object-detection/fish-market-ggjso | |
### Citation Information | |
``` | |
@misc{ fish-market-ggjso, | |
title = { fish market ggjso Dataset }, | |
type = { Open Source Dataset }, | |
author = { Roboflow 100 }, | |
howpublished = { \url{ https://universe.roboflow.com/object-detection/fish-market-ggjso } }, | |
url = { https://universe.roboflow.com/object-detection/fish-market-ggjso }, | |
journal = { Roboflow Universe }, | |
publisher = { Roboflow }, | |
year = { 2022 }, | |
month = { nov }, | |
note = { visited on 2023-03-29 }, | |
}" | |
``` | |
### Contributions | |
Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset. |