TeX
stringlengths 1
269k
⌀ |
---|
x_{i}=x_{min} |
\xi^{\prime}_{n}(\vec{x},\vec{y})=\frac{\xi_{n}(\vec{x},\vec{y})}{\xi_{n}(\vec%
{y},\vec{y})} |
x_{1}\leq x_{2}\leq\ldots\leq x_{n} |
x_{min}=x_{max} |
x_{i}=x_{max} |
f(x)=\sin(x) |
X\sim\mbox{binom}(1,p) |
m=cn^{\alpha} |
q(1-\alpha/2) |
\tau_{n}^{2}=n |
\log\operatorname{Var}(\xi_{n})=\log V+\gamma\log n |
2(x_{i^{\prime}}-x_{j^{\prime}})>0 |
d\mu(t)=f(t)dt |
d\mu(t)=f_{Y}(t)dt |
\displaystyle\int P(Y\!\geq\!t)d\mu(t) |
\boldsymbol{Y=XZ} |
f(t)=-\frac{d}{dt}P(Y\geq t) |
\xi_{m}^{*} |
Y\sim\mbox{unif}(-1,1) |
\varepsilon\sim\mbox{norm}(0,\sigma^{2}) |
\xi\gtrsim 0.4 |
r_{min} |
m=3,p=0.5 |
|\xi^{\prime}_{n}|\geq|\xi_{n}| |
\displaystyle=-\frac{1}{3}P(Y\!\geq\!t)^{3}\Big{|}_{-\infty}^{\infty}=\frac{1}%
{3} |
P(1)=p |
\mbox{dnorm}(0,\sigma^{2})(x)=\varphi(z/\sigma)/\sigma |
Y\sim\mbox{equal}(m^{\prime},-1,1) |
\xi_{n}(\vec{x},\vec{y})=1-\frac{3\sum_{i=1}^{n-1}|r_{i+1}-r_{i}|}{n^{2}-1} |
\displaystyle=\mbox{dunif(a,b)}*\mbox{dnorm}(0,\sigma^{2})(y) |
1_{\{Y\geq t\}} |
x_{1}=x_{2}=\ldots=x_{i} |
\displaystyle P(Y\!\geq\!t|X\!=\!x) |
P(Y\!\geq\!t|X=x)^{2}=P(Y\!\geq\!t)^{2} |
\displaystyle\quad\mbox{for }x=1 |
Y\sim X^{2}+\varepsilon |
\mbox{Var}(Z)=E(Z^{2})-E(Z)^{2} |
f(x)<t |
X,Y\sim\operatorname{equal}(5,-1,1) |
m=2\sqrt{n} |
\displaystyle=\Phi\left(\frac{f(x)-t}{\sigma}\right) |
\xi(X,Y)=1 |
x_{min}=x_{1}\leq x_{2}\leq\ldots\leq x_{n}=x_{max} |
\sum_{k=1}^{n-1}|x_{k+1}-x_{k}|=\sum_{k=1}^{n-1}(x_{k+1}-x_{k})=x_{n}-x_{1} |
\displaystyle P(Y\geq 1|X\!=\!x) |
E(1_{\{Y\geq t\}}|X)=1_{\{Y\geq t\}} |
\gamma<n |
\displaystyle\text{Data type II}: |
l_{1}(\eta,\widehat{\eta})=(\widehat{\eta}-\eta)^{2} |
\displaystyle\left(\frac{p_{r}}{1-p_{c}}\mid\vartheta=\vartheta_{A}\right)\leq\alpha, |
\rho(\vartheta) |
V\left(\widehat{\vartheta_{l}}\right)=\left(1-\frac{2cE\left(\widehat{%
\vartheta}_{MLE}\right)+2b-2}{2\mathcal{D}+c\left(cE\left(\widehat{\vartheta}_%
{MLE}\right)^{2}-2a+2E\left(\widehat{\vartheta}_{MLE}\right)(b-1)\right)}%
\right)^{2}\ \sigma^{2}\left({\widehat{\vartheta}_{MLE}}\right). |
g(\vartheta) |
\text{ETC}=\frac{C\ E\left(\widehat{\vartheta_{s}}\right)}{1-p_{c}}, |
\vartheta_{U}=200 |
\displaystyle\left(P_{r}\mid\vartheta=\vartheta_{A}\right)\leq\alpha, |
v=\operatorname{exp}\left\{-\frac{\mathcal{T}}{\vartheta}\right\},\quad T_{k,%
\mathcal{D}}=\frac{(n-\mathcal{D}+k)\mathcal{T}}{\mathcal{D}}, |
q(x;p,t)=\begin{cases}\frac{p^{t}}{\Gamma(t)}x^{t-1}e^{-px},&x>0\\
0,&\text{ otherwise. }\end{cases} |
X_{9}=1062 |
A_{k,\mathcal{D}}=(-1)^{k}\left(\begin{array}[]{l}n\\
\mathcal{D}\end{array}\right)\left(\begin{array}[]{l}\mathcal{D}\\
k\end{array}\right)u^{n-\mathcal{D}+k}, |
\displaystyle=\left(U_{2}^{\prime}\left(E\left(\widehat{\vartheta}_{MLE}\right%
)\right)\right)^{2}\sigma^{2}\left({\widehat{\vartheta}_{MLE}}\right) |
E(\widehat{\vartheta}_{MLE}^{2}) |
X_{\gamma,n} |
E\left(\widehat{\vartheta_{l}}\right)=E\left(\widehat{\vartheta}_{MLE}\right)-%
\frac{1}{c}\operatorname{ln}\left[1+\frac{c}{2\mathcal{D}}\left(cE\left(%
\widehat{\vartheta}_{MLE}\right)^{2}-2a+2E\left(\widehat{\vartheta}_{MLE}%
\right)(b-1)\right)\right], |
p_{a}=P\left(\widehat{\vartheta_{l}}\geq t_{2}\right)=P\left[Z\geq\frac{t_{2}-%
E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(\widehat{\vartheta_{l}}%
\right)}}\right], |
t_{1}=2156 |
\widehat{\vartheta_{l}}=-\frac{1}{c}\ln E\left(e^{-c\vartheta}\mid Data\right). |
f_{\widehat{\vartheta}_{MLE}}(x)=\left(1-v^{n}\right)^{-1}\left[\sum_{\mathcal%
{D}=1}^{\gamma-1}\sum_{k=0}^{\mathcal{D}}A_{k,\mathcal{D}}\ q\left(x-\mathcal{%
T}_{k,\mathcal{D}};\frac{\mathcal{D}}{\vartheta},\mathcal{D}\right)+q\left(x;%
\frac{\gamma}{\vartheta},\gamma\right)\right.\\
+\left.\gamma\left(\begin{array}[]{l}n\\
\gamma\end{array}\right)\sum_{k=1}^{\gamma}\frac{(-1)^{k}v^{n-\gamma+k}}{n-%
\gamma+k}\left(\begin{array}[]{c}\gamma-1\\
k-1\end{array}\right)q\left(x-T_{k,\gamma};\frac{\gamma}{\vartheta},\gamma%
\right)\right],\ 0<x<n\mathcal{T} |
p_{c}=P\left(t_{1}\leq\widehat{\vartheta_{l}}<t_{2}\right)=P\left[\frac{t_{1}-%
E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(\widehat{\vartheta_{l}}%
\right)}}\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V%
\left(\widehat{\vartheta_{l}}\right)}}\right]. |
E\left(e^{-cg}\mid Data\right)=\frac{\int_{\vartheta}e^{-cg(\vartheta)}L(x,%
\vartheta)\rho(\vartheta)d\vartheta}{\int_{\vartheta}L(x,\vartheta)\rho(%
\vartheta)d\vartheta}. |
\vartheta_{U}=100 |
\vartheta_{A}=3000 |
X_{1,n},X_{2,n},...,X_{n,n} |
\mathcal{T}^{*}=\operatorname{Min}\{\mathcal{T},X_{11}\}=1594 |
\vartheta_{U}=600 |
\hat{\vartheta}_{MLE}=\begin{cases}\frac{1}{\mathcal{D}}\left[\sum\limits_{i=1%
}^{\mathcal{D}}x_{i,n}+(n-\mathcal{D})\mathcal{T}\right]&\text{if}\quad 1\leq%
\mathcal{D}\leq\gamma-1\\
\frac{1}{\gamma}\left[\sum\limits_{i=1}^{\gamma}x_{i,n}+(n-\gamma)X_{\gamma,n}%
\right]&\text{if}\quad\mathcal{D}=\gamma\\
n\mathcal{T}&\text{if}\quad\mathcal{D}=0.\end{cases} |
p_{a},p_{r} |
\displaystyle P_{1}(n,t_{1},t_{2}):\qquad |
\displaystyle=\left(U_{1}^{\prime}\left(E\left(\widehat{\vartheta}_{MLE}\right%
)\right)\right)^{2}\sigma^{2}\left({\widehat{\vartheta}_{MLE}}\right) |
\sigma^{2}\left({\widehat{\vartheta}_{MLE}}\right) |
V\left(\widehat{\vartheta_{s}}\right)=\left(\frac{\mathcal{D}}{\mathcal{D}+b-1%
}\right)^{2}\sigma^{2}\left({\widehat{\vartheta}_{MLE}}\right). |
t_{1}=2064 |
g(\vartheta)=\vartheta |
b=2.5 |
\mathcal{D}+b>1 |
\mathcal{D}=\gamma |
\widehat{\vartheta_{l}} |
p_{r}=P\left(\widehat{\vartheta_{l}}<t_{1}\right)=P\left[Z<\frac{t_{1}-E\left(%
\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(\widehat{\vartheta_{l}}\right)}}%
\right], |
\displaystyle\left(\frac{P\left[Z<\frac{t_{1}-E\left(\widehat{\vartheta_{s}}%
\right)}{\sqrt{V\left(\widehat{\vartheta_{s}}\right)}}\right]}{1-P\left[\frac{%
t_{1}-E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(\widehat{\vartheta_{%
s}}\right)}}\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V%
\left(\widehat{\vartheta_{s}}\right)}}\right]}\mid\vartheta=\vartheta_{A}%
\right)\leq\alpha, |
\displaystyle P\left(\text{Lot is accepted}\mid\vartheta=\vartheta_{U}\right) |
U_{2}\left(\widehat{\vartheta}_{MLE}\right) |
\widehat{\vartheta}_{l} |
p_{r}=P\left(\widehat{\vartheta_{s}}<t_{1}\right)=P\left[Z<\frac{t_{1}-E\left(%
\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(\widehat{\vartheta_{s}}\right)}}%
\right], |
\displaystyle\left\{X_{1,n}<X_{2,n}<\cdots<X_{\mathcal{D},n}\right\}\quad\text%
{if}\quad\mathcal{T}^{*}=\mathcal{T}, |
\mathcal{T}^{*}=\operatorname{Min}\{\mathcal{T},X_{9}\}=1062 |
\displaystyle E\left(\widehat{\vartheta_{l}}\right) |
\gamma=9 |
n,t_{1} |
\displaystyle\underset{\left(n,t_{1},t_{2}\right)}{\operatorname{Min}}\left(%
\frac{C\ E\left(\widehat{\vartheta_{s}}\right)}{1-P\left[\frac{t_{1}-E\left(%
\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(\widehat{\vartheta_{s}}\right)}}%
\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(%
\widehat{\vartheta_{s}}\right)}}\right]}\right)\text{at}\ \vartheta_{A} |
t_{1}\leq\widehat{\vartheta_{s}}<t_{2} |