TeX
stringlengths 1
269k
⌀ |
---|
\widehat{\vartheta_{l}}\geq t_{2} |
l_{2}(\eta,\widehat{\eta})\propto e^{c(\widehat{\eta}-\eta)}-c(\widehat{\eta}-%
\eta)-1,\quad c\neq 0. |
E(\widehat{\vartheta}_{MLE})=\left(1-v^{n}\right)^{-1}{\left[\sum_{\mathcal{D}%
=1}^{\gamma-1}\sum_{k=0}^{\mathcal{D}}A_{k,\mathcal{D}}\left(\vartheta+T_{k,%
\mathcal{D}}\right)+\vartheta\right.}\\
\left.+\gamma\left(\begin{array}[]{l}n\\
\gamma\end{array}\right)\sum_{k=1}^{\gamma}\frac{(-1)^{k}v^{n-\gamma+k}}{n-%
\gamma+k}\left(\begin{array}[]{l}\gamma-1\\
k-1\end{array}\right)\left(\vartheta+T_{k,\gamma}\right)\right], |
\vartheta_{U} |
P_{a}=\frac{p_{a}}{1-p_{c}} |
L(x,\vartheta)=\frac{1}{\vartheta^{\gamma}}exp\left\{-\frac{1}{\vartheta}\sum%
\limits_{i=1}^{\mathcal{D}}x_{i,n}-\frac{(n-\gamma)}{\vartheta}\mathcal{T}^{*}%
\right\}, |
L(\vartheta,x)=-\gamma\operatorname{log}\vartheta-\frac{1}{\vartheta}\sum%
\limits_{i=1}^{\mathcal{D}}x_{i,n}-\frac{(n-\gamma)}{\vartheta}\mathcal{T}^{*}, |
\widehat{\vartheta_{s}}<t_{1}. |
\widehat{g}_{s}=E(g\mid Data)=\frac{\int_{\vartheta}g(\vartheta)L(x,\vartheta)%
\rho(\vartheta)d\vartheta}{\int_{\vartheta}L(x,\vartheta)\rho(\vartheta)d%
\vartheta}. |
h(\vartheta\mid Data)=\frac{\left(\mathcal{D}\ \hat{\vartheta}_{MLE}+a\right)^%
{(\mathcal{D}+b)}}{\Gamma(\mathcal{D}+b)}\vartheta^{-\left(\mathcal{D}+b+1%
\right)}\operatorname{exp}\left\{\left(\mathcal{D}\ \hat{\vartheta}_{MLE}+a%
\right)/\vartheta\right\} |
\mathcal{D}\geq 1 |
\hat{\vartheta}_{MLE} |
\mathcal{T}^{*}=\operatorname{Min}\{\mathcal{T},X_{\gamma,n}\} |
\frac{1}{1-p_{c}}\ E\left(\widehat{\vartheta_{l}}\right) |
\displaystyle\underset{\left(n,t_{1},t_{2}\right)}{\operatorname{Min}}\left(%
\frac{C\ E\left(\widehat{\vartheta_{l}}\right)}{1-p_{c}}\right)\text{at}\ %
\vartheta_{A} |
t_{2}=2157 |
\vartheta_{A} |
P_{1}(n,t_{1},t_{2}) |
\displaystyle\left(P_{a}\mid\vartheta=\vartheta_{U}\right)\leq\beta, |
n,t_{1}, |
\displaystyle\underset{\left(n,t_{1},t_{2}\right)}{\operatorname{Min}}\left(%
\frac{C\ E\left(\widehat{\vartheta_{l}}\right)}{1-P\left[\frac{t_{1}-E\left(%
\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(\widehat{\vartheta_{l}}\right)}}%
\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(%
\widehat{\vartheta_{l}}\right)}}\right]}\right)\text{at}\ \vartheta_{A} |
P_{r}=\frac{p_{r}}{1-p_{c}} |
\displaystyle\left(\frac{P\left[Z\geq\frac{t_{2}-E\left(\widehat{\vartheta_{l}%
}\right)}{\sqrt{V\left(\widehat{\vartheta_{l}}\right)}}\right]}{1-P\left[\frac%
{t_{1}-E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(\widehat{\vartheta_%
{l}}\right)}}\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V%
\left(\widehat{\vartheta_{l}}\right)}}\right]}\mid\vartheta=\vartheta_{U}%
\right)\leq\beta, |
\mathcal{T}=50 |
\widehat{\vartheta_{l}}=\widehat{\vartheta}_{MLE}-\frac{1}{c}\operatorname{ln}%
\left[1+\frac{c}{2\mathcal{D}}\left(c\widehat{\vartheta}_{MLE}^{2}-2a+2%
\widehat{\vartheta}_{MLE}(b-1)\right)\right]. |
\displaystyle=\left(1-\frac{2cE\left(\widehat{\vartheta}_{MLE}\right)+2b-2}{2%
\mathcal{D}+c\left(cE\left(\widehat{\vartheta}_{MLE}\right)^{2}-2a+2E\left(%
\widehat{\vartheta}_{MLE}\right)(b-1)\right)}\right)^{2}\ \sigma^{2}\left({%
\widehat{\vartheta}_{MLE}}\right). |
p_{a}=P\left(\widehat{\vartheta_{s}}\geq t_{2}\right)=P\left[Z\geq\frac{t_{2}-%
E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(\widehat{\vartheta_{s}}%
\right)}}\right], |
p_{c}=P\left(t_{1}\leq\widehat{\vartheta_{s}}<t_{2}\right)=P\left[\frac{t_{1}-%
E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(\widehat{\vartheta_{s}}%
\right)}}\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V%
\left(\widehat{\vartheta_{s}}\right)}}\right]. |
g=g(\vartheta) |
P_{1}\left(n,t_{1},t_{2}\right) |
\displaystyle\left(\frac{P\left[Z\geq\frac{t_{2}-E\left(\widehat{\vartheta_{s}%
}\right)}{\sqrt{V\left(\widehat{\vartheta_{s}}\right)}}\right]}{1-P\left[\frac%
{t_{1}-E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V\left(\widehat{\vartheta_%
{s}}\right)}}\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{s}}\right)}{\sqrt{V%
\left(\widehat{\vartheta_{s}}\right)}}\right]}\mid\vartheta=\vartheta_{U}%
\right)\leq\beta, |
\text{ETC}=\frac{C\ E\left(\widehat{\vartheta_{l}}\right)}{1-p_{c}}, |
\displaystyle\underset{\left(n,t_{1},t_{2}\right)}{\operatorname{Min}}\left(%
\frac{C\ E\left(\widehat{\vartheta_{s}}\right)}{1-p_{c}}\right)\text{at}\ %
\vartheta_{A} |
\widehat{\vartheta_{l}}>t_{2} |
\mathcal{T}^{*}=\operatorname{Min}\{\mathcal{T},X_{\gamma}\} |
\widehat{\vartheta_{s}} |
\displaystyle\text{Data type I}: |
\displaystyle=E\left(\widehat{\vartheta}_{MLE}\right)-\frac{1}{c}\operatorname%
{ln}\left[1+\frac{c}{2\mathcal{D}}\left(cE\left(\widehat{\vartheta}_{MLE}%
\right)^{2}-2a+2E\left(\widehat{\vartheta}_{MLE}\right)(b-1)\right)\right], |
t_{1}\leq\widehat{\vartheta_{l}}<t_{2} |
P_{2}(n,t_{1},t_{2}) |
\mathcal{T}=2000 |
E\left(\widehat{\vartheta_{s}}\right)=U_{1}\left(E\left(\widehat{\vartheta}_{%
MLE}\right)\right)=\frac{\mathcal{D}\ E\left(\hat{\vartheta}_{MLE}\right)+a}{%
\mathcal{D}+b-1}, |
\displaystyle P_{2}(n,t_{1},t_{2}):\qquad |
\frac{\left(\mathcal{D}\ \hat{\vartheta}_{MLE}+a\right)}{\vartheta} |
\displaystyle=\left(\frac{\mathcal{D}}{\mathcal{D}+b-1}\right)^{2}\sigma^{2}%
\left({\widehat{\vartheta}_{MLE}}\right). |
t_{2}=2065 |
X_{11}=1594 |
\displaystyle\left\{X_{1,n}<X_{2,n}<\cdots<X_{\gamma,n}\right\}\quad\text{if}%
\quad\mathcal{T}^{*}=X_{\gamma}, |
n,t_{1},t_{2} |
f(x,\vartheta)=\frac{1}{\vartheta}exp\left\{-\frac{-x}{\vartheta}\right\}%
\qquad x\geq 0,\vartheta>0 |
\widehat{\vartheta_{s}}=U_{1}\left(\widehat{\vartheta}_{MLE}\right) |
\widehat{\vartheta_{l}}<t_{1}. |
\vartheta_{A}=500 |
c=-0.5 |
\displaystyle P\left(\text{Lot is rejected}\mid\vartheta=\vartheta_{A}\right) |
\mathcal{T}^{*}=X_{\gamma} |
\displaystyle\leq\alpha, |
E\left(\widehat{\vartheta}_{MLE}^{2}\right)=\left(1-v^{n}\right)^{-1}\left[%
\sum_{\mathcal{D}=1}^{\gamma-1}\sum_{k=0}^{\mathcal{D}}A_{k,\mathcal{D}}\left%
\{\frac{\vartheta^{2}}{\mathcal{D}}(1+\mathcal{D})+2T_{k,\mathcal{D}}\vartheta%
+\left(T_{k,\mathcal{D}}\right)^{2}\right\}\right.\\
+\frac{\vartheta^{2}}{\gamma}(1+\gamma)+\gamma\left(\begin{array}[]{l}n\\
\gamma\end{array}\right)\left.\cdot\sum_{k=1}^{\gamma}\frac{(-1)^{k}v^{n-%
\gamma+k}}{n-\gamma+k}\left(\begin{array}[]{l}\gamma-1\\
k-1\end{array}\right)\left\{\frac{\vartheta^{2}}{\gamma}(1+\gamma)+2T_{k,%
\gamma}\vartheta+\left(T_{k,\gamma}\right)^{2}\right\}\right]. |
\widehat{\vartheta_{s}}\geq t_{2} |
E\left(\widehat{\vartheta_{s}}\right)=\frac{\mathcal{D}\ E\left(\hat{\vartheta%
}_{MLE}\right)+a}{\mathcal{D}+b-1}, |
\displaystyle V\left(\widehat{\vartheta_{l}}\right) |
0<\alpha,\beta<1 |
\widehat{\vartheta_{l}}=2883.2339 |
\chi^{2}_{2\left(b+a\right)}/2 |
\widehat{\vartheta_{s}}=\frac{\mathcal{D}\ \hat{\vartheta}_{MLE}+a}{\mathcal{D%
}+b-1}. |
\displaystyle=U_{2}\left(E\left(\widehat{\vartheta}_{MLE}\right)\right) |
\vartheta_{A}=200 |
\widehat{\vartheta}_{MLE} |
\begin{aligned} &11,35,49,170,329,381,708,958,1062,1167,1594,1925,1990,2223,23%
27,2400,2451,2471,2551,2565,2568,\\
&2694,2702,2761,2831,3034,3059,3112,3214,3478,3504,4329,6367,6976,7846,13403.%
\end{aligned} |
\displaystyle\left(\frac{P\left[Z<\frac{t_{1}-E\left(\widehat{\vartheta_{l}}%
\right)}{\sqrt{V\left(\widehat{\vartheta_{l}}\right)}}\right]}{1-P\left[\frac{%
t_{1}-E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V\left(\widehat{\vartheta_{%
l}}\right)}}\leq Z<\frac{t_{2}-E\left(\widehat{\vartheta_{l}}\right)}{\sqrt{V%
\left(\widehat{\vartheta_{l}}\right)}}\right]}\mid\vartheta=\vartheta_{A}%
\right)\leq\alpha, |
\displaystyle V\left(\widehat{\vartheta_{s}}\right) |
\widehat{g}_{l}=-\frac{1}{c}\ln E\left(e^{-cg}\mid Data\right), |
\rho(\vartheta)=\frac{a^{b}}{\Gamma(b)}\vartheta^{-(b+1)}e^{-a/\vartheta},%
\quad\vartheta>0,\ a>0,\ \text{and}\ b>0. |
\displaystyle\leq\beta, |
\widehat{\vartheta_{s}}=2577.9286 |
\gamma=11 |
\displaystyle\left(\frac{p_{a}}{1-p_{c}}\mid\vartheta=\vartheta_{U}\right)\leq\beta, |
\frac{1}{1-p_{c}} |