Datasets:

maplm_v2 / README.md
maysonma's picture
update readme
7da9bf9
|
raw
history blame
3.86 kB
## MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding
### Version 2.0 - WACV 2025 LLVM-AD Challenge
**Developed by:**
Tencent, University of Illinois at Urbana-Champaign, Purdue University, University of Virginia
### License
This dataset is released under the [CC-BY-NC-3.0 License](https://creativecommons.org/licenses/by-nc/3.0/).
---
### Dataset Structure
```
data/
β”œβ”€β”€ images/
β”‚ β”œβ”€β”€ FR1/
β”‚ β”‚ β”œβ”€β”€ photo_forward.jpg
β”‚ β”‚ β”œβ”€β”€ photo_lef_back.jpg
β”‚ β”‚ β”œβ”€β”€ photo_rig_back.jpg
β”‚ β”‚ β”œβ”€β”€ point_cloud_bev.jpg
β”‚ β”œβ”€β”€ FR2/
β”‚ β”‚ β”œβ”€β”€ photo_forward.jpg
β”‚ β”‚ β”œβ”€β”€ photo_lef_back.jpg
β”‚ β”‚ β”œβ”€β”€ photo_rig_back.jpg
β”‚ β”‚ β”œβ”€β”€ point_cloud_bev.jpg
β”‚ └── ...
β”œβ”€β”€ train_v2.json
β”œβ”€β”€ val_v2.json
└── test_v2.json
```
### Input Data
The dataset includes:
1. **Image Views:**
- **Forward View**: A forward-facing photo of the road scene.
- **Back Left/Right Views**: Photos capturing the back left and back right perspectives.
Examples:
![Forward View](./data/images/FR1/photo_forward.jpg)
![Left Back View](./data/images/FR1/photo_lef_back.jpg)
![Right Back View](./data/images/FR1/photo_rig_back.jpg)
2. **Point Cloud (BEV):**
- A Bird's Eye View (BEV) image generated from the 3D point cloud data.
Example:
![BEV](./data/images/FR1/point_cloud_bev.jpg)
**Note:**
Participants can choose which inputs to use for the challenge. HD map annotations are not included in this dataset version. All data adhere to standards for producing HD maps.
---
### Challenge QAs
1. **Scene Type (SCN):** Identify the type of road scene depicted in the images.
2. **Point Cloud Quality (QLT):** Assess the quality of the point cloud data for the current road area.
3. **Intersection Detection (INT):** Determine if the main road features a crossroad, intersection, or lane change zone.
4. **Lane Count (LAN):** Count the number of lanes on the current road. (*May not apply to all cases*)
5. **Lane Description (DES):** Describe the attributes of the lanes on the current road. (*May not apply to all cases*)
6. **Scene Captioning (CAP):** Provide a detailed description of the current driving scene. (*May not apply to all cases*)
7. **Unusual Object Detection (OBJ):** Identify any unusual objects visible in the images. (*May not apply to all cases*)
8. **Lane Change Prediction (MOVE):** Predict the ego vehicle's lane change behavior. (*May not apply to all cases*)
9. **Speed Prediction (SPEED):** Predict the ego vehicle's speed behavior. (*May not apply to all cases*)
---
### Citation
If you use this dataset, please cite the following works:
#### Main Dataset Paper:
```
@inproceedings{cao2024maplm,
title={MAPLM: A Real-World Large-Scale Vision-Language Benchmark for Map and Traffic Scene Understanding},
author={Cao, Xu and Zhou, Tong and Ma, Yunsheng and Ye, Wenqian and Cui, Can and Tang, Kun and Cao, Zhipeng and Liang, Kaizhao and Wang, Ziran and Rehg, James M and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={21819--21830},
year={2024}
}
```
#### HD Map Annotation System Reference:
```
@inproceedings{tang2023thma,
title={Thma: Tencent hd map ai system for creating hd map annotations},
author={Tang, Kun and Cao, Xu and Cao, Zhipeng and Zhou, Tong and Li, Erlong and Liu, Ao and Zou, Shengtao and Liu, Chang and Mei, Shuqi and Sizikova, Elena and others},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={13},
pages={15585--15593},
year={2023}
}
```