SpatialEval / README.md
MilaWang's picture
Update README.md
59ce045 verified
---
dataset_info:
- config_name: tqa
features:
- name: id
dtype: string
- name: text
dtype: string
- name: oracle_answer
dtype: string
- name: oracle_option
dtype: string
- name: oracle_full_answer
dtype: string
splits:
- name: test
num_bytes: 4723238
num_examples: 4635
download_size: 804261
dataset_size: 4723238
- config_name: vqa
features:
- name: id
dtype: string
- name: text
dtype: string
- name: image
dtype: image
- name: oracle_answer
dtype: string
- name: oracle_option
dtype: string
- name: oracle_full_answer
dtype: string
splits:
- name: test
num_bytes: 733091578.0
num_examples: 4635
download_size: 712137895
dataset_size: 733091578.0
- config_name: vtqa
features:
- name: id
dtype: string
- name: text
dtype: string
- name: image
dtype: image
- name: oracle_answer
dtype: string
- name: oracle_option
dtype: string
- name: oracle_full_answer
dtype: string
splits:
- name: test
num_bytes: 736109315.0
num_examples: 4635
download_size: 712879771
dataset_size: 736109315.0
configs:
- config_name: tqa
data_files:
- split: test
path: tqa/test-*
- config_name: vqa
data_files:
- split: test
path: vqa/test-*
- config_name: vtqa
data_files:
- split: test
path: vtqa/test-*
---
## 🤔 About SpatialEval
SpatialEval is a comprehensive benchmark for evaluating spatial intelligence in LLMs and VLMs across four key dimensions:
- Spatial relationships
- Positional understanding
- Object counting
- Navigation
### Benchmark Tasks
1. **Spatial-Map**: Understanding spatial relationships between objects in map-based scenarios
2. **Maze-Nav**: Testing navigation through complex environments
3. **Spatial-Grid**: Evaluating spatial reasoning within structured environments
4. **Spatial-Real**: Assessing real-world spatial understanding
Each task supports three input modalities:
- Text-only (TQA)
- Vision-only (VQA)
- Vision-Text (VTQA)
![spatialeval_task.png](https://cdn-uploads.huggingface.co/production/uploads/651651f5d93a51ceda3021c3/kpjld6-HCg5LXhO9Ju6-Q.png)
## 📌 Quick Links
Project Page: https://spatialeval.github.io/
Paper: https://arxiv.org/pdf/2406.14852
Code: https://github.com/jiayuww/SpatialEval
Talk: https://neurips.cc/virtual/2024/poster/94371
## 🚀 Quick Start
### 📍 Load Dataset
SpatialEval provides three input modalities—TQA (Text-only), VQA (Vision-only), and VTQA (Vision-text)—across four tasks: Spatial-Map, Maze-Nav, Spatial-Grid, and Spatial-Real. Each modality and task is easily accessible via Hugging Face. Ensure you have installed the [packages](https://huggingface.co/docs/datasets/en/quickstart):
```python
from datasets import load_dataset
tqa = load_dataset("MilaWang/SpatialEval", "tqa", split="test")
vqa = load_dataset("MilaWang/SpatialEval", "vqa", split="test")
vtqa = load_dataset("MilaWang/SpatialEval", "vtqa", split="test")
```
## ⭐ Citation
If you find our work helpful, please consider citing our paper 😊
```
@inproceedings{wang2024spatial,
title={Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models},
author={Wang, Jiayu and Ming, Yifei and Shi, Zhenmei and Vineet, Vibhav and Wang, Xin and Li, Yixuan and Joshi, Neel},
booktitle={The Thirty-Eighth Annual Conference on Neural Information Processing Systems},
year={2024}
}
```
## 💬 Questions
Have questions? We're here to help!
- Open an issue in the github repository
- Contact us through the channels listed on our project page