text
stringlengths
67
7.88k
<|fim_prefix|>def <|fim_suffix|>(self): """Make sure permissions and authentication is required to display oauth applications. This is "sensitive" information""" response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) self.client.force_authenticate(self.user) response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_200_OK)<|fim_middle|>test_list_applications_no_auth<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, row: int, col: int, txt: str): ...<|fim_middle|>set_cell_value<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertEqual( self.env["nfe.40.lacres"]._fields["nfe40_lacres_vol_id"].comodel_name, "nfe.40.vol", )<|fim_middle|>test_m2o_concrete_to_concrete_spec<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: if self.node.scope.is_checked and self._type.can_be_checked_for_overflow(): return "(c)" + str(self._type.value) return str(self._type.value)<|fim_middle|>type_str<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # Process namespace tokens namespace = self.project_config.project__package__namespace if "managed" in self.options: managed = process_bool_arg(self.options["managed"]) else: managed = ( bool(namespace) and namespace in self.org_config.installed_packages ) if "namespaced" in self.options: namespaced = process_bool_arg(self.options["namespaced"]) else: namespaced = bool(namespace) and self.org_config.namespace == namespace namespace_prefix = "" if namespace and (managed or namespaced): namespace_prefix = namespace + "__" self.object_name = self.object_name.replace("%%%NAMESPACE%%%", namespace_prefix) self.field_name = self.field_name.replace("%%%NAMESPACE%%%", namespace_prefix)<|fim_middle|>apply_namespace<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): '''Create basic 3 row x 3 col search (find) dialog. Other dialogs override subsidiary create_x methods as needed. Replace and Find-in-Files add another entry row. ''' top = Toplevel(self.root) top.bind("<Return>", self.default_command) top.bind("<Escape>", self.close) top.protocol("WM_DELETE_WINDOW", self.close) top.wm_title(self.title) top.wm_iconname(self.icon) _setup_dialog(top) self.top = top self.frame = Frame(top, padding="5px") self.frame.grid(sticky="nwes") top.grid_columnconfigure(0, weight=100) top.grid_rowconfigure(0, weight=100) self.row = 0 self.frame.grid_columnconfigure(0, pad=2, weight=0) self.frame.grid_columnconfigure(1, pad=2, minsize=100, weight=100) self.create_entries() # row 0 (and maybe 1), cols 0, 1 self.create_option_buttons() # next row, cols 0, 1 self.create_other_buttons() # next row, cols 0, 1 self.create_command_buttons() # col 2, all rows<|fim_middle|>create_widgets<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, key): assert key in self.data.keys(), f"[*** Key Error] {key}" return self.data[key]<|fim_middle|>get_item<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, orm): # Deleting field 'Team.email' db.delete_column(u'account_team', 'email')<|fim_middle|>backwards<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>( stack: Stack, findstart: Literal[0, 1], base: str ) -> Union[int, Sequence[Mapping[str, Any]]]: t0 = monotonic() if findstart: return -1 else: s = state(commit_id=uuid4()) create_task(comp_func(stack=stack, manual=True, change=None, t0=t0, s=s)) return ()<|fim_middle|>omnifunc<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(worker_id: str) -> Generator[DockerClient, None, None]: context = docker_client() try: client = context.__enter__() except Exception as exc: raise RuntimeError( "Failed to create Docker client. Exclude tests that require Docker with " "'--exclude-service docker'." ) from exc try: with cleanup_all_new_docker_objects(client, worker_id): yield client finally: context.__exit__(*sys.exc_info())<|fim_middle|>docker<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(response): """Async handling of the server response""" if thinking_defer and not thinking_defer.called: # abort the thinking message if we were fast enough thinking_defer.cancel() if response: # remember this response self._add_to_memory(character, self, response) else: response = "... I'm sorry, I was distracted. Can you repeat?" response = self.response_template.format( name=self.get_display_name(character), response=response ) # tell the character about it if character.location: character.location.msg_contents( response, mapping={"character": character}, from_obj=self, ) else: # fallback if character is not in a location character.msg(f"{self.get_display_name(character)} says, {response}")<|fim_middle|>respond<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, versions): # pylint: disable=no-self-use """Custom JMESPath `sort_versions` function that sorts an array of strings as software versions.""" try: return sorted(versions, key=version_to_tuple) # if it wasn't sortable, return the input so the pipeline continues except (TypeError, ValueError): return versions<|fim_middle|>func_sort_versions<|file_separator|>
<|fim_prefix|> <|fim_suffix|>(self):<|fim_middle|>ok<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, inputs, training=True): inputs = self.backend.cast(inputs, self.compute_dtype) input_shape = self.backend.shape(inputs) is_batched = len(input_shape) > 3 if not is_batched: inputs = self.backend.numpy.expand_dims(inputs, axis=0) h_diff = input_shape[self.height_axis] - self.height w_diff = input_shape[self.width_axis] - self.width def random_crop(): input_height, input_width = ( input_shape[self.height_axis], input_shape[self.width_axis], ) seed_generator = self._get_seed_generator(self.backend._backend) h_start = self.backend.cast( self.backend.random.uniform( (), 0, maxval=float(input_height - self.height + 1), seed=seed_generator, ), "int32", ) w_start = self.backend.cast( self.backend.random.uniform( (), 0, maxval=float(input_width - self.width + 1), seed=seed_generator, ), "int32", ) if self.data_format == "channels_last": return self.backend.core.slice( inputs, self.backend.numpy.stack([0, h_start, w_start, 0]), [ self.backend.shape(inputs)[0], self.height, self.width, self.backend.shape(inputs)[3], ], ) else: return self.backend.core.slice( inputs, self.backend.numpy.stack([0, 0, h_start, w_start]), [ self.backend.shape(inputs)[0], self.backend.shape(inputs)[1], self.height, self.width, ], ) def resize(): outputs = image_utils.smart_resize( inputs, [self.height, self.width], data_format=self.data_format, backend_module=self.backend, ) # smart_resize will always output float32, so we need to re-cast. return self.backend.cast(outputs, self.compute_dtype) if isinstance(h_diff, int) and isinstance(w_diff, int): if training and h_diff >= 0 and w_diff >= 0: outputs = random_crop() else: outputs = resize() else: predicate = self.backend.numpy.logical_and( training, self.backend.numpy.logical_and(h_diff >= 0, w_diff >= 0), ) outputs = self.backend.cond( predicate, random_crop, resize, ) if not is_batched: outputs = self.backend.numpy.squeeze(outputs, axis=0) return outputs<|fim_middle|>call<|file_separator|>
<|fim_prefix|>def <|fim_suffix|> (manager, sources, prop_set, result): used_libraries = [] deps = prop_set.dependency () sources.extend(d.value for d in deps) sources = sequence.unique(sources) for l in sources: if l.type () and type.is_derived (l.type (), 'LIB'): used_libraries.append (l) created_libraries = [] for l in result: if l.type () and type.is_derived (l.type (), 'LIB'): created_libraries.append (l) created_libraries = set.difference (created_libraries, used_libraries) set_library_order_aux (created_libraries, used_libraries)<|fim_middle|>set_library_order<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ The type of the resource. """ return pulumi.get(self, "type")<|fim_middle|>type<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> 'outputs.BatchEndpointResponse': """ [Required] Additional attributes of the entity. """ return pulumi.get(self, "batch_endpoint_properties")<|fim_middle|>batch_endpoint_properties<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, data_pkl): data = pickle.loads(data_pkl) if '_id' in data.keys(): self._id = data['_id'] else: self._id = None self._parameters = NuRadioReco.framework.parameter_serialization.METHOD_NAME( data['_parameters'], parameters.particleParameters )<|fim_middle|>deserialize<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, flatiter): """Rebuild a nested tuple structure. """ vals = deque(flatiter) res = [] cur = res stack = [] for op in self._code: if op is _PUSH_LIST: stack.append(cur) cur.append([]) cur = cur[-1] elif op is _APPEND_NEXT_VALUE: cur.append(vals.popleft()) elif op is _APPEND_EMPTY_TUPLE: cur.append(()) elif op is _POP: cur = stack.pop() assert not stack, stack assert not vals, vals return res<|fim_middle|>unflatten<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>() -> None: logging.basicConfig( level=os.environ.get("PYLOGGING_LEVEL", logging.INFO), stream=sys.stderr, datefmt="%Y-%m-%dT%H:%M:%S", format=( "%(asctime)s.%(msecs)03d %(process)d %(thread)d %(levelno)03d:%(levelname)-8s " "%(name)-12s %(module)s:%(lineno)s:%(funcName)s %(message)s" ), ) Application().run(sys.argv[1:])<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(Script): code = 'import keyword; keyword.kwlist' for seq in Script(code).infer(): assert seq.name == 'Sequence' # This points towards the typeshed implementation stub_seq, = seq.goto(only_stubs=True) assert str(stub_seq.module_path).startswith(str(typeshed.TYPESHED_PATH))<|fim_middle|>test_keywords_variable<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, db: orm.Session, user: users_models.DatabaseUser, tool: tools_models.DatabaseTool, token: dict[str, t.Any], **kwargs, ) -> tuple[ JupyterConfigEnvironment, list[operators_models.Volume], list[core_models.Message],<|fim_middle|>configuration_hook<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(datamodel, tables, classes): def map_class(tabledef): cls = classes[ tabledef.name ] table = tables[ tabledef.table ] def make_relationship(reldef): if not hasattr(reldef, 'column') or reldef.relatedModelName not in classes: return remote_class = classes[ reldef.relatedModelName ] column = getattr(table.c, reldef.column) relationship_args = {'foreign_keys': column} if hasattr(reldef, 'otherSideName'): backref_args = {'uselist': reldef.type != 'one-to-one'} if remote_class is cls: backref_args['remote_side'] = table.c[ tabledef.idColumn ] relationship_args['backref'] = orm.backref(reldef.otherSideName, **backref_args) return reldef.name, orm.relationship(remote_class, **relationship_args) properties = { tabledef.idFieldName: table.c[tabledef.idColumn] } properties.update({ flddef.name: table.c[flddef.column] for flddef in tabledef.fields }) properties.update(relationship for relationship in [ make_relationship(reldef) for reldef in tabledef.relationships ] if relationship is not None) orm.mapper(cls, table, properties=properties) for tabledef in datamodel.tables: map_class(tabledef)<|fim_middle|>map_classes<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, simulation, period): period = period.start.period(DateUnit.MONTH).offset("first-of") salaire_imposable = simulation.calculate("salaire_imposable", period) return (salaire_imposable < 500) * 100.0<|fim_middle|>formula_2010_01_01<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, datum): text = str(datum) inp = text key = self.identifier.encode(inp) result = {"key": key, "input": inp, "text": text} return result<|fim_middle|>parse_text<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, state_dict: Mapping[str, Any]): r"""Loads the ShardedOptimizer state. Args: state_dict (dict): ShardedOptimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # TODO: implement load_state_dict raise NotImplementedError("ShardedOptimizer load_state_dict not implemented yet!")<|fim_middle|>load_state_dict<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): """ all available profiles for API Returns: HTML content or available profiles """ res = "" for profile in sorted(load_all_profiles().keys()): label = "success" if ( profile == "scan" ) else "warning" if ( profile == "brute" ) else "danger" if ( profile == "vulnerability" ) else "default" res += """<label><input id="{0}" type="checkbox" class="checkbox checkbox-{0}"><a class="label label-{1}">{0}</a></label>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;""".format(profile, label) return res<|fim_middle|>profiles<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): super().METHOD_NAME() self.login_as(user=self.user) self.monitor1 = self._create_monitor() self.monitor2 = self._create_monitor() self.env_prod = self._create_monitor_environment(monitor=self.monitor1) self.env_debug = self._create_monitor_environment(monitor=self.monitor1, name="debug") # Be sure to note the freeze time above self.since = self.monitor1.date_added self.until = self.monitor1.date_added + timedelta(hours=2) self.add_checkin(self.monitor1, offset={"minutes": 1}) self.add_checkin(self.monitor1, offset={"minutes": 1}, status=CheckInStatus.IN_PROGRESS) self.add_checkin(self.monitor1, offset={"minutes": 2}, env=self.env_debug) self.add_checkin( self.monitor1, offset={"hours": 1, "minutes": 1}, status=CheckInStatus.MISSED, ) self.add_checkin( self.monitor1, offset={"hours": 1, "minutes": 2}, env=self.env_debug, status=CheckInStatus.ERROR, ) self.add_checkin( self.monitor1, offset={"hours": 1, "minutes": 1}, status=CheckInStatus.TIMEOUT, ) self.add_checkin( self.monitor1, offset={"hours": 1, "minutes": 2}, env=self.env_debug, status=CheckInStatus.TIMEOUT, ) self.add_checkin(self.monitor2, offset={"minutes": 1}) self.add_checkin(self.monitor2, offset={"minutes": 2})<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self, payload: dict, in_edge=None) -> Result: try: dot = self._get_dot_accessor(payload) ip = dot[self.config.ip] location = await self.client.fetch(ip) result = { "city": location.city.name, "country": { "name": location.country.name, "code": location.country.iso_code }, "county": location.subdivisions.most_specific.name, "postal": location.postal.code, "latitude": location.location.latitude, "longitude": location.location.longitude } return Result(port="location", value=result) except Exception as e: self.console.error(str(e)) return Result(port="error", value={"payload": payload, "error": str(e)})<|fim_middle|>run<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, dataset: Dataset, is_train: bool) -> Dataset: # self.validate_schema(dataset, is_train) dataset = dataset.rename_columns(self._rename_fields) dataset = dataset.map(self._rename_examples, load_from_cache_file=self._load_from_cache_file, num_proc=self._num_workers ) dataset = dataset.map(self._convert_start_and_end_positions_from_bytes_to_chars, load_from_cache_file=self._load_from_cache_file, num_proc=self._num_workers ) dataset = super().METHOD_NAME(dataset, is_train) return dataset<|fim_middle|>adapt_dataset<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Path: raise NotImplementedError<|fim_middle|>recover_loc<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): """ Creates a MatrixStore SQLite database using data sourced from Postgres. This provides an easy way of using existing test fixtures with the MatrixStore. """ latest_date = ImportLog.objects.latest_in_category("prescribing").current_at end_date = str(latest_date)[:7] return matrixstore_from_data_factory( _DatabaseFixtures(), end_date=end_date, months=60 )<|fim_middle|>matrixstore_from_postgres<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(question): """Convert user input from yes/no variations to True/False""" while True: reply = input(question + " [y/N] ").lower().strip() if not reply or reply[0] == "n": return False if reply[0] == "y": return True<|fim_middle|>yes_or_no<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.ensure_one() return URL_SCSS_GEN_TEMPLATE % self.id<|fim_middle|>scss_get_url<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(plugin, item_id, video_id, download_mode=False, **kwargs): return resolver_proxy.get_stream_dailymotion(plugin, video_id, download_mode)<|fim_middle|>get_video_url<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return "get_flatsurface"<|fim_middle|>get_flatsurface<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(name): """Returns a (maybe empty) list of QKeySequences for the named snippet.""" ac = collection() return ac and ac.METHOD_NAME(name) or []<|fim_middle|>shortcuts<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): with mock.patch("mslib.mscolab.mscolab.input", return_value="n"): assert confirm_action("") is False with mock.patch("mslib.mscolab.mscolab.input", return_value=""): assert confirm_action("") is False with mock.patch("mslib.mscolab.mscolab.input", return_value="y"): assert confirm_action("") is True<|fim_middle|>test_confirm_action<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ The location where the email service stores its data at rest. """ return pulumi.get(self, "data_location")<|fim_middle|>data_location<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(unused_argv): tf.logging.set_verbosity(FLAGS.log) if not FLAGS.run_dir: tf.logging.fatal('--run_dir required') return if not FLAGS.sequence_example_file: tf.logging.fatal('--sequence_example_file required') return sequence_example_file_paths = tf.gfile.Glob( os.path.expanduser(FLAGS.sequence_example_file)) run_dir = os.path.expanduser(FLAGS.run_dir) config = melody_rnn_config_flags.config_from_flags() mode = 'eval' if FLAGS.eval else 'train' build_graph_fn = events_rnn_graph.get_build_graph_fn( mode, config, sequence_example_file_paths) train_dir = os.path.join(run_dir, 'train') if not os.path.exists(train_dir): tf.gfile.MakeDirs(train_dir) tf.logging.info('Train dir: %s', train_dir) if FLAGS.eval: eval_dir = os.path.join(run_dir, 'eval') if not os.path.exists(eval_dir): tf.gfile.MakeDirs(eval_dir) tf.logging.info('Eval dir: %s', eval_dir) num_batches = ( (FLAGS.num_eval_examples or magenta.common.count_records(sequence_example_file_paths)) // config.hparams.batch_size) events_rnn_train.run_eval(build_graph_fn, train_dir, eval_dir, num_batches) else: events_rnn_train.run_training(build_graph_fn, train_dir, FLAGS.num_training_steps, FLAGS.summary_frequency, checkpoints_to_keep=FLAGS.num_checkpoints)<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, separation): """Change the distance between a port and its anchor particle. separation : float, required Distance to shift port along the orientation vector from the anchor particle position. If no anchor is provided, the port will be shifted from the origin. """ if self.used: warn( "This port is already being used and changing its separation " "will have no effect on the distance between particles." ) if self.anchor: self.translate_to(self.anchor.pos) else: self.translate_to((0, 0, 0)) self.translate(separation * self.direction)<|fim_middle|>update_separation<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( address: _RawIPAddress | _RawNetworkPart | tuple[_RawIPAddress] | tuple[_RawIPAddress, int], strict: bool = True ) -> IPv4Network | IPv6Network: ...<|fim_middle|>ip_network<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(grid): """ Test that grdfill fails without arguments for `mode` and `L`. """ with pytest.raises(GMTInvalidInput): grdfill(grid=grid)<|fim_middle|>test_grdfill_required_args<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, *, dump: Union[bool, str] = False, outline: bool = False, **__kwargs: Any, ) -> None: """Do nothing."""<|fim_middle|>pre_run<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return """\ color Sets the color of the threshold line. width Sets the width (in px) of the threshold line. """<|fim_middle|>prop_descriptions<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Test that it works correctly inside of a column.""" col1, col2, col3 = st.columns([2.5, 1.5, 8.3]) with col1: st.text_area("foo") all_deltas = self.get_all_deltas_from_queue() # 5 elements will be created: 1 horizontal block, 3 columns, 1 widget self.assertEqual(len(all_deltas), 5) text_area_proto = self.get_delta_from_queue().new_element.text_area self.assertEqual(text_area_proto.label, "foo")<|fim_middle|>test_inside_column<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): dist = Distribution.from_name('distinfo-pkg') assert isinstance(dist.version, str) assert re.match(self.version_pattern, dist.version)<|fim_middle|>test_retrieves_version_of_self<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Test the name after inverting the QFT is IQFT and not QFT_dg.""" iqft = QFT(1).inverse() i2qft = iqft.inverse() with self.subTest(msg="inverted once"): self.assertEqual(iqft.name, "IQFT") with self.subTest(msg="inverted twice"): self.assertEqual(i2qft.name, "QFT") with self.subTest(msg="inverse as kwarg"): self.assertEqual(QFT(1, inverse=True).name, "IQFT")<|fim_middle|>test_name_after_inverting<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(pars): assert pars[1].name == "ham" assert pars["ham"].name == "ham" assert pars[pars[1]].name == "ham" with pytest.raises(TypeError): pars[42.3] with pytest.raises(IndexError): pars[3] with pytest.raises(IndexError): pars["lamb"] with pytest.raises(ValueError): pars[Parameter("bam!", 99)]<|fim_middle|>test_parameters_getitem<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, custom_model_id): from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import FormRecognizerClient, RecognizedForm endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id_fixed_rows_table = os.getenv("MODEL_ID_FIXED_ROW_TABLES", custom_model_id) form_recognizer_client = FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) path_to_sample_forms = os.path.abspath(os.path.join(os.path.abspath(__file__), "..", "..", "./sample_forms/forms/label_table_fixed_rows1.pdf")) with open(path_to_sample_forms, "rb") as f: form = f.read() poller = form_recognizer_client.begin_recognize_custom_forms( model_id=model_id_fixed_rows_table, form=form ) result: list[RecognizedForm] = poller.result() print("\n--------Recognizing labeled table with fixed rows--------\n") for recognized_form in result: for name, field in recognized_form.fields.items(): # substitute "table" for the label given to the table tag during training # (if different than sample training docs) if name == "table": for row_name, column in field.value.items(): print("Row '{}' has columns:".format(row_name)) for column_name, column_value in column.value.items(): print("...Column '{}' with value '{}' and a confidence score of {}".format( column_name, column_value.value, column_value.confidence )) else: # non-table tagged FormField print("...Field '{}' has value '{}' with a confidence score of {}".format( name, field.value, field.confidence ))<|fim_middle|>test_recognize_tables_fixed_rows<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(BSP_ROOT, dist_dir): import sys cwd_path = os.getcwd() sys.path.append(os.path.join(os.path.dirname(BSP_ROOT), 'tools')) from sdk_dist import dist_do_building dist_do_building(BSP_ROOT, dist_dir)<|fim_middle|>dist_handle<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return { "14": { "Visual Studio": "14", "msvc": "190", "gcc": "5", "clang": "3.2", "apple-clang": "4.3", }, "17": { "Visual Studio": "15" if Version(self.version) < "3.3.0" else "16", "msvc": "191" if Version(self.version) < "3.3.0" else "192", "gcc": "7", "clang": "6", "apple-clang": "10", }, }.get(self._min_cppstd, {})<|fim_middle|>compilers_minimum_version<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(oauth2_settings, rf, settings, oidc_only_view, caplog): assert oauth2_settings.OIDC_ENABLED is False settings.DEBUG = False with caplog.at_level(logging.WARNING, logger="oauth2_provider"): rsp = oidc_only_view(rf.get("/")) assert rsp.status_code == 404 assert len(caplog.records) == 1 assert "OIDC views are not enabled" in caplog.records[0].message<|fim_middle|>test_oidc_only_mixin_oidc_disabled_no<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # UCERF3 rupture rup = [r for r in self.src.iter_ruptures()][0] tors = rup.surface.tors tors._set_coordinate_shift() # Create the contexts gmm = AbrahamsonEtAl2014() param = dict(imtls={'PGA': []}, cache_distances=True) cm = ContextMaker('*', [gmm], param) ctxs = list(cm.get_ctx_iter(self.src, self.sitec)) # Get multiline dcache = cm.dcache ml = _get_multi_line(dcache, self.src.rupture_idxs[0]) # Test shift aae(tors.shift, ml.shift, decimal=4) # Test umax tors.set_u_max() aae(tors.u_max, ml.u_max, decimal=4) # Test uupps tupps, uupps, weis = get_tus(tors.lines, self.sitec.mesh) aae(tupps, ml.tupps, decimal=3) aae(uupps, ml.uupps, decimal=3) aae(weis, ml.weis, decimal=3) # Test T and U ml.set_tu(self.sitec.mesh) tors.set_tu(self.sitec.mesh) aae(ml.uut, ml.uut, decimal=3) aae(ml.tut, ml.tut, decimal=3) # Test Rx da = ml.get_rx_distance() expected = tors.get_rx_distance() aae(da, expected, decimal=3) # Test Ry0 da = ml.get_ry0_distance() expected = tors.get_ry0_distance() aae(da, expected, decimal=3) aae(ctxs[0].ry0, expected, decimal=3)<|fim_middle|>test_multi_cache_02<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): with pytest.raises(DagsterInvalidDefinitionError): StaticPartitionsDefinition(["foo...bar"]) with pytest.raises(DagsterInvalidDefinitionError, match="n"): StaticPartitionsDefinition(["foo\nfoo"]) with pytest.raises(DagsterInvalidDefinitionError, match="b"): StaticPartitionsDefinition(["foo\bfoo"])<|fim_middle|>test_static_partitions_invalid_chars<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # win cuda 10.2 cannot pass a = jt.random((100,)) b = a**3 b.sync()<|fim_middle|>test_pow<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Returns whether this field handles multiple addresses """ return len(self.get_address_types()) > 1<|fim_middle|>is_multi_address<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertEqual( self.harvester_class.title(), "Obsession-Worthy Peanut Butter Cookie Ice Cream", )<|fim_middle|>test_title<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Return the maximum entry in the vector.""" with self.dat.vec_ro as v: return v.METHOD_NAME()[1]<|fim_middle|>max<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(args): args.embed_dim = getattr(args, "embed_dim", 1280) args.num_attention_heads = getattr(args, "num_attention_heads", 20) args.num_layers = getattr(args, "num_layers", 36) default_architecture(args)<|fim_middle|>hf_gpt2_large<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): content = "Hello" destination = Path(self.tmpdir) / "test_save_text_file" save_text_file(content, destination) with destination.open("r") as file: assert content == file.read()<|fim_middle|>test_save_text_file<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): comments = self.hello_world_project.get_pr(72).get_comments( filter_regex="comment updates" ) assert len(comments) == 1 before_comment = comments[0].body before_edited = comments[0].edited comments[0].body = "see if updating works" assert comments[0].body == "see if updating works" assert comments[0].edited > before_edited comments[0].body = before_comment assert comments[0].body == before_comment<|fim_middle|>test_pr_comments_updates<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_nonpositive_num_lstm_layers_raises<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): super(RouteTaskChangeTestCase, self).METHOD_NAME() self.generate_fixture_project_status() self.generate_fixture_project() self.generate_fixture_asset_type() self.generate_fixture_asset() self.generate_fixture_sequence() self.generate_fixture_shot() self.generate_fixture_department() self.generate_fixture_task_type() self.generate_fixture_task_status() self.generate_fixture_task_status_wip() self.generate_fixture_task_status_retake() self.generate_fixture_task_status_done() self.generate_fixture_task_status_todo() self.generate_fixture_person() self.generate_fixture_assigner() self.generate_fixture_task() self.open_status_id = str(self.task_status.id) self.wip_status_id = str(self.task_status_wip.id) self.retake_status_id = str(self.task_status_retake.id) self.done_status_id = str(self.task_status_done.id) self.is_event_fired = False events.unregister_all()<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): total = self.list.get_count() name = _(u"Authorized account %d") % (total+1) self.list.insert_item(False, name) if self.list.get_count() == 1: self.list.select_item(0)<|fim_middle|>add_new_session_to_list<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(s): """For output which does not require specific line order""" return sorted(_strip_and_dedent(s).splitlines())<|fim_middle|>split_and_sort<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>( self, resource_group_name: str, account_name: str, **kwargs: Any ) -> _models.PrivateLinkResourceListResult: """Gets the private link resources that need to be created for a storage account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. Required. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters only. Required. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateLinkResourceListResult or the result of cls(response) :rtype: ~azure.mgmt.storage.v2021_04_01.models.PrivateLinkResourceListResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._api_version or "2021-04-01")) cls: ClsType[_models.PrivateLinkResourceListResult] = kwargs.pop("cls", None) request = build_list_by_storage_account_request( resource_group_name=resource_group_name, account_name=account_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.METHOD_NAME.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("PrivateLinkResourceListResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized<|fim_middle|>list_by_storage_account<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(dev): return f"<{dev.id}: {dev.device_kind}>"<|fim_middle|>fmt_device<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(filename): if not os.path.isfile(filename): msg = 'No such file of "%s"' % filename raise FileNotFoundError(msg)<|fim_middle|>infile_exist<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, attrs): attrs = super(TransactionSerializer, self).METHOD_NAME(attrs) if not attrs: return attrs if self.instance: if self.instance.state != Transaction.States.Initial: message = "The transaction cannot be modified once it is in {}"\ " state.".format(self.instance.state) raise serializers.ValidationError(message) return attrs<|fim_middle|>validate<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): p = gevent.spawn(util.wrap_errors(AssertionError, gevent.sleep), 2) gevent.sleep(0) # wait for p to start, because actual order of switching is reversed switcher = gevent.spawn(p.switch, None) result = p.get() assert isinstance(result, AssertionError), result assert 'Invalid switch' in str(result), repr(str(result)) switcher.kill()<|fim_middle|>test_sleep_invalid_switch<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, create_parameter, aws_client): prefix = f"/prefix-{short_uid()}" path = f"{prefix}/path" value = "value" param = create_parameter(Name=path, Value=value, Type="String") aws_client.ssm.label_parameter_version( Name=path, ParameterVersion=param["Version"], Labels=["latest"] ) list_of_params = aws_client.ssm.get_parameters_by_path( Path=prefix, ParameterFilters=[{"Key": "Label", "Values": ["latest"]}] ) assert len(list_of_params["Parameters"]) == 1 found_param = list_of_params["Parameters"][0] assert path == found_param["Name"] assert found_param["ARN"] assert found_param["Type"] == "String" assert found_param["Value"] == "value"<|fim_middle|>test_get_parameters_by_path_and_filter<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Sequence[str]: return pulumi.get(self, "connectors")<|fim_middle|>connectors<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(mock_alias_mult): """ Tests return of target as differing list to known alias """ with patch( "salt.modules.aliases.__parse_aliases", MagicMock(return_value=mock_alias_mult), ): ret = aliases.has_target("hello", ["world@earth.com", "mars@space.com"]) assert not ret<|fim_middle|>test_has_target_list_mult_differs<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): font, _ = self.objectGenerator("font") groups = font.groups groups["public.kern1.X"] = ["A", "B", "C"] groups["public.kern2.X"] = ["A", "B", "C"] kerning = font.kerning kerning.update({ ("public.kern1.X", "public.kern2.X"): 100, ("B", "public.kern2.X"): 101, ("public.kern1.X", "B"): 102, ("A", "A"): 103, }) return kerning<|fim_middle|>get_kerning_generic<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(xray_structure): asu_mappings = xray_structure.asu_mappings(buffer_thickness=3.5) pair_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) scattering_types = xray_structure.scatterers().extract_scattering_types() pair_asu_table.add_covalent_pairs( scattering_types, exclude_scattering_types=flex.std_string(("H","D"))) return pair_asu_table.extract_pair_sym_table()<|fim_middle|>get_pair_sym_table<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.assertEqual( format_grammar._parse_segments('/* " */', False), (['/* " */'], {}, []), )<|fim_middle|>test_block_comment_quote<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Tests setting the language to go (does not exist)""" lang = "go" self._setup(lang) langs = rhnTranslate.cat.getlangs() if hasattr(sys, "version_info"): # On python 1.5.2 we don't really get an idea what the language # is, so it's ok to check for the first component self.assertFalse(langs[0] == lang, "Language is %s" % langs[0]) else: self.assertTrue(langs[0] == lang, "Language is %s" % langs[0])<|fim_middle|>test_setlangs_go<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_osx_launchd_plist_parser<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(test_id, random_tests): pathFile = pathlib.Path(__file__).parent.resolve() if "src" in os.listdir(pathFile): mypath = os.path.join(pathFile, "../tests/src") else: import opengate.tests mypath = os.path.join( pathlib.Path(opengate.tests.__file__).resolve().parent, "../tests/src" ) print("Look for tests in: " + mypath) if not check_tests_data_folder(): return False # Look if torch is installed torch = True torch_tests = [ "test034_gan_phsp_linac.py", "test038_gan_phsp_spect_gan_MT.py", "test038_gan_phsp_spect_gan_aa.py", "test038_gan_phsp_spect_gan_se.py", "test038_gan_phsp_spect_gan_ze.py", "test040_gan_phsp_pet_gan.py", "test043_garf.py", "test045_speedup_all_WIP.py", "test047_gan_vox_source_cond.py", ] try: import torch except: torch = False windowsWrongTests = [ "test014_engine_2.py", "test060_PhsSource_ParticleName_direct.py", "test060_PhsSource_ParticleName_fromPHS_PDGCode.py", "test060_PhsSource_ParticleName_fromPHS_ParticleName.py", "test060_PhsSource_rotation.py", "test060_PhsSource_translation.py", "test043_garf5_region_MT_subproc.py", "test043_garf2_region_subproc.py.py", "test061_user_event_info.py", ] onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] files = [] for f in onlyfiles: if "WIP" in f: print(f"Ignoring: {f:<40} (Work In Progress) ") continue if "visu" in f: continue if "OLD" in f: continue if "old" in f: continue if "test" not in f: continue if ".py" not in f: continue if ".log" in f: continue if "all_tes" in f: continue if "_base" in f: continue if "test045_speedup" in f: continue if "_helpers" in f: continue if os.name == "nt" and "_MT" in f: continue if os.name == "nt" and f in windowsWrongTests: continue if not torch and f in torch_tests: print(f"Ignoring: {f:<40} (Torch is not available) ") continue files.append(f) files = sorted(files) if test_id != "all": test_id = int(test_id) files_new = [] for f in files: id = int(f[4:7]) if id >= test_id: files_new.append(f) else: print(f"Ignoring: {f:<40} (< {test_id}) ") files = files_new elif random_tests: files_new = files[-10:] prob = 0.25 files = files_new + random.sample(files[:-10], int(prob * (len(files) - 10))) files = sorted(files) print(f"Running {len(files)} tests") print(f"-" * 70) failure = False for f in files: start = time.time() print(f"Running: {f:<46} ", end="") cmd = "python " + os.path.join(mypath, f"{f}") log = os.path.join(os.path.dirname(mypath), f"log/{f}.log") r = os.system(f"{cmd} > {log}") # subprocess.run(cmd, stdout=f, shell=True, check=True) if r == 0: print(colored.stylize(" OK", color_ok), end="") else: if r == 2: # this is probably a Ctrl+C, so we stop gate.fatal("Stopped by user") else: print(colored.stylize(" FAILED !", color_error), end="") failure = True os.system("cat " + log) end = time.time() print(f" {end - start:5.1f} s {log:<65}") print(not failure)<|fim_middle|>go<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # Set the IGNORE_PERF_VAR variable back to its original value. if self._original_ignore_perf_value is not None: os.environ[self.IGNORE_PERF_VAR] = self._original_ignore_perf_value else: del os.environ[self.IGNORE_PERF_VAR] tf.compat.v1.mixed_precision.disable_mixed_precision_graph_rewrite() super().METHOD_NAME()<|fim_middle|>tear_down<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, memobj, syms=None): return VdbMemoryCanvas(memobj, syms=syms, parent=self)<|fim_middle|>init_memory_canvas<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): arr = np.array([-128, -128, -0.5, -0.5, -3, -3, 127, 127], dtype=np.int8) self.assertEqual(arr[0], -128) self.assertEqual(arr[1], -128) self.assertEqual(arr[-1], 127) received = arr.tostring() self.assertEqual(len(received), len(arr)) self.assertEqual(np.int8(received[0]), -128) self.assertEqual(np.int8(received[1]), -128) unpacked = HackRF.bytes_to_iq(received, len(received) // 2) self.assertEqual(unpacked[0], complex(-1, -1)) self.assertAlmostEqual(unpacked[1], complex(0, 0), places=1) self.assertAlmostEqual(unpacked[2], complex(0, 0), places=1) self.assertEqual(unpacked[3], complex(1, 1)) packed = HackRF.iq_to_bytes(unpacked) self.assertEqual(received, packed)<|fim_middle|>test_hackrf_pack_unpack<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, _mock_counts, _mock_report_dir, _mock_write_metric): """ run_xsslint encounters an error parsing the xsslint output log """ _mock_counts.return_value = {} with pytest.raises(SystemExit): call_task('pavelib.quality.run_xsslint')<|fim_middle|>test_xsslint_violation_number_not_found<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ Unique identifier for the code signing configuration. """ return pulumi.get(self, "config_id")<|fim_middle|>config_id<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(type_str, field=""): try: type_list = type_str.split(",") # 安全校验,强制转int type_list = list(map(int, type_list)) if field: type_int_list = list(map(str, type_list)) type_int_str = ",".join(type_int_list) return f" and {field} in ({type_int_str}) " except Exception: return "" else: return type_list<|fim_middle|>turn_int_list_of_str<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(capfd): """Test ``get_jobs`` stdout for results == 0. When no results are found, a single line is printed. """ _mock_ipython(MockIPython(None)) get_jobs(filters={"circuitNumQubits": -1}) out, err = capfd.readouterr() assert out == "No jobs found matching given criteria\n" assert len(err) == 0<|fim_middle|>test_get_jobs_no_results<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, lower: int, upper: int, num_vals:int): lbl = self.fuzzing_label if lower > -1: low = lower if lower < lbl.fuzz_maximum + num_vals else lbl.fuzz_maximum - num_vals for i in range(low, low + num_vals): lbl.add_decimal_fuzz_value(i) if upper > -1: up = upper if upper < lbl.fuzz_maximum + 1 else lbl.fuzz_maximum - 1 for i in range(up - num_vals + 1, up + 1): lbl.add_decimal_fuzz_value(i) self.update()<|fim_middle|>add_boundaries<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return ( "%s %s" % (self.first_name, self.last_name) if self.first_name and self.last_name else self.username )<|fim_middle|>get_common_name<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(*args): """Compute the logic AND between expressions.""" filename, loc = get_src_loc() loc = ast.Location(filename, loc) # pylint: disable=redefined-variable-type expr = ast.ConstantOp(1, UInt(1), loc) for arg in args: arg = ast.CastOp(arg, UInt(1), loc) expr = ast.LogicalAnd(expr, arg, loc) return expr<|fim_middle|>and<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return {<|fim_middle|>get_finished_subscription_by_task<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): if not self._logger.isEnabledFor(logging.DEBUG): return reclaimable_count = sum( 1 for cam in self._previously_open.values() if cam.end_time < INFINITY ) self._logger.debug( "existing=%d (reclaimable=%d) / " "found=%d (known=%d new=%d missing=%d)", len(self._previously_open), reclaimable_count, len(self._now_open), len(self._keepers), len(self._new), len(self._missing), )<|fim_middle|>log_stats<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, outputs, rule, inputs=None, implicit=None, order_only=None, variables=None, implicit_outputs=None, pool=None, dyndep=None): outputs = as_list(outputs) out_outputs = [escape_path(x) for x in outputs] all_inputs = [escape_path(x) for x in as_list(inputs)] if implicit: implicit = [escape_path(x) for x in as_list(implicit)] all_inputs.append('|') all_inputs.extend(implicit) if order_only: order_only = [escape_path(x) for x in as_list(order_only)] all_inputs.append('||') all_inputs.extend(order_only) if implicit_outputs: implicit_outputs = [escape_path(x) for x in as_list(implicit_outputs)] out_outputs.append('|') out_outputs.extend(implicit_outputs) self._line('build %s: %s' % (' '.join(out_outputs), ' '.join([rule] + all_inputs))) if pool is not None: self._line(' pool = %s' % pool) if dyndep is not None: self._line(' dyndep = %s' % dyndep) if variables: if isinstance(variables, dict): iterator = iter(variables.items()) else: iterator = iter(variables) for key, val in iterator: self.variable(key, val, indent=1) return outputs<|fim_middle|>build<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(unused_argv): releaseVal = ReleaseValidation(FLAGS.commit_sha) releaseVal.ExtractTestInfoFromPath(FLAGS.path) if FLAGS.detail: releaseVal.PrintAllTests() else: releaseVal.PrintSummary() sys.exit(releaseVal.ValidateRelease())<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): yield self._interface<|fim_middle|>interface<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, **kwargs): response = self.rp.parse_authentication_response(cherrypy.session, kwargs["url_fragment"]) html_page = self._load_HTML_page_from_file("htdocs/success_page.html") # Support for hybrid flow authz_code = None try: authz_code = response["code"] except KeyError: pass access_token = None try: access_token = response["access_token"] userinfo = self.rp.make_userinfo_request(cherrypy.session, access_token) except KeyError: pass return html_page.format(authz_code, access_token, response["id_token"], userinfo)<|fim_middle|>repost_fragment<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(ctx: discord.AutocompleteContext): """get all files in the indexes folder""" try: return [ file for file in os.listdir( EnvService.find_shared_file( f"indexes/{str(ctx.interaction.guild.id)}/" ) ) if file.startswith(ctx.value.lower()) ][ :25 ] # returns the 25 first files from your current input except Exception: return ["No server indexes found, add an index"]<|fim_middle|>get_server_indexes<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(train_loader, val_loader, device, model): # loss function, optimizer and scheduler loss_fcn = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.01) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5) # training loop for epoch in range(350): model.METHOD_NAME() total_loss = 0 for batch, (batched_graph, labels) in enumerate(train_loader): batched_graph = batched_graph.to(device) labels = labels.to(device) feat = batched_graph.ndata.pop("attr") logits = model(batched_graph, feat) loss = loss_fcn(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() scheduler.step() train_acc = evaluate(train_loader, device, model) valid_acc = evaluate(val_loader, device, model) print( "Epoch {:05d} | Loss {:.4f} | Train Acc. {:.4f} | Validation Acc. {:.4f} ".format( epoch, total_loss / (batch + 1), train_acc, valid_acc ) )<|fim_middle|>train<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return len(self.data_)<|fim_middle|>size<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): db_token = Token(self.serial2, tokentype="motp") db_token.save() token = MotpTokenClass(db_token) token.update({"genkey": "1", "motppin": self.motppin, "pin": self.otppin}) db_token = Token.query.filter(Token.serial == self.serial2).first() token = MotpTokenClass(db_token) # check that the userpin is set self.assertTrue(token.token.user_pin, token.token.user_pin) # check that the otp value is set self.assertTrue(token.token.key_enc, token.token.key_enc)<|fim_middle|>test_03_enroll_genkey<|file_separator|>