text
stringlengths
67
7.88k
<|fim_prefix|>def <|fim_suffix|>(obj, event): if IRelationBrokenEvent.providedBy(event): # these trigger too much! return try: tasks.file_edited.delay(obj) except CannotGetPortalError: pass<|fim_middle|>on_file_edit<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, collection: "Collection[ITEM]", topological: bool = True ) -> None: datastruct = self.deserialize_raw(collection.collection_types()) if topological and isinstance(datastruct, list): # type: ignore datastruct.sort(key=lambda x: x.get("depth", 1)) try: if isinstance(datastruct, dict): # This is currently the corner case for the settings type. collection.from_dict(datastruct) # type: ignore elif isinstance(datastruct, list): # type: ignore collection.from_list(datastruct) except Exception as exc: logger.error( "Error while loading a collection: %s. Skipping collection %s!", exc, collection.collection_type(), )<|fim_middle|>deserialize<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): txt = self.py3.command_output(["ip", "address", "show"]).splitlines() data = {} for line in txt: iface = self.iface_re.match(line) if iface: cur_iface = iface.group("iface") if not self.remove_empty: data[cur_iface] = {} continue ip4 = self.ip_re.match(line) if ip4: data.setdefault(cur_iface, {}).setdefault("ip4", []).append(ip4.group("ip4")) continue ip6 = self.ip6_re.match(line) if ip6: data.setdefault(cur_iface, {}).setdefault("ip6", []).append(ip6.group("ip6")) continue return data<|fim_middle|>get_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, x, codewords, scale): num_codes, channels = paddle.shape(codewords) reshaped_scale = scale.reshape([1, 1, num_codes]) expanded_x = paddle.tile(x.unsqueeze(2), [1, 1, num_codes, 1]) reshaped_codewords = codewords.reshape([1, 1, num_codes, channels]) scaled_l2_norm = paddle.multiply( reshaped_scale, (expanded_x - reshaped_codewords).pow(2).sum(axis=3)) return scaled_l2_norm<|fim_middle|>scaled_l2<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(self): """Test that the measurement for the source is returned.""" junit_url2 = "https://junit2" self.sources["junit2"] = {"type": "junit", "parameters": {"url": junit_url2}} response = await self.collect(get_request_text=self.JUNIT_XML) self.assert_measurement(response, value="2", api_url=junit_url2, landing_url=junit_url2, source_index=1)<|fim_middle|>test_multiple_sources<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(session_backend_config: "BaseBackendConfig") -> None: @post("/create-session") def create_session_handler(request: Request) -> None: request.set_session({"foo": "bar"}) @post("/empty-session") def empty_session_handler(request: Request) -> None: request.set_session(Empty) with create_test_client( route_handlers=[create_session_handler, empty_session_handler], middleware=[session_backend_config.middleware], session_config=session_backend_config, ) as client: client.post("/create-session") client.post("/empty-session") assert not client.get_session_data()<|fim_middle|>test_set_empty<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): c = self.get_cache() c["foo"] = "" c["bar"] = "" c["baz"] = "" c.clear() eq_(0, len(c)) assert "foo" not in c assert "baz" not in c assert "bar" not in c<|fim_middle|>test_clear<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, client_port): class ClientThread(threading.Thread): def __init__(self, client_port): threading.Thread.__init__(self) self.client_port = client_port def run(self): class HandleRequestInput: def RequestInput(self): client_thread.requested_input = True return 'RequestInput: OK' def NotifyFinished(self, *args, **kwargs): client_thread.notified_finished += 1 return 1 handle_request_input = HandleRequestInput() from _pydev_bundle import pydev_localhost self.client_server = client_server = SimpleXMLRPCServer((pydev_localhost.get_localhost(), self.client_port), logRequests=False) client_server.register_function(handle_request_input.RequestInput) client_server.register_function(handle_request_input.NotifyFinished) client_server.serve_forever() def shutdown(self): return self.client_server.shutdown() client_thread = ClientThread(client_port) client_thread.requested_input = False client_thread.notified_finished = 0 client_thread.daemon = True client_thread.start() return client_thread<|fim_middle|>start_client_thread<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): """Test all value errors.""" signal = pf.signals.impulse(10) # signal and sampling rate are both None with pytest.raises(ValueError, match="Either signal or sampling_rate"): pfilt.low_shelve_cascade(None, 1e3, sampling_rate=None) # signal is of wrong type with pytest.raises(ValueError, match="signal must be a pyfar Signal"): pfilt.low_shelve_cascade(1, 1e3, sampling_rate=None) # frequency_type has wrong value with pytest.raises(ValueError, match="frequency_type is 'mid'"): pfilt.low_shelve_cascade(signal, 1e3, 'mid', 10, -5) # lower characteristic frequency is 0 Hz with pytest.raises(ValueError, match="The lower characteristic frequency"): pfilt.low_shelve_cascade(signal, 0, 'lower', 10, None, 2) # lower characteristic frequency exceeds Nyquist with pytest.raises(ValueError, match="The lower characteristic frequency"): pfilt.low_shelve_cascade(signal, 40e3, 'lower', 10, None, 2) # UPPER characteristic frequency exceeds Nyquist with pytest.raises(ValueError, match="The upper characteristic frequency"): pfilt.low_shelve_cascade(signal, 40e3, 'upper', 10, None, 2)<|fim_middle|>test_shelve_cascade_errors<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(resource_group_name: Optional[str] = None, service_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetConfigServerResult: """ Get the config server and its properties. :param str resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :param str service_name: The name of the Service resource. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['serviceName'] = service_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:appplatform/v20230501preview:getConfigServer', __args__, opts=opts, typ=GetConfigServerResult).value return AwaitableGetConfigServerResult( id=pulumi.get(__ret__, 'id'), name=pulumi.get(__ret__, 'name'), properties=pulumi.get(__ret__, 'properties'), system_data=pulumi.get(__ret__, 'system_data'), type=pulumi.get(__ret__, 'type'))<|fim_middle|>get_config_server<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(root: str, split: Union[Tuple[str], str], language_pair: Tuple[str] = ("de", "en")): """Multi30k dataset .. warning:: using datapipes is still currently subject to a few caveats. if you wish to use this dataset with shuffling, multi-processing, or distributed learning, please see :ref:`this note <datapipes_warnings>` for further instructions. For additional details refer to https://www.statmt.org/wmt16/multimodal-task.html#task1 Number of lines per split: - train: 29000 - valid: 1014 - test: 1000 Args: root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') split: split or splits to be returned. Can be a string or tuple of strings. Default: ('train', 'valid', 'test') language_pair: tuple or list containing src and tgt language. Available options are ('de','en') and ('en', 'de') :return: DataPipe that yields tuple of source and target sentences :rtype: (str, str) """ assert len(language_pair) == 2, "language_pair must contain only 2 elements: src and tgt language respectively" assert tuple(sorted(language_pair)) == ( "de", "en", ), "language_pair must be either ('de','en') or ('en', 'de')" if not is_module_available("torchdata"): raise ModuleNotFoundError( "Package `torchdata` not found. Please install following instructions at https://github.com/pytorch/data" ) url_dp = IterableWrapper([URL[split]]) cache_compressed_dp = url_dp.on_disk_cache( filepath_fn=partial(_filepath_fn, root, split), hash_dict={_filepath_fn(root, split): MD5[split]}, hash_type="sha256", ) cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True) cache_compressed_dp_1, cache_compressed_dp_2 = cache_compressed_dp.fork(num_instances=2) src_cache_decompressed_dp = cache_compressed_dp_1.on_disk_cache( filepath_fn=partial(_decompressed_filepath_fn, root, split, language_pair, 0) ) src_cache_decompressed_dp = ( FileOpener(src_cache_decompressed_dp, mode="b") .load_from_tar() .filter(partial(_filter_fn, split, language_pair, 0)) ) src_cache_decompressed_dp = src_cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True) tgt_cache_decompressed_dp = cache_compressed_dp_2.on_disk_cache( filepath_fn=partial(_decompressed_filepath_fn, root, split, language_pair, 1) ) tgt_cache_decompressed_dp = ( FileOpener(tgt_cache_decompressed_dp, mode="b") .load_from_tar() .filter(partial(_filter_fn, split, language_pair, 1)) ) tgt_cache_decompressed_dp = tgt_cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True) src_data_dp = FileOpener(src_cache_decompressed_dp, encoding="utf-8").readlines( return_path=False, strip_newline=True ) tgt_data_dp = FileOpener(tgt_cache_decompressed_dp, encoding="utf-8").readlines( return_path=False, strip_newline=True ) return src_data_dp.zip(tgt_data_dp).shuffle().set_shuffle(False).sharding_filter()<|fim_middle|>multi30k<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self, labeled_tensor):<|fim_middle|>decode<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return self.__dict__.METHOD_NAME()<|fim_middle|>items<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> typing.List[str]: """ return list of templates names as string like "text.odt" """ try: is_dir_exist(self._config.COLLABORATIVE_DOCUMENT_EDITION__FILE_TEMPLATE_DIR) is_dir_readable(self._config.COLLABORATIVE_DOCUMENT_EDITION__FILE_TEMPLATE_DIR) except NotADirectoryError as exc: raise FileTemplateNotAvailable from exc template_filenames = [ entry for entry in os.listdir(self._config.COLLABORATIVE_DOCUMENT_EDITION__FILE_TEMPLATE_DIR) if isfile( join( self._config.COLLABORATIVE_DOCUMENT_EDITION__FILE_TEMPLATE_DIR, entry, ) ) ] if not self._config.COLLABORATIVE_DOCUMENT_EDITION__ENABLED_EXTENSIONS: return template_filenames return [ filename for filename in template_filenames if os.path.splitext(filename)[1][1:] in self._config.COLLABORATIVE_DOCUMENT_EDITION__ENABLED_EXTENSIONS ]<|fim_middle|>get_template_list<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( self, mock_subprocess, mock_sh_zip, mock_sh_cp, mock_sh_find, mock_walk, mock_makedirs, mock_chdir, mock_copyfile, mock_copystat, ): fake_compile_dir = '/fake/compile/dir' simulated_walk_result = [ ["/fake_dir", ["__pycache__", "Lib"], ["README", "setup.py"]], ["/fake_dir/Lib", ["ctypes"], ["abc.pyc", "abc.py"]], ["/fake_dir/Lib/ctypes", [], ["util.pyc", "util.py"]], ] mock_walk.return_value = simulated_walk_result self.recipe.create_python_bundle(fake_compile_dir, self.arch) recipe_build_dir = self.recipe.get_build_dir(self.arch.arch) modules_build_dir = join( recipe_build_dir, 'android-build', 'build', 'lib.linux{}-{}-{}'.format( '2' if self.recipe.version[0] == '2' else '', self.arch.command_prefix.split('-')[0], self.recipe.major_minor_version_string )) expected_sp_paths = [ modules_build_dir, join(recipe_build_dir, 'Lib'), self.ctx.get_python_install_dir(self.arch.arch), ] for n, (sp_call, kw) in enumerate(mock_subprocess.call_args_list): self.assertEqual(sp_call[0][-1], expected_sp_paths[n]) # we expect two calls to `walk_valid_filens` self.assertEqual(len(mock_walk.call_args_list), 2) mock_sh_zip.assert_called() mock_sh_cp.assert_called() mock_sh_find.assert_called() mock_makedirs.assert_called() mock_chdir.assert_called() mock_copyfile.assert_called() mock_copystat.assert_called()<|fim_middle|>test_create_python_bundle<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(value: object) -> str: """Convert *value* into a string; join its elements if it's an iterable.""" if isinstance(value, str) or not isinstance(value, Iterable): return repr(value) return ' '.join(repr(i) for i in value)<|fim_middle|>sanitize_value<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # Test maintaining downstream notifier class ChildObserver(DummyObserver): def iter_observables(self, object): yield object instance = ClassWithSet() instance.values = set() notifier = DummyNotifier() child_observer = ChildObserver(notifier=notifier) graph = create_graph( create_observer(notify=False, optional=False), child_observer, ) handler = mock.Mock() call_add_or_remove_notifiers( object=instance.values, graph=graph, handler=handler, ) # when observable = DummyObservable() instance.values.add(observable) # then self.assertEqual(observable.notifiers, [notifier]) # when instance.values.remove(observable) # then self.assertEqual(observable.notifiers, [])<|fim_middle|>test_maintain_notifier<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(calendar_public_id): """Handle events update for given calendar.""" with global_session_scope() as db_session: try: calendar = ( db_session.query(Calendar) .filter(Calendar.public_id == calendar_public_id) .with_for_update() .one() ) except NoResultFound: return f"Couldn't find calendar '{calendar_public_id}'", 404 change_notifications: List[MsGraphChangeNotification] = cast( MsGraphChangeNotificationCollection, request.json )["value"] handle_event_deletions(calendar, change_notifications) calendar.handle_webhook_notification() db_session.commit() return "", 200<|fim_middle|>event_update<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_double_dash1<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): interactive_loader = InteractivesLoader( base_path=self.BASE_PATH, content_path="", structure_filename="is-interactive-false.yaml" ) interactive_loader.load() interactive = Interactive.objects.get(slug="is-interactive-false") self.assertEqual( False, interactive.is_interactive )<|fim_middle|>test_interactives_is_interactive_false<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, port_num): # Check for invalid port_num if port_num < self._port_start or port_num > self._port_end: return False path = "/sys/bus/i2c/devices/{0}-0050/sfp_is_present" port_ps = path.format(self._port_to_i2c_mapping[port_num]) reg_value = '0' try: reg_file = open(port_ps) reg_value = reg_file.readline().rstrip() reg_file.close() except IOError as e: print("Error: unable to access file: %s" % str(e)) return False if reg_value == '1': return True return False<|fim_middle|>get_presence<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.run(sql10) self.run(sql11) self.run(sql12) self.run(sql13) self.run(sql14, lambda res: {"class":1, "data":[self.node, self.positionAsText], "text": T_("lanes in {0}(-{1}+{2}), lanes out {3}(-{4}+{5})", res[2], res[3] or 0, res[4] or 0, res[5], res[6] or 0, res[7] or 0) })<|fim_middle|>analyser_osmosis_common<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( src: Tuple[str, ...], exclude: Optional[Pattern], extend_exclude: Optional[Pattern], skip_gitignore: bool ): root = find_project_root(src) if skip_gitignore: gitignore = None else: gitignore = get_gitignore(root) sources = set() for s in src: if s == "-": sources.add("-") continue path = Path(s).resolve() if not should_parse_path(path, exclude, extend_exclude, gitignore): continue if path.is_file(): sources.add(path) elif path.is_dir(): sources.update(iterate_dir((path,), exclude, extend_exclude, gitignore)) elif s == "-": sources.add(path) return sources<|fim_middle|>get_paths<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( indicators_or_incidents: Iterator[Union[IncidentType, IndicatorType]] ) -> Dict[str, List[str]]: """ Iterates through incident/indicator types in the pack, builds a dict of {layoutID: [List of incident/indicator type IDs]}. where the list of the incident/indicator type IDs are the list of all the incident/indicator types whom layout field has corresponding ID to the layoutID field. Returns: (Dict[str, List[str]): Dict of {layoutID: [List of incident/indicator type IDs]}. """ result: Dict[str, List[str]] = dict() for incident_or_indicator in indicators_or_incidents: layout_id = incident_or_indicator.get("layout") id_ = incident_or_indicator.get("id") if not layout_id or not id_: continue result[layout_id] = result.get(layout_id, []) + [id_] return result<|fim_middle|>layout_to_indicators_or_incidents_dict<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Allows to connect mesh input to the operator. Skin mesh region expected Parameters ---------- my_mesh : MeshedRegion Examples -------- >>> from ansys.dpf import core as dpf >>> op = dpf.operators.mapping.solid_to_skin() >>> op.inputs.mesh.connect(my_mesh) >>> # or >>> op.inputs.mesh(my_mesh) """ return self._mesh<|fim_middle|>mesh<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """ _tearDown_ Tear things down and go home """ self.testInit.clearDatabase() self.testInit.tearDownCouch() return<|fim_middle|>tear_down<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(state: Any, path: str, **kwargs): """Like torch.save but can save to other locations (e.g. s3:// , gs://). Args: state: State object to save path: Any path or url supported by fsspec. **kwargs: Keyword arguments forwarded to torch.save. """ with fsspec.open(path, "wb") as f: torch.save(state, f, **kwargs)<|fim_middle|>save_fsspec<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls): cls.test_db_name = f"{POSTGRES_DB}_testdb".lower() # Connect with database # NOTE: Not using context manager because it will start a transaction. # https://stackoverflow.com/a/68112827/3436502 con = psycopg2.connect( database=POSTGRES_DB, host=POSTGRES_HOST, password=POSTGRES_PASSWORD, port=POSTGRES_PORT, user=POSTGRES_USER, ) # Create a new db. Drop if already exists. # TODO: Don't drop here, just clear the data. # and DROP after all TestClass are done. con.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) with con.cursor() as cursor: cursor.execute(f"DROP DATABASE IF EXISTS {cls.test_db_name};") cursor.execute(f"CREATE DATABASE {cls.test_db_name};") con.commit() con.close() # Connect to newly created DB cls.db_con = psycopg2.connect( database=cls.test_db_name, host=POSTGRES_HOST, password=POSTGRES_PASSWORD, port=POSTGRES_PORT, user=POSTGRES_USER, ) # Setup newly created DB with open(os.path.join(BASE_DIR, "set_up_db.sql")) as fp: cls.__db_query(fp.read()) # XXX: Force overwrite main postgres DB helper methods. # (To use newly creatd test db) cls.original_auth_db_connection = auth.postgresDB._db_connection cls.original_auth__del__ = auth.postgresDB.__del__ auth.postgresDB._db_connection = cls.db_con auth.postgresDB.__del__ = cls.no_op cls.db = auth.postgresDB()<|fim_middle|>create_new_test_db<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(report_type, report_slug, user_id, domain, request_data): config = ReportConfig() # see ReportConfig.query_string() object.__setattr__(config, '_id', 'dummy') config.name = _("Emailed report") config.report_type = report_type config.report_slug = report_slug config.owner_id = user_id config.domain = domain GET = dict(six.iterlists(request_data['GET'])) exclude = ['startdate', 'enddate', 'subject', 'send_to_owner', 'notes', 'recipient_emails'] filters = {} for field in GET: if field == 'params': params = unquote(GET.get(field)[0]) params = params.split('&') for param in params: key, value = tuple(param.split('=', 1)) if key in filters: filters[key] = filters[key] + [value] if isinstance(filters[key], list) \ else [filters[key]] + [value] else: filters[key] = value if field not in exclude: filters[field] = GET.get(field) or filters[field] config.filters = filters if 'startdate' in config.filters and report_slug != 'project_health': config.start_date = datetime.strptime(config.filters['startdate'], '%Y-%m-%d').date() if 'enddate' in config.filters: config.date_range = 'range' config.end_date = datetime.strptime(config.filters['enddate'], '%Y-%m-%d').date() else: config.date_range = 'since' return config<|fim_middle|>create_config_for_email<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): get(self, **self.conan_data["sources"][self.version], strip_root=True)<|fim_middle|>source<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> None: """ The value specified as the prerelease is used in version comparisons. """ va = Version("whatever", 1, 0, 0, prerelease=1) vb = Version("whatever", 1, 0, 0, prerelease=2) self.assertTrue(va < vb) self.assertTrue(vb > va) self.assertTrue(va <= vb) self.assertTrue(vb >= va) self.assertTrue(va != vb) self.assertTrue(vb == Version("whatever", 1, 0, 0, prerelease=2)) self.assertTrue(va == va)<|fim_middle|>test_comparing_prereleases<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(parameters): """ Creates a Resilient Backpropagation optimizer from the PyTorch `torch.optim` module using the input parameters. Args: parameters (dict): A dictionary containing the input parameters for the optimizer. Returns: optimizer (torch.optim.Rprop): A Resilient Backpropagation optimizer. """ # Create the optimizer using the input parameters return Rprop( parameters["model_parameters"], lr=parameters.get("learning_rate"), etas=parameters["optimizer"].get("etas", (0.5, 1.2)), step_sizes=parameters["optimizer"].get("step_sizes", (1e-7, 50)), )<|fim_middle|>rprop<|file_separator|>
<|fim_prefix|>async def <|fim_suffix|>(conn: SAConnection, file_id: SimcoreS3FileID) -> bool: return bool( await conn.scalar( sa.select(sa.func.count()) .select_from(file_meta_data) .where(file_meta_data.c.file_id == file_id) ) == 1 )<|fim_middle|>exists<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Accessor for thread_id. Returns: The thread_id """ return self._thread_id<|fim_middle|>thread_id<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): if six.PY3: sys.stdout.buffer.write(self._pkcs12(self.options.password)) # pylint: disable=no-member else: print(self._pkcs12(self.options.password))<|fim_middle|>pkcs12<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, node: ast.Subscript) -> str: def is_simple_tuple(value: ast.expr) -> bool: return ( isinstance(value, ast.Tuple) and bool(value.elts) and not any(isinstance(elt, ast.Starred) for elt in value.elts) ) if is_simple_tuple(node.slice): elts = ", ".join(self.visit(e) for e in node.slice.elts) # type: ignore[attr-defined] return f"{self.visit(node.value)}[{elts}]" return f"{self.visit(node.value)}[{self.visit(node.slice)}]"<|fim_middle|>visit_subscript<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( ctx, vstudio_root=None, omnibus_base_dir="c:\\omnibus-ruby", arch="x64", major_version='7', debug=False, rebuild=False, ): if os.getenv("OMNIBUS_BASE_DIR"): omnibus_base_dir = os.getenv("OMNIBUS_BASE_DIR") if rebuild: clean(ctx, arch, debug) build(ctx, vstudio_root, arch, major_version, debug) for file in glob.glob(BIN_PATH + "\\customaction*"): shutil.copy2( file, f"{omnibus_base_dir}\\src\\datadog-agent\\src\\github.com\\DataDog\\datadog-agent\\bin\\agent\\{os.path.basename(file)}", ) cmd = "omnibus\\resources\\agent\\msi\\localbuild\\rebuild.bat" res = ctx.run(cmd, warn=True) if res.exited is None or res.exited > 0: print( color_message( f"Failed to run \"{cmd}\"", "orange", ) )<|fim_middle|>package<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): data = _form_data() form = SetUpDemoOrgDetails(data=data) previous_step = "identity" current_step = "demo.org_details" next_step = "demo.primary_purpose" if not _validate_fields_present(current_step, data): return redirect(url_for(".contact")) if request.method == "POST" and form.validate_on_submit(): session[SESSION_FORM_KEY] = form.data return redirect(url_for(".demo_primary_purpose")) return render_template( "views/contact/demo-org-details.html", form=form, url=url_for(".demo_organization_details"), current_step=current_step, next_step=next_step, previous_step=previous_step, step_hint=1, total_steps_hint=2, **_labels(previous_step, current_step, form.support_type.data), )<|fim_middle|>demo_organization_details<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): args = build_argparser().parse_args() core = Core() model = core.read_model(args.model) input_tensor_name = 'input_1:0' output_candidates = [node.get_any_name() for node in model.outputs if node.shape[3] == 1] if len(output_candidates) != 1: raise RuntimeError("The model expects output tensor with 1 channel") output_tensor_name = output_candidates[0] compiled_model = core.compile_model(model, args.device) infer_request = compiled_model.create_infer_request() # Hybrid-CS-Model-MRI/Data/stats_fs_unet_norm_20.npy stats = np.array([2.20295299e-01, 1.11048916e+03], dtype=np.float32) # Hybrid-CS-Model-MRI/Data/sampling_mask_20perc.npy var_sampling_mask = np.load(args.pattern) logger.info(f'Sampling ratio: {1.0 - var_sampling_mask.sum() / var_sampling_mask.size}') data = np.load(args.input) num_slices, height, width = data.shape[0], data.shape[1], data.shape[2] pred = np.zeros((num_slices, height, width), dtype=np.uint8) data /= np.sqrt(height * width) logger.info('Compute...') start = time.time() for slice_id, kspace in enumerate(data): kspace = kspace.copy() # Apply sampling kspace[var_sampling_mask] = 0 kspace = (kspace - stats[0]) / stats[1] # Forward through network input = np.expand_dims(kspace.transpose(2, 0, 1), axis=0) infer_request.infer(inputs={input_tensor_name: input}) output = infer_request.get_tensor(output_tensor_name).data[:] output = output.reshape(height, width) # Save predictions pred[slice_id] = cv.normalize(output, dst=None, alpha=255, beta=0, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) logger.info('Elapsed time: %.1f seconds' % (time.time() - start)) WIN_NAME = 'MRI reconstruction with OpenVINO' def callback(slice_id): kspace = data[slice_id] img = kspace_to_image(kspace) kspace[var_sampling_mask] = 0 masked = kspace_to_image(kspace) rec = pred[slice_id] # Add a header border_size = 20 render = cv.hconcat((img, masked, rec)) render = cv.copyMakeBorder(render, border_size, 0, 0, 0, cv.BORDER_CONSTANT, value=255) cv.putText(render, 'Original', (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, color=0) cv.putText(render, 'Sampled (PSNR %.1f)' % cv.PSNR(img, masked), (width, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, color=0) cv.putText(render, 'Reconstructed (PSNR %.1f)' % cv.PSNR(img, rec), (width*2, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, color=0) cv.imshow(WIN_NAME, render) cv.waitKey(1) if not args.no_show: cv.namedWindow(WIN_NAME, cv.WINDOW_AUTOSIZE) cv.createTrackbar('Slice', WIN_NAME, num_slices // 2, num_slices - 1, callback) callback(num_slices // 2) # Trigger initial visualization cv.waitKey()<|fim_middle|>main<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(argv): output = [] for part in argv: if len(part) > 1 and part[0] == '-' and part[1] != '-': for c in part[1:]: output.append('-' + c) else: output.append(part) return output<|fim_middle|>split_joined_options<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(expr_text, valid_variables): """parses the simple criteria expression syntax used in dependency specifications. Returns an ExprNode instance that can be evaluated like this: ``` expr = parse_expr("os=windows") ok = expr.eval({ "os": "windows" }) ``` Whitespace is allowed between tokens. The following terms are recognized: KEY = VALUE # Evaluates to True if ctx[KEY] == VALUE not(EXPR) # Evaluates to True if EXPR evaluates to False # and vice versa all(EXPR1, EXPR2, ...) # Evaluates True if all of the supplied # EXPR's also evaluate True any(EXPR1, EXPR2, ...) # Evaluates True if any of the supplied # EXPR's also evaluate True, False if # none of them evaluated true. """ p = Parser(expr_text, valid_variables) return p.parse()<|fim_middle|>parse_expr<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: return pulumi.get(self, "api_key_id")<|fim_middle|>api_key_id<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(value): """ Convert a module name or string with underscores and periods to camel case. :param value: the string to convert :type value: str :returns: the value converted to camel case. """ return ''.join(x.capitalize() if x else '_' for x in re.split('[._]+', value))<|fim_middle|>camelcase<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, data): """Remove a byte array from the set.""" data_hash = hashlib.sha256(data).digest() self.denominator = (self.denominator * data_to_num3072(data_hash)) % self.MODULUS<|fim_middle|>remove<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(monkeypatch): """Mock the RecoveryDialog in the editor plugin.""" mock = MagicMock() monkeypatch.setattr('spyder.plugins.editor.utils.autosave.RecoveryDialog', mock) return mock<|fim_middle|>mock_recovery_dialog<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): best = get_best_language("fr-FR, es;q=0.8") self.assertEqual("fr", best)<|fim_middle|>test_fr_fr<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ The Elastic deployment status. """ return pulumi.get(self, "status")<|fim_middle|>status<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): return getattr(self.dataset, "supports_prefetch", False)<|fim_middle|>supports_prefetch<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(spark_session, tmp_path): df = pd.DataFrame([[1, 2, 3], [1, 2, 3]], columns=["a", "b", "c"]) df_spark = spark_session.createDataFrame(df) df_spark.write.format("delta").mode("overwrite").saveAsTable( "default.temp_delta_too_many_inputs", path=tmp_path ) with pytest.raises(MlflowException, match='Must specify exactly one of "path" or "table_name"'): DeltaDatasetSource(path=tmp_path, delta_table_name="temp_delta_too_many_inputs")<|fim_middle|>test_delta_dataset_source_too_many_inputs<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(request): """ Unset read flag for a list of feedback items :param request: Object representing the user call :type request: ~django.http.HttpRequest :return: A redirection to the admin feedback list :rtype: ~django.http.HttpResponseRedirect """ selected_ids = request.POST.getlist("selected_ids[]") selected_feedback = Feedback.objects.filter(id__in=selected_ids, is_technical=True) for feedback in selected_feedback: invalidate_obj(feedback) if hasattr(feedback, "feedback_ptr"): invalidate_obj(feedback.feedback_ptr) selected_feedback.update(read_by=None) logger.debug( "Feedback objects %r marked as unread by %r", selected_ids, request.user ) messages.success(request, _("Feedback was successfully marked as unread")) return redirect("admin_feedback")<|fim_middle|>mark_admin_feedback_as_unread<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls): # TODO: Use TestCase.setUpTestData() instead in Django 1.8+. super().METHOD_NAME() cls.calendar = Calendar.objects.create(url=EVENTS_CALENDAR_URL, slug='python-events')<|fim_middle|>set_up_class<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(view_id, name, args): ...<|fim_middle|>on_text_command<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls, data): image = data.get("image") media_url = data.get("media_url") if not image and not media_url: raise ValidationError( { "input": ValidationError( "Image or external URL is required.", code=ProductErrorCode.REQUIRED.value, ) } ) if image and media_url: raise ValidationError( { "input": ValidationError( "Either image or external URL is required.", code=ProductErrorCode.DUPLICATED_INPUT_ITEM.value, ) } )<|fim_middle|>validate_input<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, requestParameters): return None<|fim_middle|>get_authentication_method_claims<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(**options): with fs.cd(options["project_dir"]): platform = None project_options = {} try: project_options = get_project_options(options["environment"]) if "platform" in project_options: platform = PlatformFactory.new(project_options["platform"]) except NotPlatformIOProjectError: pass options = apply_project_monitor_options(options, project_options) register_filters(platform=platform, options=options) options["port"] = SerialPortFinder( board_config=platform.board_config(project_options.get("board")) if platform and project_options.get("board") else None, upload_protocol=project_options.get("upload_protocol"), ensure_ready=True, ).find(initial_port=options["port"]) if options["menu_char"] == options["exit_char"]: raise exception.UserSideException( "--exit-char can not be the same as --menu-char" ) # check for unknown filters if options["filters"]: known_filters = set(get_available_filters()) unknown_filters = set(options["filters"]) - known_filters if unknown_filters: options["filters"] = list(known_filters & set(options["filters"])) click.secho( ("Warning! Skipping unknown filters `%s`. Known filters are `%s`") % (", ".join(unknown_filters), ", ".join(sorted(known_filters))), fg="yellow", ) start_terminal(options)<|fim_middle|>device_monitor_cmd<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(logits): """Performs the sparsemax operation when axis=-1.""" shape_op = tf.shape(logits) obs = tf.math.reduce_prod(shape_op[:-1]) dims = shape_op[-1] # In the paper, they call the logits z. # The mean(logits) can be substracted from logits to make the algorithm # more numerically stable. the instability in this algorithm comes mostly # from the z_cumsum. Substacting the mean will cause z_cumsum to be close # to zero. However, in practise the numerical instability issues are very # minor and substacting the mean causes extra issues with inf and nan # input. # Reshape to [obs, dims] as it is almost free and means the remanining # code doesn't need to worry about the rank. z = tf.reshape(logits, [obs, dims]) # sort z z_sorted, _ = tf.nn.top_k(z, k=dims) # calculate k(z) z_cumsum = tf.math.cumsum(z_sorted, axis=-1) k = tf.range(1, tf.cast(dims, logits.dtype) + 1, dtype=logits.dtype) z_check = 1 + k * z_sorted > z_cumsum # because the z_check vector is always [1,1,...1,0,0,...0] finding the # (index + 1) of the last `1` is the same as just summing the number of 1. k_z = tf.math.reduce_sum(tf.cast(z_check, tf.int32), axis=-1) # calculate tau(z) # If there are inf values or all values are -inf, the k_z will be zero, # this is mathematically invalid and will also cause the gather_nd to fail. # Prevent this issue for now by setting k_z = 1 if k_z = 0, this is then # fixed later (see p_safe) by returning p = nan. This results in the same # behavior as softmax. k_z_safe = tf.math.maximum(k_z, 1) indices = tf.stack([tf.range(0, obs), tf.reshape(k_z_safe, [-1]) - 1], axis=1) tau_sum = tf.gather_nd(z_cumsum, indices) tau_z = (tau_sum - 1) / tf.cast(k_z, logits.dtype) # calculate p p = tf.math.maximum(tf.cast(0, logits.dtype), z - tf.expand_dims(tau_z, -1)) # If k_z = 0 or if z = nan, then the input is invalid p_safe = tf.where( tf.expand_dims( tf.math.logical_or(tf.math.equal(k_z, 0), tf.math.is_nan(z_cumsum[:, -1])), axis=-1, ), tf.fill([obs, dims], tf.cast(float("nan"), logits.dtype)), p, ) # Reshape back to original size p_safe = tf.reshape(p_safe, shape_op) return p_safe<|fim_middle|>compute_2d_sparsemax<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ The name of the resource. """ return pulumi.get(self, "name")<|fim_middle|>name<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): env = db.DBEnv() # check for crash fixed when db_home is used before open() self.assertTrue(env.db_home is None) env.open(self.homeDir, db.DB_CREATE) if sys.version_info[0] < 3 : self.assertEqual(self.homeDir, env.db_home) else : self.assertEqual(bytes(self.homeDir, "ascii"), env.db_home)<|fim_middle|>test02_db_home<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( chassis_id=None, community=None, contact=None, location=None, test=False, commit=True, **kwargs ): # pylint: disable=unused-argument """ Updates the SNMP configuration. :param chassis_id: (optional) Chassis ID :param community: (optional) A dictionary having the following optional keys: - acl (if any policy / ACL need to be set) - mode: rw or ro. Default: ro :param contact: Contact details :param location: Location :param test: Dry run? If set as True, will apply the config, discard and return the changes. Default: False :param commit: Commit? (default: True) Sometimes it is not needed to commit the config immediately after loading the changes. E.g.: a state loads a couple of parts (add / remove / update) and would not be optimal to commit after each operation. Also, from the CLI when the user needs to apply the similar changes before committing, can specify commit=False and will not discard the config. :raise MergeConfigException: If there is an error on the configuration sent. :return a dictionary having the following keys: - result (bool): if the config was applied successfully. It is `False` only in case of failure. In case there are no changes to be applied and successfully performs all operations it is still `True` and so will be the `already_configured` flag (example below) - comment (str): a message for the user - already_configured (bool): flag to check if there were no changes applied - diff (str): returns the config changes applied CLI Example: .. code-block:: bash salt 'edge01.lon01' snmp.update_config location="Greenwich, UK" test=True Output example (for the CLI example above): .. code-block:: yaml edge01.lon01: ---------- already_configured: False comment: Configuration discarded. diff: [edit snmp] - location "London, UK"; + location "Greenwich, UK"; result: True """ dic = {"template_name": "snmp_config", "test": test, "commit": commit} if chassis_id: dic["chassis_id"] = chassis_id if community: dic["community"] = community if contact: dic["contact"] = contact if location: dic["location"] = location dic["inherit_napalm_device"] = napalm_device # pylint: disable=undefined-variable return __salt__["net.load_template"](**dic)<|fim_middle|>update_config<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, path): pass<|fim_middle|>load_checkpoint<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # SAME TEST AS OTHER SPLITTERS X = pd.DataFrame(np.random.uniform(low=0.0, high=100, size=(25, 10))) y = pd.Series(np.random.uniform(low=0.0, high=100, size=(25,))) splitter = LeaveOutTwinCV(threshold=0, auto_threshold=True, parallel_run=parallel_run) model = SklearnModel(model='LinearRegression') splitter.evaluate(X=X, y=y, models=[model], groups=None, savepath=os.getcwd(), plots=list()) for d in splitter.splitdirs: self.assertTrue(os.path.exists(d)) shutil.rmtree(d) # Setup to check exact twins splitter = LeaveOutTwinCV(threshold=0, auto_threshold=True) model = SklearnModel(model='LinearRegression') n_datapoints = 25 n_features = 5 # CASE 1: every datapoint is an exact twin, twins in both X and y X = pd.DataFrame(np.random.choice(range(-n_features*n_datapoints, n_features*n_datapoints), size=(n_datapoints, n_features), replace=False)) # This generates random numbers without repetitions # Pull out last row to be y y = X[n_features-1] X.drop(columns=n_features-1, inplace=True) # Create duplicates X = X.append(X.copy(), ignore_index=True) y = y.append(y.copy(), ignore_index=True) ret = splitter.split(X, y) numTwins = n_datapoints * 2 for r in ret: self.assertTrue(len(r[0]) == numTwins or len(r[1]) == numTwins) # check that everything was counted as a twin in each split # CASE 2: half datapoint is an exact twin, twins in both X and y X = pd.DataFrame(np.random.choice(range(-n_features*n_datapoints, n_features*n_datapoints), size=(n_datapoints, n_features), replace=False)) y = X[n_features-1] X.drop(columns=n_features-1, inplace=True) X = X.append(X[0:int(n_datapoints/2)].copy(), ignore_index=True) y = y.append(y[0:int(n_datapoints/2)].copy(), ignore_index=True) ret = splitter.split(X, y) numTwins = int(n_datapoints/2)*2 for r in ret: self.assertTrue(len(r[0]) == numTwins or len(r[1]) == numTwins) # check correct number of twins # Setup to check twins generated by sci kit learn blobs splitter = LeaveOutTwinCV(threshold=2, debug=False, ceiling=1, auto_threshold=True) model = SklearnModel(model='LinearRegression') n_datapoints = 25 n_features = 5 cen = [] for i in range(3): for j in range(3): cen.append((i*10, j*10)) v = sk.make_blobs(n_samples=100, n_features=2, centers=cen, cluster_std=.1, shuffle=True, random_state=None) X = pd.DataFrame(v[0]) y = pd.DataFrame(np.random.choice(range(-500, 500), size=(100, 1), replace=False)) ret = splitter.split(X, y) numTwins = 100 for r in ret: self.assertTrue(len(r[0]) == numTwins or len(r[1]) == numTwins) # plt.scatter(v[0][:, 0], v[0][:, 1], c=v[1]) # plt.savefig("./test.png") # self.assertTrue(False, msg="In Progress") return<|fim_middle|>test_leaveouttwins<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): self.spec = {"modules": {"PlanetPhysicalModel": "PlanetPhysicalModel"}} self.kscrit = 0.01 self.nsamp = 10000<|fim_middle|>set_up<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Returns text detected in the photo (macOS 13+ / Photos 8+ only)""" if self._photo._db._photos_ver < 8: return [] return self._get_text_for_category(self._categories.DETECTED_TEXT)<|fim_middle|>detected_text<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request<|fim_middle|>prepare_request<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, images): out_cls_shape = (images.shape[0], self.num_classes * self.num_anchors) + images.shape[-self.spatial_dims :] out_box_reg_shape = (images.shape[0], 2 * self.spatial_dims * self.num_anchors) + images.shape[ -self.spatial_dims : ] return {self.cls_key: [torch.randn(out_cls_shape)], self.box_reg_key: [torch.randn(out_box_reg_shape)]}<|fim_middle|>forward<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(salt_ssh_cli, grains_filter_by_default): """ test grains.filter_by during template rendering with salt-ssh and default parameter """ ret = salt_ssh_cli.run("state.show_sls", "grains_filter_by_default") assert ret.returncode == 0 assert ret.data rendered = ret.data["grains-filter-by"]["file"][1]["context"] assert "has_common" in rendered assert "merged" in rendered assert "defaulted" in rendered<|fim_middle|>test_grains_filter_by_default_jinja<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(node: Node, params: QueryStateDict, result: Result) -> None: result.second_num = int(parse_num(node, result._canonical))<|fim_middle|>q_counting_second_number<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): opts = self.parser.parse_main_args(['-h']) self.assertTrue(opts.help)<|fim_middle|>test_help_option_set<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(root: Path, file_list: Iterable[str]) -> List[ElfFile]: """Return a list of ELF files from file_list prepended with root. :param str root: the root directory from where the file_list is generated. :param file_list: a list of file in root. :returns: a list of ElfFile objects. """ elf_files: Set[ElfFile] = set() for part_file in file_list: # Filter out object (*.o) files-- we only care about binaries. if part_file.endswith(".o"): continue # No need to crawl links-- the original should be here, too. path = Path(root, part_file) if os.path.islink(path): emit.debug(f"Skipped link {path!r} while finding dependencies") continue # Ignore if file does not have ELF header. if not ElfFile.is_elf(path): continue try: elf_file = ElfFile(path=path) except ELFError: # Ignore invalid ELF files. continue except errors.CorruptedElfFile as exception: # Log if the ELF file seems corrupted emit.message(str(exception)) continue # If ELF has dynamic symbols, add it. if elf_file.needed: elf_files.add(elf_file) return sorted(elf_files, key=lambda x: x.path)<|fim_middle|>get_elf_files_from_list<|file_separator|>
<|fim_prefix|>f <|fim_suffix|>(self):<|fim_middle|>test_sdf_with_sdf_initiated_checkpointing<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): sess = fixture_session() pa = with_polymorphic(Person, [Engineer]) pa_alias = with_polymorphic(Person, [Engineer], aliased=True) eq_( [ row for row in sess.query( pa.name, pa.Engineer.primary_language, pa_alias.name, pa_alias.Engineer.primary_language, ) .join( pa_alias, or_( pa.Engineer.primary_language == pa_alias.Engineer.primary_language, and_( pa.Engineer.primary_language == None, # noqa pa_alias.Engineer.primary_language == None, pa.person_id > pa_alias.person_id, ), ), ) .order_by(pa.name, pa_alias.name) ], [ ("dilbert", "java", "dilbert", "java"), ("dogbert", None, "pointy haired boss", None), ("vlad", "cobol", "vlad", "cobol"), ("wally", "c++", "wally", "c++"), ], )<|fim_middle|>test_join_to_join_columns<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ Serialize to a JSON string """ return json.dumps(self._values, cls=_MetricsJSONEncoder)<|fim_middle|>to_json<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, ip, port, timeout=0.001): """ Sets up the send socket for the actor. """ self.send_socket = self.context.socket(PUB) # bind to the socket according to the ip and port self.address = "tcp://{}:{}".format(ip, port) self.send_socket.bind(self.address) time.sleep(timeout)<|fim_middle|>set_send_socket<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, text_name, data): texts = bpy.data.texts.items() exists = False for t in texts: if bpy.data.texts[t[0]].name == text_name: exists = True break if not exists: bpy.data.texts.new(text_name) bpy.data.texts[text_name].clear() bpy.data.texts[text_name].write(data)<|fim_middle|>write_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, translations, delays, scores): if self.output_files["text"] is not None: with open(self.output_files["text"], "w") as f: for line in translations: f.write(line + "\n") if self.output_files["delay"] is not None: with open(self.output_files["delay"], "w") as f: for i, delay in enumerate(delays): f.write( json.dumps({"src_len": self.src_lengths()[i], "delays": delay}) + "\n" ) with open(self.output_files["scores"], "w") as f: for key, value in scores.items(): f.write(f"{key}, {value}\n")<|fim_middle|>write_results_to_file<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Accessor for message type.""" return DIDCommPrefix.qualify_current(V20CredPreview.Meta.message_type)<|fim_middle|>type<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>( module=None ): comm = MPI.COMM_WORLD fmod = epyccel( pmod, comm=comm ) if module: module.comm = comm module.fmod = fmod else: globals().update( locals() )<|fim_middle|>setup_module<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): # collect commands output only if the openstack-heat-api service # is running in_container = self.container_exists('.*heat_api') if self.is_service_running(self.service_name) or in_container: heat_config = "" # if containerized we need to pass the config to the cont. if in_container: heat_config = "--config-dir " + self.var_puppet_gen + \ "_api/etc/heat/" self.add_cmd_output( "heat-manage " + heat_config + " db_version", suggest_filename="heat_db_version" ) vars_all = [p in os.environ for p in [ 'OS_USERNAME', 'OS_PASSWORD']] vars_any = [p in os.environ for p in [ 'OS_TENANT_NAME', 'OS_PROJECT_NAME']] if not (all(vars_all) and any(vars_any)): self.soslog.warning("Not all environment variables set. " "Source the environment file for the user " "intended to connect to the OpenStack " "environment.") else: self.add_cmd_output("openstack stack list") if self.get_option("all_logs"): self.add_copy_spec([ "/var/log/heat/", ]) else: self.add_copy_spec([ "/var/log/heat/*.log", ]) self.add_copy_spec([ "/etc/heat/", self.var_puppet_gen + "/etc/heat/", self.var_puppet_gen + "/etc/my.cnf.d/tripleo.cnf", self.var_puppet_gen + "_api/etc/heat/", self.var_puppet_gen + "_api/etc/httpd/conf/", self.var_puppet_gen + "_api/etc/httpd/conf.d/", self.var_puppet_gen + "_api/etc/httpd/conf.modules.d/*.conf", self.var_puppet_gen + "_api/var/spool/cron/heat", self.var_puppet_gen + "_api_cfn/etc/heat/", self.var_puppet_gen + "_api_cfn/etc/httpd/conf/", self.var_puppet_gen + "_api_cfn/etc/httpd/conf.d/", self.var_puppet_gen + "_api_cfn/etc/httpd/conf.modules.d/*.conf", self.var_puppet_gen + "_api_cfn/var/spool/cron/heat", ]) self.add_file_tags({ "/var/log/heat/heat-engine.log": "heat_engine_log" })<|fim_middle|>setup<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")<|fim_middle|>type<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(text): """ >>> get_desc_from_manual_page_line("r.example - This is a description<br>") 'This is a description' """ # this matches the dash at the beginning text = text.split(" - ", 1)[1] # this matches a tag at the end # (supposing no tags in the description and < represented as &lt; text = text.split("<", 1)[0] return text<|fim_middle|>get_desc_from_manual_page_line<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, model_instances): # Include records needed by the initial value of the field plus any added # via the extra_prefetch property. prefetch_set = set(model_instances) if model_instances else set() prefetch_set = prefetch_set.union(set(self.extra_prefetch)) # eliminate duplicates return sorted( select2_id_name(list(prefetch_set)), key=lambda item: unidecode.unidecode(item['text']), )<|fim_middle|>make_select2_data<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, grant, oauth_request): grant.validate_token_request(oauth_request)<|fim_middle|>test_does_not_raise_for_valid_input<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(location): return (filetype.is_file(location) and fileutils.file_name(location).lower() == '+compact_manifest')<|fim_middle|>is_freebsd_manifest<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(string_items): env2 = Environment(autoescape=True, enable_async=True) tmpl = env2.from_string('{{ ["<foo>", "<span>foo</span>"|safe]|join }}') assert tmpl.render(items=string_items) == "&lt;foo&gt;<span>foo</span>"<|fim_middle|>test_join_string_list<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(): file = BytesIO() image = Image.new('RGBA', size=(50, 50), color=(155, 0, 0)) image.save(file, 'png') file.name = 'test.png' file.seek(0) return file<|fim_middle|>create_test_image<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(vector, p=2): """ Get p-norm of this vector Parameters ---------- vector : numpy array, Input vector p: int, p-norm """ if p < 1: raise ValueError('p should larger or equal to 1 in p-norm') if type(vector).__name__ != 'ndarray': vector = np.array(vector) return np.linalg.METHOD_NAME(vector, p)<|fim_middle|>norm<|file_separator|>
<|fim_prefix|> <|fim_suffix|>(self, message_type):<|fim_middle|>on_health_check<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self,) -> List[Dict]: ''' Lists the available policies. Returns: List[Dict]: List of policy objects. Example: >>> for policy in nessus.policies.list(): ... print(policy) ''' return self._get()['policies']<|fim_middle|>list<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(what): return "\n".join(sorted(what.split("\n")))<|fim_middle|>sort<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): rd = fixed.SchemaDecoder(['comment', 'start', 'length', 'column']) (column, start, length) = rd(['This is a comment', '0', '1', 'column_name']) self.assertEqual(False, rd.one_based) self.assertEqual('column_name', column) self.assertEqual(0, start) self.assertEqual(1, length) (column, start, length) = rd(['This is another comment', '1', '5', 'column_name2']) self.assertEqual(False, rd.one_based) self.assertEqual('column_name2', column) self.assertEqual(1, start) self.assertEqual(5, length) (column, start, length) = rd(['yet another comment', '9', '14', 'column_name3']) self.assertEqual(False, rd.one_based) self.assertEqual('column_name3', column) self.assertEqual(9, start) self.assertEqual(14, length)<|fim_middle|>test_schema_decoder_in_action<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> str: return pulumi.get(self, "zone")<|fim_middle|>zone<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): """Clean up the test environment"""<|fim_middle|>tear_down<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(row, state, tap_stream_id, replication_key_name): replication_key_value = row.get(replication_key_name) if replication_key_value: replication_key_type = replication_key_value.__class__.__name__ replication_key_value_bookmark = common.class_to_string(replication_key_value, replication_key_type) state = singer.write_bookmark(state, tap_stream_id, 'replication_key_value', replication_key_value_bookmark) state = singer.write_bookmark(state, tap_stream_id, 'replication_key_type', replication_key_type)<|fim_middle|>update_bookmark<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(cls): """ Decorator for TestCase classes which copies data from Postgres into an in-memory MatrixStore instance. This allows us to re-use database fixtures, and the tests designed to work with those fixtures, to test MatrixStore-powered code. """ # These methods have been decorated with `@classmethod` so we need to use # `__func__` to get a reference to the original, undecorated method decorated_setUpClass = cls.setUpClass.__func__ decorated_tearDownClass = cls.tearDownClass.__func__ def setUpClass(inner_cls): decorated_setUpClass(inner_cls) matrixstore = matrixstore_from_postgres() stop_patching = patch_global_matrixstore(matrixstore) # Have to wrap this in a staticmethod decorator otherwise Python thinks # we're trying to create a new class method inner_cls._stop_patching = staticmethod(stop_patching) new_settings = override_settings( CACHES={ "default": {"BACKEND": "django.core.cache.backends.dummy.DummyCache"} } ) new_settings.enable() inner_cls._new_settings = new_settings def tearDownClass(inner_cls): inner_cls._stop_patching() inner_cls._new_settings.disable() decorated_tearDownClass(inner_cls) cls.setUpClass = classmethod(setUpClass) cls.tearDownClass = classmethod(tearDownClass) return cls<|fim_middle|>copy_fixtures_to_matrixstore<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, key, person, advisor, created, delete_old_file=False, offset=0): """ get_or_create for this usage """ created = created + datetime.timedelta(minutes=offset) # look for previously-imported version of this note, so we're roughly idempotent oldnotes = AdvisorNote.objects.filter(student=person, advisor=advisor, created_at=created, unit=self.unit) oldnotes = [n for n in oldnotes if 'import_key' in n.config and n.config['import_key'] == key] if oldnotes: note = oldnotes[0] if delete_old_file and note.file_attachment and os.path.isfile(note.file_attachment.path): # let file be recreated below os.remove(note.file_attachment.path) note.file_attachment = None note.file_mediatype = None else: note = AdvisorNote(student=person, advisor=advisor, created_at=created, unit=self.unit) note.config['import_key'] = key note.config['src'] = 'crim_import' return note, bool(oldnotes)<|fim_middle|>get_advisornote<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self): l = [] fun = lambda x: l.append(x) scheduler = sched.scheduler(time.time, time.sleep) for x in [10, 9, 8, 7, 6]: scheduler.enter(x, 1, fun, (x,)) scheduler.run(blocking=False) self.assertEqual(l, [])<|fim_middle|>test_run_non_blocking<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(create_files_in_directory): class TestClass(spm.SPMCommand): _jobtype = "jobtype" _jobname = "jobname" input_spec = spm.SPMCommandInputSpec dc = TestClass() # dc = derived_class filelist, outdir = create_files_in_directory contents = {"contents": [1, 2, 3, 4]} script = dc._make_matlab_command([contents]) assert "jobs{1}.spm.jobtype.jobname.contents(3) = 3;" in script dc.inputs.use_v8struct = False script = dc._make_matlab_command([contents]) assert "jobs{1}.jobtype{1}.jobname{1}.contents(3) = 3;" in script<|fim_middle|>test_make_matlab_command<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self, fl_ctx: FLContext): self._phase = "init" self.shareable_gen = self._engine.get_component(self.shareable_generator_id) if not isinstance(self.shareable_gen, ShareableGenerator): self.system_panic("shareable_gen should be an instance of ShareableGenerator.", fl_ctx) self.persistor = self._engine.get_component(self.persistor_id) if not isinstance(self.persistor, LearnablePersistor): self.system_panic("persistor should be an instance of LearnablePersistor.", fl_ctx) self._global_model = self.persistor.load(fl_ctx) fl_ctx.set_prop(AppConstants.GLOBAL_MODEL, self._global_model, private=True, sticky=True)<|fim_middle|>start_controller<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>() -> None: app_iter = self._app( environ, t.cast("StartResponse", catching_start_response) ) response_body.extend(app_iter) if hasattr(app_iter, "close"): app_iter.close()<|fim_middle|>runapp<|file_separator|>
<|fim_prefix|>def <|fim_suffix|>(self) -> Sequence['outputs.DeploymentResponse']: """ The Deployment items on this page """ return pulumi.get(self, "value")<|fim_middle|>value<|file_separator|>