prompt
stringlengths 4
181
| completion
stringlengths 2
232
|
---|---|
bprocess run command 'start command flags arguments' through the shell | subprocess.call('start command -flags arguments', shell=True) |
mmand 'command flags arguments &' on command line tools as separate processe | subprocess.call('command -flags arguments &', shell=True) |
eplace percentencoded code in request `f` to their singlecharacter equivale | f = urllib.request.urlopen(url, urllib.parse.unquote(urllib.parse.urlencode(params))) |
emove white spaces from the end of string xyz | """ xyz """.rstrip() |
Replace special characters in utf8 encoded string `s` using the %xx escape | urllib.parse.quote(s.encode('utf-8')) |
URL encoding in pytho | urllib.parse.quote_plus('a b') |
Create an array containing the conversion of string '100110' into separate eleme | np.array(map(int, '100110')) |
vert a string 'mystr' to numpy array of integer value | print(np.array(list(mystr), dtype=int)) |
vert an rgb image 'messi5.jpg' into grayscale `img` | img = cv2.imread('messi5.jpg', 0) |
list `lst` in descending order based on the second item of each tuple in | lst.sort(key=lambda x: x[2], reverse=True) |
w to find all occurrences of an element in a list? | indices = [i for i, x in enumerate(my_list) if x == 'whatever'] |
execute shell command 'grep r PASSED *.log | sort u | wc l' with a | pipe in | subprocess.call('grep -r PASSED *.log | sort -u | wc -l', shell=True) |
he number of trailing question marks in string `my_text` | len(my_text) - len(my_text.rstrip('?')) |
emove dollar sign '$' from second to last column data in dataframe 'df' and convert the data into flo | df[df.columns[1:]].replace('[\\$,]', '', regex=True).astype(float) |
Merge column 'word' in dataframe `df2` with column 'word' on dataframe `df1` | df1.merge(df2, how='left', on='word') |
witch positions of each two adjacent characters in string `a` | print(''.join(''.join(i) for i in zip(a2, a1)) + a[-1] if len(a) % 2 else '') |
ke a window `root` jump to the fro | root.attributes('-topmost', True) |
ke a window `root` jump to the fro | root.lift() |
Convert list of booleans `walls` into a hex string | hex(int(''.join([str(int(b)) for b in walls]), 2)) |
vert the sum of list `walls` into a hex presentatio | hex(sum(b << i for i, b in enumerate(reversed(walls)))) |
print the string `Total score for`, the value of the variable `name`, the string `is` and the value of the variable `score` in one print call. | print(('Total score for', name, 'is', score)) |
print multiple arguments 'name' and 'score'. | print('Total score for {} is {}'.format(name, score)) |
print a string using multiple strings `name` and `score` | print('Total score for %s is %s ' % (name, score)) |
print string including multiple variables `name` and `score` | print(('Total score for', name, 'is', score)) |
erve a static html page 'your_template.html' at the root of a django projec | url('^$', TemplateView.as_view(template_name='your_template.html')) |
e a list of values `[3,6]` to select rows from a pandas dataframe `df`'s column 'A' | df[df['A'].isin([3, 6])] |
w to get the concrete class name as a string? | instance.__class__.__name__ |
execute python code `myscript.py` in a virtualenv `/path/to/my/venv` from matlab | system('/path/to/my/venv/bin/python myscript.py') |
django return a QuerySet list containing the values of field 'eng_name' in model `Employees` | Employees.objects.values_list('eng_name', flat=True) |
find all digits in string '6,7)' and put them to a l | re.findall('\\d|\\d,\\d\\)', '6,7)') |
prompt string 'Press Enter to continue...' to the console | input('Press Enter to continue...') |
print string ABC as hex literal | """ABC""".encode('hex') |
ert a new field 'geolocCountry' on an existing document 'b' using pymongo | db.Doc.update({'_id': b['_id']}, {'$set': {'geolocCountry': myGeolocCountry}}) |
Write a regex statement to match 'lol' to 'lolllll'. | re.sub('l+', 'l', 'lollll') |
BeautifulSoup find all 'tr' elements in HTML string `soup` at the five stride starting from the fourth eleme | rows = soup.findAll('tr')[4::5] |
everse all xaxis points in pyplo | plt.gca().invert_xaxis() |
everse yaxis in pyplo | plt.gca().invert_yaxis() |
ack two dataframes next to each other in pand | pd.concat([GOOG, AAPL], keys=['GOOG', 'AAPL'], axis=1) |
eate a json response `response_data` | return HttpResponse(json.dumps(response_data), content_type='application/json') |
decode escape sequences in string `myString` | myString.decode('string_escape') |
alculate the md5 checksum of a file named 'filename.exe' | hashlib.md5(open('filename.exe', 'rb').read()).hexdigest() |
Find all keys from a dictionary `d` whose values are `desired_value` | [k for k, v in d.items() if v == desired_value] |
eate a set containing all keys' names from dictionary `LoD` | {k for d in LoD for k in list(d.keys())} |
eate a set containing all keys names from list of dictionaries `LoD` | set([i for s in [list(d.keys()) for d in LoD] for i in s]) |
extract all keys from a list of dictionaries `LoD` | [i for s in [list(d.keys()) for d in LoD] for i in s] |
pack keys and values of a dictionary `d` into two l | keys, values = zip(*list(d.items())) |
vert a string `s` containing a decimal to an integer | int(Decimal(s)) |
Convert a string to integer with decimal in Pytho | int(s.split('.')[0]) |
heck if array `b` contains all elements of array `a` | numpy.in1d(b, a).all() |
py: check if array 'a' contains all the numbers in array 'b'. | numpy.array([(x in a) for x in b]) |
Draw node labels `labels` on networkx graph `G ` at position `pos` | networkx.draw_networkx_labels(G, pos, labels) |
ke a rowbyrow copy `y` of array `x` | y = [row[:] for row in x] |
Create 2D numpy array from the data provided in 'somefile.csv' with each row in the file having same number of value | X = numpy.loadtxt('somefile.csv', delimiter=',') |
get a list of items from the list `some_list` that contain string 'abc' | matching = [s for s in some_list if 'abc' in s] |
export a pandas data frame `df` to a file `mydf.tsv` and retain the indice | df.to_csv('mydf.tsv', sep='\t') |
w do I create a LIST of unique random numbers? | random.sample(list(range(100)), 10) |
plit a string `s` on last delimiter | s.rsplit(',', 1) |
Check if all elements in list `lst` are tupples of long and | all(isinstance(x, int) for x in lst) |
heck if all elements in a list 'lst' are the same type 'int' | all(isinstance(x, int) for x in lst) |
p a string `line` of all carriage returns and newline | line.strip() |
ll to the bottom of a web page using selenium webdriver | driver.execute_script('window.scrollTo(0, Y)') |
ll a to the bottom of a web page using selenium webdriver | driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') |
vert Date object `dateobject` into a DateTime objec | datetime.datetime.combine(dateobject, datetime.time()) |
heck if any item from list `b` is in list `a` | print(any(x in a for x in b)) |
ave a numpy array `image_array` as an image 'outfile.jpg' | scipy.misc.imsave('outfile.jpg', image_array) |
Remove anything in parenthesis from string `item` with a regex | item = re.sub(' ?\\([^)]+\\)', '', item) |
Remove word characters in parenthesis from string `item` with a regex | item = re.sub(' ?\\(\\w+\\)', '', item) |
Remove all data inside parenthesis in string `item` | item = re.sub(' \\(\\w+\\)', '', item) |
heck if any elements in one list `list1` are in another list `list2` | len(set(list1).intersection(list2)) > 0 |
vert hex string `s` to decimal | i = int(s, 16) |
vert hex string 0xff to decimal | int('0xff', 16) |
vert hex string FFFF to decimal | int('FFFF', 16) |
vert hex string '0xdeadbeef' to decimal | ast.literal_eval('0xdeadbeef') |
vert hex string 'deadbeef' to decimal | int('deadbeef', 16) |
ake screenshot 'screen.png' on mac os x | os.system('screencapture screen.png') |
Set a window size to `1400, 1000` using selenium webdriver | driver.set_window_size(1400, 1000) |
eplace nonascii chars from a unicode string u'm\xfasica' | unicodedata.normalize('NFKD', 'm\xfasica').encode('ascii', 'ignore') |
atenate dataframe `df1` with `df2` whilst removing duplicate | pandas.concat([df1, df2]).drop_duplicates().reset_index(drop=True) |
Construct an array with data type float32 `a` from data in binary file 'filename' | a = numpy.fromfile('filename', dtype=numpy.float32) |
execute a mv command `mv /home/somedir/subdir/* somedir/` in subproce | subprocess.call('mv /home/somedir/subdir/* somedir/', shell=True) |
w to use the mv command in Python with subproce | subprocess.call('mv /home/somedir/subdir/* somedir/', shell=True) |
print a character that has unicode value `\u25b2` | print('\u25b2'.encode('utf-8')) |
mpare contents at filehandles `file1` and `file2` using difflib | difflib.SequenceMatcher(None, file1.read(), file2.read()) |
Create a dictionary from string `e` separated by `` and `,` | dict((k, int(v)) for k, v in (e.split(' - ') for e in s.split(','))) |
heck if all elements in a tuple `(1, 6)` are in another `(1, 2, 3, 4, 5)` | all(i in (1, 2, 3, 4, 5) for i in (1, 6)) |
extract unique dates from time series 'Date' in dataframe `df` | df['Date'].map(lambda t: t.date()).unique() |
ght align string `mystring` with a width of 7 | """{:>7s}""".format(mystring) |
ead an excel file 'ComponentReportDJI.xls' | open('ComponentReport-DJI.xls', 'rb').read(200) |
dataframe `df` based on column 'b' in ascending and column 'c' in descending | df.sort_values(['b', 'c'], ascending=[True, False], inplace=True) |
dataframe `df` based on column 'a' in ascending and column 'b' in descending | df.sort_values(['a', 'b'], ascending=[True, False]) |
a pandas data frame with column `a` in ascending and `b` in descending order | df1.sort(['a', 'b'], ascending=[True, False], inplace=True) |
a pandas data frame by column `a` in ascending, and by column `b` in descending order | df.sort(['a', 'b'], ascending=[True, False]) |
django redirect to view 'Home.views.index' | redirect('Home.views.index') |
emove all values within one list `[2, 3, 7]` from another list `a` | [x for x in a if x not in [2, 3, 7]] |
emove the punctuation '!', '.', ':' from a string `asking` | out = ''.join(c for c in asking if c not in ('!', '.', ':')) |
BeautifulSoup get value associated with attribute 'content' where attribute 'name' is equal to 'City' in tag 'meta' in HTML parsed string `soup` | soup.find('meta', {'name': 'City'})['content'] |
quote a urlencoded unicode string '%0a' | urllib.parse.unquote('%0a') |
decode url `url` from UTF16 code to UTF8 code | urllib.parse.unquote(url).decode('utf8') |
empty a list `lst` | del lst[:] |
empty a list `lst` | del lst1[:] |